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Abstract—Even machine learning experiments that are fully
conducted on computers are not necessarily reproducible. An
increasing number of open source and commercial, closed source
machine learning platforms are being developed that help address
this problem. However, there is no standard for assessing and
comparing which features are required to fully support repro-
ducibility. We propose a quantitative method that alleviates this
problem. Based on the proposed method we assess and compare
the current state of the art machine learning platforms for how
well they support making empirical results reproducible. Our
results show that BEAT and Floydhub have the best support for
reproducibility with Codalab and Kaggle as close contenders.
The most commonly used machine learning platforms provided
by the big tech companies have poor support for reproducibility.

Index Terms—Reproducibility, reproducible AI, machine
learning platforms, survey.

I. INTRODUCTION

A concern has grown in the scientific community related
to the reproducibility of scientific results. The concern is
not unjustified. Baker reports that the scientific community
is in agreement that there is a reproducibility crisis going
on [1]. According to the findings of the ICLR 2018 Re-
producibility Challenge, experts in machine learning have
similar concerns about reproducibility; more worryingly, their
concern increased after trying to reproduce research results
[2]. In psychology, the reproducibility project was only able
to reproduce 36 out of 100 psychology research articles with
statistically significant results [3]. While reproducibility does
not necessarily mean discovery of truth, as Devezer et al.
[4] suggest, enabling reproducibility makes the analyses and
evaluations transparent. Transparency enables errors to be
found and corrected faster, ultimately shortening the path to
uncovering the truth. Braun and Ong argue that computer
science and machine learning should be in a better shape than
other sciences, as many if not all experiments are completely
conducted on computers [5].

Still, computer science and machine learning research is
not necessarily reproducible. This was shown by Collberg and
Proebsting who tried to execute code published as part of 601
papers. Their efforts succeeded in 32.1% of the experiments
when not communicating with authors and 48.3% when com-
municating with the authors [6]. In their experiment, they only
tried to run the code; they did not evaluate whether the results

were reproducible. Does running the code mean that we can
expect to reproduce the results? Henderson et al. investigated
deep reinforcement learning and found that random variables,
differing implementations of standard algorithms used for
baseline comparison and performance evaluation, produced
irreproducible results when they ran the same code on the
same hardware platform [7]. Hong et al. showed that different
hardware, compilers and compiler settings resulted in similar
variance of the output as changing the initial conditions of
weather simulations [8]. In other words, it is not possible to
distinguish between simulations that have been run with the
same initial conditions on different hardware, with different
compiler settings and on different software platforms and
simulations running on the exact same software and hardware
with different initial conditions. Furthermore, Nagarajan et al.
showed that it is possible to achieve deterministic results when
computations are done on a graphics processing unit (GPU);
the results will be completely different, but still deterministic,
if run on a different GPU [9]. So, even if independent
researchers are able to execute the code, the results are not
guaranteed to be reproducible. There is also a lack of openness
and version control of code and data [10], and the quality of
documentation is poor [11].

Many solutions for solving the reproducibility issues in
computer science and machine learning have been proposed,
and some are mentioned here. As experiments are run on
computers, it is possible to share the complete experiment
as proposed by [12], [13]. Gil et al. suggested that the
experiment procedures should be made explicit [14]. Sethi
et al. even proposed auto-generating code for deep neural
network architectures by analyzing research papers and in
this way reproducing the results [15]. Executable notebooks,
such as Jupyter Lab, have been proposed as solutions for
reproducibility, but everyone does not agree that they are the
silver bullet [16].

In addition to the suggested solutions, several recommenda-
tions for combating the reproducibility crisis have been made
by Wilkinson et al. [17], Stodden et al. [18], Nosek et al.
[3], Gil et al. [14], Starr et al. [19] and several others. The
remedies are (i) openness and transparency in form of open
sharing of code and data, but also open publishing, (ii) good
documentation where the experiments, workflows and methods
are described in detail, and (iii) version control of code, data



and results, (iv) proper citation of code and data, (v) licenses
so that it is clear how code and data can be used and finally
(vi) preregistering of study designs to avoid p-hacking and
HARKing.

The reproducibility crisis happens at the same time as there
is an increased interest in machine learning and artificial
intelligence. The top-conferences in AI and machine learn-
ing get increased attention. For example, AAAI1 had 3800
submissions in 2018 and close to 8000 in 2019. For IJCAI2,
the numbers were 3500 in 2018 and 4500 in 2019. Lately,
many machine learning platforms have been introduced, both
open source and closed source, that run locally or in the
cloud. Cloud solution providers such as Google, Amazon and
Microsoft provide machine learning services as part of their
cloud offering. Other solutions exist as well.

Goal: Given that (i) reproducibility is an issue, even in
computer science and for machine learning, (ii) the increased
interest in machine learning research and (iii) the amount of
machine learning platforms that have been introduced lately,
how easy is it to conduct research in machine learning that
is well documented and reproducible? Our goal is to inves-
tigate how well current machine learning platforms support
reproducibility out-of-the-box.

Contribution: Our contributions are threefold: (i) we pro-
pose a framework for comparing the support for repro-
ducibility of machine learning frameworks, (ii) we conduct
a survey of how well machine learning platforms support
reproducibility and (iii) we analyse which features that should
be developed for the different platforms in order to improve
reproducibility support.

Results: The results of our survey show that no machine
learning platform fully supports the feature set described by
the proposed framework. More development is still needed for
the surveyed platforms to fully support reproducibility.

The rest of this paper is organized as follows: Reproducibil-
ity is discussed in section 2. In section 3, a framework for
quantifying reproducibility support is presented. The research
method is presented in section 4. The survey platforms are
introduced in section 5, while section 6 contains the results
of the survey. The results are discussed in section 7. Section
8 concludes and provides some guidelines for potential future
work.

II. REPRODUCIBILITY

No ultimate definition of reproducibility is agreed upon.
Instead, researchers have presented several competing defini-
tions. Despite, the literature mostly agrees that reproducibility
is not a boolean variable. An experiment is not reproducible
or not reproducible; reproducibility comes in different shades.
Drummond argues that replication means to exactly replicate
the original experiment and that reproducibility is obtaining
the same results from quite a different experiment [20]. Stod-
den states that replication is re-running the experiment with

1https://www.aaai.org
2https://www.ijcai.org

code and data provided by the author, while reproduction is a
broader term that implies both replication and the regeneration
of findings with at least some independence from the original
code and/or data [21]. Peng suggests that reproducibility is a
continuous variable ranging from only a paper describing an
experiment being shared to the linked executable code and data
being shared along with the paper [22]. Goodman et al. present
three different terms describing reproducibility: 1) Methods
reproducibility means that the exact same procedures could be
exactly followed, 2) Results reproducibility refers to obtaining
the same results from conducting an independent study whose
procedures closely match the original study and 3) Inferential
reproducibility in which qualitatively the same conclusions
can be drawn from an independent study or reanalysis of
the original study [23]. Gundersen and Kjensmo propose that
for AI research three reproducibility degrees can be defined
based on which documentation the original researchers share
with independent researchers [11]. The documentation could
be divided into (i) the scientific report, (ii) the data and (iii) the
code from the original experiment. Tatman et al. suggest three
levels also based on what is shared: 1) Low reproducibility:
paper is shared, 2) Medium reproducibility: paper, code and
data are shared, 3) High reproducibility: paper, code, data and
environment is shared [24]. Plesser provides a good overview
of different definitions [25].

III. QUANTIFYING SUPPORT FOR REPRODUCIBILITY

Our work build on the definition of reproducibility and the
method for quantifying reproducibility that are suggested by
Gundersen and Kjensmo [11]. They propose three factors, one
for each documentation type, and specify variables that de-
scribe each of these three factors. The three factors are Method,
describing the scientific report communicating methods and
ideas to other researchers, Data, which is not only about
sharing the data, but also indicating which parts were used for
training, validation and testing, and Experiment, which is the
code both for running the experiment and for any methods that
are developed. Inspired by Gundersen et al. [26] we expand
the set of variables from the 16 to 22. The idea is that the
variables and factors are relevant for reproducing the results
of empirical artificial intelligence research described in a
scientific paper. The documentation quality and reproducibility
degree of empirical AI research could be quantified by three
metrics. We base our survey on the same idea, but instead of
scoring a research paper on how reproducible it is, we assess
how well machine learning platforms support reproducible
empirical research by scoring the platforms on whether they
have features that implement the variables. See table I for a
description of the variables and the factors they belong to.

The three reproducibility metrics are defined as follows:

R1F (p) =
δ1Method(p) + δ2Data(p) + δ3Exp(p)

δ1 + δ2 + δ3
(1)

R2F (p) =
δ1Method(p) + δ2Data(p)

δ1 + δ2
, (2)



TABLE I
CONTAINS THE DEFINITIONS OF WHAT THE DIFFERENT VARIABLES MEAN, AND WHICH FACTORS THEY BELONG TO.

Factor Variable Description

Experiment

Results Document the results (i.e., measures and metrics) and the analysis.

Analysis Explicitly indicate whether the analysis supports the hypotheses.

Justification Validate that the chosen datasets, empirical design, and metrics are appropriate for assessing the results.

Workflow Workflow representation that summarizes how the experiment is executed and configured.

Workfl. exec Workflow execution traces providing settings and initial, intermediate, and final data.

Hardware Document the hardware used for running the experiments.

Software Document the software dependencies.

Exp. cite Automatically generate reference entry for experiment.

Code repo Shared code through community repository.

Code metadata Include basic metadata for describing the code (language etc.).

Code license Include a license.

Code citeable Generate a digital object identifier (DOI) or persistent URL (PURL) for the version used.

Method

Hypothesis Document the hypotheses to be assessed.

Prediction Document the predicted outcome of the experiment.

Setup Parameters and the conditions to be tested and desired statistical significance of results.

Prob. desc. Support description of the problem that is intended to solve.

Outline Support for outlining the method conceptually.

Pseudo code Support for describing the AI method as pseudo code.

Data

Data repo Share data in a community repository.

Data metadata Include basic metadata that describes the data.

Data license Give the data a license.

Data citeable Generate a digital object identifier (DOI) or persistent URL (PURL) for the version used.

R3F (p) =Method(p), (3)

where Method(p), Data(p) and Exp(p) are weighted means
of the variables describing the three factors Method, Data and
Experiment for a platform p. Hence, a platform p can be scored
on every variable based on whether it has features that covers
the functionality of each variable. In this way, the metrics
can be computed for each platform and the platforms can be
compared.

The idea behind the different levels is described by Gun-
dersen and Kjensmo [11]. In short, the more detail that
is provided by the original researchers, the better chance
for independent researchers to get the exact same results
independently. The higher the R1F score, the more variables
are covered. However, if only the scientific report is released,
independent researchers could still reproduce the results, but
not exactly. The higher the R3F score is the easier it is to
reproduce results without any code and data. For example, if
independent researchers implement an algorithm described in a
scientific report and run it on a different set of data, the claims
of the original researchers can still be supported although
the exact performance metrics will not produce the exact
same values. An example could be independent researchers
implementing an artificial neural network as described by the
original researchers and testing it on a different data set than
what the original researchers used. This new implementation
could still perform significantly better than some reference
method, and hence the result would be reproduced, although

a performance measure, such as accuracy or F1 score, would
not get the exact same score as the original experiment.

The weights of the factors are δ1, δ2 and δ3 respectively. It
is of course possible to give different weights to each variable
and factor, but we use uniform weights, δi = 1, in our study.
One could easily argue that uniform weights do not make
sense, as some variables clearly are more important than others
for enabling reproducibility. The proposed method illustrates
how platforms can be scored using the features suggested in
related work without trying to give an answer to which factors
and variables are most important. Choosing weights without a
very structured or well-argued method for doing this could be
disputed. A good set of weights could be a question of policy
or based on empirical evidence for which features actually are
most important for reproducing results. Our position is that
finding the right set of weights could be a research project on
its own, and this is not the project we report here.

IV. RESEARCH METHOD

We have assessed 13 machine learning platforms based on
the quantitative method proposed above3. The platforms have
been chosen based on reviewing literature on reproducibility.
In addition, we have included the most commonly used ma-
chine learning platforms provided by Amazon, Microsoft and
Google. The reason we added these machine learning services
is that it allows us to analyse whether the more reproducibility

3See here for code and data: https://github.com/kireddo/escience2019



oriented platforms provide value in this regard compared to the
platforms used daily by the industry.

We use machine learning platform in a broad manner. We
do not restrict it to be a cloud solution where machine learning
experiments can be executed, solutions that could be installed
and run on a local machine are included. The idea is that the
platform supports and simplifies developing machine learning
programs and provides a rich set of functionality. Platforms
include more functionality than a library, such as SciKit-learn4.
Some of these solutions, such as Polyaxon and Azure ML
identify as platforms. StudioML identifies as a framework
while OpenML identifies as an environment.

Each platform is scored based on whether a feature is
Supported, Partially supported or Not supported. A supported
feature gets a score of 1, while a partially supported feature
has been scored as 0.5 and a not supported feature is scored
0. We could have used the whole range between 0 and 1 to
describe whether a feature is supported, but this would result
in a very subjective score, which we wanted to avoid. Partially
supported features could either be partially supported as part of
the machine learning platform or it could be supported through
integration with third party software. In order to get a score
of partially supported for integration with third party software
the software platform must support such integrations actively.

The primary target for our data collection has been the
documentation that is available for each platform. Further
investigations have proven necessary in some cases where
documentation has been unclear. This has not consisted in
properly conducting complete experiments, but rather isolating
features where the documentation did not seem to provide
sufficient information. Some of the issues with this kind of data
collection is discussed further in section VII. The following
subsections describe the three factors in more detail.

A. Experiment

The factor Experiment covers the parts of the research
which are implemented in software. This includes any novel
machine learning methods, the workflow of the experiment, as
well as the environment the experiments are executed in. The
results can be presented in different ways, such performance
metric scores in tables or visualized as graphs. The setup of
the experiment should specify and store hyperparameters and
environment variables in a understandable representation that
can be reviewed later. Workflows are typically represented as
graphs where sub-processes of the machine learning experi-
ment are specified as well as the flow of inputs and outputs.

In cloud based computing systems, hardware specifications
are typically given as part of the cluster configuration. How-
ever, this does not necessarily make it easier for the user
to specify and document hardware, as the exact hardware is
chosen upon run-time by the cloud platform. None of the
assessed cloud computing platforms have ways in place to
automatically track the actual hardware (the exact physical
machine) used to run experiments. This is contrasted by the

4http://scikit-learn.org

careful documentation of equipment taught in undergraduate
physics classes. Here, students must document serial numbers
of the tools used in order to be able to distinguish between
sloppiness and bad tools. In computer science, running on
GPUs from different vendors and even different production
batches of the same GPU can yield different results [9], so
being able to track the exact hardware is clearly valuable.
Software dependencies are usually available, often through the
use of containers and systems like Docker.

B. Method

The factor Method specifies variables that are part of the
textual documentation, the scientific report that is written for
independent researchers, so that they are enabled to conduct
the experiments themselves. It is written by researchers to
convey the ideas and concepts behind the research to other re-
searchers. The documentation describes the machine learning
method and the experiment setup with hyperparameters and
the environment, so that independent researchers understand
the reasoning behind performing an experiment in a given way.
For example in the context of a scientific paper, it makes sense
to present pseudo code as part of the textual description of
the method, rather than with the code, as the pseudo code
is there to help other researchers understand the algorithm
that is presented. As mentioned, notebooks are judged by
many as a solution for running reproducible experiments
and can reasonably be expected to improve communicating
experiments to other researchers to some extent. However,
notebook provide free form text, and therefore they do not
provide structure for what exactly to document. Because of
this, notebooks can only partially satisfy the the factor method
at best.

C. Data

The factor Data specifies variables related to whether data
is shared and whether it is specified as which samples are
used for training, validation and testing. For experiments to
be R1F and R2F reproducible, data has to be shared. Hence,
in order for a platform to score well on this factor it must offer
a possibility to openly host data and tracking which samples
were used for what. The most common practice is hosting data
on network storage such as S3, Google storage or Azure Blob
storage, or on local servers. However, these do not provide
versioning, structured meta data, possibility for citing the data
or provide licenses. An alternative is to rely on an external
data repository. These typically provide more features such as
metadata and licenses, as well as Persistent Uniform Resource
Locators (PURLs) or Digital Object Identifier (DOIs).

V. SURVEYED PLATFORMS

This section provides an overview of the software platforms
that have been surveyed.
OpenML5: Open source experiment database for machine
learning. The platform hosts open data, and defines algorithms
in a representation called flows. Datasets and tasks hold rich

5https://docs.openml.org/



metadata, and results from tasks are aggregated and compared
over different flows. There is no option to private data or
experiments, and code has to be run locally and uploaded
through one of their APIs. At the time of the survey, the
study feature of OpenML was still not fully implemented. This
feature is meant to handle the most of the scientific method
tied to the experiments. Because this is not fully implemented,
the platform has insufficient support for most of the features
relying on this.
MLflow6: Machine learning framework that is developed by
Databricks, currently in beta. The MLflow project is open
source and is made to easily integrate with other systems.
It is naturally compatible with other systems developed at
Databricks. This allows us to access features such as databricks
notebooks. The main features of MLflow itself are its experi-
ment tracking, packaging and deployment support.
Polyaxon7: Platform made for building, training and monitor-
ing large scale deep learning applications, currently in beta. It
is made to support most popular deep learning frameworks and
machine learning libraries. Polyaxon requires a Kubernetes
cluster to be run. It offers its own tracking UI for experiments.
StudioML8: Framework for managing sharing and reproduc-
ing Python experiments. It is an attempt to simplify and speed
up the machine learning pipeline. The system attempts to avoid
being invasive, and should run with little to no alterations to
any working python machine learning code. Artifacts, data and
logs are stored and organized in predefined data storages.
Kubeflow9: Kubernetes native open source machine learning
platform, developed at Google. One of the aims is to have
a low bar for entry, but a high ceiling for advanced users.
Extensive knowledge about Kubernetes should not be neces-
sary for most users. The platform is still in development, and
new features are expected to be added in the future. At the
moment, the system deployment is built around Ksonnet and
TF-serving. Several other projects are also supported.
CometML10: Python based machine learning platform for
tracking and sharing experiments. One of the interesting
features offered by CometML is the ability to compare ex-
periments side by side. This allows easy comparisons for
differences in code, convergence and hyperparameters among
other things. Documentation can be attached to experiments
in form of notes, graphs and charts, making them easier to
understand and reproduce.
Amazon Sagemaker11: Machine learning platform developed
by Amazon, made to run on the Amazon Web Services
(AWS). It is built from a few separate parts that can be
used independently from each other. The system is built on
docker containers, which are used to define the setup of the
experiments. There are many available containers supporting

6https://www.mlflow.org/docs/latest/index.html
7https://docs.polyaxon.com/, Version 0.2.9
8http://docs.studio.ml/en/latest/index.html
9https://www.kubeflow.org/docs/about/kubeflow/, Version 0.3
10https://comet-ml.com/docs/, Version 1.0.31
11https://sagemaker.readthedocs.io/en/latest/, Version 1.11.2

different machine learning libraries, and one can also write
containers that support custom code.
Google Cloud ML12: Google cloud ML engine is a machine
learning service built on the Google Cloud Platform (GCP).
It supports multiple machine learning frameworks and is
integrated with Google storage and Google cloud. It offers
a series of custom APIs which are specialized at anything
from speech to image recognition. The APIs are packaged
separately, so users can pick and choose the features that are
desired for their specific systems.
Azure ML13: Machine learning platform, developed by Mi-
crosoft. It has two different services: service and studio. Azure
ML service is a more typical platform for development and
deployment that requires users to be able to program, while
Studio is a simplified drag and drop tool that builds on the
same system. Studio is a good option for scientists who are
not machine learning experts.
Floydhub14: Commercial machine learning platform for
Python experiments. It offers a web dashboard with a number
of popular features such as Jupyter and Tensorboard integrated.
Floydhub is integrated with Github and offers version control
and sharing for both code and data. The platform is built on
offering cloud services.
BEAT15: Open source machine learning platform, developed
at Idiap Research Institute in Switzerland. BEAT hosts both
data and source code openly on the platform, but there are also
features for hiding experiments, data and code. The platform
is built on a component called toolchains, which describes the
workflow of the experiments in block diagrams [27].
Codalab16: Open source machine learning platform for re-
searchers, built by Microsoft. The platform is split into two
parts, competitions and worksheets. The worksheets is the
part that primarily looks to support reproducible experiments.
Codalab hosts data and source code and offers an interface for
easily accessible executable papers.
Kaggle17: Data science platform built around sharing of data
and machine learning competitions. Kaggle hosts a large data
repository, as well as code in the form of notebooks and
scripts. The platform offers a free cloud computing service
with options to run on both CPU and GPU. The APIs also
allow users to easily download content to work on it locally.
There is an established community of researchers who frequent
Kaggle competitions.

VI. RESULTS

We found that scoring was difficult at times. One chal-
lenge in particular is when a platform integrates with some
external system like a source control management system
or notebooks. One question is whether the integration with
the external system fully extends the functionality of the

12https://cloud.google.com/ml-engine/docs/
13https://docs.microsoft.com/en-us/azure/machine-learning/service/
14https://docs.floydhub.com/, Version 0.11.14
15https://www.beat-eu.org/platform/static/guide/
16https://github.com/codalab/codalab-worksheets/wiki
17https://www.kaggle.com/docs/kernels
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Fig. 1. Heat map showing which software platforms (rows) have the specified features (columns). Light blue indicates that the feature is supported, sea green
indicates partially supported and orange that it is not supported.

machine learning platform. Another is whether the integration
is actively supported or whether the support is more done
as an afterthought, so that the usage feels unnatural. Notable
external systems we found platforms using are Notebooks, Git,
Tensorboard and docker. The solutions developed by the big
tech companies Amazon, Google and Microsoft, integrate with
already established infrastructure part of their cloud services,
such as file storage and databases.

The results of the survey are illustrated in the heat map
in figure 1. The vertical black lines in the figure divide the
variables into the three factors, which shows that different
platforms typically support use cases that align with the
factors.

The heat map shows that all systems lack functionality for
the variables data and code citation as well as analysis. Most of
the systems also lack functionality for sharing code and data.
Sharing code and data are features that typically are related to
publishing research, and hence they are not necessarily impor-
tant features for the commercial machine learning platforms
developed for commercial businesses who typically do not
want to share code and data. Floydhub, BEAT and Codalab are
developed for researchers in order to support reproducibility,
and they support data and code sharing natively. Kaggle is

mainly a platform for conducting and participating in machine
learning competitions, and is therefore build for sharing code
and data. Generating permanent URLs and making data sets
and code citeable can be done using external services like
Zenodo18, Figshare19, W3ID20 and Datacite21.

Table II displays the external systems that are supported by
the the surveyed platforms. These external systems include
notebooks (ex. Jupyter), source code management (SCM)
systems (ex. git and Github), Docker and Tensorboard. The
support of external systems extend the desired functionality
of the machine learning platforms not only by providing new
functionality, but also supporting the same functionality in a
new way. An example is code sharing, which can be provided
as part of the the platform, but also through integrating with
external repositories. Table III shows which variables are
covered by the external systems we identified.

Notebooks: The integration with notebooks turned out
to be particularly noticeable. As discussed earlier, a lot of

18https://zenodo.org
19https://figshare.com
20https://w3id.org
21https://datacite.org
22Source control management system such as Github.



TABLE II
CHECK MARKS INDICATE WHETHER A PLATFORM SUPPORT ONE OF THE
EXTERNAL SYSTEMS AND A DASH INDICATES THAT IT DOES NOT. N/A
INDICATES THAT WE DID NOT FIND ANHY INFORMATION ABOUT THIS.

Notebooks SCM22 Docker Tensorboard
OpenML - - X -
MLflow X X X -

Polyaxon X - X X
StudioML X - X X
Kubeflow X X X X
CometML X X N/A X

ASM X - X X
GCML X - X X

Azure ML X - X -
Floydhub X X X X

BEAT - - X -
Codalab - - X -
Kaggle X - X -

TABLE III
SHOWS THE VARIABLES THAT ARE COVERED THROUGH INTEGRATIONS

WITH EXTERNAL SYSTEMS

System Variables supported
Notebooks Justification, Hypothesis, Prediction, Problem

Description, Outline and Pseudo code

SCM Code repository, Code metadata and Code license
Docker Software dependencies

Tensorboard Workflow, Results

the variables tied to the experiment and method are most
easily satisfied through textual descriptions. This means that
interfaces that allows the user to attach additional notes to
the experiments will contribute a lot to the overall score of a
platform. A number of platforms have notebooks as their only
option for supporting this kind of documentation.

Among the platforms that integrate with notebooks (see
table III), Floydhub is an exception. It allows for docu-
mentation be added in the experiment notes, but also offers
the use of Jupyter notebooks, which can serve the same
purpose. The ability of attaching notes to the experiments
is also present in BEAT, Codalab and CometML. Polyaxon,
StudioML, Kubeflow, Amazon SM, Google CML, Azure and
Kaggle depend on notebook integrations to support the Method
variables. The specific variables that are affected by these
integrations are justification, hypothesis, prediction, experi-
ment design, problem description, outline and pseudo code. To
which degree these variables are supported could be debated,
as the integration makes it possible to document the Method
variables, but nothing more. As mentioned above, in general,
we chose to assign partially supported when this was the case.

Source code management: Only MLflow, Kubeflow,
CometML and Floydhub rely on integration with external
systems for sharing code by integrating with Github. MLflow
and Kubeflow (Argo CD) do not support open sharing of code.
The support for license and code metadata are outsourced to
Github, which only support this through allowing users to add
files that contain this information.

Sharing of code and data brings a set of challenges with it. It
is fair to assume that most developers will be versioning their

code through some repository already. This means that any
feature covering the same functionality will need to meet at
least the same standards as what is already being used. Hence,
integrating with common source control management systems
is an advantage as users know how these work.

Software dependencies: Docker documents software de-
pendencies and is implemented to some degree by most of
the surveyed platforms, as a way of dealing with software
dependencies. There is however a difference between how
much direct interaction the user has with docker. Some of the
platforms allow more freedom in using custom docker images,
while others offer a selection of already installed images. We
could not find information in the documentation for CometML
about whether they use Docker for software dependencies, but
tracking of software dependencies is supported.

Workflows: Workflows are most easily represented as
graphs, and this is how Tensorboard support workflows.
Graphs illustrating the workflows are automatically generated
in Tensorboard, and this is a very good solution as it reduces
manual work and the possibilities for errors. Tensorboard is
integrated with several of the platforms, as illustrated in table
II. Workflows are represented in other ways as well, and there
is a variety in how this feature is implemented. Toolchains
that is a part of the BEAT-platform represent workflows as
block diagrams that have to be manually specified by the users.
Text is also used for specifying Workflows in OpenML and
CometML, and it is generated automatically. However, this
requires deeper insight into the how the framework operates,
and often the text output was massive and almost impossible
to interpret.

Execution traces seem to be preserved by default for most of
the systems, or at least be possible to preserve for the majority
of the platforms. Amazon Cloudwatch and Google Stackdriver
are examples of more advanced implementations of execution
traces that allows for monitoring and alerts.

Data repositories: None of the surveyed platforms integrate
with dedicated data repositories. Data is typically stored on
servers or on cloud storage that are not intended for sharing
data. Only Floydhub, BEAT, Codalab and Kaggle implement
data sharing features.

Hardware specifications: The support for hardware speci-
fication is tied to the features provided by the cloud computing
platforms. Kaggle, Floydhub and Codalab offers their own al-
ready configured machines. The hardware specification can be
found within the appropriate systems documentation. Among
these, Floydhub is the closest to a satisfactory solution, with
multiple hardware options, and documentation that makes it
relatively easy to pin down the specifications. We would still
argue that the support is partial, as the information should be
more detailed. Polyaxon, Kubeflow, Azure and Google CML
all allow the configuration of clusters with Kubernetes. This
is information that could and should be added automatically,
but in some cases it is not.

Experiment citation: Experiment citation is one of the
variables where we see the most variance between different
platforms. The degree of support is largely up for interpre-



TABLE IV
MEAN OF THE VARIABLES OVER EVERY CATEGORY FOR EACH SYSTEM

Platform Experiment Method Data
OpenML 0.25 0.17 0.75
MLflow 0.42 0.58 0.00
Polyaxon 0.38 0.58 0.00
StudioML 0.33 0.58 0.00
Kubeflow 0.50 0.58 0.00
CometML 0.67 0.58 0.00
Amazon SM 0.29 0.58 0.00
Google CML 0.33 0.50 0.00
Azure ML 0.42 0.58 0.00
Floydhub 0.71 0.50 0.75
BEAT 0.71 0.50 0.75
Codalab 0.67 0.50 0.75
Kaggle 0.63 0.50 0.75

TABLE V
REPRODUCIBILITY METRIC SCORES FOR THE 13 PLATFORMS.

Platform R1F R2F R3F
OpenML 0.39 0.46 0.17
MLflow 0.33 0.29 0.58
Polyaxon 0.32 0.29 0.58
StudioML 0.31 0.29 0.58
Kubeflow 0.36 0.29 0.58
CometML 0.42 0.29 0.58
Amazon SM 0.29 0.29 0.58
Google CML 0.28 0.25 0.50
Azure ML 0.33 0.29 0.58
Floydhub 0.65 0.63 0.50
BEAT 0.65 0.63 0.50
Codalab 0.64 0.63 0.50
Kaggle 0.63 0.63 0.50

tation, as all the platforms that share the experiments openly
support this to some degree. The clearest cut is platforms that
has options to openly publish experiments against platforms
that do not. Even if the private experiment can be shared
with specific users on demand, the option to openly publish
is primarily what we have looked for. That being said, the
option of being able to share private experiments with only
specific individuals do have its benefits, but they are less tied to
reproducibility. There are platforms that do offer open sharing,
but still have been assigned partially support. For example in
the case of OpenML, this stems from citation of the experiment
as a whole requires multiple links. This is likely to be resolved
in the future with the addition of the studies feature, which
did not work properly when we tested it. It is important that
the experiment is easy to navigate, and gives a good overview,
if it is to be cited.

Table IV shows the mean of the variables defining the
factors for each of the systems. We can see that only five
of the thirteen surveyed platforms score more than zero for
all the factors. Table V lists the scores for each system on
the three metrics that were defined above. The support for the
data factor has a particularly large impact on the total score
of R1 and R2, as so many systems lack this.

Figure 2 shows a scatter plot where each of the systems
have been plotted with their R1F score on the x-axis, the R2F
score on the y-axis and the size of the dot is scaled based
on the R3F score. It shows three clusters, where the three
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Fig. 2. Plot of platforms where R1 score is on the x-axis, R2 score is on the
y-axis and R3 is represented by size.

platforms that have been developed to support reproducibility
of machine learning results are in the cluster to the top right
together with Kaggle. This cluster represent the leaders while
the cluster down and left contains the generalist platforms that
do not focus specifically on reproducibility. They still lack lots
of functionality to fully support reproducible experiments. Cu-
riously, the central cluster only contains one platform, which
is OpenML. OpenML would be among the leading platforms
if it had integrated with a source control management system
and a notebook. Therefore, with some effort OpenML could
be a leading reproducibility platform.

VII. DISCUSSION

The heat map shows that the machine learning platforms
clearly support running experiments, as most of them support
or partially support most variables comprising the factor
experiment. This is no surprise as they are developed for this
exact use case. Most of these systems also support the factor
method to some degree, but this is typically through integration
with some sort of notebook, such as Jupyter. Hence, this factor
is mostly partially supported. Only OpenML, Floydhub, BEAT,
CodaLab and Kaggle of the machine learning systems support
the factor Data. This factor is mostly covered by data and/or
code repositories only.

What is striking is that none of the platforms that are
most commonly used by industry and academia, such as
the offerings by Amazon, Google and Microsoft, support the
three factors that comprise reproducibility. This means that the
results generated by software systems that are being developed
for research and commercial products with a high probability
are not reproducible.



One aspect that we have not assessed is how practical and
user friendly it is to use the different systems. Usability is
not easy to quantify and is also subject to subjectivity. What
is deemed usable for some are not deemed usable for others.
While a platform can technically fully support reproducibility
according to this method and analysis, it is possible usability
is lost in the way the variables are implemented as features.
Some of the systems provide high flexibility in configuration
while others do not. Flexibility is also a characteristic of a
system that will attract some power users, but for others this
only adds complexity and will thus repel them. Both flexibility
and usability have not been assessed as these characteristics
are hard if not impossible to quantify in an objective manner.

An aspect that is not properly reflected by the factor data is
the level of which data can be supported. Limitations tied to
the size and type of data that can be stored in a data repository
can potentially render the features obsolete if they do not
match the required standard of the experiment. If the data is
to be updated at any point, data versioning is also important.
Data very often change over time. Some data is pre-processed
and the pre-processing method might change and with it the
data. Also, samples may be added or removed, which is often
the case, also in published data sets.

It is important that the platforms do not get in the way of
development machine learning systems, as the main reason
professionals use them in the first place is to increase the
efficiency of the machine learning pipeline. The platform
should support an improve the development of machine learn-
ing systems. The value of machine learning platforms should
not only be to document the experiment for colleagues and
independent researchers in order to enable reproducibility. It
is important that the value of using the systems outweigh
the cost of setting them up for the end user. Keeping track
of workflows, which performance metrics are used as well
as hyperparameters, which data and code were used are all
important parts of the development process, as they support
identifying hard-to-find machine learning bugs. According
to Irakli Loladze, a matematical biologist, ensuring that the
research is reproducible increases time spent on a project
by 30% [1]. How these numbers compare with the numbers
for computer science is not clear. However, by developing
software solutions that support reproducibility, we should be
able to reduce the overhead by adding features that takes care
of the reproducibility automatically.

Code very often change hands in the industry while this is
not necessarily the case for researchers. It is not necessarily
the same person who creates the model who will deploy it
and later maintain it. Companies do not work on static data
sets, but their data sets typically changes all the time. Also,
performance of machine learning models often have a direct
correlation to the earnings of a company. Hence, making sure
the results of experiments are reproducible is something that
should be an important aspect of machine learning systems
developed for the industry. Surprisingly, the platforms that
are developed for and used by the industry do not support
reproducibility very well.

Deployment and serving of the created models are also im-
portant parts of commercial machine learning projects. Several
of the surveyed platforms, particularly the larger commercial
ones focus more on this. This feature was not taken into
account in the survey, as it is not relevant for reproducing the
results. Good software development practices are important
for industry, also when it comes to machine learning systems,
as these are considered as the high interest credit cards of
software development [28].

The majority of the reviewed systems are still in devel-
opment, some even in alpha. This means that the likelihood
of more features being added is rather high. Several of the
systems are also open source, allowing for a larger community
to improve them. None support persistent URLs, which have
been recommended in several papers. The main reason for this
is probably that this is a niche feature, as even researchers do
not often share data.

There are many challenges tied to implementing integrated
systems that support reproducibility. The field of AI utilizes
many different software tools, which can be difficult to provide
up to date support for. There is a large diversity in program-
ming languages and data sets, and results can vary from the
smallest change in experimental setup as demonstrated by
Hong et al. [8].

Different platforms end up having different use cases, and
this context is important when evaluating them. For example,
MLflow can be utilized as a component in a commercial
machine learning pipeline, but can also be used on its own. It
is also fair to note that there are many other features that are
not necessarily tied to reproducibility, which are important for
scientists making the choice of the toolsthat suits them best.
Some of these include: availability, computational efficiency,
security, cost, scale, language and library support, ease of use,
learning curve and supported systems. The importance of these
factors will depend on the user, and is therefore difficult to
objectively analyze.

VIII. CONCLUSION AND FUTURE WORK

Based on the results of this assessment, BEAT and Floydhub
supports reproducible machine learning experiments the best
as they have the highest R1F scores at 0.65. Codalab and
Kaggle are close with scores 0.64 and 0.63 respectively.

This is clearly shown in figure 2 where these four systems
cluster together in the top right corner. These are all systems
that are developed to support reproducible results, so this
should be expected. The machine learning systems developed
by Amazon, Google and Microsoft that have the most users do
not compare well with scores 0.29, 0.28 and 0.33 respectively.
Future work includes implementing experiments and run them
on the top scoring platforms and in this way evaluate usabil-
ity and flexibility. We would also like to investigate proper
weights of variables in the reproducibility metrics.
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