
Vol.:(0123456789)1 3

Rock Mechanics and Rock Engineering 
https://doi.org/10.1007/s00603-020-02139-7

ORIGINAL PAPER

Fracture Assessment of Quasi‑brittle Rock Simulated by Modified 
Discrete Element Method

Sohrab Gheibi1   · Rune M. Holt1

Received: 12 June 2018 / Accepted: 18 April 2020 
© The Author(s) 2020

Abstract
New developments of an in-house hybrid code, named Modified Discrete Element Method (MDEM) are presented in the 
paper. The new developments are on the treatment of pre-existing and propagating fractures in quasi-brittle materials. These 
developments are the embedment of Linear Elastic Fracture Mechanics (LEFM) and elastic-softening crack band model 
-based methodologies in the MDEM and their application in lab and reservoir scale. Using the first methodology, MDEM 
can calculate stress intensity factors, KI and KII using the internal contact forces of particles. KI and KII are calculated inde-
pendent of boundary conditions and geometrical configuration with acceptable accuracy level. The methodology has been 
also used in reservoir scale to study the rupture likelihood of faults and fractures due to fluid injection. This methodology 
enables the code to model mode I and mode II failures and propagation direction based on the fracturing model proposed by 
Rao et al. (Int J Rock Mech Min Sci 40(3): 355–375, 2003). Using the second methodology, the MDEM can model nonlinear 
behavior of quasi-brittle materials including or excluding preexisting cracks based on fracture energy. A model was verified 
against an experiment of a three point bend test with a notch. The numerically obtained force-crack mouth opening curve 
was reasonably comparable to the experimental test. The analysis was repeated for three other mesh sizes and the results are 
less mesh size dependent. Finally, it was shown that MDEM has the potential in studying fracture mechanics of quasi-brittle 
materials both in lab and large-scale investigations.

Keywords  Hybrid FEM/DEM · Stress intensity factor · Strain softening · Linear elastic fracture mechanics · Quasi-brittle 
material

List of Symbols
a	� Half a crack size
aij	� Contribution of the deformation of jth contact 

on the force of ith contact
A	� Area of a cluster/element
�	� Elasticity matrix
dt	� Time-step
E	� Young’s modulus
Et	� Tangential modulus
�n	� Contact normal force
ft	� Tensile strength
Gf	� Fracture energy
hc	� Crack band width
he	� Element size

H	� Softening modulus
He	� Equivalent softening modulus
K�	� Stress intensity factor being � = I, II in mode i 

and ii, respectively
K�e	� Equivalent stress intensity factor in mode i and 

ii being � = I, II , respectively
K�C	� Material toughness in mode i and ii being 

� = I, II , respectively
K∗	� Stress intensity factor estimation function
�̄	� Cluster’s contacts stiffness matrix
�	� Displacement–strain transformation matrix
P	� Pressure
Pmin	� Local minimum load in Brazilian test
Pmax	� Maximum load in Brazilian test
R	� Brazilian disc radius
t	� Brazilian disc thickness
�n	� Relative normal displacement of contact
xc	� Ligament size
�	� Crack angle with respect to the horizontal line
� f	� Fracture energy density
�	� Strain
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��	� Elastic and plastic strain being � = e, p , 
respectively

�	� Direction of an arbitrary plane at the crack tip
��C	� Direction of minimum tensile and maximum 

shear stress being � = I, II , respectively
�	� Ratio of maximum to minimum stress
�	� Plastic multiplier
�	� Friction coefficient
�	� Poisson’s ratio
�	� Stress
�max	� Maximum dimensionless stress intensity factor

Abbreviations
SIF	� Stress intensity factor
LEFM	� Linear elastic fracture mechanics
DEM	� Discrete element method
MDEM	� Modified discrete element method
CMOD	� Crack mouth opening displacement

1  Introduction

Failure of quasi-brittle materials such as rocks is associ-
ated with the localization of strain into a finite band forming 
macroscopic fracture. Accumulation of these microcracks 
due to their initiation, growth and coalescence imposes a 
nonlinear/softening behavior in the stress–strain curve of 
rocks. In the recent decades, several researchers have devel-
oped numerical method (codes) to capture the complicated 
process of fracturing. Jing and Hudson (2002) have classi-
fied the most commonly applied numerical methods in Rock 
Mechanics in three categories of (1) Continuum method 
including the Finite Difference Method (FDM), the Finite 
Element Method (FEM) and the Boundary Element Method 
(BEM), (2) Discrete Element Methods (DEM), (3) Hybrid 
continuum/discrete methods.

The DEM was introduced by Cundall (1971) for the 
analysis of rock-mechanics problems and then applied to 
soils by Cundall and Strack (1979). Particle Flow Code, 
PFC (Itasca Consulting Group Inc. 2012) as a DEM based 
code discretizes the domain by a number of discs in 2D and 
spheres in 3D which are in contact two by two transferring 
normal and shear forces in contact bond and also resisting 
rolling induced by moment in parallel bond version (Poty-
ondy and Cundall 2004). Fractures are formed by breakage 
of the bonds and their coalescence with other broken bonds. 
Classical PFC does not use fracture mechanics theories 
directly, but Potyondy and Cundall (2004) showed that the 
fracture toughness can be related to the properties of paral-
lel bond model if a definite size of particles (a characteristic 
length) are chosen with two non-dimensional constants α 
and β. Marina et al. (2015) obtained a cubic relationship 
between �

√
� and KI . Huang et al. (2013) also used PFC to 

calculate the toughness in rock cutting. Moon et al. (2007) 
developed a general approach to measure fracture toughness 
under random packing of non-uniform size particles. They 
used the energy balance approach which is based on the 
equilibrium state between strain, friction, and kinetic energy 
as the internal and the total accumulated work done by the 
loaded boundaries as the external energies. Their second 
method was collocation method which is determining the 
coefficients in a series of stress solution based on the com-
plex stress function presented by Westergaard (1939) and 
expanded by Sanford and Berger (1990). In this method, the 
result is sensitive to the number of data points. Although, 
PFC is widely used in modeling of rock failure and fracture 
propagation, like any other method or code, it has particu-
lar drawbacks such as low unconfined compressive to indi-
rect tensile strength ratio, effect of the inherent roughness 
of interfaces forming discontinuities on frictional behav-
ior. Lisjak and Grasselli (2014) have discussed the major 
drawbacks and reviewed the recent studies improving them. 
Among them are the paper by Potyondy and Cundall (2004) 
where they used cluster of particle together to obtain a more 
realistic macroscopic friction values. Cho et  al. (2007) 
showed that clumped-particle geometry lead to a more cor-
rect compressive to tensile strength ratio. Potyondy (2012) 
has alternatively, formulated the flat-joint model to capture 
the effect of clumped-particles.

Hybrid continuum-discontinuum method has recently 
gained attention among the researchers. Hybrid methods, 
generally consider the domain as a continuum and as soon as 
the cracks are about to form, the domain becomes discontin-
uum in the corresponding region. ELFEN (Rockfield Soft-
ware Ltd. 2004) is an example of a hybrid code that is based 
on finite element formulation. The transition from elastic 
continuum to discontinuum is controlled by dissipation of 
a definite amount of strain energy during strain localization 
into a crack band. For details about ELFEN the readers are 
referred to Klerck (2000) and Profit et al. (2015). Another 
known hybrid method is the combined finite-discrete ele-
ment method developed by Munjiza (2004) and extended by 
Mahabadi et al. (2012) named Y-Geo by improving the limi-
tation of Munjiza’s FDEM such as including a quasi-static 
friction law, Mohr–Coulomb and rock joints shear failure 
criterion etc. Guo et al. (2016) have also developed a three 
dimensional version of the Munjiza’s FDEM that has the 
ability to capture transition from continuum to discontinuum 
and the explicit interaction of discrete fractures. Lisjak and 
Grasselli (2014) have given a comprehensive review on 
some of DEM and hybrid codes.

Hori et  al. (2005) and Alassi (2008) have separately 
developed methodologies by which the microscopic param-
eters Kn (contact normal stiffness) and Ks (contact shear stiff-
ness) are calculated using macroscopic Young’s modulus 
and Poisson’s ratio. The main objective in their works was 
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removing the difficult process to calibrate the PFC model to 
find the desired condition to capture the effect of Poisson’s 
ratio. The improper arrangement of particles does not pro-
duce a lateral deformation due to the axial loading in DEM 
(Hori et al. 2005). However, the lateral deformation caused 
by an axial deformation both globally and locally determines 
the stress changes in large scale applications especially in 
oil–gas depletion or fluid injection such as CO2 storage and 
Enhanced Oil Recovery (EOR) (Fjaer et al. 2008). There-
fore, there is no need for the calibration procedure required 
in PFC. Hori et al. (2005) called their method/code FEM-β 
which was developed in the framework of FEM. In contrast, 
Alassi (2008) developed his methodology in the framework 
of DEM and called it Modified Discrete Element Method 
(MDEM). MDEM has been successfully applied in reser-
voir geomechanics and hydraulic fracturing recently (Lavrov 
et al. 2016; Gheibi et al. 2016, 2017). Like the FEM, MDEM 
suffers from mesh/particle size dependency in modeling 
crack propagation. In the local FEM approach, mesh size 
dependency is treated by correcting the softening modulus 
for the element size by enforcing a mesh size independ-
ent fracture energy (Bazant and Planas 1997). However, in 
others, a material length scale is incorporated in the for-
mulation of finite elements. In the nonlocal damage model 
formulation, the stress at a point not only depends on the 
strain at that point, but also on the strain at a neighborhood 
of that point (e.g. Bažant and Pijaudier-Cabot 1988; Guy 
et al. 2012). The gradient-enhanced approach incorporates 
the dependency on the second gradient of an invariant of 
the plastic strain (e.g. De Borst and Mühlhaus 1992). In 
the micropolar elastoplaticity, the Cosserat’s continuum 
is adopted (e.g. Steinmann and Willam 1991). Consider-
ing rate-dependency of the yield surface is also another 
approach to overcome the instability in strain localization 
(Wang et al. 1997). Alternatively, a finite width of a localiza-
tion band is reduced to zero width (or an interface) known 
as a strong discontinuity. Assumed enhanced strain (Simo 
and Rifai 1990) and the extended finite element (Moës et al. 
1999) methods are classified among the approaches used 
assuming a strong discontinuity which uses classical plastic-
ity theory without introducing a length scale.

In this paper, we will discuss the new developments in 
MDEM by presenting two different methodologies that 
are based on Linear-Elastic Fracture Mechanics (LEFM) 
and Elastic-Softening Fracture Mechanics to deal with the 
fracture problem. The application of MDEM in the lab and 
large scale will be shown by modeling several examples. 
The general formulation of MDEM will be given in Sect. 2. 
In Sect. 3, the application of MDEM in LEFM will be dis-
cussed by solving several examples. Section 4 covers the 
application of MDEM in elastic softening fracture mechan-
ics of quasi-brittle materials. Finally, the conclusions will be 
given in the last section.

2 � Modified Discrete Element Method

The Modified Discrete Element Method (MDEM) was pro-
posed by Alassi (2008) to model fracture developments and 
fault reactivation during fluid withdrawal and injection at 
reservoir scale. MDEM is a hybrid code that behaves like a 
continuum model (e.g., finite element method) before failure 
and like a discontinuum model (e.g., discrete element method) 
after failure.

Figure 1 shows a triangular element formed by connecting 
the centers of three discs which are in contact two by two. The 
triangle element is also called a cluster.

The constitutive relationship of the normal forces, 
�
�
=
{
fn1 fn2 fn3

}T
, and the normal relative displacements, 

�
�
=
{
un1 un2 un3

}T
, of the three contacts of a cluster 

(Fig. 1) is given as Alassi (2008)

where, �̄ =

⎛⎜⎜⎝

kn1 a12 a13
a21 kn2 a23
a31 a32 kn3

⎞⎟⎟⎠
.

It is assumed that a contact can only develop normal forces, 
therefore, the shear stiffness of contact are set to zero. Instead, 
aij are introduced to the matrix of stiffness in Eq. (1). aij rep-
resents the contribution of the deformation of jth contact on 
the force of ith contact.

Stress state is related to the internal forces of the contacts. 
Using Gauss theorem, stresses are retrieved from the internal 
forces as following (Alassi 2008)

where, � =
{
�xx �yy �xy

}T , A is the area of the cluster (tri-
angle), the internal forces �

�
 and � is the unit normal vector 

matrix defined as Alassi (2008)

where Ie1 = cos
(
�e
)
 Ie2 = sin

(
�e
)
 and the angle �e represents 

the normal vector orientation of contact e inside the cluster, 
de is the contact length (the distance between the centers of 
the two particles that are in contact), and e = 1, 2, 3 is the 
ID of contacts.

Strain of a cluster is calculated using (Alassi 2008)

(1)�
�
= �̄�

�
,

(2)� =
1

A
�

�
�
�
,

(3)� =

⎛⎜⎜⎝

I2
11
d1 I2

12
d1 I11I12d1

I2
21
d2 I2

22
d2 I21I22d2

I2
31
d3 I2

32
d3 I31I32d3

⎞⎟⎟⎠
,

Fig. 1   Representation of 
MDEM element (Alassi 2008)
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The geometrical matrix � transforms the strain of a clus-
ter � =

{
�xx �yy �xy

}T to the relative displacements �
�
, of 

contacts.
The stress can be related to the strain by using the mate-

rial conventional constitutive elastic matrix � as

So, by combining Eqs.  (1)–(5) a relationship can be 
derived between the conventional elasticity matrix and inter-
nal contact stiffness matrix �̄ as following (Alassi 2008)

The solution scheme is an explicit one like the regular 
discrete element method after �̄ is retrieved from Eq. (6). 
The contact forces are updated ( �new

�
= �

�
+ d�

�
 ) based on 

the incremental change in the forces ( d�
�
= �̄d�

�
 ) due to 

contact’s relative displacement. d�
�
 is calculated based on 

the difference of velocities of the two particles in contact in 
time step dt.

Newton’s second law is used to update the particle’s 
motion [see Cundall and Strack (1979) for more details]. 
Clusters fail in tension or shear after they reach their peak 
strength value. For a failed cluster, two of the contacts fail.

Discontinuities such as joints and faults can be introduced 
to the model. A discontinuity is a collection of failed clusters 
which has two contacts failed. This provides flexibility in 
introducing preexisting discontinuities even with complex 
geometries. The direction of the failed contact is updated 
to the direction of the discontinuity. This is equivalent to 
the smooth-joint model in DEM introduced by Mas Ivars 
et al. (2008).

The failure criterion is Mohr–Coulomb with a tension cut-
off. After peak strength of an element, the strain localizes into 
a band with a finite width (Bazant and Planas 1997) and a 
finite amount of energy is dissipated until the continuum clus-
ter turns to discontinuum. Two of the three contacts of the 
cluster are allowed to separate or slide. The two failed contacts 

(4)�
�
= ��.

(5)� = ��

(6)� =
1

A
�

�
�̄�.

are selected based on the direction of minimum principal stress 
i.e. the contacts under lower normal force. Post-peak soften-
ing/hardening behavior is captured by dividing the strain (�) 
into two elastic (�e) and plastic parts (�p) i.e. � = �e + �p. The 
plastic strain is calculated as Chen and Han (2007)

where Λ is the plastic multiplier defined by the plastic power 
equivalence (plastic work) and is a function of the harden-
ing/softening modulus H (Chen and Han 2007). Since the 
internal calculation of the code is based on displacements 
rather than strains, �p as the plastic relative displacement 
is calculated using �p and �e = � − �p is the elastic relative 
displacement. �e is used to update the forces in Eq. (1). Frac-
tures appear if the effective plastic strain in a given cluster 
reaches a critical value. The critical plastic strain is dictated 
by H or equivalently the fracture energy. Figure 2 repre-
sents the geometrical relation between fracture energy ( Gf ), 
softening modulus (H), tangential modulus (Et) , Young’s 
modulus ( E ) fracture energy density ( � f ), tensile strength 
( ft ) for a bar breaks in uniaxial tension.

According to Bazant and Planas (1997) the crack band has 
a finite width ( hc ) that is a material constant depending on its 
maximum particle size. From numerical point of view, the size 
of the elements should not necessarily be exactly equal to hc 
but larger element size can be used in the model. However, the 
softening modulus (H) or equivalently �f

c
 should be updated to 

guarantee the correct energy release rate independent of the 
mesh size. The fracture energy Gf defines the amount of energy 
dissipated per unit cross sectional area of the crack band of 
width hc . For an arbitrary mesh, strain-softening should neces-
sarily localize into an element of dimension,he . The equivalent 
softening modulus ( He ) is determined by enforcing a constant 
fracture energy Gf as following

Therefore, the results should be less mesh size sensitive. 
To avoid a negative value of He for very large mesh sizes, 

(7)�p = �
�F

��
,

(8)Gf = hc�f = he�e
f
⇒ �e

f
=

hc

he
�f ⇒ He =

he

hc
H.

Fig. 2   The crack band model, a 
system response, b crack band 
softening (Bazant and Planas 
1997; Klerck 2000)
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the tensile strength can also be modified to ensure constant 
fracture energy (Bazant and Planas 1997).

It should be noted that the examples modeled with elastic-
softening in this paper have been restricted to tensile mecha-
nism and the softening after shear failure was beyond the 
goal of this paper. However, Alassi and Holt (2011) modeled 
softening behavior under compression with MDEM.

The main difference between MDEM and the regular 
discrete element method is that the material behaves like 
a continuum before failure, where the conventional elastic 
properties are given as input values (Eq. (6)). The mate-
rial behaves like a regular discrete element method after the 
deformation of an element reaches �f

c
.

2.1 � Calculation of KI and KII in MDEM

For an arbitrarily oriented crack in an isotropic body under 
a mixed-mode I–II loadings in plane stress or plane strain 
conditions. The stresses near the crack tip are

The total forces over the xc− sized ligament (Fig. 3) can 
be expressed as de Morais (2007)

And their values can be evaluated from the internal forces 
of the contacts for a cluster at its center of gravity as shown 
in Fig. 3. SIFs are estimated using (de Morais 2007)

(9)�yy = KI
�√

2�x

(10)�xy = KII
�√

2�x.

(11)Fy =

xc

∫
0

�yydx = KI
√
2xc∕�

(12)Fx =

xc

∫
0

�xydx = KII
√
2xc∕�.

KI and KII are calculated by extrapolating to xc = 0 of 
the linear approximations of K∗I and K∗II as a function of 
xc plots, respectively. The deviation from the analytical 
KI and KII values is about 1%. The method provides an 
acceptable accuracy for reasonably coarser mesh.

2.2 � Mixed Mode I–II Cracks and Brittle Fracture 
Criterion

Erdogan and Sih (1963) proposed the composite criterion 
of minimum circumferential tensile stress (minimum ten-
sile–stress criterion). This criterion holds that a mixed 
mode I–II crack propagates along the corresponding direc-
tion of minimum tensile stress satisfying the following 
(modified after Wu et al. 2016)

where �IC is the corresponding direction of minimum tensile 
stress.

The corresponding SIF of minimum tensile stress or 
equivalent mode I intensity factor is given by (modified 
after Wu et al. 2016)

The fracture criterion for mode I crack grow/rupture is 
Rao et al. (2003)

where KIC is the fracture toughness in mode I.
To obtain the direction of maximum shear stress, the 

following condition should be satisfied

This leads to a cubic equation with three roots. We derive 
the following solution as the corresponding direction of 
maximum (absolute value) shear stress (Gheibi et al. 2018)

(13)K∗I =
√
�∕2xc

l�
i=1

Fy,i

(14)K∗II =
√
�∕2xc

l�
i=1

Fx,i.

(15)
𝜕𝜎𝜃𝜃

𝜕𝜃
= 0,

𝜕2𝜎𝜃𝜃

𝜕𝜃2
> 0

(16)�IC = 2 tan−1
1 −

√
1 + 8w2

4w
, w =

KII

KI
,

(17)KIe =
1

2
cos

�

2

IC[
KI

(
1 + cos �IC

)
− 3KII sin �IC

]
.

(18)
|||K

Ie||| ≥ KIC,

(19)
���r

��
= 0,

|||��r
(
� = �IIC

�

)|||max
.

Fig. 3   A pre-existing crack and clusters in front of the crack tip and 
calculation of forces required to approximate KI and KII (after Gheibi 
et al. 2018)
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w h e r e ,  p = −
1

3
(w)2 −

7

2
  ,  q =

2

27
(w)3 −

2

3
w   , 

g = cos−1
⎛
⎜⎜⎝
−

1

2

q�
−
�

p

3

�3

⎞
⎟⎟⎠
 and � is the index of the three roots 

and only one of them maximizes the shear stress.
Therefore, the corresponding SIF of maximum shear 

stress or equivalent mode II intensity factor is given by 
(modified after Wu et al. 2016)

The failure criterion for shear is given by Rao et al. (2003)

where KIIC is the fracture toughness in mode II.
It must be noted that KI in Eqs. (17) and (21) is only 

meaningful if it is negative. Otherwise it should be set to 
zero.

3 � Linear Elastic Fracture Mechanics

3.1 � Central Crack Under Uniaxial and Biaxial 
Loading

Figure 4 represents KI and KII numerically obtained for a 
central crack with a length of 2a = 1 inclined by � varying 
from 0° to 90° from the horizontal line. A vertical, constant 
uniaxial tensile stress was applied on the top edge and the 

(20)

�IIC
�

= 2 tan−1

(
2 cos

(g
3
+ (� − 2)

�

3

)√
−
(p
3

)
+

w

3

)
, � = 1, 2, 3,

(21)KIIe =
1

2
cos

�IIC

2

[
KI sin �IIC + KII

(
3 cos �IIC − 1

)]
.

(22)

{|||K
IIe
/
KIe||| ≥ KIIC

/
KIC

KIIe ≥ KIIC
,

bottom was fixed in y direction. The difference between the 
exact solution and the numerical one is about 1%.

It is also possible to calculate KI and KII for biaxial stress 
boundary condition in any ratio of the applied stress, no 
matter if they are compression–compression, tensile–tensile 
and tensile-compression. When the crack surface is closed 
(under compression) the corresponding KII is corrected by 
imposing the effect of the friction coefficient. Based on the 
fracture criterion proposed by Rao et al. (2003), KIe and KIIe 
are calculated using Eqs. (17 and 21). Figure 5 shows KIe , 
KIIe and the corresponding |||KIIe

/
KIe||| for a central crack with 

� inclination under two uniaxial and compressive–compres-
sive stresses with � = 0, 0.3 and friction coefficient 
� = 0, 0.6 . Figure 5 shows that mode I is more likely to 
occur for a central crack than mode II, because either |||KIIe

/
KIe||| is lower than KIIC

/
KIC for rocks (Al-Shayea and 

Khan 2000; Rao et al. 2003; Backers and Stephansson 2012) 
or KIIe is very low.

3.2 � Non‑Collinear Cracks

The methodology can be applied to calculate KI and KII for 
preexisting cracks with complex geometries such as curved 
and multiple cracks in different geometries. Figure 6a repre-
sents a model of two non-collinear symmetrical cracks with 
2a and � inclination with centers that are 2.2a away from 
one another under uniaxial tensile stress. Figure 6 displays 
different solutions [by Sih (1973), Chen and Chang (1989), 
Guo and Ma (2011), Guo et al. (2013)] for KI for two sym-
metrical non-collinear cracks with several inclination � . In 
the figure, the dots are the values obtained by this methodol-
ogy for the two tips of the crack inclined by 20° and 0° from 
the horizontal line.

Fig. 4   Comparison of analytical and numerical a KI and b KII as a function of the central crack inclination �
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3.3 � Reservoir Scale Application

Figure 7 shows a schematic description of the reservoir 
model used to study of the stress intensity factor change after 
injection of a fluid such as CO2. The reservoir is assumed 
to be closed and the pore pressure is increased inside it to 
mimic the fluid injection. It was assumed that the pore pres-
sure remains constant in the surrounding rock as well as in 
the caprock. The reservoir thickness is 200 m and the aspect 

ratio of the models is 0.25. The elastic constants are the same 
for the reservoir and the surrounding rock with E = 15 GPa 
and � = 0.2 . The studied fault with length of 100 m and 
inclination of 60° were placed at (0, 0). The mechanical 
boundary condition at the boundaries of the models is a 
constant stress equal to the far-field stress. The maximum 
principal stress is considered to be in the vertical direction 
called normal faulting or extensional stress regime. The ratio 
of horizontal stress to vertical stress was assumed to be 0.4. 

Fig. 5   a KIe and KIIe and b |||KIIe
/
K

Ie||| for a central crack under uniaxial (λ = 0) and biaxial compression (λ = 0.3) with friction coefficient μ = 0,0.6

Fig. 6   a Schematic of two collinear cracks, and b several solutions for KI(after Guo et al. 2013)
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The pressure inside the reservoir section was increased by 
5, 10, 15, 20, 25, 35 and 40 MPa in separate models. KI and 
KII were measured using the method described in 2.1 in both 
initial and after injection states. The friction coefficient of 
the fault plane assumed to be 0.6 and 1. Figure 8 shows the 
variation of K for different pressure change for the fault with 
different friction coefficients. The stress intensity values 
were normalized by �V

√
50�

�
MPa m−0.5

�
 . Therefore, the 

results can be used for different initial in situ stress values. 
It is important to note that positive KI is not meaningful. 

However, the positive values were used here to show to how 
much degree the fault tip was under compression and how 
it unloaded due to increase in the pressure. Figure 8 shows 
the KI decreases for increasing pressure and it becomes nega-
tive after ΔP > 32 MPa. This means that after this amount of 
pressure increase mode I failure can occur. As expected, KI is 

independent of friction coefficient. KII increases for increasing 
pore pressure so that the mode II failure occurrence becomes 
more likely. It is observed that for higher friction coefficient 
a greater pore pressure increase is needed to have KII > 0 . 
Increase of KII loses its dependency on the friction coeffi-
cient after KI becomes negative. The reason is that for KI < 0 
the fault plane is open and normal force is zero so no shear 
resistance.

Equations (17 and 21) were used to calculate the equivalent 
stress intensity factors to be able to assess the rupture likeli-
hood and plotted vs. pressure increase in Fig. 9. In contrast 
to Fig. 8, KI was restricted to be ≤ 0 in Fig. 9, this also means 
that only negative KI were used in the calculations in Eqs. (17 
and 21). Figure 9a indicates that the mode I rupture can occur 
after 5 and 15 MPa pressure increase for the 0.6 and 1 fric-
tion coefficient cases, respectively depending on the tough-
ness value ( KIC ). The direction of mode I failure initiation 
was calculated to be 70.5° in the fault tip. However, the mode 
I rupture will probably change its direction to grow vertically 
depending on the level of pressurization. Mode II failure is 
more complicated because not only it depends on the KIIC 
but also the ratio KIC∕KIIC . Figure 9b indicates that mode II 
is more likely for pressure lower than 30 MPa, because the 
KIe∕KIIe is lower. The reason is that for pressure > 30 MPa 
KI becomes negative (Fig. 8), therefore, KIe has contributions 
from KI and KII(Eq. 17). However, for pressure < 30 MPa, KI is 
positive so it does not contribute to KIe in Eq. (17). The mode 
II rupture (if occurs) will propagate along the fault plane for 
pressure < 30 MPa, and − 2.2° and − 5.8° (counterclockwise 
being positive). For more comprehensive discussion on this 
subject the readers are referred to Gheibi et al. (2018).

4 � Elastic‑Softening Crack Band model

4.1 � A Model Without a Preexisting Crack: Brazilian 
test

First example in this section is modeling rock Brazilian test. 
This test is performed to obtain the indirect tensile strength 
of rocks. Brazilian test is also used to calculate the toughness 
of rock either including (Tang 2017) or excluding (Guo et al. 
1993) a preexisting crack. Guo et al. (1993) proposed a method 
to calculate the KIC from the force curve of a Brazilian test by 
(after Wang and Xing 1999)

where Pmin is the local minimum load which can be obtained 
from the force curve, �max is the maximum dimensionless 
SIF and R and t are radius and thickness of the disc, respec-
tively. �max is dependent on the angle of the arc made by 

(23)KIC =
Pmin√
R × t

�max,

Fig. 7   Schematic representation of the general model, which includes 
a fault at center

Fig. 8   Variation of KI and KII vs pore pressure increase
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the loading plate and the sample. This angle is considered 
to be ~ 10° for the standard Brazilian test. However, experi-
mental and numerical studies have shown that the stand-
ard Brazilian test can lead to a shear failure in the loading 
region rather than tensile failure at center of the specimen 
depending on the ratio of the shear to tensile strength (Fair-
hurst 1964; Gheibi et al. 2015) and deformability of the disc 
(Gheibi et al. 2015). Therefore, the modeled specimen was 
loaded by a plate with an arc angle of 30°. The radius of 
the disc is 52 mm and thickness was assumed to be 26 mm. 
�max was calculated to be 0.443 (Erarslan et al. 2012). The 
Young’s modulus, Poisson’s ratio and tensile strength are 10 
GPa, 0.25 and 7 MPa, respectively with H varying from 10 
to 100 MPa. Figure 10 shows the force-strain curve of the 
model with several H. Table 1 shows Pmax,Pmin, calculated 
indirect tensile strength (σt), and the toughness value cal-
culated by Eq. (23). As it is expected, the toughness value 
is greater for lower softening modulus. Lower softening 
modulus means that the cracks require more energy to pro-
ceed. Also, the estimated indirect tensile strength is higher 
for lower H models. Figure 11 shows the tensile fracture 
formed for different values of H. The fracture has propagated 
a longer distance for higher H values.  

4.2 � A Model with a Preexisting Crack: Three Points 
Bend Test

Three points bend test with a notch is a commonly used test 
to determine the toughness and fracture energy of quasi-
brittle materials. To verify the capability of the code in 
elastic-softening fracture mechanics a three points bend 
experiment was modeled. The experiment data was picked 
up from Fakhimi et al. (2017). The sample used in this study 

was Berea sandstone. The sandstone specimen was prepared 
with length = 276 mm (span = 254 mm), height = 99.9 mm, 
and thickness = 24 mm and a straight notch was cut with 

Fig. 9   Variation of a KIe and b KIIe vs pore pressure increase and rupture criteria (Eqs. 17 and 22)

Fig. 10   Brazilian test model with several softening moduli

Table 1   Data of the Brazilian test models

H (MPa) Pmin (kN) Pmax (kN) σt (MPa) KIC 
(MPa × m0.5)

100.00 13.75 20.31 8.06 1.45
50.00 22.27 25.12 9.97 2.35
30.00 29.77 32.50 12.90 3.15
20.00 39.21 41.57 16.50 4.14
10.00 60.48 61.52 24.41 6.39
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length = 15 mm and width = 1.7 mm at the center of the 
beam (Fakhimi et al. 2017).

A model of the experiment was built in the code based 
on the geometry given above. A 15 mm crack was applied 
to the model instead of cutting the notch section in mesh 
generation. The elements/clusters were equilateral triangular 
with sides equal to 1 mm in front of the notch. The model 
matched to the experimental data has a Young’s modulus of 
10 GPa (Fakhimi et al., 2017), Poisson’s ratio of 0.25, ten-
sile strength 5.1 MPa and softening modulus, H = 40 MPa. 
The bending was simulated by applying a velocity boundary 
and the reaction force and Crack Mouth Opening Displace-
ment (CMOD) were recorded numerically. Similar to the 
experiment, the model was unloaded at a point close to the 

Fig. 11   Load-CMOD curve of 
experimental and numerical 
models with several mesh sizes

Fig. 12   Load-CMOD curve of experimental and numerical models 
with several mesh sizes
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50% of the maximum force after peak (Fakhimi et al. 2017). 
Figure 12 shows the Force-CMOD curve of the experiment 
and the simulation with a relatively reasonable match with 
the two. Fakhimi et al. (2017) inspected the unloaded beam 
and a crack of about 25 mm in length above the notch was 
observed with an unaided eye. Interestingly, the propagated 
crack (cohesionless term was used by Fakhimi et al. 2017) 
was 22 mm in the model. The Force–deflection curve could 
not be verified because Fakhimi et al. (2017) did not meas-
ure the deflection (personal communication). Three other 
similar models with the element sizes of 1.5 mm, 3 mm, 
and 6 mm were built to investigate the effect of mesh size 
sensitivity. Figure 12 shows that the Force-CMOD curve 
was reproduced with an acceptable accuracy for different 
values of mesh size. Figure 13 shows the discretization of 
the model with 1 mm and 6 mm element sizes overlapping 
one another. It should be noted the mesh dependency of 
strain localization is not restricted to only the size of the ele-
ments (Guy et al. 2012), but its geometry and its relation to 
the fracture path. In this example, the geometry and loading 
condition is such that the fracture formed is in the vertical 
direction, therefore, the size of the spatial discretization play 
a more important role compared to its orientation. Jirásek 
and Bauer (2012) showed that the effective width of a crack 
band depends on the shape of the element and its orientation 
with respect to the overall direction of the band.

5 � Conclusion

Modified Discrete Element Method (MDEM) and its new 
developments in fracture problem were presented in the 
paper. A Linear Elastic Fracture Mechanics (LEFM) based 
methodology was adopted to calculate stress intensity 

factors, KI and KII using the contact forces of particles. It is 
able to be used in complex boundary condition and geomet-
rical configuration such as curved and interacting multiple 
cracks with acceptable accuracy. The methodology has been 
also used in reservoir scale to study the rupture likelihood of 
faults and fractures. This methodology enables the code to 
model mode I and mode II failures based on the fracturing 
model proposed by Rao et al. (2003).

Another development was embedding elastic-softening 
crack band model into MDEM. The code is able to model 
the nonlinear behavior of quasi-brittle materials including 
and excluding preexisting cracks. A Brazilian (without a 
notch) test was modeled by the second methodology and 
effect of softening modulus was studied on obtaining the 
models mode I toughness. Also, an experiment of a three 
points bend test with a notch was modeled in the paper. The 
numerically obtained force-crack mouth opening displace-
ment was reasonably comparable the experimental test. The 
model was repeated for three different meshes 1.5, 3 and 
6 time larger than the initial mesh and the results are less 
mesh size sensitive. Finally, it was shown that MDEM has 
the capability in studying fracture mechanics of quasi-brittle 
materials both in the lab size and large-scale investigations.
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