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Abstract—In an increasing number of modern filtering ap-
plications, the encountered signals consist of frequent sharp
spikes, that cannot be accurately modeled using Gaussian random
processes. Modeling the behavior of such signals requires the
more general framework of α-stable random processes. In order
to present an inclusive filtering solution, this work derives a
new class of fractional-order correntropy adaptive filters that are
robust to the jittery α-stable signals. In contrast to conventional
correntropy filters, the proposed objective function is compatible
with the characteristic function of α-stable processes and cap-
tures fractional moments; therefore, the resulting algorithms do
not depend on non-existing second-order moments. The work also
includes performance and convergence analysis of the derived
algorithms. Finally, simulations are conducted to illustrate the
effectiveness of the proposed filtering techniques, which indicate
that the proposed filters can outperform their counterparts and
show less sensitivity to changes in the α parameter.

Index Terms—α-stable signals, correntropy criterion,
fractional-order filters, dynamic system tracking.

I. INTRODUCTION

Traditionally, signal processing and machine learning tech-

niques have been derived based on the assumption that the sig-

nal and noise are Gaussian [1], [2]. This assumption has played

a crucial role in mathematical tractability and computationally

efficiency of filtering solutions. However, the Gaussian model

for signal/noise is being questioned in an increasing number of

applications such as underwater acoustics [3], wideband com-

munications [4], financial data modeling [5] and audio signal

processing [6], [7] in which the encountered signals exhibit

sharp spikes. The class of symmetric α-stable (SαS) random

processes has proven to be a very flexible tool for modeling

the behavior of such signals [3]–[9]. Considering that, with the

exception of the Gaussian case, SαS random processes do not

possess finite second-order moments, classical Wiener filtering

techniques based on minimizing the second-order moment of

an error measure suffer considerable performance degradation

when applied to lower-order SαS signals [6], [9]. To tackle

this problem, a class of filtering techniques has been proposed

that is based on minimizing the fractional-norm and mixed p-

norm of an error measure [9]–[13]. Though these algorithms
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offered improved performance over the traditional methods,

they are computationally expensive and lack comprehensive

performance and convergence analysis frameworks.

More recently, a class of adaptive filtering techniques for

tracking dynamic systems, based on minimizing the fractional-

order norm of an error measure using the framework of

fractional-order calculus [14]–[16], has been proposed in [17]–

[19]. Although these fractional-order adaptive filters achieve

improved performance over the conventional Wiener filtering

techniques, their performance is sensitive with respect to

the value of characteristic exponent, α. Furthermore, residual

jitters are still present in their steady-state estimates.

On the other hand, correntropy criterion based adaptive

filtering techniques have been successfully applied for process-

ing signals corrupted by impulsive noise. [20]–[28]. However,

as the second-order, or, higher-order moment of the error is

involved in the evaluation of maximum correntropy criterion

(MCC) [22], or, generalized maximum correntropy criterion

(GMCC) [24] similarity measure, the correntropy criterion

based adaptive filters can not be extended to a situation where

both signal and noise processes are modeled as SαS signals.

In order to provide a comprehensive adaptive filtering

solution for the problem of tracking the state of a dynamic

system, where the dynamic system itself is only observable

through SαS input/output signals, is considered. Since both

signal and noise processes are modeled as SαS signals, nei-

ther the conventional fractional-order adaptive filters nor the

correntropy based adaptive filters alone will be enough here.

For this, a class of adaptive filters based on maximizing a

new fractional-order correntropy criterion in a gradient ascent

manner is derived. The resulting fractional-order correntropy

adaptive filters are computationally efficient to implement and

are useful in a wide range of applications such as estimation

and tracking in adverse conditions. Our main contributions

here are as follows:

• By intrinsically combining the principles of correntropy-

type local similarity measure and fractional-order calcu-

lus, we propose a class of fractional-order correntropy

adaptive filters that effectively regulate the presence of

strong jittery behavior of SαS signals.

• Stability of the proposed class of adaptive filters is

analyzed and the conditions for convergence are derived.

• Detailed simulations are conducted to demonstrate the

effectiveness of the proposed class of adaptive filters.

Mathematical Notations: We denote scalars, column vectors

and matrices with lower case, bold lower case and bold

uppercase letters, while I represents the identity matrix of
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appropriate size. Matrix transpose is denoted by (·)T and

operator vec{·} transforms a matrix into a vector by stacking

its successive columns. The symbol ⊗ is the right Kronecker

product operator. Finally, (·)〈τ〉 denotes the elementwise im-

plementation of the function g(z) = |z|τ sign(z), where sign(·)
and | · | return the sign and the absolute values of their input,

respectively.

II. PRELIMINARIES

In many real-world environments the signal and noise

processes are likely to have strong variations. The simple

Gaussian assumption on these signals is not reasonable as

their densities are heavier tailed than that of the Gaussian

density. These signals can be well approximated by the α-

stable distributions. In literature, researchers used α-stable

distributions to model various real-world phenomena such as

the random fluctuations of gravitational fields, network traffic,

data file sizes on the web and economic market indexes [29].

In general, α-stable distributions do not have an inclusive

closed form expression for their probability distribution func-

tions. For example, the Lévy distribution (α = 0.5), Cauchy

distribution (α = 1) and Gaussian distribution (α = 2)

have different probability density functions. However, the

class of real-valued α-stable random processes with elliptically

symmetric distributions, which often referred as symmetric α-

stable (SαS), have the characteristic function of the form [30],

[31]

Φz(s) = E[exp(isTz)] = exp(isTξ) exp
(

− (
1

2
sTΓzs)

α

2

)

,

(1)

where Φz(·) is the characteristic function of z, i2 = −1, with

E[·] denoting the statistical expectation operator. The positive

definite covariance matrix Γz determines the elliptical shape

of the distribution of z that is centered at mean vector ξ.

The characteristic exponent α ∈ (0, 2] in (1) governs the tail

heaviness of the density function [30], [31]. Small values of α
correspond to strong impulsiveness, resulting in heavier tails.

Excluding the Gaussian case, SαS random processes have

only finite statistical moments of orders strictly less than α [9],

[31], [32]. When it comes to filtering solutions, it is implicitly

assumed that α ∈ (1, 2], so that conditional expectations

can be established. Therefore, without loss of generality, this

work is limited to real-valued SαS random processes with

α ∈ (1, 2].

III. PROPOSED SOLUTION

We consider here the problem of tracking the state of a

given time-varying system using the input and output signals.

At each time instant n, the system state is represented by a

parameter matrix Hn whose internal dynamics are modeled

as

Hn = AHn−1 +Vn, (2)

where matrix A describes the deterministic system evolution,

and Vn is an SαS matrix sequence that models random

variations in the system. The input and output signals of the

system are assumed to be related via the linear model

yn = Hnxn +wn, (3)

where xn is the input regression vector used to identify the

system, yn is the observable output signal vector, and wn

denotes the background noise vector. Both xn and wn are

SαS random processes.

The a posteriori estimate at the previous time index n− 1
will be mapped onto the current time instant n to obtain the

a priori estimate of yn as stated below:

ŷn = Ĥn|n−1xn with Ĥn|n−1 = AĤn−1|n−1, (4)

where ŷn is the a priori estimate of yn, Ĥn−1|n−1 denotes

the a posteriori estimate at time index n−1 and its projection

onto time index n is denoted by Ĥn|n−1. Here, the objective is

to obtain the a posteriori estimate at time index n, i.e., Ĥn|n

given the observed system response yn. For this purpose, we

need to optimize a suitable cost function so that the a priori

estimate ŷn matches yn as closely as possible.

Correntropy provides a similarity measure of two random

variables in the vicinity of the kernel bandwidth [21]. By

varying the kernel width, the observation window in which

the similarity measure is assessed, can be controlled. This

adjustable window mechanism helps to regulate the effects of

sharps spikes presented in signal/noise [21]. Recently in [22]–

[24], correntropy has proven to be a very useful tool in the

domain of non-Gaussian signal processing where the noise is

modeled as impulsive noise. Inspired from these works, here

we adopt the principles of correntropy in designing a suitable

objective function. However, the second-order moment of the

error measure presented in the maximum correntropy criterion

function becomes the main hurdle in obtaining the conver-

gence criterion of the derived algorithm. Furthermore, the us-

age of ordinary calculus makes the algorithm unstable. In order

to overcome these issues, we propose the fractional-order

correntropy criterion, which is a function of the fractional

error-norm. Therefore, we aim to select the state estimates

{Ĥn|n, n = 1, 2, · · · } so that they maximize the following

criterion:

Jn = E
[

exp
(

−
‖ǫn‖

α
′

α′

2β2

)

]

, (5)

where ‖ǫn‖
α

′

α′ = ǫT
n
ǫ
〈α′−1〉
n is the fractional error-norm, and

ǫn = yn − ŷn is the a priori estimation error between the

predicted system response and the observed system response.

The parameter α′ ∈ (1, α) is a real-valued positive constant

that guarantees a concave shape to the cost function (5) and

β > 0 specifies the bandwidth of the kernel.

Similarly as in [17]–[19], the state estimate can be approx-

imated through gradient ascent iterations as follows:

Ĥn|n = Ĥn|n−1 + η ∇α
′−1Jn, (6)

where ∇α
′−1 denotes the (α′−1)-order gradient operator and

η is a positive real-valued gain.

Using the concepts of fractional differentials [14]–[16], the

(α′ − 1)-order gradient ∇α
′−1Jn can be evaluated. We first

note that, the function exp
(

−
‖ǫn‖

α
′

α′

2β2

)

is differentiable with
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respect to ‖ǫn‖
α

′

α′ and ‖ǫn‖
α

′

α′ is (α′−1)-th differentialble with

respect to Hn. Hence, from [14, Lemma 13], we obtain

∇α
′−1Jn = ∇α

′−1 exp
(

−
‖ǫn‖

α
′

α′

2β2

)

= − exp
(

−
‖ǫn‖

α
′

α′

2β2

) (‖ǫn‖
α

′

α′)α
′−2

(2β2)α′−1
∇α

′−1‖ǫn‖
α

′

α′ .

(7)

Now, using [14, Lemma 12], we finally have

∇α
′−1Jn = exp

(

−
‖ǫn‖

α
′

α′

2β2

)

τn ǫn (x〈α′−1〉
n

)T, (8)

where τn =
(

(‖ǫn‖
α

′

α′)α
′−2

)

/
(

(2β2)α
′−1

)

. Absorbing the

scalar term ητn into the adaptation gain µ, and substituting

(8) in (6), at every time index n, the updation rule of the

proposed fractional-order correntropy adaptive filter is given

by

Ĥn|n = Ĥn|n−1 + µf(ǫn)ǫn(x
〈α′−1〉
n

)T, (9)

where f(ǫn) = exp
(

−
‖ǫn‖

α
′

α′

2β2

)

is a function of the fractional-

norm of the estimation error ǫn.

Remark 1. Since f(ǫn) ∈ (0, 1] and (α′ − 1) ∈ (0, 1), the

proposed algorithm is able to regulate the sharp spikes present

both in signal and noise processes. Hence, the proposed algo-

rithm always performs at par or better than the conventional

fractional-order adaptive filter.

Remark 2. When α′ = 2, the proposed algorithm reduces

to the conventional maximum correntropy criterion adaptive

filter. On the other hand, for a large β value, the conventional

fractional-order adaptive filter can be a special case of the

proposed algorithm.

Remark 3. The proposed fractional-order correntropy adap-

tive filter incurs a small amount of additional computational

overhead compared to the conventional fractional-order adap-

tive filter (i.e., L+2 extra multiplications, L−1 extra additions

and an extra exp(·) function, where L is the length of the a

priori estimation error vector). This slight increase in overhead

is quite acceptable in view of the improvement in performance

achieved as shown in simulation results.

Remark 4. By introducing the normalized updates with

respect to input regressor xn (i.e., normalizing with the

fractional-order norm of input regressor), we obtain the follow-

ing fractional-order correntropy adaptive filter with normalized

adaptation gain:

Ĥn|n = Ĥn|n−1 +
µ

‖xn‖α
′

α′

f(ǫn)ǫn(x
〈α′−1〉
n

)T. (10)

IV. CONVERGENCE ANALYSIS

In this section we study the behavior of the proposed

algorithm and obtain a sufficient condition for its conver-

gence. Denoting the state estimation error at time index n
as Υn = Hn − Ĥn|n and using (2)-(4), the estimation error

ǫn can be expressed as

ǫn = Hnxn +wn −AĤn−1|n−1xn

= AHn−1xn +Vnxn +wn −AĤn−1|n−1xn

= AΥn−1xn +Vnxn +wn.

(11)

Substituting (11) in (9), the state update equation can be

reformulated as

Ĥn|n = Ĥn|n−1 + µf(ǫn)AΥn−1Xn + µf(ǫn)VnXn

+ µf(ǫn)Qn, (12)

where Xn = xn(x
〈α′−1〉
n )T and Qn = wn(x

〈α′−1〉
n )T. Recall-

ing that Ĥn|n−1 = AĤn−1|n−1 and subtracting both sides

of (12) from Hn, the recursion for the state estimation error

evolution is obtained as

Υn = AΥn−1Bn +VnBn − µf(ǫn)Qn, (13)

where Bn = (I−µf(ǫn)Xn). Using the vec{·} operator [33]

and denoting γ
n
= vec{Υn}, (13) can be rewritten as

γ
n
= (Bn ⊗A)γ

n−1
+ (Bn ⊗ I) vec{Vn}

− µf(ǫn)vec{Qn}.
(14)

To establish the convergence conditions, we make the follow-

ing assumptions:

A1: The random processes xn,wn,Vn are assumed to be

mutually and temporally independent with mean zero.

A2: The quantity f(ǫ(n)) is assumed to be independent of

other quantities.

Remark 5. At each time instant n, we always have 0 <
f(ǫ(n)) ≤ 1. Furthermore, in worst case scenario, i.e., when

f(ǫ(n)) = 1, proposed algorithm reduces to conventional

fractional-order filter. So A2 is a reasonable assumption to

make. It does not alter the convergence behavior of the

proposed algorithm.

Theorem 1. Assume the data model (3), state transition model

(2) and the assumptions A1-2 to hold. Then a sufficient

condition for the fractional-order correntropy adaptive filter

to converge in mean is

max
{

0, (|λmax(A)| − 1)/θ
}

< µ < (|λmax(A)|+ 1)/θ,
(15)

where θ = E[f(ǫn)]λmax(E[Xn])|λmax(A)| with λmax(·)
denoting the maximum eigenvalue of its argument matrix.

Proof. Taking the statistical expectation E[·] on both sides of

(14) and using the assumptions A1-2, we obtain

E[γ
n
] = (E[Bn]⊗A)E[γ

n−1
], (16)

where E[Bn] = I− µE[f(ǫn)]E[Xn)]. Iterating the recursion

(16), backwards down to n = 0, we have

E[γ
n
] =

(

n
∏

i=1

(

E[Bi]⊗A
)

)

E[γ
0
]. (17)

A sufficient condition for lim
n→∞

E[γ
n
] to attain a fi-

nite value is that |λmax(E[Bn])| < 1 for all n.

Using the properties of Kronecker product [33], the

above convergence condition can be equivalently stated as

|1− µE[f(ǫn)]λmax(E[Xn])| |λmax(A)| < 1. By solving the

above convergence condition, we arrive at (15).

Since the condition on α′ (i.e., α′ ∈ (1, α)) ensures

the existence of E[Xn], the bounds on µ can be evaluated.
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Recalling that 0 < f(ǫn) ≤ 1, implying 0 < E[f(ǫn)] ≤ 1,

it is seen that the convergence conditions of the conventional

fractional-order filter obtained in [17] are also sufficient for

the convergence of the proposed algorithm.

Following the similar steps (11)-(17), it can be shown that

the convergence of the normalized version (10) is guaranteed

for 0 < µ < 1.

V. NUMERICAL SIMULATIONS

In this section, we demonstrate the performance of the

proposed fractional-order correntropy adaptive filters via a

series of numerical simulations.

A. Tracking a Dynamic System

We consider the filtering problem introduced in Section III,

where

A=





1 0 0.04 0
0 1 0 0.04
0 0 1 0
0 0 0 1



 , and Vn=





0.0008 0
0 0.0008

0.04 0
0 0.04



νn,

with νn being a 2×4 zero-mean SαS random matrix sequence

having Γνn
= 10−4 × I4. For tracking the system, a 4 × 1

regression vector xn having Γxn
= 0.1 × I4, was used. The

background noise vector wn has

Γwn
=

[

10−2 0
0 10−2

]

⊗

[

1 0.1
0 1

]

.

In the simulations, the parameter α′ was set to α − 0.5. The

mean absolute deviation (MAD) (defined as E[‖γ
n
‖1]) was

considered as performance metric.

The characteristic exponent α was fixed at 1.8. The adapta-

tion gain µ and the kernel width parameter β of the proposed

filtering approaches were set to 0.2 and 1.7, respectively. The

proposed filtering techniques were simulated for tracking the

system and the corresponding results are displayed by plotting

MAD (in dB) vs iteration index n, obtained by averaging over

5000 independent experiments. The resulting MAD curves are

plotted in Fig. 2. For comparison, Fig. 2 also includes MAD

performance curves of the conventional fractional-order filters

[17], maximum correntropy criterion filter (MCC) [22] and the

least mean square filter (LMS). In Fig. 1(a), the adaptation

gain of all filters was set to µ = 0.2, to provide a fair

comparison of their steady-state performance. However, in

Fig. 1(b), the adaptation gain of the conventional fractional-

order filters was selected so that they achieved a similar stead-

state MAD performances as that of the proposed filters, to

provide a fair comparison for their convergence speed. From

Fig. 2, we see that the proposed filtering techniques converged

properly and are able to track the system state efficiently when

compared to conventional fractional-order filters. In contrast,

the conventional approaches that depend on the second-order

moment of the error measure, i.e, LMS and MCC, failed to

track the system state. Furthermore, the unnormalized con-

ventional fractional-order filter and LMS exhibited jitters (i.e.,

sharp spikes) in their MAD performance curves. This jittery

behavior is due to the heavier tailed distributions of input

regressor xn and noise {Vn,wn} processes. On the other

hand, since the fractional-order correntropy is insensitive to the

jittery behavior of the SαS signals, the proposed approaches

have not exhibited any jitters in the MAD performance curves.
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Fig. 1: MAD performance curves of the proposed adaptive

filtering techniques. Performance curves of the conventional

fractional-order approaches [17], MCC [22] and LMS are

included for comparison. (a) equal convergence rate (b) equal

steady-state MAD.

B. Robustness against α Value

In order to examine the robustness of the proposed

fractional-order correntropy adaptive filters against the charac-

teristic exponent value α, we carried out the same simulation

exercise for various values of α and adaptation gain µ. The

steady-state MAD value of the proposed approaches against

the α and µ is plotted in Fig. 2. For comparative assessment,

we also plotted the steady-state MAD values of conventional

fractional-order filters. From Fig. 2, we observe that the

MAD performance of the conventional fractional-order filters

degrades rapidly as α value decreases. The jitters in input

xn and noise {Vn,wn} will result in a similar behavior in

state estimation error Υn that manifest itself as a a degraded

MAD performance. Furthermore, the unnormalized version of

the conventional fractional-order filter exhibits strong jitters in

its steady-state MAD performance. These results confirm that

the conventional fractional-order filters are not suitable to the

scenario where the input regression and noise sequences are

heavier tailed (correspond to small α values). On the other

hand, as the value of α decreases the amount of degradation

in estimation performance is insignificant in the case of the

proposed class of filters. From simulations, it is evident that

the fractional-order correntropy adaptive filters can achieve

better performance by regulating the effect of jittery behavior

of input and noise processes. Note that this improvement is

achieved at negligible computational overhead as compared to

the conventional fractional-order filters.
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(a)

(b)

Fig. 2: Steady-state MAD vs α and µ. (a) unnormalized

algorithms (b) normalized algorithms.

VI. CONCLUSIONS

We considered the problem of estimation and tracking of

dynamic systems where the encountered signals exhibit sharp

spikes and are modeled as symmetric α-stable signals. To

this end, we proposed a class of fractional-order correntropy

adaptive filters that effectively overcome the jittery behavior of

the signals. The conditions for their stability were established.

The performance of the proposed class of algorithms was

demonstrated through simulations. Simulations confirmed the

superiority of the proposed approaches over the state-of-the-art

algorithms.
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