
Amplified locality-sensitive hashing-based recommender

systems with privacy protection
Xiaoxiao Chi1, Chao Yan2, Hao Wang 3, Wajid Rafique4, Lianyong Qi*

1. School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China

2. School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China

3. Department of Computer Science, Norwegian University of Science and Technology,

2815 Gjøvik, Norway

4. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, P. R. China

Department of Computer Science and Technology, Nanjing University, Nanjing, P. R. China

*. School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China

Abstract: With the advent of IoT (Internet of Things) age, the variety and volume of web services have been

increasing at a fast speed. This often leads to users’ selections for web services more complicated. Under the

circumstance, a variety of methods such as Collaborative Filtering are adopted to deal with this challenging

situation. While traditional Collaborative Filtering method has some shortcomings, one of which is that only

centralized user-service data are considered while distributed quality data from multiple platform are ignored.

Generally, service recommendation across different platforms often involves data communication among multiple

platforms, during which user privacy may be disclosed and much computational time is required. Considering

these challenges, a unique amplified LSH (Locality-Sensitive Hashing)-based service recommendation method, i.e.,

SRAmplified-LSH, is proposed in the paper. SRAmplified-LSH can guarantee a good balance between accuracy and efficiency

of recommendation and user privacy information. Finally, extensive experiments deployed on WS-DREAM dataset

validate the feasibility of our proposed method.

Keywords: amplified LSH, collaborative filtering, privacy, distributed service recommendation, efficiency,

1. INTRODUCTION

With prosperity of internet, the volume and variety of service on internet are both increasing

rapidly [1-2]. IoT (Internet of things) devices also generate huge amount of data which require

rich resources to store and process these data [29, 31, 39, 35]. And the process of dealing with

these IoT data also make large energy consumption as well as privacy leakage [24, 30]. Therefore,

it is often a very exhausted and time-consuming job for users to find out the services they need

from large volume of candidates. Besides, traditional manual search for finding appropriate

services is lack of efficiency and accuracy [3-6]. In this situation, various lightweight service

recommendation methods are adopted by researchers to address the abovementioned problems [32,

33]. For example, Collaborative Filtering (CF) is often recruited to analyze users’ historical

records on web services to make appropriate recommendation as well as to relief the heavy burden

on users.

However, traditional Collaborative Filtering approaches often assume that the data are

centralized from a single platform instead of multiple platforms [7-9]. For example, user A has

invoked some web services on one platform X while user B has invoked other web services on

another platform Y. So the data of users A and B are from two independent platforms, respectively.

Generally, there are two main barriers in front of similarity calculation between A and B. First, due

to probable privacy concerns, platform X and platform Y are often reluctant to share their data with

each other; in this situation, we cannot figure out the similarity between A and B through

traditional CF-based approaches. Second, the volumes of data platform X and platform Y often

grow rapidly with time elapsing, which bring additional communication cost and time delay

between these two platforms; consequently, the efficiency of recommendation is decreased

severely.

Considering these abovementioned challenges, we recruit Locality-Sensitive Hashing (LSH)

[34] technique to get accurate results in the process of recommendation where users’ privacy

information can be preserved and efficiency of service recommendation in the distributed

environment is also improved. However, LSH technique is a probability method, so during the

process of recommending web services it is common phenomenon to generate “FP

(False-positive)” and “FN (False-negative)” results by using the method. Concretely, we need to

amply LSH technique at the am of reducing the probable “FP” and “FN” recommended results.

Afterwards, by applying the amplified LSH technique to our approach, we propose a unique

recommendation approach, i.e., SRAmplified-LSH, which could be utilized in distributed environment.

With the most essential characteristic of amplified LSH technique, SRAmplified-LSH performs better

than traditional approaches in aspects of recommendation precision and time cost while ensuring

that the sensitive user data are secure. At last, we validate the feasibility of SRAmplified-LSH through

extensive real-world experiments.

In conclusion, our paper mainly consists of following contributions.

(1) We make brief introduction of LSH technique in the process of recommendation to protect

users’ privacy information as well as to improve the efficiency of recommendation.

(2) We recognize that LSH technique may lead to “FP” or “FN” recommended results as LSH is

a probabilistic technique.

(3) We amplify traditional LSH to reduce the probability of generating “FP” or “FN”

recommended results while guaranteeing high accuracy of recommended results.

(4) A raft of experiments are conducted on a real-world distributed QoS dataset WS-DREAM

1to estimate the feasibility of our proposal.

The structure of the paper is described as follows. We make brief introduction of the motivation

about our research in Section 2. In Section 3, we describe our problem with simple symbols to

understand easily. We come up with a unique approach called SRAmplified-LSH in order to handle the

recommendation problem in Section 4. A large amount of experiments are conducted in Section 5

to evaluate the feasibility of our proposal. Related works are briefly introduced in Section 6. And

finally, in Section 7, we summarize the paper and point out the future research directions.

2. MOTIVATION

In Figure 1, there is an example illustrating the motivation of this paper. As you see in the

picture, two users have both invoked large number of web services on platform X and platform Y.

For example, assume that platform X and platform Y are Taobao and Jingdong respectively. There

are so many customers buying products on the two giants. So the firms could produce a profile

about customers based on users’ activities such as what type of good user have purchased, which

page user have gone through and so on. And firms can only hold their own data about customers.

Note that in our paper the meanings of the word “user” and the “customer” are same. Concretely,

user u1 has invoked a lot of web services {ws1,1, ws1,2, ..., ws1,n} and users u2 has also invoked

1 https://wsdream.github.io/

many web services {ws2,1, ws2,2, ..., ws2,n}. What we have to solve is calculating the similarity

between user u1 and user u2. However, through using traditional CF-based methods there are some

barriers existing in the process:

(1) Privacy concern. It is unsafe for different platforms to share their historical QoS data with

each other. If they share their data without any protection measure, there will be large probability

that partial private information of users is exposed.

(2) For both platforms of X and Y, their volume of historical QoS data would have a sharp

growth and update with time. Under this circumstance, the efficiency and accuracy of traditional

collaborative filtering methods would decrease and the requirement of short response time may

not be satisfied.

(3) There is large probability to produce “FP” and “FN” recommended results. So the user

satisfaction degree would be decreased significantly.

In view of these challenges, we come up with a unique method described as SRAmplified-LSH that is

going to be introduced in the next part.

3. PROBLEM FORMULATION

In the paper, what we focus on is the research of recommendation on web services in distributed

environment. To clarify the following discussions and make the content of research easier to

understand, we first simply describe the problem as a three-tuple SR(PF, U, WS), where

1. PF = {pf1,…, pfz}: pfk (1 ≤ k ≤ z) denotes k-th distributed service platform.

2. U = {U1, …, Uz}: Uk (1 ≤ k ≤ z) indicates the collection of users corresponding to the pfk.

More concrete, Uk = {uk-1, …, uk-m}: uk-i (1 ≤ i ≤ m) indicates i-th user on pfk .

 user u1 user u2

sim(u1, u2)

ws1,1 ws1,n

message communication

 privacy of users

false-negative/false-positi

ve results

ws2,n ws2,1

platform X platform Y

Figure 1. Distributed service recommendation: an example

ws1,2 ws2,2

3. WS = {ws1, …, wsn}. Here, wsj (1 ≤ j ≤ n) denotes all services contained in the j-th

platform pfj. And wsj = {wsj-1, wsj-2, …, wsj-q} where wsj-p (1 ≤ p ≤ q) denotes the p-th web

service in the j-th platform. Note that users are supposed to invoke these web services, thus the

user-service quality data will be recorded. If a user doesn’t use a service, the QoS data is null.

4. A RECOMMENDATION SOLUTION BASED ON AMPLIFIED

LOCALITY-SENSITIVE HASHING: SRAmplified_LSH

In this section, we will introduce our proposed method, SRAmplified-LSH, in order to improve the

accuracy of recommendation results and the efficiency of recommendation. The following parts

will described the method in detail.

4.1 LSH Family

Before making introduction of amplified locality-sensitive hashing, we first clarify the basic

idea of locality-sensitive hashing. LSH is a kind of hash technique that is aiming to find the most

appropriate neighbors in an efficient way and meanwhile protects the privacy of users or items.

Generally, the main idea about LSH is going to be described as follows:

Suppose that A and B are two data objects distributed in space and d(A,B) is represented as the

distance between point A and point B. If the two points are very close in distance, they will be

hashed in same bucket via hash function f(.) with large probability. Otherwise, if they are far away

from each other in distance, they will be hashed in different buckets instead of same bucket via

hash function f(.).

More formally, the expression f(A) = f(B) is used to indicate that item A has been hashed in the

same buckets with item B. And the expression f(A) ≠ f(B) is applied to indicate that the bucket

where A has been hashed is different from B. Generally, a hash function f (.) is regarded as a

qualified hash function if the conditions (1) and (2) are satisfied. Thus, a set of functions of this

form will be called a family of (d1, d2, p1, p2)-sensitive hash functions where d1 is lower than d2.

If d (x, y) ≤ d1, then the probability that f(x) = f(y) is at least p1 (1)

If d (x, y) ≥ d2, then the probability that f(x) = f(y) is at most p2 (2)

However, LSH is a probabilistic method. Thus, during the process of calculating, there would

be generating “FP” or “FN” results. In this way, the recommended results would be inaccurate and

unsatisfied. So we propose our amplified LSH method to decrease the “FP” and “FN” results in

order to enhance the accuracy of recommended results and improve the degree of satisfactory of

users.

4.2 Amplify Locality-sensitive Hashing Family

In this part, we will amplify the original hash family F to generate a new hash family named F’

through using AND/OR-construction [36]. According to original hash family, the process of

building amplified hash family through “OR” construction is described as follows: Suppose that

the original hash family called F also contains s hash functions. Under this circumstance, several

hash functions will be selected randomly to compose a new hash function of the amplified hash

family. If the process of selection is done for several times, the amplified hash family will contain

several new hash functions. For example, if the process of selection is done for 10 times, then the

amplified hash family will contain 10 new hash functions. So we will build target user’s index

with the amplified hash family. So “OR” construction is that a certain user u falls into the same

side with the target user after being hashed by at least one new hash function. “And” construction

is that a certain user u falls into the same side with the target user after being hashed only by all

new hash functions.

4.3 SRAmplified-LSH: Amplified LSH method for Service

Recommendation

The basic idea about amplified LSH is five aspects: first, according to original hash family F,

new amplified LSH function Family F’ is constructed. Second, based on new amplified hash

family, we need to build users’ indices. Third, it’s important to define a kind of “similarity”

relationship between users based on amplified LSH technique. Forth, we need to find neighbors of

target users based on users’ indices. And finally, optimal web service with optimal value will be

recommended to target user.

In summary, the SRAmplified-LSH approach mainly includes the five steps, as shown in Figure. 2.

And in table 1, we give the symbols corresponding definition clearly.

Step1: Construct new amplified LSH Family F’. According to original LSH family, we built

new amplified LSH family in this step.

Step2: Build users’ indices offline according to new amplified LSH family. Fully utilizing

users’ historical QoS data, we generate users’ indices contained less private

information.

Step3: Define similarity relationship between users based on AND-OR-AND strategy.

According to two kinds of different standards described in 4.2, we need to define

relationship between users based on the three stages.

Step4: Finding similar users online for utarget. According to step 3, we need to find the

neighbors of target users.

Step5: Web service recommendation. According to step 4, we need to recommend web

services to target user.

Figure 2. Concrete process of SRAmplified-LSH

(1) Step1: Construct new amplified LSH family F’

Before constructing new amplified LSH family F’, we need to construct original hash family F.

According to part A, for different two points, we need a certain distance measure to evaluate the

distance between them. Actually, there are several kinds of distance measures to be adopted. Here,

we select Pearson Distance to calculate the distance between the two points. According to the type

of distance being adopted, there is corresponding hash functions named f(.). More concretely, for a

user u, the recommender system can extract the historical QoS data on n web services to build an

n-dimensional vector u = (r1, r2, ..., rn). And each LSH function can be represented as an

n-dimensional random vector. In equation (3), vector v = (v1, v2, …, vn) denotes an n-dimensional

vector where vj (1 ≤ j ≤ n) is a random value ranging from -1 to 1; the mathematic symbol

“ ” represents the dot product of two vectors. If result of dot product between vector u and

vector v is greater than zero, the value of function will be equal to binary value 1. Otherwise, the

value of function will be equal to binary value 0. What above mentioned is the process of

constructing original LSH family.

We need to build new amplified LSH family of hash functions based on abovementioned

original hash family. Assume that F is the original hash family and F’ is the new hash family.

What we need to do firstly is randomly choosing hash functions in family F for fixed t. And a new

hash function represented as a single member of F’ is composed of fixed t functions. Next, the

process of randomly choosing functions from original family F needs to be achieved for k times in

order to generate all new hash functions in F’ .Therefore, we will get the new amplified hash

family which have k members.

1 0
()

0 0

if u v
f u

if u v








 (3)

(1) Step2: Build users’ indices offline based on new amplified hash family.

Due to privacy concern, it’s necessary to protect users’ sensitive QoS data. So we use amplified

LSH technique to transform users’ QoS data to insensitive users’ indices in order to protect users’

privacy.

According to the step 1, we have built the new amplified family. So we are aiming to build

users’ indices in this step. For a user’s QoS data vector u , it has to be calculated with each

member of F’. Each member in new amplified hash family F’ is composed of fixed t (1 < t < s)

hash functions which are randomly chosen from original hash family F. The vector of each user is

converted to a binary value ()f u (∈{0,1}) through dot product with one hash function in

original hash family F. So under the circumstance, we can obtain binary values for fixed t. That is

hi = (f1, f2, ..., ft) (1 ≤ i ≤ k) and the value of each element of hi is either 0 or 1. For simplicity,

it’s necessary to convert the sequence of binary values into a decimal number which is called X.

However, even a single member of new amplified family may not fully describe the user’s

preferences about web services. So we need to repeat the process with all remaining members of

new hash family F’. Finally, we can get decimal values for fixed k. The user indices can be

represented as 1 2() ((), (),..., ())kH u H u H u H u and ()iH u is a decimal number.

In this way, we have built users’ indices offline and the indices of users have less private

information about users. Thus, in the process of building users’ indices, users’ privacy have been

protected very well under the distributed platforms.

(2) Step3: Define similarity relationship between users based on AND-OR-AND strategy

According to the LSH theory, if user ua has fallen into the same bucket with user ub, they will

be considered as similar neighbors with large probability. However, in essence LSH is a search

technique based on probability: therefore, it is of large probability to generate unsatisfactory

recommended results. In other words, LSH may generate “FP” or “FN” results, which reduces the

accuracy of recommendation about web services to a large extent.

To put up with this shortcoming, we utilize AND/OR strategies in different stages to improve

the accuracy of the recommendation and satisfy users’ needs sufficiently.

Strategy-1: “AND” operation over t functions of a member of new LSH family to reduce

“FP” results.

In step 1, we have built a new amplified LSH family where each member of the family includes

fixed t original hash functions. In order to make the “false-positive” results decrease, “AND”

operation is adopted over these t hash functions.

Suppose that t is equal to 5, so a member of new amplified hash family includes 5 hash

functions selected from original LSH family. For two users ua and ub, “AND” operation over these

5 hash functions commands that values of the five hash functions should be equal

correspondingly.

, () (), 1 i a i bi satisfy f u f u i t   
 (4)

Strategy-2: “OR” operation over k members of new LSH family for reducing the “FN”

results.

In step (1), we have built a new amplified hash family where fixed k hash functions are included

in the family. And each member consists of original hash functions for fixed t. At the aim of

reducing the “FN” results, we apply “OR” operation to these k hash functions. More specifically,

if condition (5) holds, the two users will be considered as similar users. Here, we adopt the

expression () ()a bH u OR H u to express the “similarity” relationship between ua and ub.

 , () (), 1 i a i bi satisfy H u H u i k    (5)

Strategy-3: “AND” operation over T hash tables in at the aim of reducing the “FN”

results.

At the aim of improving accuracy of recommended results, we need to repeat Step (1) and Step

(2) to generate fixed T hash tables. we adopt the expression, a b
sim

u u , to represent relationship

defined in (6).

 , () (), 1 x a x bi satisfy H u OR H u i T   (6)

In conclusion, we use strategy-1, strategy-2 and strategy-3 to define a unique relationship

between ua and ub i.e., a b
sim

u u in order to improve the accuracy of services

recommendation.

(4) Step4: Finding similar users online for utarget

The index for utarget, i.e. ()targetH u can be calculated based on step (1) and step (2). If the

condition () ()a targetH u H u holds, user a will be considered as similar neighbor of target user.

Thus, we will put them into same bucket called Neighbor. Thus, all elements of Neighbor have

same index. And users in the same bucket with the target user are the neighbors of the target user.

However, we will generate T hash tables, we need to search through all hash tables to find all

neighbors of target users and put them into a set called Neighbor#. In this paper, for simplicity, we

do not consider the number of appearances of neighbors.

(5) Step5: Web service recommendation

In this step, we need to recommend the web services which have never been invoked by target

user utarget. For each new web services wsj never rated by utarget before, it’s QoS data will be

predicted based on utarget’s neighbors recorded in Neighbor#. Specifically, the prediction process is

specified in (7) where ∣Neighbor#∣indicates the size of set Neighbor#. Next, we should

calculate all data of web services which target user has never invoked and determine an optimal

web services as the recommendation result and recommend it to utarget.

#

1

| |
_ = *

a

a#

u Neighbor

r
Neighbor

predict data



 (7)

Algorithm: SRAmplified-LSH

Inputs: (1) PF = {pf1, pf2, ... , pfz}: platform set;

 (2) U = {u1, u2, ... , um}: user set;

 (3) WS = {ws1, ws2, ... , wsn}: web service set;

 (4) Utarget : a target user

Output: wsoptimal: an optimal candidate web service being recommended to the target user

1 /* Step 1- Step 2: Building user indices according to new amplified LSH family */

2 for i = 1 to s do

3 for j = 1 to n do

4 vij = random [-1, 1]

5 end for

6 end for

7 for i = 1 to k do // k LSH functions in each new LSH family

8 hi(.) = randomly choose fixed t functions from original family

9 for j =1 to t do

10 calculate ()i ah u based on (4)

11 end for

12 transform ()i ah u into a decimal value X

13 () i aH u X

14 end for

15
1 2() ((), (), ..., ())a a a k aH u H u H u H u

16 Repeating line 1-15 T times to produce T hash tables

17 /* Step 3 - Step 4: Defining “friend” of users according to amplified LSH and online friend
search for utarget */

18 for i = 1 to m do

19 for x = 1 to T do

20 if () ()x i x targetH u OR H u holds according to (5) and a b
sim

u u holds based on (6)

21 then put ui into Neighbor

22 end if

23 end for

24 end for

25 /* Step 5: Movie Recommendation */

26 for i = 1 to n do // n candidate movies

27 if wstarget,i = 0 // utarget has never seen the movie

28 then for j =1 to ∣Neighbor∣ do

29 if wsj,i ≠ 0

30 then COUNT++

31 wstarget,i = wstarget,i + wsj,i

32 end if

33 end for

34 wstarget, i = wstarget,i / COUNT

35 end if

36 end for

37 wsoptimal = max{wstarget,1,…,wstarget,n}

38 return wsoptimal to target user utarget

5. EVALUATION

In this part, we are going to discuss the results of our proposed methods compared with other

methods.

5.1 Experimental Settings

Here, our estimation are mainly based on a raft of experiments using the WS-DREAM dataset

[30]. And the dataset records the throughput values of 5825 services monitored by 339 users

around the world. To ensure the quality of the prediction, 99% of entries are removed randomly

from the dataset, i.e. the density of the throughput matrix is 1%. In addition, 10 original hash

functions are generated randomly, i.e. s = 10; the number of vectors in each new hash function, t =

2, 3, 4, 5; the number of hash tables, T = 4, 6, 8, 10; the number of new hash functions, k = 4, 6, 8,

10.

To estimate the feasibility of our proposed method in aspects of recommendation accuracy and

efficiency, we compare the following four criteria between different methods, respectively:

(1) MAE: indicates the average distance between the predicted QoS and actual QoS.

(2) RMSE: reflects the degree of difference between the predicted value and the real value of

web services.

(3) Number of similar users: we use this criteria to evaluate the number of neighbors returned

by different approaches. Usually, we consider that there is an association between the number of

neighbors of target user and MAE.

(4) Time costs: we use this criteria to evaluate the efficiency of the three approaches.

In addition, we would compare our proposed approach SRAmplified-LSH with two advanced

approaches, UPCC [21] which is benchmark method and SerRecdistri-LSH [16] which recruited LSH

technique to improve accuracy of recommended results, to show the effectiveness and efficiency

of our solution. Each experiment was run on a Dell computer with 2.80 GHz CPU and 4.0 GB

memory. Software configurations include Windows 7 and Python 3. Each test is repeated 100

times and their average values are registered finally.

5.2 Evaluation Results.

We evaluate the performance of our solution using the following four profiles.

Profile1: The accuracy of recommendation results based on the three approaches

Accuracy is an important criteria to evaluate the performance of recommendation approaches

and the degree of satisfaction of the users. Here, we evaluate the accuracy of our proposed method

SRAmplified-LSH through the MAE and RMSE metrics (a smaller value is better) and compare them

with those of SerRecdistri-LSH and UPCC methods. In both the SRAmplified-LSH and SerRecdistri-LSH

approaches, the parameters T and k both vary from 4 to 10; in the SRAmplified-LSH approach,

parameter t = 2, 3, 4, 5. The experimental results are presented in Figure. 3.

As Figure 3 shows, the MAE and RMSE of the UPCC approach remain unchanged though T-k

pairs are changed, as the T and k parameters are not used in the UPCC approach. Though

privacy-protection solutions are employed in the former two approaches to protect sensitive

information of users, SRAmplified-LSH and SerRecdistri-LSH generally perform better than UPCC in

terms of accuracy with appropriate parameters. However, our SRAmplified-LSH approach often

performs better than SerRecdistri-LSH in terms of both MAE and RMSE, and its performance is better

than that of the benchmark UPCC approach if appropriate parameters (e.g., T, k and t) are selected.

This is because we enhance the capability of LSH in searching for the neighboring users by

selecting t vectors each time for hashing (Step 1). Therefore, according to the amplified LSH

technique, SRAmplified-LSH an often identify the “most similar” neighbors of a target user and then

produce accurate recommendation results accordingly.

(a) MAE

(b) RMSE

Figure 3. Comparison of accuracy of three approaches with MAE and RMSE

Profile2: The number of neighbors of utarget returned by the three approaches

In user-based CF methods, the recommended item list to utarget is based on the neighbors of

utarget. Therefore, the size of set Neighbor# can also influence the final recommended results as

well as the user satisfaction degree. Considering this, we compare the number of neighbors of

utarget returned by the three approaches. In both the SRAmplified-LSH and SerRecdistri-LSH approaches,

parameters T and k both vary from 4 to 10; in the SRAmplified-LSH approach, parameter t = 2, 3, 4, 5.

The experimental reports are presented in Figure. 4. Figure. 4 reveals that the size of the neighbor

set of utarget in the UPCC approach stays stable relative to the T-k pairs, as the parameters T and k

are not used in the UPCC approach. In addition, in the SRAmplified-LSH and SerRecdistri-LSH approaches,

the neighbors of utarget decrease when T increases or when k decreases. The reason is that a larger T

or a smaller k often indicates a tighter filtering condition for the neighbor search; as a consequence,

fewer neighbors of utarget would be returned. Our proposed SRAmplified-LSH approach returns fewer

neighbors of utarget than the SerRecdistri-LSH approach as the amplified LSH technique used in

SRAmplified-LSH can narrow the neighbor search condition compared to the traditional LSH technique

employed in SerRecdistri-LSH. Furthermore, in SRAmplified-LSH, a larger t often indicates a narrower

neighbor filtering condition and as a result, outputs fewer neighbors of utarget.

Profile3: Time costs of the three approaches

We measure the efficiency of the three approaches in this profile. In SRAmplified-LSH and

SerRecdistri-LSH, the parameters T and k both vary from 4 to 10; in SRAmplified-LSH, parameter t = 2, 3,

4, 5. The experimental results are presented in Figure 5. As Figure 5 (a) shows, the time cost of

UPCC remains stable though the T-k pair changes; SRAmplified-LSH and SerRecdistri-LSH both achieve

better efficiency than UPCC as the user indices can be generated offline in these two LSH-based

approaches. In addition, less computational time is needed in SRAmplified-LSH than in SerRecdistri-LSH,

as the amplified LSH technique adopted in SRAmpllified-LSH often guarantees the return of fewer

neighbors of utarget to use in the subsequent recommendation process. Furthermore, as presented in

Figure 5 (b), in SRAmplified-LSH, when T increases or k decreases, fewer neighbors are returned to

utarget; and less computational time is needed as a result.

Figure 4.Comparison of number of similar users on three approaches

Profile4: Performance of SRAmplified-LSH with varying values of parameters T, k and t

We measure the variation tendency of the various performance measures (MAE, RMSE, number

of neighbors of utarget) of SRAmplified-LSH with different parameter combinations of T, k and t. In the

experiments, T and k both vary from 4 to 10, and t is varied from 2 to 5. Experimental results are

presented in table 2. From the table, we will clearly notice the tendency of variation under

different parameter settings. Obviously, the performance of SRAmplified-LSH also varies with changes

in parameters T, k and t. We will found in the table that the smallest value of MAE is 4.43 when T,

k and t are 6, 4, 2 respectively. Although the differences between different parameter settings may

not be large, we could still find the optimal parameter setting according the results.

6. RELATED WORK

The historical quality data of service contain partial user privacy; therefore, it is crucial to make

sure that the process of recommendation will not cause the leakages of user privacy. At present,

there are several common privacy-preserving methods existing in the field of service

recommendation such as partial disclosure, anonymity, encryption, disturbance, decomposition

and LSH.

6.1 Partial disclosure

Dou et al. [10] suggested that users only disclose a small amount of optimal quality data they

monitored to achieve user privacy protection in service composition recommendation. However,

“a small amount of optimal QoS data” cannot objectively reflect true quality level of a service,

and a small amount of published quality data will still reveal part of user's privacy. Zheng et al.

[11] utilizes “the amount of quality data which users need to expose” as an adjustable parameter,

and then models user privacy protection problem as a multi-objective optimization problem with

NP-hard complexity, in order to obtain a better compromise between data availability and privacy;

However, this method still leads to expose a small amount of quality data; therefore, it may also

reveal user privacy.

6.2 Anonymity

Generalization or anonymity is one of the privacy protection strategies commonly used in the

field of data security [12,13]. Casino et al. [14] implements K-anonymity of data through

(a) time costs of three approaches

(b) time costs of SRAmplified-LSH and SerRecdistri-LSH

Figure 5. Comparison of time costs of three approaches

microaggregation technology, protecting users’ privacy in the process of service recommendation.

Memon et al. [15] uses K anonymity to generalize and blur the user’s location information, so as

to protect the user’s location privacy as much as possible while recommending services to users.

However, although abovementioned methods can protect users’ sensitive information, the

usability of anonymous data usually decreases. Therefore, using anonymous data for service

recommendation cannot guarantee high-quality recommendation results.

6.3 Encryption

Shu et al. [22] uses polynomial function to encrypt, match and recommend important data of

users and service providers (such as user needs, service functions, etc.) in order to realize

privacy-free task outsourcing. Ahila et al. [23] uses homomorphic encryption to protect sensitive

service QoS data while reducing the cost of encryption/decryption. However, as a heavy-weight

data protection method, the computational cost and time overhead of encryption operations are

often high, which is not suitable for light-weight recommendation requirements of some users.

6.4 Disturbance

Zhu et al. [28] used randomized perturbation technology to confuse the original service QoS

data and then calculated user similarity and recommended services based on the confused QoS

data to achieve a better compromise between recommendation accuracy and data privacy.

However, this method is generally aimed at collaborative service recommendation based on

Pearson similarity. The scope of application is relatively limited. Differential privacy technology

is used by Li et al. [25] and Zhu et al. [26] to inject and confuse sensitive QoS data with noise, and

then use noisy QoS data to recommend services, so as to ensure that real QoS data will not leak

out in the recommendation process. However, the time complexity of differential privacy

algorithm is relatively high; in addition, if the service's QoS data is updated frequently, it will

increase the cumulative noise, which will reduce the availability of service's QoS data, and then

affect the accuracy of recommendation results.

6.5 Decomposition

Li et al. [27] adopted the "decomposition-merge" mechanism to randomly decompose a QoS

data into several segments, and distribute each segment to different users for custody. Then, the

recommendation system merges multiple segments held by each user to calculate user similarity

and recommend services. In the recommendation process, each user can only hold part of the

information of a certain quality of service data, but can not know all of its information, so as to

achieve the purpose of privacy protection; however, this method will still disclose some of the

privacy information of users in the recommendation process, such as: the intersection of services

invoked by two users together.

6.6 LSH

LSH is an effective method for fast neighbor search in massive high-dimensional data and has

been gradually applied in the field of collaborative service recommendation in recent years. Qi et

al. [16-18] combines LSH with “user-based collaborative filtering”, converts user-sensitive quality

data into LSH hash value (i.e. user index) with low privacy (or even no privacy) and then searches

for similar friends of target users quickly and efficiently according to the user index table

generated offline, and makes service recommendation. Similarly, Zhang et al. [19] introduced

LSH into “item-based collaborative filtering” to construct low-privacy/no-privacy service index

tables offline, and then quickly and accurately recommend services based on service index tables.

Yan et al. [40] introduced LSH technique to protect the private QoS data with big range. And Chen

et al. [41] took the technique to alleviate the cold-start problems in recommendations. However,

the above research work is only a preliminary attempt by researchers to use LSH for service

recommendation-privacy protection, and still faces many unsolved scientific problems.

Based on above analyses, we can make a conclusion that current researches fall short in dealing

with problems involving users’ privacy in distributed environment. Considering these

abovementioned shortcomings, a unique amplified LSH-based approach named SRAmplified-LSH

which will be described in the section 4.

7. CONCLUSION

We propose an effective recommendation approach based on amplified LSH technique, i.e.,

SRAmplified-LSH, to deal with the challenges in the distributed environment. Through SRAmplified-LSH,

the similar users of a particular target user are decreased dramatically. As a result, the

recommendation process can be accelerated significantly. In addition, through amplified LSH

technique, users’ privacy are protected very well. Finally, we prove the feasibility of our proposal

via a variety of experiments conducted on WS-DREAM dataset. Through our proposed

SRAmplified-LSH approach, the recommendation accuracy is improved significantly. In conclusion, our

proposed method can protect user privacy while guarantee the accuracy and efficiency in

distributed recommendation.

8. FUTURE WORK

In the future, we are supposed to study further the theory of LSH and try our best to figure out

current issues. In our paper, there is still existing shortcomings described as follows. First of all,

since LSH technique is a probabilistic method, so we supposed to study the relevant mathematics

knowledge of probability in order to deal with some situations performing worse than compared

methods and improve the accuracy of recommendation results. Besides, due to the inherent

shortcoming of LSH, currently we cannot evaluate or quantify the privacy-preservation effects of

LSH directly when performing LSH-based service recommendation. So we need to further refine

our work by providing more objective privacy measurement manners. Last but not least, we are

supposed to further refine our proposal by introducing more factors, such as efficiency

consumption and time delay in work [37-38].

REFERENCES

1. Zibin Zheng, Ma Hao, R. Lyu Michael, and Irwin King. Qos-aware Web Service Recommendation by

Collaborative Filtering. IEEE Transactions on Services Computing, 4(2): 140-152, 2011.

2. Lianyong Qi, Ruili Wang, Shancang Li, Qiang He, Xiaolong Xu, Chunhua Hu. Time-aware Distributed

Service Recommendation with Privacy-preservation. Information Sciences, 480: 354-364, 2019.

3. Xinyu Wang, Jianke Zhu, Zibin Zheng, Wenjie Song, Yuanhong Shen, and Michael R. Lyu. A

Spatial-Temporal QoS Prediction Approach for Time-aware Web Service Recommendation, ACM

Transactions on the Web, 10(1): 7, 2016.

4. Lianyong Qi, Yi Chen, Yuan Yuan, Shucun Fu, Xuyun Zhang, Xiaolong Xu, A QoS-Aware Virtual Machine

Scheduling Method for Energy Conservation in Cloud-based Cyber-Physical Systems. World Wide Web

Journal, 2019, DOI: 10.1007/s11280-019-00684-y.

5. Wenwen Gong, Lianyong Qi, Yanwei Xu. Privacy-aware Multidimensional Mobile Service Quality Prediction

and Recommendation in Distributed Fog Environment. Wireless Communications and Mobile Computing,

vol. 2018, Article ID 3075849, 8 pages, 2018.

6. Lianyong Qi, Wanchun Dou, Wenping Wang, Guangshun Li, Hairong Yu, Shaohua Wan. Dynamic Mobile

Crowdsourcing Selection for Electricity Load Forecasting. IEEE ACCESS, 6: 46926-46937, 2018.

7. Chengyuan Yu, and Linpeng Huang. A Web Service QoS Prediction Approach based on Time- and

Location-aware Collaborative Filtering. Service Oriented Computing and Applications, 10(2): 135-149, 2016.

8. Yanwei Xu, Lianyong Qi, Wanchun Dou, Jiguo Yu. Privacy-preserving and Scalable Service

Recommendation based on SimHash in A Distributed Cloud Environment. Complexity, Volume 2017, Article

ID 3437854, 9 pages, 2017.

9. Lianyong Qi, Xuyun Zhang, Wanchun Dou, Qiang Ni. A Distributed Locality-Sensitive Hashing based

Approach for Cloud Service Recommendation from Multi-Source Data. IEEE Journal on Selected Areas in

Communications, 35(11): 2616-2624, 2017.

10. Wanchun Dou, Xuyun Zhang, Jianxun Liu and Jinjun Chen. HireSome-II: Towards Privacy-aware

Cross-cloud Service Composition for Big Data Applications. IEEE Transactions on Parallel and Distributed

Systems, 26(2): 455-466, 2015.

11. Xu Zheng, Zhipeng Cai, Jianzhong Li, Hong Gao. Location-Privacy-Aware Review Publication Mechanism

for Local Business Service Systems. IEEE International Conference on Computer Communications

(INFOCOM’17), 2017.

12. A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam. l-diversity: Privacy beyond K-anonymity.

International Conference on Data Engineering (ICDE’ 06), 2006.

13. Ninghui Li, Tiancheng Li and Suresh Venkatasubramanian. t-Closeness: Privacy Beyond k-Anonymity and

l-Diversity. International Conference on Data Engineering (ICDE’ 07), 2007.

14. Fran Casino, Josep Domingo-Ferrer, Constantinos Patsakis, Domènec Puig and Agusti Solanas. A

K-anonymous Approach to Privacy Preserving Collaborative Filtering. Journal of Computer and System

Sciences, 81(6): 1000-1011, 2015.

15. Imran Memon. Authentication User’s Privacy: An Integrating Location Privacy Protection Algorithm for

Secure Moving Objects in Location Based Services. Wireless Personal Communications, 82(3): 1585-1600,

2015.

16. Lianyong Qi, Wanchun Dou, Xuyun Zhang, and Shui Yu: Amplified Locality-Sensitive Hashing for

Privacy-Preserving Distributed Service Recommendaiton. SpaCCS 2017, LNCS 10656, pp. 280-297, 2017.

17. Lianyong Qi, Shunmei Meng, Xuyun Zhang, Ruili Wang, Xiaolong Xu, Zhili Zhou, Wanchun Dou. An

Exception Handling Approach for Privacy-preserving Service Recommendation Failure in A Cloud

Environment. Sensors, 18(7): 1-11, 2018.

18. Lianyong Qi, Xuyun Zhang, Wanchun Dou, Chunhua Hu, Chi Yang, Jinjun Chen. A Two-stage

Locality-Sensitive Hashing Based Approach for Privacy-Preserving Mobile Service Recommendation in

Cross-Platform Edge Environment. Future Generation Computer Systems, 88: 636-643, 2018.

19. Kunpeng Zhang, Shaokun Fan and Harry Jiannan Wang. An Efficient Recommender System Using Locality

Sensitive Hashing. The 51th Annual Hawaii International Conference on System Sciences (HICSS’18), 2018.

20. Xiaolong Xu, Yuan Xue, Yuan Yuan, Lianyong Qi, Xuyun Zhang, Tariq Umer, Shaohua Wan. An Edge

Computing-Enabled Computation Offloading Method with Privacy Preservation for Internet of Connected

Vehicles. Future Generation Computer Systems, vol. 96, pp. 89-100, 2019.

21. Lee Rodgers, Joseph, and W. Alan Nicewander. Thirteen Ways to Look at the Correlation Coefficient. The

American Statistician, 42(1): 59-66, 1988

22. Jiangang Shu, Xiaohua Jia, Kan Yang and Hua Wang. Privacy-Preserving Task Recommendation Services for

Crowdsourcing. IEEE Transactions on Services Computing, 2018. DOI: 10.1109/TSC.2018.2791601.

23. S. Sobitha Ahila and K. L. Shunmuganathan. Role of Agent Technology in Web Usage Mining:

Homomorphic Encryption Based Recommendation for E-commerce Applications. Wireless Personal

Communications, 87(2): 499–512, 2016.

24. Xiaolong Xu, Shucun Fu, Lianyong Qi, Xuyun Zhang, Qingxiang Liu, Qiang He, Shancang Li. An

IoT-Oriented data placement method with privacy preservation in cloud environment. Journal of Network and

Computer Applications, vol. 124, pp. 148-157, 2018.

25. Chao Li, Balaji Palanisamy and James Joshi. Differentially Private Trajectory Analysis for Points-of-Interest

Recommendation. IEEE International Congress on Big Data (BigData Congress’ 17), 2017.

26. Tianqing Zhu, Gang Li, Wanlei Zhou, Ping Xiong and Cao Yuan. Privacy-preserving Topic Model for

Tagging Recommender Systems. Knowledge and Information Systems, 46(1): 33-58, 2017.

27. Dongsheng Li, Chao Chen, Qin Lv, Li Shang, Yingying Zhao, Tun Lu and Ning Gu. An Algorithm for

Efficient Privacy-preserving Item-based Collaborative Filtering. Future Generation Computer Systems, 55:

311-320, 2016.

28. Jieming Zhu, Pinjia He, Zibin Zheng and Michael R. Lyu. A Privacy-preserving QoS Prediction Framework

for Web Service Recommendation. IEEE International Conference on Web Services (ICWS’ 15), 2015.

29. Xiaolong Xu, Yuancheng Li, Tao Huang, Yuan Xue, Kai Peng, Lianyong Qi, Wanchun Dou. An

Energy-Aware Computation Offloading Method for Smart Edge Computing in Wireless Metropolitan Area

Networks, Journal of Network and Computer Applications, vol. 133, pp. 75-85, 2019.

30. https://wsdream.github.io/ (accessed on 1st December 2018)

31. Xiaolong Xu, Qingxiang Liu, Yun Luo, Kai Peng, Xuyun Zhang, Shunmei Meng, Lianyong Qi. A

Computation Offloading Method over Big Data for IoT-Enabled Cloud-Edge Computing, Future Generation

Computer Systems, vol. 95, pp. 522-533, 2019.

32. Xiaolong Xu, Yi Chen, Yuan Yuan, Tao Huang, Xuyun Zhang, Lianyong Qi，Blockchain-based cloudlet

management for multimedia workflow in mobile edge computing, Multimedia Tools and Applications, 2019,

DOI: 10.1007/s11042-019-07900-x.

33. Xiaokang Wang, Laurence T. Yang, Hongguo Li, Man Lin, Jianjun Han, Bernady O. Apduhan, “NQA: A

Nested Anti-Collision Algorithm for RFID Systems”, ACM Transactions on Embedded Computing Systems,

Vol.18, no. 4, doi：10.1145/3330139, 2019.

34. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99(6), 518–529 ,

1999

35. Xiaokang Wang, Laurence T. Yang, Liwei Kuang, Xingang Liu, Qingxia Zhang and M. Jamal Deen, “A

Tensor-based Big Data-Driven Routing Recommendation Approach for Heterogeneous Networks”, IEEE

Network Magazine, Vol. 33, no.1, pp64-69, 2019.

36. Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Vol. 77. Cambridge University

Press Cambridge, 2012.

37. Qiang He, Guangming Cui, Xuyun Zhang, Feifei Chen, Shuiguang Deng, Hai Jin, Yun Yang, A

Game-Theoretical Approach for User Allocation in Edge Computing Environment, IEEE Transactions on

Parallel and Distributed Systems, DOI: 10.1109/TPDS.2019.2938944, 2019.

38. Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking, John Grundy, and Yun Yang, Optimal

Edge User Allocation in Edge Computing with Variable Sized Vector Bin Packing, 16th International

Conference on Service-Oriented Computing, pp. 230-245, Hangzhou, China, 2018.

39. Xiaokang Wang, Laurence T. Yang, Xia Xie, Jirong Jin, and M. Jamal Deen, “A Cloud-Edge Computing

Framework for Cyber-Physical-Social Services,” IEEE Communications Magazine, vol.55, no.11, pp. 80-85,

2017.

40. Chao Yan, Xuening Chen, Qinglei Kong: LSH-based private data protection for service quality with big range

in distributed educational service recommendations. EURASIP J. Wireless Comm. and Networking 2019: 92.

2019

41. Xuening Chen, Hanwen Liu, Dan Yang: Improved LSH for privacy-aware and robust recommender system

with sparse data in edge environment. EURASIP J. Wireless Comm. and Networking 2019: 171. 2019

Symbols Definition

pf1, …, pfz Platforms that store QoS data

u1, …, um Historical users who invoke web services

ws1, …, wsn Candidate web services hosted in all platforms

A, B Two points distributed in space

s The number of hash functions contained in original LSH family

t The number of hash functions contained in a member of new LSH family

utarget A target user

d (A, B) Distance between A and B

f(.) Original hash function

d1, d2, p1, p2 LSH parameters

k The number of members in a new LSH family

h(.) New hash functions

T The number of LSH tables

Table 1. Symbol Definitions

 Table 2. Performance variation of SRAmplified with respect to T, k and t

T*k

MAE RMSE Num_of_Similar_Users

t=2 t=3 t=4 t=5 t=2 t=3 t=4 t=5 t=2 t=3 t=4 t=5

10*4 5.35 5.14 4.95 4.83 14.08 12.66 10.96 10.34 20 5 3 2

10*6 5.06 5.27 4.77 4.91 13.32 12.21 9.95 10.21 20 3 2 2

10*8 4.64 5.25 5.53 6.05 11.50 12.06 19.18 23.54 34 3 118 338

10*10 4.76 5.66 6.06 6.05 11.66 13.61 23.56 23.54 55 4 338 339

8*4 4.81 5.45 4.61 4.66 10.82 13.27 10.31 10.39 23 5 3 2

8*6 4.45 5.30 4.87 4.70 10.83 12.41 10.65 10.17 29 3 2 2

8*8 4.47 5.35 5.21 6.06 11.94 12.49 16.06 23.59 51 4 119 337

8*10 4.75 5.39 5.56 6.05 14.68 12.31 21.89 23.54 78 5 337 339

6*4 4.43 5.55 5.07 5.30 10.71 13.76 12.97 13.35 31 5 3 2

6*6 4.82 5.62 5.03 5.36 14.15 13.92 12.41 13.32 50 5 3 2

6*8 5.43 5.42 4.38 6.05 17.73 13.39 12.50 23.52 80 8 119 338

6*10 5.17 5.87 6.05 6.05 17.93 17.25 23.54 23.54 111 12 338 339

4*4 4.63 5.49 4.84 4.83 12.62 13.60 12.04 11.80 56 9 3 2

4*6 5.12 5.30 5.28 5.43 15.29 14.10 13.59 11.74 90 15 3 2

4*8 5.05 5.23 4.48 6.05 16.88 15.15 13.31 23.55 128 24 120 337

4*10 5.47 4.78 6.12 6.05 20.03 12.85 23.90 23.54 160 34 338 339

