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ABSTRACT

A new hyperspectral texture descriptor, Relative Spectral Dif-
ference Occurrence Matrix (RSDOM) is proposed. Devel-
oped in a metrological framework, it simultaneously consid-
ers the distribution of spectra and their spatial arrangement
in the hyperspectral image. It is generic and adapted for any
number of spectral band or range. As validation, a texture
classification scheme is applied on HyTexiLa dataset using
RSDOM. The obtained accuracy is excellent (95.6%), com-
parable to Opponent Band Local Binary Pattern (OBLBP) but
at a much-reduced feature size (0.1% of OBLBP’s).

Index Terms— Texture, non-uniformity, hyperspectral,
metrology, Kullback-Leibler divergence

1. INTRODUCTION

The meteoric rise of spatial resolution of future hyperspec-
tral sensors for Earth Observation (EO) applications (e.g. 30
m for HISUI, 10 m for SHALOM, 8 m for HypXIM) [1] ac-
celerates the incorporation of textural information in aerial
image analysis. In cases where recognition based on spectral
information alone is insufficient due to the observation being
spectrally heterogeneous, textural assessment provides com-
plementary knowledge for land classification or analysis [2].
It allows quantification of various spatial aspects such as di-
rectionality, granularity and regularity which further improves
discrimination. Such application can be found in a plethora of
literature, for instances classification of tree species [3], soil
texture estimation [4] and urban landscape identification [5].

Recently, metrology or science of measurement has re-
ceived considerable attention in the field of remote sensing
[6, 7, 8]. Due to the increasing impact on national defense,
environmental research and navigation, it becomes critical to
impose metrology starting from acquisition steps up to the fi-
nal data analysis. Consequently, the complete physical mean-
ing of the measurement data has to be preserved throughout
the processing for metrological traceability. This is to ensure
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Fig. 1: A conceptual illustration of RSDOM as joint probabil-
ity distribution of the spectral distribution Prob

(
d(Si, Sr) =

∆Sr
)

and their spatial arrangement Prob
(
d(Si, Sj) = ∆S

)
.

that the “result can be related to a reference through a doc-
umented unbroken chain of calibrations, each contributing
to the measurement uncertainty” [9]. This warrants repro-
ducibility of results and generates confidence in its implica-
tion. In the context of our work, this induces a need to define
a hyperspectral texture descriptor that respects all the metro-
logical properties for reliable subsequent processing.

We begin our development by first considering the statis-
tics of vision in accordance to psychophysical experiments.
The Julesz conjecture establishes the idea that texture can be
modeled using low-order statistics [10]. In particular, first-
order statistics (mean, variance etc.) describe the probability
distribution of pixel values, while second-order statistics (co-
occurrence matrix, autocorrelation etc.) consider the relation
between pairs of pixel [11]. Combining both, we arrive at a
spectral-spatial formulation which simultaneously character-
izes the distribution of spectra and their spatial arrangement in
the image. For metrological purposes, we perform the calcu-
lation of spectral difference based on the physical definition of
electromagnetic spectrum. For complete texture description,
we consider the resulted feature (a probability distribution) as
it is without reduction to any moments.

The rest of the article is organized as follows. Section 2
details the formulation of the hyperspectral texture descriptor
and its similarity measure. Section 3 describes a classifica-
tion scheme to assess the feature’s performance with result
analysis. Section 4 presents the conclusion for this work.



2. PROPOSED METHOD

We derive a hyperspectral texture descriptor that encompasses
as a whole the distribution of spectra and their spatial arrange-
ment. The formulation is based on first and second order
statistics in the context of human perception. Designed to be
generic, the spectral-spatial assessment based on spectral dif-
ference is adapted for any spectral range and number of bands.
For compact representation, the texture feature is statistically
transformed and parametrized using GMM modeling. A sim-
ilarity measure is devised using Kullback-Leibler divergence.

2.1. A spectral-spatial formulation

For the first-order statistics M1, we represent the spectral dis-
tribution in hyperspectral image I via spectral difference ∆Sr
of each spectrum S with respect to a chosen reference Sr.
Formally, M1 is expressed as a probability distribution:

M
(Sr)
1 (∆Sr) = Prob

(
d(Si, Sr) = ∆Sr

)
,∀i ∈ I (1)

where d(·) is spectral difference operator. Hence, we are able
to assess the Z-dimensional spectral space via z-dimensional
difference space, where z � Z. This allows us to tackle the
high dimensionality of hyperspectral data without resorting
to band selection or dimensionality reduction techniques. We
have thus avoided changing the physical meaning of the data,
therefore preserving all the metrological properties.

For the second-order statisticsM2, we refer to the work in
[12] which relates co-occurrence matrix [13] with histogram
of difference. On this basis, we propose to replace the co-
occurrence matrix with probability distribution of spectral
difference ∆S between two pixels i and j separated by a
spatial vector ~v. Suppose that ~v is defined using distance l
and direction θ, M2 is expressed as a probability distribution:

M
(l,θ)
2 (∆S) = Prob

(
d(Si, Sj) = ∆S

)
,

∀i, j ∈ I, ‖−→ij ‖ = l,∠
−→
ij = θ

(2)

Combining the two statistics, we arrive at a formulation
that simultaneously characterizes the distribution of spectra
and their spatial arrangement in the image. Explicitly, it is
expressed as a joint probability distribution M given by:

M (Sr,l,θ)(∆Sr,∆S) =

Prob

(
d(Si, Sr) = ∆Sr, d(Si, Sj) = ∆S

)
,

∀i, j ∈ I, ‖−→ij ‖ = l,∠
−→
ij = θ

(3)

termed Relative Spectral Difference Occurrence Matrix (RS-
DOM). Conceptually, it is illustrated in Figure 1 which shows
the fusion of spectral and spatial analysis as a whole.

(a) Sr1 (b) Sr2 (c) Sr3

Fig. 2: Representation of two different spectral distributions,
S1 and S2 in difference space, with three choices of Sr.

On the choice of Sr, it has to be selected such that it lies
just outside the convex hull C of the spectral distribution for
the entire set of texture [14]. To understand this, suppose that
there are two textures to be discriminated. Figure 2 illustrates
their spectral distributions S1 and S2 as well as three choices
of Sr in the difference space. Sr1, which lies insideC is a bad
choice as it risks perceiving S1 and S2 as being equidistant.
Lying far from C, Sr2 on the other hand risks perceiving S1
and S2 to be equally far. Sr3, which lies just outside C is
clearly the best choice as it discriminates S1 and S2 best.

2.2. Metrological calculation of spectral difference

A spectrum is a continuous function over the wavelength
λ. Even in discretized form, its value ordering matters as
there exists high correlation between neighboring spectral
bands. As such, distribution-based spectral distances are
more adapted for metrological purposes [15]. In this work, we
choose to use Kullback-Leibler pseudo-divergence (KLPD)
[16]. Given spectra S1 and S2, their KLPD is expressed as
sum of shape difference ∆G and intensity difference ∆W :

d(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2) (4)

where:

∆G(S1, S2) = k1 ·KL(S̄1‖S̄2) + k2 ·KL(S̄2‖S̄1)

∆W (S1, S2) = (k1 − k2) log

(
k1
k2

)
(5)

noting that KL(·‖·) is the Kullback-Leibler divergence. The
normalized spectra S̄ is expressed as:

S̄ =

{
s̄j(λ) =

sj(λ)

k
, ∀λ ∈ [λmin, λmax]

}
(6)

where the normalization constant is given by:

k =

∫ λmax

λmin

sj(λ) dλ (7)



2.3. Parametrization and similarity measurement

The Gaussian Mixture Model (GMM), a method for identi-
fying mixture distributions can be used for estimating prob-
ability density functions (p.d.f.). The GMM is obtained by
maximization of the likelihood function using Expectation-
Maximization (EM) algorithms such as SEAM and SEM [17].
However, the mixture of D-dimensional multivariate normal
distribution has its support confined in all the space RD, that
is, it has unbounded support. The change of variable method
[18] identifies the diffeomorphism adapted to the support of
p.d.f. while being least rapid at infinity. It is applied on the
original data and has the effect of transformation into the en-
tire RD. Following the application of GMM, density of the
original data can thus be deduced for statistical modeling.

In case of RSDOM which is defined in the R4
+ support

by construction (due to KLPD being a positive measure), the
best diffeomorphism according to [19] consists of the tensor
product of the logarithm function with each variable. The

transformed RSDOM is given below, where ·̃ def
= log(·).

M (Sr,l,θ)(∆̃Gr, ∆̃Wr, ∆̃G, ∆̃W ) =

Prob

(
d̃(Si, Sr) = (∆̃Gr, ∆̃Wr), d̃(Si, Sj) = (∆̃G, ∆̃W )

)
∀i, j ∈ I, ‖−→ij ‖ = l,∠

−→
ij = θ

(8)

As demonstration, Figure 3 depicts the 4-D RSDOM in two
3-D representations for the “Chili” texture from HyTexiLa.
Using GMM modeling, RSDOM is finally reduced toK ·(1+
D + D2) scalar values, where K is the number of mixture
components and D = 4 is the number of dimension.

Considering RSDOM as probability distribution, Kullback-
Leibler (KL) divergence [20] is well adapted to assess the
similarity between them [21]. The variational approximation
of KL divergence between two GMMs is given by [22]:

KLvar(M‖M ′) =
∑
i

φi log

∑
j φje

−KL(Ni‖Nj)∑
j φ
′
je
−KL(Ni‖N ′

j)
(9)

as KL divergence for D-dimensional normal distributions N is:

KL(Ni‖Nj) =
1

2

[
log

∣∣Σj∣∣
|Σi|

+ tr(Σ−1j Σi)−D

+ (µj − µi)TΣ−1j (µj − µi)

] (10)

where φ, µ and Σ are the mixture weight, mean and covari-
ance respectively [23]. As KL divergence is not symmetric,
the similarity measure for RSDOM is defined as:

dKL(M,M ′) = KLvar(M‖M ′) +KLvar(M
′‖M) (11)

(a) “Chili”, sRGB-rendered

(b) RSDOM in the 3-D subspace
of ∆G-∆W -∆Gr (in black),
with projection in ∆W -∆Gr (in
red) and in ∆G-∆W (in blue)

(c) RSDOM in the 3-D subspace
of ∆Gr-∆Wr-∆G (in black),
with projection in ∆Wr-∆G (in
red) and in ∆Gr-∆Wr (in blue)

Fig. 3: Two 3-D representations of the 4-D RSDOM.

3. EXPERIMENT AND DISCUSSION

To assess the performance of RSDOM, we apply a classifica-
tion scheme on a hyperspectral texture dataset. As compari-
son, we benchmark our performance against Opponent Band
Local Binary Pattern (OBLBP). We annotate the results with
discussion and suggestions for future improvement.

3.1. Classification using nearest neighbor

HyTexiLa [24] is a hyperspectral reflectance image dataset
consisting of 112 textured images from five categories: food
(10 images), stone (4 images), textile (65 images), vegetation
(15 images) and wood (18 images). The number of spectral
band is 186, ranging from 405.37 nm to 995.83 nm at 3.19 nm
interval, hence spanning both visible and near infrared region.

The classification is based on nearest neighbor approach.
Following the setting in [24], each image (class) is split into
25 patches, of which 12 is used for training and 13 for test-
ing. To avoid any bias, we repeat all classification using
T = 10 trials with random selection of training and testing
sets. We report the average accuracy (number of correct clas-
sification) and F1-score along with their standard error (stan-
dard deviation/

√
T ). As baseline comparison, we also present

the result of classification based on average spectrum1.

1For an image of N pixels, the average spectrum is marginally defined as

Sµ(λ) =

{
sµ(λ) = 1

N

N∑
i=1

s(λ), ∀λ ∈ [λmin, λmax]

}



Classi. Average spectrum RSDOM

Accuracy F1-score Accuracy F1-score
w textile 91.4 ± 0.3 91.7 ± 0.2 95.6 ± 0.2 95.8 ± 0.1

w/o textile 82.2 ± 0.5 82.7 ± 0.5 92.6 ± 0.3 93.0 ± 0.3

Table 1: Inter-categorical classification on HyTexiLa.

Category Average spectrum RSDOM

Accuracy F1-score Accuracy F1-score
Food 96.3 ± 0.5 96.4 ± 0.5 97.5 ± 0.2 97.7 ± 0.2
Stone 86.7 ± 1.2 87.4 ± 1.1 98.5 ± 0.5 98.5 ± 0.4
Textile 98.7 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 98.6 ± 0.1

Vegetation 83.9 ± 0.6 84.2 ± 0.6 94.3 ± 0.5 94.4 ± 0.5
Wood 78.9 ± 0.7 79.3 ± 0.4 92.2 ± 0.5 92.5 ± 0.5

Table 2: Intra-categorical classification on HyTexiLa.

In [24], OBLBP is calculated with l = 1 on a neighbor-
hood of 8 pixels, roughly equivalent to assessing spectral vari-
ation across three pixels. For fair comparison, we select l = 3
in the calculation of RSDOM. For the direction, we arbitrary
choose θ = 0. On the number of GMM components, we
select K = 4 based on the Bayesian information criterion
(BIC). On the choice of Sr, we decide to adapt the rule in
[14] considering the large number of image in HyTexiLa. We
divide the images into two groups: the first consists of natural
and complex textures (food, stone, vegetation, wood) while
the second involves man-made and relatively simple textures
(textile). For balanced performance, we choose to dedicate
more attention on the first group. As such, we select Sr such
that it lies just outside the convex hull of the spectral distribu-
tion for the set of image belonging to the first group2.

3.2. Results and discussion

We perform two classifications, one on the entire dataset and
the other with textile images excluded. As textile images are
spectrally discriminable, excluding them from the classifica-
tion allows better assessment of texture discrimination. From
Table 1, it can be seen that in both cases the classification is
excellent (95.6% and 92.6%), comparable to the accuracy ob-
tained using OBLBP (98.76 %) in [24]. It can be observed too
that RSDOM outperforms average spectrum in the baseline
comparison, thus validating the interest of its formulation.

As texture complexity varies across the categories, we re-
fer the intra-categorical classification results to try explaining
the inter-categorical misclassification. From Table 2, it can
be inferred that the misclassification is mainly due to vege-
tation and wood images. For this, we deduce three possible

2In this work, we empirically select Sr(λ) = 3
(
0.5 + 0.5 erf

(
[λ −

λ̃]/200
))

, where erf(·) is the error function and λ̃ = (λmax − λmin)/2.

explanations. Firstly, the textures are mainly green for vege-
tation and brown for wood, therefore making discrimination
from each other harder. Secondly, their texton (the small-
est repeatable structure) size is larger, inducing the need for
larger l. Thirdly, some of the textures exhibits directionality,
therefore requiring a multi-direction texture assessment.

Compared to OBLBP, RSDOM registers slightly lower
performance although in the same efficiency range. This can
be attributed to the fact that OBLBP is a multi-directional tex-
ture descriptor as opposed to RSDOM being a uni-directional
one. However, the size of RSDOM (84 scalar values with
K = 4) is only 0.1% of OBLBP’s (82944 scalar values). Such
significant difference is also reflected in the computational
complexity. Considering an image of N pixels, L spectral
bands and texture assessment in P directions, the RSDOM
complexity isO(N ·L) in contrast to OBLBP’sO(N ·P ·2L).
For each patch of N = 41616 in the HyTexiLa classification
scheme, the RSDOM computational time is about 10 seconds.

3.3. Future work

We choose l = 3 for result comparison with [24], but in fact
such value may be susceptible to noise. In practical, the selec-
tion should depend on the image resolution, noise and texton
size. A protocol for selecting optimal l value ought to be care-
fully developed, even in future multi-scale and multi-direction
implementation. It is also worth reminded that in this work
the choice of Sr is made empirically. An optimization pro-
cedure is worth being pursued for maximized performance.
On the other hand, the baseline comparison shows that the
performance of classification using average spectrum alone is
close to that of using RSDOM. This may be attributed to the
fact that HyTexiLa is a relatively small dataset with limited
spectral and spatial variety. For a more adequate evaluation
of hyperspectral texture descriptors, a dataset richer in both
spectral and spatial characteristics is required.

4. CONCLUSION

We have proposed a new hyperspectral texture descriptor
named Relative Spectral Difference Occurrence Matrix (RS-
DOM). Being a spectral-spatial formulation, it assesses the
distribution of spectra and their spatial arrangement in the
image. Developed in a metrological framework to conform to
physical measurements, RSDOM is adapted for any number
of spectral band or range. Its calculation based on spectral
difference solves the curse of dimensionality without resort-
ing to band selection or dimensionality reduction techniques.
Its efficiency has been evaluated via a texture classification
scheme on HyTexiLa with excellent accuracy (95.6%). The
performance is close to Opponent Band Local Binary Pat-
tern (OBLBP), but at a much-reduced feature size (0.1% of
OBLBP’s in this work) and computational complexity.
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