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Abstract

Ship autonomy has been one of the most-sought research objectives at the Norwegian
University of Science and Technology in Aalesund for the last three years. Through
credible research, we aim to maintain our competitive position in both the global and
the Norwegian maritime industry by creating autonomous ships that would operate on
the surface of the water entirely by themselves. However, as research has progressed,
semi-autonomous ships suitable for commercialization have seemed far more likely. Such
ships would require captains, engineers, machinists, technicians, etc., to operate and
monitor them, especially in demanding maritime operations, either partly onboard or
from a remote control center through a satellite data link. Such ships require reliance
on automated systems and belonging sensor devices. Consequently, degradation of such
systems during operation poses a serious threat to both profitability and safety since
there is less or no crew involvement to perform immediate maintenance operations when
needed.

In this context, data-driven prognostics and health management (PHM) has emerged
as a promising system solution to utilize the vast amount of sensor devices on board both
autonomous and semi-autonomous ships (autoships). Such a system aims to utilize algo-
rithms built on historical sensor measurements to provide automatic data pre-processing,
detections of faults, isolation of faulty components, predictions of fault probabilities, and
estimations of the progression of already-detected and classified fault-types. Through
these actions the system can provide intelligent maintenance recommendations or direc-
tions when maintenance operations are needed. In other words, the system can provide
decision support or automation to devise an ideal maintenance schedule that eliminates
failures. Then, this schedule can be used to optimize maintenance operations for the
autoship in the next appropriate port of call.

In recent years, deep neural networks (DNNs) have shown great performances to
process large amounts of sensor data in the PHM domain. However, their power is
strongly dependent on the accessibility of fault and failure data, but such data is rarely
analyzed and collected in the maritime industry. The harsh maritime environment fur-
ther complicates the accuracy of DNNs. This dissertation’s primary goal is to address
these issues, such that both data-driven PHM and DNNs can meet their potential for
autoships.

Since both data-driven PHM systems and the utilization of DNNs are in their in-
fancy in the maritime industry in general, the main objective of research is to develop
data-driven algorithms. To achieve this, first, the fundamentals of a data-driven PHM
system for autoships is proposed. Then, algorithm development for both fault diagnos-
tics and fault prognostics is conducted through three case studies. The development of
a fault-type independent fault detection algorithm for maritime components has been of
particularly high priority. In addition, both smart data processing solutions and novel
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DNNs to increase the reliability of fault prognostics are proposed. Complicating this
task, fault prognostics have not been fully developed for any application. Furthermore,
this dissertation proves the advantage of transferring knowledge obtain from benchmark
data of airplane engines to the maritime environment, and more specifically, to marine
diesel engines in autonomous ferries. The latter acts as the main case study for this
dissertation.
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1
Introduction

Today, ship autonomy is one of the most-sought research objectives at the Norwegian
University of Science and Technology (NTNU) in Aalesund. This dissertation focuses
mainly on how to ensure operational availability and safety of critical components associ-
ated with autonomous and semi-autonomous ships in a safe, efficient, and cost-beneficial
manner.

1.1 Background and motivation

Only six years ago, most people considered autonomous and semi-autonomous ships
as a futuristic fantasy [1]. Today, however, this perception has changed drastically
as enthusiasm for high degrees of ship autonomy is flourishing among researchers and
industry experts in the maritime industry, encompassing both autonomous and semi-
autonomous ships. The former would perform all kinds of maritime operations entirely
by themselves; the latter would require captains, engineers, machinists, technicians,
etc., to operate and monitor them, especially in demanding maritime operations, either
partly onboard or from a remote control center (RCC) through a satellite data link [2, 3].
Realistically, semi-autonomous ships are expected to be in commercial use at first, and
then develop higher and higher degrees of autonomy as research progresses.

Several projects, including this dissertation, are underway to develop autonomous
and semi-autonomous ships (autoships). The industry, as well as academia, anticipate
that such vessels will improve both safety and profitability [4]. Autoships demand the
use of highly automated systems and belonging sensor devices. Incipient faults and
related failures of such systems during operation could lead to disaster since there are
few people or no one on board to perform immediate maintenance actions when needed.
Therefore, autoships need to transfer real-time operational sensor data to an RCC to
analyze previous, current, and future health conditions of critical components. The
resulting analysis can then be used to schedule maintenance operations at the next port
of call [5]. Today, satellite communication firms, such as Inmarsat, can provide real-time
data transmission across the world’s oceans [6].

By contrast, maintenance operations on conventional ships today follow either a re-
active maintenance (RM) or preventive maintenance (PM) approach [7]. RM is defined
as post-failure repair that introduces high risks of downtime, while PM involves prede-
termined maintenance intervals [8]. NTNU’s research vessel R/V Gunnerus provides an
example of how PM is used in practice. This vessel has three marine diesel engines in
total, where each of the engines has an independent hour counter. As seen in Figure 1.1,
the hour counter for one of the engines is 13,075, while the next service is scheduled at
13,200 hours. Then, consecutive services will be performed at both 13,250 and 14,000
running hours. These time-based maintenance intervals are static and purely based on

1



CHAPTER 1. INTRODUCTION

Figure 1.1: One out of three marine diesel engines onboard R/V Gunnerus and its predeter-
mined maintenance intervals.

the experience of either the engine manufacturer or the shipowner. However, engine
operations differ on different ships due to unpredictable environmental conditions. This
leads to faults and failures occurring randomly [9]. Such kinds of faults and failures are
not detected in the current PM system. Ergo, R/V Gunnerus relies heavily on onboard
maintenance personnel.

For autoships, RM would create large and unnecessary costs due to random and
unplanned downtime. On the other hand, the predetermined maintenance intervals
utilized in PM could be scheduled around planned ports of call. This would, of course,
provide high reliability, but involve excessive and costly inspections and maintenance
actions of completely functional components. Additionally, PM lacks the ability to
detect random faults and failures. Thus, the need for a more intelligent and predictive
maintenance (PdM) approach is clear. Such a system could automatically alter the
maintenance intervals depending on the various conditions in which the marine diesel
engine has operated. In this context, data-driven prognostics and health management
(PHM) has emerged as a promising solution to utilize the vast amount of sensor devices
onboard autoships. As a matter of fact, the U.S. Department of Defense [10], the
aerospace industry [11], and the aviation industry [12] integrated PHM with success for
over ten years ago.

A data-driven PHM system is considered to be the area of research with the great-
est potential to manage maintenance operations for zero-downtime performance of au-
toships [2, 5, 13, 14]. Such a system goes far beyond both RM and PM and strives to
decrease and ultimately eliminate inspections and predetermined maintenance intervals.
This will be achieved through the utilization of algorithms built on sensor measure-
ments. As seen in Figure 1.2, PHM is defined by four main actions: data accumulation
and pre-processing, fault diagnostics, fault prognostics, and decision support or au-
tomation [15, 16]. The first step collects and structures the raw data into valid input
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CHAPTER 1. INTRODUCTION

data for the next step. Then, fault diagnostics detect faults, isolate faulty components,
and classify different fault-types. The information obtained from fault diagnostics is
then used as input for fault prognostics which is designated to predict the progression
of already detected and classified faults-types [17]. In other words, fault prognostics

Figure 1.2: PHM flowchart, in-
spired by [15].

estimate the available time before a faulty component
will suffer from operational failure. Such estimations
are normally referred to as the remaining useful life
(RUL) and used to provide decision support or automa-
tion to devise an ideal maintenance schedule that elim-
inates failures. To conduct the four essential actions
of a data-driven PHM system, autoships need to trans-
fer real-time operational sensor data, in the format of
time-series data, to an RCC. Today, deep learning (DL)
algorithms are considered the ideal candidate to pro-
cess large amounts of time-series data with high accu-
racy [18].

During the last three years, several DL algorithms,
in terms of deep neural networks (DNNs), have been
proposed in the PHM domain for both fault diagnos-
tics [19, 20, 21] and fault prognostics [22, 23] purposes.
DNNs include several layers of non-linear processing
stages [24]. Consequently, they are capable of learn-
ing statistical patterns in time-series data subjected to
high dimensionality and various complexities [25]. This
means that DNNs are extremely powerful, but only
if sufficient historical run-to-failure (RTF) time-series
data is accessible in the training phase. The great po-
tential of both data-driven PHM and DL prompts the
first two research questions of this dissertation:

• Is a data-driven PHM system based on DL suitable for autoships?

• Which DNNs are applicable?

To address these questions, it is first necessary to investigate how scholars have applied
PHM based on DL in other domains. It is also highly beneficial to investigate which
DNNs have been used in each action of a data-driven PHM system. At the same time,
successes achieved in other domains does not necessarily mean success in the maritime
domain. Maritime operations involve a higher degree of complexity than most land-
based operations, as harsh and unpredictable environmental conditions affect how critical
systems, components, and sub-components are operated. The resulting uncertainty
creates several challenges for successful implementation of a data-driven PHM system.

The marine diesel engine is considered the most critical component on board ships
since it has an important role in both propulsion and power generation [26]. When
operated in the maritime environment, however, the sensor measurements of the engine
are highly connected to the operational loads. Thus, the degradation phenomena cannot
be presented directly for DNNs. Additionally, there is a common lack of fault labels and

3



CHAPTER 1. INTRODUCTION

RTF data in the maritime industry [27]. This is a barrier given that state-of-the art
DNNs for fault diagnostics purposes are trained in a supervised manner [28, 29]. Thus,
the third and the fourth research questions are defined as follows:

• How to automatically detect faults associated with the marine diesel
engine?

• What, other than supervised learning, can be used as the learning frame-
work?

To address the third research question, a strong and valid case study has to be created to
do significant research on the degradation phenomena of the marine diesel engine. Ad-
ditionally, the nature of degradation of typical fault-types might be different from one
another. Hence, both data pre-processing and the development of a fault-type indepen-
dent fault detection algorithm is of high importance. Investigating the fourth research
question necessitates the use of semi-supervised or unsupervised learning procedures. In
the application of fault detection, semi-supervised learning only uses normal operation
(NOP) data for training, while unsupervised learning has no previous knowledge of the
input data where only intrinsic properties are used [30]. In autoships, the vast numbers
of installed sensors can be utilized to accumulate NOP data to use a semi-supervised
learning framework.

If you feed DNNs more data they get better and better [31]. Therefore, researchers
typically use largely, publicly accessible benchmark data sets to train and validate their
proposed DNNs for fault prognostics [22, 23, 32]. The Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) data set, which consists of numerous simu-
lated RTF data sets depicting the operation of aircraft gas turbine engines, is acknowl-
edged as the benchmark data set within the PHM research area [33]. One of many
strengths of DNNs is their generalization power. Thus, the knowledge learned from the
C-MAPSS data set can be transferred to other domains, such as, the maritime industry.
Nevertheless, the fact that large databases of historical RTF data are nonexistent in the
maritime domain represents a problem. Real-life RTF data is time-consuming to acquire.
Besides, fault prognostics of real-world systems remain today in its infancy [34]. Due
to the large uncertainties that remain in fault prognostics, researchers have called prog-
nostics “the Achilles’ heel" of PHM [35]. Consequently, the fifth and the sixth research
questions are as follows:

• How can significant RTF data be constructed based on small amounts
of already-collected RTF data?

• How can the reliability of DNNs constructed for fault prognostics be
improved?

To address the fifth and sixth research questions, several techniques can be adopted from
the computer vision area of DL. Techniques such as data augmentation [36] can be used
to create more RTF data, and skip connections [37] have the potential to increase the
generalization power of DNNs constructed for fault prognostics. An initial unsupervised
pre-training stage to extract abstract degradation related features has also shown im-
proved generalization power [22]. High generalization power towards new field data is
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CHAPTER 1. INTRODUCTION

extremely important if DNNs are to be employed in future data-driven PHM systems
for autoships to provide real-time and reliable RUL predictions.

1.2 Objectives

In seeking to answer all six research questions, this dissertation seeks to obtain the
following research objective:

X RO1: Propose a data-driven PHM system for autoships.

However, as the utilization of data-driven PHM systems is still in its infancy in the
maritime industry, it is extremely important to enable knowledge transfer from other
domains. Therefore, a comprehensive literature survey of PHM based on DL for au-
toships has to be conducted. The main purpose is to support creativity and provide
inspiration for the maritime industry. The second research objective arises from the first
two research questions of this dissertation and is as follows:

X RO2: Conduct a comprehensive literature survey of PHM based on DL
for autoships.

Fault diagnostics is the first step of intelligent algorithms to consider in a data-driven
PHM system and should incorporate a fault detection algorithm suitable for the maritime
environment. Hence, the third research objective arises from research questions three
and four:

X RO3: Develop a fault-type independent fault detection algorithm for
maritime components.

Fault prognostics is the second step of intelligent algorithms. Fault prognostics is less
mature than fault diagnostics in every domain of application. Thus, the fourth research
objective arises from research questions five and six:

X RO4: Propose techniques and DNNs to increase the reliability of fault
prognostics.

1.3 Structure of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces the theoretical
foundation of the proposed data-driven PHM system for autoships. This chapter also
discusses benefits and challenges, presents the scope of work, and explains the data
collection processes, including assumptions and limitations, for the following case studies.
Chapter 3 presents the research results and discusses the first case study, which involves
the C-MAPSS data set. This chapter is based on papers II and IV. The research findings
and discussion of the second case study are put forward in Chapter 4. This chapter uses
RTF data collected from an industrial company and it is based on paper III. The third
and final case study is presented in Chapter 5. This chapter uses RTF data collected from
a marine diesel engine and it is based on papers V, VI, and VII. Chapter 6 concludes the
dissertation, summarizes the contributions, and indicates objectives for future work. All
case studies presented here use Microsoft Windows 10, Java 8, deeplearning4j (DL4J) [38]
as the DL library, and NVIDIA GeForce GTX 1060 6 GB as the graphics processing
unit (GPU).
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2
Data-Driven PHM System for Autoships

In four sections, this chapter describes the proposed data-driven PHM system for au-
toships. Section 2.1 introduces the fundamentals of the proposed system. Section 2.2
summarizes the comprehensive literature review conducted in paper I. It also elaborates
on important benefits and challenges affecting the implementation of the proposed sys-
tem. Section 2.3 details the scope of work of this dissertation. Section 2.4 explains the
data sources, including assumptions and limitations, used for experiments, validations,
and refinements of the proposed system.

2.1 Fundamentals of the proposed data-driven PHM system

Figure 2.1: The PdM section at the
Hannover Messe 2019 [39].

PdM is one of many technological buzzwords that
have become prominent in the last three years.
However, to the best of my knowledge, no standard
definition of PdM exists in the literature. It has of-
ten been used as a generic term for condition-based
maintenance (CBM) and reliability centered main-
tenance [8, 40]. Seeking a more specific definition, I
visited the Hannover Messe in April 2019, which is
one of the worlds largest industry fairs [39]. It was
the first year that PdM was an exhibition topic and
the Messe responded by organizing an entire sec-
tion for PdM, as seen in Figure 2.1. After asking
a lot of technical questions to several companies
offering PdM solutions, I concluded that none of
them managed fault prognostics. However, some companies considered fault detection
and fault classification to be state-of-the-art in the industry.

My experience at Hannover Messe led me to conclude that PdM is a data-driven
PHM system that does not involve fault prognostics. In other words, the term predic-
tive, here, has nothing to do with RUL predictions. Instead, DNNs are used to make
real-time detections of anomalies and predictions of fault-types in the current health
state of components to facilitate early warnings and fault diagnostics. Thus, PdM, as
performed in the industry today, does not make any future health predictions. Au-
toships, on the other hand, need to schedule maintenance operations based on future
health conditions since there are few or no people on board to perform sudden mainte-
nance actions when needed. Therefore, a data-driven PHM system for autoships must
provide fault prognostics.

Figure 2.2 illustrates the main actions and the associated sub-actions of the proposed
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Figure 2.2: An autonomous ferry, crossing a fjord from dock A to B. The resulting analysis
obtained from the data-driven PHM system can be used to schedule maintenance operations
to the next appropriate dock of call.

data-driven PHM system for autoships, as stated in R01. Furthermore, Figure 2.2 shows
an autonomous ferry, crossing a fjord from dock A to B. The marine diesel engine in
autonomous ferries has been used in several case studies during this Ph.D. project as
such ferries are expected to be in commercial use on the west coast of Norway in the
future [3]. See paper V, VI, and VII in appendix E, F, and G, respectively. Due to the
fact that there will be limited amounts or no crew members onboard, such ferries need
to transfer real-time operational engine data to an RCC to conduct the essential actions
of the proposed data-driven PHM system.

The first action is data pre-processing. Due to the various operating conditions the
engine is subjected to, a multi-regime normalization method [34] has to be performed on
the raw input data to merge the engine loads into one context. Doing so will cause valid
input data to be fed, where both the normal operation phenomena and the degradation
phenomena are present, to a fault detection algorithm in the next action. Additionally,
irrelevant features for the engine will be removed to increase the degradation relevance
of the input data [13].

The next action, probably the most crucial, is fault detection. All anomaly detection
algorithms are designed to identify deviations from what is considered as normal. In
a data-driven PHM system, such deviations or anomalies are considered symptoms of
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precursor and/or incipient faults [2, 5]. This action should be performed automatically to
indicate that something is wrong. In other words, it indicates that a fault has occurred,
but it doesn’t indicate which fault-type it is. However, the time step where the fault
was detected can be further used to construct both labels for fault classification and
RTF targets for RUL predictions. Additionally, fault detection algorithms based on
DNNs have the potential to provide fault isolation. Thus, fault detection is considered
the most crucial action since the reliability of the algorithm affects subsequent actions.
Consequently, the development of a fault-type independent fault detection algorithm, as
stated in RO3, during this Ph.D., has been a high priority.

Fault classification aims to provide additional information about detected faults. To
do so, fault classification algorithms are employed to classify different fault-types. Based
on the detected fault time step in the previous action, the sensor data is automatically
labeled with, for example, 0 for normal data points, 1 for one fault-type, 2 for another
fault-type, and so on. Then, labeled sensor data is fed to DNNs, including a multi-
class classifier, for supervised training. The trained DNNs are then able to predict the
probability of which fault-type detected faults belongs to in the current health state of
the engine. It is worth noting that normal data points will occur more frequently than
faulty data points. Thus, to aid the DNNs in the training phase, it is necessary to bring
balance to the labeled sensor data, that is, transforming imbalanced data into balanced
data.

To complete the fault diagnostics, fault isolation also needs to be incorporated in
the system. Fault isolation tries to provide information about where the fault occurred
in the engine. Furthermore, it involves techniques to pinpoint the component that is
degraded. Similar to fault classification, this action is also based on the fault detection
algorithm. DNNs, such as the variational autoencoder (VAE), can derive a reconstruc-
tion of degraded data due to its generative characteristics. This reconstruction can be
used to analyze the underlying cause of anomalies to provide fault isolation.

Through fault diagnostics, the system detects anomalies, isolates anomalous com-
ponents, and predicts the probability of different fault-types. Thus, the next step is to
provide information about how faults will progress over time. Fault prognostics algo-
rithms predict the RUL of already-detected and classified fault-types. Such predictions
can be used to recommend the ideal maintenance schedule for the ferry. Similar to fault
classification, fault prognostics also depend on the accuracy of the fault detection al-
gorithm. The detected fault time step is used to construct RTF targets automatically
since DNNs that aim to predict the RUL still depend on supervised training to model
degradation processes [17]. It is worth noting that confidence bounds need to be in-
cluded in any RUL prediction. This is to reduce inherent uncertainties associated with
the degradation process and potential flaws in all previous actions of the data-driven
PHM system. Maintenance recommendations based on prognostics information should
be grounded in confidence bounds instead of a particular RUL value [41].

The final step of the proposed data-driven PHM system is to facilitate decision
support or automation to recommend or direct ideal maintenance schedules. Decision
support recommends future maintenance operations to a human decision-maker (HDM),
while decision automation provides directions for future maintenance operations directly
from the system, without the involvement of an HDM. However, as noted in [42], the
reliability of data-driven PHM systems needs to be greater than 99% if it is to facilitate
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decision automation. Ergo, because of the large uncertainties involved in fault prognos-
tics, an HDM located at the RCC is still required. Additionally, transparent explanations
of the outputs from both fault diagnostics and fault prognostics are necessary if HDMs
are to understand and trust the system. Such explanations and the outputs have to be
shown in a human machine interface. For this purpose, a thin-client web browser can
be utilized [43].

2.2 Literature review

“Big data can overwhelm traditional approaches and the growth of data is
outpacing scientific and technological advances in data analytics."

- National Institute of Standards and Technology, 2015

The second research objective, RO2, is to conduct a comprehensive survey of PHM
based on DL for autoships. Thus, a literature review paper was written and published
during the completion of this Ph.D. research; see paper I in appendix A. This review
paper introduces and reviews four well-established DNNs recently applied to various
practical fault diagnostics and fault prognostics problems. Furthermore, it discusses
benefits, challenges, suggestions, existing problems, and future research opportunities
with respect to a data-driven PHM system based on DL for autoships [2].

Table 2.1: A selection of CBM and PHM re-
views based on traditional approaches [2].

Author & Refs. Year PHM application Approaches

Tahan et al. [44] 2017
Gas turbines: Data-driven,
diagnostics model-based,

and prognostics and hybrid

Bailey et al. [45] 2015
Engineering systems: Data-driven

diagnostics
and prognostics

An et al. [46] 2015 Fatigue crack growth: Data-driven
prognostics and model-based

Lee et al. [40] 2014
Machinery systems: Data-driven

diagnostics and model-based
and prognostics

Sikorska et al. [41] 2010 RUL approaches: Data-driven
prognostics and model-based

Vachtsevanos et al. [47] 2006 Book chapter: Data-driven
diagnostics and model-based

Vachtsevanos et al. [35] 2006 Book chapter: Data-driven
prognostics and model-based

Roemer et al. [48] 2006 Engines: Data-driven
prognostics and model-based

Jardine et al. [15] 2006
Machinery systems: Data-driven

diagnostics and model-based
and prognostics

In the years before lots of researchers
jumped on the DL bandwagon, PHM sys-
tems depended on so-called traditional
diagnostics and prognostics approaches.
That is, all other approaches which do
not include DNNs. In short, tradi-
tional approaches can be divided into
data-driven [49] and model-based [26] ap-
proaches. Both are based on mathemat-
ics. However, the approaches differ in
that model-based approaches use algo-
rithms that describe the physics of the
component, while data-driven approaches
use algorithms built on historical sensor
measurements. A combination of these
two approaches is called the hybrid ap-
proach [50]. Table 2.1 shows the findings
in paper I regarding CBM and PHM re-
views based on traditional approaches.

With the development of today’s interrelated systems, components, and sub-
components and the concurrent rise of big data, traditional approaches confront sev-
eral challenges [51]. Model-based approaches are reliable if the degradation is modeled
precisely [32]. However, they tend to provide low generalization power since they are
application-dependent, and hence, time-consuming to expand. Also, traditional data-
driven approaches become application-dependent because they require additional dimen-
sionality reduction methods to process the increased volumes of data [52, 53].
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Figure 2.3: DNNs mimic the human brain.

Data guide today’s industries. Therefore, it would be both wise and highly beneficial
to take advantage of approaches that can process large amounts of data and generalize
to new field data and similar industrial applications. This is where DNNs are advanta-
geous. As a matter of fact, the more data you feed DNNs they get better they are [31].
Along with the theory of neuroscience and the utilization of GPUs, DNNs have seen
rapid developments in many technological areas, such as self-driving cars [54], computer
vision [37, 55], speech recognition [56], language processing [57], and more recently in
PHM applications [2]. As seen in Figure 2.3, DNNs mimic the human brain by math-
ematically approximating the way human neurons and synapses learn by constructing
and strengthening weight connections through several iterations. However, unlike a real
human brain, DNNs are fundamentally blind to cause and effect. In other words, DNNs
cannot interpret and explain their outputs. Also, researchers argue that DNNs cannot
ever match true biological intelligence [58].

The four DNNs selected for review in paper I are the autoencoder (AE) and its
variations, the convolutional neural network, the deep belief network, and the long-short
term memory (LSTM). See appendix A for the complete review of recent applications
to PHM of each of these four DNNs. At that time, they were proposed as the four
main candidates to be included for both fault diagnostics and fault prognostics in a
data-driven PHM system based on DL for autoships.

2.2.1 Benefits and challenges

Benefits

• Conventional ships are often over-engineered by built-in redundancy. For example,
R/V Gunnerus incorporates three marine diesel engines. So, if a critical failure
occurs, the ship can still complete its operational task to some degree. This design
philosophy is highly related to historical inaccessibility to shore [2, 59]. How-
ever, telecommunication companies, such as Inmarsat, have launched several data
transfer satellites during the last decade, which can provide high-speed broadband
connections to ships almost anywhere in the world [3]. This will enable new de-
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sign philosophies, including data-driven PHM systems, as options to enhance the
current redundancy policy.

• The final goal of a data-driven PHM system is to achieve zero-downtime perfor-
mance. Real-time RUL predictions, including confidence bounds, of components
and sub-components enables HDMs at an RCC to schedule maintenance operations
to the next appropriate port of call, or in worst case, dispatching maintenance per-
sonnel before a failure occurs when autoships are still in operation [2, 3]. This
will significantly increase operational availability, system safety, and cost-benefits.
Additionally, reliable predictions, over time, will build trust that autonomous mar-
itime activities are safe [60].

• Back in 2012, the German-based insurance company Allianz reported that between
75% and 96% of all marine accidents are a result of human errors [3]. Such errors
generally happen when humans are exhausted and complex maritime conditions re-
quire humans to make tough decisions based on experience and intuition alone [60].
Overall, autoships will reduce the influence of HDMs [61]. This is also the case for
a data-driven PHM system [2].

Challenges

• Autoships require significant adaptations in the organizational culture of the mar-
itime industry [7]. For example, it is necessary to have confidence in so-called
“black-box" systems. A data-driven PHM system based on DL falls into this cate-
gory as it will recommend directions for future maintenance operations. The most
difficult challenge is that today’s DNNs lack transparency [62, 63]. Due to the non-
linear network structure of DNNs, they do not provide a human-understandable
explanation of their outputs. But humans need to understand how outputs are
created if they are to trust the system, which is crucial in critical industrial ap-
plications, such as health care [64] and autonomous vessels. However, explainable
artificial intelligence (XAI) can ease this issue, as it uses methods for visualizing,
explaining, and interpreting DNNs [65, 66]. Successfully incorporating XAI in the
final action of a data-driven PHM system is extremely important in relation to
autoships.

• Another concern is the continuous flow of operational sensor data to the RCC.
Autoships depend on diverse automated systems and associated sensor devices to
perform their main functions [2]. Thus, the sensor data might become unstructured,
while the various operating conditions further complicate the sensor data. The
data-driven PHM system has to provide automatic pre-processing procedures that
tackle this kind of sensor data complexity. The continuous data flow also presents
a cybersecurity challenge [3].

• Conventional ships are typically equipped with systems and equipment from several
different manufacturers [67]. This results in several stand-alone and consequently
uncoordinated monitoring systems that make the implementation of a data-driven
PHM system for more than one component difficult and time-consuming. Thus,
future data-driven PHM systems need to be included in the building and design
phase of autoships [14].
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• Today, conventional ships are usually application-designed and produced in batches
of two to ten vessels [7]. A consequence of this is a slow accumulation of failure
data compared to, for example, the aviation industry that produces hundreds of
the same airplane in a series [2]. In addition to the diversity of equipment and
system manufacturers, these are the main reasons for the common lack of RTF
data in the maritime industry. Therefore, manufacturers and shipowners need to
start saving and sharing their RTF data to build extensive databases. This would
be advantageous for the realization of a data-driven PHM system.

2.3 Scope of work

The proposed data-driven PHM system can be divided into four main categories, as seen
in Figure 2.4. This dissertation is based on a three-year Ph.D. project. Thus, instead
of doing time-limited research in all four categories, this dissertation has focused its
research within the most important areas for data-driven algorithm development. The
development of a fault-type independent fault detection algorithm for maritime compo-
nents, as stated in RO3, has been of high priority. The algorithm was first developed in
paper III, explored in papers IV and V, and further improved in paper VI. See appendix
C, D, E, and F, respectively. As opposed to fault detection, algorithm development of
both fault classification and fault isolation have been given low research priority. For
example, state-of-the-art DNNs for fault classification already exist [28, 29, 68]. To fur-
ther improve fault classification, techniques for handling imbalanced data, such as focal
loss [69], under- and oversampling [70], and weighted loss functions [71], are important to
investigate. This is because the minority classes, which are the fault classes, are of high
importance for the proposed data-driven PHM system. For instance, it is not critical if
the system miss-classifies a normal condition as a fault condition. On the contrary, if the
system miss-classifies a fault condition as a normal condition, it could lead to downtime
and a potential disaster for autoships.

As seen in Figure 2.4, great emphasis is also given to fault prognostics. No matter
the industrial application, fault prognostics are still under research and development.
Thus, to increase the reliability of fault prognostics, as stated in RO4, has been a prime
concern throughout this dissertation. First of all, to improve the RUL prediction accu-
racy of DNNs, they must incorporate diagnostics information in the supervised training
phase [13]. Therefore, detected fault time steps, obtained from the fault detection algo-
rithm, are used to construct RTF targets automatically and predict the RUL in paper IV
in appendix D. Also, different approaches for constructing RTF targets are heavily in-
vestigated. Papers II and VII in appendix B and G, respectively, are also attempts
to increase the reliability of fault prognostics. Paper II investigates the effect of unsu-
pervised pre-training in RUL predictions. This initial training step extracts abstract
degradation related features that improve the generalization power of DNNs. Paper VII
proves the advantage of both data augmentation and skip connections. Consequently, a
novel data augmentation technique for time-series data and the SkipRnet are proposed.

It is worth noting that proper data pre-processing is extremely important for DNNs
for both fault diagnostics and fault prognostics purposes. Hence, data pre-processing
is well-explained in all papers, except the literature review in paper I. The papers with
the most novelty, in terms of data pre-processing, are papers VI and VII. Paper VI
introduces multi-regime normalization to convert engine loads into one context, while
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Figure 2.4: Scope of work.

paper VII proposes a novel data augmentation technique to construct more RTF data.
The final action of the proposed data-driven PHM system has been given low re-

search priority during this Ph.D. project. However, if the system is to be employed
in future autoships, decision support or automation is extremely important to consider.
This final action should in theory be an entire dissertation in itself as XAI has just begun
to gain popularity. Additionally, confidence bounds should be incorporated into the de-
cision support or automation category because maintenance recommendations and their
corresponding scheduling should be based on confidence bounds rather than a particular
RUL prediction.

In this dissertation, the application is aimed towards the maritime industry, and
more specifically, at autoships. However, the proposed data-driven PHM system and
the accompanying research findings can also easily be applied to a broad range of other
industrial domains. The main three features that need to be available are a system
that degrades over time and, of course, sensor measurements of related NOP data and
RTF data. So, to conduct the following research experiments, the accumulation of
operational sensor data has been essential. The following section introduces all data
sources, including assumptions and limitations, collected and used in this dissertation.
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2.4 Data accumulation, limitations, and assumptions

This section introduces the three main data sources used during this Ph.D. project.
Limitations and assumptions made of each data source are also explained.

2.4.1 Benchmark data

In the development process of DNNs for an industrial application, it is highly beneficial
to have a publicly available benchmark data set. For example, data sets collected from
an industrial application might be subjected to different degrees of complexities. Con-
sequently, two different DNNs proposed for the same industrial application but trained
on different data sets might provide results biased by the data. A benchmark data set
enables researchers to train, refine, and validate their proposed DNNs on the exact same
data set. Therefore, different DNNs can be compared directly without being biased by
the data. Besides, the knowledge learned from benchmark data can easily be transferred
to other industrial applications because DNNs are generic.

Figure 2.5: A turbofan engine.

Within the PHM domain, the C-MAPSS
data set is acknowledged as the benchmark
data set for fault prognostics. It is produced
by the National Aeronautics and Space Ad-
ministration and is designed to accelerate the
development of data-driven prognostics algo-
rithms [33]. As shown in Table 2.2, the com-
plete data set is further divided into four sub-
sets, where each subset exhibits different com-
plexities. Subset FD001 exhibits the lowest de-

gree of complexity as it is only subjected to one operating condition and one fault-type.
In contrast, subset FD004 exhibits the highest degree of complexity. Nevertheless, each
subset is divided into a training set and a test set of multiple multivariate time-series.
Each time-series includes 24 sensor measurements of a turbofan engine, used in airplanes,
as seen in Figure 2.5. Each time-series also starts with different degrees of initial wear
and manufacturing variations. All engines operate in normal conditions at the start
before they begin to degrade at a random time step during the time-series. The engines
in the training sets degrade until failure, and hence, the time-series can be considered to
be RTF data. The degradation in the engines in the test sets, however, ends sometime
before failure, that is when RUL > 0. Thus, the main objective of the C-MAPSS data
set is to predict the correct RUL value for each engine in the test sets. True RUL targets
for the last time step for each engine in the test sets are provided to evaluate the RUL
predictions.

Table 2.2: The C-MAPSS data set [72].

Data set FD001 FD002 FD003 FD004
Time-series in the training set 100 260 100 249
Time-series in the test set 100 259 100 248

Operating conditions 1 6 1 6
Fault-types 1 1 2 2
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Benchmark data sets do not exist in the maritime industry yet. However, such
data sets would be highly beneficial for the research community in the years to come.
This could be realized if stakeholders agreed to cooperate to save and share data. Even
though the C-MAPSS data set is extensive and highly complex, it is still simulated data.
As a consequence, the results might not be as trustworthy as results based on real-life
industrial data for most applications, such as autoships. Thus, in addition to benchmark
data, case studies based on real-life industrial data are of high importance to conduct
credible research. The following subsections describe real-life industrial data sources
used during this Ph.D. project.

2.4.2 Industrial company

This data source consists of five real-operation RTF data sets, which have been provided
by an industrial company located on the west coast of Norway. All data sets are collected
from the same maritime component. The actual name of the maritime component,
fault-types, and sensor measurements, cannot be provided in this dissertation due to a
confidentiality agreement. As seen in Table 2.3, each data set differs in total time step
length Ttotal, where one time step equals one second. Data sets 1 and 4 are subjected
to fault-type A, while data sets 2, 3, and 5 are subjected to fault-type B. Similar to the
C-MAPSS data set, in each data set, the maritime component is run in NOP condition
at the start, then begins to degrade at an unknown time step during the data collection
process. The degradation grows in magnitude until failure, and therefore all five data
sets can be considered as RTF data. The main objective of all data sets is to detect the
time step where the degradation starts, namely, where the fault occurred, automatically.
To evaluate predicted detections, valuable human domain knowledge (HDK) provided
by the industrial company is used to determine the true fault time step ft for each data
set. The initial 25% of each data set is considered NOP data (training data), while
the remaining 75% is considered faulty degradation (FD) data (test data). Each data
set has 14 sensor measurements. Additionally, different magnitudes of random white
Gaussian noise are added to each training data set in order to create disparate real-life
situations. Thus, an assumption is made that real-world noise approximates random
white Gaussian noise.

Table 2.3: Real-life RTF data collected from a maritime component [19].

Data set Fault-type Ttotal TNOP TFD ft in TFD

1 A 887 222 665 157
2 B 909 227 682 148
3 B 1859 465 1394 477
4 A 2554 638 1916 1306
5 B 3643 911 2732 787

2.4.3 Hybrid power lab

The data collected from the hybrid power lab at the Department of Ocean Operations
and Civil Engineering at NTNU in Aalesund has been the main data source during this
Ph.D. project. Unlike benchmark data, data collected from real-life systems is often
unstructured. For example, the logging frequency might be different between different
sensors, alarms and sensors from different components might have been merged into one
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Figure 2.6: The hybrid power lab. The picture to the left shows the automation system, the
picture in the middle shows the battery system and the diesel engine, while the picture to the
right shows restriction devices used to provoke fault-types [5].

data collection, missing or non-defined values, and so on. Such unstructured data cannot
be fed to DNNs directly, and as a result, data pre-processing is often necessary for real-
life systems. Unstructured data is also the case for the hybrid power lab. Around 500
alarms and features of all components in the system were reduced to 47 time-variant
features [73].

As seen in Figure 2.6, the lab includes a marine automation system to control the
entire system, a marine battery system, and a small marine diesel engine. The produced
power is supplied back to the power grid to simulate load changes in the system. During
the data collection, the engine was run by two different load profiles to replicate two
different environmental conditions autonomous ferries may encounter on the west coast
of Norway. At the very start, the ferry is assumed to off-load and on-load vehicles before
it leaves the dock at a safe and constant velocity. Next, the ferry speeds to a suitable
velocity with respect to the weather. This velocity is kept constant until it decreases
safely. In the end, the ferry breaks just before it docks. The two profiles are exposed to
the same order of magnitude of engine loads, but the length of each engine load varies
to reflect different environmental conditions. Figure 2.7 compares the two engine load
profiles, profile 1 and profile 2.

Both NOP data and FD data are collected from both profiles. The difference be-
tween NOP data and FD data is that a fault is introduced at an unknown time step
in the latter. To evaluate predicted fault detections, Finn Tore Holmeset, an engine
chief engineer with 13 years of sailing experience and three years of experience with the
development of a health monitoring system for rotary machinery, provided expert HDK
to determine the true fault time step ft for each degradation data set. Three differ-
ent fault-types have been introduced during this dissertation. These are the air filter
fault, the cooling system fault, and the turbo fault. The fault-types are provoked to
simulate gradual degradation for different subsystems in the engine. The air filter fault
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Figure 2.7: Profile 1 vs. profile 2 [14].

demonstrates the effect of a clogged air filter. This fault is provoked by a restriction
device, as seen in Figure 2.6, which is gradually adjusted from fully open to 90% closed
to reduce the inlet flow of air to the turbocharger. The engine has a secondary water
cooling system to cool the primary water cooling system. The primary cooling system is
controlled internally in the engine by a bi-metal thermostatic valve, while the secondary
cooling system is controlled by a frequency-operated fan circulating air through a heat
exchanger. The cooling system fault is a malfunction of the fan that demonstrates loss
of cooling efficiency. The turbo fault is introduced to replicate efficiency reduction in
the turbocharger. As seen in Figure 2.6, a bleed device on the charge air pipe between
the turbocharger and the engine inlet manifold is used to simulate gradually bleeding of
air. This results in reduced air pressure to the engine combustion process. The cooling
fault is used in papers V and VI, and both the air filter fault and the turbo fault are
used in papers VI and VII. Table 2.4 summarizes the seven data sets collected from the
hybrid power lab.

The work conducted in paper V can be considered as the initial experiment on the
hybrid power lab, where only the cooling fault and profile 1 are used. As a consequence,
fewer assumptions were made and the total duration of the ferry crossing was 22 min-
utes and 40 seconds, which equals 2,720 time steps. However, the logging system was
subjected to several improvements in the transition between paper V and papers VI
and VII. A more reliable logging frequency of 2 Hz was implemented, and hence, the
total duration of the two engine load profiles was reduced to 22 minutes and 33 seconds,
which equals 2,706 time steps. Besides, the number of decimal places was increased,
which led to a change in the true ft for the cooling system fault.

In papers VI and VII additional assumptions were made. First, the initial 360 time
steps, that is, the initial three minutes, were removed from all data sets to acquire almost
the same initial measurements for each sensor in each data set. This was performed be-
cause all data sets were collected at different dates and times, and therefore in conditions
of different ambient temperatures, etc. Second, sensor measurements of both the cooling
water temperature to the engine and the fuel consumption were removed from all data
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Table 2.4: The seven data sets collected from the marine diesel engine [5, 13, 14].

Data set Profile Time steps ft
Normal operation 1 2,346 (2,720 in paper V) –
Normal operation 2 2,346 –

Air filter degradation 1 2,346 1,670
Air filter degradation 2 2,346 1,433

Cooling system degradation 1 2,346 (2,720 in paper V) 1,713 (1,979 in paper V)
Turbo degradation 1 2,346 1,431
Turbo degradation 2 2,346 1,427

sets. The cooling water temperature to the engine is considered to be an unknown pa-
rameter. This feature is affected by the outdoor temperature, and hence, it varies when
data sets are collected at different dates and seasons. The fuel consumption is an impor-
tant feature for the combustion process in the engine. Nevertheless, the measurements
obtained from the automation system were quite inaccurate. Finally, it is worth noting
that real-life RTF data sets on ships are normally accumulated and collected through
months, or perhaps even years. In this dissertation, however, the data sets are collected
more rapidly due to time constraints. Even though the collected RTF data sets from
the hybrid power lab only consist of 2,346 time steps, the real degradation patterns are
assumed to remain.
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3
Case study: the C-MAPSS data set

This chapter presents the research findings and important discussions concerning fault
diagnostics and fault prognostics of the first data source used in this dissertation, namely,
the C-MAPSS data set. As already mentioned, the C-MAPSS data set is considered to
be the benchmark data set within the PHM domain. Such benchmark data provides
the possibility to focus the research purely on DNNs since the data is ready to use.
Additionally, the results can be compared against other researchers’ work across the
entire world. More importantly, the knowledge learned from benchmark data can be
transferred to the maritime industry and autoships. This chapter is divided into three
main sections: data pre-processing in Section 3.1, the results and discussions of both fault
diagnostics in Section 3.2, and fault prognostics in Section 3.3. Section 3.3 is an initial
attempt to respond to RO4 in this dissertation, that is, to increase the development and
reliability of fault prognostics. Supplementary content related to this chapter can be
found in papers II and IV in appendix B and D, respectively.

3.1 Data pre-processing

Advanced data pre-processing is rare for benchmark data because the data is already
structured and divided into a training set and a test set. However, proper data normal-
ization is necessary as the features in the C-MAPSS data set is subjected to different
ranges. The z-score normalization method is used in both paper II and paper IV. For
each feature in the training set, this method subtracts the mean and scales it to unit
variance. Then, the normalization statistics obtained from the training set are applied
to the test set. A signal-to-noise ratio (SNR) of 95% is also applied to the training set
in paper IV to improve generalization.

3.2 Fault diagnostics

The C-MAPSS data set is mostly used for fault prognostics purposes, that is, predicting
the RUL of the turbofan engines. Today, DNNs that aim to predict the RUL still require
RTF targets to model the degradation process during supervised training. Previous
studies have depended on the piece-wise linear (PwL) degradation model, which Heimes
et al. [74] proposed in 2008, to construct RTF targets for the C-MAPSS data set [22,
32, 75]. This degradation model assumes the same constant initial RUL (Ri) value
for all engines when they run in NOP. Then, the model degrades linearly until failure.
This means that the constructed RTF targets ignore the entire fault diagnostics aspect
because the degradation model only depends on the total number of time steps in each
engine. However, the time step where the degradation starts is essential information to
obtain to construct more reliable RTF targets for each engine in the training set. In
the following subsection, the fault detection algorithm, proposed in paper III, is used to
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detect the time step where the fault occurred for each engine in subset FD001.

3.2.1 Fault detection

The original fault detection algorithm is based on an unsupervised reconstruction-based
training framework [19]. In other words, at each time step t the input vector xt is also
used as the target vector yt for reconstruction, yt = xt. Then, at each t a reconstruction
error is calculated by the mean squared error (MSE). Detailed information concerning
the algorithm is found in appendix C. This training framework is also sometimes referred
to as semi-supervised in the literature [76, 77].

For subset FD001, the initial 25% of each engine is considered NOP data, while the
remaining is considered as FD data. In short, the algorithm is trained only on NOP
data. Then, when FD data is fed to the algorithm, it outputs the reconstruction error
as an anomaly score (AS). The AS is then smoothed before its acceleration is calculated.
The original fault criterion of the algorithm was the maximum acceleration. However, in
paper IV, it was discovered that the maximum acceleration was not suitable for FD001 as
the degradation grows with increasing acceleration until failure for each engine. Hence,
a dynamic acceleration threshold was created and used as the fault criterion for subset
FD001. The predicted fault time steps f̂t are detected once the acceleration exceeds
the threshold. Table 3.1 shows the fault detection results in paper IV. Furthermore, it
shows the total time step length Tt, f̂t, and the corresponding Ri for each engine in the
training set of subset FD001. Thus, an optimized Ri value for each engine is obtained.
These values provide information about the true degradation pattern in each engine and
can be further used to construct reliable RTF targets for DNNs that aim to predict the
RUL.

It is worth noting that subset FD001 only contains one fault-type and one operating
condition, as shown in Table 2.2. If, however, several operating conditions were intro-

Table 3.1: Total time step length Tt, predicted fault time step f̂t, and corresponding initial
RUL value Ri for each engine in the training set of subset FD001. 20% of the training set was
randomly designated as the cross-validation set for hyper-parameter tuning of DNNs [17].

Training set Cross-validation set
Engine Tt f̂t Ri Engine Tt f̂t Ri Engine Tt f̂t Ri Engine Tt f̂t Ri Engine Tt f̂t Ri

1 192 63 129 26 199 101 98 53 195 99 96 78 231 91 140 2 287 171 116
3 179 47 132 27 155 85 70 54 257 93 164 79 199 114 85 5 269 141 128
4 189 62 127 28 165 72 93 55 193 77 116 80 185 58 127 7 259 124 135
6 188 86 102 29 163 100 63 57 137 47 90 82 214 106 108 13 163 69 94
8 150 53 97 30 194 116 78 58 147 94 53 83 293 176 117 21 194 98 96
9 201 86 115 32 191 121 70 59 231 117 114 84 267 135 132 31 234 149 85
10 222 70 152 34 194 66 128 60 172 85 87 85 188 88 100 33 200 110 90
11 240 120 120 35 181 111 70 61 185 104 81 86 278 119 159 42 196 103 93
12 170 94 76 36 158 52 106 62 180 99 81 87 178 105 73 46 256 91 165
14 180 76 104 37 170 77 93 63 174 84 90 88 213 80 133 47 214 129 85
15 207 86 121 38 194 114 80 64 283 140 143 89 217 105 112 50 198 79 119
16 209 72 137 39 128 58 70 66 201 83 118 90 154 73 81 52 213 79 134
17 276 123 153 40 188 79 109 67 312 130 182 91 135 46 89 56 275 90 185
18 195 71 124 41 216 88 128 69 362 245 117 92 340 167 173 65 153 59 94
19 158 39 119 43 207 98 109 71 208 96 112 95 283 114 169 68 199 71 128
20 234 104 130 44 192 131 61 72 213 83 130 96 336 204 132 70 137 84 53
22 202 103 99 45 158 73 85 73 213 104 109 97 202 66 136 74 166 75 91
23 168 94 74 48 231 81 150 75 229 94 135 98 156 68 88 81 239 100 139
24 147 60 87 49 215 75 140 76 210 147 63 99 185 74 111 93 155 57 98
25 230 129 101 51 213 92 121 77 154 38 116 100 200 71 129 94 258 101 157
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Figure 3.1: DNN structures proposed for the C-MAPSS data set [17, 22].

duced in the data set, the unsupervised reconstruction-based fault detection algorithm
would face problems since the sensor measurements might differ strongly between dif-
ferent time steps with different operating conditions. Clearly, this is an issue concerning
the various operating conditions in the maritime industry. This issue is further explored
in Section 5.1.

3.3 Fault prognostics

Today, fault prognostics is an area of active research and inventions [34]. As a result, each
week new DNN structures are proposed to predict the RUL in the literature. Thankfully,
recent RUL prediction research studies on the C-MAPSS data set [32, 75, 78] can be
used as a guide to determine which DNNs to include and which to omit. During this
Ph.D. project, two DNN structures were proposed to predict the RUL on the C-MAPSS
data set. Both structures are introduced in the following subsection.

3.3.1 Proposed deep neural networks

Figure 3.1 shows the DNN structures proposed in papers II and IV. Similar to [78], both
structures include two LSTM layers in both the second and the third layer. These LSTM
layers are included so that the DNNs learn statistical degradation patterns and long-
term dependencies within the temporal information in the sensor data of the turbofan
engines. Also, a feed-forward neural network (FNN) layer is attached in the fourth
layer to map all extracted time-dependent features to a one-dimensional vector. A time-
distributed fully connected output layer is, as well, attached in the final layer to handle
error calculations and provide RUL predictions.

The major difference between the two DNN structures is the first layer. The DNN
structure in paper II uses a restricted Boltzmann machine (RBM) layer, while the DNN
structure in paper IV uses a one-dimensional convolutional neural network (1D CNN)
layer. In paper II, the main goal was to improve generalization by performing an initial
unsupervised pre-training stage. Therefore, the RBM layer was included to initialize
the weights between the first and the second layer in a region near a good local mini-
mum before supervised fine-tuning of the whole structure was conducted. The proposed
structure was trained on both completely and reduced amounts of labeled training data,
and showed promising generalization power towards the test set compared to purely
supervised training. Large amounts of high-quality labeled training data might be both
challenging and time-consuming to acquire, especially in the maritime industry. How-
ever, as mentioned in Section 3.2, this issue is solvable by utilizing the unsupervised
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reconstruction-based fault detection algorithm to automatically construct RTF targets.
Thus, the RBM layer was deprecated and replaced by a 1D CNN layer in paper IV.
Similar to [32], the 1D CNN layer is included to extract and learn low-level temporal
features from each sensor measurement individually. These features might contain im-
portant degradation information which are then used to form more complex patterns
within the remaining layers.

Another difference between the two structures is that in paper IV a second FNN
layer is included to act as a stand-alone dropout layer in the structure. This is an
attempt to reduce the number of tune-able hyper-parameters compared to the structure
in paper II, where dropout is applied to all layers. Dropout randomly drops 10-50% of
the units during training, and hence, approximately connects an exponential number of
different structures. This improves generalization since it prevents the structure from
extracting the same degradation features repeatedly [79].

3.3.2 Validation of run-to-failure targets

The main goal in paper IV is to validate three different labeling approaches to construct
RTF targets to be used in the supervised training procedure of DNNs that aim to predict
the RUL. The three approaches are the PwL degradation model, descriptive statistics
(DS) with polynomial regression, and the smooth AS function (ASF) obtained from the
unsupervised reconstruction-based fault detection algorithm. All approaches utilize the
optimized Ri values, as seen in Table 3.1. A detailed description of each approach is
found in paper IV in appendix D. Figure 3.2 compares the three different RTF targets for
engine one in subset FD001. Both DS targets and ASF targets are nonlinear, while the
PwL targets are, as the name indicates, linear. During the experiments in paper IV, it
was discovered that the PwL targets outperformed both DS targets and ASF targets in
all performance aspects of RUL predictions. Consequently, when training in a supervised
manner on RTF data, it seems that it is more convenient for DNNs to map inputs to
a linear target compared to a nonlinear target. Linear targets are also beneficial if the

Figure 3.2: Comparison of different RTF targets [17].
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RUL is to be considered as a time-based index, e.g., if the RUL decreases by one and the
time step increases by one. This is highly relevant for autoships if future maintenance
schedules are to be optimized by visualized RUL predictions.

As seen in Table 3.1, there is a high variance between the Ri values. This makes it
difficult for the proposed DNN in paper IV to predict the RTF targets when the engines
run in NOP. On the contrary, the proposed DNN is extremely accurate to predict the
RTF targets in FD data close to the end of the engines lifetime. This also aids the
generalization of the proposed DNN towards new field data, that is, the test set. Based
on the research findings in paper IV, the PwL degradation model with optimized Ri

values is also used in the case study for fault prognostics of the marine diesel engine in
autonomous ferries in in Section 5.3.

3.3.3 Tuning of hyper-parameters

Within the DL domain, hyper-parameters can be defined as all parameters which can
be set by a human or an algorithm before the training starts. DNNs do normally
introduce a big number of such hyper-parameters, which can be both challenging and
time-consuming to optimize during supervised training procedures. To ease this issue,
a genetic algorithm (GA) approach was first proposed in paper II, and then further
used in paper IV, to automatically tune hyper-parameters during this dissertation. See
appendix B and D for a detailed description of the GA approach.

Importantly, before the GA approach starts, or any other hyper-parameter tuning
approach for that matter, the complete training data has to be divided into training
and cross-validation. The cross-validation set is used to tune the hyper-parameters and
ensures that the DNN has learned most of the statistics in the training data correct.
The performance on the cross-validation set also indicates if the DNN is overfitting or
underfitting the training data. Then, when an acceptable performance on the cross-
validation set is achieved, the trained DNN is applied on a stand-alone test set that it
has never seen before. The performance on the test set specifies how well the DNN can
generalize on new field data.

In both paper II and IV, the hold-out cross-validation method is used. This method
selects a portion of the complete training data as the cross-validation set randomly. By
this method, it is assumed that any random portion selected from the complete training
data exhibits similar statistics. Consequently, to use this method, the total number of
examples in the complete training sets, in all subsets of the C-MAPSS data set, have
been considered large enough. For smaller data sets, the k-fold cross-validation method
is usually used to reduce a potential bias of statistics.

The GA approach has proved to be an effective algorithm for finding a near-optimal
solution in a selected search space of hyper-parameters. In paper II, the search space
consisted of 8,748,000 possible combinations. However, in paper IV the search space
was considerably reduced to 11,664 combinations to improve both efficiency and per-
formance. The average training time was also considerably reduced from paper II, 60
hours, to paper IV, 13.33 hours. This reduction in training time was mainly due to GPU
optimization of the LSTM layers, which was implemented in the DL4J library in the
transition between paper II and IV. Nevertheless, the training time of the GA approach
has not been critical during this Ph.D. project since it was mostly run during nights and
weekends.
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The following bullet-points present the knowledge learned based on the experience
from the C-MAPSS data set concerning tuning of hyper-parameters of DNNs that aim
to predict the RUL. This knowledge is transferred to the remaining case studies of this
dissertation.

• It is a good idea to fix the random seed of weight initialization to ensure that the
results are reproducible for other researchers.

• The total number of parameters (weights and biases) in a DNN should reflect both
the number of examples and the complexity in the data set.

• To prevent overfitting and reduce the training time, early stopping is useful to use
in supervised training procedures.

• The learning rate is the first hyper-parameter to tune, and it should be tuned
roughly before any hyper-parameters tuning approach starts.

• To better maintain important low-level degradation features, the learning rate in
the first layer can be a half order of magnitude higher than the learning rate in the
remaining layers.

• Stochastic gradient descent as the optimization algorithm together with adaptive
moment estimation (Adam) [80] as the learning rate method has proved excellent
performance on the C-MAPSS data set.

• A l2 regularization coefficient between 1·10−3 and 1·10−6 is normally a good choice
to reduce overfitting.

• Normally, it is sufficient to only apply dropout to the last layer before the output
layer.

• To select the rectified linear unit (ReLU) activation function [81] in FNN layers
and the tanh activation function in LSTM layers are usually a good choice.

• For most RUL applications, Xavier weight initialization [82] is a solid choice.

3.3.4 Remaining useful life predictions compared with the literature

To evaluate the RUL prediction results on test sets in the C-MAPSS data set, the scoring
function (S), provided in [33], and the root mean square error (RMSE) are normally used:

S =





n∑
i=1

e−(
di
13

) − 1, for di < 0

n∑
i=1

e(
di
10

) − 1, for di ≥ 0
(3.1)

RMSE =

√√√√ 1

n

n∑

i=1

d2i (3.2)

where n is the total number of true RUL targets in the test set and di = RULpredicted,i−
RULtrue,i. The RMSE gives equal penalty to early and late RUL predictions, namely,
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Table 3.2: Recent results on the C-MAPSS data set.

Author & Refs. Year Ri
FD001 FD002 FD003 FD004

S RMSE S RMSE S RMSE S RMSE
Ramasso [83] 2014 Optimized 216 13.27 2,796 22.89 317 16.00 3,132 24.33

Babu et al. [84] 2016 130 1,287 18.45 13,570 30.29 1,596 19.82 7,886 29.16
Malhotra et al. [85] 2016 125 256 12.81 n/a n/a n/a n/a n/a n/a
Zheng et al. [78] 2017 130 338 16.14 4,450 24.49 852 16.18 5,550 28.17
Zhang et al. [75] 2017 n/a 334 15.04 5,585 25.05 422 12.51 6,558 28.66
Yoon et al. [86] 2017 140 419 14.80 n/a n/a n/a n/a n/a n/a
Li et al. [32] 2018 125 274 12.61 10,412 22.36 284 12.64 12,466 23.31

Ellefsen et al. [22] (II) 2019 115,135,125,135 231 12.56 3,366 22.73 251 12.10 2,840 22.66
Ellefsen et al. [17] (IV) 2019 Optimized 186 12.08 n/a n/a n/a n/a n/a n/a

Miao et al. [23] 2019 Optimized n/a 12.29 n/a 17.87 n/a 14.34 n/a 21.81
da Costa et al. [87] 2020 125 300 13.67 1,638 17.80 267 12.57 2,904 21.30

when di < 0 and di > 0, respectively. In S, the penalty for late RUL predictions is larger.
For example, if the predicted RUL is 100 and the true RUL is 90 in a real-life PHM
system, the system is prone to dangerous situations as maintenance operations will be
scheduled too late. On the contrary, early predictions pose less risk to system failures.

Table 3.2 presents recent results on the C-MAPSS data set in the literature. In the
third column, an integer value indicates the same constant Ri for all engines in the entire
C-MAPSS data set or for a specific subset, while the term “optimized" indicates some
data-driven labeling approach to obtain optimized Ri values for each engine according
to the actual engine health. It is worth noting that some studies are only using one
out of four subsets in their experiments. Additionally, some studies are only using the
RMSE for performance evaluation. Thus, in Table 3.2, “n/a" indicates not available
information. The best results for each subset are highlighted in bold.
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4
Case study: industrial company

This chapter presents the research results and important discussions concerning data
pre-processing and fault diagnostics of the second data source in this dissertation. As
explained in Section 2.4, this data source includes five RTF data sets, which are provided
by an industrial company. Thus, as opposed to the previous case study, this chapter
includes real operation data from a maritime component. This chapter is divided into two
main sections; data pre-processing in Section 4.1 and the results and discussions of fault
diagnostics in Section 4.2. Furthermore, Section 4.2 presents the initial development of
the fault detection algorithm, as stated in RO3. Supplementary content related to this
chapter is found in paper III in appendix C.

4.1 Data pre-processing

The RTF data sets were collected from a logging system only concerning the maritime
component. Besides, the data sets do not face any problems related to real-life systems,
such as varying logging frequencies between different sensors, missing and non-defined
values, etc. The data sets are therefore structured and ready to use from start. All
data sets start under different operational loads and corresponding sensor measurements.
However, the starting operational load for each data set does not change drastically from
NOP to failure. As a consequence, the issue of diverse operating conditions throughout
a data set, as mentioned in Section 3.2, is disregarded in paper III.

Based on the facts about the data source in the paragraph above, only proper data
normalization has to be applied to the RTF data sets. Similar to the data pre-processing
of the C-MAPSS data set in Section 3.1, the z-score normalization method is used on the
NOP data of each RTF data set. Then, the obtained normalization statistics are applied
to the FD data. Sensor measurements of maritime components might be subjected to
random amounts of noise when operated on ships. Thus, to increase the complexity
of each NOP data set and create differentiated real-life maritime situations, different
magnitudes of random white Gaussian noise, g, is added to each normalized sensor
measurement at each time step t:

Psignal =
1

TNOP

TNOP∑
t=1

(√
1
n

(
x̂21 + · · ·+ x̂2n

)
)

(4.1)

Pnoise =
1

TNOP

TNOP∑
t=1

(√
1
n

(
(x̂1 + g)2 + · · ·+ (x̂n + g)2

))
(4.2)

where TNOP is the number of time steps in NOP data, x̂n is the normalized measurement
of sensor n, and Psignal and Pnoise are the average power of the signal and the noise in
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the NOP data, respectively. Then, the SNR can be defined as follows:

SNR(%) =
Psignal

Pnoise

· 100 (4.3)

Four different real-life situations are created by applying 100%, 90%, 80%, and 70% SNR
to each of the five NOP data sets.

4.2 Fault diagnostics

The five RTF data sets do not include normal and fault labels. For example, a target
column including “0" for normal data points, “1" for fault A data points, and “2" for fault
B data points. In terms of fault diagnostics, the supervised learning principal involves
training a supervised binary classifier, or multi-class classifier in this case, to differentiate
between normal and fault labels in the target column. However, such fault labels are
extremely rare to come by in the maritime industry. NOP data, on the other hand, is
more easy to collect and define. Such data can be accumulated through the vast amount
of sensors installed on both conventional ships and future autoships. When only NOP
data is available, an unsupervised reconstruction-based training principal can be utilized
to detect faults and create associated fault labels automatically for fault classification
purposes. This is where the proposed unsupervised reconstruction-based fault detection
algorithm for maritime components in paper III come in handy.

4.2.1 The initial development of the fault detection algorithm

In unsupervised reconstruction-based fault detection algorithms, also referred to as spec-
tral anomaly detection in the literature [76, 77], the idea is to produce the lower dimen-
sional embedding of the input data where NOP data and FD data are generally distinct.
DNNs are normally used for this purpose as they allow dimension reduction through
several hidden layers with non-linear transformations. First, a DNN is trained to recon-
struct NOP data. This is done, in an unsupervised manner, such that the input data
is also used as the target data for reconstruction. The DNN is trained in this manner
until it provides a satisfying low reconstruction error. In other words, the compressed
version of the input data supports the low dimensional reconstructions to extract infor-
mation relevant to NOP data. Then, when FD data is fed to the trained DNN, it will
output a larger reconstruction error since it cannot reconstruct the unexpected degra-
dation patterns. At each time step between the input data and the low dimensional
reconstructions, this reconstruction error is then used as an AS to detect faults. The AS
is calculated by the MSE over all sensor measurements.

The AS needs a criterion on how to detect a fault. One approach is to set user-
specified threshold values [88]. However, maritime components are subjected to harsh en-
vironmental conditions with varying operational loads, and hence, application-dependent
threshold values are not suitable. In paper III, the proposed algorithm detects a fault
automatically by estimating the time step with the maximum acceleration amax in the
AS. This is done by the sliding window operation, as seen in Figure 4.1. See appendix C
for a complete description. amax is chosen as the fault criterion to detect the fault time
step f̂t since this point indicates increasing velocity, and hence, a rapid increase in the
AS. This increase in velocity indicates that one or several sensor measurements have
started to deviate from NOP data. Due to latency in physical components, amax is
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Figure 4.1: Illustration of the sliding window operation. Three windows (highlighted in orange)
slide across AS through time [19].

a valid indication of a fault because there is an expected time delay before the fault
will result in large sensor measurements deviations. Simply put, amax provides early
warnings.

During the experiments in paper III, three popular DNNs, AE, VAE, and LSTM, in
addition to an FNN with one hidden layer (1FNN), are used with the proposed algorithm.
All experiments are run five times and the average f̂t is shown in Table 4.1. NOP
data subjected to noise can be considered to be a regularization technique for DNNs.
This is illustrated in Table 4.1 where the three DNNs provide consistent prediction
performance along with reduced SNR. This is because DNNs do dimension reduction
through several hidden layers to provide more abstract and robust features. Therefore,
the low dimensional embedding is somewhat forced to filter the noise and generalize on
the actual statistics in the NOP data. This is not the case, however, for the FNN with
only one hidden layer. Consequently, it learns the statistics of noise, which disturb its
capability to detect the fault in FD data. As seen in Table 4.1, reduced SNR strongly
influences the 1FFN.

To further evaluate the proposed algorithm and select the best performing DNN, ac-
curacy evaluations on the FD data in the four real-life situations are shown in Tables 4.2,
4.3, 4.4, and 4.5. The accuracy is defined as follows:

Acc (%) =

(
1− ||f̂t − ft||

TFD

)
· 100 (4.4)

The accuracy evaluations can be considered to be indications of the distance between
f̂t and ft. However, early and late predictions are not taken into account in this per-
formance measurement, which would be of importance for a real-life data-driven PHM
system for both conventional ships and autoships. All DNNs confirm robustness towards
noisy real operation input data, but the VAE provides a slightly better overall accuracy
performance compared to both AE and LSTM, as indicated in bold. Therefore, the VAE
is the favored DNN to be used with the proposed algorithm when further explored and
improved in papers IV, V, and VI.
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When using amax as the fault criterion, only offline fault detection is possible con-
cerning a real-life data-driven PHM system. This is because one would need the FD data
in advance to determine amax. The utilization of thresholds based on the acceleration
calculations can enable online fault detection. For maritime components, however, dif-
ferent fault-types might be subjected to different degradation patterns. Thus, dynamic
and generic thresholds have to be created. These concerns are explored in the main case
study of this dissertation in Chapter 5 in Section 5.2.

Table 4.1: Predicted fault time step f̂t compared to true fault time step ft on FD data [19].

Data set Fault-type TFD ft SNR(%) f̂t
1FNN AE VAE LSTM

1 A 665 157

100 148 151 154 158
90 367 151 153 158
80 412 154 152 158
70 476 154 153 158

2 B 682 148

100 148 146 148 155
90 152 150 147 148
80 381 150 146 150
70 463 149 146 161

3 B 1394 477

100 492 455 477 481
90 480 479 479 481
80 632 479 479 481
70 791 481 482 481

4 A 1916 1306

100 1281 1281 1281 1281
90 1278 1281 1281 1281
80 1280 1282 1281 1281
70 1282 1281 1281 1281

5 B 2732 787

100 807 752 807 732
90 866 655 783 739
80 932 728 796 740
70 1043 732 800 742

100% SNR Acc (%)
Data set 1FNN AE VAE LSTM

1 99.647 99.098 99.549 99.850
2 100 99.707 100 98.974
3 98.924 98.422 100 99.713
4 98.695 98.695 98.695 98.695
5 99.268 98.719 99.268 97.987

Avg. Acc 99.107 98.928 99.502 99.044

Table 4.2: Accuracy evaluation on FD data
with 100% SNR applied to NOP data [19].

90% SNR Acc (%)
Data set 1FNN AE VAE LSTM

1 68.421 99.098 99.398 99.850
2 99.413 99.707 99.853 100
3 99.785 99.857 99.857 99.713
4 98.434 98.695 98.695 98.695
5 97.108 95.168 99.854 98.243

Avg. Acc 92.632 98.505 99.531 99.300

Table 4.3: Accuracy evaluation on FD data
with 90% SNR applied to NOP data [19].

80% SNR Acc (%)
Data set 1FNN AE VAE LSTM

1 61.654 99.549 99.248 99.850
2 65.839 99.707 99.707 99.707
3 88.881 99.856 99.857 99.713
4 98.643 98.695 98.695 98.695
5 94.693 97.840 99.671 98.280

Avg. Acc 81.941 99.130 99.435 99.249

Table 4.4: Accuracy evaluation on FD data
with 80% SNR applied to NOP data [19].

70% SNR Acc (%)
Data set 1FNN AE VAE LSTM

1 52.030 99.549 99.399 99.850
2 53.812 99.853 99.707 98.094
3 77.475 99.713 99.641 99.713
4 98.747 98.695 98.695 98.695
5 90.629 97.987 99.524 98.353

Avg. Acc 74.539 99.159 99.393 98.941

Table 4.5: Accuracy evaluation on FD data
with 70% SNR applied to NOP data [19].
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5
Case study: marine diesel engines in autonomous ferries

This chapter presents the research findings and vital discussions concerning data pre-
processing, fault diagnostics, and fault prognostics of the third data source in this dis-
sertation. This data source is considered to be the main case study as it aims towards
autoships, and more specifically, marine diesel engines in autonomous ferries. Today,
enthusiasm for ship autonomy is flourishing in the maritime industry. Thus, such a
case study is important to present convincing research for the industry in general. This
chapter is divided into three main sections: data pre-processing in Section 5.1, fault
diagnostics in Section 5.2, and fault prognostics in Section 5.3. Supplementary content
related to this chapter is found in papers V, VI, and VII in appendix E, F, and G,
respectively.

5.1 Data pre-processing

The marine diesel engine is considered to be the most critical component onboard au-
tonomous ferries since it generates power for propulsion and auxiliary equipment. On
the open sea, it is subjected to rapid variations in operational loads, which depends on
both the task of operation and the harsh environment. In such complexity, the sensor
measurements are highly connected to the operational loads. Therefore, a multi-regime
normalization method has to be applied on the raw input data to present both normal
operations and degradation patterns for DNNs [34]. As mentioned in Section 2.4, the
raw data were first reduced to 47 time-variant features. However, features belonging
to the battery system and the automation system are irrelevant for the component in
focus. Thus, a feature selection process is necessary to consider for the fault detection
task.

5.1.1 Feature selection

The research presented in paper V shows that feature selection improved the recon-
struction process of the fault detection algorithm. Therefore, feature selection is also
used in paper VI. Table 5.1 presents the selected features for the marine diesel engine.
These are selected by first removing features with constant measurements because they
actually provide no degradation information. Then, a Pearson correlation analysis is
used to detect linear relationships between features. If two features have a high linear
relationship, they likely contain redundant information. HDK is then used to determine
which of the redundant features to keep and remove. In the end, nine features were
considered relevant for the marine diesel engine.
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Table 5.1: Feature selection for the marine diesel engine [5].

Index Description Unit
1 Boost pressure bar
2 Engine load kW
3 Engine cooling water temperature ◦C
4 Engine exhaust gas temperature ◦C
5 Cooling water temperature out of the engine ◦C
6 Engine speed rpm
7 Diesel generator cooling water flow liter/min
8 Simulated propulsion load kW
9 Cooling fan speed controller rpm

5.1.2 Multi-regime normalization

As seen in Figure 2.7, it is obvious that both profiles fall into five distinct operating
conditions based on the engine load. Fault patterns of typical fault-types associated
with the marine diesel engine are highly connected to the operating conditions. In
other words, the fault patterns can only be detected within a context, that is, a specific
operating condition. The fault detection algorithm, however, is only able to detect single
anomalous values if they differ from previous values. So, to present the fault patterns for
the fault detection algorithm, multi-regime normalization has to be performed to merge
the five operating conditions into one context. First, the NOP data sets in Table 2.4
are split into five data sets each based on the five operating conditions. Each feature in
these data sets is then scaled with z-score normalization:

xon =
xon − µo

σo
(5.1)

where xn is the input feature, n = 1, 2, ..., 9, in operating condition o = 1, 2, ..., 5, and µ
and σ is the population mean and population standard deviation of that feature. This
results in five different normalization statistics, one for each operating condition [5]. To
be able to train the fault detection algorithm on NOP data and to detect faults in FD
data, these normalization statistics are then applied to the two NOP data sets and the
five FD data sets in Table 2.4. To apply different normalization statistics, the engine
load is monitored at each time step.

It is worth noting that the engine loads were divided into five operating conditions
manually in paper VI. However, if new operating conditions are encountered in real-life
data-driven PHM systems in autonomous ferries, which is likely to happen, this process
has to be automated. This can be done, for instance, through unsupervised clustering
algorithms, such as the K-Means algorithm.

5.2 Fault diagnostics

The proposed fault detection algorithm in paper III was the first attempt to answer R03
in Section 1.2 in this dissertation. However, as mentioned in Section 4.2, the algorithm
utilized the maximum acceleration as the fault criterion, which only provided offline
fault detection. Regarding the marine diesel engine in autonomous ferries, fault-types
associated with the engine are subjected to different degradation patterns. To provide
online fault detection in a real-life data-driven PHM system, one solution would be
to create specific threshold limits for each fault-type. Alternatively, one could create
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dynamic and generic threshold limits to consider all fault-types to make the algorithm
fault-type independent, as stated in RO3. The main contributions of paper VI, to further
improve the fault detection algorithm, are online and fault-independent fault detection
by utilizing dynamic and generic threshold limits.

The learning framework is renamed from unsupervised in papers III, IV, and V to
semi-supervised in paper VI. Also, the term reconstruction-based is renamed to spectral
anomaly detection. This was done to follow the correct terminology used in recent
anomaly detection studies in the literature [30, 76, 77]. It is worthwhile to be aware
that semi-supervised learning has another meaning in fault prognostics, namely, the
combination of unsupervised pre-training and supervised fine-tuning, as performed in
paper II.

5.2.1 Dynamic and generic threshold limits

As mentioned in Section 4.2, the AS needs a criterion guiding the detection of a fault.
Both AS or a smooth version of it can, of course, be used in addition to a threshold limit
as the fault predictors. However, such predictors will vary between different fault-types
since they reflect the degradation patterns. This contradicts the fact that the main goal
of the improved fault detection algorithm in paper VI is to be fault-type independent.
However, both velocity and acceleration calculations of the AS are considered to be
more suitable fault predictors for the algorithm since such calculations are assumed to
be similar between different fault-types. Thus, dynamic and generic threshold limits can
be constructed.

In paper VI, the threshold limits are based on velocity vn and acceleration an calcula-
tions of the smooth AS of NOP data for both engine load profiles. As seen in Figure 4.1,
three sliding windows of length w determines the amount of smoothing performed on
AS, w = T/p, where T is the total number of time steps in NOP data, as shown in
Table 2.4, and p is an adjustable parameter. Careful tuning of p is necessary since ex-
cessive smoothing might obscure important data trends. Seven different p values, in the
30 to 90 range, are therefore used during the experiments in paper VI. To obtain the
threshold limits, the minimum and maximum velocities of vn, vmin, and vmax, and the
minimum and maximum accelerations of an, amin and amax, are calculated for each p
value in both profile 1 and profile 2. Then, a common set of upper and lower thresholds
for both vn and an are calculated based on the following experience-based formulas:

vupper =
|(vmax,1 + vmax,2)− (vmin,1 + vmin,2)|

2
(5.2)

vlower = −vupper (5.3)

aupper =
|(amax,1 + amax,2)− (amin,1 + amin,2)|

2
(5.4)

alower = −aupper (5.5)

The common set of upper and lower thresholds for each p value are shown in Table 5.2.
The upper and lower thresholds are added to vn and an for each time step to construct
the threshold limits used as fault criteria for FD data. When velocity vd and acceleration
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Table 5.2: A common set of upper and lower thresholds for both the velocity and the acceler-
ation [5].

p vlower vupper alower aupper
30 -2.63 2.63 -4.10 4.10
40 -3.40 3.40 -4.97 4.97
50 -3.81 3.81 -6.35 6.35
60 -4.40 4.40 -7.26 7.26
70 -5.10 5.10 -8.58 8.58
80 -5.74 5.74 -9.67 9.67
90 -6.32 6.32 -10.54 10.54

ad calculations of FD data exceeds their respective limits, the velocity fault time step f̂t,v
and the acceleration fault time step f̂t,a are detected. The complete procedure of how
to construct the dynamic and generic threshold limits are elaborated in Algorithm 1 in
appendix F.

5.2.2 Online fault detection

The air filter fault and the turbo fault in both profiles are used for validation in paper VI.
This validation aims to discover the best performing fault predictor out of velocity and
acceleration calculations in addition to the most suitable p value for the threshold limits.
To validate both f̂t,v and f̂t,a, the true fault time step ft has to be determined. Since
both faults-types where provoked gradually during the experiments, ft could not be
determined based on a recorded time step. The boost pressure, as seen in Table 5.1,
is the key feature to monitor for both fault-types. In addition, both faults-types are
highly connected to the engine loads and subjected to different degradation patterns.
Therefore, ft is determined where the deviation in boost pressure between NOP data
and FD data is largest.

Table 5.3 shows f̂t,v and f̂t,a for each p value in both profiles for both fault-types.
The accuracy evaluations, Accv and Acca, are equal to Eq. 4.4 in Section 4.2. Table 5.4
shows the average accuracy for each p value. When p = 60, the acceleration provides the
highest average accuracy of 97.61%. Note that this is the only configuration that results
in a satisfactory accuracy. This highly reflects the difficulty of constructing dynamic and
generic threshold limits for two different fault-types associated with the marine diesel
engine subjected to different environmental conditions, in terms of different engine load
profiles, in autonomous ferries. Figure 5.1 illustrates the acceleration calculations and
the corresponding threshold limits when p = 60 for both fault-types in both profiles. It
is worth mentioning that the acceleration calculations and the threshold limits are not
plotted before the entire sliding window operation is active. In other words, the initial
195 time steps are plotted as zeros (w(60) · 5 = 195). As a consequence, such fault
detections would have a time delay of 195 time steps, if applied in a real-life data-driven
PHM system.

The cooling fault is subjected to a different degradation pattern compared to the
two fault-types used for validation. Hence, it can be considered to be new field data that
the algorithm has never seen before. The best algorithm configurations, as discovered
in the validation, are further used for the cooling fault in profile 1 as the final test
of the improved fault detection algorithm in paper VI. To evaluate the prediction, ft
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Table 5.3: The true fault time step ft compared to the predicted fault time step f̂t for air filter
and turbo degradation data [5].

Fault-type Profile ft p w f̂t,v Accv(%) f̂t,a Acca(%)

Air filter

1 1670

30 78 1255 82.31 1502 92.84
40 58 1278 83.29 1609 97.40
50 46 1289 83.76 1648 99.06
60 39 1549 94.84 1660 99.57
70 33 1566 95.57 1674 99.83
80 29 1706 98.47 1680 99.57
90 26 1709 98.34 1682 99.49

2 1433

30 78 1362 96.97 1428 99.79
40 58 1392 98.25 1445 99.49
50 46 1404 98.76 1458 98.93
60 39 1532 95.78 1483 97.87
70 33 1540 95.44 0 38.92
80 29 0 38.92 0 38.92
90 26 0 38.92 0 38.92

Turbo

1 1431

30 78 731 70.16 693 68.54
40 58 771 71.87 745 70.76
50 46 786 72.51 752 71.06
60 39 794 72.85 1347 96.42
70 33 368 54.69 1362 97.06
80 29 1395 98.47 1374 97.57
90 26 1399 98.64 1381 97.87

2 1427

30 78 951 79.71 892 77.20
40 58 979 80.90 929 78.77
50 46 991 81.42 1329 95.82
60 39 1005 82.01 1347 96.59
70 33 1387 98.29 1361 97.19
80 29 1393 98.55 1371 97.61
90 26 1397 98.72 1378 97.91

Table 5.4: The average accuracy for each p value [5].

p w Avg. Accv(%) Avg. Acca(%)

30 78 82.29 84.59
40 58 83.58 86.60
50 46 84.11 91.22
60 39 86.37 97.61
70 33 86.00 83.25
80 29 83.60 83.42
90 26 83.65 83.55

Table 5.5: The true fault time step ft compared to the predicted fault time step f̂t for cooling
degradation data [5].

Fault-type Profile ft p w f̂t,a Acca(%)

Cooling 1 1713 60 39 1658 97.66

for the cooling fault is also chosen based on expert HDK. When the engine cooling
water temperature, index 3 in Table 5.1, increases 85 ◦C, ft is determined to be 1713.
Table 5.5 shows that the algorithm predicts the cooling fault with an accuracy of 97.66%.
Note that both in the validation and the final test the trend is that the acceleration
provides early predictions, i.e. f̂t,a < ft, when p = 60. However, early predictions
with a corresponding high accuracy are considered as valid predictions since there is
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an expected time delay in the marine diesel engine before the faults will result in large
sensor measurements deviations. Figure 5.2 shows the acceleration calculations and the
corresponding threshold limits for the fault detection of the cooling degradation data.

(a) Air filter fault in engine load profile 1. (b) Turbo fault in engine load profile 1.

(c) Air filter fault in engine load profile 2. (d) Turbo fault in engine load profile 2.

Figure 5.1: Online fault detection where p = 60 and the acceleration is used as the fault
predictor for air filter and turbo degradation data [5].

Figure 5.2: Online fault detection where p = 60 and the acceleration is used as the fault
predictor for cooling degradation data [5].
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The final test proves that the algorithm can be considered to be fault-type independent.
The resulting f̂t,a obtained from paper VI are further used in paper VII to construct

reliable RTF targets to do fault prognostics. This is further elaborated in the Section 5.3.

5.3 Fault prognostics

In the future, autonomous ferries are likely to be maintained, navigated, and operated
without any crew involvement. Thus, accurate and reliable predictions of the progression
of already detected fault-types, in terms of the RUL, are essential for such ferries. Such
RUL predictions enable the optimization of maintenance schedules such that mainte-
nance occurs at the ferry’s next appropriate port of call. This increases both profitability
and safety.

It is more difficult to achieve accurate and reliable RUL predictions based on real
operation data than on the C-MAPSS data set, as done in papers II and IV. This is
because real operation data is unstructured and lacks both RTF targets and a stand-
alone test set from the start. However, the knowledge learned from benchmark data
is valuable to transfer in order to do fault prognostics of the marine diesel engine in
autonomous ferries. For example, both the idea of and the knowledge learned from the
proposed DNNs in both paper II and IV are valuable, the PwL degradation model is
directly transferred from paper IV to paper VII, and the experience gained from hyper-
parameter tuning is beneficial.

5.3.1 Introducing the SkipRnet

Operational sensor data collected from the marine diesel engine in autonomous ferries
will primarily involve time-series data. As seen in Figure 3.1 in Section 3.3, the number
of hidden layers in the two proposed DNNs for the C-MAPSS data set is fixed. In
other words, those DNNs utilize static structures. However, static DNNs have difficulty
generalizing on real operational time-series data because the degree of complexity, in
terms of both sensor noise and various operating conditions, might differ between training
data and new field data. Static DNNs with few hidden layers and corresponding few
parameters are only able to model time-series data with low complexity and vice versa.
However, the utilization of skip connections, as successfully applied for image data in [37],
enable dynamic DNNs, that is, the opportunity to automatically train different layers
for different time steps. In this way, such DNNs will be trained at different rates based
on how the error flows backward in different paths. Therefore, they should be able to
handle time-series data in a wide range of complexities.

The proposed SkipRnet in paper VII is shown in Figure 5.3. As in papers II and
IV, LSTMs and FNNs will act as the main building blocks. The LSTM layers are used
to learn temporal and long-term dependencies within the features of degradation data.
The FNN layers are then used to map all extracted features before a dropout layer is
used to reduce overfitting. To keep it simple, both the RBM layer and the 1D CNN
layer are dropped. By utilizing skip connections, however, the SkipRnet has the ability
to skip both the second LSTM layer and the second FNN layer during the training
procedure. This results in four different paths with differing numbers of parameters. In
other words, the SkipRnet can be considered as an accumulation of four different DNNs.
When the SkipRnet is trained and employed to predict the RUL on new field data, it
has the potential to make use of the four paths with different numbers of parameters.
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Figure 5.3: The SkipRnet and its four different paths [14].

The idea is that these path alternatives will handle the various operating conditions the
marine diesel engine confronts. Thus, the SkipRnet is proposed to increase the reliability
of data-driven fault prognostics, as stated in R04 in Section 1.2.

5.3.2 RTF targets for supervised training

As discovered in paper IV, the PwL degradation model, when incorporating diagnos-
tics information, was the best performing and most convenient data-driven labeling
approach. The time step where the degradation starts is essential information for this
approach to construct reliable RTF targets for the SkipRnet. Therefore, the already de-
tected fault time steps, as obtained in paper VI and described in Section 5.2, are directly
used to construct RTF targets for air filter degradation data and turbo degradation data
in both engine load profiles in paper VII. In this way, the SkipRnet can be trained with
supervision since each time step in the data sets has a target value to map during the
training process. As a consequence, both feature selection and multi-regime normal-
ization will have a relatively low impact on the input-target mappings. By supervised
training, DNNs are strong enough to both filter unnecessary features and cope with the
complexity inherent in the different engine loads. Therefore, all 47 input features and
conventional z-score normalization are used in paper VII.

5.3.3 Data split and data augmentation

High generalization power towards engine load profiles that the SkipRnet has never seen
before is extremely important if the SkipRnet is to be employed in future data-driven
PHM systems for autonomous ferries to provide real-time RUL predictions. Only the air
filter and turbo degradation data in profile 1 are used as the training set for the SkipRnet.
The degradation in the training set grows in magnitude until failure. Consequently, the
last RUL target = 0. Profile 2 is subjected to different engine loads, and hence, it will
be used as the test set. Therefore, the degradation in the test set has to end sometime
prior to failure in order to verify that the SkipRnet is able to generalize to predict the
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Figure 5.4: The proposed data augmentation technique for RTF time-series data [14].

RUL. Accordingly, a random interval of time steps before failure is removed in both the
air filter and the turbo degradation data in profile 2. Table 5.6 summarizes the data
split used in paper VII to do fault prognostics.

Problems accessing large amounts of RTF data are common in the maritime indus-
try. This is unfortunate given that DNNs require large amounts of RTF data to do fault
prognostics with satisfactory accuracy. In addition, a limitation of DNNs today is the
danger that they will learn only exactly what we ask them to learn during supervised
learning. An example is that the SkipRnet will only be trained on RTF data from pro-
file 1. Thus, the danger is that the SkipRnet will only learn statistics from profile 1 and
will not be able to generalize to profile 2. Therefore, a novel data augmentation tech-
nique for RTF time-series data is proposed in paper VII to increase the generalization
power of the SkipRnet.

The aim of the proposed technique is to answer RO4, as stated in Section 1.2, to
increase the reliability of fault prognostics. As seen in Figure 5.4, an SNR between 70
and 90% is first applied to the normalized original training set. The noise is applied,
similar to Eq. 4.1, 4.2, and 4.3 in Section 4.1. The idea is that the resulting noisy data set
will exhibit similar statistics to profile 1, but differ based on the SNR. This will increase
the range of statistics that the SkipRnet will learn during the training procedure. Next,
similar to [89], a random interval of time steps, in the range between 0-100% after ft, is
removed to also include some time-series that will end some time before failure. Thus,
the SkipRnet is forced to learn distributions that are more similar to a real-life PHM
system, where the actual goal is to predict the available time before operational failure.
In paper VII, the proposed technique is repeated for 0, 10, 20, 30, 40, and 50 times for
each fault-type in the training set. This results in six different scenarios of 0, 20, 40, 60,
80, and 100 augmented training data sets.

Table 5.6: Data split to do fault prognostics for the marine diesel engine [14].

Data set Profile Usage ft Last RUL target Time steps
Air filter degradation 1 Train/cross-val 1,660 0 2,346
Turbo degradation 1 Train/cross-val 1,347 0 2,346

Air filter degradation 2 Test 1,483 106 2,240
Turbo degradation 2 Test 1,347 490 1,856
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5.3.4 Hyper-parameters and k-fold cross-validation

The bullet-points in Section 3.3, which is learned based on the experience from the C-
MAPSS data set, are followed to select most of the hyper-parameters of the SkipRnet.
However, the number of hidden units in each hidden layer, which relates to the total
number of parameters in terms of weights and biases, is tuned through cross-validation.
As opposed to the C-MAPSS data set, the data sets in Table 5.6 incorporate a relatively
small number of examples. Thus, if a random portion is selected from the training sets
to act as cross-validation, it might exhibit different statistics than the training sets.
Consequently, by reducing the training data, important degradation patterns might be
lost, which in turn increases error-induced bias. In this case, k-fold cross-validation is
necessary. In paper VII, the six different training data scenarios were divided into seven
folds or subsets. In other words, hold-out cross-validation with an 80% training and 20%
cross-validation split was repeated seven times. Each time, one of the seven subsets is
used as the cross-validation set and the remaining six subsets are used as the training
set. The error, in terms of the RMSE on the cross-validation set, is estimated as the
averaged of the seven trials.

The goal of the cross-validation is to acquire the most robust configuration of the
SkipRnet. That is, to achieve the configuration that best reflects the degree of complexity
in the cross-validation sets in all six scenarios. The first scenario includes zero augmented
data sets, and hence, the SkipRnet is only trained and validated on the original training
set. Thus, the first scenario is assumed to exhibit the lowest degree of complexity of
the six scenarios. In contrast, the scenario with 100 augmented data sets is assumed to
exhibit the highest degree of complexity. In paper VII, the SkipRnet with 128 hidden
units in each hidden layer provides the lowest average cross-validation RMSE for all
augmented data sets scenarios. Therefore, this configuration is further used to predict
the RUL on profile 2.

5.3.5 Remaining useful life predictions for the marine diesel engine

In paper VII, the air filter and turbo degradation data in profile 2 are used as the stand-
alone test set to verify the generalization power of the SkipRnet. The trained SkipRnet
and Paths 1-4, which are used as baseline DNNs, are employed to predict the RUL at
each time step. This can be considered a real-time test since this is how DNNs would
potentially be employed in an actual data-driven PHM system for autonomous ferries.
Similar to Eq. 3.1 and 3.2 in Section 3.3, both the RMSE and the scoring function (S)
are used as the performance indicators:

RMSE =

√√√√ 1

n

n∑

i=1

d2i (5.6)

S =





m∑
j=1

e−(
dj
13

) − 1, for dj < 0

m∑
j=1

e(
dj
10

) − 1, for dj ≥ 0
(5.7)

where n is the total number of constructed RUL targets, di = RULpredicted,i−RULtarget,i,
m is the total number of last RUL targets, and dj = RULpredicted,j −RULtarget last,j.
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Figure 5.5a shows the RMSE on the test set when the SkipRnet and the four paths
are trained on each augmented data set scenario. As expected, Path 1 provides the worst
overall RMSE due to having the lowest number of parameters (122,753). Interestingly,
Path 4 provides worse overall RMSE compared to the SkipRnet, even though Path 4 has
the same number of parameters (270,849). A logical explanation for these findings is the
advantage of the skip connections. For each time step in the test set, the SkipRnet has
the ability to utilize the strengths and reduce the weaknesses of four DNNs. In other
words, for each time step, the SkipRnet has the ability to utilize different numbers of
parameters in the range between 122,753 and 270,849. Therefore, the SkipRnet is able
to handle a wider range of complexities in new field data compared to DNNs without
skip connections.

S is also important to consider in real-life data-driven PHM systems suitable for
autonomous ferries. A reliable and low S performance close to the end of the marine
diesel engine’s lifetime has great significance, as the scheduling of maintenance operations
in this period is critical. As seen in Figure 5.5b, the SkipRnet provides satisfactory S
performance on the test set when trained on 0, 20, and 40 augmented data sets. However,
when also considering the RMSE in Figure 5.5a, the SkipRnet provides the best overall
RUL performance on the test set when trained on 20 augmented data sets. Therefore,
Figure 5.6 compares the RUL predictions on the air filter fault and turbo fault in the test

(a) RMSE on the test set. (b) S on the test set.

Figure 5.5: RUL performance evaluations on the test set [14].

Figure 5.6: The prediction results on the air filter fault and the turbo fault in the test set when
the SkipRnet is trained on 20 augmented data sets and the original training set [14].
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set when the SkipRnet is trained on 20 augmented data sets and the original training
set.

This comparison proves the advantage of the proposed data augmentation technique.
It clearly increases the generalization power of the SkipRnet toward an engine profile
it has never seen before. The predictions are kind of noisy, but this is expected due
to the drastic changes in engine loads. As a consequence, confidence bounds have to
be incorporated to increase the reliability of the RUL predictions in a real-life data-
driven PHM system. Maintenance decisions based on prognostics information should be
anchored in confidence bounds rather than a particular RUL prediction [41].

Based on the findings in paper VII, the more data you feed to DNNs, constructed
for fault prognostics, the better they become at providing RUL predictions in new field
data. Therefore, it is recommended that both component manufacturers and shipowners
start saving and sharing their RTF data in order to gain the true benefits of data-driven
PHM systems.
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6
Conclusion

This dissertation has proposed and discussed a data-driven PHM system for autoships.
Furthermore, it has presented important ideas and research findings concerning three
case studies for data-driven algorithm development for such a system. Because data-
driven PHM systems are in their infancy in the maritime industry in general, this disser-
tation has shown the possibility of knowledge transfer from benchmark data of airplane
engines to a case study, involving the marine diesel engine in autonomous ferries. Addi-
tionally, this dissertation has presented clever solutions and novel DNNs to respond to
the common lack of fault and failure data in the industry.

The importance of data pre-processing, fault diagnostics, and fault prognostics have
been highlighted throughout this dissertation. The resulting analysis of such actions
can be used to ensure both the operational availability and safety of critical components
onboard autoships. This will, in turn, lead to trustworthy, efficient, and cost-beneficial
autonomous operations on the open sea. All contributions in this dissertation aim to
enhance these aspects.

6.1 Summary of contributions

The proposed data-driven PHM system, as stated in RO1, can be divided into four main
actions: data pre-processing, fault diagnostics, fault prognostics, and decision support
or automation. DNNs have appeared as extremely powerful in such actions – if sufficient
fault and failure data is available. However, since both data-driven PHM systems and
the utilization of DNNs have just begun to gain popularity in the maritime industry, a
comprehensive literature survey was written, as stated in RO2. This survey investigates
how DNNs have been applied to data-driven PHM systems in other domains in addition
to present DNNs applicable to the maritime environment. In the proposed system, a
fault detection algorithm, suitable for the harsh maritime environment, was developed,
as stated in R03. The initial development and further improvements of this algorithm
has been given high priority in this dissertation since it affects all subsequent actions.
Autoships are assumed to be maintained, navigated, and operated without any crew
involvement in the future. Thus, to predict the progression of already detected fault-
types is essential. Such fault prognostics enables optimized maintenance schedules for
the next appropriate port of call for autoships to avoid operational failure. However,
fault prognostics are still under research and development. So, to increase the reliability
of DNNs to do accurate and reliable fault prognostics, as stated in RO4, has been of
high priority in this dissertation.
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The main contributions of this thesis are as follows:

X Proposed the fundamentals of a data-driven PHM system suitable for autoships.

X Presented a comprehensive literature survey of data-driven PHM systems based on
DNNs for autoships.

X Proposed and developed a fault-type independent fault detection algorithm for
maritime components.

X Proposed solutions and novel DNNs to increase the reliability of fault prognostics.

6.2 Summary of publications

Paper I introduces and reviews four well-established DNNs recently applied to different
practical PHM problems. The purpose of this paper is to support creativity and provide
inspiration for PHM systems based on DNNs in autoships and the maritime industry.
Furthermore, this paper discusses benefits, challenges, suggestions, existing problems,
and future research opportunities with respect to this significant new technology. In
this paper, the C-MAPSS data set is found to be the most-used benchmark data set for
data-driven fault prognostics, and therefore this data set is further investigated during
the experiments in paper II.

Paper II investigates the effect of unsupervised pre-training in RUL predictions utilizing
a semi-supervised DNN structure. Additionally, a GA approach is applied to tune a
selected search space of hyper-parameters in the training procedure. The advantages
of the proposed semi-supervised setup are verified on the C-MAPSS data set. The
experimental study compares this approach to purely supervised training, both when
the training data is completely labeled with RTF targets and when the amount of RTF
targets is reduced, and to the most robust results in the literature. The results suggest
that unsupervised pre-training is a promising feature in RUL predictions subjected to
multiple operating conditions and fault modes.

Paper III develops a fault detection algorithm for maritime components, which can
be further used to construct RTF targets for supervised fault prognostics automatically.
Thus, this algorithm aims to respond to the challenges of paper II, that high-quality RTF
targets might be both challenging and time-consuming to acquire in PHM applications,
and especially in the maritime industry. In paper III, the advantages of the proposed
algorithm are verified on five different RTF data sets provided by an industrial company.
Each data set is subject to a fault at an unknown time step. In addition, different
magnitudes of random white Gaussian noise are applied to each data set to create
several real-life situations. The results suggest that the algorithm is highly suitable
to be included as part of fault diagnostics in future data-driven PHM systems.

Paper IV provides the PHM community an empirical study that validates the PwL
degradation model against two other data-driven labeling approaches to construct RTF
targets for subset FD001 in the C-MAPSS data set. The fault detection algorithm in
paper III is used to automatically constructed RTF targets, which include the actual
health of each engine. A DNN structure is proposed and trained on the three different
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RTF targets to predict the RUL of each engine. During the training process, the GA
approach in paper II is used to tune a selected search space of hyper-parameters. The
results suggest that the DNN trained on PwL RTF targets performs the best and provides
the most reliable RUL prediction accuracy. This DNN also outperforms the most robust
results in the literature.

Paper V provides the initial experiments for the main case study in this dissertation,
namely, the marine diesel engine in autonomous ferries. In this paper, the fault detection
algorithm in paper III is used to detect faults automatically in a simulated autonomous
ferry crossing operation. The benefits of the algorithm are confirmed on data sets of a
cooling system fault collected from a marine diesel engine included in a hybrid power
lab. To support the algorithm in the demanding reconstruction process, three different
feature selection processes on the input data are compared. The results suggest that the
algorithm achieves the highest fault prediction accuracy when the input data is subjected
to feature selection based on sensitivity analysis.

Paper VI proposes a fault-type independent spectral anomaly detection algorithm for
marine diesel engine degradation in autonomous ferries. This algorithm aims to improve
the fault detection algorithm in paper III. The benefits of the algorithm are verified on
data sets of three fault-types where the degradation pattern differs. These fault-types
are a cooling system fault, an air filter fault, and a turbocharger fault. Both NOP
data and FD data are collected from a marine diesel engine, using two different engine
load profiles. These profiles aim to replicate real autonomous ferry crossing operations,
environmental conditions the ferry may encounter. The proposed algorithm is trained to
estimate velocity and acceleration calculations of the AS. Dynamic and generic threshold
limits are simultaneously established to predict the fault time step online. The algorithm
achieved an accuracy of 97.66% in the final test when the acceleration was used as the
fault predictor. The results suggest that the algorithm is independent of fault-types with
different degradation patterns related to the marine diesel engine.

Paper VII proposes a novel data augmentation technique and the SkipRnet for fault
prognostics of marine diesel engines in autonomous ferries. The advantages are verified
on RTF data of an air filter fault and a turbocharger fault in two different engine load
profiles the ferries may face in real life. The first profile is used for training and vali-
dation, while the second is used for real-time testing. The proposed data augmentation
technique is used to construct six different augmented data set scenarios based on the
first profile. The SkipRnet requires high generalization power toward the second profile
since harsh and variable environmental conditions will subject the marine diesel engine
to unforeseeable operating conditions. Due to the presence of skip connections, the
SkipRnet functions as an accumulation of four independent DNNs. Therefore, it has the
ability to tackle a wider range of complexities in new field data than DNNs without skip
connections. The advantage of both data augmentation and skip connections is clearly
proven throughout this paper.

6.3 Important directions for future work

This dissertation has mainly focused on data-driven algorithm development for fault
detection and fault prognostics. Consequently, fault isolation, fault classification, and
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decision support or automation remain to be researched and developed to complete the
proposed data-driven PHM system for autoships. Thus, important directions for future
work are suggested as follows:

• In addition to fault detection, both fault isolation and classification are necessary
for the completion of the fault diagnostics action in a data-driven PHM system.
This is because fault detection only provides information on that a fault has oc-
curred, but it lacks information concerning which fault-type it is and which com-
ponent is faulty. Thus, a separate DNN can be trained to do fault classification,
that is, to predict the probability of which fault-type detected faults belongs to
in the current health state. However, such DNNs for this purpose are already
developed [90, 91]. In a research perspective, techniques for handling imbalanced
data, such as the focal loss [69], under- and oversampling [70], and weighted loss
functions [71], are suggestions for future research. This is because the minority
classes, that is, data points related to fault-types, are of high importance for a
data-driven PHM system. If the system miss-classifies a fault condition as a nor-
mal condition, it could lead to downtime and a potential disaster for autoships.
Additionally, fault isolation is important to guide maintenance personnel to the
faulty component. For this action, the VAE [92] is worth consideration. Due to
its generative characteristics, it can derive reconstructions of degradation data in
the latent space. Such reconstructions can then be used to analyze the underlying
cause of fault-types to pinpoint the faulty component.

• The final action of the proposed data-driven PHM system is to facilitate decision
support or automation to recommend or direct ideal maintenance schedules. In
the years to come, a human is still expected to make the final decisions. Therefore,
the final action needs to use techniques that provide transparent explanations of
the outputs from both fault diagnostics and fault prognostics. XAI uses methods
for visualizing, explaining and interpreting DNNs [62, 63, 65, 66], and it has just
begun to gain popularity. Therefore, XAI has strong potential for data-driven
PHM systems, and future research and development should explore it. XAI has the
potential to provide trust in the system since it aims to provide an understanding of
how outputs are being made. Additionally, confidence bounds of RUL predictions
should be incorporated into the final action because maintenance recommendations
and its corresponding scheduling should not be entirely based on a particular RUL
prediction.

• This dissertation has shown that DNNs perform extremely well – if sufficient RTF
data is available. This belies the claim by most component manufacturers that
their product range never fails. This attitude has to change drastically if the true
benefits of data-driven PHM systems are to be realized. Thus, both component
manufacturers and shipowners need to start saving and sharing their data to build
benchmark data sets for academia. Such data sets would have been advantageous
in data-driven algorithm development, which in turn, will benefit both engineering
research and the maritime industry.
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A Comprehensive Survey of Prognostics and Health
Management based on Deep Learning for
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Abstract—The maritime industry widely expects to have au-
tonomous and semi-autonomous ships (autoships) in the near
future. In order to operate and maintain complex and integrated
systems in a safe, efficient and cost-beneficial manner, autoships
will require intelligent Prognostics and Health Management
(PHM) systems. Deep learning (DL) is a potential area for this
development, as it is rapidly finding applications in a variety of
domains, including self-driving cars, smartphones, vision systems,
and more recently in PHM applications. This paper introduces
and reviews four well-established DL techniques recently applied
to various practical PHM problems. The purpose is to support
creativity and provide inspiration towards PHM based on DL
(PHMDL) in autoships and the maritime industry. This paper
discusses benefits, challenges, suggestions, existing problems, and
future research opportunities with respect to this significant new
technology.

Index Terms—Autonomous ships, deep learning, maritime indus-
try, prognostics and health management.
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ETTF Estimation Of Time To Failure
FFT Fast Fourier Transform
FNN Feed-forward Neural Network
GB-RBM Gaussian-Bernoulli RBM
GG-RBM Gaussian-Gaussian RBM
GRU-LSTM Gated Recurrent Unit LSTM
HMI Human Machine Interface
HMM Hidden Markov Model
IoT Internet Of Things
LR Logistic Regression
LSTM Long-Short Term Memory
MD Mahalanobis Distance
MFCC Mel-frequency Cepstrum Coefficient
MLP Multilayer Perceptron
NIST National Institute Of Standards And Technology
NN Neural Network
PCA Principal Component Analysis
PHM Prognostics And Health Management
PHM08 The 1st International Conference On Prognos-

tics And Health Management In 2008
PHMDL Prognostics And Health Management Based On

Deep Learning
PM Preventive Maintenance
RBMs Restricted Boltzmann Machines
RCM Reliability Centered Maintenance
ReLU Rectified-linear Unit
RF Random Forest
RL Reinforcement Learning
RM Reactive Maintenance
RNNs Recurrent Neural Networks
RUL Remaining Useful Life
RVM Relevance Vector Machine
SAE Sparse Autoencoder
SOM Self-organizing Maps
SVM Support Vector Machine
TDNNs Time-delay Neural Networks
TKEO Teager-Kaiser Energy Operation
WPT Wavelet Packet Transform

I. INTRODUCTION

AUTONOMOUS ships operate on the surface of the water
entirely by themselves. Semi-autonomous ships require

specialists and technicians who operate and monitor them
from an onshore location through a satellite data link [1]. The
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industry as well as academics widely expect that autoships,
a term that encompasses both, will increase the performance
of maritime operations, improving safety and profitability of
industries that use them [2]. Many projects are undertaking
to create such vessels [3]. Autoships will rely on complex
and integrated systems to perform their main functions, and
degradation of such systems during operation poses a serious
threat to operations. Thus, they will require intelligent main-
tenance decision support systems (DSSs), which has begun to
develop.

In general, maintenance in shipping follows either a re-
active maintenance (RM) or preventive maintenance (PM)
approach [4]. RM introduces high risks of unscheduled down-
time, while PM provides relatively high reliability, but at
unnecessary costs due to predetermined maintenance inter-
vals [5]. PM also will not detect random failures, which
are in fact the most common failure pattern in the maritime
industry [6]. Thus, a more predictive maintenance approach
is necessary in order to identify these kinds of failures. A
predictive system will considerably increase the operation
performance and drastically decrease unexpected system fail-
ures [7].

During the past decade, Prognostics and Health Management
(PHM) has emerged as a promising engineering discipline
for predictive maintenance decision support. It has enhanced
potential to detect, isolate, and identify precursor and/or incip-
ient faults of components and sub-components, monitors and
predicts the progression of the fault, and provide decision-
support or automation to develop maintenance schedules and
asset management procedures [8]. Indeed, recent studies have
confirmed that PHM is a positive alternative to traditional
Condition Based Maintenance (CBM) and has therefore gained
attention in both academia and the maritime industry [8]–[10].
However, DSSs with a high degree of decision automation
have continue to fail frequently in industrial applications [11].
Accordingly, intelligent PHM systems require more precise
and robust data-driven algorithms than systems to date have
used.

PHM systems thus far have depended on traditional data-
driven diagnostics and prognostics approaches [12]–[15] and
signal processing techniques [16]. With the development of
internet of things (IoT) and rise with big data, the traditional
approaches confront several challenges when processing the
increased volumes of data. Typically, they exploit human-
engineered feature extraction methods, supervised machine
learning algorithms, and shallow architectures. Thus, the tra-
ditional approaches are highly application-dependent, require
large quantities of labeled training data, and are simply not
designed for complex and large data sets in real-world appli-
cations [17], [18].

However, during the past decade with increased processing
power and great progress in graphics processors [19], DL
techniques have seen rapid developments. The areas of signal
and information processing [20], speech recognition [21]–[23],
images [24], [25], natural language processing [26], [27], and
visual tracking [28] have seen significant improvements. DL
techniques consist of several layers of non-linear process-
ing stages. They utilize supervised or unsupervised learning

strategies to automatically extract feature representations from
raw input data. As a result, they are able to capture com-
plicated, hierarchically statistical patterns in more complex,
high dimensional and noisy real-world data [29]. For this
reason, DL techniques are the most promising area of research
to overcome the limitations of traditional diagnostics and
prognostics approaches [30]. Nonetheless, issues remain that
make it difficult to apply DL techniques to practical PHM
problems.

Autoships requires intelligent PHM systems that must be
capable of providing reliable diagnostics and prognostics in-
formation in varying operating environments [31]. Addition-
ally, lack of onboard crew members and the introduction of
highly automated systems necessitate an end-to-end solution.
DL techniques are less application-dependent than traditional
machine learning algorithms because they are able to process
raw and varying sorts of input data. Consequently, human-
engineered feature extraction methods are not necessary. DL
techniques therefore require minimal human input in the data
processing stage and can be considered an end-to-end solution.
Nevertheless, DL techniques are still normally applied to per-
form supervised classification and/or regression tasks within
the PHM domain [32]–[34]. With respect to autoships and the
maritime industry generally, the lack of fault labels and run-
to-failure data of components and sub-components are major
issues towards successful implementation of PHM systems
based on current DL techniques [35].

This paper reviews and discusses both theoretical and
practical issues regarding DL techniques. The broad PHM
applications and extensive literature make it impossible for
one review to embrace all the work in the field. This review
aims to provide a summary of the most important advances in
DL techniques recently applied to PHM suitable for autoships
and the maritime industry. The important advances introduced
in this paper mainly took place from 2013 to 2018. The
current research status and issues, benefits, challenges, and
future research opportunities will be discussed. Although many
DL techniques can be used for PHM purposes, the focus
nonetheless is on Autoencoder (AE), Convolutional Neural
Network (CNN), Deep Belief Network (DBN) and Long-Short
Term Memory (LSTM). This is primarily because they are
well-established and show great promise for future work.

The overall organization of the paper is as follows. Sec-
tion II introduces the necessary background on PHM and DL.
Section III considers the main benefits in applying PHM based
on DL in autoships, as well as the most important challenges
that arise in the field. Section IV reviews DL applied to PHM
in other applications suitable for autoships and the maritime
industry. This section elaborates strengths and weaknesses in
a more theoretical and practical understanding. To the best of
the authors’ knowledge, the use of intelligent PHM systems
based on DL techniques in autoships have not yet been studied
comprehensively. Thus, section IV will provide inspiration to
obtain both knowledge and understanding. Section V provides
discussions regarding suitable solutions for autoships, con-
sisting of important open questions, existing problems, and
future research opportunities. Finally, Section VI concludes
the survey paper.
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Fig. 1: CBM flowchart adopted from [44].

II. BACKGROUND: PROGNOSTICS AND HEALTH
MANAGEMENT AND DEEP LEARNING

In this section, the necessary background on PHM and DL
will be introduced. First, PHM is defined in general. Next,
each step of PHM is explained and discussed. Finally, DL is
presented with its promising aspects.

A. Prognostics and Health Management

PHM is an emerging engineering discipline that strives to
decrease and ultimately eliminate inspections and time-based
maintenance intervals [36]. This will be achieved through
accurate condition monitoring (CM), precursor and/or incipient
fault-detection, -isolation and -identification, and prediction
of approaching failures. PHM amplifies and integrates the
principles of both CBM and Reliability Centered Maintenance
(RCM). It is designed to predict and protect the integrity
of complex systems, components, and sub-components by
avoiding unforeseen operational problems [37]. This creates
a robust system to optimize maintenance decision making
in order to increase the reliability and expected lifetime of
industrial systems. Industrial systems such as the automotive
industry [38], [39], the U.S Department of Defence [40], the
aerospace and aviation industries [41], [42], and manufacturing
systems [43] have recently integrated PHM with success.

PHM consists of seven steps initially defined from
CBM [44]. Figure 1 illustrates the steps. The following sub-
sections briefly discuss each step.

1) Data acquisition and processing: Data acquisition is
the process of accumulating and storing raw sensor data
related to the system condition. The data collected is usually
categorized as CM data and event-data. CM data is the sensor

measurements associated with the system health, while event-
data is the knowledge obtained from an event (e.g. what kind of
failure did occur, when and where did the failure take place,
who performed the maintenance procedure) [45]. Event-data
provides useful information as to the performance of current
features, as well as feedback in redesign or enhancement of
features [44]. Thus, it is as important as CM data, although
humans generally enter it manually, making it more fallible.
An optimal maintenance system should automatically collect
the event-data.

Data processing includes data cleaning and data analy-
sis. Cleaning isolates potential human and/or sensor faults
and eliminates data that reflects these errors. The data can
be a value type, a waveform type, or a multidimensional
type [44]. Waveform and multidimensional data may contain
noise. Therefore, cleaning also generally includes methods like
amplification, data compression, data validation, denoising,
and filtering to enhance the signal-to-noise ratio [46]. Data
analysis extracts condition indicators that represents incipient
and/or precursor failures or faults. The main purpose of those
features is to maximize diagnostics and prognostics accuracy
in order to decrease false alarms. The literature has described
processing techniques like wavelet transform, data denoising,
and data smoothing [47], [48]. [46], [49] describes signal
processing and feature extraction.

2) Diagnostics and prognostics: An effective PHM system
includes diagnostics and prognostics approaches in order to
provide ample and efficient decision support or automation.
Diagnostics identify, localize, and determine the severity of an
evolving fault condition [36]. It involves fault detection, fault
isolation, and fault identification [50]. Fault detection, also
called health/condition assessment [37], [45], compares sensor
data with expected operational performance, that is, expected
values of system parameters such as pressure, temperature, and
vibration, to identify irregular operating conditions. Fault iso-
lation involves pinpointing the component or sub-component
that is degraded. Fault identification determines fault- type and
dimension according to classes associated with specific values
of measured signals [51]. Normally, this classification process
uses a supervised classifier (e.g. machine learning algorithm)
to classify various faults.

Prognostics predict the progression of faults, and hence, esti-
mate the available time before a component or sub-component
loses its operational ability, namely, before a failure [52]. Be-
cause the large uncertainties involved, researchers have called
prognostics “the Achilles’ heel” of PHM [53], [54]. According
to [55], the technical definition of prognostics is the estimation
of time to failure (ETTF). However, in line with common usage
in the literature, this paper uses the technical term remaining
useful life (RUL). Any RUL estimation should include asso-
ciated confidence intervals, which will indicate the window in
which maintenance or repair must be conducted [53]. Such
intervals add assurance of continuous operation in spite of the
inherent uncertainty associated with the degradation process,
human errors, and flaws in both the diagnostics and prognostics
approach applied in the PHM system [56]. Maintenance de-
cisions based on prognostics information should be grounded
in confidence intervals instead of a particular RUL value. The
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Fig. 2: A hierarchy of the three main diagnostics and prognos-
tics approaches.

TABLE I: Recent PHM/CBM reviews based on traditional
diagnostics and prognostics approaches (the years between
2006 and 2017).

Author Refs. Year PHM application Approaches
Tahan et al. [60] 2017 Diagnostics and

prognostics:
Gas turbines

Data-driven
Model-based
Hybrid

Bailey et al. [61] 2015 Diagnostics and
prognostics:
Engineering systems

Data-driven

An et al. [62] 2015 Prognostics:
Fatigue crack growth

Data-driven
Model-based

Lee et al. [8] 2014 Diagnostics and
prognostics:
Rotary machinery systems

Data-driven
Model-based

Sikorska et al. [56] 2010 Prognostics:
Selection of RUL models

Data-driven
Model-based

Vachtsevanos et al. [50] 2006 Diagnostics:
Book chapter

Data-driven
Model-based

Vachtsevanos et al. [53] 2006 Prognostics:
Book chapter

Data-driven
Model-based

Roemer et al. [63] 2006 Prognostics:
Engines

Data-driven
Model-based

Jardine et al. [44] 2006 Diagnostics and
prognostics:
Machinery systems

Data-driven

confidence intervals increase the reliability of the PHM system.
Successful prognostics depend on accurate diagnostics [11],

[56], [57]. Diagnostics is necessary when prognostics fails and
can prevent future failures of similar characteristics [44]. Even
so, prognostics are considered more important than diagnostics
to the ultimate goal of zero-downtime performance. This is
because prognostics has the potential to prevent failures be-
fore they occur. Nevertheless, several challenges to successful
implementation still exist. Thus the challenges, which [58]
describes, should be addressed.

No common accepted prognostics methodology exists [43].
Figure 2 illustrates the three most common, however, which are
Data-driven, Model-based, and Hybrid. The hybrid approach
is a combination of data-driven and model-based approaches,
aiming to utilize strengths of both approaches while avoiding
their weaknesses [59]. Table I provides a summary of the
most comprehensive PHM/CBM reviews regarding traditional
diagnostics and prognostics approaches considered in this
survey paper.

3) Decision support and HMI: The final object of a PHM
system is to provide reliable decision support or automation

in order to enable effective maintenance scheduling. Decision
support should assist a decision maker (DM), while decision
automation uses software to provide entirely autonomous de-
cisions [64]. However, according to [11], the output of today’s
industrial PHM systems usually constitutes decision support,
as decision automation has not been integrated globally.
Normally, inputs from human experts (application-dependent
domain knowledge) and a DM who interprets the outputs
compose the system [65]. Nevertheless, the human expert-
generated input will fail when it encounters new conditions,
that the knowledge base does not define. In addition, the
most proficient DM has an insufficient cognitive capacity to
analyze and understand large quantities of information [66].
Hence, decision support in the age of big data is subjected
to uncertainties and does not always ensure good quality
decisions. The literature provides several excellent reviews
discussing this issue [11], [65], [66].

The advantages of a PHM system are highly connected to
the decision-making based on the accumulation and under-
standing of diagnostics and prognostics information. Making
the best decisions based on complex and large quantities of
information is difficult [66]. However, advanced and deep
signal processing and machine learning techniques are evolv-
ing rapidly [18]. These techniques provide automatic feature
extraction and unsupervised learning procedures. Thus, such
techniques minimize the human expert-generated input and
have the potential to contribute to more intelligent PHM
systems.

As [11] propose, the reliability of a fully autonomous (intel-
ligent) PHM system needs to be greater than 99%. This level
of reliability makes it possible for the PHM system to provide
directions for maintenance procedures transferring directly
from the system to the maintenance personnel, without the
involvement of a DM. Another important aspect of autonomous
PHM systems is that they must prove reliability in order
to utilize the “black-box” approach. PHM systems with low
reliability should enable user-access to the source code in order
to promote understanding and trust in the system [11].

The human machine interface (HMI) is also an important
perspective regarding understanding and trust since the screens
and displays heavily affect how a DM or the maintenance
personnel understand the PHM system. A web-based PHM
system, in which the user interacts using a thin-client web
browser, has several advantages. According to [67], this system
is powerful to retrieve, analyze, and visualize structured data
from high-dimensional databases. It can provide access to
unstructured data and promote communication and decision
making in distributed teams [67].

B. Deep Learning
In recent years, DL has turned into an extremely active sub-
field of machine learning. DL and big data are probably the
most significant trends in the fast-growing digital world [19].
According to the National Institute of Standards and Technol-
ogy (NIST) [68], big data is “the large amount of data in the
networked, digitized, sensor-laden, information-driven world.”
NIST goes on to note that big data “can overwhelm traditional
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technical approaches and the growth of data is outpacing
scientific and technological advances in data analytics.” Big
data forces a dramatic paradigm shift towards data-driven
approaches and discoveries within scientific research. [18],
[19] provide exceptional reviews regarding the relationship
between big data and DL. In addition, machine learning is now
a major technical field of the signal processing society [69].

The expansion of big data and IoT tends to make tradi-
tional machine learning algorithms like Hidden Markov Model
(HMM) [70], Support Vector Machine (SVM) [71], and Neural
Network (NN) with one hidden layer [61] vague, creating
several challenges. First, traditional algorithms utilize shallow
architectures, with only two stages of data-dependent compu-
tation elements. This means that shallow architectures contain
only a small number of non-linear processing transformations.
Previous analyzes of the boolean circuit complexity theory
literature [72], [73], have revealed that shallow circuits require
exponentially more elements than deeper circuits [74]. Accord-
ing to [75], this applies also to shallow and deep architectures
in machine learning algorithms when they are required to
process highly non-linear and varying functions. Consider the
parity function with d inputs. Gaussian SVM requires 2d

parameters, NN with one hidden layer requires d2 parameters,
while a deep architecture requires d parameters with log2 d
layers. As a result, shallow architectures are inefficient due
to the increased number of computational elements (e.g. hid-
den units), which require many examples [75]. Consequently,
Gaussian SVM and NN with one hidden layer suffer from
a decreased capacity to process more complex and high-
dimensional real-world data with accuracy [16], [29]. Second,
most traditional machine learning algorithms use supervised
learning procedures. This means they require large quantities
of high-quality labeled training data. However, in real-world
applications large amounts of the data are unlabeled, and
according to [76], most data collected in the age of big data
is heterogeneous and unstructured. Finally, traditional machine
learning algorithms lack the ability to extract and organize the
discriminative information from the data [77].

Over 60 years ago, Richard Bellman declared that learning
complexity grows exponentially with the linear increase in the
dimensionality of the data [17]. He named this phenomenon
“The curse of dimensionality” [78]. During the last decades,
researchers have applied human-engineered feature extraction
methods to the data processing stage to reduce the dimension-
ality of the data so that traditional machine learning algorithms
can process it [17]. As a consequence, much of the actual
work in using traditional machine learning algorithms goes
into the design of the features because the performance of the
algorithms relies heavily on the chosen method [77]. Hence,
human-engineered feature extraction methods require precise
engineering and substantial domain expertise, and the applied
algorithm becomes highly application-dependent [79].

Recent discoveries in neuroscience, increases in computing
power and an explosion of digital data have been the central
motivational factors for the emergence of DL. The discoveries
in [80], [81] clarify that the neocortex allows signals to propa-
gate through a complex hierarchy of units. In time, these units
will learn to represent observations based on the regularities

they express [17]. DL focus on similar characteristics as the
neocortex. Actually, DL is a three-decade-old technique and a
renewal of the even older NNs [82].

Great advances and innovations have been achieved in DL
since 2006 [75], [83]–[85]. At that time researchers, gathered
by the Canadian Institute for Advanced Research, introduced
unsupervised learning strategies that could extract features
without requiring labeled training data, that is, capture statisti-
cal patterns in the observed data [79], [86]. Unsupervised DL
techniques introduce hierarchical structures to automatically
extract important features, from low-level input observations to
high-level abstractions, using unsupervised pre-training where
all layers are initialized. After precise fine-tuning, the highest
level abstract features will normally be the input to a super-
vised classifier or regressor, minimizing the global training
requirement [87].

More specifically, a DL technique is a multilayer stack of
non-linear processing stages to compactly (with few param-
eters) represent highly non-linear and varying functions [75].
Most of the stages are subjected to supervised or unsupervised
learning and compute non-linear input-output mappings. Each
stage modifies its input in order to increase both the invariance
and selectivity of the representation [79]. Consequently, DL
techniques can often capture complex, hierarchically statis-
tical patterns in unstructured, high dimensional, and noisy
real-world data [29]. With multiple non-linear layers, DL
techniques make possible extremely involved functions of its
inputs that, at the same, are time-sensitive to small details and
insensitive to large irrelevant variations [79].

In the past decade, DL techniques have shown fast ad-
vancements with notable impacts on signal and information
processing [20], beaten records in image recognition [25]
and speech recognition [22], and outperformed traditional
machine learning algorithms in natural language understanding
[27], and diagnostics and prognostics purposes [32], [88]. In
addition, as [19] state, DL is going to play an important role
in prediction tasks due to increased processing power and the
advances in graphics processors. A great historical survey of
DL is given in [89]. It summarizes both current work and
work from the previous millennium, including the history of
supervised learning and back-propagation.

III. AUTONOMOUS SHIPS: BENEFITS AND CHALLENGES
IN APPLYING PHM BASED ON DL

Only three years ago, most people considered autoships as a
futuristic fantasy [3]. Today, however, this preconception has
changed drastically. In fact, autoships will almost certainly be
in commercial use by the end of this decade [3]. The first
vessels will require a few crew members, however, at least to
operate in challenging maritime areas. The transition to totally
human-free autoships will likely take place gradually over a
period of a few decades [3].

According to [3] and [31], securing regulatory approval,
support from the industry, and public acceptance for autoships
requires evidence they are at least as safe as traditional ships
used for similar operational tasks. As they will ultimately, have
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no maintenance personnel on board ready to perform unsys-
tematic maintenance, safety critical systems and components
must be more reliable than on traditional ships.

Autoships will transfer real-time diagnostics and prognostics
information to shore to permit analysis and prioritization of
issues of critical systems and components. Todays maritime
maintenance procedures, by contrast, typically follow an RM
or PM approach [4]. RM can be described as post-failure repair
of components or sub-components, while PM involves pre-
determined maintenance intervals based on constant intervals,
age-based or imperfect maintenance [5]. Traditional ships tend
to rely heavily on onboard maintenance personnel since it is
less costly to conduct RM and/or PM approaches while still
at sea [31].

RM would create large and unnecessary costs when critical
system/component failures occur during operation of auto-
ships. Both the process of dispatching maintenance personnel
while the autoship is still at sea and the process of guiding the
vessel back to shore in order to perform repairs would create
random and unplanned downtime, compromising efficiency.
On the other hand, the constant and experience based main-
tenance intervals utilized in PM could be scheduled around
predetermined port of calls. This will, of course, provide high
reliability, but it involves unneeded maintenance inspections
and procedures of completely functional systems. It also might
not prevent the random need for maintenance involved in
RM, since random failures are the most common type in the
maritime environment [6]. The need for predictive maintenance
approaches, such as intelligent PHM systems, is clear.

Based on the background information and brief discussion in
Section II, it is obvious that DL techniques have the potential
to overcome the limitations of traditional machine learning
algorithms applied to diagnostics and prognostics purposes.
For that reason, DL techniques are highly suitable to be applied
in intelligent PHM systems. The next step in this survey paper
is to introduce and discuss benefits and challenges in applying
Prognostics and Health Management based on deep learning
(PHMDL) in autoships.

A. Benefits
• Normally, critical systems on traditional ships are over-

engineered by built-in redundancy. In this way, traditional
ships complete their operational tasks even if a serious
functional failure occurs. This design philosophy is re-
lated to historical inaccessibility to shore [90]. However,
Inmarsat and Telenor have recently launched the data
transfer satellites Inmarsat-5 and Thor 7, respectively,
which will provide high-speed broadband connections to
ships at sea [1]. This will enable new design philoso-
phies, including online PHMDL systems, as alternatives
to the legacy redundancy policy. Real-time diagnostics
and prognostics of components and sub-components in
which online PHMDL systems are referred to an onboard
system that links to shore will make it possible to con-
tribute the most efficient operating conditions possible,
and enable future autoships without onboard maintenance
personnel [31].

• The ultimate goal of a PHMDL system is to achieve zero-
downtime performance. Real-time and reliable RUL esti-
mations, with associated confidence intervals, of different
components and sub-components, will have an enormous
impact on the maintenance procedure and safety concept
on autoships. When the RUL of a faulty component is
estimated, the maintenance procedure can be scheduled
to the next appropriate port of call, or if necessary,
dispatching maintenance personnel before a failure occurs
when the autoship is still in operation [1]. This will
significantly increase the operational performance, and
at the same time, drastically decrease unexpected system
failures. In addition, reliable estimations will provide trust
in safe behavior in offshore activities [7].

• According to [1], the insurance company Allianz reported
in 2012 that between 75% and 96% of marine accidents
are a result of human errors. This is mainly a result
of human exhaustion, but also because today’s maritime
activities require humans both to manage planned opera-
tional activities and make complicated decisions based on
the overall system conditions [7]. Autoships will reduce
both the number of crew members and the influence of
human DMs due to increased autonomous and intelligent
operational planning and decision making. In this way,
autoships will have the potential to decrease human errors
and the risk of injury to crew members [31]. PHMDL
systems have great potential to contribute to this human
error reduction since these systems are less dependent on
prior knowledge and human influence.

B. Challenges
• Autoships requires adaptation and integration within the

functioning of a business of an organization, and hence,
significant changes in the organizational culture [4]. The
introduction of autoships also involves confidence and
trust in “black-box” systems, such as a PHMDL system.
These systems are intelligent in that they transfer di-
rections for future maintenance procedures directly from
the autoship to the maintenance team on shore. In order
to act as a fully autonomous and intelligent system, the
PHMDL system must adapt to the varying operational and
environmental conditions that occur in the harsh maritime
environment [35].

• A further concern is the continuous flow of data to shore.
Autoships depend on heavily integrated and complex
systems to deliver their main functions. As a result,
the associated flow of sensor data becomes massive,
high-dimensional, heterogeneous, and unstructured. The
PHMDL system will have to provide automatic pre-
processing and dimensionality reduction schemes. This
massive flow of data also presents a cybersecurity chal-
lenge, as hackers would threaten safe maritime opera-
tions [1].

• A great challenge in the maritime industry is the
lack of run-to-failure data of components and sub-
components [35]. Traditional ships are often application-
designed and unique, or batch-produced in two to ten
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vessel series [4]. These short series creates a slow ac-
cumulation of relevant failure data compared to, for
instance, the aviation industry that produces hundreds of
the same aircraft in series [4]. In addition, traditional ships
are typically equipped with components from several
different manufacturers [91]. The resulting diversity of
uncoordinated monitoring systems increases the complex-
ity of the failure data. With respect to the introduction of
autoships and PHMDL systems, it would be advantageous
to build extensive databases regarding run-to-failure data
of critical and relevant components and sub-components.
This could be realized if stakeholders agreed to cooperate
to share data.

C. Summary
Reliable and real-time diagnostics and prognostics in auto-
ships have the potential to improve efficiency, maintenance
procedures, and safety aspects. Based on the above-mentioned
challenges, such as varying operational and environmental
conditions and massive data flows, DL techniques will be
superior to the combination of human-engineered feature ex-
traction methods and traditional machine learning algorithms.
This is because DL techniques utilize unsupervised learning
procedures to automatically extract key features and reduce
the dimensionality of raw unlabeled input data. Accordingly,
DL techniques do not require human-engineered feature ex-
traction methods, such as Mel-frequency Cepstrum Coefficient
(MFCC) or wavelet transform, in the data processing stage.
This means that the diagnostics and prognostics accuracy
of a PHMDL system is less application-dependent. For that
reason, PHMDL systems will have the potential to perform
diagnostics and prognostics under different environmental and
operational conditions. However, DL techniques are usually
used to perform supervised classification and/or regression
tasks. For that reason, available run-to-failure databases would
be advantageous. The next section reviews recent PHMDL ap-
plications. This is to fully elaborate strengths and weaknesses
in a more theoretical and practical understanding.

IV. APPLICATIONS OF DEEP LEARNING TO PROGNOSTICS
AND HEALTH MANAGEMENT

In recent years, DL has emerged as an innovative and encour-
aging research field for PHM [30]. This section introduces
and reviews well-established DL techniques like Autoencoder
(AE), Convolutional Neural Network (CNN), Deep Belief Net-
work (DBN) and Long-Short Term Memory (LSTM) based on
applications to PHM in the recent five years. This information
will support the need for creativity and inspiration in producing
PHMDL possibilities for autoships.

A. Deep Belief Network
1) Introduction: In 2006, Hinton et al. [83], introduced a

greedy layer-wise unsupervised learning algorithm. This was
the first valid algorithm for training fully-connected deep
architectures, and hence, marked the starting point for notable
progress in DL. The algorithm was originally introduced

for DBNs and improved previous optimization problems of
training deep architectures by initializing the weights in a
region near a good local minimum [75]. The algorithm makes it
possible to automatically learn internal representations of data.
These internal representations are high-level abstractions of the
input and allow a network to produce complex input-output
mappings directly from data [87]. In this way, the algorithm
is, in theory, not dependent on human-engineered features in
the data processing stage.

The fundamental ideas of the algorithm are as follow [75],
[87];

1) Pre-train one layer at a time in a greedy way. In other
words, layer n is kept fixed while the n − th layer is
trained using the output of n as the input.

2) Perform unsupervised learning at each layer in order to
maintain information from the input.

3) Fine-tune the whole network with respect to the global
training requirement.

DBNs consists of several layers of Restricted Boltzmann
Machines (RBMs) [92], and normally some additional layers
to conduct e.g. classification or regression tasks.

RBMs [29], [75], [86], [93], [94] are probabilistic gener-
ative models that learn a joint probability distribution from
unlabeled training data. They are a special type of Markov
random fields, typically with Bernoulli or Gaussian stochastic
visible units, v, in a single input layer and Bernoulli stochastic
hidden units, h, in a single hidden layer. Normally, as shown
in Figure 3, the visible and hidden units are fully connected
with bias vectors, b and c, respectively, and weight matrix,
w. In addition, units in the same layer have zero connections.
Consequently, RBMs can be defined as symmetrical bipartite
graphs. The hidden layer in the first RBM will serve as the
input layer for the second RBM.

The Bernoulli-Bernoulli RBM (BB-RBM) is the binary
version of RBMs. It is an energy-based model with the joint
probability distribution specified by its energy function [93]:

P (v, h) =
1

Z
e−E(v,h) (1)

The energy function is given by:

E(v, h) = −
V∑

i=1

bivi −
H∑

j=1

cjhj −
V∑

i=1

H∑

j=1

wijvihj (2)

where wij represents the weight between the binary states of
visible unit vi and hidden unit hj , bi and cj denotes the bias
terms, while V and H indicates the numbers of visible and
hidden units, respectively. The partition function, Z, is given
by summing all possible combinations of visible and hidden
vectors. It ensures that the distribution is normalized:

Z =
∑

v

∑

h

e−E(v,h) (3)

Due to the fact that RBMs are symmetrical bipartite graphs,
the conditional probabilities p(v|h) and p(h|v) are factorial,
and can be efficiently calculated as (see full derivation in [86],
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[93]):

P (vi = 1|h) = σ
(
bi +

H∑

j=1

wijhj

)
(4)

P (hj = 1|v) = σ
(
cj +

V∑

i=1

wijvi

)
(5)

where σ is the activation function. The logistic sigmoid func-
tion 1

1+e−x is a usual choice [29].
For real-value data applications, Gaussian-Bernoulli RBM

(GB-RBM) is normally used as the initial RBM to convert real-
valued stochastic variables to binary stochastic variables [95],
[96]. The second RBM can then be a BB-RBM with a rectified-
linear unit (ReLU) [97] transformation as the activation func-
tion for further processing. The energy function for GB-RBM
is given by [93]:

E(v, h) =

V∑

i=1

(vi − bi)2
2γ2i

−
H∑

j=1

cjhj −
V∑

i=1

H∑

j=1

vi
γi
hjwij (6)

where γi is the standard deviation of visible unit vi. The
corresponding conditional probabilities are expressed by:

P (vi = x|h) = 1
γi
√
2π
exp

(
−

(x−bi−γi
∑

j
hjwij)

2

2γ2
i

)
(7)

P (hj = 1|v) = σ
(
cj +

V∑

i=1

wij
vi
γi

)
(8)

where x is a real number. In practice, to make the model
implementation of GB-RBM more simple, the input data
should be normalized to have zero mean and unit variance [93].
It should be noted that a study conducted in 2010 has shown
that noisy ReLUs works better than Bernoulli stochastic units
in RBMs hidden layer [98].

The contrastive divergence (CD) [99] update rule is used to
train RBMs:

∆wij = ε
(
〈vihj〉data − 〈vihj〉recon

)
(9)

where ε is the learning rate and 〈∗〉 denotes expectations under
the distribution. The first expectation is with respect to the
data distribution and samples visible units based on hidden
units (Equation 7). The second expectation has to do with
the reconstructed input data distribution, generated by Gibbs
sampling, which samples hidden units based on visible units
(Equation 8). The reconstruction part of RBM training makes it
a generative model since it guesses the probability distribution
of the original input. The weights between the input layer
and the hidden layer are then updated using Equation 9. This
process will repeat until the parameters converge, that is, the
hidden layer is able to approximate the input layer. Thus,
RBMs model data distribution using hidden units without
the use of label knowledge. After the RBM training process,
the parameters are presented to the DBN. In the end, the
whole DBN architecture is fine-tuned using supervised back-
propagation with a much smaller data set of labeled training

Fig. 3: A simple DBN representation with two hidden layers.
Each visible and hidden unit are essentially nodes where
calculations take place.

data [100]. It should be noted that the training process of
RBMs is crucial in applying DBNs successfully to practical
problems. [93] includes a practical training guide by the
machine learning group at the University of Toronto.

2) Recent applications to PHM: DBNs are capable of
providing automatic feature extraction from unlabeled training
data and of performing supervised classification or regression
tasks by adding one or more additional layers. These properties
are well suited for PHM systems. The paragraphs below review
applications of DBNs to PHM in the years between 2013 and
2017.

Regardless of the well-proven applicability of traditional
data-driven diagnostic approaches, CM through multiple sen-
sors remains one of the major difficulties to be addressed in
the areas of classification and health diagnostics [14]. The
reason for this is that the complexity of the classification model
increases with multiple sensors and heterogeneity of sensor
signals, and hence, the data becomes highly dimensional.
Tamilselvan et al. [32] proposed a novel DBN approach for
use in multi-sensor health diagnostics state classification. The
proposed approach was demonstrated with the publicly avail-
able data set from the competition held at the 1st international
conference on Prognostics and Health Management in 2008
(PHM08) [101]. The data set was produced by the Commer-
cial Modular Aero-Propulsion System Simulation (C-MAPSS),
provided by NASA [102]. In addition, two case studies were
conducted for further demonstration. The DBN provided better
classification performance compared with four traditional data-
driven diagnostic algorithms; SVM, back-propagation Neural
Network (BP-NN), self-organizing maps (SOM), and Maha-
lanobis distance (MD). However, in this study, labeled training
data was used for different health states. Thus, this study
did not investigate DBNs full potential for automatic feature
extraction of unlabeled training data.

Tran et al. [103] also utilized DBN as the diagnostics
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approach. The proposed approach was validated with signals
from a two-stage reciprocating air compressor under different
valve conditions. The DBN was used to classify faults and
showed superior performance compared to traditional data-
driven diagnostic algorithms, such as Relevance Vector Ma-
chine (RVM) and BP-NN. However, in this study, the DBN
approach was only used for classification, and hence, it did
not examine the automatic feature extraction of unlabeled
training data aspect. On the other hand, the Teager-Kaiser
energy operation (TKEO) and wavelet transform were used
as the feature extraction methods.

Nevertheless, the automatic feature extraction aspect was
heavily explored in [100] and [104]. Yang Fu et al. [100]
demonstrated that the performance of the traditional data-
driven diagnostics algorithms SVM, Multilayer perceptron
(MLP) and k-means, strongly depends on the human-
engineered feature method selected. Three kinds of features
are included in this comparison: raw vibration data with nor-
malization, MFCC, and wavelet method. In this study, the DBN
consistently presented wonderful classification performance
in all three features. This shows that DBN is a promising
automatic feature extraction tool to be used on raw signals
without too much data preparation. [104] is a similar study.
Li et al. utilized a DBN as a statistical feature learning tool
for bearing and gearbox systems in time, frequency, and time-
frequency domains. The proposed approach indicated better
classification results compared to SVM and a single layer of
GB-RBM.

Various traditional data-driven prognostics approaches have
been proposed for different applications. Normally, they in-
volve human-engineered feature extraction methods in combi-
nation with a single traditional machine learning algorithm. As
a consequence, these traditional approaches can hardly main-
tain good generalization performance and adapt to different
prognostics applications. However, Zhang et al. [105] pro-
posed a multiobjective DBN ensemble (MODBNE) method.
MODBNE applies a multiobjective evolutionary ensemble
learning framework combined with the DBN training process.
In this way, the proposed method is able to create multiple
DBNs of varying accuracy and diversity, which in fact are two
conflicting objectives. The evolved DBNs are then combined to
perform RUL estimations. The proposed method was evaluated
by the publicly available C-MAPSS data set, the turbofan
engine degradation simulation data set [106] produced by the
C-MAPSS and provided by NASA. The big difference between
the PHM08 data set and the C-MAPSS data set is that only
the latter provides true RUL targets. The proposed approach
was compared with several traditional data-driven algorithms.

Deutsch et al. [107] introduced a deep architecture for RUL
estimations of rotating components using vibration sensors.
The proposed approach combines the automatic feature learn-
ing ability of DBN, and the predictive power of feed-forward
Neural Network (FNN). The approach is termed DBN-FNN
and has the opportunity to either utilize processed vibration
features or extract features from the vibration data to estimate
RUL. The RUL estimation includes confidence boundaries
obtained by the re-sampling technique jackknife. The pro-
posed approach overcomes the limitations of traditional data-

driven approaches by performing automatic feature extraction
and RUL estimations without human interference or prior
knowledge. Thus, the DBN-FNN approach confirms potential
towards the application of autoships.

To enable accurate RUL estimations, feature extraction is
a vital step. Liao et al. [108] proposed an enhanced single
layer RBM with a novel regularization term to automatically
generate features that are suitable for RUL estimations. The
main advantage of the regularization term is that it tries to
maximize the trend of the output features. Consequently, it has
the potential to make better representations of the degradation
patterns in the system. The proposed approach is compared
with traditional RBM and principal component analysis (PCA).
This method has the opportunity to be extended to a DBN
by stacking multiple enhanced RBMs. However, the proposed
approach is based on a Gaussian-Gaussian RBM (GG-RBM).
According to [75], DBNs containing only Gaussian units will
only be able to model Gaussian data. In addition, the mean-
field propagation through a Gaussian unit gives rise to a
purely linear transformation. Hence, the internal representa-
tions would be completely linear. In other words, Gaussian
transformations do not work well on RBMs’ hidden layers.

Jiang et al. [109] proposed a deep architecture involving
a DBN and a non-linear kernel-based parallel evolutionary
SVM. The objective was to predict evolution states of complex
systems in classification tasks. The goal of the algorithm is to
predict class labels of test data without any label information.
In two case studies, the proposed approach outperformed both
SVM and the traditional DBN.

DBNs have also been successfully and heavily applied in
time series forecasting [110]–[112].

B. Autoencoder
1) Introduction: The greedy layer-wise unsupervised learn-

ing algorithm introduced by Hinton et al. [83] and further
analyzed by Bengio et al. [75], can be applied not only to
RBMs but also to AEs. An original AE [29], [75], [77], [86],
[94] is an FNN, normally with one hidden layer, trained to
reproduce its input to its output by forcing the computations
to flow through a “bottleneck” representation [74], namely,
dimensionality reduction. The hidden layer, h, describes a code
used to represent the input, x. The network consists of two
parts: an encoder function h = fθe(x) and a decoder function
that produces a reconstruction r = gθd(h). If the AE learns the
identity function, gθd(fθe(x)) = x, it will not be effective to
extract meaningful features [113]. However, modern variations
of the original AE are normally restricted to only copy input
that is similar to the training data. Consequently, the AE is
forced to prioritize which characteristics of the input it should
copy. Thus, it often learns useful features of the data, and at
the same time, filters useless information [94]. In addition,
since the input vector is transformed into a lower dimension,
the efficiency of the learning process can be increased [20].
Figure 4 shows a simple AE. It should be noted that AE is
also called autoassociator in the literature.

The visible units, x, in the input layer, the hidden units,
h, in the hidden layer, and the reconstruction units, r, in the



IEEE TRANSACTIONS ON RELIABILITY, POSTPRINT 10

Fig. 4: Simple structure of an autoencoder. Three nodes in
the input and output layer and two nodes in the hidden layer
(bottleneck).

output layer are connected with weight matrices, w1 and w2.
The hidden layer and the output layer have bias vectors b and
c, respectively. As opposed to the parameterization of RBMs
(single weight matrix), the AE framework permits a different
matrix in the encoder, θe ={w1, b}, and in the decoder, θd
={w2, c}. Nevertheless, in practice it is common to use tied
weights, w2 = (w1)T , [77]. This provides the parameterizations
identical and serves as a regularizer since it constrains the
parameter space [29]. θe and θd are learned concurrently on
the task of reconstruction and compared to the original input
in order to obtain the lowest possible reconstruction error
L(x, r) [77]:

JAE(θe, θd) =
∑

L(x, gθd(fθe(x))) (10)

where L is a loss function such as the squared error L(x, r) =
||x− r||2. Basic AE training consists in finding values of the
weights and biases in order to minimize L(x, r). The most
normal encoder and decoder function are affine (feed-forward)
mappings, optionally followed by a non-linearity [77]:

fθe(x) = σf (bj +
∑

i

w1
jixi) (11)

gθd(h) = σg(ci +
∑

j

w2
ijhj) (12)

where σf and σg are the encoder and decoder activation
functions. It should be noted that the choice of activation
and loss function depends on the input domain range and
character. AEs can be stacked, like the RBM, to form a deep
architecture. Thus, the training procedure is equivalent to the
one introduced for DBNs [83], but using AEs rather than
RBMs. [74] presents a comparative study regarding AEs and
RBMs. This study suggests that DBNs have a slight edge over
stacked AEs. According to [86], this is probably because CD
is closer to the log-likelihood gradient than the reconstruction
error gradient. There exist several modern variations of the

original AE in the literature. In the following subsections, the
Denoising Autoencoder (DAE) and the Sparse Autoencoder
(SAE) will be introduced in relation to recent applications to
PHM.

2) Denoising Autoencoder: Vincent et al. [114], [115] pro-
posed the DAE in 2008. This extension of the original AE
was designed to learn more robust representations in a deep
architecture. DAEs are trained with corrupted data, x̃, by
adding noise into the training data through the stochastic
corruption process, x̃ ∼ q(x̃|x). The robustness is achieved
when the DAE reconstructs the clean version of the training
data through the training process. The objective function for
optimization in the DAE is given by:

JDAE(θe, θd) =
∑

IEq(x̃|x)[L(x, gθd(fθe(x̃)))] (13)

where IEq(x̃|x)[∗] represents the average value over x̃ drawn
from the stochastic corruption process x̃ ∼ q(x̃|x) [77]. The
major difference between AE and DAE is that, r is a determin-
istic function of x̃ rather than of x. Hence, DAE must undo
the corruption instead of simply copy the input [94]. DAEs can
also be stacked to form a deep architecture. The greedy layer-
wise training strategy is identical to the strategy for the original
AE and RBM. It should be noted that the stochastic input
corruption process is only applied in the training procedure in
order to learn more robust and valuable representations [116].
Thereafter, the reconstructed clean version is used as the input
to the next layer. Various corruption processes like additive
Gaussian noise, salt and pepper noise, and masking noise can
be considered [115].

3) Sparse Autoencoder: In 2006, Ranzato et al. [117] pro-
posed the learning algorithm for sparse representations. SAE is
also an extension of the original AE that aims to use sparse rep-
resentations in order to produce a simple understanding of the
input data by extracting the hidden structure of the data [20].
The training criterion involves a sparsity penalty term, Ω(h),
on the hidden layer, h, in addition to the reconstruction error
L(x, r) [94]:

JSAE(θe, θd) =
∑

L(x, gθd(fθe(x))) + Ω(h) (14)

The sparsity penalty term Ω(h) is added to the objective
function of the original AE (Equation 10) in order to constrain
the learned features. It controls the number of active neurons
in the hidden layer, h. A neuron is considered active if the
output is close to 1, and inactive otherwise [113]. The sparsity
penalty term is defined as:

Ω(h) = β

H∑

j=1

KL(ρ|ρj) (15)

where β controls the weight, H is the number of neurons
in the hidden layer and KL[∗] is the Kullback-Leibler diver-
gence [118]:

KL(ρ|ρj) = ρ log
ρ

ρj
+ (1− ρ) log

1− ρ
1− ρj

(16)
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where ρ is a hyperparameter (typically close to zero, e.g.
ρ = 0.05 [77]) and ρj is the average activation of the hidden
unit j. As seen from Equation 16, the sparsity penalty term is
zero if ρj = ρ. Thus, the sparsity penalty term will penalize ρj
if it deviates considerably from ρ. In other words, it promotes
partial activations of each hidden unit as specified by ρ [29].
By only activating a few hidden nodes at the same time, the
system robustness is improved. According to [94], SAEs are
typically used to learn features for classification tasks due to
its enhanced performance. After stacking several SAEs to form
a deep architecture, the greedy layer-wise training procedure
is also here identical as for the DAE, original AE, and RBM.

4) Recent Applications to PHM: AEs are, as with DBN,
capable of providing automatic feature extraction from unla-
beled training data, and in addition, performing supervised
classification or regression tasks by adding one or more
additional layers. The modern versions of AE, DAE, and
SAE seem particularly promising for PHM applications and
autoships. DAE is robust to noise and SAE has the potential
to increase the robustness of the system and the performance
of classification tasks. In the paragraphs below, applications
of AEs, DAEs, and SAEs to PHM are reviewed in the years
between 2014 and 2017.

Feature extraction is a crucial part of a PHM system
because it determines the performance of both diagnostics and
prognostics. Lu et al. [119] proposed a stacked AE, containing
two hidden layers, as the feature extraction method for rolling
bearing fault diagnostics. The results indicated that the second
hidden layer provided more precise and identifiable features
than the first hidden layer and the raw features in the visible
layer. Thus, a stacked AE is a promising tool to extract features
from bearing signal data.

Typically, in large industrial systems, the data is derived
from several platforms that could potentially involve different
data types. Based on this, Ma et al. [120] proposed an
architecture with multiple input modalities applied to fault
diagnostics. The proposed approach is using RBMs to obtain
a unified representation for both images and structured data.
Then, the unified representation is the input to a stacked AE
in order to reconstruct the images and the structured data
to obtain abstract features and remove useless information.
In the final layer, a supervised linear classifier is added to
classify the learned features and fine-tune the whole network.
Comparing the proposed approach with BP-NN showed lower
misjudgment rate for both normal and fault conditions.

Jia et al. [121] proposed a novel intelligent fault diag-
nostics method for rotary machinery in order to overcome
the limitations of traditional diagnostic approaches. The main
limitations highlighted in this study are shallow architec-
tures and the requirement of application-dependent human-
engineered feature extraction methods in the data processing
stage. To overcome these limitations, the proposed method
utilized a stacked AE to adaptively extract fault characteristics
(features) from measured signals in the frequency domain,
and automatically classify machinery health conditions. The
proposed method was validated using rolling element bearing-
and planetary gearbox data sets, and finally, compared with
the traditional BP-NN. The results indicated that the proposed

method overcomes the above-mentioned limitations.
Xia et al. [116] also addresses the limitations of tradi-

tional diagnostics approaches, specifically the need for prior
knowledge of features and the requirement of large quan-
tities of labeled condition data as the main limitations. In
addition, most traditional approaches need to be rebuilt or
retrained in order to diagnose new conditions. This procedure
is both computationally expensive and time-consuming. To
overcome these limitations, the proposed method in this study
utilized a stacked DAE with a softmax regression classifier
in the output layer. The results indicated that the proposed
approach is robust to noise, capable of automatically learning
representative features from unlabeled data, and achieves high
performance in fault classification. In addition, the proposed
method is capable of classifying new conditions by fine-tuning
the trained architecture applying small amounts of labeled
data from that new condition. This proves suitability towards
autoships which are subjected to varying environmental and
operating conditions. The proposed method was verified with
a standard data set of bearing faults and compared to SVM
and k-nearest neighbor algorithm.

Thirukovalluru et al. [122] also pointed out the importance
of the feature extraction process in diagnostics systems. This
study compares the classification performance of tradition-
ally human-engineered features and stacked denoising SAE
generated features. The human-engineered features extraction
methods used in this analysis are Fast Fourier Transform (FFT)
and Wavelet Packet Transform (WPT), and SVM and Random
Forest (RF) are used as the classifiers. The stacked denoising
SAE is a variation of the original AE that both utilize the
strengths from DAE and SAE, namely, the input corruption
process and the sparsity penalty term. The results of the
experiments showed that the stacked denoising SAE generated
features achieved higher classification performance than the
human-engineered features methods at least once. The results
were validated using five different data sets: air compressor
monitoring, drill bit monitoring, steel plate monitoring, and
two data sets of bearing fault-monitoring data.

High-quality labeled training data and expert knowledge
are not easily obtained regarding induction motors due to
environmental interference and inherent motor structure com-
plexity. For that reason, Sun et al. [113] also proposed a
stacked denoising SAE in order to improve induction motor
fault classification by reducing the dependency of labeled
data and expert knowledge. The input corruption process
enhances the robustness of the automatically extracted features
and the stability of the proposed architecture. The extracted
features are then used to train a classifier. Both SVM and
logistic regression (LR) are considered as the classifiers. The
“dropout” technique [123] is also introduced in this study.
This is a regularization technique invented in 2014, and it
was integrated into the whole architecture to reduce overfitting
in the training process. For verification, the effectiveness of
proposed architecture was compared with three different BP-
NNs.

C. Long-Short Term Memory
1) Introduction: Recurrent Neural Networks (RNNs) [26],
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Fig. 5: RNN unfolded in time, adopted from [79]. The same
weight matrices (U,V,W) are used at each time step.

[79], [94] are a group of neural networks used for tasks that
involve sequential data. The popularity of RNNs emerged
with the idea of connecting past information to the current
task. In order to do so, traditional RNNs share the same
weights (U,V,W) across several time steps, and this is the
main difference compared to FNN. Weight sharing is important
because a specific piece of information can occur at several
positions within the sequential data [94]. RNNs are usually
trained with the back-propagation algorithm to calculate the
derivative of a total error with respect to all states, St, and
all the parameters [79]. Figure 5 illustrates a simple model of
this.

However, during the early 1990s, [124], [125] discovered a
vanishing and exploding gradient problem. That is, when the
shared (fixed) weight, W , is multiplied by itself several times,
depend on magnitude, the product, W t, will either vanish or
explode [94]. Consequently, when the gap between previous
relevant information and the present task becomes large, the
information will be lost, and hence, the traditional RNN have
difficulties of learning long-term dependencies.

One of the most popular approaches to reduce the difficulty
of learning long-term dependencies is the LSTM. The original
LSTM is a special kind of RNN that was first introduced
by [126]. The initial idea of the LSTM architecture is to
introduce a memory cell. This memory cell contains non-linear
gating units in order to regulate the information flow in and
out of the cell. By this, the memory cell is able to maintain its
state over long durations, and the weights are conditioned on
the context and not fixed. Thus, the time scale of integration
can vary dynamically [94]. The literature provides several
modifications and variations of the original LSTM; see [127]
for a thorough review. Regarding recent applications to PHM,
the vanilla LSTM with no peephole connections, originally
described by [128], [129], is the most common choice. For
that reason, the paragraphs below will discuss vanilla LSTM
(hereinafter referred to as LSTM).

By introducing the memory cell, LSTMs are explicitly
designed to learn long-term dependencies. Inside the memory
cell, as illustrated in Figure 6, three non-linear gating units pro-
tect and regulate the cell state, St. The gating units introduce a
sigmoid layer, σ, in order to obtain an output value between 0
and 1, input weights W , recurrent weights R, and bias weights
b. The paragraphs below are based on a comprehensive blog
post regarding the understanding of LSTM networks, [130].

Fig. 6: Vanilla LSTM, adopted from [130]. The blue rectangle
represents the memory cell.

The first gating unit is called the forget layer, and is defined
as:

ft = σ(Wf xt + Rf ht−1 + bf ) (17)

The forget layer determines which historical information the
memory cell removes from the cell state. In this layer, an
output value of 0 means to completely remove it, while an
output value of 1 means to completely keep it. The second
gating unit consists of two parts. The first part is called the
input layer:

it = σ(Wi xt + Ri ht−1 + bi) (18)

The input layer decides which values the memory cell will
updated. The second part, is a tanh layer who creates a vector
of new candidate state values, S̃t:

S̃t = tanh(Ws xt + Rs ht−1 + bs) (19)

In this way, the second gating unit determines what new
information the memory cell is going to store in the cell state.
Obviously, the next step is to update the previous cell state,
St−1, into the new cell state, St:

St = ft ⊗ St−1 + it ⊗ S̃t (20)

where, ⊗, denotes element-wise multiplication of two vectors.
First, the previous state is multiplied by the output from forget
layer, and then the new candidate state values are added, scaled
by the output from the input layer, that is, how much each new
candidate state value will be updated. The third and final gating
unit decides the output. This also consists of two parts. The
first part is the output layer:

ot = σ(Wo xt + Ro ht−1 + bo) (21)

The output layer determines which parts of the cell state the
memory cell is going to output. Then, the second part will
create a filtered version of the cell state in order to push the
values between -1 and 1, and finally multiply it by the scaled
output value from the output layer:

ht = ot ⊗ tanh (St) (22)

Through this procedure, LSTMs have the ability to remove or
add information to the cell state. The traditional RNN lack this
ability, and hence, it will completely override cell states.
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TABLE II: The C-MAPSS data set [106].

Data set FD001 FD002 FD003 FD004
Timeseries training set 100 260 100 249
Timeseries test set 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

2) Recent Applications to PHM: LSTMs are highly capable
of learning long-term dependencies and specially designed for
sequential data. With respect to PHM applications, sequential
data is a standard format of the input data, e.g temperature
and vibration measurements [131]. For that reason, LSTMs are
good candidates for RUL estimations because LSTMs might
reveal hidden information in the data, as well as the past
dependencies that may influence future events. The paragraphs
below review applications of LSTM to PHM in the recent three
years.

Chen et al. [132] applied LSTM in mechanical state pre-
dictions. The proposed method was divided into two steps.
The first step, which had two parts, involved feature extraction
methods to obtain the mechanical state characteristics. The
empirical mode decomposition method was used to decompose
bearing data into stationary signals. Then, the intrinsic mode
function energy entropy was calculated based on the decom-
position. This calculation was to characterize the mechanical
state. The second step applied the LSTM network in order to
make predictions. The results indicated that the mean square
error index of the LSTM network was lower compared to
SVM.

Accurate and reliable RUL estimations play a vital role for
a PHM system. Traditional data-driven approaches, such as
HMMs and traditional RNNs, encounter difficulties when mod-
eling sequential data. Both approaches have issues with long-
term dependencies. In addition, CNNs do not fully account for
sequence information because of their segmented input. Based
on this, Zheng et al. [33] proposed an LSTM approach to
provide RUL estimations. The proposed architecture consists
of multiple layers of LSTMs combined with multiple layers of
FNN. The LSTM layers are good for temporal modeling and
can reveal hidden patterns in the sequential input data. The
FNN layers are then applied in order to map the LSTM features
and predict the RUL. Multiple layers are used to discover
the complex relationship within the sensor data. This study
used both the C-MAPSS data set [106] and the PHM08 data
set [102]. The results indicated that the proposed architecture
outperformed the above-mentioned approaches. The proposed
method was trained in a supervised manner by engineering
and utilizing piece-wise linear RUL targets, as recommended
by [133], for the training data sets.

A similar and more comprehensive study on the C-MAPSS
data set [106] was conducted in [134]. In this work Wu. et
al also proposed an LSTM approach for RUL estimations.
The C-MAPSS data set consists of four subsets as shown
in Table II. Both subset FD002 and FD004 involves several
operating conditions. Therefore, a dynamic difference method
was proposed in order to extract new features from inter-
frame dynamic changes before the training procedure. These

changes contain valuable degradation information, and hence,
enable the LSTM approach to better control the underlying
physical processes. The proposed method indicated improved
performance compared to traditional RNN and gated recurrent
unit LSTM (GRU-LSTM) [135].

Yuan et al. [136] proposed another LSTM approach to pro-
viding RUL estimations. However, the motivational factor in
this study was to utilize the LSTM approach to build a common
model for several different faults. In addition, the proposed
approach was able to get RUL estimations and the probability
of each fault at the same time. This feature makes it easy
to design confidence intervals. The proposed approach was
compared with traditional RNN and two variations of LSTM:
GRU-LSTM and AdaBoost-LSTM. However, in all cases, the
LSTM showed enhanced performance. The comparison used
the C-MAPSS data set [106]. In this study, an SVM was used
as an anomaly detector to create labels.

The majority of recent PHM applications based on DL
have been focusing on either automatic feature extraction,
classification, or regression. For that reason, Liao et al. [131]
proposed a novel end-to-end deep architecture by stacking
LSTM, FNN, and survival analysis. In this way, the proposed
method integrates feature extraction and prediction as a single
optimization task. This study utilized the LSTM as the first
feature extraction layer. The reason for this is that the LSTM
layer is able to handle the raw sequential input, and potentially
discover past information that may influence future events. The
extracted features will then be the input for the FNN layer,
which makes it possible to further improve learning of the
feature representation. Finally, the survival model learns the
features and predicts the failure probability to indicate health
conditions. Stochastic gradient descent is used as the learning
optimization method for all the parameters. The proposed
method showed promising results and was validated by a small
data set of fleet mining haul trucks and by a large open source
data set.

It should be noted that the proposed methods in the above
LSTM-studies are based on supervised learning. In other
words, trained on labeled training data. Nevertheless, in real-
world applications, e.g. the maritime industry, high-quality
labeled training data is hard to acquire, and large amounts
of the data are unlabeled. For that reason, the first feature
extraction layer, in any architecture, would have the advantage
of utilizing unsupervised learning strategies, like the above
mentioned DBNs or AEs. Gensler et al. [137] proposed an in-
teresting approach that combines AE and LSTM. Specifically,
the proposed approach combines automatic feature extraction
from unlabelled training data with the temporal context uti-
lization of the LSTM. The main idea is that after pre-training
the AE in an unsupervised manner, the network architecture
will be cut after the encoding side (bottleneck), and then the
learned encoding will act as the input for the LSTM. Finally,
the AE-LSTM architecture will be fine-tuned, where only the
LSTM weights are trained, to produce the desired output. The
proposed approach showed enhanced prediction performance
compared to MLP, LSTM, and DBN. Although this study is
targeting solar power forecasting, the proposed method has the
potential to provide inspiration towards future intelligent PHM
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systems applied to autoships.
Malhotra et al. [138] provides another interesting approach.

Prognostic approaches for RUL estimations are generally based
on the assumption that the health degradation curve follows a
specific shape, e.g. exponential or linear. In this study it was
observed that such assumptions are not well-suited for real-
world applications. In addition, most prognostic approaches
are application-dependent, meaning they are not robust towards
new conditions. Based on these observed limitations, this study
proposed an unsupervised approach, by utilizing an LSTM
encoder-decoder, to obtain a health index (HI) for a multi-
sensor time-series data system. The HI is then used to learn
a regression model for RUL estimations. Briefly explained,
the LSTM encoder learns a representation of the input time-
series. Then, the LSTM decoder applies this representation to
reconstruct the time-series using the current hidden state and
the predicted value of the previous time-step. See [27] for a
deeper understanding of the LSTM encoder-decoder method.
The study used the C-MAPSS data set [106] and a milling
machine data set, as well as a case study on real-world data,
for validation. Surprisingly, the proposed approach showed
improved performance compared to approaches that rely on
assumptions about health degradation.

D. Convolutional Neural Network

1) Introduction: CNNs [20], [79], [94], [139] are designed
for processing multiple arrays of 1D, 2D, or 3D grid-structured
topology data. Examples of 1D, 2D, and 3D grid are: time-
series data taking samples at systematic time intervals, pixels
in image data, and video or volumetric images, respectively.
CNNs have been inspired by earlier work on time-delay
neural networks (TDNNs) [140]. Primarily, TDNNs are one-
dimensional CNNs applied to time-series and use shared
weights in a temporal dimension in order to reduce learn-
ing computation requirements. In addition to shared weights,
convolution, pooling, and multi-layer architectures are the
important ideas of CNNs. In fact, CNNs are the first truly
DL technique to successfully train multiple layers [17].

A CNN can briefly be defined as a neural network that uses
the mathematical operation convolution instead of general ma-
trix multiplication in at least one of its layers [94]. With respect
to mathematical understanding, convolution is an operation to
combine two functions of a real-valued argument by measuring
the overlap of two functions when one proceeds over the other.
The discrete 1D convolution operation can be defined as:

S(t) = (I ·K)(t) =
∑

a

I(a)K(t− a) (23)

where t is the discretized time index, I is the input, K is
a kernel (filter), and a is the finite number of array elements.
The output, S(t), is usually referred to as the feature map.
Expanding Equation 23, the discrete 2D convolution operation
can be defined as:

S(i, j) = (I ·K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n)

(24)

where i and j are the discretized time indexes, and m and
n are the finite number of array elements in each of the two
dimensions. However, in the context of CNNs in practice,
the standard discrete convolutional operations are moderately
different. The reason for this is that the operation consists of
several convolutions in parallel in order to extract many types
of features at several locations in the input data. In addition,
the input is normally a grid of vector-valued observations,
and not only a grid of real values. Full derivations of the
above equations, as well as practical variations of the standard
discrete convolutional operation, appear in [94].

The convolution operation exploits three prime features of
CNNs in the learning process [20], [94]. First, CNNs have
sparse interactions. This is realized by making the kernel
smaller than the input, and hence, CNNs needs to store fewer
parameters compared with traditional FNN. This is because
traditional FNN uses general matrix multiplication between
layers, that is, every output unit interacts with every input
unit. The sparse interaction feature reduces computational
and memory requirements, as well as increasing statistical
efficiency. Second, shared weights between several functions
in the architecture further reduce the memory requirement and
the complexity of the network. Finally, shared weights result
in equivariance in the layers. That is, the output will change
according to the input.

Researchers generally use one of two sets of terminology
for describing the conceptual structure of CNNs. The first is
the complex layer terminology [94], which this survey paper
employs. The second is the simple layer terminology where
every processing step is considered to be a separate layer. [17],
[20] further describes simple layer terminology.

Complex layer terminology understands each layer in a
CNN as having three processing steps, as illustrated in Fig-
ure 7. The first step, C1, executes several convolution op-
erations in parallel in order to produce feature maps with
linear activations. These activations are then processed by non-
linear activation functions, σ, in the second step. The sigmoid
activation function or the ReLU are common choices. In the
third step (usually called sub-sampling), a pooling function,
S1, is used to further adjust the output by calculating summary
statistics of the nearby outputs. Regular choices are max-
pooling [141] and average-pooling. Max-pooling calculates
the maximum output in a rectangular neighborhood, while
average-pooling calculates the average output. All pooling
functions further reduce the dimensionality of the represen-
tations, and at the same time, generates an invariance to small
translations of the input, namely, if the input to the pooling
function changes, most of the pooled outputs do not change
[79], [94]. This layer procedure repeats itself in the next layers.
Finally, the outputs from the last layer are rasterized and
presented as a single input vector to a traditional FNN in order
to perform functions such as classification or regression.

The training procedure of CNNs is introduced in [139].
It is similar to standard back-propagation training performed
on FNN, but the reduced number of parameters and shared
weights in CNNs improve the training efficiency. In addition,
CNNs are capable of handling raw input data, and hence, pre-
processing is rare. This means that CNNs are less dependent
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Fig. 7: Conceptual structure of CNN.

on prior knowledge and human-engineered feature extraction
methods which appears to be suitable towards future intelligent
PHM systems applied to autoships. The convolutional opera-
tions also enable CNNs to process inputs with varying spatial
extents [94].

2) Recent Applications to PHM: According to [94], CNNs
have been most successful on 2D and 3D grid-structured topol-
ogy data, like object recognition [142] and face recognition
[143], respectively. Nevertheless, recent applications to PHM
have applied 1D grid-structured topology for sequential data
and shown enhanced performance compared with traditional
machine learning algorithms. For that reason, CNN applica-
tions to PHM in the years between 2016 and 2018 will be
reviewed in the following paragraphs.

In order for CNNs to act as an effective feature extraction
method for raw industrial signals in PHM applications, the
successful applications of CNNs to 2D and 3D grid topology
data have to be modified. The reason for this is that raw
industrial signals are usually 1D time-series with hidden in-
formation behind strong intervals and deep correlations amid
various time points. Thus, to fully exploit all the information
in the signal, it is necessary to consider the relationship
between signals in diverse locations. Liu et al. [144] proposed
a novel dislocated time-series CNN (DTS-CNN) diagnostics
approach. The proposed approach utilizes a dislocated layer
as the initial layer in order to extract the relation between
periodic vibration signals with varying intervals. After the
initial dislocated layer, there are two layers with convolution-
and max-pooling steps, then a fully connected softmax clas-
sifier is used for classification. For verification, an electric
machine fault simulator with different operating conditions was
used in two experiments. The DTS-CNN showed improved
performance, compared to traditional CNN and wavelet packet
SVM, due to its robustness under different non-stationary
operating conditions. In addition, the proposed approach was
capable of automatically extracting features from raw input
data, and hence, less dependent on human-engineered feature
extraction methods and prior knowledge.

Jing et al. [145] proposed a CNN approach to provide
automatic feature extraction and fault diagnosis. The motiva-
tional factor in this study was three limitations of traditional

diagnostic algorithms: First, their inability to handle raw
input data. This requires human-engineered feature extrac-
tion methods, which means the diagnostics accuracy heavily
depends on domain expertise and prior knowledge. Second,
feature extraction methods are application-dependent. In this
way, the diagnostics results are sensitive to changes in the
mechanical system. Third and finally, traditional diagnostics
algorithms lack the ability to mine new features. In this study,
CNN was applied to automatically learn features from raw
vibration data in the time domain, frequency domain, and time-
frequency domain, and then conduct diagnostics of gearboxes.
1D segments are collected from the raw vibration data as the
input for the CNN. This study uses one layer with convolu-
tion and pooling steps because this approach showed higher
accuracy and more stable results than other configurations.
In the end, a fully connected softmax layer was used for
classification. The proposed approach was validated with a
publicly available data set for gearboxes. The comparison
uses manual feature extraction methods from each domain and
traditional diagnostics approaches such as FNN, SVM, and RF.
The results indicated that the proposed approach outperformed
the comparative methods.

Traditional prognostics algorithms are usually based on
shallow architectures. Consequently, they lack the ability to
capture more complex relationships between the sensory data
and RUL estimations. In addition, traditional algorithms do
not have the ability to automatically learn salient features.
Based on these restrictions, Babu et al. [88] proposed a novel
CNN-based regression approach for RUL estimations from
multi-variate time-series sensor signals. However, applying
CNN to multiple channels of time-series signals has two
main challenges that apply to the processing steps: they need
to be applied along temporal dimensions, and they need
to be shared among multiple sensors. To cope with these
challenges, this study adopted a sliding window strategy in
order to create segmented collections of the time-series signals.
Each segment is then fed into two layers with convolution-
and average-pooling steps. The first convolution step is two-
dimensional, while the second and the two pooling steps
are one-dimensional. These processing steps automatically
capture salient features of the sensor signals at different time
scales, and hence, the features extracted are task dependent
and not human-engineered. Finally, all salient features are
systematically unified and mapped into the RUL estimation of
a traditional FNN regressor. Both the PHM08 data set [101]
and the C-MAPSS data set [106] were used to validate the
results. The proposed approach showed enhanced performance
compared to MLP, SVM, and RVM. It should be noted that
a piece-wise linear RUL target function has been used in
this study. This means a supervised training procedure with
target run-to-failure data. However, Zheng et al. [33] claim
that LSTM outperformed the CNN approach in their study
because the RUL estimations in the CNN approach are built
based on independent sliding windows. Sliding windows are
in fact time-dependent with respect to RUL estimations, and
hence, the CNN approach does not fully consider sequence
information.

In 2018, Li et al. [34] proposed a new CNN approach
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that has shown improved RUL prediction performance on
the C-MAPSS data set [106] compared to both the CNN
approach in [88] and the LSTM approach in [33]. Similar to
[88], this CNN approach also prepares the input data in two
dimensions (sequence length × selected features) and utilize a
time-window strategy. However, in contrast to [88], this CNN
approach performs all the convolution steps in one dimension.
In this way, the CNN is able to learn high-level representations
of each raw feature from the very start rather than learning
the spatial relationship of several features and then extracting
information. Additionally, the proposed approach employs the
advanced regularization technique “dropout” [123] and the
adaptive learning rate method “Adam” [146], both invented
in 2014.

E. Discussion and Summary
Table III provides a structured summary of the recent PHM
applications based on DL reviewed in this survey paper. This
representative set of applications has been selected to pro-
vide insight into the current state-of-the-art and to encourage
important directions for future research towards intelligent
PHM systems suitable for autoships. DBNs, AEs, DAEs, SAE,
LSTMs, and CNNs have been explicitly chosen as the DL
techniques primarily because they are well-established and
show great promise for future developments.

With respect to autoships and the maritime industry more
generally, future intelligent PHM systems will have to adapt
to highly varying operational and environmental conditions,
as the maritime environment is harsh and uncertain. Addition-
ally, such systems needs to provide automatic pre-processing
and dimensionality reduction schemes in order to effectively
process massive data flows of high-dimensional and unstruc-
tured data. Based on the reviews this paper has discussed,
DBNs, AEs, DAEs, and SAEs seem like promising ways to
address these challenges since these DL techniques provide
an unsupervised learning procedure as an initial pre-training
step. This procedure will automatically capture abstract, im-
portant statistical structures and reduce dimensionality of raw
unlabeled input data. As a result, DL techniques minimize
the need for human-crafted feature extraction methods in the
data processing stage, reduce the need for large amounts of
high-quality labeled training data, and have the potential to
be applied to new conditions by fine-tuning the trained final
architecture using a much smaller labeled data set from that
new condition. [104], [107], [113], [116], [137] intensively
investigates the effectiveness of these qualities.

Another important concern is the fact that sensor data is
going to be the most common data type format for future
intelligent PHM systems used in autoships. LSTMs are highly
capable of learning long-term dependencies that may influence
future events, they are specially designed for sequential data,
and might discover hidden data information. [33], [134] sug-
gests the strengths of the LSTM. Furthermore, the CNN ap-
proach in [34] seems to be highly suitable for sequential data.
Actually, it outperformed both an equivalent CNN approach in
[88] and the LSTM approach in [33] on the C-MAPSS data
set [106].

TABLE III: Recent PHM applications based on DL (the years
between 2013 and 2018).

DL technique Author. Reference Year PHM application
DBN Deutsch et al. [107] 2017 Automatic feature extraction

and failure prognostics:
Rotating components

Li et al. [104] 2016 Automatic feature extraction
and fault diagnostics:
Rotary machinery

Zhang et al. [105] 2016 Automatic feature extraction
and failure prognostics:
C-MAPSS data set [106]

Liao et al. [108] 2016 Automatic feature extraction
and failure prognostics:
Rotating systems

Jiang et al. [109] 2016 Automatic feature extraction
and Time-series prediction:
Complex systems

Yang Fu et al. [100] 2015 Automatic feature extraction:
Cutting state monitoring

Tamilselvan et al. [32] 2013 Fault diagnostics:
PHM08 data set [101]
Electric power transformer

Tran et al. [103] 2013 Fault diagnostics:
Reciprocating
compressor valves

DAE Xia et al. [116] 2017 Automatic feature extraction
and fault diagnostics:
Motor bearings

SAE Sun et al. [113] 2016 Automatic feature extraction
and fault diagnostics:
Induction motor

DAE/SAE Thirukovalluru et al. [122] 2016 Automatic feature extraction
and fault diagnostics:
Air compressor monitoring
Drill bit monitoring
Steel plate monitoring
Bearing fault monitoring

AE Lu et al. [119] 2015 Automatic feature extraction
and fault diagnostics:
Rolling bearing data

AE Jia et al. [121] 2015 Automatic feature extraction
and fault diagnostics:
Rolling element bearing
Planetary gearbox

RBM/AE Ma et al. [120] 2014 Automatic feature extraction
and fault diagnostics:
Power transformers
Circuit breakers

LSTM Wu et al. [134] 2018 Failure prognostics:
C-MAPSS data set [106]

Chen et al. [132] 2017 Failure prognostics:
Bearings

Zheng et al. [33] 2017 Failure prognostics:
PHM08 data set [101]
C-MAPSS data set [106]

Yuan et al. [136] 2016 Failure prognostics:
C-MAPSS data set [106]

Liao et al. [131] 2016 Feature extraction and
failure prognostics:
Mining haul trucks

AE/LSTM Gensler et al [137] 2016 Automatic feature extraction
and failure prognostics:
Solar power plants

LSTM Malhotra et al. [138] 2016 Automatic feature extraction
and failure prognostics:
C-MAPSS data set [106]
Milling machine

CNN Li et al. [34] 2018 Automatic feature extraction
and failure prognostics:
C-MAPSS data set [106]

Liu et al. [144] 2017 Automatic feature extraction
and fault diagnostics:
Electric machine fault
simulator

Jing et al. [145] 2017 Automatic feature extraction
and fault diagnostics:
Gearbox

Babu et al. [88] 2016 Automatic feature extraction
and failure prognostics:
PHM08 data set [101]
C-MAPSS data set [106]
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V. DISCUSSION

The previous sections discuss the benefits and challenges of
applying PHMDL in autoships in addition to specific intro-
ductions and reviews of well-established DL techniques with
respect to recent applications to PHM. These sections are
intended to enlighten the reader with both opportunities and a
more theoretical and practical understanding on how PHMDL
can be applied to autoships. This section gives more general
discussions concerning suitable deep architectures in order to
address the challenges and exploit the benefits. Finally, existing
problems and future research opportunities are introduced.

A. Suitable Deep Architectures
The majority of the reviewed studies in Section IV, either
utilize DBN, AEs, LSTM, or CNN as the selected DL
technique. However, different DL techniques can be stacked
in order to further exploit the advantages and reduce the
drawbacks of each DL technique. Gensler et al. [137] combines
AE and LSTM to both make use of the automatic feature
extraction from unlabeled input data and the temporal context
utilization of LSTM. This approach has served as inspiration
for this paper’s proposed deep architecture for intelligent PHM
systems for autoships.

PHMDL systems in autoships demands automatic pre-
processing and dimensionality reduction schemes due to vary-
ing operational and environmental conditions and massive data
flows of high-dimensional and unstructured data. Thus, the
unsupervised DL techniques, DBN and the modern variations
of the original AE, DAE, and SAE, have great potential to
be applied as the first layer of a deep architecture. More
specifically, the stacked denoising SAE [113], [122] is an
encouraging opportunity. The reason for this is that both the
stochastic corruption process, x̃ ∼ q(x̃|x), in DAEs and the
sparsity penalty term, Ω(h), in SAEs appears particularly
suitable for autoships and the maritime environment. This
combination will give the first layer the potential to provide
robustness towards noisy sensor data and to control the number
of active hidden neurons. This will increase both the robustness
of the system and the efficiency of the automatic feature ex-
traction process. The increased efficiency reflects the reduced
number of active neurons in the hidden layers, as it costs
energy to activate neurons and to send signals between them.
Actually, human brains seem to minimize such computational
costs in a similar manner [89].

The lack of onboard crew members in autoships creates
higher demands for scheduling maintenance procedures to
the next appropriate port of call [31]. Consequently, PHMDL
systems have to provide reliable RUL estimations of relevant
components and sub-components. Additionally, sensor data
will be the most common data type format for PHMDL
systems in autoships. Thus, LSTM is a quite promising
candidate to act as the following layer or layers of a deep
architecture. LSTM is especially designed for sensor data and
was cpable of revealing hidden information and learning long-
term dependencies within sensor data with multiple operating
and fault conditions in [33]. This proves the potential to
enhance RUL estimations. Finally, a traditional FNN layer

can be applied in order to map all extracted features and
provide RUL estimations. However, it should be noted that any
RUL estimation should include associated confidence intervals
in order to provide reliable and trustworthy outputs. This is
necessary to help autoships to optimize maintenance planning.

The well-proven regularization technique, “dropout” [123],
extends the idea of the DAE. “Dropout” randomly drop units
during training, and hence, regularize a network by adding
noise to its hidden units. In this way, the network learns to
make generalized representations of the input data, which en-
hances the feature extraction ability. “Dropout” can be applied
to all hidden layers in both LSTMs and FNNs. Therefore, it
should be considered as part of the proposed deep architecture.
It should be noted that “dropout” should only be applied to
the non-recurrent connections in LSTMs.

B. Existing Problems and Future Research Opportunities
Even if unsupervised DL techniques are applied in the first
layer, the deep architecture will still require a reduced amount
of labeled training data in order to perform supervised classi-
fication or regression in the final layer. The labeled training
data is necessary to fine-tune the whole architecture with
respect to the final classification or regression task. As a
consequence, the supervised learning procedure assumes that
input events are independent of earlier output events [89]. As
a result, the DL techniques reviewed in this survey paper do
not involve learning to act in totally unknown environments.
We assume that this feature will be extremely useful in future
intelligent PHM systems applied to autoships due to the lack
of fault labels and run-to-failure data of components and sub-
components [35].

Additionally, according to [147], current DL techniques are
insufficient for fixed network architectures. This is because
recently introduced tri-traversal theory proves that DL tech-
niques will need to adapt at three levels of organization (T3-
structure), that is, be equipped with intelligent procedures that
rapidly adjust their network architectures, in order to deal with
the complexity of the maritime environment as well as other
contexts.

Solving this problem through a combination of DL and rein-
forcement learning (RL) where there is no supervised teacher
is an exciting research objective. Briefly explained, RL enables
learning from feedback received through interactions with an
external environment [18]. In the application of autoships,
we propose that this environment could involve several en-
vironmental and operating conditions. Assuming some typical
values of the sensor data in each condition, RL is able to
search for possible inputs and outputs in order to maximize a
reward [148], e.g. the performance of the deep architecture.
Based on the observed rewards, RL is able to obtain the
optimal, or nearly optimal, deep architecture structure for
each condition. Consequently, RL adaptively adjusts the hyper-
parameters in the deep architecture, e.g. learning rate, number
of hidden layers and nodes, “dropout” rate, etc. Its policy
requires RL to decide whether to use the hyper-parameters
that gave the highest reward last time for a specific condition
or to try out different hyper-parameters in hope of providing
even better performance [148].
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Another interesting research objective is the digital twin
(DT). Today, the concept of the DT is one of the most-sought
research objectives in the maritime industry [149]. A DT will
consist of a series of simulation models that are continuously
updated to mirror their real-life twins [150], e.g. an autoship.
In this way, a DT differs from a generic model because it
is specific to its physical counterpart. The DT model must
also reflect changes involving the physical autoship. A DT
will include a system and data information model, simulation
models and data analytics, and dependability and performance
models [35]. The DT concept allows new design paradigms
where different stakeholders will be able to contribute to the
creation of a DT with specific models and evaluate in advance
how the autoship will operate in different scenarios [90]. In
this way, the DT is able to collect highly important prior
knowledge, in addition to the knowledge acquired through
sensors etc. in the current state. The new design paradigms
enable DTs to build extensive databases regarding run-to-
failure data of critical and relevant components and sub-
components. This will be highly beneficial and necessary for
successful implementations of future intelligent PHM systems
on autoships.

According to [82], DL has the property that it gets better
as it receives more data. This property also applies to DTs
because, over time, they will be increasingly more detailed
and continuously updated with sensor data. This quality accel-
erates developments towards data-driven approaches suitable
for industrial big data, such as DL techniques.

VI. CONCLUSION

Autoships are a provident and rapidly expanding research field.
In order to operate and maintain complex and integrated sys-
tems in a safe, efficient, and cost-beneficial manner, autoships
are expected to include intelligent PHMDL systems. PHMDL
have the potential to reduce built-in redundancy and to provide
more robust and reliable maintenance scheduling.

In this survey paper, well-established DL techniques have
been introduced and reviewed with respect to recent PHM
applications. In these reviews, DL techniques have demon-
strated that they are a superior alternative to human-crafted
feature extraction methods combined with traditional machine
learning algorithms in many practical PHM problems. Hence,
DL techniques are highly suitable to be applied to diagnostics
and prognostics tasks in future intelligent PHM systems in
the age of big data. The main intention of this survey paper
is to support creativity and inspiration in explorations of
PHMDL possibilities in the maritime industry, particularly
autoships. To guide future researchers, this paper introduced
and discussed the benefits and challenges of implementation
of PHMDL in autoships, and the maritime industry in general.
In highly varying operational and environmental conditions
and massive data flow, DL techniques will be advantageous
due to unsupervised learning procedures that automatically
extract high-level abstract features and, at the same time,
reduce the dimensionality of raw unlabeled input data. In this
way, PHMDL is less application-dependent than traditional
approaches, and hence, has the potential to operate in different
conditions.

This paper has also provided more general discussions,
concerning suitable deep architectures, existing problems, and
future research opportunities It appears that DL, RL, and DT
all have the potential to push the development of autoships and
intelligent PHM systems to the next level.
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A B S T R A C T

In recent years, research has proposed several deep learning (DL) approaches to providing reliable remaining
useful life (RUL) predictions in Prognostics and Health Management (PHM) applications. Although supervised
DL techniques, such as Convolutional Neural Network and Long-Short Term Memory, have outperformed tra-
ditional prognosis algorithms, they are still dependent on large labeled training datasets. With respect to real-life
PHM applications, high-quality labeled training data might be both challenging and time-consuming to acquire.
Alternatively, unsupervised DL techniques introduce an initial pre-training stage to extract degradation related
features from raw unlabeled training data automatically. Thus, the combination of unsupervised and supervised
(semi-supervised) learning has the potential to provide high RUL prediction accuracy even with reduced
amounts of labeled training data. This paper investigates the effect of unsupervised pre-training in RUL pre-
dictions utilizing a semi-supervised setup. Additionally, a Genetic Algorithm (GA) approach is applied in order to
tune the diverse amount of hyper-parameters in the training procedure. The advantages of the proposed semi-
supervised setup have been verified on the popular C-MAPSS dataset. The experimental study, compares this
approach to purely supervised training, both when the training data is completely labeled and when the labeled
training data is reduced, and to the most robust results in the literature. The results suggest that unsupervised
pre-training is a promising feature in RUL predictions subjected to multiple operating conditions and fault
modes.

1. Introduction

The remaining useful life (RUL) is a technical term used to describe
the progression of faults in Prognostics and Health Management (PHM)
applications [1]. Prognosis algorithms tend ideally to achieve the ideal
maintenance policy through predictions of the available time before a
failure occurs within a component or sub-component, that is RUL [2].
In this way, RUL predictions have the potential to prevent critical
failures, and hence, becomes an important measurement to achieve the
ultimate goal of zero-downtime performance in industrial systems.
However, traditional prognosis algorithms suffer from a decreased ca-
pacity to process the increased complexity in today’s sequential data
with accuracy.

Recently, deep learning (DL) has emerged as a potent area to pro-
cess highly non-linear and varying sequential data with minimal human
input within the PHM domain [3]. Today, DL is an extremely active
sub-field of machine learning. With increased processing power and

continuous developments in graphics processors, DL has the potential to
improve prediction tasks as the computational burden reduces sig-
nificantly [4]. However, deep architectures introduce many diverse
hyper-parameters, which are challenging to optimize in the training
process. Thus, this study proposes a Genetic Algorithm (GA) approach
in order to optimize the hyper-parameters in an efficient manner.

DL techniques, such as Convolutional Neural Network (CNN) and
Long-Short Term Memory (LSTM), have shown rapid developments and
outperformed traditional prognosis algorithms in RUL predictions for
turbofan engine degradation [5–7]. DL techniques predict the RUL
without any prior knowledge of engine degradation mechanics. Thus,
data analysts today apply their knowledge about the RUL prediction
problem to the selection and design of DL techniques, rather than to
feature engineering. However, both CNN and LSTM depend on purely
supervised learning. In other words, they require large labeled training
datasets in the training procedure. Thus, the RUL prediction accuracy
strongly depends on the quality of the constructed run-to-failure
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training data labels.
In contrast, unsupervised DL techniques introduce an initial pre-

training stage to extract high-level abstract features from raw unlabeled
training data automatically. Thus, the combination of unsupervised and
supervised (semi-supervised) learning has the potential for even higher
RUL prediction accuracy since the weights are initialized in a region
near a good local minimum before supervised fine-tuning is conducted
to minimize the global training objective [8].

More advanced and recent activation functions [9], learning rate
methods [10], regularization techniques [11], and weight initializa-
tions [12,13] have indeed reduced the need for unsupervised pre-
training in a variety of domains when the training data is completely
labeled. Nevertheless, in real-life PHM applications, high-quality run-
to-failure labeled training data is not easily obtained, especially from
new equipment. However, unsupervised pre-training in semi-su-
pervised setups has the potential to perform with high RUL prediction
accuracy even with reduced amounts of labeled training data in the
fine-tuning procedure. Additionally, most data collected in real-life
PHM applications is subjected to several operating conditions and fault
modes. This increases the inherent degradation complexity, which
makes it more difficult for the prognosis algorithm to discover clear
trends in the input data directly. To cope with this issue, the initial
unsupervised pre-training stage can be utilized. Unsupervised pre-
training extracts more degradation related features before supervised
fine-tuning, and hence, has the potential to support the whole archi-
tecture to better understand the underlying degradation phenomena.

The aim of this paper is to show the effect of unsupervised pre-
training in RUL predictions utilizing a semi-supervised setup. The re-
sults are verified on the four different simulated turbofan engine de-
gradation datasets in the publicly available Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) dataset, produced and pro-
vided by NASA [14]. This study’s main contributions are as follows:

• The GA approach effectively tunes hyper-parameters in deep ar-
chitectures.

• Semi-supervised learning improves the RUL prediction accuracy
compared to supervised learning in multivariate time series data
with several operating conditions and fault modes when the training
data is completely labeled.

• Semi-supervised learning performs higher RUL prediction accuracy
compared to supervised learning when the labeled training data in
the fine-tuning procedure is reduced.

The overall organization of the paper is as follows. Section 2 in-
troduces recent and related work on the C-MAPSS dataset. Section 3
introduces the necessary background on GAs and the proposed semi-
supervised setup. The experimental approach, results, and discussions
are considered in Section 4. Finally, Section 5 concludes and closes the
paper and provides directions for future work.

2. Related work

The C-MAPSS dataset has been extensively used to evaluate several
DL approaches to RUL predictions. This section reviews the most recent
studies applied on the C-MAPSS dataset. The selected studies either
utilize a Convolutional Neural Network (CNN), a Deep Belief Network
(DBN) or Long-Short Term Memory (LSTM) in the proposed deep ar-
chitecture.

In most PHM applications, sequential data is a standard format of
the input data, for example pressure and temperature time series data.
LSTM is a well-established DL technique to process sequential data. The
original LSTM [15] was developed after the early 1990s, when re-
searchers discovered a vanishing and exploding gradient issue in tra-
ditional Recurrent Neural Networks (RNNs) [16]. This issue confirmed
that traditional RNNs had difficulty learning long-term dependencies.
To cope with this issue, the LSTM introduces a memory cell that

regulates the information flow in and out of the cell. Consequently, the
memory cell is able to preserve its state over long durations, that is
learning long-term dependencies that may influence future predictions.
Yuan et al. proposed an LSTM approach for several different faults [17].
The proposed approach was compared with traditional RNN, Gated
Recurrent Unit LSTM (GRU-LSTM) and AdaBoost-LSTM. It showed
improved performance in all cases. Another LSTM approach was pro-
vided by Zheng et al. [6]. The proposed approach provides RUL pre-
dictions using two LSTM layers, two Feed-forward Neural Network
(FNN) layers, and an output layer. The LSTM layers were able to reveal
hidden patterns in the C-MAPSS dataset and achieved higher accuracy
compared to the Hidden Markov Model or traditional RNN. A similar
study was provided by Wu et al. [18]. In this study, an LSTM was
combined with a dynamic difference method in order to extract new
features from several operating conditions before the training proce-
dure. These features contain important degradation information, which
improves the LSTM to better control the underlying physical process.
The proposed approach showed enhanced performance compared to
traditional RNN and GRU-LSTM.

Although CNNs have performed excellently on 2D and 3D grid-
structured topology data, such as object recognition [20] and face re-
cognition [21], respectively, CNNs can also be applied to 1D grid-
structured topology sequential data in PHM applications. Babu et al.
proposed a novel CNN approach for RUL predictions [5]. This CNN
approach includes two layers with convolution and average-pooling
steps, and a final FNN layer to perform RUL predictions. The proposed
approach indicated improved accuracy compared to the Multilayer
Perceptron (MLP), Support Vector Machine (SVM), and Relevance
Vector Machine. More recently, [7] takes a CNN approach. In this
study, Li et al. achieved even higher accuracy on the C-MAPSS dataset
compared to both the LSTM approach in [6] and the CNN approach in
[5]. They employed the recently developed, proven regularization
technique “dropout” [11] and the adaptive learning rate method
“adam” [10].

Hinton et al. introduced the greedy layer-wise unsupervised
learning algorithm in 2006, designing it for DBNs [22]. A DBN consists
of stacked Restricted Boltzmann Machines (RBMs) where the hidden
layer in the previous RBM will serve as the input layer for the current
RBM. The algorithm performs an initial unsupervised pre-training stage
to learn internal representations from the input data automatically.
Next, supervised fine-tuning is performed to minimize the training
objective. Zhang et al. have proposed a multiobjective DBN ensemble
approach [19]. This approach combines a multiobjective evolutionary
ensemble learning framework with the DBN training process. Accord-
ingly, the proposed approach creates multiple DBNs of varying accu-
racy and diversity before the evolved DBNs are combined to perform
RUL predictions. The combined DBNs are optimized through differ-
ential evolution where the average training error is the single objective.
The proposed approach outperformed several traditional machine
learning algorithms, such as SVM and MLP. The recent studies are
summarized in Table 1.

These studies all utilize a completely labeled run-to-failure training
dataset in the training procedure. However, in real-life PHM scenarios,
most data accumulated is unstructured and unlabeled from the start.

Table 1
Recent DL approaches proposed for RUL predictions on the C-MAPSS dataset
[14] (the years between 2016 and 2018).

Author & Refs. Year Approach

Li et al. [7] 2018 CNN + FNN
Wu et al. [18] 2018 LSTM
Zheng et al. [6] 2017 LSTM + FNN
Yuan et al. [17] 2016 LSTM
Zhang et al. [19] 2016 MODBNE
Babu et al. [5] 2016 CNN + FNN
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Valuable domain knowledge is required to construct run-to-failure data
labels. This is both a time-consuming and challenging process. Thus,
this study will investigate the effect of unsupervised pre-training in a
semi-supervised setup both with reduced and completely labeled
training datasets.

3. Proposed semi-supervised setup

This section will introduce the necessary background on the pro-
posed semi-supervised setup. First, the main DL techniques included,
RBM and LSTM, are defined. Next, the proposed deep architecture
structure as well as the GA approach for hyper-parameter tuning are
elaborated.

3.1. Restricted Boltzmann machine

RBMs were originally developed using binary stochastic visible
units, v, in the input layer and binary stochastic hidden units, h, in the
hidden layer [23]. However, in real-value data applications, like the C-
MAPSS dataset, linear Gaussian units replace the binary visible units
and rectified linear units replace the binary hidden units [24]. RBMs are
symmetrical bipartite graphs since the visible and hidden units are fully
connected and units in the same layer have zero connections.

RBMs are energy-based models with the joint probability distribu-
tion specified by their energy function [25]:

=P v h
Z

e( , ) 1 E v h( , )
(1)

where Z is the partition function that ensures that the distribution is
normalized:
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v h
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The energy function for RBMs with Gaussian visible units is given by:
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where wij denotes the weight between the visible unit vi and hidden unit
hj, bi and cj represents the bias terms, V and H expresses the numbers of
visible and hidden units, respectively, and γi is the standard deviation of
vi. As recommended by Hinton [25], zero mean and unit variance

normalization should be applied to the input data. Contrastive diver-
gence is used to train RBMs:

=w v h v h( )ij i j data i j recon (4)

where ϵ is the learning rate. First, the data distribution samples visible
units based on hidden units. Then, the input data is reconstructed,
generated by Gibbs sampling, which samples hidden units based on
visible units. This process continues until the parameters converge, that
is, the hidden layer approximates the input layer. In this way, RBMs are
able to model data distributions without any label knowledge. Typi-
cally, after the pre-training stage, the reconstruction part of the RBM is
omitted and the pre-trained weights facilitate a subsequent supervised
fine-tuning procedure.

3.2. Long-Short term memory

Modifications by Gers et al. [26] have been included in the original
LSTM, and researchers generally refer to this LSTM setup as the “vanilla
LSTM.” Although several variants of the vanilla LSTM have been pro-
posed, Greff et al. have shown that none of the variants can improve the
vanilla LSTM significantly [27]. Thus, the proposed semi-supervised
setup uses the vanilla LSTM.

The memory cell, as illustrated in Fig. 1, consists of three non-linear
gating units that protect and regulate the cell state, St [28]:

= + +f W x R h b( )t f t f t f1 (5)

= + +i W x R h b( )t i t i t i1 (6)

= + +o W x R h b( )t o t o t o1 (7)

where σ is the sigmoid gate activation function in order to obtain a
scaled value between 0 and 1, W is the input weight, R is the recurrent
weight, and b is the bias weight.

The new candidate state values, S̃ ,t are created by the tanh layer:

= + +S tanh W x R h b˜ ( )t s t s t s1 (8)

The previous cell state, S ,t 1 is updated into the new cell state, St, by:

= +S f S i S̃t t t t t1 (9)

where ⊗ denotes element-wise multiplication of two vectors. First, the
forget layer, ft, determines which historical information the memory
cell removes from St. Then, the input layer, it, decides what new

Fig. 1. Vanilla LSTM, adopted from Olah [28]. The blue rectangle represents the memory cell. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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information in S̃t the memory cell will update and store in St.
The output layer, ot, determines which parts of St the memory cell

will output. St is filtered in order to push the values between −1 and 1:

=h o tanh S( )t t t (10)

Through these steps, the vanilla LSTM has the ability to remove or add
information to St.

3.3. The proposed deep architecture structure and the genetic algorithm
approach

The proposed semi-supervised deep architecture structure is shown
in Fig. 2. In the first layer (L1), a RBM will be utilized as an un-
supervised pre-training stage in order to learn abstract features from
raw unlabeled input data automatically. These features might contain
important degradation information, and hence, initialize the weights in
a region near a good local minimum before supervised fine-tuning of
the whole architecture is conducted. In both the second and the third
layer (L2 and L3), an LSTM layer is used to reveal hidden information
and learn long-term dependencies in sequential data with multiple
operating and fault conditions [6]. Next, an FNN layer is used in the
fourth layer (L4) in order to map all extracted features. In the final layer
(L5), a time distributed fully connected output layer is attached to
handle error calculations and perform RUL predictions.

The GA is a metaheuristic inspired by the natural selection found in
nature [29]. It is a powerful tool for finding a near-optimal solution in a
big search space. In this work, a GA approach is proposed to tune hyper-
parameters. First, the GA approach selects random hyper-parameters
for the proposed semi-supervised deep architecture within a given
search space. One such set of random hyper-parameters is called an
individual and a set of individuals is called a population. Next, the

accuracy of each of the individuals in the population are evaluated by
training networks with the individuals hyper-parameters. The best re-
sults from the training are then kept and used as parents for the next
generation of hyper-parameters. Additionally, some random mutation
is performed after the crossover for increasing the exploration of the
algorithm.

4. Experimental study

In the following experimental study, the proposed semi-supervised
deep architecture will be compared to recent studies in the literature as
well as purely supervised training. The latter comparison will be per-
formed with and without the initial pre-training stage utilizing the
proposed semi-supervised deep architecture when the labeled training
data in the fine-tuning procedure is reduced. Experiments are per-
formed on the four subsets provided in the benchmark C-MAPSS da-
taset: FD001, FD002, FD003, and FD004. All experiments are run on
NIVIDIA GeForce GTX 1060 6 GB and the Microsoft Windows 10 op-
erating system. The programming language is Java 8 with deep learning
library “deeplearning4j” (DL4J) version 0.9.1 [30].

4.1. The benchmark C-MAPSS dataset and performance evaluation

The C-MAPSS dataset is divided into four subsets, as shown in
Table 2, and each subset is further divided into training and test sets of
multiple multivariate time series. Each time series is from a different
aircraft gas turbine engine and starts with different degrees of initial
wear and manufacturing variation, which is unknown to the data
analyzer. All engines operate in normal condition at the start, then
begin to degrade at some point during the time series. The degradation
in the training sets grows in magnitude until failure, while the

Fig. 2. The proposed semi-supervised deep architecture structure.
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degradation in the test sets ends sometime prior to failure, that is the
RUL. That is, the last time step for each engine in the test sets provides
the true RUL targets. Thus, the main objective is to predict the correct
RUL value for each engine in the test sets. The four subsets vary in
operating and fault conditions and the data is contaminated with sensor
noise. Each subset includes 26 columns: engine number, time step,
three operational sensor settings, and 21 sensor measurements. See
[14,31] for a deeper understanding of the C-MAPSS dataset.

The scoring function (S) provided in Saxena et al. [31] and the root
mean square error (RMSE) are used in this study to evaluate the per-
formance of the proposed semi-supervised setup:
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where n is the total number of true RUL targets in the respective test set
and =d RUL RULi predicted true. As shown in Fig. 3, the RMSE gives equal
penalty to early and late predictions. In the asymmetric scoring func-
tion, however, the penalty for late predictions is larger. Late predictions
could cause serious system failures in real-life PHM applications as the
maintenance procedure will be scheduled too late. On the other hand,
early predictions pose less risk since the maintenance procedure will be
scheduled too early, and hence, there is still time to perform main-
tenance. Nevertheless, the main objective is to achieve the smallest
value possible for both S and RMSE, that is, when =d 0i .

Only evaluating performance at the last time step for each engine in

the test sets has both advantages and disadvantages. High and reliable
RUL prediction accuracy at the very end of components and sub-com-
ponents lifetime have of course great industrial significance, as this
period is critical for PHM applications. However, this evaluation ap-
proach could hide the true overall prognostics accuracy as the prog-
nostics horizon of the algorithm is not considered. The prognostics
horizon is critical in order to achieve trustworthy confidence intervals
for the corresponding RUL prediction. These confidence intervals are
important due to both inherent uncertainties with the degradation
process and potential flaws in the prognosis algorithm [32].

Table 2
The C-MAPSS dataset [14].

Dataset FD001 FD002 FD003 FD004

Time series training set 100 260 100 249
Time series test set 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Fig. 3. Simple illustration of the scoring function vs. RMSE, where =d RUL RULi predicted true.

Table 3
Genes in the GA approach.

Gene Hyper-parameter Values

1 Rc 115, 120, 125, 130, 135, 140
2 Learning rate RBM layer 10 ,1 10 ,2 10 3

3 Learning rate remaining layers 10 ,2 10 ,3 10 4

4 L2 Regularization 10 ,4 10 ,5 10 6

5 miniBatch 5, 10
6 n L1 32, 64, 128
7 n L2 32, 64, 128
8 n L3 32, 64, 128
9 n L4 8, 16
10 p L2 0.5, 0.6, 0.7, 0.8, 0.9
11 p L3 0.5, 0.6, 0.7, 0.8, 0.9
12 p L4 0.5, 0.6, 0.7, 0.8, 0.9
13 I/O activation function LSTM sigmoid, tanh
14 Activation function FNN sigmoid, tanh

Table 4
Parameters of the GA approach.

Parameter Value

Population size 20
Nr of elite 3
Mutation rate 0.5
Mutation gain 0.3
Evolution iterations 3
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Fig. 4. Flowchart of the GA approach.
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4.2. Data preparation

4.2.1. Masking and padding
The DL4J library provides a “CSVSequenceRecordReader” to handle

time series data. It reads time series data, where each time series is
defined in its own file. Each line in the files represents one time step.
Consequently, each time series (engine) in the four training sets are
split into their own file. The input training data has the following shape:
[miniBatchSize, inputSize, timeSeriesLength], where miniBatchSize is
the number of engines in the mini batch, input size is the number of
columns, and timeSeriesLength is the total number of time steps in the

mini batch. The engines have variable time step lengths, and hence, the
shorter engines in a mini batch are padded with zeros such that the time
step lengths are equal to the longest among them. Accordingly, mask
arrays are used during training. These additional arrays record whether
a time step is actually present, or whether it is just padding. In all
performance evaluations, mask arrays are considered.

4.2.2. Feature selection
Sensor 1, 5, 6, 10, 16, 18, and 19 in subset FD001 and FD003 exhibit

constant sensor measurements throughout the engineâ;;s lifetime.
Constant sensor measurements does not provide any useful degradation

Table 5
GA individuals.

FD001 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 14 64 1.0 ReLU
2 LSTM 64 64 0.9 Sigmoid
3 LSTM 64 64 0.6 Sigmoid
4 FNN 64 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
115 10 2 10 3 10 6 5 8.49

FD002 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 24 64 1.0 ReLU
2 LSTM 64 128 0.7 Sigmoid
3 LSTM 128 32 0.8 Sigmoid
4 FNN 32 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
135 10 2 10 3 10 5 10 9.60

FD003 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 14 32 1.0 ReLU
2 LSTM 32 128 0.9 Sigmoid
3 LSTM 128 64 0.9 Sigmoid
4 FNN 64 8 0.9 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
125 10 2 10 3 10 6 5 8.59

FD004 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 24 64 1.0 ReLU
2 LSTM 64 128 0.8 Sigmoid
3 LSTM 128 32 0.7 Sigmoid
4 FNN 32 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
135 10 2 10 3 10 5 10 10.45

Table 6
The proposed semi-supervised deep architecture with and without unsupervised pre-training on subset FD004 when the labeled training data is reduced from 100%
to 10%. Improvement = (1 )Semi supervised

Supervised .

RMSE 100% 80% 60% 40% 20% 10%

Semi-supervised with 100% training features in the pre-training stage 22.66 23.04 24.07 25.46 30.26 34.19
Supervised 23.62 23.45 24.14 26.40 30.27 34.90
Improvement 4.06% 1.75% 0.29% 3.56% 0.03% 2.03%

S 100% 80% 60% 40% 20% 10%

Semi-supervised with 100% training features in the pre-training stage 2840 3175 3576 5522 9562 22,476
Supervised 3234 3427 3650 6536 15,612 27,138
Improvement 12.18% 7.35% 2.03% 15.51% 38.75% 17.18%

Average training time per epoch (s) 100% 80% 60% 40% 20% 10%

Pre-training stage 7.08 7.08 7.08 7.08 7.08 7.08
Fine-tuning procedure 34.14 28.97 22.39 15.2 9.74 5.93
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information regarding RUL predictions [19,33]. In addition, subset
FD001 and FD003 are subjected to a single operating condition [5].
Hence, the three operational settings are excluded. Accordingly, sensor
2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21 are used as the input
features for subset FD001 and FD003.

Subset FD002 and FD004 are more complex due to six operating
conditions [18]. Six operating conditions make it challenging for the
prognosis algorithm to detect clear degradation patterns in the input
data directly. However, two LSTM layers were able to find hidden
patterns in Zheng et al. [6]. Additionally, the initial unsupervised pre-
training stage is able to capture hierarchically statistical patterns before
the supervised fine-tuning procedure. Consequently, these patterns will
enable the whole architecture to cope with the complexity inherent in
degradation. Thus, all three operational sensor settings and all sensor
measurements are used as the input features for subset FD002 and
FD004.

4.2.3. RUL targets
True RUL targets are only provided at the last time step for each

engine in the test sets. In order to construct labels for every time step for
each engine in the training sets, Heimes et al. [33] used an MLP func-
tion estimator to show that it is reasonable to estimate RUL as a con-
stant value when the engines operate in normal condition. Based on
their experiments, a degradation model was proposed with a constant
RUL value (Rc) of 130 and a minimum value of 0. This piece-wise linear
RUL target function is still the most common approach in the literature
[5–7,18,19]. However, Rc varies among the different studies. For this
study, the GA approach is used to test different Rc since it has a notable
impact on the experimental performance for the different subsets in the
C-MAPSS dataset.

4.2.4. Data normalization
All input features and labels are normalized with zero mean unit

variance (z-score) normalization:

=z x µ
(13)

where μ is the mean and σ is the corresponding standard deviation.

4.3. Deep architecture configuration and training

In the initial RBM layer, a rectified linear unit (ReLU) is used as the
activation function as ReLUs improve the performance of RBMs com-
pared to the tanh activation function [9]. Stochastic gradient descent is
the selected optimization algorithm and adaptive moment estimation
(Adam) [10] is the learning rate method applied to the deep archi-
tecture. Recently, Adam has shown great results on the C-MAPSS da-
taset [7,18]. To better preserve the information in the pre-trained
weights, the learning rate in the initial RBM layer is one order of
magnitude higher than the learning rate in the remaining layers. ReLU
weight initialization [13] is applied to the RBM layer while Xavier
weight initialization [12] is applied to the remaining layers in the
proposed semi-supervised deep architecture.

Truncated backpropagation through time (TBPTT) is used in this
study due to a large amount of time steps in the training sets. TBPTT
performs more frequent parameter updates compared to standard
backpropagation through time. This both reduces computational com-
plexity and improves learning of temporal dependencies [34]. The
forward and backward passes are set to 100 time steps, as the shortest
time series in the C-MAPSS dataset contains 128 time steps.

In the training procedure, each complete training subset is split into
a training set and a cross-validation set. In subset FD001 and FD003,

Fig. 5. RMSE comparison on subset FD004 when the labeled training data is reduced from 100% to 10%.
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20% of the total engines in the complete training subsets are randomly
selected for cross-validation. The remaining 80% are designated as the
training sets. Due to an increased complete training subset size in subset
FD002 and FD004, 10% of the total engines are randomly selected for
cross-validation while the remaining 90% are designated as the training
sets.

Table 3shows all the hyper-parameters which the GA approach
needs to optimize for each subset. The recent and well-proven reg-
ularization technique dropout [11] is applied to the deep architecture.
Dropout introduces the hyper-parameter, p, which randomly drops
units during training. In this way, dropout approximately combines an
exponential number of different architectures. Thus, the deep archi-
tecture learns to make generalized representations of the input data,
which enhances the feature extraction ability. In Table 3, n and p refer
to the number of hidden units and the probability of retaining each
hidden unit in the coupled hidden layer L, respectively. A p value of 1.0
is functionally equivalent to zero dropout, i.e. 100% probability of re-
taining each hidden unit. A typical value for p used in the literature is
0.5 [7,18]. However, p depends on n. In this study, the GA approach is
able to test different values of n in both L1, L2, L3, and L4, and hence, it
is also able to test different values of p in the range from 0.5 to 0.9. As
Patterson and Gibson [35] recommend, to preserve important features
in the input data, dropout is disabled in the first layer, L1. Additionally,
dropout is not used in the output layer, L5. It should be noted that
dropout is only applied to the non-recurrent connections in the LSTM
layers.

The GA approach is run once for each subset. It trains a diverse
number of individuals on the training sets and evaluates the RMSE,
Eq. 12, on the cross-validation set as its objective function. In this way,
the GA approach optimizes the hyper-parameters for each subset. To
limit the time consumed during the optimization process, the popula-
tion size is restricted to 20 individuals and the population is evolved
three times with the selected GA parameters as shown in Table 4. This

results in an average training time of 60 hours for each subset. How-
ever, the training time will reduce significantly along with future de-
velopments in GPUs. Additionally, to prevent overfitting, early stopping
(ES) is applied to monitor the performance during the training process
of each individual. In the unsupervised pre-training stage, ES is used to
monitor the reconstruction error on the training set. If the number of
epochs with no improvement exceeds nine, the unsupervised pre-
training procedure is terminated. In the fine-tuning procedure, ES is
used to monitor the RMSE accuracy on the cross-validation set. If the
number of epochs with no improvement exceeds four, the fine-tuning
procedure is terminated. Finally, the top five GA individuals for each
subset are evaluated on the test sets where both RMSE and S are cal-
culated. A complete flowchart of the GA approach is shown in Fig. 4
and the best GA individuals for each subset are shown in Table 5. In
Table 5, nIn and nOut represents the number of input and output
(hidden) units for each layer, respectively.

4.4. Experimental results and discussions

The aim of this paper is to show increased RUL prediction accuracy
in multivariate time series data subjected to several operating condi-
tions and fault modes utilizing a semi-supervised setup. The experi-
ments conducted in this study shows the effect of unsupervised pre-
training both when the training data is completely labeled and when
the labeled training data in the fine-tuning procedure is reduced.

4.4.1. The effect of unsupervised pre-training in RUL predictions
Subset FD004 is chosen for this experiment due to the complexity

inherent in its six operating conditions and two fault modes. As shown
in Table 6, semi-supervised learning provides higher RUL prediction
accuracy compared to supervised learning when the training data is
100% labeled. This indicates that the unsupervised pre-training stage
initializes the weights using a more suitable local minimum than

Fig. 6. S comparison on subset FD004 when the labeled training data is reduced from 100% to 10%.
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weights that are randomly initialized. Consequently, unsupervised pre-
training supports better comprehension of the inherent degradation
complexity in the whole architecture.

In real-life PHM scenarios, high-quality labeled training data is hard
to acquire. To address this problem, this study has performed an ex-
periment where only reduced parts of the training data in subset FD004
contains labels. The labels in the training set are randomly reduced into
fractions of 20%, 40%, 60%, 80%, and 90%, respectively. To minimize
any selection bias, the random selection process is repeated five times
for each fraction. Each random selection is then trained on the training
set and evaluated on the test set where RMSE and S are calculated.
Finally, the top three performance results are averaged as shown in
Table 6. It should be noted that a similar experiment, which has made
interesting and valuable results using a variational autoencoder (VAE),
is conducted on subset FD001 in [36].

To show the effect of unsupervised pre-training, the proposed deep
architecture is trained with and without the initial pre-training stage. In
the initial pre-training stage, the proposed deep architecture is trained
with 100% training features. The ES procedure is used to monitor the
performance. As shown in Figs. 5 and 6, the proposed semi-supervised
deep architecture provides the overall highest RUL prediction accuracy
when trained with the initial unsupervised pre-training stage. It should
be noted that the proposed deep architecture, when trained in a purely
supervised manner, also provides satisfactory RUL prediction accuracy,
especially when more than 60% of the training labels are included. This
proves that recent weight initializations and regularization techniques,
such as Xavier and dropout, have indeed reduced the need for un-
supervised pre-training. Dropout in particular improves the feature
extraction ability by approximately combining several different archi-
tectures in the fine-tuning procedure. However, the improvement of
utilizing semi-supervised learning is noticeable when more than 40% of

the training labels are removed, as shown in Table 6.
Additionally, as shown in Fig. 7, the average training time per epoch

will almost linearly decrease with decreasing training labels, e.g. 15.2 s
training time at 40% labels, which is =15.2 s/34.14 s 44.5% training
time per epoch compared to 100% labels. Also, as seen in Figs. 5 and 6,
the RUL prediction accuracy is satisfactory when more than 60%
training labels are included. Depending on the reliability and safety
requirements of the application, the trade-off of reduced RUL prediction
accuracy might be acceptable if the training time is critical.

4.4.2. Comparison with the literature
Studies that have reported results on all four subsets in the C-MAPSS

dataset have been selected for comparison. Although the initial Rc va-
lues are somewhat different, the results are still comparable. As shown
in Tables 7 and 8, the proposed semi-supervised deep architecture has
achieved promising results compared to the recent studies when the
training data is completely labeled. The CNN approach in Li et al. [7]
achieved slightly higher RMSE prediction accuracy on subset FD002.
However, the proposed semi-supervised deep architecture indicates
substantially improved S prediction accuracy on all subsets. Conse-
quently, the proposed semi-supervised deep architecture reduces the

Fig. 7. Average training time in seconds per epoch in the fine-tuning procedure when the labeled training data is reduced from 100% to 10%.

Table 7
RMSE comparison with the literature on the C-MAPSS dataset.

DL approach & refs. FD001 FD002 FD003 FD004

CNN + FNN [5] 18.45 30.29 19.82 29.16
LSTM + FNN [6] 16.14 24.49 16.18 28.17
MODBNE [19] 15.04 25.05 12.51 28.66
CNN + FNN [7] 12.61 22.36 12.64 23.31
Proposed semi-supervised setup 12.56 22.73 12.10 22.66
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average number of late predictions across the test sets considerably.
This is because the unsupervised pre-training stage extracts more de-
gradation related features before supervised fine-tuning. Thus, this
stage supports the whole architecture to better understand the under-
lying degradation trends. Late predictions impose a serious threat to
reliability and safety in real-life PHM applications as the maintenance
procedure will be scheduled too late. Therefore, semi-supervised
learning is a promising approach in RUL predictions tasks both sub-
jected to a single and multiple operating conditions and fault modes.

5. Conclusion and future work

This paper has investigated the effect of unsupervised pre-training
in RUL predictions utilizing a semi-supervised setup. The experiments
are performed on the publicly available C-MAPSS dataset. Additionally,
a GA approach was proposed to tune the number of diverse hyper-
parameters in deep architectures. Combining all the hyper-parameters
in Table 3 results in a total of 8 748 000 combinations. Although, the
GA approach only used 20 individuals and three evolutions, it was able
to optimize hyper-parameters for each subset in the C-MAPSS dataset
effectively. This is a promising approach compared to using a time
consuming, exhaustive search. However, the average training time of
60 hours for each subset will be further optimized in future work.

In the experimental study, the proposed semi-supervised setup is
compared to purely supervised training as well as recent studies in the
literature. The proposed semi-supervised setup achieved promising RUL
prediction accuracy with both completely and reduced amounts of la-
beled training data. Hence, unsupervised pre-training is indeed a pro-
mising feature in real-life PHM applications subjected to multiple op-
erating conditions and fault modes, as large amounts of high-quality
labeled training data might be both challenging and time-consuming to
acquire. Unsupervised pre-training supports the deep architecture to
improve our understanding of the inherent complexity by extracting
more features that contain important degradation information.

In this study, an RBM was utilized as the initial unsupervised pre-
training stage. However, RBM is a rather old, unsupervised DL tech-
nique. Today, more powerful unsupervised DL techniques are available.
For instance, the VAE [36,37] seems promising. The VAE models the
underlying probability distribution of the training data using varia-
tional inference. It is possible to extend to a wide range of model ar-
chitectures, and this is one of its key advantages compared to RBM,
which requires careful model design to maintain tractability [38].

In RUL predictions based on data-driven approaches, such as DL, the
accuracy strongly depends on the quality of the constructed run-to-
failure training data labels. This study confirms that Rc has a notable
impact on the RUL prediction accuracy for each subset. Nevertheless,
the piece-wise linear degradation model used in this study is considered
a major limitation as each engine in each subset has, in fact, an in-
dividual degradation pattern. Recently, the VAE has been used for
unsupervised reconstruction based anomaly detection by applying a
reconstruction error as an anomaly score [39]. Thus, in future work, the
VAE will also be used in order to create an unsupervised fault detector
to optimize Rc for each engine in each subset in the C-MAPSS dataset.

Normally, tanh is used as the input and output (I/O) activation
function in LSTMs. However, in this study it was discovered that sig-
moid performed better than tanh as the LSTM I/O activation function in

combination with the initial RBM layer with ReLU as the activation
function. A novel rectified LSTM I/O activation function would be a
positive contribution to be included in future work.
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ABSTRACT In recent years, the reliability and safety requirements of ship systems have increased
drastically. This has prompted a paradigm shift toward the development of prognostics and health manage-
ment (PHM) approaches for these systems’ critical maritime components. In light of harsh environmental
conditions with varying operational loads, and a lack of fault labels in the maritime industry generally, any
PHMsolution formaritime components should include independent and intelligent fault detection algorithms
that can report faults automatically. In this paper, we propose an unsupervised reconstruction-based fault
detection algorithm for maritime components. The advantages of the proposed algorithm are verified on five
different data sets of real operational run-to-failure data provided by a highly regarded industrial company.
Each data set is subject to a fault at an unknown time step. In addition, different magnitudes of random white
Gaussian noise are applied to each data set in order to create several real-life situations. The results suggest
that the algorithm is highly suitable to be included as part of a pure data-driven diagnostics approach in future
end-to-end PHM system solutions.

INDEX TERMS Automatic fault detection, deep learning, maritime industry, prognostics and health
management, unsupervised learning.

I. INTRODUCTION
Ship systems are more complex and integrated than ever
before. Thus, the degradation of critical maritime compo-
nents included in these systems poses a serious threat to
safe and profitable maritime operations [1]. In general, main-
tenance in shipping either follows a reactive maintenance
(RM) or preventive maintenance (PvM) approach [2]. RM
can be described as post-failure repair, and hence, it will
create large and unnecessary costs when critical maritime
component failures occur during operation. PvM involves
predetermined maintenance intervals based on constant inter-
vals or age-based or imperfect maintenance [3]. PvM will,
of course, provide high reliability, but it involves unneeded
maintenance inspections and procedures involving com-
pletely functional systems. Additionally, critical maritime
components are, in fact, subject to random failure patterns
due to different environmental conditions with varying oper-
ational loads [4]. Neither RM nor PvM is sufficient to

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

identify these kinds of failures. The need for prognostics and
health management (PHM) approaches which incorporate
automatic fault detection and associated remaining useful life
(RUL) predictions is urgent. RUL predictions aim to obtain
the ideal maintenance policy through predictions of the avail-
able time until failure after a fault is detected within the com-
ponent [5]. In this way, PHM approaches have the potential
to prevent critical maritime component failures, and hence,
considerably enhance maritime operational performance and
safety [6].

Recently, deep learning (DL) has emerged as a potent
data-driven area for accurate RUL predictions for compo-
nent degradation [5], [7]. RUL-based DL techniques uti-
lize raw input sensor data and are less dependent on
prior domain knowledge of component mechanics. How-
ever, they depend on large, labeled run-to-failure data in
the training process. Thus, the RUL predictions strongly
depend on the accuracy of the fault detection algorithm,
that is, the process of separating normal operating data
from faulty degradation data in order to create run-to-failure
labels.
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In general, traditional fault detection algorithms based on
signal processing methods, such as Empirical Mode Decom-
position [8] and Wavelet Transform [9], are to some extent
application specific and need prior domain knowledge to
distinguish normal operating data from faulty degradation
data. Due to varying operational conditions, fault detection
algorithms for critical maritime components should not be
application specific. Additionally, with respect to the mar-
itime industry generally, there is a lack of fault labels of
critical maritime components [10]. This creates major issues
towards successful implementation of fault detection algo-
rithms that utilize a supervised classifier to separate nor-
mal operating data from faulty degradation data [11]. Thus,
maritime components require independent and intelligent
fault detection algorithms in order to detect and report faults
automatically.

This paper investigates the possibilities for automatic fault
detection within maritime components. In order to do so,
an unsupervised reconstruction-based fault detection algo-
rithm for maritime components is introduced. The algorithm
can be applied to several machine learning (ML) algorithms
and encoder-decoder (ED)-structured DL techniques. Thus,
it will be tested on four techniques: traditional Feed-forward
Neural Network with one hidden layer (1FNN), Autoencoder
(AE), Variational Autoencoder (VAE), and Long-Short Term
Memory (LSTM). Each technique is trained and evaluated
on five different data sets of real operational run-to-failure
data of the same maritime component collected from a highly
regarded industrial company. Each data set is subject to a fault
at an unknown time step. Additionally, different magnitudes
of randomwhite Gaussian noise are applied to each data set to
create several real-life situations in order to test the robustness
of the algorithm. First, the algorithm estimates an anomaly
score function by calculating a reconstruction error at each
time step in faulty degradation data. Then, the algorithm
detects a fault automatically by estimating the time step with
the highest acceleration in the anomaly score function. This
study’s main contributions are as follows:
• ED-structured DL techniques prove robustness towards
noisy real operational input data.

• The proposed algorithm is not application specific, that
is, the algorithm proves consistent high accuracy in
real operational input data when subjected to varying
operational conditions. Additionally, the algorithm is
considered more generic than fault indications based on
user-specified threshold values.

• The proposed algorithm reports faults automatically
with no prior knowledge of component degradation
mechanics.

The overall organization of the paper is as follows. Section II
introduces recent and related work on intelligent fault detec-
tion algorithms. Section III introduces the necessary back-
ground on traditional FNN and ED-structured DL techniques.
The experimental approach, results, and discussions are con-
sidered in section IV. Finally, Section V concludes and closes
the paper and provides directions for future work.

II. RELATED WORK
The development of intelligent fault detection algorithms
has exploded in the last two years. The majority is based
on reconstruction-based fault detection by applying a recon-
struction error as an anomaly score. The core idea is to train
a specific machine learning (ML) algorithm, in an unsuper-
vised manner, to reconstruct normal operating data. The ML
algorithm will then provide a higher reconstruction error on
unforeseen trends in faulty degradation data. Brandsæter et al.
[12]used Auto Associative Kernel Regression (AAKR) for
reconstruction and the Sequential Probability Ratio Test for
anomaly detection provided. In order to determine the fault
condition, a lower bound and upper bound threshold value
was used. Yang et al. [13] used Support Vector Regression
(SVR) for reconstruction and probability information based
on three statistical indexes for anomaly detection. However,
both AAKR and SVR are considered shallow ML algorithms
which might not reconstruct high-dimensional and noisy
operational data accurately. ED-structured DL techniques are
well-suited to first compress and then reconstruct such oper-
ational data. The compressed version of the input supports
the reconstruction process to extract information relevant to
the normal operating data. In this way, ED-structured DL
techniques cannot reconstruct unforeseen patterns in faulty
degradation data, which results in a larger reconstruction
error.

Recent studies have employed variations on the tradi-
tional AE for fault detection of rolling bearings, verified on
the data set provided by Case Western Reserve University
Bearing Data Center [14]. Lu et al. [15] demonstrated the
effectiveness of a Stacked Denoising Autoencoder (SDA).
The SDA showed improved accuracy for signals containing
ambient noise and different working loads compared to tradi-
tional fault detection algorithms. Nevertheless, the accuracy
indicated inconsistency between different working loads.
Liu et al. [16] used a Gated Recurrent Unit-based non-
linear predictive Denoising Autoencoder (GRU-NP-DAE)
provided. The proposed method showed improved accuracy
compared to several state-of-the-art methods, including the
SDA provided in [15]. Both the SDA and the GRU-NP-DAE
trained a supervised classifier to separate normal operating
data from faulty degradation data. Thus, both approaches
require fault labels in the training process. Additionally,
the approaches were trained under a de-noising criterion [17],
that is, the input was corrupted stochastically while the target
for reconstruction was kept as the original input. To make
full use of both acoustic and vibratory signals, Li et al. [18]
used a deep random forest fusion (DRFF) technique. The
proposed approach combined deep feature representations
and data fusion strategies to show improved performance of
gearbox fault diagnostics. Nevertheless, the DRFF technique
also trained a supervised classifier.

Although the above approaches have shown superior
fault detection accuracy compared to traditional fault detec-
tion algorithms, they are less suitable for maritime compo-
nents. First, maritime components are subjected to varying
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environmental and operating conditions. Thus, a suitable fault
detection algorithm should not rely on user-specified thresh-
old values. Second, supervised classifiers require fault labels
in the training process. This is a barrier given that there is a
common lack of fault labels in the maritime industry. Finally,
maritime components are subjected to random amounts of
noise in real operational input data. Thus the de-noising cri-
terion is not completely realistic, as in real-life situations the
target for reconstruction will also contain the noise. Hence,
maritime components require more independent and intelli-
gent fault detection algorithms.

In the last two years, independent and intelligent fault
detection algorithms have begun to develop. Park et al. [19]
introduced an LSTM based Variational Autoencoder (LSTM-
VAE) anomaly detector for robot-assisted feeding. The
LSTM-VAE reports an anomaly when a reconstruction-based
anomaly score is higher than a varying state-based threshold.
The threshold changes over the estimated state of a task
execution. Malhotra et al. [20] used an LSTM approach to
reconstruct time-series data. The reconstruction error was
used to compute a health index (HI) curve. Then, the HI curve
was used to create run-to-failure labels in order to predict the
RUL. The unsupervised reconstruction-based fault detection
algorithm for maritime components which we propose in this
work follows the idea of generic fault detection provided
in [19]. However, the main difference is the utilization of
the time step with the highest acceleration as varying fault
indications. Additionally, the proposed algorithm can be fur-
ther used to create run-to-failure labels in order to predict the
RUL, similar to the approach in [20].

III. BACKGROUND ON ED STRUCTURED DL TECHNIQUES
This section will introduce the necessary background on the
traditional FNN and the ED-structured DL techniques used
in this study. First, FNN, AE, VAE, and LSTM are defined.
Next, the configuration and performance evaluation of the
unsupervised reconstruction models are elaborated.

A. FEED-FORWARD NEURAL NETWORK
Traditional FNNs form the basis of the ED-structured DL
techniques used in this paper. FNNs aim to approximate some
function f ∗ by mapping an input x to a target y, that is,
y = f ∗(x). An FNN defines a mapping y = f (x; θ ) and learns
the value of the parameters θ , which consists of weights and
biases, through the back-propagation algorithm [21]. FNNs
are typically called networks because they are represented by
combining together several layers [22]. Each unit in layer l
computes its own activation value:

alj = σ (z
l
j) (1)

where σ is the activation function and the argument is the
weighted sum

zlj = blj +
∑
k

wljka
l−1
k (2)

of the output al−1k from unit k in the previous layer l − 1.
blj denotes the bias, while wljk represent the weight factors.
In the first hidden layer l = 1, the input is a0j = xj, where xj,
j = 1 . . . n, are the inputs to the FNN. As each layer is fully
connected, the weighted sum of the outputs of layer l − 1 is
over all units k .

B. AUTOENCODER
An AE is an FNN trained to reconstruct its input through
a ‘‘bottleneck’’ representation of latent variables (hidden
units) z [23]. As seen in Figure 1, the AE consists of an
encoder function z = fθe (x) and a decoder function that
produces a reconstruction r = gθd (z). The AE objective
function is as follows [23]:

JAE (θe, θd ) =
∑

L(x, r) (3)

The optimization of the parameters θe and θd , which con-
sist of weights and biases, are learned concurrently in the
reconstruction process and compared to the original input
data in order to obtain the lowest possible reconstruction error
L(x, r). In this work, L(x, r) is themean squared error (MSE),
and hence, the AE objective function becomes:

JAE (θe, θd ) =
1
m

m∑
i=1

||xi − gθd (fθe (xi))||
2 (4)

where m is the number of units in the input layer. AEs
can be stacked with several hidden layers, depending on the
dimensionality of the input data, and it is trained by the
back-propagation algorithm. Significantly, unsupervised pre-
training might be necessary for AEs with many hidden layers.

FIGURE 1. A simple illustration of an AE. m units in the input layer, l units
in the hidden layer (bottleneck), and k units in the output layer.

C. VARIATIONAL AUTOENCODER
The VAE is a modern variation of the traditional AE,
developed by Kingma and Welling [24]. Compared to the
traditional AE, the VAE models the underlying probability
distribution using Bayesian inference. Thus, the latent vari-
ables z are stochastic variables, and this improves general-
ization. As seen in Figure 2, the VAE consists of an encoder
function z = qθe (z|x) and a decoder function r = pθd (x|z).
The objective function of the VAE is to maximize the varia-
tional lower bound JVAE associated with data point x [22]:

JVAE (θe, θd ) = −DKL
(
qθe (z|x) || pθd (z)

)
+Eqθe (z|x)[log pθd (x|z)] (5)

VOLUME 7, 2019 16103



A. L. Ellefsen et al.: Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components

where DKL is the Kullback-Leibeler (KL) divergence. The
first term provides a regularization since it measures how
closely the latent variables match the encoder function
(latent loss), while the second term is the reconstruction
log-likelihood (generative loss). However, the reconstruction
error term in Eq. 5 requires a Monte Carlo estimate of the
expectation, and this is not easily differentiable [24]. A repa-
rameterization trick of z is applied to obtain the gradients
of the decoder in order to use the back-propagation algo-
rithm. The reparameterization trick introduces a deterministic
variable such that z = µ + σε, ε ∼ N (0, 1) [24]. Thus,
the encoder now generates a vector of means and a vector
of standard deviations instead of a vector of real values.
As seen in Figure 2, these vectors are then used as the latent
vector in the decoder. For real-valued input data, a Gaussian
reconstruction distribution is used in the decoding process.
Like AEs, the VAE can be stacked with several hidden layers
depending on the dimensionality of the input data. Also, pre-
training might be necessary with many hidden layers.

FIGURE 2. A simple illustration of a VAE. m units in the input layer, l and
k units in the hidden layers of the encoder and decoder, and j units in
latent vector.

D. LONG-SHORT TERM MEMORY
Today, modifications by [25]–[27] have been included in the
original LSTM [28], and the literature refers to this as the
‘‘vanilla LSTM’’. This study uses ‘‘vanilla LSTM’’ with no
peephole connections. As opposed to traditional Recurrent
Neural Networks, the LSTM introduces a memory cell that
regulates the information flow in and out of the cell. Thus,
the memory cell is able to preserve its state over time, such
that it learns long-term dependencies. As seen in Figure 3,
the memory cell consists of three non-linear gating units that
protect and regulate the cell state, St [29]:

f t = σ (W f xt + Rf ht−1 + bf ) (6)

it = σ (W i xt + Ri ht−1 + bi) (7)

ot = σ (Wo xt + Ro ht−1 + bo) (8)

where σ is the logistic sigmoid gate activation function,
σ (x) = 1

1+e−x , which provides a scaled value between 0 and
1.W is the input weight,R is the recurrent weight, and b is the
bias weight. The new candidate state values, S̃t , are created

FIGURE 3. A simple illustration of an LSTM. f t , it , and ot represents the
forget, input, and output gate, respectively.

by the tanh layer:

S̃t = tanh(W s xt + Rs ht−1 + bs) (9)

The previous cell state, St−1, is updated into the new cell
state, St , by

St = f t ⊗ St−1 + it ⊗ S̃t (10)

where⊗ denotes element-wise multiplication of two vectors.
First, f t determines which historical information the memory
cell should forget. Then, it decides what new information
in S̃t the memory cell will input and store in St . Finally, ot
determines which parts of St the memory cell will output:

ht = ot ⊗ tanh (St ) (11)

Through these equations, the LSTM has the ability to
remove or add information to St , which makes it highly
suitable to process time-series data. Like AEs and VAEs,
the LSTM is trained by the back-propagation algorithm and
can be stacked with several hidden layers depending on the
dimensionality of the input data.

E. UNSUPERVISED RECONSTRUCTION MODELS
In this study, 1FNN, AE, VAE, and LSTM are structured
as an ED in order to create several diverse reconstruction
models for comparison. The 1FNN is the simplest model and
configured by one hidden layer with 14 units in both the
encoder and decoder. In other words, the 1FNN is equal to
an AE with one hidden layer. The AE, VAE, and LSTM are
structured as deep models and configured by three hidden
layers with 17, 8, and 4 units in the encoder and three hidden
layers with 4, 8, and 17 units in the decoder, respectively. Let
xt = [x1 . . . xn]t denote the vector of input sensor measure-
ments at time step t . Each reconstruction model is trained in
an unsupervised manner, such that at each time step t the
input xt is also used as the target yt for the reconstruction,
yt = xt . A fully connected output layer is attached to
each reconstruction model to handle error calculations. The
selected loss function in the output layer is the MSE:

MSE =
1
n

n∑
i=1

||ŷi − yi||2 (12)
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where n is the number of sensors, and ŷi and yi are the ith
predicted and target sensor measurement, respectively.

IV. EXPERIMENTAL STUDY
In the following experimental study, each reconstruction
model is trained and evaluated on five different data sets
of real operational run-to-failure data of the same maritime
component collected from an industrial company. First, each
reconstruction model is trained on normal operating data.
Next, an anomaly score function is estimated for each model
by calculating the MSE, Eq. 12, at each time step in faulty
degradation data. Finally, a generic and intelligent fault detec-
tion algorithm is employed to detect an unknown fault auto-
matically. All experiments are run on NVIDIAGeForce GTX
1060 6 GB and the Microsoft Windows 10 operating system.
The programming language is Java 8 and the deep learning
library is ‘‘deeplearning4j’’ (DL4J) version 1.0.0-beta2 [30].

A. DATA SETS
The five data sets used in this study are provided by a highly
regarded industrial company and collected from the same
maritime component. A confidentiality agreement bars us
from stating the actual name of the maritime component,
fault types, and sensor measurements. The data sets start
with different operational loads and corresponding sensor
measurements. As seen in Table 1, each data set differs in
total time step length Ttotal . Data sets 1 and 4 are subjected to
fault type A, while data set 2, 3, and 5 are subjected to fault
type B. In each data set, the maritime component operates
in normal conditions at the start, then begin to degrade at
an unknown point during the time series. The degradation
grows in magnitude until failure. Thus, the main objective
is automatically to detect the time step where the degrada-
tion starts, that is, the fault time step ft . In order to train
the reconstruction models, the initial 25% of each data set
is considered normal operating data (training data) and the
remaining 75% is considered faulty degradation data (test
data). Thus, the total time step lengths in the training and
test data are Tnod = Ttotal · 0.25 and Tfdd = Ttotal · 0.75,
respectively. Each data set has 14 sensor measurements.

TABLE 1. Real operational run-to-failure data sets of a maritime
component.

B. DATA NORMALIZATION AND PREPARATION
Each sensor measurement xn in the input and target vector,
yt = xt = [x1 . . . xn]t , is normalized with zero mean and unit
variance (z-score) normalization:

x̂n =
xn − µ
σ

(13)

where µ and σ is the mean and the corresponding stan-
dard deviation of the population, respectively. Additionally,
maritime components are subjected to random amounts of
noise in real operational input data. Thus, to increase the
complexity of each training data set and create differentiated
real-life maritime situations, different magnitudes of random
white Gaussian noise, g, is added to each x̂n at each time
step t . We assume that the real world noise is random white
Gaussian noise. Psignal and Pnoise are the average power of
the signal and the noise in the training data, respectively, and
defined as follows:

Psignal =
1

Tnod

Tnod∑
t=1

(√
1
n

(
x̂21 + · · · + x̂

2
n
))

t
(14)

Pnoise =
1

Tnod

Tnod∑
t=1

(√
1
n

(
(x̂1 + g)2 + · · · + (x̂n + g)2

))
t

(15)

Then, the signal-to-noise-ratio (SNR) can be defined as:

SNR(%) =
Psignal
Pnoise

· 100 (16)

C. CONFIGURATION AND TRAINING
The reconstruction models are configured with joint hyper-
parameters in order to make reliable comparisons. Stochastic
gradient descent (SGD) is the selected optimization algorithm
and adaptive moment estimation (Adam) is the learning rate
method. The learning rate is lr = 10−3 and the l2 regulariza-
tion value is 10−4. Xavier weight initialization is applied to
all layers. The rectified linear unit (ReLU) activation function
is used in 1FNN, AE, and VAE. However, in the LSTM,
the tanh activation function is used in order to push the input
and output values between -1 and 1. The selected hyper-
parameters are summarized in Table 2. During the training
process of each reconstruction model, an early stopping (ES)
approach is used in order to reconstruct the normal operating
data as accurately as possible. The ES approach monitors the
total reconstruction error of all time stepsETnod for each epoch
in the training data:

ETnod =
Tnod∑
t=1

(
1
n

n∑
i=1

||ŷi − yi||2
)
t

(17)

If the number of epochs with no reduction on ETnod exceeds
four, the training process is terminated. Then, the reconstruc-
tion model, in the epoch with the lowest ETnod , is saved and
evaluated on the faulty degradation data.

TABLE 2. Joint hyper-parameters.
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D. PREDICTION OF FAULT TIME STEP IN FAULTY
DEGRADATION DATA
The anomaly score function is estimated by calculating the
MSE, Eq. 12, at each time step in the faulty degradation data.
Then, the calculations and the corresponding time steps are
saved in a score list Sl and a time step list Tl , respectively.
Next, a generic and intelligent fault detection algorithm is
employed in order to predict the fault time step f̂t . First,
the algorithm creates three sliding windows of length w =
Tfdd/35. Table 1 shows w for each data set. The value of 35 is
used for all data sets in order to keep the same percentage
level, that is (1/35) · 100 = 2.86%, on the faulty degradation
data. In this work, the value of 35 is based on trial and
error. However, w is a critical parameter and should be tuned
carefully for other practical applications. The value of w
will depend on the amount of noise in Sl . Second, the three
windows slide across Sl for each time step in Tl . A distance
equal to w is used between each sliding window. In order
to remove noise in Sl , the average reconstruction score Savg
is calculated in the three windows. Third, the velocity v
between windows 1 and 2 and between windows 2 and 3 are
calculated. Finally, the acceleration a and the corresponding
f̂t are estimated. The sliding window operation is illustrated
in Figure 4 and the proposed algorithm is elaborated in
Algorithm 1. Large sensor measurements deviations com-
pared to typical sensor measurements in normal operating
data is a valid indication of a fault. The aim of the pro-
posed algorithm is to detect the time step with the highest
acceleration amax in faulty degradation data. amax is used
as the fault criterion since this point indicates increasing v,
and hence, a rapid increase in Sl . This increase in v indi-
cates that one or several sensor measurements have started
to deviate from the normal operating data rapidly. Due to
latency in physical components, amax is a better indication
of a fault than the highest increase in v, since there is a time
delay before the fault will result in large sensor measure-
ments deviations. The proposed algorithm is considered more
generic than previous fault indications based on threshold
values.

FIGURE 4. Illustration of the sliding window operation. Three windows
(highlighted in orange) slide across Sl through time.

Algorithm 1 Algorithm for Calculating the Time Step With
the Highest Acceleration in Faulty Degradation Data
Input: w, Sl , Tl , Tfdd
Output: f̂t

Initialisation :
amax ← 0
w← Tfdd / 35
Creating three sliding windows of length w which slide
across Sl for each time step in Tl .
A distance equal to w is used between each sliding win-
dow.
Savg is calculated in each sliding window.
for i := 0 to Tfdd do
v1← Savg1 - Savg2
v2← Savg2 - Savg3
a← v1 - v2
if (a > amax) then
amax ← a
f̂t ← Tl[i] - (w · 2.5)
w is multiplied by 2.5 in order to find the center of
the sliding-window operation.

end if
end for
return f̂t

E. EXPERIMENTAL RESULTS AND DISCUSSION
The predicted fault time step f̂t for each reconstruction model
is shown in Table 3. In order to evaluate the results, valu-
able domain knowledge, provided by the industrial company,
is used to determine the true fault time step ft for each data
set. In Table 3, the predicted fault time step is highlighted
when f̂t = ft . Four different real-life situations are created by
applying 100%, 90%, 80%, and 70% SNRs to the training
data in order to test the robustness of each reconstruction
model. Additionally, to minimize any prediction performance
bias, the training and evaluation process for each real-life
situation is repeated five times for each reconstruction model.
Then, the average f̂t is calculated, as shown in Table 3. With
reduced SNR, the input and target vector for reconstruc-
tion are corrupted stochastically, meaning x̃t = xt = yt .
An alternative approach is to train the reconstruction models
under a de-noising criterion [17], that is, the input vector is
stochastically corrupted x̃t = xt while the target vector is kept
as the original input yt = xt . However, when trained in an
unsupervised manner, this criterion is considered unrealistic,
given the likelihood of noisy input data in real-life situations.

As seen in Table 4,ETnod increases alongwith reduced SNR
for the deep models, AE, VAE, and LSTM. To this extent,
reduced SNR is a regularization technique that reduces over-
fitting. Thus, the deep models achieve robust feature extrac-
tions and are forced to generalize on the trends in the training
data. Therefore, as seen in Table 3, the deep models actually
improve or maintain the same prediction performance on
the faulty degradation data even as the SNR on the training
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TABLE 3. Predicted fault time step f̂t compared to true fault time step ft
on the faulty degradation data for each reconstruction model.

TABLE 4. Total reconstruction error ETnod
on the training data for each

reconstruction model.

data reduces. Table 4 also shows that ETnod decreases along
with reduced SNR in data sets 1, 2, 3, and 5 for the 1FNN.
Thus, the 1FNN learns the noise rather than the trends in the
training data. This noise, obviously, is not part of the faulty
degradation data. Therefore, as seen in Table 3, the 1FNN
provides worse and less consistent prediction performance on
the faulty degradation data as the SNR on the training data
reduces. Nevertheless, ETnod increases with reduced SNR in
data set 4 for the 1FNN. This results in equal prediction per-
formance on the faulty degradation data as the deep models.

The accuracy evaluations on the faulty degradation data in
the four real-life situations for each reconstruction model are
shown in Tables 5, 6, 7, and 8, respectively. The accuracy is
defined as follows:

Accuracy (%) =
(
1−
||f̂t − ft ||
Tfdd

)
· 100 (18)

The 1FNN provides inconsistently average accuracy per-
formance in the four situations. The average accuracy
decreases along with reduced SNR, and hence, confirms the
influences of noise. As opposed to the 1FNN, the deepmodels

TABLE 5. Accuracy evaluation on the faulty degradation data with 100%
SNR applied to the training data for each reconstruction model.

TABLE 6. Accuracy evaluation on the faulty degradation data with 90%
SNR applied to the training data for each reconstruction model.

TABLE 7. Accuracy evaluation on the faulty degradation data with 80%
SNR applied to the training data for each reconstruction model.

TABLE 8. Accuracy evaluation on the faulty degradation data with 70%
SNR applied to the training data for each reconstruction model.

TABLE 9. Average training time per epoch TTavg for each reconstruction
model.

provide consistently average accuracy performance in all
situations. Thus, the deep models confirm robustness towards
noisy real operational input data. The VAE proves to be the
most reliable ED-structured reconstruction model since it
provides a slightly better overall accuracy performance than
the AE and LSTM. In addition to the accuracy, the average
training time per epoch TTavg needs to be considered for
each reconstruction model. Table 9 shows TTavg in the five
data sets. Both AE and VAE provides satisfactory training
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time. Compared to the AE and VAE, the LSTM provides
extremely slow training time in all data sets. This is due to the
internal cell structure of the LSTM, which results in a high
amount of trainable parameters when structured as an ED.
Thus, an ED structured LSTM is not recommended when it is
trained in an unsupervised reconstruction-based manner. The
total amount of trainable parameters for each reconstruction
model is shown in Table 10.

TABLE 10. Total amount of trainable parameters for each reconstruction
model.

As previously mentioned, each data set starts with different
operational conditions and corresponding sensor measure-
ments. The performance of the VAE range between 98.695%
and 100% accuracy throughout the five data sets in the four
different real-life situations. Thus, the proposed algorithm
proves high independence towards varying operational con-
ditions, which are expected in the maritime environment.
Overall, the algorithm has proven to be highly suitable
to automatically detect faults within maritime components.
By combining the algorithm with fault isolation based on
valuable human domain knowledge, it establishes perfor-
mance strong enough to be included as a pure data-driven
diagnostics approach in future end-to-end PHM system solu-
tions where the amax value could be used as the fault indicator.

V. CONCLUSION AND FUTURE WORK
This paper has investigated the possibilities for automatic
fault detection within maritime components. Due to differ-
ent environmental conditions with varying operational loads,
and the common lack of fault labels in the maritime indus-
try, maritime components require application-independent
and intelligent fault detection algorithms in order to detect
and report faults automatically. Therefore, an unsupervised
reconstruction-based fault detection algorithm has been pro-
posed in this paper. The algorithm has been applied to four
different ED structured reconstruction models. The exper-
iments were performed on five different data sets of real
operational run-to-failure data of the same maritime com-
ponent collected from a highly regarded industrial com-
pany. Each data set was subjected to a fault at an unknown
time step. Different magnitudes of random white Gaussian
noise have been applied to each data set in order to create
four real-life situations. First, each reconstruction model is
trained on normal operating data in an unsupervised manner.
Then, the algorithm estimates an anomaly score function
by calculating a reconstruction error at each time step in
faulty degradation data. Finally, the algorithm detects a fault
automatically by estimating the time step with the highest
acceleration in the anomaly score function. The acceleration
is chosen as the fault indicator due to latency in physical

components. Thus, there is an expected time delay before
a fault will result in large sensor measurements deviations.
By this approach, the algorithm is considered more generic
compared to previous user-specified threshold values. Addi-
tionally, the algorithm is independent of any prior domain
knowledge of component degradation mechanics.

The algorithm achieved an average accuracy between
99.393% and 99.531% when compared to the true fault time
step based on valuable human domain knowledge. Overall,
the algorithm has both proven to be robust towards noisy
real operational input data and independent of varying oper-
ational conditions. Thus, the algorithm, in combination with
fault isolation based on valuable human domain knowledge,
is highly suitable to be included as a pure data-driven diag-
nostics approach in future end-to-end PHM system solutions
for maritime applications. In such a system, the value of the
highest acceleration will be used as the fault indicator. Addi-
tionally, the corresponding time step to the fault indicator can
be further used to create run-to-failure labels for any data-
driven prognostics algorithm automatically. Future work will
address these issues.
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ABSTRACT Today, most research studies that aim to predict the remaining useful life (RUL) of industrial
components based on deep learning techniques are using piecewise linear (PwL) run-to-failure targets to
model the degradation process. However, this PwL degradation model assumes a constant initial RUL value
in which only time is needed to model normal operating conditions. Thus, it ignores the entire diagnostics
aspect. To provide high and reliable RUL prediction accuracy, a prognostics algorithm must incorporate
diagnostics information. This paper will provide the Prognostics and Health Management Community an
empirical study that validates the PwL degradation model against other, more recent data-driven labeling
approaches. We compare three different data-driven labeling approaches for RUL predictions. First, an unsu-
pervised reconstruction-based fault detection algorithm is used to provide valuable diagnostics information.
Then, optimized initial RUL values are calculated based on this information. Finally, these values are used to
construct PwL, descriptive statistics, and anomaly score function run-to-failure targets for subset FD001 in
the popular and publicly available C-MAPSS data set. A deep network structure is proposed and trained on
the three different run-to-failure targets in order to predict the RUL. During the training process, a genetic
algorithm approach is used to tune a selected search space of hyper-parameters. The results suggest that the
network trained on PwL run-to-failure targets with the optimized initial RUL values performs the best and
provides the most reliable RUL prediction accuracy. This network also outperforms the most robust results
in the literature.

INDEX TERMS Data-driven labeling approaches, deep learning, fault detection, prognostics and health
management, remaining useful life.

I. INTRODUCTION
Data-driven Prognostics and Health Management (PHM)
applications use algorithms built on sensor measurements to
perform fault detection, condition assessment, and remain-
ing useful life (RUL) predictions [1]. Prognostics algorithms
predict the progression of faults. Thus, the associated RUL
predictions tend to achieve the ideal maintenance policy
through predictions of the available time until failure after a
fault is detected within the component [2]. In this way, PHM

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

applications have the potential to prevent failures before they
occur, and hence, considerably increase operational availabil-
ity, reliability, and life expectancy of industrial systems.

During the last three years, state-of-the-art deep
learning (DL) techniques have outperformed traditional
data-driven prognostics algorithms in RUL predictions for
engine degradation [3]–[5]. Researchers have typically used
the publicly available Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) data set, produced and pro-
vided by NASA [6], to train and evaluate the proposed DL
approaches. The C-MAPSS data set consists of numerous
time series of aircraft gas turbine engines where the engines
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FIGURE 1. An overview of the complete training structure.

are subjected to a varying number of time steps and different
degrees of degradation. Within the PHM research field, the
C-MAPSS data set is acknowledged as the benchmark data
set for data-driven prognostics algorithms.

Today, DL techniques that aim to predict RUL still depend
on large amounts of run-to-failure targets in order to model
the degradation process in the supervised training proce-
dure. Hence, most studies construct run-to-failure targets
based on the piece-wise linear (PwL) degradation model,
which Heimes [7] proposed in 2008. This degradation model
assumes a constant initial RUL (Ri) value when the engines
operate in normal conditions. Then, the model degrades lin-
early until failure after the engines are subjected to a fault,
namely, after the fault time step. A subsequent assumption is
that all engines utilize the same constant Ri value. In other
words, the constructed run-to-failure targets depend on the
total number of time steps in each engine and not on the actual
degradation process. By the latter assumption, the entire diag-
nostics aspect is ignored. In real-life PHM applications, any
supervised prognostics algorithm should depend on an accu-
rate fault detection algorithm in order to construct reliable
run-to-failure targets. Then, the prognostics algorithm is able
to model the true degradation process and potentially achieve
higher andmore reliable RUL prediction accuracy. Therefore,
it would be highly beneficial for the PHM community to pos-
sess a study that validates the PwL degradation model against
other and more recent data-driven labeling approaches.

The objective of this paper is to make a thorough com-
parison of three different data-driven labeling approaches,
based on accurate fault detection, for RUL predictions. First,
raw normalized engine data will act as the input for an
unsupervised reconstruction-based fault detection algorithm
in order to predict the fault time step for each engine [8].
Next, an optimized Ri value for each engine can be obtained.
These values are then used to construct PwL, descriptive
statistics (DS) [9], in order to model degradation by finding
some consistency in the phenomenon leading to failure, and
anomaly score function (ASF), which is obtained from the
unsupervised reconstruction-based fault detection algorithm,

run-to-failure targets for subset FD001 in the C-MAPSS
data set. Additionally, this paper proposes a deep network
structure for RUL predictions, which will be trained on the
three different data-driven labeling approaches. A Genetic
Algorithm (GA) approach [5] will also be used to tune
hyper-parameters during the supervised training process
since each labeling approach requires different values of
hyper-parameters within the deep network structure in order
to perform with the highest RUL prediction accuracy possi-
ble. A flow chart of the complete training structure, where
the final RUL prediction incorporates valuable diagnostics
information is shown in Figure 1. Finally, the proposed deep
network structure trained on the run-to-failure targets with
the highest RUL prediction accuracy will be compared to the
most robust results in the literature. This is done to demon-
strate that prognostics algorithms achieve higher RUL predic-
tion accuracy when trained on run-to-failure targets based on
accurate fault detection. This study’s main contributions are
as follows:
• A comprehensive comparison between PwL, DS, and
ASF run-to-failure targets with optimized Ri values is
conducted.

• A deep network structure for RUL predictions is pro-
posed.

• The network trained on PwL run-to-failure targets with
optimized Ri values outperforms both the networks
trained on DS and ASF run-to-failure targets, as well as,
the most robust results in the literature with respect to
RUL predictions on subset FD001 in the C-MAPSS data
set.

The overall organization of the paper is as follows.
Section II introduces recent and related work on subset
FD001. Section III introduces the necessary background on
Feed-forward Neural Network (FNN), Convolutional Neural
Network (CNN), Long-Short Term Memory (LSTM), and
the proposed deep network structure. The experimental study
is elaborated in Section IV. Section V, considers important
experimental results and discussions. Finally, Section VI con-
cludes the paper and provides directions for future work.
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II. RELATED WORK
Subset FD001 in the C-MAPSS data set has been frequently
used to evaluate most DL approaches proposed for RUL
predictions in recent years. In data-driven PHM applications,
time series data is the standard input format. The LSTM [10]
is a well-established DL technique that essentially was
designed to process time series data. Zheng et al. [11] stacked
two LSTM layers, two FNN layers, and a final output layer
in order to provide RUL predictions. The proposed approach
achieved higher RUL prediction accuracy compared to the
Hidden Markov Model and a traditional Recurrent Neural
Network (RNN).

A Deep Belief Network (DBN) [12] consists of stacked
Restricted Boltzmann Machines (RBMs). Zhang et al. [3]
proposed a multiple objective evolutionary ensemble learn-
ing frameworks for the DBN training process. Conse-
quently, the proposed approach constructs multiple DBNs
of varying accuracy and diversity before the evolved DBNs
are combined to perform RUL predictions. The proposed
approach outperformed several traditional machine learning
algorithms, such as Support Vector Machine and Multilayer
Perceptron.

During the past decade, CNNs have outperformed more
traditional approaches in several domains, including object
recognition [13] and face recognition [14]. However, CNNs
have also more recently performed excellently on prognostics
problems. Li et al. [4] proposed a newCNN approach in order
to provide RUL predictions. In this approach, all convolution
operations are performed in one dimension. Thus, the CNN
extracts and learns low-level to high-level representations of
each raw sensor measurement from the very start rather than
learning the spatial relationship between the sensor measure-
ments and then extracting prognostics information.

Yoon et al. [15] used a semi-supervised learning approach
to predict the RUL. Their approach included an embedding
network obtained from a Variational Autoencoder (VAE) fol-
lowed by an RNNwhich was trained based on the latent space
defined by the VAE. However, the main goal of this study was
to show high RUL prediction accuracy with limited run-to-
failure targets in the training procedure.

Ellefsen et al. [5] also used a semi-supervised learning
approach to predict the RUL. An initial RBM layer was used
as an unsupervised pre-training stage in order to initialize
the weights in a region near a good local minimum before
supervised fine-tuning of the whole network was conducted.
The remaining layers of their network consisted of two LSTM
layers, one FNN layer, and a final output layer to perform
RUL predictions. Additionally, a GA approach was used to
tune a big search space of hyper-parameters.

All above-mentioned studies utilize the PwL degradation
model with the same constant Ri value for all engines.
Even though the constant Ri value varies among different
studies, the diagnostics aspect is ignored in these studies.
However, one study uses a different degradation model to
predict the RUL.Malhotra et al. [16] used an LSTM encoder-
decoder (LSTM-ED) approach to reconstruct the engines.

A reconstruction error was then used to compute a health
index (HI) curve for both the training and test set. Then, theHI
curves were subjected to normalization and linear regression.
Finally, RUL estimations were performed by matching the HI
curves. Similar to [16], this study also utilizes a reconstruc-
tion error at each time step for each engine to construct an
ASF [8]. The ASF will both be used to predict an optimized
Ri value for each engine and to create run-to-failure targets as
one of the data-driven labeling approaches compared in this
study.

III. BACKGROUND
This section will introduce the necessary background on the
proposed deep network. First, FNN and the main DL tech-
niques, 1D CNN and LSTM, are defined. Finally, the pro-
posed deep network structure is elaborated.

A. FEED-FORWARD NEURAL NETWORK
FNNs form the basis of the DL techniques used in this
study. The objective of this network is to approximate a
function f ∗ by mapping an input x to a target y, that is,
y = f ∗(x). An FNN defines a mapping y = f (x; θ ) and
learns the value of the parameters θ (weights and biases)
through the back-propagation algorithm [17]. FNNs are typ-
ically called networks since they are represented by stacking
several layers [18]. Each unit in layer l computes its own
activation value:

alj = σ (z
l
j) (1)

where σ is the activation function and the argument is the
weighted sum

zlj = blj +
∑
k

wljka
l−1
k (2)

of the output al−1k from unit k in the previous layer l−1. blj is
the bias andwljk are the weight factors. In the first hidden layer
l = 1, the input is a0j = xj, where xj, j = 1 . . . n, are the inputs
to the FNN. As each layer is fully connected, the weighted
sum of the outputs of layer l − 1 is over all units k .

B. CONVOLUTIONAL NEURAL NETWORK
CNNs are a specialized kind of FNNs designed for processing
multiple arrays of 1D, 2D, or 3D grid-like topology data [18].
Examples of a 1D, 2D, and 3D grid are time series data
where each feature is considered as a 1D grid of time steps
at regular time intervals, image data is considered as a 2D
grid of pixels, and video or volumetric images, respectively.
Regardless of the input data, 1D, 2D, and 3D CNNs share
the same key advantages, including convolution operations,
shared weights, pooling, and the use of many layers [19].
However, the main difference is how the kernel (filter) slides
across the data, namely, how the convolution operation is
performed.

Today, sensor data is the most common data type format
for data-driven PHM applications [2]. Subset FD001 contains
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FIGURE 2. An illustration of the 1D convolution operation for multivariate
time series data. The red rectangles represent 1D kernels.

several shorter time series of the overall data, where each
time series (engine) is subjected to several sensor measure-
ments. The spatial relationship between the sensor measure-
ments is not of great importance [4]. Therefore, 1D CNN is
highly suitable and will be used in this study. With respect
to mathematical understanding, the convolution operation is
typically denoted with an asterisk, and hence, the discrete 1D
convolution operation can be defined as [18]:

s(t) = (x ∗ k)(t) =
∑
a

x(t − a)k(a) (3)

where x = [x1 . . . xt ] is a 1D input vector of time steps t ,
and k is a 1D kernel. The kernel is defined by its height kh
and slides through the whole input vector with a stride equal
to one in 1D CNNs. The complete output, s(t), is usually
referred to as the feature map. Figure 2 illustrates the 1D
convolution operation for multivariate time series data. The
height equals the number of time steps, the width is equal to
one, and the amount of channels (depth) equals the number
of input features. Due to the relatively low input dimension
in FD001, pooling will not be used in this study. Like FNNs,
CNNs are also trained by the back-propagation algorithm,
but the reduced number of parameters and shared weights
improve the training efficiency. It should also be noted that
CNNs are capable of handling raw normalized input data.
Hence, data pre-processing is rare.

C. LONG-SHORT TERM MEMORY
In recent times, the original LSTM [10] has been subjected
to adjustments by [20]–[22], and the literature refers to this
as the ‘‘vanilla LSTM.’’ This study utilizes ‘‘vanilla LSTM’’
with no peephole connections. The LSTM introduces a mem-
ory cell that controls the information flow in and out of the
cell. Hence, the memory cell is able to maintain its state over
time, such that it learns long-term dependencies, and this

FIGURE 3. The proposed deep network structure.

feature is its superior strength compared to traditional RNNs.
The memory cell consists of three non-linear gating units that
control and protect the cell state, St [23]:

f t = σ (W f xt + Rf ht−1 + bf ) (4)

it = σ (W i xt + Ri ht−1 + bi) (5)

ot = σ (Wo xt + Ro ht−1 + bo) (6)

where σ is the logistic sigmoid gate activation function,
σ (x) = 1

1+e−x , which provides a scaled value between 0 and
1.W is the input weight,R is the recurrent weight, and b is the
bias weight. The new candidate state values, S̃t , are created
by the tanh layer:

S̃t = tanh(W sxt + Rsht−1 + bs) (7)

The previous cell state, St−1, is updated into the new cell
state, St , by

St = f t ⊗ St−1 + it ⊗ S̃t (8)

where ⊗ indicates element-wise multiplication of two vec-
tors. First, f t decides which historical information the mem-
ory cell should forget. Next, it determines what new informa-
tion in S̃t the memory cell will input and store in St . Finally,
ot decides which parts of St the memory cell will output:

ht = ot ⊗ tanh(St ) (9)

Through these steps, the LSTM has the power to remove or
add information to St , which makes it extremely fit to process
time series data. Like FNNs and CNNs, the LSTM is trained
by the back-propagation algorithm.

D. THE PROPOSED DEEP NETWORK STRUCTURE
The proposed deep network structure is shown in Figure 3.
In the first layer (L1), a 1DCNNwill be utilized to extract and
learn low-level temporal features from each sensor measure-
ment individually [4]. These featuresmight contain important
degradation informationwhichwill then be used to formmore
complex patterns within the next layers. In both the second
and the third layer (L2 and L3), an LSTM layer is used to
reveal hidden information and learn long-term dependencies
within the features obtained from L1 [5], [11]. Next, an FNN
layer is used in both the fourth (L4) and the fifth (L5) layers
in order to map all extracted features. In addition, the well-
proven regularization technique dropout [24] is applied to L5.
Dropout randomly drops units during training. In this way,
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dropout approximately connects an exponential number of
different structures. Thus, the network learns to make gener-
alized representations of the input data, which will prevent
the network from extracting the same degradation features
repeatedly. In the final layer (L6), a time distributed, fully
connected output layer is attached to handle error calculations
and perform RUL predictions.

IV. EXPERIMENTAL STUDY
In the following experimental study, all experiments are run
on NVIDIA GeForce GTX 1060 6 GB and the Microsoft
Windows 10 operating system. The programming language
is Java 8 and the deep learning library is ‘‘deeplearning4j’’
(DL4J) version 1.0.0-SNAPSHOT [25]. It should be noted
that the DL techniques included in the proposed deep network
structure are optimized by the NVIDIA CUDA Deep Neural
Network library (cuDNN) [26]. cuDNN is a GPU-accelerated
library of primitives for DL techniques. In DL4J, time series
data has the following input shape: [miniBatchSize, input-
Size, timeSeriesLength], where miniBatchSize is the number
of time series in a mini batch, input size is the number of
columns, and timeSeriesLength is the total number of time
steps in the mini batch. If time series in a mini-batch have
variable time step length, the shorter time series are padded
with zeros such that the time step lengths are equal to the
longest among them. Consequently, mask arrays are used
during training. These additional arrays record whether a time
step is really present, or whether it is just padding.

A. SUBSET FD001 IN THE BENCHMARK C-MAPSS DATA
SET
Subset FD001 consists of 100 time series from aircraft gas
turbine engines in both the training and test set. Each engine
starts with different degrees of initial wear andmanufacturing
variation. These initial degradation mechanics are unknown
to the public. All engines operate in normal condition at
the start, then begin to degrade at an unknown time step
during the time series. The degradation in the training set
grows in magnitude, namely with increasing acceleration,
until failure. The degradation in the test set, however, ends
sometime prior to failure. Accordingly, true RUL targets are
provided at the last time step for each engine in the test
set. The data is contaminated with sensor noise and subset
FD001 includes 24 input features: three operational sensor
settings and 21 sensor measurements. Please see [27] for a
detailed description of each input feature. Table 1 summarizes
subset FD001.

B. PERFORMANCE EVALUATIONS
The scoring function (S) provided in [27] and the root mean
square error (RMSE) are used in this study as performance
evaluations for the test set:

S =


n∑
i=1

e(−
di
13 ) − 1, for di < 0

n∑
i=1

e(−
di
10 ) − 1, for di ≥ 0

(10)

TABLE 1. Subset FD001 in the C-MAPSS data set [6].

RMSE =

√√√√1
n

n∑
i=1

d2i (11)

where n is the total number of true RUL targets in the test
set and di = RULpredicted,i − RULtrue,i. In both performance
evaluations, themain objective is to achieve the smallest value
possible, that is, when di = 0. The RMSE gives equal penalty
to early and late RUL predictions, namely, when di < 0 and
di > 0, respectively. In S, however, the penalty for late RUL
predictions is larger. This is because late RUL predictions
are prone to system failures in real-life PHM applications
as maintenance operations will be scheduled too late. On the
other hand, early predictions pose less risk to system failures
since maintenance operations will be scheduled too early.

Previously, both hold-out and k-fold cross-validation
have been used for hyper-parameter tuning on subset
FD001 [5], [11]. However, in this study, the total number of
time steps in the training set is considered large enough to
utilize a hold-out approach, that is, splitting the total training
set into 80 engines for training and 20 engines for cross-
validation, randomly. In addition to S and RMSE , the root
mean square error horizon (RMSEhz) is used in this study
as a performance evaluation for both the training set and the
cross-validation set:

RMSEhz =

√√√√ 1
m

m∑
j=1

d2j (12)

where m is the total number of constructed run-to-failure
targets in both the training set and cross-validation set, and
dj = RULpredicted,j − RULtarget,j. The RMSEhz will be used
to compare the true overall prognostics accuracy of the dif-
ferent labeling approaches. The prognostics horizon is a crit-
ical measurement designed to evaluate the different labeling
approaches with respect to both inherent uncertainties with
the degradation process and potential flaws with the con-
structed run-to-failure targets.

C. DIAGNOSTICS - DETECTING THE FAULT TIME STEP
Ellefsen et al. [8] used an unsupervised reconstruction-based
fault detection algorithm for maritime components. Their
proposed algorithm is also used in this work in order to predict
the fault time step for each engine in FD001. First, a VAE,
with three hidden layers and corresponding hidden units
(28,14,7) in the encoder and three hidden layers with corre-
sponding hidden units (7,14,28) in the decoder, is trained on
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normal operating data in an unsupervised manner. It should
be noted that the selection process of the hidden units, h1, h2,
and h3, is based on the following experience-based formula:

h1 = Z
(
24 · 1.2

)
h2 = Z

(
h1
2

)
h3 = Z

(
h2
2

)
where 24 is the number of input features in FD001. The
initial 25% of each engine is considered normal operating
data. Then, the algorithm estimates a raw anomaly score func-
tion (ASF) by calculating a reconstruction error, the mean
square error (MSE), at each time step for each engine:

MSE =
1
n

n∑
i=1

||ŷi − yi||2 (13)

where n is the number of input features, and ŷi and yi are the ith
predicted and target feature measurement, respectively. Next,
the algorithm creates three sliding windows of length w in
order to smooth the ASF:

w =
Tt
p

(14)

where Tt is the total number of time steps in each engine and p
is a tune-able parameter. First, the three windows slide across
the raw ASF for each time step. A distance equal to w is used
between each sliding window. In order to remove a certain
amount of noise in the raw ASF, the average reconstruction
error is calculated in the three windows. Since p decides
the length of w, it also decides the amount of smoothing
performed on the raw ASF. Thus, p should be tuned carefully
based on the amount of noise in the raw ASF. In this work,
p = 30 is used for all engines in order keep the same
percentage level, that is (1/30) · 100 = 3.33%, on Tt . This p
value will not smooth the rawASF toomuch, and hence, keep
important degradation trends. Second, the velocity between
windows 1 and 2 and between windows 2 and 3 are calcu-
lated. Finally, the acceleration between the two velocities is
estimated. Please see [8] for a more detailed explanation of
the algorithm.

Compared to the data sets used in [8], the nature of degra-
dation is somewhat different in FD001. In this data set,
the degradation grows with increasing acceleration until fail-
ure. Thus, the highest acceleration, which is used as the
fault criterion in [8], is not suitable for FD001. Therefore,
an alternative approach for predicting the fault time step f̂t
is used in this study. First, the highest acceleration in normal
operating data anod is calculated for each engine. anod is
equivalent to the maximum increase in deviation between
the normal operating sensor measurements. Then, a dynamic
acceleration threshold, aTh = 1.15 · anod , is used as the fault
criterion in the remaining data for each engine. In this work,
the value of 1.15 is based on trial an error. However, this
value is a critical parameter and should be tuned carefully
for other applications. This value will depend on the nature
of degradation. Finally, f̂t is estimated when the acceleration
increases aTh. Thus, the algorithm aims to detect the initial
time step where one or several sensor measurements have

TABLE 2. Total time step length Tt , predicted fault time step f̂t , and
corresponding initial RUL value Ri for each engine in FD001.

started to deviate from the normal operating data rapidly.
Table 2 shows Tt , f̂t , and the corresponding Ri for each engine
in FD001.

D. DATA-DRIVEN LABELING APPROACHES
This study compares three different data-driven labeling
approaches for constructing run-to-failure targets. The opti-
mized Ri values in Table 2 are used to construct run-to-failure
targets based on the PwL degradation model, DS, and on the
rawASF obtained from the anomaly detector in Section IV-C.

1) PIECE-WISE LINEAR
In the original PwL degradation model by Heimes [7], all
engines in the training and cross-validation sets utilize the
same Ri value when the engines operate in normal condition.
The major limitation of this assumption is that the fault time
step for each engine depends on Tt and not on the actual
degradation pattern. Actually, each engine has an individ-
ual degradation pattern [5]. Therefore, the PwL degradation
model used in this study utilizes an optimized Ri value for
each engine. These Ri values are dependent on the actual
degradation pattern in each engine. Algorithm 1 shows the
procedure on how to construct PwL run-to-failure targets for
engine i.

2) DESCRIPTIVE STATISTICS
DS [9] aims to find some consistency in the phenomenon
leading to failure. In other words, there are typical values of
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Algorithm 1 Algorithm for Constructing Piece-Wise Linear
Run-to-Failure Targets for Engine i

Input: Tt , f̂t , Ri
Output: PwLi

for t := 0 to Tt do
if (t ≤ f̂t ) then
PwLi← Ri

else
PwLi← (Tt − t)

end if
end for
return PwLi

the sensor measurements at the failure time step (F) for each
engine in both the training set and cross-validation set. Pre-
vious research has proven that sensors 2, 3, 4, 7, 11, 12, and
15 are subjected to a clear degradation trend and that they are
contaminated with less noise than the remaining sensors [28].
This sensor selection process is of high importance for the
degradation precision of the subsequent constructed run-to-
failure targets. First, the mean values of F in the selected
sensors are calculated:

E(X (F)) =
[
E(x2(F)), . . . ,E(x15(F))

]
=

[
1
m

∑
i∈I

x2i (Fi), . . . ,
1
m

∑
i∈I

x15i (Fi)
]

=
[
E2, . . . ,E15] (15)

where m is the number of failures, I is the set of engines that
experienced a failure, Fi is the failure time step of engine
i, and E(X (F)) is the vector of mean values observed at
each failure time step. Second, the mean values are used to
construct run-to-failure targets at any time t up until failure
for engine i:

Yi(t) = Xi(t)− E(X (F))

=

[(
x2i (t)− E

2)2
+ · · · +

(
x15i (t)− E15)2] 1

2

(16)

where Yi(t) is the raw run-to-failure targets. Third, the raw
run-to-failure targets are scaled according to the Ri value
obtained from Table 2 for each engine:

DSi(t) =
Ri · (Yi(t)− Yi(Tt ))
Yi(t1)− Yi(Tt )

(17)

where Yi(t) is the current raw run-to-failure target, Yi(Tt ) is
the last raw run-to-failure target, and Yi(t1) is the first raw run-
to-failure target. Finally, polynomial regression is performed
on DSi(t) in order to remove noise. It should be noted that
the polynomial regression used in this study performs a QR
decomposition of the underlying Vandermonde matrix and
the degree of the polynomial is 2. Figure 4 compares the raw
DS targets and DS targets with polynomial regression.

FIGURE 4. Comparison between raw DS targets and DS targets with
polynomial regression for engine 1.

Algorithm 2 Algorithm for Constructing a Smooth Version
of the Anomaly Score Function for Each Engine i
Input: ASFi(t), ws, Tt
Output: ASFi(t)s

ws← Tt / 1
Creating one sliding window SW of length ws which
slides across ASFi(t) for each time step t.
for t := 0 to Tt do
SW ← ASFi(t)
SWsum← 0
for s := 0 to ws do
SWsum+ = SW (s)

end for
ASFi(t)s←

SWsum
ws

end for
return ASFi(t)s

3) ANOMALY SCORE FUNCTION
First, the raw ASF for each engine ASFi(t)r is scaled
according to the Ri value obtained from Table 2 for each
engine:

ASFi(t) =
Ri · (ASFi(t)r − ASFi(Tt )r )
ASFi(t1)r − ASFi(Tt )r

(18)

where ASFi(t)r is the current raw run-to-failure target,
ASFi(Tt )r is the last raw run-to-failure target, and ASFi(t1)r is
the first raw run-to-failure target. Finally, in order to remove
noise and make a smooth version, an additional sliding win-
dow SW of length ws = Tt/1 is created. This sliding window
slides across ASFi(t) for each time step t . Algorithm 2 shows
the procedure on how to construct the smooth anomaly score
functionASFi(t)s for engine i. Figure 5 compares the rawASF
targets and the smooth ASF targets.

4) SELECTED DATA-DRIVEN LABELING APPROACHES
In the following experiments, the PwL, the DS with poly-
nomial regression, and the smooth ASF targets will be
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FIGURE 5. Comparison between raw ASF targets and smooth ASF targets
for engine 1.

FIGURE 6. Comparison between the selected data-driven labeling
approaches for engine 1.

used as supervised run-to-failure training targets for subset
FD001. Figure 6 compares the selected data-driven labeling
approaches.

E. DATA AUGMENTATION AND NORMALIZATION
Each input measurement xn in the training set is nor-
malized with zero mean and unit variance (z-score)
normalization:

x̂n =
xn − µ
σ

(19)

where µ and σ is the mean and the corresponding standard
deviation of the population, respectively. Then, the normal-
ization statistics obtained from the training set are applied
to both the cross-validation set and the test set. Addition-
ally, to reduce overfitting, random white Gaussian noise, g,
is added to each x̂n in each engine in the training set. Psignal
and Pnoise are the average power of the signal and the noise,
respectively, and defined as follows:

Psignal =
1
Tt

Tt∑
t=1

(√
1
n

(
x̂21 + · · · + x̂

2
n
))

t
(20)

Pnoise =
1
Tt

Tt∑
t=1

(√
1
n

(
(x̂1+g)2+. . .+(x̂n+g)2

))
t

(21)

where Tt is the total time step length of each engine and n is
the number of input features. Then, the signal-to-noise-ratio
(SNR) can be defined as:

SNR(%) =
Psignal
Pnoise

· 100 (22)

In all experiments, 95% SNR is applied to the training
set.

F. NETWORK CONFIGURATION AND TRAINING
Deep networks introduce several hyper-parameters, which
are both challenging and time-consuming to optimize in
the training procedure. Additionally, the proposed deep net-
work structure requires different values of hyper-parameters
for each labeling approach in order to perform with the
highest RUL prediction accuracy possible. Thus, the pro-
posed GA approach in [5] will also be used in this study
in order to optimize the hyper-parameters for the networks
trained on the three labeling approaches in an efficient
manner.

The GA is a metaheuristic inspired by the natural selec-
tion process [29]. It is an effective algorithm for finding a
near-optimal solution in a big search space, in this case,
a big search space of hyper-parameters. However, in order
to slightly reduce the search space, the networks will use
some joint-hyper parameters which previously have shown
great results on subset FD001 [4], [5]. Stochastic gradient
descent (SGD) is the selected optimization algorithm and
adaptive moment estimation (Adam) is the learning rate
method [30]. To better preserve the low-level temporal fea-
tures obtained from the 1D CNN layer, the learning rate in
L1 is lr = 5 · 10−5, while the learning rate in the remaining
layers is lr = 1 · 10−5. Xavier weight initialization [31]
is applied to all layers. The rectified linear unit activation
function [32] is used in both 1D CNN and FNN layers. How-
ever, in the LSTM layers, the tanh activation function is used
in order to push the input and output values between -1 and 1.
The mini-batch size is five engines, as previously optimized
in [5]. The selected joint hyper-parameters are summarized
in Table 3.

Table 4 shows the hyper-parameters which the GA
approach optimized for each of the three networks. n is the
number of hidden units in each layer, kh is the kernel height
in L1, and p is the dropout retaining probability of each unit
in L5. A p value of 1.0 is functionally equivalent to zero
dropout, namely, 100% probability of retaining each hidden
unit. First, the GA approach selects random values of each
hyper-parameter. One such set of random hyper-parameters
is called an individual and a set of individuals is called a
population. Each individual in the population is trained on
the training set and evaluated on the cross-validation set.
The RMSEhz, equation 12, is the selected objective function.
To prevent overfitting, early stopping is applied tomonitor the
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TABLE 3. Joint hyper-parameters.

TABLE 4. Selected hyper-parameters in the GA approach.

TABLE 5. Parameters of the GA approach.

performance during the training process of each individual.
If the number of epochs with no reduction on RMSEhz on
the cross-validation set exceeds four, the training process is
terminated. Then, the network, in the epoch with the lowest
RMSEhz, is saved.

To limit the time consumed during the optimization pro-
cess, the population size is restricted to 30 individuals. The
best individual from the population is then kept and used
as the parent for the next generation of hyper-parameters.
Additionally, some random mutation is performed after the
crossover for increasing the exploration of the algorithm. The
population is evolved four times. This results in an average
training time of 13.33 hours for each labeling approach,
where each individual trained for 80 epochs on average
with an average training time per epoch of 5 seconds. The
parameters of the GA approach are shown in Table 5. In the
end, the top five GA individuals for each labeling approach
are evaluated on the test set where both RMSE and S are
calculated. The GA individuals with the best result on the
test set for each labeling approach are shown in Table 6
and the corresponding RUL prediction accuracy are shown
in Table 7.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
The aim of this paper is to make a thorough comparison
of three different data-driven labeling approaches for RUL
predictions. The degradation significance within each of
the constructed run-to-failure targets is extremely important

for the RUL prediction performance of the proposed deep
network structure. First, the GA optimized networks, as seen
in Table 6, for the three labeling approaches are compared
with three different performance evaluations on both the
training set and the cross-validation set. Finally, the net-
work with the highest RUL prediction accuracy on the
test set is compared to the most robust results in the
literature.

A. COMPARISON BETWEEN THE DATA-DRIVEN LABELING
APPROACHES
The RMSEhz accuracy is considered an important perfor-
mance indicator since it evaluates how accurately the net-
works are able to model the true overall degradation process
in both the training set and cross-validation set. In addition,
high RMSEhz accuracy is critical in order to achieve reliable
confidence intervals for the corresponding RUL prediction
in real-life PHM applications. As shown in Table 7, the net-
work trained on PwL targets outperforms both the networks
trained on DS and ASF targets with respect to the RMSEhz
accuracy.

Both the RMSE and S accuracy are important performance
indicators since high and reliable RUL prediction accuracy at
the very end of the engines lifetime have great significance
for real-life PHM applications. Thus, RMSE and S are only
calculated at the last time step for each engine. It should be
noted that both RMSE and S is the overall accuracy of all
engines. In other words, the overall accuracy of 80 engines
in the training set, 20 engines in the cross-validation set,
and 100 engines in the test set. Additionally, to prevent
overfitting, both dropout and random white Gaussian noise
will reduce the accuracy on the training set compared to the
accuracy on the cross-validation set. As shown in Table 7,
the networks trained on PwL and DS targets perform with
satisfactory RMSE and S accuracy. The network trained on
ASF targets, however, performs with unacceptable RMSE
and S accuracy. This is mainly because the run-to-failure
targets decrease with increasing acceleration until failure.
Thus, the network struggles to predict the failure ASF tar-
get for each engine, that is, when RUL = 0 in both the
training set and the cross-validation set. This also indicates
that the predicted ASF targets are prone to late RUL pre-
dictions, namely, when RULpredicted − RULtrue > 0. This
reflects the extremely low S accuracy. Late RUL predic-
tions could cause serious system failures in real-life PHM
applications as maintenance operations will be scheduled too
late.

In Figure 7, engines 2, 21, 52, and 70 in the cross-validation
set are randomly selected for comparison. As previously
mentioned, all three labeling approaches utilize an optimized
Ri value for each engine. The high variance in Ri between
engines in a mini-batch makes it difficult for the networks
to predict the run-to-failure targets when the engines are
operating in normal condition. Additionally, each engine in
a mini-batch has different Tt . Thus, the shorter engines are
padded with zeros such that all Tt are equal. Accordingly,
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TABLE 6. GA individuals.

TABLE 7. The RUL prediction accuracy on subset FD001 for the three
data-driven labeling approaches.

TABLE 8. S and RMSE comparison with the literature on the test set of
subset FD001.

mask arrays are used during the training process in order
not to include the padded zeros in the performance eval-
uations. These masking arrays consist of the same value
for each engine. The values are 82.6, 88.2, and 95.5, for
the networks trained on PwL, DS, and ASF targets, respec-
tively. Each network starts to predict based on its masking
array value so that they do not start predicting on zero for
each engine. Thus, this predicting approach is not optimal
for the engines that are utilizing a Ri value either lower
or higher than the masking array value. This is illustrated
in Figure 7.

Nevertheless, the optimized Ri values are based on the
degradation process rather than the number of time steps.
Hence, the network trained on PwL targets predicts RMSEhz,
RMSE , and S with high accuracy after the predicted fault
time step, that is, in the faulty degradation data of the engines
lifetime. Thus, the optimized Ri values enable this network to

generalize well on data never seen before, namely, the test
set. Based on the superior results on the test set, the PwL
degradation model is able to construct the most reliable run-
to-failure targets for RUL predictions. PwL targets are also
highly suitable if the RUL is to be considered as a time-based
index, e.g., if the RUL decreases by one and the time step
increases by one. This could be highly relevant for real-life
PHM applications.

B. COMPARISON WITH THE LITERATURE
The network trained on PwL targets with optimized Ri values
was able to generalize well, and hence, performed the highest
RUL prediction accuracy on the test set. Thus, this network
is compared with the literature. The authors have tried to
include the most robust and recent results for comparison.
That’s why the well-known RULCLIPPER is also included.
The RULCLIPPER does not utilize any DL techniques to
make RUL predictions. Instead, it predicts the RUL based on
imprecise health indicators modeled by planar polygons and
similarity-based reasoning [33].

In Table 6, the selected studies are arranged in descending
order based on the year they are published. As opposed
to [33], the remaining studies utilize prognostics algorithms
based onDL techniques to predict the RUL. However, most of
these studies do not incorporate diagnostics information since
the algorithms are trained on PwL run-to-failure targets with
the same Ri value for all engines. On the other hand, the pro-
posed deep network in this study is trained on PwL run-
to-failure targets with optimized Ri values for each engine.
Thus, the network takes into account the diagnostics aspect
before making any RUL predictions. The high generalization
towards the test set indicates that the optimized Ri values
enable the network to model the true degradation process
within subset FD001. To the best of the authors’ knowl-
edge, the proposed deep network, when trained on PwL run-
to-failure targets with optimized Ri values, provides higher
RUL prediction accuracy on subset FD001 than any in the
literature.
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FIGURE 7. Cross-validation set comparison. (a) Engine 2 - PwL targets. (b) Engine 2 - DS targets. (c) Engine 2 - ASF targets. (d) Engine 21 - PwL targets.
(e) Engine 21 - DS targets. (f) Engine 21 - ASF targets. (g) Engine 52 - PwL targets. (h) Engine 52 - DS targets. (i) Engine 52 - ASF targets.
(j) Engine 70 - PwL targets. (k) Engine 70 - DS targets. (l) Engine 70 - ASF targets.

VI. CONCLUSION AND FUTURE WORK
This paper has compared three different data-driven label-
ing approaches for constructing run-to-failure targets.
Additionally, a deep network structure has been proposed
for RUL predictions. The experiments are performed on

subset FD001 in the publicly available C-MAPSS data set.
Most research studies that aim to predict the RUL based on
DL approaches are still using the PwL degradation model
to construct run-to-failure targets. This model assumes a
constant Ri value that only depends on time to model normal
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operating conditions. Hence, it neglects the entire diagnostics
aspect. As illustrated in this study, any supervised prognostics
algorithm should consider the diagnostics aspect before mak-
ing any RUL predictions to achieve higher and more reliable
accuracy. Thus, an unsupervised reconstruction-based fault
detection algorithm has been used in this study to predict the
fault time step for each engine. Then, an optimized Ri value
for each engine was obtained. These Ri values were then used
in the construction process of PwL, DS, and ASF run-to-
failure targets. Finally, the proposed deep network structure
was trained on the three different constructed run-to-failure
targets. Additionally, a GA approach was used to tune the
search space of hyper-parameters.

The network trained on PwL run-to-failure targets with
optimized Ri values outperformed both the networks trained
onDS andASF run-to-failure targets with respect to RULpre-
dictions. Additionally, this network outperformed the most
robust results in the literature. The optimized Ri values are
based on the individual degradation process in each engine.
Hence, the network predicts RMSEhz, RMSE , and S with
high accuracy in the faulty degradation data of the engine’s
lifetime. The optimized Ri values enable the network to gen-
eralize well on data never seen before. The strong general-
ization indicates that the network is able to model the true
degradation processes within the data set before making any
RUL predictions. In other words, the diagnostics aspect is
incorporated.

In this work, it was also discovered that the high variance
in Ri between engines in a mini-batch made it difficult for
the networks to predict the run-to-failure targets when the
engines were operating in normal condition. To solve this
issue we propose the following. First, aTh can be further opti-
mized in a more generic way for each engine. Second, the uti-
lization of bigger (more parameters) and possibly deeper
(more layers) networks. Finally, more training data with
more engines with similar degradation processes, namely,
with similar Ri values, would be favorable. Future work will
address these issues.

Subset FD001 only contains one fault mode and one
operating condition. If, however, several operating condi-
tions were introduced in the data set, the unsupervised
reconstruction-based fault detection algorithm could face
some problems since the sensor measurements might differ
strongly between different time steps with different operat-
ing conditions. This issue will also be explored in future
work.
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Abstract—The maritime industry generally anticipates having
semi-autonomous ferries in commercial use on the west coast of
Norway by the end of this decade. In order to schedule main-
tenance operations of critical components in a secure and cost-
effective manner, a reliable prognostics and health management
system is essential during autonomous operations. Any remaining
useful life prediction obtained from such system should depend
on an automatic fault detection algorithm. In this study, an
unsupervised reconstruction-based fault detection algorithm is
used to predict faults automatically in a simulated autonomous
ferry crossing operation. The benefits of the algorithm are
confirmed on data sets of real-operational data from a marine
diesel engine collected from a hybrid power lab. During the ferry
crossing operation, the engine is subjected to drastic changes in
operational loads. This increases the difficulty of the algorithm to
detect faults with high accuracy. Thus, to support the algorithm,
three different feature selection processes on the input data is
compared. The results suggest that the algorithm achieves the
highest prediction accuracy when the input data is subjected to
feature selection based on sensitivity analysis.

Index Terms—Automatic fault detection, feature selection,
marine diesel engine, prognostics and health management, vari-
ational autoencoder

I. INTRODUCTION

Only five years ago, most people considered autonomous
and semi-autonomous ships as a futuristic fantasy [1]. To-
day, however, this assumption has changed dramatically since
inland semi-autonomous ferries will most definitely be in
commercial use on the west coast of Norway by the end of this
decade [2]. These ferries are intended to navigate entirely by
themselves a short distance across a river or a fjord. Thus, the
crew members will ideally carry out duties other than main-
taining, operating, and navigating the vessels. Additionally,
securing regulatory permission, support from the industry, and
public approval for semi-autonomous ferries requires evidence
they are at least as safe as traditional ferries [3].

Ideally, semi-autonomous ferries will transfer real-time di-
agnostics and prognostics information to a control center on-
shore to conduct analysis and schedule maintenance operations

of critical systems, components, and sub-components. One
of the most critical components is the marine diesel engine
as it has a leading position in both propulsion and power
generation [4]. Even though the navigation mission for the
ferry is rather simple in theory, the marine diesel engine
will be subjected to changing environmental conditions and
various operational loads. Consequently, faults and failures
could occur in a totally random pattern [5]. Hence, in a main-
tenance perspective, a prognostics and health management
(PHM) system, which both include automatic fault detection
and associated remaining useful life (RUL) predictions, is
crucial in autonomous operations. When the RUL is predicted,
the maintenance operation can be scheduled to the next
appropriate port of call for the ferry [6]. Nevertheless, the RUL
prediction is the available time prior to operational failure after
a fault is detected within the engine. Thus, any RUL prediction
should depend on an intelligent and reliable fault detection
algorithm.

During the last two years, the growth of intelligent fault
detection algorithms has increased drastically. Usually, the
algorithms have dependent on a supervised classifier [7], [8].
In other words, the algorithms demand fault labels in the
training procedure. However, due to a general lack of fault
labels for critical components in the maritime industry [9],
an appropriate fault detection algorithm should not depend
on a supervised classifier. An alternative approach is the
utilization of unsupervised reconstruction-based fault detec-
tion algorithms [10], [11]. Usually, these algorithms train a
Variational Autoencoder (VAE), in an unsupervised practice,
to reconstruct normal operation data. In this way, the VAE
will provide a greater reconstruction error on unexpected
patterns in faulty degradation data. Finally, the reconstruction
error is used as an anomaly score function (ASF) before an
algorithm is applied to detect faults automatically. However,
in semi-autonomous ferries, the sensor measurements might
differ strongly between different engine operational loads. This
increases the difficulty for the VAE to construct an accurate



ASF. Thus, the input data should be subjected to a feature
selection process in order to support the VAE in the demanding
reconstruction process.

This paper investigates automatic fault detection for marine
diesel engine degradation in a simulated autonomous ferry
crossing operation. The unsupervised reconstruction-based
fault detection algorithm proposed in [11], is also used in this
study to predict faults automatically. The VAE is the selected
reconstruction model. Two data sets of real-operational data
from a marine diesel engine are used. The first data set is a
simulated ferry crossing during normal operation, while the
second data set is the exact same ferry crossing operation
except a fault is introduced at an unknown time step. First, the
VAE is trained on the normal operation data. Then, the VAE
estimates an ASF by computing a reconstruction error at each
time step in the second data set, namely, the faulty degradation
data. In the end, the algorithm detects a fault automatically
by predicting the time step with the highest acceleration in
the ASF. In order to examine the need for a feature selection
process to support the VAE reconstruction process, both the
normal operation data and the faulty degradation data are used
to create three different input dimension scenarios: all input
features, feature selection based on human domain knowledge
(HDK), and feature selection based on sensitivity analysis
(SA). In all three scenarios, an individual reconstruction model
is used due to different input dimensions.

Our on-going project intends to develop an intelligent
PHM system to provide real-time decision automation for
autonomous maritime operations. Currently, the project mainly
consists of two parts. The first part is the development of
a step-wise feature selection approach to support both diag-
nostics and prognostics algorithms. The second part, on the
other hand, is devoted to the development of both automatic
fault detection algorithms and RUL prediction algorithms.
Nevertheless, in this paper, we are only focusing on automatic
fault detection. This study’s principal contributions are as
follows:
• Three input dimension scenarios on real-operational ma-

rine diesel engine degradation data are compared.
• Feature selection processes drastically improve the accu-

racy of unsupervised reconstruction-based fault detection
algorithms.

The overall organization of the paper is as follows. Section
II introduces the essential background on the VAE and unsu-
pervised reconstruction models. The experimental procedure,
results, and discussions are elaborated in section III. Section
IV concludes and finishes the paper and presents objectives
for future work.

II. BACKGROUND

This section introduces the essential background on the VAE
and the unsupervised reconstruction models.

A. Variational autoencoder

The VAE was developed by Kingma and Welling in 2013
and models the underlying probability distribution utilizing

Bayesian inference [12]. The VAE includes an encoder func-
tion z = qθe(z|x) and a decoder function r = pθd(x|z). Thus,
compared to the traditional autoencoder [13], the VAE im-
proves generalization since the latent variables z are stochastic
in nature. The VAE objective function is to maximize the
variational lower bound JV AE [14]:

JV AE(θe, θd) = −DKL

(
qθe(z|x) || pθd(z)

)

+Eqθe (z|x)[log pθd(x|z)]
(1)

where DKL is the Kullback-Leibeler divergence. The first
expression is referred to the latent loss and measures how
close z match the encoder function. The second expression is
the reconstruction log-likelihood and referred to the generative
loss. Nevertheless, the reconstruction error needs a Monte
Carlo estimate of the expectation [12]. Since this estimate
is not easily differentiable, a reparameterization scheme of z
is used to collect the gradients of the decoder in order to
use the back-propagation algorithm [15]. First, the reparam-
eterization scheme applies a deterministic variable such that
z = µ + σε, ε ∼ N (0, 1) [12]. In this way, the encoder
produces vectors of both means µ and standard deviations
σ rather than vectors of real values. Finally, these vectors
are applied as the latent vector in the decoder. A Gaussian
reconstruction distribution is normally utilized in the decoder
for real-valued input data. The VAE can be stacked with many
hidden layers in both the encoder and decoder depending on
the dimensionality of the input data. It should be noted that
unsupervised pre-training should be considered for very deep
VAE structures.

B. Unsupervised reconstruction models

As similar to [11], the reconstruction models in this study
are also configured with three hidden layers and corresponding
hidden units (h1,h2,h3) in the encoder and three hidden layers
with corresponding hidden units (h3,h2,h1) in the decoder.
However, due to different input dimensions, the selection pro-
cess of the hidden units is based on the following experience-
based formula:

h1 = Z
(
n · 1.2

)
h2 = Z

(
h1

2

)
h3 = Z

(
h2

2

)

where n is the number of input features in the specific
scenario. Consider xt = [x1 . . . xn]t as the input vector of
measurements at time step t. In order to train the reconstruc-
tion models in an unsupervised practice, xt is also utilized
as the target yt for reconstruction at each t. To measure error
calculations, each reconstruction model uses a fully connected
output layer where the mean squared error (MSE) is the chosen
loss function:

MSE =
1

n

n∑

i=1

||ŷi − yi||2 (2)

where n is the number of input features, ŷi is the ith predicted
measurement and yi is the ith target measurement.



Fig. 1. The small marine diesel engine included in the hybrid power lab at
the Department of Ocean Operations and Civil Engineering at the Norwegian
University of Science and Technology in Aalesund.

III. EXPERIMENTAL STUDY

In the ensuing experimental study, Microsoft Windows 10
is the operating system, Java 8 is the programming language,
“deeplearning4j” (DL4J) version 1.0.0-beta3 [16] is the deep
learning library and NVIDIA GeForce GTX 1060 6 GB is the
graphics processing unit used. The reconstruction models are
trained and evaluated on real-operational data from a marine
diesel engine.

A. Data sets

A hybrid power lab, founded by the Department of Ocean
Operations and Civil Engineering at the Norwegian University
of Science and Technology in Aalesund, is used to collect the
data sets. The lab consists of a small marine diesel engine with
a generator, a marine battery system, a marine DC switchboard
with necessary power converters, and a marine automation
system to control the entire process. The power produced is
fed back to the power grid in order to simulate load changes
in the system. The marine diesel engine is shown in Figure 1.

During the data collection process, the engine is run by an
operating profile that aims to simulate a real-life autonomous
ferry crossing on the west coast of Norway. First, the ferry
leaves shore in a safe and constant velocity. Then, the ferry
increases its velocity until a suitable velocity is reached. This
velocity is kept constant before the velocity decreases safely.
Finally, the ferry breaks just before it docks. The total duration
of the ferry crossing is 22 minutes and 40 seconds and the
complete engine operating profile is shown in Figure 2.

The engine operating profile is run both when the normal
operation data and the faulty degradation data are collected.
Thus, the difference between the two data sets is that a fault is
introduced at an unknown time step in the faulty degradation
data. Hence, the main goal is to predict the time step where
the fault occurs, namely, the fault time step ft.

The engine has both a primary and a secondary water
cooling system, where the secondary cools the primary. The
primary cooling is controlled internally in the engine by a bi-
metal thermostatic valve, which opens at 78 ◦C and fully open
at 90 ◦C. The secondary cooling is controlled by a frequency

TABLE I
REAL-OPERATIONAL DATA SETS COLLECTED FROM THE MARINE DIESEL

ENGINE.

Data set Time (seconds) Frequency Time steps
Normal operation data 1360 2 Hz 2720
Faulty degradation data 1360 2 Hz 2720

Fig. 2. Operating profile for a simulated autonomous ferry crossing.

operated fan circulating air through a heat exchanger. The fault
introduced is a malfunction of the fan. This results in loss of
cooling efficiency in the secondary cooling system. An alarm
is triggered in the marine automation system when the cooling
water temperature increases 85 ◦C.

Table I summarizes the two data sets collected. As seen
in Figure 2, the engine load changes drastically throughout
the ferry crossing operating profile. Thus, the sensor measure-
ments differ strongly between the different engine loads. This
affects the ability of the VAE to reconstruct an ASF with high
degradation relevance. Therefore, in this study, both the normal
operation data and the faulty degradation data are further used
to create three different input dimension scenarios: all input
features, feature selection based on HDK, and feature selection
based on SA.

1) All input features: The raw data sets collected in this
study includes 47 input features in total, e.g., operational loads,
temperature, pressure, flow, and engine speed measurements.
This scenario utilizes all 47 input features, and hence, neglects
the degradation relevance for each input feature regarding
the specific fault used in this study. Thus, in this scenario,
the difficulty for the VAE to reconstruct an accurate ASF
increases.

2) Feature selection based on human domain knowledge:
In this scenario, valuable HDK is used to select degradation
relevant input features concerning the specific fault. The goal
of this selection process is to reduce the amount of noise in
the reconstructed ASF, and hence, support the algorithm to
predict ft with higher accuracy. This selection process results
in 22 input features.

3) Feature selection based on sensitivity analysis: This
scenario is based on the first part of our on-going project.
The step-wise feature selection approach is based on variance-
based sensitivity analysis. In order to remove redundant infor-
mation among the input features and reduce the computational
complexity of variance-based sensitivity analysis, a Pearson



TABLE II
JOINT HYPER-PARAMETERS.

Hyper-parameter Method/value
Optimization algorithm Stochastic gradient descent

lr method Adaptive moment estimation [19]
lr 1 · 10−4

l2 regularization 1 · 10−4

Weight initialization Xavier [20]
Activation function Rectified linear unit [21]

correlation analysis is conducted. Additionally, a surrogate
model is adopted since conventional variance-based sensitivity
analysis cannot be applied to the data sets directly [17], [18].
This selection process results in 12 input features.

B. Data normalization

Each input measurement xn in the normal operation data is
normalized with zero mean and unit variance normalization:

x̂n =
xn − µ
σ

(3)

where µ and σ is the mean and the corresponding standard
deviation of the normal operation data, respectively. Then, the
normalization statistics obtained from the normal operation
data are applied to the faulty degradation data.

C. Hyper-parameter configuration and training

The three reconstruction models are configured with joint
hyper-parameters, as similar to [11]. Joint hyper-parameters
are used in order to create reliable comparisons between
the three input dimension scenarios. The selected hyper-
parameters are summarized in Table II. An early stopping (ES)
approach is used during the training process of each recon-
struction model in order to reconstruct the normal operation
data as accurately as possible. The total reconstruction error of
all time steps in the normal operation data Enod is monitored
by the ES approach for each epoch:

Enod =

Tnod∑

t=1

(
1

n

n∑

i=1

||ŷi − yi||2
)

t

(4)

where Tnod is the total number of time steps in the normal
operation data and the second term is the MSE in Eq. 2.
The training process is terminated if the number of epochs
with no reduction on Enod is greater than four. Finally, the
reconstruction model, obtained from the epoch with the lowest
Enod, is used for validation on the faulty degradation data.

D. Fault prediction

Ellefsen et al. [11] used an unsupervised reconstruction-
based fault detection algorithm for maritime components.
Their proposed algorithm is also used in this work in order to
predict ft. First, the raw ASF is estimated by computing the
MSE, Eq. 2, at each time step in the faulty degradation data.
Normally, the raw ASF includes high amounts of noise. Thus,
the algorithm generates three sliding windows of length w in
order to smooth the ASF:

w =
Tfdd
p

(5)

TABLE III
THE TRUE FAULT TIME STEP ft COMPARED TO THE PREDICTED FAULT

TIME STEP f̂t ON THE FAULTY DEGRADATION DATA FOR EACH SCENARIO.

Scenario n ft p w f̂t

All input features 47 1979

60 45 2529
70 39 2540
80 34 2544
90 30 2548
100 27 2549

HDK 22 1979

60 45 2012
70 39 1852
80 34 1861
90 30 1863
100 27 1867

SA 12 1979

60 45 1994
70 39 2004
80 34 2000
90 30 1863
100 27 1867

where Tfdd is the total number of time steps in the faulty
degradation data and p is a tune-able and application-
dependent parameter. Next, the three sliding windows slide
across the raw ASF for each time step, where a distance
equivalent to w is applied between each sliding window. Then,
in order to remove a certain amount of noise in the raw
ASF, the average reconstruction error is calculated in the three
windows. Thus, since p decides the length of w, it also decides
the amount of smoothing performed on the ASF. Next, the
velocity between windows 1 and 2 and between 2 and 3 are
calculated. Finally, the acceleration between the two velocities
is estimated. A comparison between the raw ASF and the
smooth ASF for each scenario is shown in Figure 3.

According to [11], the maximum increase in sensor mea-
surements deviations compared to typical sensor measure-
ments in normal operation data is a clear symptom of a
fault. Therefore, the maximum acceleration is used as the
fault indicator since this point indicates increasing velocity,
and hence, an accelerated increase in the ASF. The increasing
velocity indicates that one or several feature measurements
have begun to diverge from the normal operation data quickly.
Thus, the algorithm detects the maximum acceleration and the
corresponding fault time step f̂t. Please see [11], for a more
comprehensive explanation of the algorithm.

E. Experimental results and discussions

Table III shows the predicted fault time step f̂t for each
scenario. Five different p values are used to examine the
robustness of each reconstruction model. The lowest p value,
however, is determined to 60 since any lower value might
smooth the ASF too much, and hence, ignoring important
degradation patterns. The true fault time step ft in the faulty
degradation data is determined based on the first time the
cooling water temperature increases 85 ◦C. It should be noted
that both ft and f̂t can be divided by two in order to be
consistent with Figure 2.

As seen in Table III, the scenario utilizing all input features
performs late f̂t predictions for all p values. This scenario
neglects the relevance of degradation for each input feature
concerning the specific fault used in this study. Thus, as seen



(a) (b)

(c) (d)

(e) (f)

Fig. 3. ASF comparison between the three scenarios. p = 60 in the smooth ASF. (a) All input features - raw ASF. (b) All input features - smooth ASF. (c)
HDK - raw ASF. (d) HDK - smooth ASF. (e) SA - raw ASF. (f) SA - smooth ASF.

in Figure 3, a spike occurs in the smooth ASF when the engine
load increases rapidly in order for the ferry to break just
before it docks. Hence, the algorithm detects the maximum
acceleration in the breakpoint in front of the spike. The spike
occurs since engine speed, redundant measurements on engine
loads, and several battery measurements are included in the
data sets. These features increase the difficulty for the VAE
to construct an accurate ASF, especially when the engine load
is above 50%. However, these features have no degradation
relevance for the fault, and hence, they should be disregarded
in order to remove noise for the fault detection algorithm.

As opposed to the scenario utilizing all input features, the
scenarios based on HDK and SA remove both irrelevant and
redundant input features concerning the fault. Thus, these
scenarios perform accurate f̂t predictions, especially when
p = 60.

The accuracy evaluations on the faulty degradation data in
the three scenarios are shown in Table IV. The accuracy is
defined as follows:

Accuracy (%) =

(
1− ||f̂t − ft||

2720

)
· 100 (6)

where 2720 is the total number of time steps in the faulty



TABLE IV
ACCURACY EVALUATION ON THE FAULTY DEGRADATION DATA FOR EACH

SCENARIO.

p Accuracy (%)
All input features HDK SA

60 79.78 98.79 99.45
70 79.38 95.33 99.08
80 79.23 95.66 99.23
90 79.08 95.74 95.74

100 79.04 95.88 95.88
Avg. Accuracy 79.30 96.28 97.88

degradation data. As seen in Table IV, both the HDK and
SA scenario perform consistent accuracy above 95% for all p
values. Nevertheless, the scenario based on SA performs the
highest average accuracy.

IV. CONCLUSION AND FUTURE WORK

This paper has examined automatic fault detection for ma-
rine diesel engine degradation in a simulated autonomous ferry
crossing operation. An unsupervised reconstruction-based fault
detection algorithm has been used to predict faults automat-
ically. The VAE is used as the reconstruction model. Two
data sets of real-operational data have been collected from
a hybrid power lab including a marine diesel engine. The first
data set is a simulated ferry crossing during normal operation,
while the second data set is the exact same ferry crossing
except a fault is introduced at an unknown time step. First,
the VAE is trained on the normal operation data. Then, the
VAE estimates an ASF by computing a reconstruction error
at each time step in the faulty degradation data. In the end,
the algorithm detects a fault automatically by predicting the
time step with the highest acceleration in the ASF. Although
the navigation mission for the ferry is simple, the engine
is subjected to drastic changes in operational loads during
the simulated ferry crossing operation. This increases the
difficulty of the algorithm to detect faults with high accuracy.
Thus, to support the algorithm, three different feature selection
processes on the input data have been compared.

The algorithm achieved an average accuracy of 97.88%
when the input data were subjected to feature selection based
on SA. SA removes both irrelevant and redundant input
features concerning the specific fault used in this study. Thus,
drastically improving the prediction accuracy of the algorithm.
However, any feature selection process might remove input
features which could be of relevance for other faults with
different degradation nature. Hence, introducing several other
faults in the hybrid power lab will be part of future work.
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Online Fault Detection in Autonomous Ferries:
Using Fault-type Independent Spectral Anomaly
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Abstract—Enthusiasm for ship autonomy is flourishing in
the maritime industry. In this context, data-driven Prognostics
and Health Management (PHM) systems have emerged as the
optimal way to improve operational reliability and system safety.
However, further research is needed to enhance the essential
actions relating to such a system. Fault detection is the first
and most crucial action of any data-driven PHM system. In this
study, we propose a fault-type independent spectral anomaly
detection algorithm for marine diesel engine degradation in
autonomous ferries. The benefits of the algorithm are verified on
three fault-types where the nature of degradation differs. Both
normal operation data and faulty degradation data have been
collected from a marine diesel engine, using two different engine
load profiles. These profiles aim to replicate real autonomous
ferry crossing operations, environmental conditions the ferry
may encounter. First, the data is subjected to a feature selection
process to remove irrelevant and redundant features. Then, a
multi-regime normalization method is performed on the data to
merge the engine loads into one context. Finally, a variational
autoencoder is trained to estimate velocity and acceleration
calculations of the anomaly score. Generic and dynamic threshold
limits are simultaneously established to detect the fault time step
online. The algorithm achieved an accuracy of 97.66% in the
final test when the acceleration was used as the fault detector.
The results suggest that the algorithm is independent of fault-
types with different nature of degradation related to the marine
diesel engine.

Index Terms—Autonomous ferry, marine diesel engine, multi-
regime normalization, online fault detection, prognostics and
health management

I. INTRODUCTION

TODAY, ship autonomy is the most-sought research ob-
jective at the Norwegian University of Science and Tech-

nology in Aalesund [1], [2]. However, autonomous ships were
considered to be a futuristic fantasy only six years ago [3].
Yet inland autonomous ferries carrying tiny crews primarily
to make passengers feel safe will be in commercial use on the
west coast of Norway in the very near future [4]. The industry,
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as well as academics, anticipate that these ferries will improve
both safety and profitability [5]. Maintaining, operating, and
navigating the vessels without crew involvement will necessi-
tate the use of highly automated systems and belonging sensor
equipment, and degradation of such systems during operation
poses a serious threat to operations [6].

Prognostics and Health Management (PHM) is the area of
research with the greatest promise to manage maintenance
operations for zero-downtime performance of autonomous fer-
ries [6]. A data-driven PHM system goes far beyond traditional
maintenance approaches, such as reactive maintenance and
preventive maintenance, currently in use onboard ships [7].
Such a system use algorithms built on sensor measurements to
perform automatic fault detection, fault isolation, fault classifi-
cation, and associated remaining useful life (RUL) predictions
to devise an ideal maintenance schedule that eliminates fail-
ures [8]. Autonomous ferries will transfer real-time operational
sensor data to a remote control center to conduct the essential
actions of a data-driven PHM system (see Figure 1). Thus, it
will be possible to schedule maintenance operations to the next
appropriate port of call. The ideal maintenance schedule will
considerably enhance operational availability and reliability
and system safety.

Anomaly detection techniques aim to discover deviations
from normal operation data. In a data-driven PHM viewpoint,
such deviations are symptoms of incipient faults [9]. Fault
detection is the first and most crucial action of any data-driven
PHM system. It should be performed automatically to detect
the fault time step in degradation data. Then, this time step
can be used to construct both labels for fault classification and
run-to-failure targets for RUL predictions. Interest in spectral
anomaly detection techniques has increased recently. These
techniques try to produce the lower dimensional embedding
of the input data where anomalies and normal operation data
are generally distinct [10]. The reconstruction error at each
time step between the input data and its low dimensional
reconstruction is then used as an anomaly score to detect
anomalies [10]. The principal components analysis method is
one of the best-known traditional spectral anomaly detection
techniques [11]. However, deep neural networks (DNNs) have
recently shown superior performance for this purpose [9].
DNNs allow dimension reduction through several hidden lay-
ers with non-linear transformations, and hence, obtain more
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Fig. 1. Illustration of an autonomous ferry, crossing a fjord from dock A to
B. Since there are limited amounts of crew members onboard, such ferries
need to transfer real-time operational sensor data to a remote control center to
conduct the essential actions of a data-driven PHM system. Then, maintenance
operations can be scheduled to the next appropriate port of call.

abstract features to produce a better reconstruction of the input
data.

The marine diesel engine is one of the most critical com-
ponents onboard ferries since it has an important role in both
propulsion and power generation [12]. It is subjected to rapid
variations in operational loads, depending on both the task of
operation and environmental conditions. In such complexity,
the degradation phenomena cannot be presented directly for
cutting-edge spectral anomaly detection algorithms since the
sensor measurements are highly connected to the operational
loads. Hence, a multi-regime normalization method has to be
performed on the raw input data to present the degradation
phenomena [13]. Additionally, the nature of degradation of
typical fault-types associated with the marine diesel engine
might be different from one another and significantly similar
to normal operation data.

This paper proposes a fault-type independent spectral
anomaly detection algorithm for marine diesel engine degra-
dation in autonomous ferries. The variational autoencoder
(VAE) is the selected DNN as it outperforms a feed-forward
neural network (FNN) with one hidden layer, the traditional
autoencoder (AE), and the long-short term memory (LSTM),
in terms of reconstruction-based fault detection for maritime
components in [9]. As similar to [14], a replicated autonomous
ferry crossing operation is used to produce two engine load
profiles. These profiles reflect different environmental condi-
tions affecting the ferry. Both normal operation and faulty
degradation data sets are collected from the two profiles, and a
fault is introduced at an unknown time step in the degradation
data sets. During the experiments, three fault-types with differ-
ent nature of degradation are used for both validation and final
test of the proposed algorithm. The complete algorithm is sum-
marized as follows: First, the VAE is trained on pre-processed
normal operation data. Second, the trained VAE is used to
calculate the velocity and the acceleration of the anomaly score
at each time step in faulty degradation data. Simultaneously,
generic and dynamic threshold limits are established. Both the

calculations and the threshold limits change dynamically with
time. This enables online fault detection as a fault is detected
automatically once the velocity and acceleration calculations
exceed the threshold limits.

The proposed algorithm is based on our already published
fault detection algorithm in [9]. Our previous algorithm makes
only offline fault detection possible. However, as opposed to
our previous algorithm, the proposed algorithm in this study
includes two principal improvements, that is, online and fault-
type independent anomaly detection by utilizing generic and
dynamic threshold limits. This study’s main contributions are
as follows:

• A fault-type independent spectral anomaly detection algo-
rithm for marine diesel engine degradation in autonomous
ferries is proposed.

• Generic and dynamic threshold limits are proposed to
predict the fault time step online.

• The algorithm is independent of fault-types with different
nature of degradation related to the marine diesel engine.

The overall organization of the paper is as follows. Sec-
tion II introduces relevant and related work on spectral
anomaly detection. Section III introduces the essential back-
ground on the VAE and the semi-supervised reconstruction
framework. The experimental approach is explained in detail in
section IV. Results and discussions are elaborated in section V.
Finally, section VI concludes the paper and presents objectives
for future work.

II. RELATED WORK

Three different learning procedures exist for spectral
anomaly detection algorithms: supervised, semi-supervised,
and unsupervised. The availability and quality of the input data
largely determine which learning procedure to choose for fault
detection. Supervised learning involves training a supervised
binary or multi-class classifier to differentiate normal operation
data from faulty degradation data. This procedure is extremely
powerful if predefined labels for both normal and faulty data
points are available during the training stage.

G. Wu proposed a supervised FNN for fault detection of
ship equipment in [15]. In [16], Xu et al. proposed an online
fault diagnostics method based on convolutional neural net-
works (CNNs) and transfer learning. The proposed approach
was trained in a supervised manner where a softmax output
layer was used to classify faults related to both bearings and
pumps. A supervised classifier was also used for fault detection
in [17]. In this study, however, Sun et al. utilized an initial un-
supervised learning procedure, before supervised fine-tuning,
to do automatic feature extractions of rolling element bearings.
Siegel et al. examined methods for detecting and disrupting arc
faults in [18]. Both a binary and multi-class classifier were
used during real-time classification experiments.

Even though the above studies have shown superior accu-
racy in terms of fault detection, there is a lack of labeled
faults in the maritime industry [19]. This necessitates the
use of semi-supervised or unsupervised learning, which does
not require predefined fault labels. In the application of fault
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detection, semi-supervised learning only uses normal operation
data for training, while unsupervised learning has no previous
knowledge of the input data where only intrinsic properties
are used [20].

The sensors installed on autonomous ferries can be utilized
to accumulate and collect normal operation data to use a
semi-supervised learning framework. A VAE was used for
anomaly detection in [9], [14]. In both studies, the maximum
acceleration in faulty degradation data was estimated and
used as the fault detector. However, utilizing the maximum
acceleration makes only offline fault detection possible. This is
because one would need the faulty degradation data in advance
to determine the maximum acceleration.

The utilization of dynamic threshold limits can enable on-
line fault detection. Park et al. [21] proposed an LSTM-based
VAE anomaly detector for robot-assisted feeding. A varying
state-based threshold value was used to detect anomalies.
Thus, online anomaly detection is possible where the threshold
value changes over the estimated state of task execution. Ad-
ditionally, Hundman et al. [22] used non-parametric dynamic
thresholds for spacecraft anomaly detection. Nevertheless,
these studies apply the dynamic thresholds based on the raw
anomaly score or a smooth version of it. For the marine diesel
engine, such dynamic thresholds will reflect the nature of
degradation of the specific fault-type used for fault detection.
Therefore, different dynamic thresholds have to be created for
different faults. This contradicts the fact that the goal of the
improved fault detection algorithm in this study is to be fault-
type independent.

III. BACKGROUND

This section introduces the background theory on the VAE
and the semi-supervised reconstruction framework.

A. Variational autoencoder

The VAE is a variant of the traditional autoencoder (AE)
rooted in Bayesian inference [23]. It is composed of an
encoder function z = qθe(z|x) and a decoder function r =
pθd(x|z). The encoder approximates the underlying proba-
bility distribution pθd(z). Then, new data can be generated
utilizing the decoder by sampling a set of latent variables
z obtained from pθd(z). By modeling the distribution of the
latent variables instead of deterministic values, as conducted
in the traditional AE, the VAE improves generalization since
z are stochastic in nature [24]. Note that θe and θd are the
biases and weights of the encoder and decoder, respectively.
The VAE optimizes θe and θd by maximizing the variational
lower bound JV AE [23]:

JV AE(θe, θd) = −DKL

(
qθe(z|x) || pθd(z)

)

+Eqθe (z|x)[log pθd(x|z)] (1)

where DKL is the Kullback-Leibeler (KL) divergence. The
KL divergence measures the similarity between the prior
distribution of z, pθd(z), and the variational approximation
qθe(z|x). Maximizing JV AE minimizes the KL divergence,
hence pushing the approximated posterior qθe(z|x) towards the
prior pθd(z). The common choice of the prior distribution is

a Gaussian distribution, N (µz,Σz), where a standard normal
distribution N (0, 1) is utilized. The second expression is the
reconstruction log-likelihood of x with sampling from qθe(z|x)
and referred to as the generative loss. The distribution of the
second expression depends on the data type [10]. For real-
valued input data, a Multivariate Gaussian is normally used.

The reconstruction log-likelihood needs to be calculated
through Monte Carlo methods [23]. However, since these
methods suffer from high variance and high computation
resources, a reparameterization trick of z is used to obtain the
gradients of the decoder in order to use the back-propagation
algorithm. The random variable z ∼ qθe(z|x) is replaced by
a deterministic transformation, such that, z = µ + σε, ε ∼
N (0, 1) [10]. Thus, given a fixed input x and a variable ε,
the total function is deterministic and continuous, meaning
back-propagation can compute a gradient that will work for
stochastic gradient descent [23]. Then, the encoder only needs
to produce vectors of means µ and standard deviations σ
instead of vectors of real values.

B. Semi-supervised reconstruction framework

As in [9], the fault detection is conducted through a semi-
supervised reconstruction framework, meaning only normal
operation data is used for training the VAE. Consider xt =
[x1, ..., xn]t as the input vector at time step t. To enable the
VAE to reconstruct the normal operation data, xt is also used
as the target yt for reconstruction at each t. In this way, the
trained VAE is expected to produce relatively large recon-
struction errors on unseen degradation data. Since the data
gathered from the marine diesel engine is continuous sensor
data, a fully connected output layer is attached to the VAE,
where the mean squared error (MSE) is utilized to measure
the reconstruction capability. Thus, the VAE minimizes the
following loss function:

LV AE =
1

n

n∑

i=1

||ŷi − yi||2 (2)

where n is the number of input features, and ŷi and yi is the
ith reconstructed and target measurement, respectively.

As in [9] and [14], the VAE is structured with two hidden
layers (h1, h2) in the encoder, z units in the latent layer
and two hidden layers (h2, h1) in the decoder. However, the
number of hidden units in each layer differs from the previous
studies as they are determined related to the number of input
features n:

h1 = b1.2nc, h2 = bh1/2c, z = bh2/2c (3)

where b c is round down symbol.

IV. EXPERIMENTAL STUDY

The following experimental study, uses Microsoft Windows
10, Java 8, “deeplearning4j” version 1.0.0-beta4 [25] as the
deep learning library, and NVIDIA GeForce GTX 1060 6 GB
as the graphics processing unit.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, MAY 2020 4

Fig. 2. The battery system, the marine diesel engine, and the automation
system used for collecting the data sets.

Fig. 3. Engine load profile 1 and 2.

A. Data sets

A hybrid power lab, established by the Department of Ocean
Operations and Civil Engineering at the Norwegian University
of Science and Technology in Aalesund, is used to collect the
data sets. The lab intends to research ship autonomy. As seen
in Figure 2, the lab includes a small marine diesel engine,
a marine battery system, and a marine automation system to
control the facilities. The power produced is supplied back to
the power grid to simulate load variations in the system.

During the data collection process, the engine is driven by
two different engine load profiles. As similar to [14], the two
engine load profiles aim to replicate real-life autonomous ferry
crossings on the west coast of Norway. First, the ferry is off-
loading and on-loading vehicles before it leaves shore at a safe
and constant velocity. Then, the ferry speeds to a suitable ve-
locity. This velocity remains constant until it decreases safely.
Finally, the ferry breaks just before it docks. In common, the
two profiles are exposed to the same magnitudes of engine
loads, but the length of each engine load differs to reflect
different environmental conditions. Figure 3 shows the two
engine load profiles, profile 1 and profile 2.

In this study, two fault-types are used for validation of
the proposed algorithm. These are the air filter fault, the

Fig. 4. The restriction and bleed device used to provoke the air filter and
turbo fault, respectively.

TABLE I
THE SEVEN DATA SETS COLLECTED FROM THE HYBRID POWER LAB

Data set Profile Usage Seconds Hz Time steps
Normal operation 1 Training 1173 2 2346
Normal operation 2 Training 1173 2 2346
Turbo degradation 1 Validation 1173 2 2346
Turbo degradation 2 Validation 1173 2 2346

Air filter degradation 1 Validation 1173 2 2346
Air filter degradation 2 Validation 1173 2 2346
Cooling degradation 1 Final test 1173 2 2346

clogging of the air filter, and the turbo fault, malfunction of
the turbocharger. The air filter fault demonstrates the effect of
a clogged air filter with the use of a restriction device, as seen
in Figure 4. During the data collection process, this device is
gradually adjusted from fully open to 90% closed to reduce the
inlet flow of air to the turbocharger. The purpose of the turbo
fault is to replicate efficiency reduction in the turbocharger.
This is done by installing a bleed device on the charge air
pipe between the turbocharger and the engine inlet manifold,
as seen in Figure 4. Gradually bleeding of air during the data
collection process results in reduced air pressure to the engine
combustion process. A third fault-type is used for the final test
of the proposed algorithm: a malfunction of the frequency-
operated fan controlling the secondary cooling system in the
engine. This fault, which appears in our previous work [14],
is hereinafter referred to as the cooling fault. One normal
operation data set, one turbo degradation data set, and one
air filter degradation data set is collected from each profile.
Additionally, one cooling degradation data set is collected
from profile 1. Table I summarizes the seven data sets collected
from the hybrid power lab.

B. Feature selection

All collected data sets include 47 input features from the
hybrid power lab. As discovered in [14], features belonging
to the battery system and the automation system are irrelevant
for detecting faults in the marine diesel engine. When such
features are removed, the VAE will provide a reconstruction
process with higher degradation relevance. Additionally, fea-
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TABLE II
FEATURE SELECTION FOR THE MARINE DIESEL ENGINE

Index Description Unit
1 Boost pressure bar
2 Engine load kW
3 Engine cooling water temperature ◦C
4 Engine exhaust gas temperature ◦C
5 Cooling water temperature out of the engine ◦C
6 Engine speed rpm
7 Diesel generator cooling water flow liter/min
8 Simulated propulsion load kW
9 Cooling fan speed controller rpm

tures with constant measurements are removed since these
features provide no degradation information. The Pearson
correlation analysis is also used to detect the linear relationship
between the input features. If two input features have a high
linear relationship, they likely contain redundant information.
Then, expert human domain knowledge (HDK) is used to
determine which of the redundant input features has less
degradation relevance. Actually, in this study, the HDK is
acquired from an engine chief engineer with 13 years of sailing
experience and three years of experience with the development
of a health monitoring system for rotating machinery. The
redundant features are removed accordingly.

HDK is also used to remove inaccurate and unknown
feature measurements concerning the marine diesel engine.
For instance, the cooling water temperature to the engine is
removed since it is considered an unknown parameter. This
feature is affected by the outdoor temperature, and hence,
it varies when data sets are collected at different dates and
seasons. Fuel consumption is also removed from the data sets.
While it is an important feature for detecting faults in the
combustion process in the engine, the measurements obtained
from the automation system were too inaccurate to be used in
this study. Ultimately, nine input features, which are intended
to reflect all degradation patterns in the marine diesel engine,
remain in all data sets. Table II lists the final input features.

C. Multi-regime operating conditions and normalization

As seen in Figure 3, the engine load changes drastically
during the ferry crossing operation in both profiles. As a
result, feature measurements are highly connected to the
engine loads. This causes the feature measurements in the
normal operation data to differ strongly between different
engine loads. Thus, proper data pre-processing, in terms of
multi-regime normalization, is necessary to present the actual
normal operation phenomena for the VAE during the training
phase [13].

Obviously, both profiles fall into five distinct operating con-
ditions based on the engine load. First, the normal operation
data sets in Table I are split into five data sets each based
on the five operating conditions. Each feature in these data
sets is then scaled with zero mean and unit variance (z-score)
normalization:

xon =
xon − µo
σo

(4)

where xn is the input feature, n = 1, 2, ..., 9, in operating
condition o, and µ and σ is the population mean and population

TABLE III
HYPER-PARAMETERS

Hyper-parameter Method/Value
Activation function Rectified Linear Unit

Learning rate 1 · 10−3

l2 regularization 1 · 10−4

Optimization algorithm Stochastic Gradient Descent
Optimizer Adam

Weight initialization Xavier

standard deviation of that feature. This yields five different
normalization statistics, one for each operating condition.
Finally, these normalization statistics are applied both to the
raw normal operation data in the training phase and to the
raw faulty degradation data in the anomaly detection. To apply
different normalization statistics, the engine load is monitored
at each time step.

D. Training phase and anomaly detection

In the training phase, a VAE is established and trained
on both normal operation data sets subjected to multi-regime
normalization. An early stopping policy is utilized to re-
construct the normal operation data as precisely as possible
by monitoring the average reconstruction error of all mini-
batches. If the number of epochs with no decrease in the
average reconstruction error is greater than four, the training
phase is ended. Then, the VAE, in the epoch with the lowest
average reconstruction error, is stored and used for anomaly
detection. The mini-batch size is set to 128. The VAE is
configured with hyper-parameters that provided great success
for maritime components in [9]. These are shown in Table III.

In terms of time series data, it is practical to consider three
categories of anomalies: point, collective, and contextual [11].
Point anomalies are single values that differ from previous
values, collective anomalies are entire sequences of values
that are anomalous, and contextual anomalies are single values

Fig. 5. A complete flowchart of the training phase and anomaly detection.
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that are not different from previous values yet are anomalous
concerning local values [22]. The nature of degradation in
both the turbo and air filter fault is highly connected to the
operating conditions and therefore they should be regarded
as contextual anomalies. However, the VAE is only able to
detect point anomalies. To detect contextual anomalies, the
VAE has to be applied within a context [11]. We consider the
five operating conditions as different contexts. Thus, the multi-
regime normalization statistics also need to be applied to the
faulty degradation data to merge the five different contexts into
one context. In this way, the VAE can be used for anomaly
detection and to estimate an anomaly score at each time step.
Figure 5 shows a complete flowchart of the training phase and
anomaly detection.

E. Fault detection algorithm

1) Online fault detection: The anomaly score in faulty
degradation data ASd is estimated by using the trained VAE
to calculate the MSE, Eq. 2, at each time step t. Then, the
algorithm generates three sliding windows of length w to
smooth ASd:

w =
Td
p

(5)

where Td is the total number of time steps in the faulty
degradation data and p is an adjustable parameter. p determines
the magnitude of smoothing conducted on ASd. Hence, careful
tuning of p is necessary since excessive smoothing might
obscure important degradation trends. The three windows slide
across ASd for each t. A distance equivalent to w is used
between each window. Simultaneously, the average anomaly
score ASd,avg is computed in each window. Additionally, the
velocity vd between windows 1 and 2 and between windows
2 and 3, and the acceleration ad between the two velocities
are calculated. Finally, the velocity fault time step f̂t,v and
the acceleration fault time step f̂t,a are detected when vd and
ad exceeds their dynamic threshold limits, respectively. The
proposed algorithm is shown in Algorithm 1.

Large sensor measurement deviations compared to sensor
measurements in normal operation data is a strong indication
of an incipient fault [9]. These deviations can, of course, be
detected by utilizing ASd or ASd,avg as the fault detectors.
However, both ASd and ASd,avg will vary between different
fault-types since they reflect the nature of degradation. Conse-
quently, the corresponding threshold limits will be highly fault-
dependent. The main goal of the proposed algorithm is to be
fault-type independent. vd will measure the rapidity in ASd,avg
and indicate if one or several sensor measurements have begun
to diverge swiftly from normal operation data. However, ad
will measure increases and decreases in vd. Due to latency
in the marine diesel engine, ad might be a better indication
than vd since there is an expected time delay before the faults
will result in large sensor measurement deviations. Therefore,
vd and ad are considered as more suitable fault detectors for
the algorithm since the calculations are assumed to be similar
between different fault-types. Consequently, generic and fault-
independent threshold limits can be acquired. These limits are
further elaborated in the following paragraph.

Algorithm 1 Algorithm for detecting the fault time step in
faulty degradation data.
Input: Td, ASd, p, vn, vlower, vupper, an, alower, aupper
Output: f̂t,v , f̂t,a

Initialization :
w ← Td / p
vd,first = true
ad,first = true
Generate three sliding windows of length w to slide across
ASd for each t. ASd,avg is computed in each window.
A distance equivalent to w is used between each window.
for t := 1 to Td do
vd1 ← ASd,avg1 - ASd,avg2
vd2 ← ASd,avg2 - ASd,avg3
ad ← vd1 - vd2
if (vd,first = true) then

if (vd1 > vn[t] + vupper or vd1 < vn[t] + vlower)
then
f̂t,v ← t - (w · 1.5)
vd,first = false

end if
end if
if (ad,first = true) then

if (ad > an[t] + aupper or ad < an[t] + alower)
then
f̂t,a ← t - (w · 2.5)
ad,first = false

end if
end if

end for
return f̂t,v , f̂t,a

2) Generic and dynamic threshold limits: In this study, the
threshold limits are based on the velocity vn and the accel-
eration an in the average anomaly score of normal operation
data for both profiles. The procedure to measure both vn and
an is exactly the same as in Algorithm 1. Seven different p
values, in the 30 to 90 range, are used during the experiments.
In order to obtain the associated dynamic threshold limits, the
minimum and maximum velocities of vn, vmin, and vmax, and
the minimum and maximum accelerations of an, amin and
amax, are calculated for each p value in each profile. Then,
a common set of upper and lower thresholds for both vn and
an are calculated based on the following formulas:

vupper =
|(vmax,1 + vmax,2)− (vmin,1 + vmin,2)|

2
(6)

vlower = −vupper (7)

aupper =
|(amax,1 + amax,2)− (amin,1 + amin,2)|

2
(8)

alower = −aupper (9)

The common set of upper and lower thresholds for each
p value are shown in Table IV. The limits will change
dynamically through time when the upper and lower thresholds
are added to vn and an, as performed in Algorithm 1.
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TABLE IV
A COMMON SET OF UPPER AND LOWER THRESHOLDS FOR BOTH THE

VELOCITY AND THE ACCELERATION

p vlower vupper alower aupper
30 -2.63 2.63 -4.10 4.10
40 -3.40 3.40 -4.97 4.97
50 -3.81 3.81 -6.35 6.35
60 -4.40 4.40 -7.26 7.26
70 -5.10 5.10 -8.58 8.58
80 -5.74 5.74 -9.67 9.67
90 -6.32 6.32 -10.54 10.54

The generic and dynamic threshold limits are computed be-
fore they are applied in the fault detection algorithm. However,
new engine load profiles are likely to be encountered in real-
life data-driven PHM systems in autonomous ferries. Then,
the computation complexity will increase since vmin, vmax,
amin, and amax of the new profile have to be calculated and
incorporated in Eqs. 6, 7, 8, and 9 before new fault detections
can start.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this study, both velocity and acceleration calculations
will be used as the fault detectors. The air filter and turbo
degradation in both profiles will be used as the validation
data sets for the proposed algorithm. The validation aims
to discover the best performing fault detector and the most
suitable p value. Seven different p values, in the 30-90 range,
will be compared. A low p value might smooth the anomaly
score too much and ignore significant degradation patterns. In
contrast, a high p value might provide irrelevant spikes that
would also affect the velocity and acceleration calculations. In
the end, the final experiment will use the cooling degradation
as the final test data set of the algorithm. This experiment aims
to further test the fault-type independence of the algorithm.

A. Validation

To validate both f̂t,v and f̂t,a, the true fault time step ft has
to be determined. Since both the air filter fault and the turbo
fault in both profiles are provoked gradually during the data
collection process, ft can not be decided based a recorded time
step. Thus, ft is determined based on expert HDK. The boost
pressure is the key feature to monitor for fault detection for
both fault-types. As already mentioned, both faults-types are
highly connected to the engine loads and subjected to different
nature of degradation. Therefore, ft is determined where the
deviation in boost pressure between normal operation data
and faulty degradation data in percentage is largest. The
determined ft for both fault-types in both profiles is shown
in Table V.

Table VI shows f̂t,v and f̂t,a for each p value in both profiles
for both fault-types. The accuracy evaluations, Accv and Acca,
are based on the following formula:

Acc (%) =

(
1− ||f̂t − ft||

Td

)
· 100 (10)

where Acc (%) can be considered as the distance between the
detection and ft. In the following discussions, a satisfactory

TABLE V
THE TRUE FAULT TIME STEP ft

Fault-type Profile Largest deviation in boost pressure (%) ft

Air filter 1 15.79 1670
2 10.53 1433

Turbo 1 21.05 1431
2 21.05 1427

TABLE VI
VALIDATION: THE TRUE FAULT TIME STEP ft COMPARED TO THE

DETECTED FAULT TIME STEP f̂t

Fault-type Profile ft p w f̂t,v Accv(%) f̂t,a Acca(%)

Air filter

1 1670

30 78 1255 82.31 1502 92.84
40 58 1278 83.29 1609 97.40
50 46 1289 83.76 1648 99.06
60 39 1549 94.84 1660 99.57
70 33 1566 95.57 1674 99.83
80 29 1706 98.47 1680 99.57
90 26 1709 98.34 1682 99.49

2 1433

30 78 1362 96.97 1428 99.79
40 58 1392 98.25 1445 99.49
50 46 1404 98.76 1458 98.93
60 39 1532 95.78 1483 97.87
70 33 1540 95.44 0 38.92
80 29 0 38.92 0 38.92
90 26 0 38.92 0 38.92

Turbo

1 1431

30 78 731 70.16 693 68.54
40 58 771 71.87 745 70.76
50 46 786 72.51 752 71.06
60 39 794 72.85 1347 96.42
70 33 368 54.69 1362 97.06
80 29 1395 98.47 1374 97.57
90 26 1399 98.64 1381 97.87

2 1427

30 78 951 79.71 892 77.20
40 58 979 80.90 929 78.77
50 46 991 81.42 1329 95.82
60 39 1005 82.01 1347 96.59
70 33 1387 98.29 1361 97.19
80 29 1393 98.55 1371 97.61
90 26 1397 98.72 1378 97.91

TABLE VII
VALIDATION: THE AVERAGE ACCURACY FOR EACH p VALUE

p w Avg. Accv(%) Avg. Acca(%)
30 78 82.29 84.59
40 58 83.58 86.60
50 46 84.11 91.22
60 39 86.37 97.61
70 33 86.00 83.25
80 29 83.60 83.42
90 26 83.65 83.55

accuracy is considered to be above 95%. For the air filter
fault in profile 1, f̂t,v provides satisfactory accuracy by p
values between 70 and 90, while f̂t,a provides satisfactory
accuracy by p values between 40 and 90. On the other hand,
for the air filter fault in profile 2, f̂t,v provides satisfactory
accuracy by p values between 30 and 70, while f̂t,a provides
satisfactory accuracy by p values between 30 and 60. As
Table V reflects, the air filter fault in profile 2 is subjected
to a lower deviation in boost pressure than the air filter
fault in profile 1. As a consequence, the air filter fault in
profile 2 is subjected to lower magnitudes of both velocity and
acceleration calculations, and hence, requires smaller upper
and lower thresholds. As Table IV shows, low p values result
in smaller upper and lower thresholds. This issue reflects the
difficulty of creating generic and dynamic threshold limits
even for the same fault-type that is subjected to different
environmental conditions in the form of different engine load
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(a) (b)

(c) (d)

Fig. 6. Automatic fault detection where p = 60 and the acceleration is used as the fault detector. (a) Air filter fault in engine load profile 1. (b) Turbo fault
in engine load profile 1. (c) Air filter fault in engine load profile 2. (d) Turbo fault in engine load profile 2.

profiles.

For the turbo fault in profile 1, f̂t,v provides satisfactory
accuracy by the p values 80 and 90, while f̂t,a provides
satisfactory accuracy by p values between 60 and 90. Similarly,
for the turbo fault in profile 2, f̂t,v provides satisfactory
accuracy by p values between 70 and 90, while f̂t,a provides
satisfactory accuracy by p values between 50 and 90. Also as
seen in Table V, the turbo fault in both profiles are subjected to
a deviation of 21.05%, almost twice the deviation compared to
the air filter fault in profile 2. This results in larger magnitudes
of both velocity and acceleration calculations. Thus, the turbo
fault in both profiles provides the highest accuracies by high
p values and corresponding large upper and lower dynamic
threshold limits.

To determine the best performing fault detector and the
most suitable p value for both fault-types, the average velocity
and acceleration accuracy for each p value is calculated,
as shown in Table VII. When p = 60, the acceleration
provides the highest average accuracy of 97.61%. Therefore,
the acceleration is considered the most fault-independent fault
detector. Figure 6 shows the acceleration calculations and the
corresponding dynamic threshold limits when p = 60 for both
fault-types in both profiles. It is worth mentioning that the
acceleration calculations and the dynamic threshold limits are

not plotted before the entire sliding window operation is active.
In other words, the initial 195 time steps are plotted as zeros
(w(60) · 5 = 195).

B. Final test

The main intention of the final test of the proposed al-
gorithm is to further test its independence towards different
fault-types. The cooling degradation data in profile 1 is used
for this purpose as this fault exhibits a totally different nature
of degradation compared to both the air filter fault and the
turbo fault. Thus, it can be considered to be new field data
that the algorithm has never seen before. To evaluate the fault
detection, the true fault time step ft for the cooling fault is
also determined based on expert HDK. When the cooling water
temperature increases 85 ◦C, ft is determined to be 1713.

As discovered in the validation, the acceleration is the
best performing fault detector when p = 60. These settings
are therefore used in the final test. As Table VIII shows,
the algorithm detects the cooling fault with an accuracy of
97.66%. Also noted, both in the validation and the final test
the trend is that the acceleration provides early detections,
i.e. f̂t,acc < ft, when p = 60. However, early detections
with a corresponding high accuracy are considered as valid
detections since there is an expected time delay in the marine
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TABLE VIII
FINAL TEST: THE TRUE FAULT TIME STEP ft COMPARED TO THE

DETECTED FAULT TIME STEP f̂t FOR COOLING DEGRADATION DATA

Fault-type Profile ft p w f̂t,a Acca(%)
Cooling 1 1713 60 39 1658 97.66

Fig. 7. Automatic fault detection where p = 60 and the acceleration is used
as the fault detector for cooling degradation data.

diesel engine before the faults will result in large sensor
measurements deviations. Figure 7 shows the acceleration
calculations and the corresponding dynamic threshold limits
for the fault detection of the cooling degradation data. The
final test proves that the algorithm is fault-type independent.

VI. CONCLUSION AND FUTURE WORK

This paper has analyzed and proposed a fault-type indepen-
dent spectral anomaly detection algorithm for marine diesel
engine degradation in autonomous ferries where a VAE is used
as the DNN. To do so, three fault-types with different nature
of degradation have been used during the experiments. Both
normal operation data and faulty degradation data have been
collected from two different engine load profiles. These pro-
files aim to replicate real autonomous ferry crossing operations
that might affect the ferry.

In the validation of the proposed algorithm, the acceleration
has proven to be the most fault-independent fault detector,
providing an average accuracy of 97.61%. Additionally, the
acceleration achieved an accuracy of 97.66% in the final test of
the algorithm. Thus, the algorithm has proved its independence
of fault-types with different nature of degradation related to
the marine diesel engine.

In this study, the engine loads were divided into five distinct
operating conditions manually to do multi-regime normaliza-
tion. However, if new operating conditions are encountered
in real-life systems, this process has to be automated. For
instance, through unsupervised clustering algorithms, such
as the K-Means algorithm. One has to remember that fault
detection is only the first action to be performed in a real-
life data-driven PHM system. However, the detected fault
time steps obtained from the faulty degradation data can
be used to automatically label the data to account for both
fault classification and RUL predictions. Also, due to the

VAE’s generative characteristics, it is possible to derive the
reconstruction of the data to analyze the underlying cause of
the fault to do fault isolation. Our future work will include
these crucial actions.
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Hernandez, “Marine diesel engine failure simulator based on thermo-
dynamic model,” Applied Thermal Engineering, vol. 144, pp. 982–995,
2018.

[13] O. Bektas, J. A. Jones, S. Sankararaman, I. Roychoudhury, and
K. Goebel, “A neural network filtering approach for similarity-based
remaining useful life estimation,” The International Journal of Advanced
Manufacturing Technology, vol. 101, no. 1-4, pp. 87–103, 2019.

[14] A. L. Ellefsen, X. Cheng, F. T. Holmeset, S. Ushakov, V. Æsøy,
and H. Zhang, “Automatic fault detection for marine diesel engine
degradation in autonomous ferry crossing operation,” in 2019 IEEE
International Conference on Mechatronics and Automation (ICMA), Aug
2019, pp. 2195–2200.

[15] G. Wu, “Fault detection method for ship equipment based on bp neural
network,” in 2018 International Conference on Robots & Intelligent
System (ICRIS). IEEE, 2018, pp. 556–559.

[16] G. Xu, M. Liu, Z. Jiang, W. Shen, and C. Huang, “Online fault
diagnosis method based on transfer convolutional neural networks,”
IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 2,
pp. 509–520, Feb 2020.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, MAY 2020 10

[17] J. Sun, C. Yan, and J. Wen, “Intelligent bearing fault diagnosis method
combining compressed data acquisition and deep learning,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 67, no. 1, pp. 185–
195, Jan 2018.

[18] J. E. Siegel, S. Pratt, Y. Sun, and S. E. Sarma, “Real-time deep
neural networks for internet-enabled arc-fault detection,” Engineering
Applications of Artificial Intelligence, vol. 74, pp. 35 – 42, 2018.
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Real-time Fault Prognostics in Autonomous Ferries:
The Advantage of Data Augmentation and Skip

Connections
André Listou Ellefsen, Vilmar Æsøy, and Houxiang Zhang, Senior Member, IEEE

Abstract—Autonomous ferries will likely be in commercial use
on the west coast of Norway in the near future. Since such ferries
have no maintenance personnel onboard to perform sudden
maintenance actions when needed, it is vital to have accurate
and reliable fault prognostics in order to schedule maintenance
operations. In this context, data-driven Prognostics and Health
Management has gained significant attention as a source of
solutions. In this paper, we propose a novel data augmentation
technique and the SkipRnet for fault prognostics of marine diesel
engines in autonomous ferries. The advantages are verified on
run-to-failure data of two independent fault-types in two different
engine load profiles the ferries may face in real life. The first
profile is used for training and validation, while the second
is used for real-time testing. The proposed data augmentation
technique is used to construct six different augmented data set
scenarios based on the first profile. The SkipRnet requires high
generalization power toward the second profile since harsh and
variable environmental conditions will subject the marine diesel
engine to unforeseeable operating conditions. Due to the presence
of skip connections, the SkipRnet functions as an accumulation
of four independent deep neural networks (DNNs). Therefore, it
has the ability to tackle a wider range of complexities in new
field data than DNNs without skip connections. The advantage of
both data augmentation and skip connections is clearly proven
throughout this paper.

Index Terms—Autonomous ferry, data augmentation, prog-
nostics and health management, remaining useful life, skip
connections

ABBREVIATIONS AND ACRONYMS

Adam Adaptive Moment Estimation
C-MAPSS Commercial Modular Aero-Propulsion System

Simulation
DL Deep Learning
DL4J Deeplearning4j
DNNs Deep Neural Networks
FNN Feed-forward Neural Network
GPUs Graphics Processing Units
LSTM Long-short Term Memory
PHM Prognostics And Health Management
ReLU Rectified Linear Unit
ResNets Residual Networks
RMSE Root Mean Square Error
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RTF Run-to-failure
RUL Remaining Useful Life
SAE Sparse Autoencoder
SGD Stochastic Gradient Descent
SNR Signal-to-noise-ratio
TL Transfer Learning

NOMENCLATURE

b Bias
d RUL prediction minus target value
dft Detected fault time step
ft Forget gate in LSTM
g Random white Gaussian noise
ht Output of St in LSTM
it Input gate in LSTM
ot Output gate in LSTM
Psignal Average power of the signal
Pnoise Average power of the noise
R Recurrent weight in LSTM
St State of memory cell in LSTM
S̃t New candidate state values in LSTM
Tt Total time step length
w Weight factors
W Input weight in LSTM
x Input vector of measurements
y Target value
θ Biases and weights
µ Mean
σ Standard deviation
φ Non-linear activation function

I. INTRODUCTION

IN an ideal future, autonomous ferries will be maintained,
navigated, and operated without any crew involvement [1].

However, this would require reliance on fully automated
systems and belonging sensor devices. Unanticipated faults
and associated failures of such systems during operation pose a
profound threat to both profitability and safety since there is no
one to perform sudden maintenance actions when needed [2].
Autonomous ferries need to transfer real-time operational sen-
sor data to a human-staffed control center where data-driven
algorithms can be utilized to analyze previous, current, and
future health conditions of components and sub-components.

0000–0000/00$00.00 c© 2020 IEEE
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The resulting analysis can then be used to schedule mainte-
nance operations in the ferry’s next appropriate port of call [3].

Prognostics and Health Management (PHM) is the area of
research with the greatest promise to manage such analysis
with high accuracy. A data-driven PHM system use algorithms
built on historical sensor measurements to detect anomalies,
isolate anomalous components, classify different fault-types,
and predict the progression of faults [4]. Fault prognostics
is the most significant action of a data-driven PHM system
as prognostics algorithms aim to estimate the available time
before an anomalous component will suffer from operational
failure. Such estimations are normally referred to as the
remaining useful life (RUL) and used to devise an ideal
maintenance schedule. Thus, a data-driven PHM system for
autonomous ferries must provide fault prognostics.

Today, fault prognostics of real-world systems remains an
area of active research and development [5], [6]. Prognostics
algorithms are usually divided into data-driven [7] and model-
based [8] approaches. Both are based on mathematics. How-
ever, the approaches differ in that model-based approaches
use algorithms that describe the physics of the component,
while data-driven approaches use algorithms built on historical
sensor measurements. Regarding accurate and reliable RUL
predictions, data-driven approaches that address deep neural
networks (DNNs) [9]–[11], have emerged as extremely pow-
erful – if sufficient historical run-to-failure (RTF) sensor data is
provided. However, problems accessing RTF data is common
in the maritime industry [12]. Fortunately, data augmentation
techniques enable the construction of significant RTF data
based on small amounts of already collected RTF data. Nev-
ertheless, data augmentation techniques are mostly used on
image data for computer vision purposes in the deep learning
(DL) domain [13]. Operational sensor data collected from
autonomous ferries will primarily involve time-series data, and
data augmentation techniques for this data-type are rarely seen.
Thus, this paper proposes a novel data augmentation technique
for RTF time series data.

DNNs are difficult to train. In the field of computer vision,
residual networks (ResNets) have been introduced to simplify
the training procedure of image data [14]. ResNets utilize
residual connections, also known as skip connections, be-
tween convolutional layers. Skip connections allow for easier
optimization since the network can skip training for layers
that are not useful and do not improve accuracy. Thus, skip
connections make dynamic networks that might optimally tune
the number of hidden layers during training. Regarding time-
series data, DNNs are especially difficult to train. This is
because the degree of complexity in time-series data differ
between applications. Different applications are subjected to
diverse amounts of sensor noise and a varying number of
operating conditions. DNNs consist of vast amounts of hyper-
parameters, and hence, require precise tuning for a specific
time-series application. Consequently, the most difficult hyper-
parameter to tune in DNNs for time-series data is the number
of hidden layers that reflects the total number of parameters,
namely, weights and biases. DNNs with few parameters are
only able to model time-series data with low complexity and
vice versa.

In this paper, we adopt the idea of skip connections and
apply them to a DNN suitable for time-series data. The DNN
consists of two long-short term memory (LSTM) layers, two
feed-forward neural network (FNN) layers, one dropout layer,
and a fully connected output layer. The combination of LSTM
layers and FNN layers in DNN structures has shown outstand-
ing performance in recent RUL prediction research studies [9],
[10]. However, skip connections are applied such that the
network has the possibility to skip both the second LSTM layer
and the second FNN layer. We name the network SkipRnet
and validate it on real operational RTF data collected from a
marine diesel engine. As in [3], two replicated autonomous
ferry crossing operations are used as two different engine
load profiles. RTF data of two independent fault-types are
collected from both profiles. RTF data from the first profile
is used for training and validation. Hence, the proposed data
augmentation technique is used to construct more RTF data
from the first profile. The goal of the data augmentation is to
increase the generalization power of the SkipRnet towards the
RTF data in the second profile, which is used as a real-time
test. High generalization power towards engine load profiles
that the SkipRnet has never seen before is extremely important
if the SkipRnet is to be employed in future PHM systems for
autonomous ferries to provide real-time RUL predictions. This
study’s main contributions are as follows:

• Data augmentation increases the generalization power of
DNNs constructed for RUL predictions.

• Due to the presence of skip connections, the SkipRnet is
able to tackle a wider range of complexities in new field
data compared to traditional DNNs.

• In the real-time test, the SkipRnet predicts the RUL of
two independent fault-types in an engine load profile that
it has never seen before with high accuracy.

The rest of this paper is organized as follows. Section II
introduces the latest studies on data-driven fault prognostics.
Section III introduces the essential background theory on FNN,
LSTM, and the SkipRnet. The case study is described in
section IV, while the experimental results and discussions are
presented in section V. Finally, section VI concludes the paper
and indicates objectives for further work.

II. LITERATURE REVIEW

In the latest RUL prediction research studies, DNNs are
proposed with a fixed number of hidden layers. The hidden
units belonging to each hidden layer are usually tuned on
cross-validation data, which is a portion of the training data.

In [9], Ellefsen et al. proposed a semi-supervised DNN for
RUL prediction purposes. The DNN consisted of one restricted
Boltzmann machine layer, two LSTM layers, one FNN layer,
and an output layer. A genetic algorithm was also proposed
to tune a chosen search space of hyper-parameters, including
learning rate, the number of hidden units, activation functions,
etc. Thus, the number of hidden layers was predetermined
before any tuning was performed. In [10], Miao et al. proposed
a dual-task DNN for joint learning of degradation assessment
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and RUL prediction. The proposed DNN included two LSTM
layers, one FNN layer as the classification sub-network, and
three FNN layers as the regression sub-network. A 5-fold
cross-validation procedure was performed to optimize the
number of hidden units in each layer. Hence, as in [9], the
number of hidden layers was predetermined in this study.
Xia et al. proposed a two-stage DNN approach to predict
the RUL of bearings in [11]. First, a denoising autoencoder
was used to cluster bearing signals into diverse degradation
levels. Then, shallow DNNs were constructed for each health
level to perform regression. Finally, the regression results were
smoothed to achieve the overall RUL prediction. In this study,
both the number of hidden layers and the hidden units were
predetermined based on experience.

Consequently, in [9]–[11], the trained DNNs assume that
new field data will have similar distributions and complexity
as the training data. However, autonomous ferries operate
under unpredictable environmental conditions, and hence, the
marine diesel engine has to operate under various operating
conditions. Thus, the assumption that the training data and the
future field data follow similar distributions and complexity
is improbable to hold. One approach to address this issue is
transfer learning (TL). TL involves techniques for transferring
knowledge learned in one domain (training data) to a new
domain (new field data). In [15], Sun et al. proposed a deep
TL network that included three transfer strategies. Weights,
weights updates, and hidden features were used to transfer
a sparse autoencoder (SAE) to a new domain. The SAE
showed improved RUL prediction performance. In [16], de
Oliveira da Costa et al. used a domain adversarial neural
network approach to transfer knowledge of RUL predictions
to a new domain that only contained sensor information.
As in [15], the proposed approach showed improved RUL
prediction performance compared to DNNs only trained on
the training data.

Another interesting approach to tackle the problem of di-
vergent distribution and complexity of the training data and
the future field data is the utilization of skip connections.
When the SkipRnet is trained and employed to predict the
RUL on new field data, it has the potential to make use of
different paths with different numbers of parameters. These
path alternatives might handle the various operating conditions
the marine diesel engine confronts.

III. THEORETICAL FOUNDATION

This section introduces the necessary theoretical founda-
tion. First, it briefly presents both FNN and LSTM. Then it
describes the SkipRnet.

A. Feed-forward neural network

An FNN was the first and most basic type of artificial
neural network developed. It is also referred to as a Multilayer
Perceptron if it’s structured with at least an input layer, a
hidden layer, and an output layer. An FNN is fully connected
such that each unit in one layer has a direct weight connection
to all units of the subsequent layer. Normally, FNNs learn in a
supervised manner by mapping an input x to a target y. Thus,

an FNN describes a mapping y = f(x;θ) and uses the back-
propagation algorithm [17] to learn the parameters θ which
consist of biases and weights. The output of unit k of layer l
is:

alk = φ(zlk) , (1)

where φ is a non-linear activation function and the function
argument is:

zlk = blk +
∑

j

wl
jka

l−1
j (2)

where al−1
j is the output from unit j in the previous layer

l − 1, wl
jk are weight factors, and blk is the bias. In the first

hidden layer l = 1, however, the input is a0i = xi, where xi,
i = 1 . . . n are the inputs to the FNN.

B. Long-short term memory

Hochreiter and Schmidhuber developed the original LSTM
in the 1990s [18]. Since then, improvements upon the original
LSTM have been implemented [19]–[21] to form what schol-
ars generally call the vanilla LSTM. Most DL programming
libraries use the vanilla LSTM with no peephole connections
because it offers fast training time on graphics processing
units (GPUs). This LSTM variant introduces a memory cell
that enables the LSTM to maintain its state over time. In
other words, it is able to learn both short-term and long-
term dependencies. This is its main advantage compared to
traditional recurrent neural networks.

Three non-linear gating units control and protect the state
of the memory cell St [22]:

ft = φ(Wf xt +Rf ht−1 + bf ) (3)

it = φ(Wi xt +Ri ht−1 + bi) (4)

ot = φ(Wo xt +Ro ht−1 + bo) (5)

where φ is the gate activation function, which applies a
sigmoid function to scale the values between 0 and 1, W is
the input weight, R is the recurrent weight, and b is the bias
weight. A tanh activation function creates the new candidate
state values S̃t:

S̃t = tanh(Ws xt +Rs ht−1 + bs) (6)

The previous cell state, St−1, and S̃t create the new cell state,
St:

St = ft ⊗ St−1 + it ⊗ S̃t (7)

where ⊗ specifies element-wise multiplication of two vectors.
In this way, ft determines which historical information should
be deleted and it decides what new information the memory
cell will consider relevant and store. At last, ot decides which
information of St the memory cell will output:

ht = ot ⊗ tanh (St) (8)

By means of Eq. 3 - 8, the LSTM has the capability to delete
and insert relevant information to St. This feature makes it
well-suited to learn temporal dependencies in time-series data.
The LSTM is also trained by the back-propagation algorithm.
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C. SkipRnet

As they do in the latest RUL prediction research studies
[9], [10], LSTMs and FNNs will act as the main building
blocks of the SkipRnet. The LSTM layers are used to learn
temporal and long-term dependencies within the features of
degradation data. The FNN layers are then used to map all
extracted features before a dropout layer is used to reduce
overfitting. Dropout [23] randomly drops units of the dropout
layer during training. This forces the SkipRnet to learn to make
generalized representations of the input data. Generalized
representations amplifies the feature extraction capability of
the SkipRnet since it prevents it from extracting the same
degradation features over and over. The last layer consists of
a time distributed and fully connected output layer with one
unit. This layer handles error calculations and perform RUL
predictions. The mean squared error is utilized as the loss
function.

As seen in Figure 1, the SkipRnet has the ability to skip
both the second LSTM layer and the second FNN layer
during the training procedure. This results in four different
paths with differing numbers of parameters. In other words,
the SkipRnet can be considered as an accumulation of four
different DNNs, and hence, for different time steps in the
training data, the SkipRnet will be trained at different rates
based on how the error flows backward in the four DNNs.
Therefore, the SkipRnet should be able to handle time-series
data in a wide range of complexities. Similar to ResNets, the
skip connections in the SkipRnet use element-wise addition to
combine the activations of two layers. It’s worth noting that
skip connections can as well be applied to other combinations
of LSTM layers and FNN layers than what the SkipRnet uses.

In the following case study, the four different paths will
be used as the baseline DNNs for comparison. That is, L1F1,
L1F2, L2F1, and L2F2, where L and F represent the number of
LSTM layers and FNN layers, respectively. Since the SkipRnet
is trained as an ensemble of the four different DNNs, it should
provide as good as accuracy as any of the different DNNs in
all scenarios.

Fig. 1. The SkipRnet and its four different paths, L1F1, L1F2, L2F1, and
L2F2, where L and F represent the number of LSTM layers and FNN layers,
respectively.

Fig. 2. The marine diesel engine included in the hybrid power lab.

IV. CASE STUDY

The following case study, uses Microsoft Windows 10, Java
8, deeplearning4j (DL4J) version 1.0.0-beta4 [24] as the DL
library, and NVIDIA GeForce GTX 1060 6 GB as the GPU.

A. Data sets

A hybrid power lab, which is designed to research ship au-
tonomy, is used to collect the data sets. The lab was established
by the Department of Ocean Operations and Civil Engineering
at the Norwegian University of Science and Technology in
Aalesund. The lab includes a marine diesel engine, a marine
battery system, and a marine automation system to control
the process. To simulate load alterations in the system, the
produced power is supplied back to the power grid. The diesel
engine is shown in Figure 2.

Two engine load profiles have been used during the data
collection process. As seen in Figure 3, the profiles aim
to replicate two different environmental conditions the au-
tonomous ferry may encounter during a ferry crossing on
the west coast of Norway. To obtain degradation data, two
typical and independent fault-types associated with the marine
diesel engine were provoked during the data collection process
of both profiles. The first fault-type is clogging of the air
filter, while the second fault-type is a malfunction of the
turbocharger.

In our previous work, a fault-type independent spectral
anomaly detection algorithm was proposed to detect the fault

Fig. 3. Profile 1 vs. profile 2.
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Fig. 4. The proposed data augmentation technique for run-to-failure time-series data.

TABLE I
THE FOUR ORIGINAL RTF DATA SETS COLLECTED FROM THE MARINE

DIESEL ENGINE.

Data set Profile Usage dft Last RUL target Time steps
Air filter 1 Train/val 1,660 0 2,346

Turbo 1 Train/val 1,347 0 2,346
Air filter 2 Test 1,483 106 2,240

Turbo 2 Test 1,347 490 1,856

time step dft of both fault-types in both profiles [3]. The de-
tected dft is used in this case study to automatically construct
RUL targets based on the piece-wise linear degradation model,
an approach heavily validated in [7]. The air filter fault and
the turbo fault in profile 1 are used as the training set for
the SkipRnet. The degradation in the training set grows in
magnitude until failure. Consequently, the last RUL target =
0. Profile 2 is subjected to different engine loads, and hence,
it will be used as the test set. However, the degradation in the
test set should end sometime before failure in order to verify
that the SkipRnet is able to predict the RUL. Accordingly, a
random amount of time steps is removed in both the air filter
fault and the turbo fault in profile 2. Table I summarizes the
data sets used in this case study. All data sets include 47 input
features, e.g., engine load, engine speed, flow, pressure, and
temperature measurements. See [3] for a detailed description
of the two fault-types and see [25] for analysis of the input
features.

It is worth noting that real-life RTF data sets are normally
accumulated and collected through months, or perhaps even
years. In this case study, however, the RTF data sets are
collected more rapidly due to time constraints. Even though
the collected RTF data sets only consist of 2,346 time steps,
the real degradation patterns are assumed to remain. One time
step equals 0.5 seconds.

B. Data augmentation and normalization

Each feature in the training set is scaled with zero mean
and unit variance (z-score) normalization:

x̂n =
xn − µ
σ

(9)

where xn is the feature measurement, n = 1, 2, . . . , 47, and
µ and σ is the mean and standard deviation of that feature,

respectively. The normalization statistics obtained from the
training set will also be applied to the test set.

It is well-known that DNNs have the property that if you
feed them more data they get better and better [26]. This fact
also holds for DNNs constructed to provide RUL predictions.
Therefore, scholars have usually used the publicly accessible
Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) data set, which consists of numerous simulated RTF
data sets of aircraft gas turbine engines, to train and validate
their proposed DNNs. The C-MAPSS data set is created and
provided by NASA [27] and acknowledged as the benchmark
data set for prognostics algorithms that address DNNs within
the PHM research field. In real-world applications, however,
RTF data might be more time-consuming and difficult to
acquire. In such applications, data augmentation techniques
come in handy.

A limitation of DNNs today is the danger that they will
learn only exactly what we ask them to learn. For instance, in
this case study, we will only use RTF data from profile 1 as
the training set. So, the danger is that the SkipRnet will only
learn statistics from profile 1 and not be able to generalize
to profile 2. Thus, as seen in Figure 4, this paper proposes
a data augmentation technique for RTF data to increase the
generalization power of the SkipRnet. First, random white
Gaussian noise, g, is applied to each x̂n in the original training
set with a random signal-to-noise-ratio (SNR) between 70 and
90%:

SNR(%) =
Psignal

Pnoise
· 100 (10)

where Psignal and Pnoise are the average power of the signal
and the noise, respectively, and calculated as follows:

Psignal =
1
Tt

Tt∑
t=1

(√
1
n

(
x̂21 + · · ·+ x̂2n

)
)

(11)

Pnoise =
1
Tt

Tt∑
t=1

(√
1
n

(
(x̂1 + g)2 + · · ·+ (x̂n + g)2

))
(12)

where Tt is the total time step length of the original training set
and n is the number of input features. The resulting noisy data
set will exhibit similar statistics to profile 1, but differ based
on the SNR. The aim is to increase the range of statistics
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Fig. 5. RMSE vs. SCORE

that the SkipRnet will learn in the training procedure. Next,
following [28], a random amount of time steps are removed
after dft to also include some time-series that will end some
time prior to failure. Thus, the SkipRnet is forced to learn
distributions that are more similar to a real-time PHM system,
where the main goal is to accurately predict the available time
before operational failure. The proposed data augmentation
technique is repeated for 0, 10, 20, 30, 40, and 50 times for
each fault-type in the training set. This results in six different
scenarios of 0, 20, 40, 60, 80, and 100 augmented training
data sets.

C. Performance indicators

In this case study, the root mean square error (RMSE)
is used as one of the performance indicators. The training
procedure can be considered as a regression task since the
goal is to train the SkipRnet to predict the constructed RUL
targets with high accuracy at each time step. The RMSE is
defined as follows:

RMSE =

√√√√ 1

n

n∑

i=1

d2i (13)

where n is the total number of constructed RUL targets
and di = RULpredicted,i − RULtarget,i. Additionally, the
maintenance scoring function (SCORE), provided in [27], is
used as a performance indicator for the last RUL targets in
the test set:

SCORE =





m∑
j=1

e−(
dj
13 ) − 1, for dj < 0

m∑
j=1

e(
dj
10 ) − 1, for dj ≥ 0

(14)

where m is the total number of last RUL targets in the test set
and dj = RULpredicted,j − RULtarget last,j . In SCORE, the
punishment for late RUL predictions, when dj > 0, is greater
than early RUL predictions, when dj < 0. This indication
is especially suited for the SkipRnet as late RUL predictions
could lead to a potential disaster for autonomous ferries.
Late RUL predictions are vulnerable to engine failure since
maintenance operations would be scheduled too late. Early
RUL predictions, however, pose less risk of engine failure as
maintenance operations would be scheduled too early.

TABLE II
HYPER-PARAMETERS.

Hyper-parameter Method/Value/Values
Activation function in FNN layers ReLU

Activation function in LSTM layers tanh
Dropout 0.5

Hidden units in all hidden layers 64, 128, 192
Learning rate first LSTM layer 5 · 10−4

Learning rate remaining layers 1 · 10−4

l2 regularization 1 · 10−5

Mini-batch size 5
Optimization algorithm SGD

Optimizer Adam
Seed 12345

Weight initialization Xavier

The main objective for both performance indicators is to
reach the lowest value possible, namely, when di = 0 and
dj = 0. The RMSE and the SCORE are illustrated in Figure 5.

D. Network configuration and training

DNNs introduce a big search space of hyper-parameters,
which can be laborious to optimize in the training process.
Thankfully, recent RUL prediction research studies [7], [9],
[10] can be used as a guide to determine which hyper-
parameters to include and which to omit. Similar to [7],
the rectified linear unit (ReLU) activation function [29] is
used in FNN layers and the tanh activation function is used
in LSTM layers. Additionally, to better maintain low-level
degradation features, the learning rate in the first LSTM layer
is a half order of magnitude higher than the learning rate in the
remaining layers. The l2 regularization coefficient is 1 · 10−5.
As recommended in [23], the dropout retaining probability
is 0.5. In DL4J, time-series have three dimensions: [numEx-
amples, inputSize, timeSeriesLength], where numExamples is
the number of time-series included in a mini-batch, inputSize
is the number of input features, and timeSeriesLength is the
total time step length in a mini-batch. The mini-batch size is
selected to be five RTF data sets for all augmented data set
scenarios, except the first scenario. There are only two RTF
data sets in the original training data, so no mini-batch is used
in the first scenario. As in [7], [9], [10], stochastic gradient
descent (SGD) is used as the optimization algorithm together
with adaptive moment estimation (Adam) as the learning rate
method [30]. Xavier weight initialization [31] is used in all
layers. To ensure the training results are reproducible, the seed
is fixed to a value of 12345 in all experiments. The hyper-
parameters are given in Table II.

In this case study, the most important hyper-parameter
is considered to be the total number of parameters, which
relates to the number of hidden units in each layer. Thus, the
number of hidden units will be tuned through a 7-fold cross-
validation procedure for each augmented data set scenario.
Each scenario is divided into 80% training and 20% cross-
validation, randomly. To prevent overfitting, early stopping
is used to monitor the RMSE performance on the cross-
validation set for each fold. If the number of epochs with no
reduction on the RMSE gets greater than four, the training
process is aborted. Then, the SkipRnet, in the epoch with
the lowest RMSE on the cross-validation set, is saved. In the
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TABLE III
THE AVERAGE RMSE OF A 7-FOLD CROSS-VALIDATION PROCEDURE FOR

EACH AUGMENTED DATA SET SCENARIO.

Configuration Total Augmented RMSE Avg. epoch
params data sets train cross time

SkipRnet 64 73,985

0 29.47 29.47 0.64
20 31.45 34.64 2.86
40 33.37 37.20 5.28
60 34.84 33.58 7.59
80 34.52 31.97 10.21

100 41.84 31.01 12.53
Avg. 34.25 32.98 6.52

SkipRnet 128 270,849

0 31.26 31.26 0.69
20 26.75 28.83 2.94
40 29.46 29.13 5.48
60 31.66 27.22 7.85
80 34.42 27.70 10.66

100 39.19 31.55 13.02
Avg. 32.12 29.28 6.77

SkipRnet 192 590,593

0 57.10 57.10 0.75
20 30.00 30.20 3.11
40 35.63 27.73 5.92
60 33.81 31.42 8.54
80 52.31 32.85 11.62

100 43.70 37.10 14.32
Avg. 42.09 36.07 7.38

Fig. 6. The average cross-validation RMSE accuracy of all folds for each
augmented data set scenario.

end, the average cross-validation RMSE of all folds for each
augmented data set scenario is calculated.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The objective of this paper is to explore whether data
augmentation and skip connections are advantageous for
fault prognostics in autonomous ferries. First, the average
RMSE performance for all augmented data set scenarios
was compared to the SkipRnet, with different numbers of
total parameters. Then, the most robust configuration of the
SkipRnet and its four different paths, L1F1, L1F2, L2F1, and
L2F2, are compared using both RMSE and SCORE on the
test set. Finally, the SkipRnet trained with and without data
augmentation is illustrated in a real-time test.

A. Cross-validation

The goal of the cross-validation is to acquire the most robust
configuration, in terms of total parameters, of the SkipRnet.
That is, to achieve the configuration that best reflects the de-
gree of complexity in the cross-validation sets in all augmented
data set scenarios. The first scenario includes zero augmented

data sets, and hence, the SkipRnet is only trained and validated
on the original training set. Thus, the first scenario is assumed
to exhibit the lowest degree of complexity of the six scenarios.
In contrast, the scenario with 100 augmented data sets is
assumed to exhibit the highest degree of complexity.

As seen in Table III and Figure 6, the SkipRnet with 64
hidden units in all hidden layers includes too few parameters
to model the augmented data set scenarios. Instead, it provides
the lowest cross-validation RMSE on the original training set.
When it comes to the SkipRnet with 192 hidden units, the
total number of parameters is increased almost eight-fold.
This number of parameters is clearly too big compared to
the number of examples in the original training set. That said,
it provides a major decrease in cross-validation RMSE in all
augmented data set scenarios, where both the number of exam-
ples and the complexity has increased. As seen in Table III, the
SkipRnet with 128 hidden units provides the lowest average
RMSE for all augmented data sets scenarios. Therefore, this
SkipRnet is considered the most robust configuration and will
be further used in the test on profile 2.

The training time should also be taken into consideration
in a lot of applications. As seen in Table III, the average
training time per epoch, which is stated in seconds, is very
similar between all three configurations of the SkipRnet. As a
consequence, this comparison neglects the training time.

B. Real-time test

Autonomous ferries will be subjected to unpredictable envi-
ronmental conditions. Ergo, the marine diesel engine is prone
to various operating conditions. This is why the SkipRnet
needs to provide high generalization power towards engine
load profiles that it has not seen before, which is profile 2 in
this study. Therefore, together the air filter fault and the turbo
fault in profile 2 comprise the test set.

The SkipRnet can be considered as an ensemble of four
independent DNNs, L1F1, L1F2, L2F1, and L2F2, as referred
to in Figure 1. As a result, the SkipRnet should provide
better or as good RMSE performance as the four DNNs in
all augmented data set scenarios. In order to verify this, each
baseline DNN is also trained on each augmented data set
scenario through the above-mentioned 7-fold cross-validation
procedure.

In this comparison, the trained SkipRnet and baseline DNNs
for each fold in each augmented data set scenario are employed
to predict the RUL at each time step on the test set. In
other words, this comparison can be considered as a real-
time test because this is how the networks would potentially
be employed in a real-life data-driven PHM system for au-
tonomous ferries. Both RMSE and the SCORE are used as the
performance indicators. Table IV, however, shows the average
RMSE and SCORE of the seven SkipRnets, L1F1s, L1F2s,
L2F1s, and L2F2s in each augmented data set scenario. As
seen in Figure 7, the SkipRnet provides the lowest RMSE for
each augmented data set scenario. As expected, L1F1 provides
the worst overall RMSE due to having the lowest number of
parameters. Interestingly, L2F2 provides worse overall RMSE
compared to the SkipRnet, even though L2F2 has the same
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TABLE IV
THE AVERAGE RMSE AND SCORE PERFORMANCE ON THE TEST SET.

Network Total Augmented RMSE SCOREparams data sets test

L1F1 122,753

0 315.95 8,192.14
20 285.09 67.63
40 245.09 218.73
60 254.61 731.32
80 279.81 600.80
100 256.86 226.77

L1F2 139,265

0 213.26 1,796.67
20 194.51 18,086.95
40 207.36 5,444.71
60 194.55 3,023.56
80 189.71 6,939.86
100 181.01 177.45

L2F1 254,337

0 139.86 5.1
20 122.14 320.60
40 132.82 2,845.32
60 156.84 69.38
80 145.94 72.31
100 135.03 88.35

L2F2 270,849

0 182.37 420.17
20 218.03 34.75
40 197.05 201.29
60 177.41 16.90
80 170.60 205.12
100 158.41 66.65

SkipRnet 270,849

0 137.89 8.59
20 85.76 9.92
40 106.11 17.23
60 72.98 70.28
80 91.85 59.50
100 97.86 397.26

Fig. 7. The average RMSE on the test set for each augmented data set
scenario.

number of parameters. A logical explanation for these findings
is the advantage of the skip connections. For each time step in
the test set, the SkipRnet has the ability to utilize the strengths
and reduce the weaknesses of four DNNs. In other words, for
each time step, the SkipRnet has the ability to utilize different
numbers of parameters in the range between 122,753 and
270,849. Therefore, the SkipRnet is able to handle a wider
range of complexities in new field data compared to DNNs
without skip connections.

In addition to the RMSE, the SCORE is also important
to consider in real-life data-driven PHM systems suitable for
autonomous ferries. A reliable and low SCORE performance
close to the end of the marine diesel engine’s lifetime has
great significance, as this period is critical in order to schedule
maintenance operations. As seen in Figure 8, the SkipRnet
provides satisfactory SCORE performance on the test set when

Fig. 8. The average SCORE on the test set for each augmented data set
scenario.

trained on 0, 20, and 40 augmented data sets. However, as
seen in Table IV, the SkipRnet provides the lowest RMSE
on the test set when trained on 20 and 60 augmented data
sets. Consequently, the SkipRnet provides the best overall RUL
performance on the test set when trained on 20 augmented data
sets.

Figure 9 compares the RUL predictions on both the air
filter fault and the turbo fault in the test set when the
SkipRnet is trained on 20 augmented data sets and the original
training set. This comparison proves the advantage of the
proposed data augmentation technique. It clearly increases
the generalization power of the SkipRnet toward an engine
profile it has never seen before. Additionally, the SkipRnet
provides high RUL prediction performance, especially close to
the end of the engine’s lifetime, for both fault-types. However,
the predictions are kind of noisy, but this is expected due
to the drastic changes in engine loads. As a consequence,
confidence bounds have to be incorporated to increase the
reliability of the RUL predictions in a real-life data-driven
PHM system. Maintenance decisions based on prognostics
information should be anchored in confidence bounds rather
than a particular RUL prediction [32].

VI. CONCLUSION AND FUTURE WORK

This paper has analyzed and proposed a novel data aug-
mentation technique and the SkipRnet for fault prognostics of
the marine diesel engine in autonomous ferries. In order to do
so, RTF data of two fault-types in two different engine load
profiles have been used during the experiments. RTF data in
profile 1 is used for training and validation, while RTF data in
profile 2 is used for real-time testing. Hence, the data augmen-
tation technique is used to construct six different augmented
data set scenarios based on the first profile. High generalization
power towards engine load profiles that the SkipRnet has never
seen before is of high value since the marine diesel engine will
be subjected to unforeseen operating conditions due to variable
environmental conditions the autonomous ferry will encounter.

In the validation of the SkipRnet, the importance of tuning
the total number of hyper-parameters has been shown. The
SkipRnet can be considered as an accumulation of four
independent DNNs due to its skip connection. Thus, when
included in future PHM systems for autonomous ferries, the
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Fig. 9. The prediction results on the air filter fault and the turbo fault in the test set when the SkipRnet is trained on 20 augmented data sets and the original
training set.

SkipRnet has the ability to tackle a wider range of complexities
in new field data compared to traditional DNNs without
skip connections. Additionally, the SkipRnet improved its
generalization power when trained on 20 augmented data sets
towards engine load profiles it had never seen before. The
advantage of data augmentation and skip connections is clear.

Accurate and reliable fault prognostics rely on the accessi-
bility of RTF data. Manufacturers and shipowners need to start
saving and sharing their RTF data in order to gain the true
benefits of data-driven PHM systems. Based on the findings
in this paper, it is not an understatement to claim that the more
data you feed to DNNs, constructed for fault prognostics, the
better they become at providing RUL predictions.

Future data-driven PHM systems need to be included in the
building and design phase of autonomous ferries. It will be
more difficult and time-consuming to install such systems on
an already operational autonomous ferry due to the diversity
of equipment and system manufacturers operating today. Our
future work will address these factors.
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