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Introduction

Numerical integrators are methods for solving differential equations, which
usually cannot be solved exactly. Such methods are used daily by researchers
in a broad range of sciences and by engineers in the industry. The development
and study of new and improved numerical integrators is thus one of the most
important fields in applied mathematics, reflected in its long history and the
vast research being done in the field today.

The performance of a numerical integrator is typically measured by its
ability to approximate the exact solution as accurately as possible. This abil-
ity has historically been judged by calculating the numerical error at a given
time and weighing that against the computational cost. This is a quantita-
tive measurement of the error. However, as the capabilities of computers to
perform demanding operations improve, so follows an increased demand for
numerical methods that perform well over very long time intervals. This can
in part explain the growing interest in geometric integrators over the last few
decades. Such integrators are developed based on their qualitative behaviour,
i.e. whether structures of the system it models is also present in the numerical
solution. This evolution marks a shift from most of the emphasis being on
general-purpose algorithms to an increased interest in special-purpose methods,
developed for classes of differential equations with common characteristics.

Over the last three decades, methods have been constructed that preserve
structures such as symplecticity [67], symmetry [52], phase-space volume [62],
invariants and dissipativity [51], and Lie group structures [35]. The focus
on geometric integrators has also revealed the structure-preserving properties
of many classical methods. For instance, the good performance of the leap-
frog scheme can in part be explained by it being a symplectic integrator [24].
Among the extensive literature covering numerical geometric integration, we
recommend [3, 31, 44, 67].

In Figure 1, we plot two different numerical solutions of a double well
system with a conserved Hamiltonian: one obtained by the explicit midpoint
method and one obtained by an invariant-preserving method. Both these meth-
ods give second order approximations of the exact solution. After a very long
integration time with a fairly large step size we cannot assume that either of the
methods yield accurate approximations of the exact solution, but a method pre-
serving the Hamiltonian exactly is guaranteed to stay on the closed path of the
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exact solution. The explicit midpoint method is much faster than the implicit
invariant-preserving method, but the plots in Figure 1 indicate at least three
obvious advantages of using a geometric integrator. For one, while the solu-
tion obtained by the explicit midpoint midpoint veers increasingly far from the
exact solution, there is a bound to how inaccurate the solution of the invariant-
preserving scheme can be. Related to this, the non-preserving method will even-
tually become unstable, as we see indications of in the plot. Lastly, there may
very well be situations where staying on the correct solution path is important
in itself, in which case an invariant-preserving scheme is clearly advantageous.

-2 -1 0 1 2

-5

0

5

-2 -1 0 1 2

-5

0

5

Figure 1: A double well system solved by the explicit midpoint method (left) and
an invariant-preserving discrete gradient method (right). In both cases, the step size
h = 0.1 and the end time T = 250.

This thesis is a collection of nine papers, of which eight are written in
collaboration with others. The title of the thesis refers both specifically to the
subject of the majority of the papers, as well as in a broader sense to the focus of
the whole thesis, depending on how one defines invariant. The term invariant is
often used interchangably with first integrals, which we will define later. Then
an invariant is meant to be a function that remains unchanged over time along
the solution of a differential equation. Numerical methods preserving such first
integrals are called energy-preserving methods. Among these methods are the
discrete gradient methods, which features in the first six papers of this thesis.
When used to solve systems with first integrals, these methods preserve the
first integral to machine precision. However, in the fourth paper, we do not
study the energy-preserving property of discrete gradient methods, but rather
employ them to gradient flow problems. Then the methods are preserving in
the sense that the numerical solution preserves the dissipative behaviour of the
continuous system it models.

2



Kahan’s method is considered in papers 6 and 7. In contrast to the discrete
gradient methods, this does not preserve a first integral to machine precision.
We still use the term energy-preserving about this method, since it keeps the
error of the first integral within a certain bound by preserving a modified first
integral exactly. The two last papers are on the surface only loosely related
to the rest of the thesis; they are within the field of shape analysis, and not
concerning the preservation of first integrals. There we study invariant preser-
vation in a different setting: we present methods for matching curves in various
manifolds, where this matching is invariant under changing parametrization.
The parametrized curves are mapped to tangent vector fields where geodesics
are computed. The solution of differential equation comes into play in this
process when the curves are mapped back to the manifold.

In the remainder of this introduction we will present some of the concepts
most frequently used in the papers to follow, leaving most of the details for
later. We also discuss our motivation for undertaking the different tasks, and
aim to put the research in a larger context. Lastly we give a brief summary of
each of the papers.

Preservation of first integrals

Consider the ordinary differential equation (ODE) system

ẋ = f (x), x(t0) = x0, x ∈Rd , f : Rd →Rd . (1)

Such a system may have one or more first integrals: functions H : Rd →R such
that H(x(t )) = H(x(t0)) for any t > t0. First integral is one of many names used
for such a function; others include invariant, conserved quantity, constant of
motion, or energy, even when it is not the energy of the system in the physical
sense. In this thesis, we mainly call it energy or first integral, and we call
methods preserving it energy-preserving or integral-preserving methods. If

f (x)T ∇H(x) = 0, (2)

then (1) preserves the energy H , since

d

dt
H(x) =∇H(x)T ẋ = 0. (3)

If we can write
f (x) = S(x)∇H(x), (4)

where S(x) : Rd×d →Rd is a skew-symmetric matrix, then (1) preserves H : this
follows from the skew-symmetry of S(x), which yields

∇H(x)T f (x) =∇H(x)T S(x)∇H(x) = 0. (5)

3



The converse is also true, on {x ∈ Rd : ∇H(x) 6= 0}; in [51], McLachlan et al.
show that if H is a first integral of (1), then there exists a skew-symmetric
matrix S(x), bounded near every non-degenerate critical point of H , such that
f = S(x)∇H(x). They show this by providing an explicit expression for one
such S(x): the so-called default formula

S(x) = f (x)∇H(x)T −∇H(x) f (x)T

∇H(x)T ∇H(x)
. (6)

Many ODEs are well-known to have first integrals, and are often formulated
directly on the so-called skew-gradient form

ẋ = S(x)∇H(x). (7)

This includes the large class of canonical Hamiltonian ODEs, in which case S
is a constant matrix of a certain form, and non-canonical Hamiltonian systems,
in which case S can depend on the solution [31, 44].

As mentioned earlier, many methods have preservation properties even if
they were not constructed specifically for that cause. This is the case for Runge–
Kutta methods and first integrals: all Runge–Kutta methods preserve linear first
integrals, and a large class preserves quadratic invariants [20,31]. However, for
n ≥ 3, no Runge–Kutta method, explicit or implicit, can preserve all polynomial
invariants of degree n [31]. This has motivated the study of methods specifically
designed to preserve any first integral. Among these are projection methods:
we define then the submanifold of Rd where H is preserved, M= {x : H(x) =
H(x0)}, and project our solution onto this manifold after solving it with an
arbitrary one-step method in Rd [32, section VII.2]. Another class of energy-
preserving methods was first formulated by Gonzalez in [28], and has since
been the subject of many papers, including the majority of those that constitute
this thesis: discrete gradient methods.

Discrete gradient methods

The idea behind discrete gradient methods is to find consistent discrete approx-
imations S(x, y,h) and ∇H(x, y) to S(x) and ∇H(x) in the system (7), defined
such that the numerical scheme

xn+1 −xn

h
= S(xn , xn+1,h)∇H(xn , xn+1) (8)

inherits the energy preservation property of the continuous system it models.
The key to this is requiring that the function ∇H satisfies

∇H(x, y)T (y −x) = H(y)−H(x), (9)
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a discrete analogue to (3). Together with the consistency criterion ∇H(x, x) =
∇H(x), this defines the discrete gradient (9) [51]. Requiring that S(x, y,h) is
skew-symmetric and that S(x, x,0) = S(x), we have then the discrete gradient
method (8). Because

H(xn+1)−H(xn) = h∇H(xn , xn+1)T S(xn , xn+1,h)∇H(xn , xn+1) = 0,

this method ensures H(xn) = H(x(t0)) for any n > 0.
The property (9) for defining the discrete gradient is first formulated in

[28], which is therefore generally regarded as the introduction of the discrete
gradient method. Gonzalez called the function discrete derivative, and proved
the corresponding schemes’ ability to preserve Hamiltonians. Quispel and
Turner generalized in [64] this to all systems with first integrals, i.e. systems on
the skew-gradient form (7), and labeled it the discrete gradient method. It is also
worth noting that schemes that rely on some discrete analogue of the property
(5), although not formulated as discrete gradient methods, had appeared before
the above mentioned references; see e.g. [18, 36, 40, 45].

The choice of the discrete gradient in (8) is not necessarily unique. In fact,
it is unique only if d = 1, and if d > 1 there are infinitely many functions ∇H
satisfying (9). Four different explicitly defined discrete gradients are consid-
ered in this thesis. The first, called Gonzalez’ midpoint discrete gradient, was
introduced together with the discrete gradient method in [28], and is defined by

∇MH(x, y) :=∇H

(
x + y

2

)
+

H(y)−H(x)−∇H
(

x+y
2

)T (
y −x

)
(y −x)T (y −x)

(
y −x

)
.

In their 1988 paper [36], Itoh and Abe introduced what is later recognized as a
discrete gradient, defined by

∇IAH(x, y) :=
d∑

j=1
c j e j , (10)

where e j is the j -th canonical unit vector and

c j =


H(w j )−H(w j−1)

y j −x j
if y j 6= x j ,

∂H
∂x j

(w j−1) if y j = x j ,

w j =
∑ j

i=1 yi ei +
∑n

i= j+1 xi ei .

The advantage of this discrete gradient is two-fold: it can be computed without
knowledge of the gradient, and in some cases it provides for a less expensive
scheme to compute than other discrete gradients. It is however only a first
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order approximation of ∇H(x). We do sometimes consider a symmetrized Itoh–
Abe discrete gradient ∇HSIA(x, y) := 1

2

(
∇IAH(x, y)+∇IAH(y, x)

)
, which is of

second order.
The average vector field (AVF) discrete gradient, sometimes called the

mean-value discrete gradient, has a history dating back longer than discrete
gradient methods and any other known discrete gradient [33]. It is given by the
average of ∇H on the segment [x, y]:

∇AVFH(x, y) :=
∫ 1

0
∇H((1−ξ)x +ξy)dξ.

When S in (7) is constant, the discrete gradient method with S(x, y,h) = S and
∇H =∇AVFH coincides with the scheme

xn+1 −xn

h
=

∫ 1

0
f ((1−ξ)xn +ξxn+1)dξ.

This is sometimes viewed as a method by itself, applicable to any system (1),
in which case it is called the average vector field method [63], or the AVF
method. This method, which is a B-series method [14], has been generalized to
a collocation-type method in [30], and its application to the time-integration of
Hamiltonian partial differential equations (PDEs) has been studied extensively
[11, 27].

The fourth discrete gradient we consider has perhaps not been formally
defined before Paper 5 of this thesis. It is the discrete gradient that, when used
for the time-integration of PDEs, may yield the discrete variational derivative
method introduced by Furihata in [25], see also [26, 49, 72]. In the first paper
of this thesis, we show the connection between the method of Furihata and
discrete gradient methods.

Any discrete gradient ∇H(x, y) is restricted by the definition (9) to be at
best a second order approximation of ∇H(x) [51]. The discrete skew-symmetric
matrix S(x, y,h) is often defined independent of the step-size h, including in
most of the papers presented here. In that case the scheme (8) cannot quarantee
higher than second order convergence to the exact solution. Approximations
of S(x) that render possible higher than second order convergence have been
studied by McLaren and Quispel [53, 54] and by Norton et al. [59, 60]. In
addition, Quispel and McLaren suggested in [63] a fourth order generalization
of the AVF method which can be viewed as a discrete gradient method for (7)
with constant S. To our knowledge, no theory has previously been developed
for arbitrary order discrete gradient methods for all systems of the form (7).
This is what we introduce in Paper 5.
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Dissipative systems

If we replace the skew-symmetrix matrix S(x) in (7) with a negative definite
matrix N (x), we have a dissipative system instead of a conservative system.
That is, if

ẋ = N (x)∇H(x), x(t0) = x0, (11)

where vT N (x)v < 0 for any non-zero v ∈Rd , then H is continuously decreasing
towards a minimum, since H(x(t )) ≤ H(x0) for any t > 0, with equality only if
∇H(x0) = 0. The dissipativity of this system is a structure that one may wish to
preserve in the numerical solution. As first noted by McLachlan et al. in [51],
the energy preservation property of discrete gradient methods is easily extended
to dissipation in the numerical solution of a system (11): if we approximate
N (x) by a negative definite matrix N (x, y,h) such that N (x, x,0) = N (x), then
the scheme

xn+1 −xn

h
= N (xn , xn+1,h)∇H(xn , xn+1) (12)

guarantees that H(xn) ≤ H(x0), with equality only if ∇H(x0) = 0.
One system that can be written on the form (11) is the gradient flow of

H(x), in which case N (x) =−I , with I being the identity matrix. Optimization
problems can be formulated as gradient flow problems, with H(x) or −H(x)
being the function one tries to find the minimum of maximum value of, respec-
tively. When solving an optimization problem using a discrete gradient method,
the Itoh–Abe discrete gradient (10) comes with an advantage: because of the
iterative nature of its definition, the system (12) of d equations may be solved
one scalar equation at a time. This can significantly reduce the computational
cost if the alternative is to solve a coupled system of d equations, which will
generally be the case if a different discrete gradient is used. Moreover, the
fact that the Itoh–Abe discrete gradient is only a first order approximation of
the gradient is not usually much of a disadvantage in an optimization setting,
when modeling the continuous system accurately is less important than finding
the optimum quickly. The use of discrete gradient methods in optimization has
been presented and analysed in the papers [23,29,65,66]. With these studies be-
ing devoted to optimization in Euclidean space only, we consider an extension
to Riemannian manifolds in Paper 4 of this thesis.

Solving energy-preserving PDEs

PDEs, like ODEs, may possess invariants. We consider in this thesis PDEs that
can be written on the form

ut = S(x,u J )
δH
δu

[u] (13)
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where the operator S is skew-symmetric with respect to the L2 inner product,
u J denotes u and all partial derivatives with respect to spatial dimensions, and
δH
δu [u] denotes the variational derivative of the functional H[u]. The above
PDE preserves the functional H in the sense that H[u(t )] =H[u(t0)] for any
t > t0:

dH
dt

=
〈

H
δu

[u],
∂u

∂t

〉
L2

=
〈

H
δu

[u],S(x,u J )
δH
δu

[u]

〉
L2

= 0.

We may call the invariant H by different names such as first integral or energy.
The connection between the above and energy-preserving ODEs is immediate:
by discretizing the system (13) in the appropriate manner, one obtains a system
of ODEs on the form (7).

Among the PDEs that have invariants is the important class of Hamiltonian
PDEs, which can be written as (13) with H being a Hamiltonian and with an
operator S that defines a Poisson bracket, i.e. it satisfies the Jacobi identity [61].
A well-known example that we will return to in several of the papers is the
Korteweg–de Vries (KdV) equation:

ut +ηuux +γ2uxxx = 0, (14)

where η,γ ∈R are constants. This equation has the two distinct Hamiltonians

H1[u] =
∫
R

1

2
γ2u2

x −
1

6
ηu3dx, H2[u] = 1

2

∫
R

u2dx,

where H1[u] is the energy of the system and H2[u] is the momentum. The
skew-symmetric operators associated to these integrals are

S1 = ∂

∂x
and S2 =−1

3
η(∂u +u∂)−γ2 ∂3

∂x3 ,

respectively. We note however that the KdV equation forms a completely
integrable system with an infinite number of preserved integrals, for smooth
solutions. Thus there are infinite different ways it can be written on the form
(13).

After the increased interest and development in geometric integrators for
finite-dimensional systems in the 1990s, one natural follow-up was how to
generalize these methods to infinite-dimensional systems, with extra emphasis
on Hamiltonian PDEs. While the phase space of a PDE is of infinite dimension,
a numerical solution will be of finite dimension. Thus a numerical integrator
for (13) rely on a finite dimensional approximation of the integral H. For that
reason it is necessary to clarify what is meant by an energy-preserving integrator
for a PDE. In the papers to follow, we say that a numerical scheme preserves
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the invariant exactly if it preserves some discrete approximation exactly at every
time step.

Two different but related classes of methods that have been widely studied
are both considered in this thesis. The first consist of a straightforward spatial
discretization of the the continuous system to obtain a system of Hamiltonian
ODEs, for which a geometric integrator may be applied to get a fully discrete
system. We mainly consider schemes where that integrator is a discrete gradient
method. The first to study such schemes were Furihata, Matsuo and collabo-
rators in a number of papers [47, 48, 50] and the monograph [26], building on
the so-called discrete variational derivative methods first introduced in [25]. As
we show in the first paper of this thesis, that method is equivalent to spatially
discretizing the PDE and apply a certain discrete gradient method on the re-
sulting system of ODEs. This alternative approach gained popularity following
a paper by Celledoni et al. [11], which considers the AVF method applied to
systems with a constant skew-symmetric or negative definite operator. We also
note that Dahlby and Owren in [22] consider a third approach from which one
can obtain the same schemes as with the other two approaches: they apply a
discrete gradient method directly on the continuous system to obtain a spatially
continuous method that preserves the exact Hamiltonian, deferring the spatial
discretization.

The other class of methods for Hamiltonian PDEs we consider here are
the multi-symplectic integrators introduced by Bridges [4, 5], and developed
further by Bridges, Reich and Marsden et al. [6, 44, 46]. The idea behind these
methods is to decompose the symplectic structure of Hamiltonian PDEs into in-
dependent components representing time and space. By reformulating the PDE
into a multi-symplectic form, one may consider three local conservation laws:
the multi-symplectic conservation law, the energy conservation and the momen-
tum conservation law. The local conservation laws are, in contrast to global
conservation laws, not dependent on the choice of boundary conditions. Thus
methods preserving a discrete approximation of one or more local conservation
laws have a wider area of application. When periodic boundary conditions are
present, local conservation will in any case lead to global conservation. We
develop a multi-symplectic integrator with the time-stepping being performed
by Kahan’s method in Paper 7 of this thesis.

Adaptive methods

When using PDEs to model physical problems from science or engineering,
we are often required to consider a large domain even if most of the action
is occurring on a small area within a given time frame. This has motivated
the development of schemes with a spatial discretization that changes with
time, depending on the solution parameters. We call such methods adaptive
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methods, or moving mesh methods. Considerable research has been undertaken
to develop and study such methods in a variety of settings; it is an expansive
field from which we refer to the papers [1, 7, 8, 42, 75] and the book by Huang
and Russel [34], which provides a thorough treatment of the subject.

The focus of the first two papers of this thesis is a merger of adaptive
methods and energy-preserving methods for PDEs. Specifically, we consider r -
adaptivity, where the number of degrees of freedom are kept fixed, and combine
it with the discrete gradient method for the time-stepping. Although our focus
is on r -adaptivity, the approach we present is easily extended to other modes of
mesh adaptivity. Our motivation for these papers sprung from the observation
that many of the situations where adaptive methods seem especially useful are
modeling of physical phenomena with conservation laws. Furthermore, the
increased stability one hopes to gain from using an energy-preserving method
may be extra important when more complexity is added to the system through
adaptivity.

Prior to our contribution, energy-preserving methods for PDEs presented
in the literature were almost exclusively on fixed and uniform spatial grids.
Exceptions to this are two different discrete variational derivative methods
on fixed, non-uniform grids, specifically defined for certain classes of PDEs
[71, 73], as well as an adaptive energy-preserving schemes for the KdV and
Cahn–Hilliard equations developed by Miyatake and Matsuo [56].

Numerical integration on Riemannian manifolds

Papers 3 and 4 are devoted to the generalization of discrete gradient methods to
Riemannian manifolds. In Paper 3 we consider the conservative case (7), while
in Paper 4 the subject is dissipative systems (11). In both cases, we reformulate
the ODE so that the solution evolves on the manifold M :

u̇ = S(u)gradH(u), u(0) = u0, u ∈ M ,

where grad denotes the gradient defined by the Riemannian metric, and S(u) :
T M → T M is a tensor field having either a skew-symmetric or a dissipative
structure.

The development and study of numerical methods for solving differential
equations on manifolds had, like the field of geometric numerical integration as
a whole, an upswing in popularity in the 1990s. By using integrators that oper-
ate directy on the manifold one avoids to either rely on local coordinates or an
embedding of the manifold in a larger Euclidean space. The former approach
requires a mapping between coordinate charts which will introduce extra in-
accuracy to the calculations, while the latter will typically lead to numerical
solutions deviating from the manifold. So far, most attention has been directed
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towards Lie group integrators, with the methods of Grouch and Grossmann [21]
and Munthe-Kaas [57, 58] being prime examples of this; see also [12, 35]. Inte-
grators on Riemannian manifolds are less common, with an exception being a
generalization of the leap-frog method by Leimkuhler and Patrick [43].

The papers we present here, introducing the discrete Riemannian gradi-
ent methods, are largely extensions of the earlier paper [17] by Celledoni and
Owren, where they generalized the discrete gradient methods to a broad class
of manifolds, with a particular focus on Lie groups. We develop this further to
Riemannian manifolds, whose structure provides for an intrinsic definition of
the gradient and a means to measure the error of a numerical method, as well
as a canonical choice of mapping between the manifold and the tangent space
through the exponential and logarithmic maps.

Also seeking to develop higher order energy-preserving methods on general
Riemannian manifolds, which to our knowledge had not been done before, we
generalized the collocation-like method of Hairer and Cohen [19,30] in Paper 3.
Their method builds on the AVF discrete gradient method, but it is in itself not
a discrete gradient method. We also discuss achieving higher order methods
by a composition strategy. This work was undertaken before the higher order
discrete gradient methods of Paper 5 were developed, and thus a generalization
of those to general manifolds is not discussed.

Since Riemannian manifolds are equipped with an Riemannian metric and
through that a definition of the gradient, we have gradient flow problems occur-
ring naturally. This gave us a motivation for applying the discrete Riemannian
gradient method to solve optimization problems, which resulted in Paper 4. Fur-
ther motivated by recent studies on the usage of the Itoh–Abe discrete gradient
method for variational image regulation models [29,66], we developed the Itoh–
Abe discrete Riemannian gradient and applied this to problems of manifold
valued image denoising.

Kahan’s method and linearly implicit schemes

The method of Kahan is used to solve quadratic ODEs

ẋ =Q(x)+B x + c, x ∈Rd ,

where Q(y) is an Rd valued quadratic form, B ∈Rd×d is a constant matrix, and
c ∈Rd is a constant vector. It was introduced by Kahan in the 1990s [38], and
is given by

xn+1 −xn

h
=Q(xn , xn+1)+B

xn +xn+1

2
+ c, (15)
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where

Q(x, y) := 1

2

(
Q(x + y)−Q(x)−Q(y)

)
.

A crucial feature of Kahan’s method is that is is linearly implicit. That
is, each term of (15) is linear in its implicitly given variable xn+1. This can
yield significantly shorter computational time than a fully implicit method with
nonlinear expressions of xn+1, e.g. if the linear system can be solved by a direct
method. A system of non-linear equations is typically solved by an iterative
solver where a linear system is solved at each iteration. A linearly implicit
method only requires one such iteration at each time step. The development and
analysis of linearly implicit schemes with preservation properties has attracted
increased interest over the last few years, see e.g. [9, 37, 70, 74].

Celledoni et al. have written a series of papers investigating the geometric
properties of Kahan’s method [13, 15, 16]. One of these properties is its ability
to preserve a modification of the invariant H if applied to a system (7) with S
constant and H cubic. This modified energy is given by

H̃(x) = H(x)+ 1

3
h∇H(x)T (I − 1

2
hS∇2H(x))−1S∇H(x).

So far, studies on Kahan’s method has mostly been on its application to ODEs,
with a notable exception being an early paper by Kahan himself together with Li
[39]. In the sixth and seventh papers of this thesis, we apply Kahan’s method for
the time-integration of PDEs with a cubic Hamiltonian. Part of our motivation
for this work was grounded in the fact that numerical schemes for PDEs of
the form (13) can only hope to preserve an approximation to the integral H.
Say we discretize the PDE in space and obtain an ODE system of the form (7),
with H being a discrete approximation to H. Applying Kahan’s method to this
system of ODEs, it will preserve the modification H̃ of H , which again ensures
that the error in H is bounded. While this property is obviously inferior to
preserving H exactly for ODE systems, this is not so apparent for the solution
of PDEs, where there in any case will be some error coming from the spatial
approximation of H.

In Paper 6, we compare Kahan’s method to a different linearly implicit
method with the ability to preserve a modification of a cubic H in (7). This
method is a multi-step variant of the discrete gradient method, introduced by
Matsuo and Furihata [48] and formalised by Dahlby and Owren in [22], in a
PDE setting. We formulate it as a method for ODEs, and call it the polarized
discrete gradient method. It is designed to give linearly implicit (p −1)-step
schemes for systems (7) where H is a polynomial of degree p.
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Shape analysis

The last two papers of this thesis are within the field of shape analysis. This
field concerns the recognition and matching of geometric shapes, and was orig-
inally developed for planar curves. It is an area of research that has grown
significantly in popularity since the turn of the century, motivated in large part
by the increasing ability of computers to perform computationally demanding
tasks. This has prompted the expansion of shape analysis to a variety of new ar-
eas, from higher dimensional curves to surfaces, character motions and various
digital objects [2, 41, 55, 68].

We consider in our papers shapes which are unparametrized curves evolving
on a vector space, a Lie group, or a manifold. We employ the so-called square
root velocity transform [69] to map the curves to tangent vector fields along
them. Then we compare these transformed curves by computing geodesics in
the L2 metric.

The two papers included here form a continuation of the paper [10] by
Celledoni et al. The connection of shape analysis to the rest of the thesis
lies partly in the way our method is based on a curve transformation which
is invariant under changing parametrization. Furthermore, the shape spaces
we consider are Riemannian manifolds, with the intrinsic metric providing
the necessary tools to compare and analyse the shapes, which establishes a
connection between papers 8 and 9 and papers 3 and 4 of the thesis.

Summary of papers

PAPER 1: Adaptive energy preserving methods for partial differen-
tial equations

by Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Published in Advances in Computational Mathematics 44 (3), pp. 815–839

(2018)

In this paper we develop a framework for constructing adaptive methods for
PDEs on the form (13) that can preserve an approximation to the invariant. The
preservation is based on using a discrete gradient method for the time-stepping.
We consider spatial discretization both by a finite difference approach and by
partition of unity methods, which includes finite element methods. We also
devote some space to explaining how discrete gradient methods applied to
PDEs relate to the discrete variational derivative method of Furihata, as well as
to linear projection methods. Schemes and numerical results are presented for
the sine-Gordon and KdV equations.
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PAPER 2: Energy preserving moving mesh methods applied to the
BBM equation

by Sølve Eidnes and Torbjørn Ringholm
Published in Proceedings of MekIT ’17, pp. 121–136 (2017)

This conference proceeding builds on Paper 1. We apply the adaptive and
energy-preserving method developed there to the Benjamin–Bona–Mahoney
equation. This PDE has exactly three conservation laws; we develop two
schemes preserving different energies, and compare the numerical results. A
challenge addressed here and not in the previous paper is how to treat third
derivatives in the skew-symmetric operator S(x,u J ) of (13) when using the
finite element method.

PAPER 3: Energy preserving methods on Riemannian manifolds

by Elena Celledoni, Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Published in Mathematics of Computation 89 (322), pp. 699–716 (2020)

This paper, together with Paper 4, introduces the discrete Riemannian gradient
methods, an extension of the discrete gradient methods (8) to finite-dimensional
Riemannian manifolds. We also present accompanying generalizations of the
AVF, Gonzalez’ midpoint and Itoh–Abe discrete gradients, as well as higher
order energy-preserving methods on Riemannian manifolds, based on composi-
tion and collocation strategies. Local and gloval error bounds for the methods
are derived, and numerical results are presented for problems on the two-sphere,
the paraboloid and the Stiefel manifold.

PAPER 4: Dissipative numerical schemes on Riemannian manifolds
with applications to gradient flows

by Elena Celledoni, Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Published in SIAM Journal on Scientific Computing 40 (6), pp. A3789–A3806

(2018)

Here we present the discrete Riemannian gradient method for dissipative sys-
tems on Riemannian manifolds, with an extra focus on gradient flows. Hence
we employ a generalization of the Itoh–Abe discrete gradient, which has ad-
vantages over the other discrete gradients for such problems. Our scheme is
demonstrated on eigenvalue problems and manifold valued image denoising
problems, with implementation issues being discussed in detail.
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PAPER 5: Order theory for discrete gradient methods

by Sølve Eidnes
Submitted

We present a general form for a class of the S(x, y,h) in (8) approximating
S(x), and conditions on this for reaching an arbitrary order of the correspond-
ing discrete gradient method. We show how, by choosing the AVF discrete
gradient, one obtains arbitrary order energy-preserving B-series methods for
skew-gradient systems with constant S, and arbitrary order energy-preserving
P-series methods for general skew-gradient systems.

PAPER 6: Linearly implicit structure-preserving schemes for Hamil-
tonian systems

by Sølve Eidnes, Lu Li and Shun Sato
To appear in Journal of Computational and Applied Mathematics

Despite a growing interest in both energy preservation and linearly implicit
schemes for Hamiltonian PDEs over the last few decades, few studies have
been performed on using Kahan’s method for the time-stepping of PDEs with
a cubic Hamiltonian. Here we compare Kahan’s method to a linearly implicit
generalization of discrete gradient methods, and test these methods on the
KdV and Camassa–Holm equations. The numerical results and analysis of the
methods point towards Kahan’s method being the favorable choice.

PAPER 7: Linearly implicit local and global energy-preserving
methods

by Sølve Eidnes and Lu Li
Submitted

Hamiltonian PDEs with a multi-symplectic structure have three local conserva-
tion laws. We show that we can preserve discrete approximations to the local
energy conservation laws by applying Kahan’s method for the temporal inte-
gration, if the energy is cubic. Numerical examples are performed for the KdV
equation and the two-dimensional Zakharov–Kuznetsov equation, yielding ben-
eficial results compared to fully implicit schemes.
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PAPER 8: Shape analysis on Lie groups and homogeneous spaces

by Elena Celledoni, Sølve Eidnes, Markus Eslitzbichler and Alexander
Schmeding

Published in Proceedings for Geometric Science of Information 2017, Lecture
Notes in Computer Science 10589, pp. 49–56 (2017)

This conference proceedings presents an approach to shape analysis built upon
the square root velocity transform (SRVT) generalised to Lie groups and ho-
mogeneous spaces. It presents the main ideas behind the methods developed
in [10] and the later Paper 9, without delving into the details.

PAPER 9: Shape analysis on homogeneous spaces: a generalised
SRVT framework

by Elena Celledoni, Sølve Eidnes and Alexander Schmeding
Published in Abel Symposia 13, pp. 187–220 (2018)

Here we present in detail a generalised SRVT framework for shape analysis
on homogeneous spaces, using Lie group actions. Different Lie group actions
lead to different metrics, opening up for a variety of possibilies which we show
can be implemented in the same framework. We demonstrate our method by
applying it to the matching of two curves on the two-sphere.
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Adaptive energy preserving methods for
partial differential equations

Abstract. A framework for constructing integral preserving numerical
schemes for time-dependent partial differential equations on non-uniform
grids is presented. The approach can be used with both finite difference and
partition of unity methods, thereby including finite element methods. The
schemes are then extended to accommodate r -, h- and p-adaptivity. To illus-
trate the ideas, the method is applied to the Korteweg–de Vries equation and
the sine-Gordon equation. Results from numerical experiments are presented.

1.1 Introduction

Difference schemes with conservation were introduced by Courant, Friedrichs
and Lewy in [8], where a discrete conservation law for a finite difference ap-
proximation of the wave equation was derived. Their methods are often called
energy methods [11] or energy-conserving methods [18], although the con-
served quantity is often not energy in the physical sense. The primary motiva-
tion for developing conservative methods was originally to devise a norm that
could guarantee global stability. This was still an objective, in addition to prov-
ing existence and uniqueness of solutions, when the energy methods garnered
newfound interest in the 1950s and 1960s, resulting in new developments such
as generalizations of the methods and more difference schemes, summarized
by Richtmyer and Morton in [26].

In the 1970s, the motivation behind studying schemes that preserve invari-
ant quantities changed, as the focus shifted to the conservation property itself.
Li and Vu-Quoc presented in [18] a historical survey of conservative methods
developed up to the early 1990s. They state that this line of work is motivated
by the fact that in some situations, the success of a numerical solution will
depend on its ability to preserve one or more of the invariant properties of the
original differential equation. In addition, as noted in [7,14], there is the general
idea that transferring more of the properties of the original continuous dynam-
ical system over to a discrete dynamical system may lead to a more accurate
numerical approximation of the solution, especially over long time intervals.

In recent years, there has been a greater interest in developing systematic
techniques applicable to larger classes of differential equations. Hairer, Lubich
and Wanner give in [14] a presentation of geometric integrators for differen-
tial equations, i.e. methods for solving ordinary differential equations (ODEs)
that preserve a geometric structure of the system. Examples of such geometric
structures are symplectic structures, symmetries, reversing symmetries, isospec-
trality, Lie group structure, orthonormality, first integrals, and other invariants,
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such as volume and invariant measure.

In this paper we will be concerned with the preservation of first integrals
of PDEs. From the ODE literature we find that the most general methods for
preserving first integrals are tailored schemes, in the sense that the vector field
of the ODE does not by itself provide sufficient information, so the schemes
make explicit use of the first integral. An obvious approach in this respect is
projection, where the solution is first advanced using any consistent numerical
scheme and then this approximation is projected onto the appropriate level
set of the invariant. In the same class of tailored methods one also has the
discrete gradient methods, usually attributed to Gonzalez [13]. For the subclass
of canonical Hamiltonian systems, the energy can be preserved by means of a
general purpose method called the averaged vector field method, see e.g. [25].

The notion of discrete gradient methods for ordinary differential equations
has a counterpart for partial differential equations called the discrete variational
derivative method. Such schemes have been developed since the late 1990s in
a number of articles by Japanese researchers such as Furihata, Matsuo, Sugi-
hara, and Yaguchi. A relatively recent account of this work can be found in
the monograph [12]. More recently, the development of integral preserving
schemes for PDEs has been systematised and eased, in particular by using the
aforementioned tools from ordinary differential equations, see for instance [6,9].
Most of the schemes one finds in the literature are based on a finite difference
approach, and usually on fixed, uniform grids. There are however some excep-
tions. Yaguchi, Matsuo and Sugihara presented in [27,28] two different discrete
variational derivative methods on fixed, non-uniform grids, specifically defined
for certain classes of PDEs. Non-uniform grids are of particular importance for
multidimensional problems, since the use of uniform grids will greatly restrict
the types of domains possible to discretize. Another important consequence of
being able to use non-uniform grids is that it allows for the use of time-adaptive
spatial meshes for solving partial differential equations. Adaptive energy pre-
serving schemes for the Korteweg–de Vries and Cahn–Hilliard equations have
been developed recently [22] by Miyatake and Matsuo. The main objective of
this paper is to propose a general framework for numerical methods for PDEs
that combine mesh adaptivity with first integral conservation.

Several forms of adaptive methods exist, and they can roughly be catego-
rized as r -, h- and p-adaptive. When applying r -adaptivity, one keeps the
number of degrees of freedom constant while modifying the mesh at each time
step to e.g. cluster in problematic areas such as boundary layers or to follow
wave fronts. When applying the Finite Difference Method (FDM) or the Finite
Element Method (FEM), moving mesh methods may be used for r -adaptivity,
some examples of which may be found in [16, 17, 29]. When using Partition of
Unity Methods (PUM) (and in particular when using FEM), h- and p-adaptivity
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relate to adjusting the number of elements and the basis functions used on the
elements, respectively. For PUM methods there exist strategies for h- and p-
adaptivity based both on a priori and a posteriori error analysis [1]. Common
to all of these strategies is that, based on estimated function values in preceding
time steps, one can suggest improved discretization parameters for the next
time step. In the FDM approach, these discretization parameters consist of the
mesh points x, while in the PUM approach the parameters encompass informa-
tion about both the mesh and the basis functions. We will, in general, denote
a collection of discretization parameters by p, and assume that the discretiza-
tion parameters are changed separately from the degrees of freedom u of the
problem when using adaptive methods. That is, starting with an initial set of
discretization parameters p0 and initial values u0, one first decides upon p1

before calculating u1, then finding p2, then u2, etc., in a decoupled fashion.
A first integral of a PDE is a functional I on an infinite-dimensional space,

yet our numerical methods will reduce the problem to a finite-dimensional
setting. Therefore, we cannot preserve the exact value of the first integral;
instead, we will preserve a consistent approximation to the first integral, Ip(u).
The approximation will be dependent on the discretization parameters p and,
since adaptivity alters the values of p, we will therefore aim to preserve the
value of the approximated first integral across all discretization parameters,
i.e. we will require that Ipn+1 (un+1) = Ipn (un). Here, and in the following,
superscripts denote time steps unless otherwise specified.

In this article, we present a method for developing adaptive numerical
schemes that conserve an approximated first integral. In Section 2, the PDE
problem is stated, and two classes of first integral preserving methods using
arbitrary, constant discretization parameters are presented; one using an FDM
approach and the other a PUM approach for spatial discretization. A connec-
tion to existing methods is then established. In Section 3, we present a way of
adding adaptivity to the methods from Section 2 and the modifications needed
to retain the first integral preservation property, before showing that certain
projection methods form a subclass of the methods thus obtained. Section 4
contains examples of the methods applied to two PDEs and numerical results as-
sessing the quality of the numerical solutions as compared to a standard implicit
method.

1.2 Spatial discretization with fixed mesh

1.2.1 Problem statement

Consider a partial differential equation

ut = f (x,u J ), x ∈Ω⊆Rd , u ∈B ⊆ L2, (1.1)
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where u J denotes u itself and its partial derivatives of any order with respect
to the spatial variables x1, ...., xd . We shall not specify the space B further,
but assume that it is sufficiently regular to allow all operations used in the
following. For ease of reading, all t-dependence will be suppressed in the
notation wherever it is irrelevant. Also, from here on, square brackets are used
to denote dependence on a function and its partial derivatives of any order with
respect to the independent variables t and x1, ..., xd . We recall the definition of
the variational derivative of a functional H [u] as the function δH

δu [u] satisfying〈
δH

δu
[u], v

〉
L2

= d

dε

∣∣∣∣
ε=0

H [u +εv] ∀v ∈B, (1.2)

and define a first integral of (1.1) to be a functional I[u] satisfying〈
δI
δu

[u], f (x,u J )

〉
L2

= 0, ∀u ∈B.

We may observe that I[u] is preserved over time, since this implies

dI
dt

=
〈

δI
δu

[u],
∂u

∂t

〉
L2

= 0.

Furthermore, we may observe that if there exists an operator S(x,u J ), skew-
symmetric with respect to the L2 inner product, such that

f (x,u J ) = S(x,u J )
δI
δu

[u],

then I[u] is a first integral of (1.1), and we can state (1.1) in the form

ut = S(x,u J )
δI
δu

[u]. (1.3)

This can be considered as the PDE analogue of an ODE with a first integral, in
which case we have a system

du

dt
= S(u)∇uI (u), (1.4)

where S(u) is a skew-symmetric matrix [20]. The gradient is defined as usual,
but for clarity in later use we have added a subscript to specify that it is a vector
of partial derivatives with respect to the coordinates of u. Note that Hamiltonian
equations are contained of this class of ODEs. For such differential equations,
there exist numerical methods preserving the first integral I (u), for instance the
discrete gradient methods, which are of the form

un+1 −un

∆t
= S̄(un ,un+1)∇I (un ,un+1),
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where S̄(un ,un+1) is a consistent skew-symmetric time-discrete approximation
to S(u) and ∇I (v,u) is a discrete gradient of I (u), i.e. a function satisfying

(∇I (v,u))T (u−v) = I (u)− I (v), (1.5)

∇I (u,u) =∇uI (u). (1.6)

There are several possible choices of discrete gradients available, one of which
is the Average Vector Field (AVF) discrete gradient [6], given by

∇I (v,u) =
1∫

0

∇uI (ξu+ (1−ξ)v)dξ,

which will be used for numerical experiments in the final chapter. Our approach
to solving (1.1) on non-uniform grids is based upon considering the PDE in the
form (1.3), reducing it to a system of ODEs of the form (1.4) and applying a
discrete gradient method. This is done by finding a discrete approximation Ip

to I and using this to obtain a discretization in the spatial variables, which is
achieved through either a finite difference approach or a variational approach.

1.2.2 Finite difference method

In the finite difference approach, we restrict ourselves to obtaining approximate
values of u at the grid points x0, ...,xM , which can be interpreted as quadrature
points with some associated nonzero quadrature weights κ0, ...,κM . The grid
points constitute the discretization parameters p. We can then approximate the
L2 inner product by quadrature to arrive at a weighted inner product:

〈u, v〉L2 =
∫
Ω

u(x)v(x)dx '
M∑

i=0
κi u(xi )v(xi ) = uT D(κ)v = 〈u,v〉κ ,

where D(κ) = diag(κ0, ...,κM ). Assume that there exists a consistent approxi-
mation Ip(u) to the functional I[u], dependent on the values of u at the points
xi . Then, we can characterize the discretized variational derivative by asserting
that 〈

δIp

δu
(u),v

〉
κ

= d

dε

∣∣∣∣
ε=0

Ip(u+εv) ∀v ∈RM+1,

meaning (
δIp

δu
(u)

)T

D(κ)v = (∇uIp(u))T v ∀v ∈RM+1,
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from which we conclude that

δIp

δu
(u) = D(κ)−1∇uIp(u). (1.7)

Using this as a discretization of δI
δu [u] and approximating S(x,u J ) by a matrix

Sd (u), skew-symmetric with respect to 〈·, ·〉κ, we obtain a discretization of (1.3)
as:

du

dt
= Sp(u)∇uIp(u), (1.8)

where Sp(u) = Sd (u)D(κ)−1. This system of ODEs is of the form (1.4), since

Sp(u)T = (Sd (u)D(κ)−1)T

= D(κ)−1Sd (u)T D(κ)D(κ)−1

=−D(κ)−1D(κ)Sd (u)D(κ)−1

=−Sd (u)D(κ)−1

=−Sp(u).

This allows us to apply first integral preserving methods for systems of ODEs
to solve the spatially discretized system. For example, we may consider using
a discrete gradient ∇Ip, and a skew-symmetric, time-discrete approximation
Sp(un ,un+1) to Sp(u), where un = u(tn), tn = n∆t . Then, the following scheme
will preserve the approximated first integral Ip in the sense that Ip(un+1) =
Ip(un):

un+1 −un

∆t
= Sp(un ,un+1)∇Ip(un ,un+1). (1.9)

1.2.3 Partition of unity method

One may also approach the problem of spatially discretizing the PDE through
the use of variational methods such as the Partition of Unity Method (PUM)
[21], which generalizes the Finite Element Method (FEM). Here, the variational
structure of the functional derivative can be utilized in a natural way, such that
one avoids having to approximate S(x,u J ). We begin by stating a weak form of
(1.3). Then, the problem consists of finding u ∈B such that

〈
ut , v

〉
L2 =

〈
S(x,u J )

δI
δu

[u], v

〉
L2

=−
〈

δI
δu

[u],S(x,u J )v

〉
L2

∀v ∈B.

(1.10)
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Employing a Galerkin formulation, we restrict the search to a finite dimensional
subspace Bh = span{ϕ0, ...ϕM } ⊆B, and approximate u by the function

uh(x, t ) =
M∑

i=0
ui (t )ϕi (x).

We denote by p the collection of discretization parameters defining Bh; this
includes information about mesh points, element types and shapes of basis
functions. Furthermore, we define the canonical mapping Φp : RM+1 → Bh

given by

Φp(u) =
M∑

i=0
uiϕi , (1.11)

and the discrete first integral Ip by

Ip(u) = I(Φp(u)).

The following lemma will prove useful later in the construction of the method:

Lemma 1.1. For any uh , v ∈Bh ,

d

dε

∣∣∣∣
ε=0

I(uh +εv) = (∇uIp(u))T v.

Proof.

d

dε

∣∣∣∣
ε=0

I(uh +εv) = d

dε

∣∣∣∣
ε=0

I(Φp(u+εv))

=
〈

δI
δu

[Φp(u+εv)],
d

dε
Φp(u+εv)

〉
L2

∣∣∣∣
ε=0

=
〈

δI
δu

[Φp(u+εv)], (∇uΦp(u+εv))T v

〉
L2

∣∣∣∣
ε=0

=
〈

δI
δu

[Φp(u)], (∇uΦp(u))T v

〉
L2

=
M∑

i=0
vi

〈
δI
δu

[Φp(u)],
∂

∂ui
Φp(u)

〉
L2

=
M∑

i=0
vi

∂

∂ui
I[Φp(u)] =

M∑
i=0

vi
∂

∂ui
Ip(u) = (∇uIp(u))T v.
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We observe that for u, v ∈Bh , the L2 inner product has a discrete counterpart:

〈u, v〉L2 =
M∑

i=0

M∑
j=0

ui v j

〈
ϕi ,ϕ j

〉
L2

= uT Av = 〈u,v〉A

with the symmetric positive definite matrix A given by Ai j =
〈
ϕi ,ϕ j

〉
L2

. Note

also that equation (1.10) is satisfied in Bh if it is satisfied for all basis functions
ϕ j . The Galerkin form of the problem therefore consists of finding ui (t ) such
that

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
〈

δI
δu

[uh],S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M }. (1.12)

This weak form is rather unwieldy and does not give rise to a system of the
form (1.4), so in order to make further progress, we consider the projection of
δI
δu [uh] onto Bh:

δI
δu

h

[uh] =
M∑

i=0
wh

i [uh]ϕi (x) =
M∑

i=0
wi (u)ϕi (x),

where wi (u) = wh
i [Φ(u)] = wh

i [uh] are coefficients that will be characterized
later. Replacing δI

δu [uh] by its projection in (1.12) gives the approximate weak
form:

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
M∑

i=0
wi (u)

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M }.

Thus, we obtain a system of equations for the coefficients ui :

A
du

dt
=−B(u)w(u), (1.13)

with the skew-symmetric matrix B(u) given by B(u) j i =
〈
ϕi ,S(x,Φ(u)J )ϕ j

〉
L2

.
Furthermore, we may characterize the vector w(u) by the following argument:

w(u)T Av =
〈

δI
δu

h

[uh], v

〉
L2

=
〈

δI
δu

[uh], v

〉
L2

= d

dε

∣∣∣∣
ε=0

I(uh +εv) = (∇uIp(u))T v,

where the last equality holds by Lemma 1.1. This holds for all v ∈ RM+1, and
thus

w(u) = A−1∇uIp(u). (1.14)
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Inserting (1.14) into (1.13) and left-multiplying by A−1, we are left with an
ODE for the coefficients ui :

du

dt
= Sp(u)∇uIp(u). (1.15)

Here, Sp(u) = −A−1B(u)A−1 is a skew-symmetric matrix, and the system is
thereby of the form (1.4), meaning Ip can be preserved numerically using e.g.
discrete gradient methods as in equation (1.9).

1.2.4 Discrete variational derivative methods

Let us now define a general framework for the discrete variational derivative
methods that encompass the methods presented by Furihata, Matsuo and coau-
thors in a number of publications including [10–12, 27, 28].

Definition 1.1. Let Ip be a consistent approximation to the functional I [u]
discretized on p given by grid points xi and quadrature weights κi , i = 0, ..., M .
Then δIp

δ(v,u) (v,u) is a discrete variational derivative of Ip(u) if it is a continuous
function satisfying 〈

δIp

δ(v,u)
,u−v

〉
κ

= Ip(u)−Ip(v), (1.16)

δIp

δ(u,u)
= δIp

δu
(u) , (1.17)

and the discrete variational derivative methods for solving PDEs on the form
(1.3) are given by

un+1 −un

∆t
= Sd (un ,un+1)

δIp

δ(un ,un+1)
, (1.18)

where Sd (un ,un+1) is a time-discrete approximation to Sd (u), skew-symmetric
with respect to the inner product 〈·, ·〉κ.

Proposition 1.1. A discrete gradient method (1.9) applied to the system of
ODEs (1.8) or (1.15) is equivalent to a discrete variational derivative method
as given by (1.18), with

Sd (un ,un+1) = Sp(un ,un+1)D (κ) ,

and the discrete variational derivative

δIp

δ(v,u)
= D(κ)−1∇Ip(v,u) (1.19)

satisfying (1.16)-(1.17).
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Proof. Applying (1.5), we find, for the discrete variational derivative (1.19),〈
δIp

δ(v,u)
,u−v

〉
κ

=
〈

D(κ)−1∇Ip(v,u),u−v
〉
κ

=
(
D(κ)−1∇Ip

(
v,u

))T
D(κ) (u−v)

=∇Ip
(
v,u

)T (u−v) = Ip(u)−Ip(v),

and hence (1.16) is satisfied. Furthermore, applying (1.6) and (1.7),

δIp

δ(u,u)
= D(κ)−1∇Ip(u,u) = D(κ)−1∇uIp (u) = δIp

δu
(u)

and (1.17) is also satisfied.

Hence, all discrete variational derivative methods as given by (1.18) can be
expressed as discrete gradient methods on the system of ODEs (1.8) or (1.15)
obtained by discretizing (1.3) in space, and vice versa.

1.3 Adaptive discretization

1.3.1 Mapping solutions between parameter sets

Assuming that adaptive strategies are employed, one would obtain a new set of
discretization parameters p at each time step. After such a p has been found, the
solution using the previous parameters must be transferred to the new parameter
set before advancing to the next time step. This transfer procedure can be done
in either a preserving or a non-preserving manner. Let pn , un , pn+1 and un+1

denote the discretization parameters and the numerical values obtained at the
current time step and next time step, respectively. Also, let û denote the values
of un transferred onto pn+1 by whatever means. We call the transfer operation
preserving if Ipn+1 (û) = Ipn (un). If the transfer is preserving, then the next time
step can be taken with a preserving scheme, e.g.

un+1 − û

∆t
= Spn+1 (û,un+1)∇Ipn+1 (û,un+1),

which is preserving in the sense that

Ipn+1 (un+1)−Ipn (un) = Ipn+1 (un+1)−Ipn+1 (û)

=
〈
∇Ipn+1 (û,un+1),un+1 − û

〉
=∆t

〈
∇Ipn+1 (û,un+1),Spn+1 (û,un+1)∇Ipn+1 (û,un+1)

〉
= 0,
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1.3 Adaptive discretization

since Spn+1 (û,un+1) is skew-symmetric. If non-preserving transfer is used, cor-
rections are needed in order to obtain a preserving numerical method.

Proposition 1.2. The scheme

un+1 = û− (Ipn+1 (û)−Ipn (un))z〈
∇Ipn+1 (û,un+1),z

〉 +∆tSpn+1 (û,un+1)∇Ipn+1 (û,un+1), (1.20)

where z is an arbitrary vector chosen such that
〈
∇Ipn+1 (û,un+1),z

〉
6= 0, is first

integral preserving in the sense that Ipn+1 (un+1)−Ipn (un) = 0.

Proof.

Ipn+1 (un+1)−Ipn (un) = Ipn+1 (un+1)−Ipn+1 (û)+Ipn+1 (û)−Ipn (un)

=
〈
∇Ipn+1 (û,un+1),un+1 − û

〉
+Ipn+1 (û)−Ipn (un)

=
〈
∇Ipn+1 (û,un+1),un+1 − û+ (Ipn+1 (û)−Ipn (un))z〈

∇Ipn+1 (û,un+1),z
〉 〉

=∆t
〈
∇Ipn+1 (û,un+1),Spn+1 (û,un+1)∇Ipn+1 (û,un+1)

〉
= 0.

The second equality follows from (1.5), the fourth equality from the scheme
(1.20), and the last equality follows from the skew-symmetry of Spn+1 .

The correcting direction z should be chosen so as to obtain a minimal cor-
rection, and such that 〈∇Ipn+1 (û,un+1),z〉 6= 0. One possibility is simply tak-
ing z = ∇Ipn+1 (û,un+1). In the FDM case one may alternatively choose
z = D(κ)−1∇Ipn+1 (û,un+1), and in the PUM case, z = A−1∇Ipn+1 (û,un+1).

When using the PUM formulation, one may obtain a method for preserving
transfer in the following manner. Any changes through e.g. r - p- and/or
h-refinement between time steps will result in a change in the shape and/or
number of basis functions. Denote by Bh = span{ϕi }M

i=0 the trial space from
the current time step and by B̂h = span{ϕ̂i }M̂

i=0 the trial space for the next time
step, and note that in general, M 6= M̂ . We do not concern ourselves with how
the new basis is found, but simply acknowledge that the basis changes through
adaptivity measures as presented in e.g. [16] or [1]. Our task is now to transfer
the approximation uh from Bh to B̂h , obtaining an approximation ûh , while
conserving the first integral, i.e. I[uh] = I[ûh]. This can be formulated as a
constrained minimization problem:

min
ûh∈B̃〈

||ûh −uh ||2L2 s.t. I[ûh] = I[uh].
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We observe that

||ûh −uh ||2L2 =
M̂∑

i=0

M̂∑
j=0

ûi û j Âi j −2
M̂∑

i=0

M∑
j=0

ûi un
j Ci j +

M∑
i=0

M∑
i=0

un
i un

j Ai j

= ûT Âû−2ûT C un +un Aun ,

where Ai j = 〈ϕi ,ϕ j 〉L2 , Âi j = 〈ϕ̂i ,ϕ̂ j 〉L2 and Ci j = 〈ϕ̂i ,ϕ j 〉L2 . Also observing
that

I[ûh] = Ipn+1 (û), I[uh] = Ipn (un),

the problem can be reformulated as

min
û∈RM̂+1

ûT Âû−2ûT C un +un Aun s.t. Ipn+1 (û)−Ipn (un) = 0.

This is a quadratic minimization problem with one nonlinear equality constraint.
Using the method of Lagrange multipliers, we find û as the solution of the
nonlinear system of equations

Âû−C un −λ∇ûIpn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0,

which can be solved numerically using a suitable nonlinear solver.
In general, applicable also in the FDM case, given ū obtained by interpolat-

ing un onto pn+1 in a non-preserving manner, a preserving transfer operation
is obtained by solving the system of equations

û− ū−λ∇ûIpn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0.

1.3.2 Projection methods

Let the function fp : RM ×RM →RM be such that

un+1 −un

∆t
= fp(un ,un+1) (1.21)

defines a step from time tn to time tn+1 of any one-step method applied to (1.1)
on the fixed grid represented by the discretization parameters p. Then we define
one step of an integral preserving linear projection method un 7→ un+1 from pn

to pn+1 by

1. Interpolate un onto pn+1 by whatever means to get û,

2. Integrate û one time step by computing ũ = û+∆t fpn+1

(
û, ũ

)
,

36



1.3 Adaptive discretization

3. Compute un+1 by solving the system of M +1 equations un+1 = ũ+λz
and Ipn+1 (un+1) = Ipn (un), for un+1 ∈RM and λ ∈R, where the direction
of projection z is typically an approximation to ∇uIpn+1 (un+1).

By utilizing the fact that for a method defined by (1.21) there exists an
implicitly defined map Ψp : RM →RM such that un+1 =Ψpun , we define

gp(un) := Ψpun −un

∆t
,

and may then write the tree points above in an equivalent, more compact form
as: Compute un+1 ∈RM and λ ∈R such that

un+1 − û−∆t gpn+1

(
û
)−λz = 0, (1.22)

Ipn+1 (un+1)−Ipn (un) = 0, (1.23)

where û is un interpolated onto pn+1 by an arbitrary procedure.
The following theorem and proof are reminiscent of Theorem 2 and its proof

in [23], whose subsequent corollary shows how linear projection methods for
solving ODEs are a subset of discrete gradient methods.

Theorem 1.1. Let gp : RM → RM be a consistent discrete approximation of
f in (1.1) and let ∇Ip(un ,un+1) be any discrete gradient of the consistent
approximation Ip(u) of I [u] defined by (1.2) on the grid given by discretization
parameters p. If we set Spn+1 in (1.20) to be

Spn+1 (û,un+1) = gpn+1 (û)zT −zgpn+1 (û)T〈
∇Ipn+1

(
û,un+1

)
,z

〉 , (1.24)

then the linear projection method for solving PDEs on a moving grid, given by
(1.22)-(1.23), is equivalent to the discrete gradient method on moving grids, as
given by (1.20).

Proof. For better readability, take ∇I :=∇Ipn+1

(
û,un+1

)
. Assume that (1.22)-

(1.23) are satisfied. By applying (1.23), we get that

Ipn (un)−Ipn+1 (û) = Ipn+1 (un+1)−Ipn+1 (û)

=
〈
∇I ,un+1 − û

〉
=∆t

〈
∇I , gpn+1 (û)

〉
+λ

〈
∇I ,z

〉
,

and hence

λ= Ipn (un)−Ipn+1 (û)〈
∇I ,z

〉 −∆t

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 (1.25)
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Substituting this into (1.22), we get

un+1 = û+ Ipn (un)−Ipn+1 (û)〈
∇I ,z

〉 z+∆t

gpn+1

(
û
)−

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 z

 ,

where

gpn+1

(
û
)−

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 z = ∇ITzgpn+1 (û)−∇ITgpn+1 (û)z〈
∇I ,z

〉
= gpn+1 (û)zT∇I−zgpn+1 (û)T∇I〈

∇I ,z
〉

and thus (1.20) is satisfied, with Spn+1 as given by (1.24). Conversely, if un+1

satisfies (1.20), then (1.23) is satisfied. Furthermore, inserting (1.24) into (1.20)
and following the above deduction backwards, we get (1.22), with λ defined by
(1.25).

Since (1.24) defines a particular set of choices for Spn+1 , the linear pro-
jection methods on moving grids constitute a subset of all possible discrete
gradient methods on moving grids as defined by (1.20). Note also that, since
the linear projection methods are independent of the discrete gradient, each
linear projection method defines an equivalence class of the methods (1.20),
uniquely defined by the choice of gpn+1 .

1.3.3 Family of discretized integrals

At the core of the methods considered here is the notion that an approximation
to the first integral I is preserved, and that this approximation is dependent
on the discretization parameters which may change from iteration to iteration.
That is, we have a family of discretized first integrals Ip, and at each time step
the discretized first integral is exchanged for another. For each set of discretiza-
tion parameters p, there is a corresponding set of degrees of freedom u, in
which we search for a u such that Ip(u) is preserved. This can be interpreted
as a fiber bundle with base space B as the set of all possible discretization
parameters p, and fibers Fp as the sets of all degrees of freedom such that
the discretized first integral is equal to the initial discretized first integral, i.e.
Fp = {u ∈RM |Ip(u) = Ip0 (u0)}. A similar idea, although without energy preser-
vation, has been discussed by Bauer, Joshi and Modin in [2].
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1.4 Numerical experiments

1.4 Numerical experiments

To provide examples of the application of our method and to investigate its
accuracy, we have applied it to two one-dimensional PDEs: the sine-Gordon
equation and the Korteweg–de Vries (KdV) equation. The choice of these
equations were made because they both possess traveling wave solutions in the
form of solitons, providing an ideal situation for r -adaptivity, which allows the
grid points to cluster around wave fronts. The following experiments consider
r -adaptivity only, and not p- or h-adaptivity. The sine-Gordon equation is
solved using the FDM formulation of section 1.2.2, while the KdV equation is
solved using the PUM formulation of section 1.2.3.

We wish to compare our methods to standard methods on fixed and adap-
tive meshes. This gives us four methods to consider: Fixed mesh methods
with energy preservation by discrete gradients (DG), adaptive mesh methods
with preservation by discrete gradients (DGMM), a non-preserving fixed grid
method (MP), and the same method with adaptive mesh (MPMM). The former
two methods are those described earlier in the paper, while the latter two are
made differently for the two equations. In the sine-Gordon case, we use a finite
difference scheme where spatial discretization is done using central finite differ-
ences and time discretization using the implicit midpoint rule. In the KdV case,
the spatial discretization is performed the same way as for the discrete gradi-
ent schemes, while the time discretization is done using the implicit midpoint
rule. The mesh adaptivity procedure for the DGMM and MPMM schemes is
presented in the next subsection.

The MPMM scheme for the sine-Gordon equation appeared unstable un-
less restrictively short time steps were used, and the results of those tests are
therefore omitted from the following discussion. It is difficult to analyze the
MPMM scheme and pinpoint an exact cause for this instability. However, it
is worth noting that the other three schemes have preservation properties that
should contribute to their stability; the DG and DGMM schemes have energy
preservation properties, and the semidiscretization used for the sine-Gordon
equation gives rise to a Hamiltonian system of equations which means that the
MP scheme, which is symplectic, should perform well. On the other hand, the
moving mesh strategy used breaks the symplecticity property in the MPMM
scheme; specifically, the transfer strategies as presented in the next subsection
do not preserve symplecticity. The results using MPMM for the KdV equation
were better, and are presented.

1.4.1 Adaptivity

Concerning adaptivity of the mesh, we used a simple method for r -adaptivity
which can be applied to both FDM and FEM problems in one spatial dimension.
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When applying moving mesh methods, one can either couple the evolution of
the mesh with the PDE to be solved through a Moving Mesh PDE [15] or use
the rezoning approach, where function values and grid points are calculated
in an intermittent fashion. Since our method is based on having a new set of
grid points at each time step, and not coupling the evolution of the mesh to the
PDE, the latter approach was used. It is based on an equidistribution principle,
meaning that when Ω= [a,b] is split into M intervals, one requires that

xi+1∫
xi

ω(x)dx = 1

M

b∫
a

ω(x)dx,

where the monitor function ω is a function measuring how densely grid points
should lie, based on the value of u. The choice of monitor function is problem
dependent, and choosing it optimally may require considerable research. A
variety of monitor functions have been studied for certain classes of problems,
see e.g. [3, 5]. Through numerical experiments, we found little difference in
performance when choosing between monitor functions based on arc-length
and curvature, and have in the following used the former, that is, the generalized
arc-length monitor function [5]

ω(x) =
√√√√1+k2

(
∂u

∂x
(x)

)2

.

Here, the equidistribution principle amounts to requiring that the weighted arc
length (in the case k = 1 one recovers the usual arc length) of u over each in-
terval is equal. In applications, we only have an approximation of u, meaning
ω must be approximated as well; in our case, we have applied a finite differ-
ence approximation and obtained approximately equidistributing grids using
de Boor’s method as explained in [16, pp. 36-38]. We tried different smoothing
techniques, including a direct smoothing of the monitor function and an itera-
tive procedure for the regridding by De Boor’s method (see e.g. [4, 16, 24]). In
the case of the KdV equation, there was little to no improvement using smooth-
ing, but the sine-Gordon experiments showed significant improvement with
direct smoothing; i.e., in De Boor’s algorithm, we use the smoothed discretized
monitor function

ω̄i = ωi−1 +2ωi +ωi+1

4
.

Having obtained the discretization parameters for the current time step,
the numerical solution u from the previous time step must be transferred onto
the new set of mesh points. We tested three different ways of doing this, two
of which are using linear interpolation and cubic interpolation. The linear
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interpolation consists of constructing a function û(x) which is piecewise linear
on each interval [xn

i , xn
i+1] such that û(xn

i ) = un
i , then evaluating this function

at the new mesh points, giving the interpolated values ûi = û(xn+1
i ). The cubic

interpolation consists of a similar construction, using cubic Hermite splines
through the MATLAB function pchip. Of these two transfer methods, the
cubic interpolation yielded superior results in all cases, and so only results using
cubic interpolation are presented. The third way, using preserving transfer as
presented in section 1.3.1, applies to the KdV example, where the PUM is used.
Here, we found little difference between cubic interpolation and exact transfer,
so results are presented using cubic interpolation for the transfer operation here
as well.

1.4.2 Sine-Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic PDE in one spatial and one
temporal dimension exhibiting soliton solutions, with applications in predict-
ing dislocations in crystals and propagation of fluxons in junctions between
superconductors. It is stated in initial value problem form as:

ut t −uxx + sin(u) = 0, (x, t ) ∈R× [0,T ], (1.26)

u(x,0) = f (x), ut (x,0) = g (x).

We consider a finite domain [−L,L]× [0,T ] with periodic boundary conditions
u(−L) = u(L) and ut (−L) = ut (L). The equation has the first integral

I[u] =
∫
R

1

2
u2

t +
1

2
u2

x +1−cos(u)dx.

Introducing v = ut , (1.26) can be rewritten as a first-order system of PDEs:[
ut

vt

]
=

[
v

uxx − sin(u)

]
,

with first integral

I[u, v] =
∫
R

1

2
v2 + 1

2
u2

x +1−cos(u)dx. (1.27)

Finding the variational derivative of this, one can interpret the equation in the
form (1.3) with S and δI

δu as follows:

S =
[

0 1
−1 0

]
,

δI
δu

[u, v] =
[

sin(u)−uxx

v

]
.
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We will apply the FDM approach presented in section 1.2.2, approximating
(1.27) by some quadrature with points {xi }M

i=0 and weights {κi }M
i=0,

I[u, v] '
M∑

i=0
κi

(
1

2
v2

i +
1

2
u2

x,i +1−cos(ui )

)
.

In addition, we approximate the spatial derivatives with central differences. At
the endpoints, a periodic extension is assumed, yielding the approximation

Ip(u) =
M∑

i=0
κi

1

2
v2

i +
1

2

(
δui

δxi

)2

+1−cos(ui )

 .

Here, δwi = wi+1 −wi−1 denotes central difference, with special cases δu0 =
δuM = u1 −uM−1, and δx0 = δxM = x1 − x0 + xM − xM−1. Taking the gradient
of Ip(u) and applying the AVF discrete gradient gives

∇Ip(un ,un+1) =
1∫

0

∇uIp(ξun + (1−ξ)un+1)dξ

The periodic boundary conditions are enforced by setting u0 = uM . In the
implementation, the κi were chosen as the quadrature weights associated with
the composite trapezoidal rule, i.e.

κ0 = x1 −x0

2
, κM = xM −xM−1

2
, κi = xi+1 −xi−1

2
, i = 1, ..., M −1.

Furthermore, S was approximated by the matrix

Sd =
[

0 I
−I 0

]
,

with I an M ×M identity matrix. The exact solution considered was

u(x, t ) = 4tan−1


sinh

(
ctp

1− c2

)

c cosh

(
xp

1− c2

)
 .

This is a kink-antikink system, an interaction between two solitons, each mov-
ing in different directions with speed c ∈ (0,1), resulting in two wave fronts
traveling in opposite directions. The wave fronts become steeper as c → 1. Fig-
ure 1.1 illustrates the analytical solution and shows the time evolution of the
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Figure 1.1: Left: Illustration of kink-antikink solution. Right: Grid movement - each
line represents the path of one grid point in time.
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Figure 1.2: Left: L2 error. Right: Relative error in Ip. Parameters: ∆t = 0.01, M = 300,
L = 30, c = 0.99.

mesh as obtained with the DGMM method. Note that the grid points cluster
along the wave fronts.

The left hand side of Figure 1.2 shows the time evolution of the error
E u

n = ||u I
n(x)−u(x, tn)||L2 , where u I

n is a linear interpolant created from the
pairs (un ,xn). The right hand side of Figure 1.2 shows the time evolution of
the relative error in the discretized energy, E I

n = (Ipn (un)− Ip0 (u0))/Ip0 (u0). We
can see that the long-term behaviour of the MP scheme is superior to that of
the DG scheme, but when mesh adaptivity is applied, the DGMM scheme is
clearly better. Also note that while the DG and DGMM schemes preserve Ip to
machine precision, the MP scheme does not.

Figure 1.3 shows the convergence behaviour of the three schemes with
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Figure 1.3: Left: Error at T = 8 as a function of M , with ∆t = 0.008, c = 0.99, L = 30.
Right: Error at T = 8 as a function of N = T /∆t , with M = 1000, c = 0.99, L = 30.
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Figure 1.4: Error at T = 8 as a function of ε, with ∆t = 0.01, M = 600 and L = 30.

respect to the number of spatial discretization points M , and the number of
time steps N . Note that the DG and MP methods plateau at N ' 400; this
is due to the error stemming from spatial discretization dominating the time
discretization error for these methods, while the DGMM scheme has lower
spatial discretization error. The convergence order of the DGMM scheme was
measured using a first order polynomial fitting of log(E u

n ) to log(M) and log(N ).
The convergence order with respect to M was calculated as 1.518, and the
convergence order with respect to N was measured at 1.121.

Finally, to illustrate the applicability of the DGMM scheme to harder prob-
lems, Figure 1.4 shows the error at stopping time of the methods as a function
of a parameter ε representing the increasing speed of the solitons (c = 1−ε).
From this plot, it is appararent that while the non-adaptive MP scheme is com-
petitive at low speeds, the moving mesh method provides significantly more
accuracy as c → 1.
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1.4.3 Korteweg–de Vries equation

The KdV equation is a nonlinear PDE with soliton solutions modelling shallow
water surfaces, stated as

ut +uxxx +6uux = 0. (1.28)

It has infinitely many first integrals, one of which is the Hamiltonian

H[u] =
∫
R

1

2
u2

x −u3dx.

With this Hamiltonian, we can write (1.28) in the form (1.3) with S and δH
δu as

follows:

S = ∂

∂x
,

δH
δu

[u] =−uxx −3u2.

We will apply the PUM approach to create a numerical scheme which preserves
an approximation to H[u], splitting Ω= [−L,L] into M elements {[xi , xi+1]}M−1

i=0
and using Lagrangian basis functions ϕ j of arbitrary degree for the trial space.
Approximating u by uh as in section 1.2.3, we find

Hp(u) =H[uh] =
∫
Ω

1

2
(uh

x )2 − (uh)3dx

= 1

2

∑
j ,k

u j uk

∫
Ω
ϕ j ,xϕk,x dx − ∑

j ,k,l
u j uk ul

∫
Ω
ϕ j ϕkϕl dx. (1.29)

The integrals can be evaluated exactly and efficiently by considering element-
wise which basis functions are supported on the element before applying Gaus-
sian quadrature to obtain exact evaluations of the polynomial integrals. We
define

Di j k =
∫
Ω
ϕiϕ j ϕk dx and Ei j =

∫
Ω
ϕi ,xϕ j ,x dx.

The matrices A and B with

Ai j =
∫
Ω
ϕiϕ j dx and B j i =

∫
Ω
ϕiϕ j ,x dx

are formed in the same manner. Note that B is in this case independent of u.
Applying the AVF method yields the discrete gradient

∇Hp(un ,un+1) =
1∫

0

∇uHp(ξun + (1−ξ)un+1)dξ

45



Adaptive energy preserving methods for partial differential equations

such that, with the convention of summation over repeated indices,

(∇Hp)i = 1

2
Ei j (un

j +un+1
j )−Di j k (un

j (un
k + 1

2
un+1

k )+un+1
j (

1

2
un

k +un+1
k )).

This gives us all the required terms for forming the system (1.15) and apply-
ing the discrete gradient method to it. During testing, the ϕ j were chosen as
piecewise linear polynomials. The exact solution considered is of the form

u(x, t ) = c

2
sech2

(p
c

2
(x − ct )

)
, (1.30)

which is a right-moving soliton with c as the propagation speed, chosen as c = 6
in the numerical tests. We have considered periodic boundary conditions on a
domain

[−L,L
]× [0,T ], with L = 100 in all the following results.

Our discrete gradient method on a moving mesh (DGMM) is compared
to the same method on a static, equidistributed mesh (DG), and the implicit
midpoint method on static (MP) and moving mesh (MPMM). The spatial
discretization is performed the same way in all cases. Figure 1.5 shows an
example of exact and numerical solutions at t = 15. Note that the peak in the
exact solution will be located at x = ct .
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Figure 1.5: Solutions at T = 15. ∆t = 0.01, M = 400. MP and DG are almost indistin-
guishable.

To evaluate the numerical solution, it is reasonable to look at the distance error

Edist
n = ctn −x∗,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak in the numerical
solution. Another measure of the error is the shape error

E shape
n =

∣∣∣∣∣∣∣
∣∣∣∣∣∣uh(x, tn)−u

(
x,

x∗

c

)∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

46



1.4 Numerical experiments

where the peak of the exact solution is translated to match the peak of the
numerical solution, and the shapes of the solitons are compared.

Figure 1.6 confirms that the DG and DGMM methods preserve the approx-
imated Hamiltonian (1.29), while it is also worth noting that in the case of the
midpoint method, the error in this conserved quantity is much larger on a mov-
ing than on a static mesh. Similar behaviour is also observed for a moving-mesh
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Figure 1.6: Relative error in the Hamiltonian plotted as a function of time t ∈ [
0,15

]
.

∆t = 0.01, M = 400.

method for the regularized long wave equation in the recent paper [19], where
it is concluded that a moving mesh method with a conservative property would
be an interesting research topic. Figure 1.7, where the phase and shape errors
are plotted up to T = 15, is an example of how the DGMM method performs
comparatively better with increasing time.
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Figure 1.7: Phase error (left) and shape error (right) as a function of time. ∆t = 0.01,
M = 400.
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In figures 1.8 and 1.9 we present the phase and shape errors for the different
methods as a function of the number of elements M and the number of time
steps N , respectively. Reference lines are included to give an indication of
the rate of convergence. We also calculated this for the DGMM method by
first degree polynomial fitting of the error curve, giving a convergence order of
1.135 for the phase error and 2.311 for the shape error as a function of M . As
a function of N , we get a convergence order of 1.492 for the phase error, and
1.609 for the shape error (the latter measured up to N = 320, where it flattens
out). We observe that the DGMM scheme performs especially well, compared
to the other three schemes, for a coarse spatial discretization compared to the
discretization in time.
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Figure 1.8: Phase error (left) and shape error (right) as a function of the number of
elements M , at time T = 5. ∆t = 0.01.
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Figure 1.9: Phase error (left) and shape error (right) at time T = 5, as a function of the
number of time steps N = T /∆t . M = 800.
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1.5 Conclusion

In figure 1.10, the phase and shape errors are plotted as a function of the
parameter c in the exact solution (1.30), where we note that c

2 is the height
of the wave; increasing c leads to sharper peaks and thus a harder numerical
problem. As expected, the advantages of the DGMM method is less evident
for small c, but we observe that the DGMM method outperforms the static grid
midpoint method already when c = 2.
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Figure 1.10: Phase error (left) and shape error (right) as a function of c in the exact
solution (1.30), at time t = 5. ∆t = 0.01, M = 800.

1.4.4 Execution time

The code used is not optimized, so any quantitative comparison to standard
methods has not been performed; it is still possible to make some qualitative
observations. Adding adaptivity increases time per iteration slightly since the
systems become more complicated, especially in the case of the PUM approach
where the matrices A and B need to be recalculated, at each time step when
adaptivity is used. This increases runtime somewhat when compared to fixed
grid methods. However, adaptivity allows for using fewer degrees of freedom,
and so decreases the degrees of freedom needed for a given level of accuracy.
This accuracy gain is more pronounced the harder the problem is (steeper wave
fronts etc.), and so it stands to reason that there will be situations where adaptive
energy preserving methods will outperform non-adaptive and/or non-preserving
methods.

1.5 Conclusion

In this paper, we have introduced a general framework for producing adaptive
first integral preserving methods for partial differential equations. This is done
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by first providing two means of producing first integral preserving methods
on arbitrary fixed grids, then showing how to extend these methods to allow
for adaptivity while preserving the first integral. Numerical testing shows that
moving mesh methods coupled with discrete gradient methods provide good
solvers for the sine-Gordon and Korteweg–de Vries equations. It would be of
interest to apply the method to higher-dimensional PDEs with a more challeng-
ing geometry, preferably using the PUM approach, to investigate its accuracy as
compared to conventional methods, and to test whether h- and/or p-refinement
provides a notable improvement. It may also prove fruitful to explore the ideas
presented in [2] to make the transfer operations between sets of discretization
parameters in a more natural setting than simply interpolating, as suggested
in section 1.3.3. Furthermore, analysis of the methods considered here could
provide important insight into e.g. stability, consistency and convergence order.
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Energy preserving moving mesh methods
applied to the BBM equation

Abstract. Energy preserving numerical methods for a certain class of PDEs
are derived, applying the partition of unity method. The methods are extended
to also be applicable in combination with moving mesh methods by the re-
zoning approach. These energy preserving moving mesh methods are then
applied to the Benjamin–Bona–Mahony equation, resulting in schemes that
exactly preserve an approximation to one of the Hamiltonians of the system.
Numerical experiments that demonstrate the advantages of the methods are
presented.

2.1 Introduction

Numerical solutions of differential equations by standard methods will typically
not inherit invariant properties from the original, continuous problem. Since the
energy-preserving methods of Courant, Friedrichs and Lewy were introduced
in [8], the development of conservative methods has garnered much interest
and considerable research, surveyed in [15] up to the early 1990s. In some
important cases, conservation properties can be used to ensure numerical sta-
bility or existence and uniqueness of the numerical solution. In other cases, the
conservation of one or more invariants can be of importance in its own right.
In addition, as noted in [13], one may expect that when properties of the con-
tinuous dynamical system are inherited by the discrete dynamical system, the
numerical solution can be more accurate, especially over large time intervals.

The discrete gradient methods for ordinary differential equations (ODEs),
usually attributed to Gonzalez [12], are methods that preserve first integrals ex-
actly. Since the late 1990s, a number of researchers have worked on extending
this theory to create a counterpart for partial differential equations (PDEs), see
e.g. [5, 11]. Such methods, which are either called discrete variational deriva-
tive methods or discrete gradient methods for PDEs, aim at preserving some
discrete approximation of a first integral which is preserved by the continuous
system. Up to very recently, the schemes presented have typically been based
on a finite difference approach, and exclusively on fixed, uniform grids. Two
different discrete variational derivative methods on fixed, non-uniform grids
were presented by Yaguchi, Matsuo and Sugihara in [21,22]. In [18], Miyatake
and Matsuo introduce integral preserving methods on adaptive grids for certain
classes of PDEs. Eidnes, Owren and Ringholm presented in [10] a general
approach to extending the theory of discrete variational derivative methods,
or discrete gradient methods for PDEs, to adaptive grids, using either a finite
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difference approach, or the partition of unity method, which can be seen as a
generalization of the finite element method.

In this paper, we present an application of the approach introduced in [10]
to the Benjamin–Bona–Mahony (BBM) equation, also called the regularized
long wave equation in the literature. Although what we present here is a finite
element method, the theory can be easily applied in a finite difference setting.
Previously, there have been developed integral preserving methods for this equa-
tion [6], as well as adaptive moving mesh methods [16], but the schemes we
are to present here are, to our knowledge, the first combining these properties.
In fact, in [16] it is noted that combining integral preservation with adaptivity
is an interesting topic for further research.

2.2 The discrete gradient methods for PDEs

We give a quick survey of the discrete gradient methods for PDEs, and present
an approach to the spatial discretization by the partition of unity method (PUM).

2.2.1 Problem statement

Consider a PDE of the form

ut = f (x,u J ), x ∈Ω⊆Rd , u ∈B ⊆ L2, (2.1)

where u J denotes u itself and its partial derivatives of any order with respect
to the spatial variables x1, ...., xd , and where we assume that B is sufficiently
regular to allow all operations used in the following.

We define a first integral of (2.1) to be a functional I[u] satisfying〈
δI
δu

[u], f (x,u J )

〉
L2

= 0, ∀u ∈B,

recalling that the variational derivative δI
δu [u] is defined as the function satisfy-

ing 〈
δI
δu

[u], v

〉
L2

= d

dε

∣∣∣∣
ε=0

I[u +εv] ∀v ∈B.

This means that I[u] is preserved over time by (2.1), since

dI
dt

=
〈

δI
δu

[u],
∂u

∂t

〉
L2

= 0.
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2.2 The discrete gradient methods for PDEs

Furthermore, we may observe that if there exists some operator S(x,u J ), skew-
symmetric with respect to the L2 inner product, such that

f (x,u J ) = S(x,u J )
δI
δu

[u],

then I[u] is a first integral of (2.1), and we can state (2.1) on the form

ut = S(x,u J )
δI
δu

[u]. (2.2)

The idea behind the discrete variational derivative methods is to derive a dis-
crete version of the PDE on the form (2.2), by obtaining a so-called discrete
variational derivative and approximate S(x,u J ) by a skew-symmetric matrix,
see e.g. [11].

As proven in [10], all discrete variatonal derivative methods can be ex-
pressed as discrete gradient methods on a system of ODEs obtained by dis-
cretizing (2.2) in space, to get a system

du

dt
= S(u)∇I (u), (2.3)

where S(u) is a skew-symmetric matrix. The discrete gradient methods for
such a system of ODEs preserve the first integral I (u) [17]. These numerical
methods are given by

un+1 −un

∆t
= S̄(un ,un+1)∇I (un ,un+1),

where S̄(un ,un+1) is a consistent skew-symmetric time-discrete approximation
to S(u) and ∇I (v,u) is a discrete gradient of I (u), defined as a function satisfy-
ing

(∇I (v,u))T (u−v) = I (u)− I (v),

∇I (u,u) =∇I (u).

There are many possible choices of discrete gradients. For the numerical ex-
periments in this note, we will use the Average Vector Field (AVF) discrete
gradient [5], given by

∇I (v,u) =
1∫

0

∇I (ξu+ (1−ξ)v)dξ,

Note that when discretizing the system (2.2) in space, we do so by finding
a discrete approximation Ip to the integral I, and define an energy preserving
method to be a method preserving this approximation.
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2.2.2 Partition of unity method on a fixed mesh

The partition of unity method is a generalization of the finite element method
(FEM). Stating a weak form of (2.2), the problem consists of finding u ∈ B
such that

〈
ut , v

〉
L2 =

〈
S(x,u J )

δI
δu

[u], v

〉
L2

=−
〈

δI
δu

[u],S(x,u J )v

〉
L2

∀v ∈B.

We define an approximation to u by

uh(x, t ) =
M∑

i=0
ui (t )ϕi (x),

where the test functions ϕi (x) span a finite-dimensional subspace Bh ⊆B. Re-
ferring to [10] for details, we then obtain the Galerkin form of the problem:
Find ui (t ), i = 0, . . . , M , such that

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
M∑

i=0
wi (u)

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M },

where, with Ai j =
〈
ϕi ,ϕ j

〉
L2

,

w(u) = A−1∇Ip(u).

We end up with an ODE for the coefficients ui :

du

dt
= Sp(u)∇Ip(u). (2.4)

Here, Sp(u) =−A−1B(u)A−1 is a skew-symmetric matrix, with B(u) given by
B(u) j i =

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

, and the system is thereby of the form (2.3). Then,
the scheme

un+1 −un

∆t
= Sp(un ,un+1)∇Ip(un ,un+1).

will preserve the approximated first integral Ip in the sense that Ip(un+1) =
Ip(un).

2.3 Adaptive schemes

The primary motivation for using an adaptive mesh is usually to increase accu-
racy while keeping computational cost low, by improving discretization locally.
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2.3 Adaptive schemes

Such methods are typically useful for problems with e.g. traveling wave solu-
tions and boundary layers. The different strategies for adaptive meshes can be
classified into two main groups [14]: The quasi-Lagrange approach involves
coupling the evolution of the mesh with the PDE, and then solving the problems
simultaneously; The rezoning approach consists of calculating the function val-
ues and mesh points in an intermittent fashion. Our method can be coupled
with any adaptive mesh strategy utilizing the latter approach.

2.3.1 Adaptive discrete gradient methods

Let pn , un , pn+1, and un+1 denote the discretization parameters and the numer-
ical values obtained at the current time step and next time step, respectively.
Note that we now alter the notion of a preserved first integral further, to requir-
ing that Ipn+1 (un+1) = Ipn (un). The idea behind our approach is to find pn+1

based on un and pn , transfer un to pn+1 to obtain û, and then use û to propagate
in time to get un+1. If the transfer operation between the meshes is preserving,
i.e. if Ipn+1 (û) = Ipn (un), then the next time step can be taken with the discrete
gradient method for static meshes. If, however, non-preserving transfer is used,
corrections are needed in order to get a numerical scheme. We introduce in [10]
the scheme

un+1=û− (Ipn+1 (û)−Ipn (un))z〈
∇Ipn+1 (û,un+1),z

〉 +∆tSpn+1 (û,un+1)∇Ipn+1 (û,un+1), (2.5)

where z is a vector which should be chosen so as to obtain a minimal correction,
and such that 〈∇Ipn+1 (û,un+1),z〉 6= 0. In the numerical experiments to follow,
we have used z =∇Ipn+1 (û,un+1).

A preserving transfer can by obtained using the method of Lagrange multi-
pliers. Depending on whether r - p- or h-refinement (or a combination) is used
between time steps, we expect the shape and/or number of basis functions to
change. See e.g. [14] or [1] for examples of how the basis may change through
adaptivity. Denote by Bh = span{ϕi }M

i=0 the trial space from the current time
step and by B̂h = span{ϕ̂i }M̂

i=0 the trial space for the next time step, and note
that in general, M 6= M̂ . We wish to transfer the approximation uh from Bh

to B̂h , obtaining an approximation ûh , while conserving the first integral, i.e.
I[uh] = I[ûh]. This can be formulated as a constrained minimization problem:

min
ûh∈B̃〈

||ûh −uh ||2L2 s.t. I[ûh] = I[uh]. (2.6)
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Observe that

||ûh −uh ||2L2 =
M̂∑

i=0

M̂∑
j=0

ûi û j Âi j −2
M̂∑

i=0

M∑
j=0

ûi un
j Ci j +

M∑
i=0

M∑
i=0

un
i un

j Ai j

= ûT Âû−2ûT C un +un Aun ,

where Ai j = 〈ϕi ,ϕ j 〉L2 , Âi j = 〈ϕ̂i ,ϕ̂ j 〉L2 and Ci j = 〈ϕ̂i ,ϕ j 〉L2 . The problem
(2.6) can thus be reformulated as

min
û∈RM̂+1

ûT Âû−2ûT C un +un Aun s.t. Ipn+1 (û)−Ipn (un) = 0.

This is a quadratic minimization problem with one nonlinear equality constraint,
for which the solution û is the solution of the nonlinear system of equations

Âû−C un −λ∇Ipn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0,

which can be solved numerically using a suitable nonlinear solver.

2.4 Adaptive energy preserving schemes for the BBM
equation

2.4.1 The BBM equation

The BBM equation was introduced by Peregrine [19], and later studied by Ben-
jamin et al. [2] as a model for small amplitude long waves on the surface of
water in a channel. Conservative finite difference schemes for the BBM equa-
tion were proposed in [20] and [6], the latter being a discrete gradient method
on fixed grids. A moving mesh FEM scheme employing a quasi-Lagrange
approach is presented by Lu, Huang and Qiu in [16], which we also refer to for
a more extensive list of references to the existing numerical schemes for the
BBM equation.

Consider now an initial-boundary value problem of the one-dimensional
BBM equation with periodic boundary conditions,

ut −uxxt +ux +uux = 0, x ∈ [−L,L], t ∈ (0,T ] (2.7)

u(x,0) = u0(x), x ∈ [−L,L] (2.8)

u(−L, t ) = u(L, t ), t ∈ (0,T ]. (2.9)

By introducing the new variable m(x, t )coloneqqu(x, t )−uxx (x, t ), equation
(2.7) can be rewritten on the form (2.2) as

mt =S(m)
δH
δm

,
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2.4 Adaptive energy preserving schemes for the BBM equation

for two different pairs of an antisymmetric differential operator S(m) and a
Hamiltonian H [m]:

S1(m) = −(
2

3
u +1)∂x − 1

3
ux ,

H1 [m] = 1

2

∫
(u2 +u2

x )dx,

and

S2(m) = −∂x +∂xxx ,

H2 [m] = 1

2

∫
(u2 + 1

3
u3)dx.

2.4.2 Discrete schemes

We apply the PUM approach to create numerical schemes which preserve an
approximation to either H1 [m] or H2 [m], splitting Ωcoloneqq[−L,L] into M
elements {[xi , xi+1]}M−1

i=0 . Defining the matrices A and E by their components

Ai j =
∫
Ω
ϕiϕ j dx and Ei j =

∫
Ω
ϕi ,xϕ j ,x dx,

we set m = (A+E)u. Note that the matrices A and E depend on the mesh, and
thus will change when adaptivity is used. We will then distinguish between
matrices from different time steps by writing e.g. An and An+1.

Approximating u by uh as in section 2.2.2, we find

H1
p(m) =H1[mh] = 1

2

∫
Ω

(uh)2 + (uh
x )2dx

= 1

2

∑
i , j

ui u j

∫
Ω
ϕiϕ j dx + 1

2

∑
i , j

ui u j

∫
Ω
ϕi ,xϕ j ,x dx

= 1

2
uT(A+E)u

The integrals can be evaluated exactly and efficiently by considering element-
wise which basis functions are supported on the element before applying Gaus-
sian quadrature to obtain exact evaluations of the polynomial integrals. We
define the matrix B1(u) by

B1(u) j i =−1

3

M−1∑
k=0

uk

(
2
∫
Ω
ϕiϕ j ,xϕk dx +

∫
Ω
ϕiϕ j ϕk,x dx

)
−

∫
Ω
ϕiϕ j ,x dx.
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An approximation to the gradient of H1 with respect to m is found by the AVF
discrete gradient

∇H1
p(mn ,mn+1) = (A+E)−1∇H1

p(un ,un+1)

= (A+E)−1

1∫
0

∇H1
p(ξun + (1−ξ)un+1)dξ

= (A+E)−1 1

2
(A+E)

(
un +un+1

)
= 1

2

(
un +un+1

)
.

Thus we have the required terms for forming the system (2.4) and applying
the adaptive discrete gradient method to it. Corresponding to (2.5), we get the
scheme

(An+1 +E n+1)
(
un+1 − û

)
=

ûT
(

An+1 +E n+1
)

û− (
un

)T (
An +E n

)
un(

û+un+1
)T (

û+un+1
) (

û+un+1
)

+ ∆t

2
B n+1

1

(
û+un+1

2

)(
û+un+1

)
.

Here we have chosen the skew-symmetric matrix B1 to be a function of û
and un+1, but could also have chosen e.g. B1(û), resulting in a decreased
computational cost at the expense of less precise results. During testing, the
basis functions were chosen as piecewise cubic polynomials.

In the same manner we may obtain a scheme that preserves H2 [m]. In this
case

H2
p(m) =H2[mh] = 1

2

∫
Ω

(uh)2 + 1

3
(uh)3dx

= 1

2

∑
i , j

ui u j

∫
Ω
ϕiϕ j dx + 1

6

∑
i , j ,k

ui u j uk

∫
Ω
ϕiϕ j ϕk dx.

and

(B2) j i =−
∫
Ω
ϕiϕ j ,x dx +

∫
Ω
ϕiϕ j ,xxx dx.

Note that the skew-symmetric matrix B2 is independent of u.
Defining the tensor D by its elements

Di j k =
∫
Ω
ϕiϕ j ϕk dx,

we get, with the convention of summation over repeated indices, the AVF dis-
crete gradient with respect to u given by the elements

∇H2
p(un ,un+1)i =

Ai j

2
(un

j +un+1
j )+ Di j k

6

un
j (un

k + un+1
k

2
)+un+1

j (
un

k

2
+un+1

k )
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and again the discrete gradient with respect to m by

∇H2
p(mn ,mn+1) = (A+E)−1∇H2

p(un ,un+1).

If we employ integral preserving transfer between the meshes, we get the
scheme

un+1 − û =∆t (A+E)−1B2(A+E)−1∇H2
p(û,un+1),

where we note that Sp,2coloneqq(A +E)−1B2(A +E)−1 is a skew-symmetric
matrix. If non-preserving transfer is used, we need a correction term, as in the
H1 scheme above. The calculation of such a term is straightforward, but we
omit it here for reasons of brevity.

To approximate the third derivative in B2, we need basis functions of at
least degree three, and to guarantee skew-symmetry in B2, these basis functions
need to be C 2 on the element boundaries. This is not obtainable with regular
nodal FEM basis functions, so we have instead used third order B-spline basis
functions as described in [7] during testing.

2.5 Numerical results

To demonstrate the performance of our methods, we have tested them on two
one-dimensional simple problems: A soliton solution, and the interaction of
two waves. We have tested our H1- and H2-preserving schemes on uniform and
moving meshes, and compared the results to those obtained using the explicit
midpoint method. For the transfer operation between meshes, we have used a
piecewise cubic interpolation method in the H1 preserving scheme, and exact
transfer in the H2 preserving scheme.

2.5.1 Mesh adaptivity

As noted in section 2.3, our methods can be coupled with any adaptive mesh
strategy using the rezoning approach. For our numerical experiments, we have
used a simple method for r -adaptivity based on the equidistribution principle:
Splitting Ω into M intervals, we require that

xi+1∫
xi

ω(x)dx = 1

M

L∫
−L

ω(x)dx,

where the monitor function ω is a function measuring how densely grid points
should lie, based on the value of u. For a general discussion on the choice of
an optimal monitor function, see e.g. [3, 4]. For the problems we have studied,
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a generalized solution arc length monitor function proved to yield good results.
This is given by

ω(x) =
√√√√1+k2

(
∂u

∂x
(x)

)2

.

For k = 1, this is the usual arc length monitor function, in which case the
equidistribution principle amounts to requiring that the arc length of u over
each interval is equal. In applications, we only have an approximation of u,
and hence ω must be approximated as well. We have applied a finite differ-
ence approximation and obtained approximately equidistributing grids using
de Boor’s method as explained in [14, pp. 36-38].

2.5.2 Soliton solution

With u0(x) = 3(c −1) sech2
(

1
2

√
1− 1

c x

)
, the exact solution of (2.7)–(2.9) is

u(x, t ) = 3(c −1)sech2

(
1

2

√
1− 1

c
l (x, t )

)
,

with l (x, t ) = min j∈Z
∣∣x − ct +2 j L

∣∣. This is a soliton solution which travels
with a constant speed c in x-direction while maintaining its initial shape.

To evaluate the numerical solutions, we have compared them to the exact
solution and calculated errors in shape and phase. The phase error is evaluated
as

Ephase
n = |ctn −x∗|,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak of the soliton in the
numerical solution. The shape error is given by

E shape
n =

∥∥∥∥∥∥uh(x, tn)−u

(
x,

x∗

c

)∥∥∥∥∥∥ ,

where the peak of the exact solution is translated to match the peak of the
numerical solution, and the difference in the shapes of the solitons is calculated.

The results of the numerical tests can be seen in figures 2.1–2.3. Here, M
denotes the degrees of freedom used in the spatial approximation and ∆t the
fixed time step size. DG1 and DG1MM denotes the H1

p preserving scheme with
fixed, uniform grid and adaptive grid, respectively; similary DG2 and DG2MM
denotes the H2

p preserving scheme with uniform and adaptive grids.
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Figure 2.1: The soliton problem. Relative error in the approximated Hamiltonians H1
p

(left) and H2
p (right) plotted as a function of time t ∈ [

0,50
]
. c = 3,L = 200,∆t = 0.1,

M = 200.

In Figure 2.1 we see the relative errors in H1
p and H2

p. The DG1 and
DG1MM schemes are compared to schemes using the same 3rd order nodal
basis functions, but the trapezoidal rule for time-stepping, denoted by TR and
TRMM. Likewise, the DG2 and DG2MM schemes are compared to the IM
and IMMM schemes, using B-spline basis functions and the implicit midpoint
method for discretization in time. The error in H1

p is very small for the DG1 and
DG1MM schemes, as expected. Also the error in H2

p is very small for the DG2
and DG2MM schemes. The order of the error is not machine precision, but is
instead dictated by the precision with which the nonlinear equations in each
time step is solved. We can also see that while the TR and IM schemes, with
and without moving meshes, have poor conservation properties, the moving
mesh DG schemes seem to preserve quite well even the integrals they are not
designed to preserve.

In figures 2.2 and 2.3 we see the phase and shape errors, of our methods
compared to non-moving mesh methods and non-preserving methods, respec-
tively. The advantage of using moving meshes is clear, especially for the H2

p
preserving schemes. The usefulness on integral preservation is ambiguous in
this case. It seems that what we gain in precision in phase, we lose in precision
in shape, and vice versa.

65



Energy preserving moving mesh methods applied to the BBM equation

0 5 10 15 20 25 30 35 40 45 50

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
h
a
s
e
 e

rr
o
r

DG1

DG1MM

DG2

DG2MM

0 5 10 15 20 25 30 35 40 45 50

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
h

a
p

e
 e

rr
o

r

DG1

DG1MM

DG2

DG2MM

Figure 2.2: The soliton problem. Phase error (left) and shape error (right) as a function
of time. c = 3,L = 200,∆t = 0.1, M = 200.
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Figure 2.3: The soliton problem. Phase error (left) and shape error (right) as a function
of time. c = 3,L = 200,∆t = 0.1, M = 200.
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Figure 2.4: The interacting waves problem. Solutions at t = {
0,50,75,100,150

}
found

by DG1MM (left) and DG2MM (right). xr = 150, xs = 105,cr = 2,cs = 1.5,L =
200,∆t = 0.1, M = 1000.

2.5.3 A small wave overtaken by a large one

A typical test problem for the BBM equation is the interaction between two
solitary waves. With an initial condition

u0(x) = 3(cr −1) sech2

√
1− 1

cr

x −xr

2

+3(cs −1) sech2

√
1− 1

cs

x −xs

2

 ,

one wave will eventually be overtaken by the other as long as cr 6= cs , i.e. if one
wave is larger than the other. There is no available analytical solution for this
problem. The two waves are not solitons, as the amplitudes will change a bit
after the waves have interacted [9].

Solutions obtained by solving the problem with our two energy preserving
schemes, giving very similar results, are plotted in Figure 2.4. Also, to illustrate
the mesh adaptivity, we have included a plot of the mesh trajectories in Figure
2.6. Each line represents the trajectory of one mesh point in time, and we can
see that the mesh points cluster nicely around the edges of the waves as they
move.

To illustrate the performance of our methods, we have in Figure 2.5 com-
pared solutions obtained by using the H2

p-preserving moving mesh method with
the solutions obtained by using a fourth order Runge–Kutta method on a static
mesh, with the same, and quite few, degrees of freedom. The DG2MM solution
is visibly closer to the solutions in Figure 2.4. The non-preserving RK scheme
does a worse job of preserving the amplitude and speed of the waves compared
to the DG2MM scheme, and we observe unwanted oscillations.

In Figure 2.7 we have plotted the Hamiltonian errors for this problem.
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Figure 2.5: The interacting waves problem. Solutions at t = {
0,50,75,100,150

}
found

by DG2MM (left) and RK (right). xr = 150, xs = 105,cr = 2,cs = 1.5,L = 200,∆t = 0.1,
M = 200.

Figure 2.6: Mesh point trajectories in time. Each line represents one mesh point.
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Figure 2.7: The interacting waves problem. Error in the approximated Hamiltonians
H1

p (left) and H2
p (right) plotted as a function of time t ∈ [

0,150
]
. xr = 150, xs =

105,cr = 2,cs = 1.5,L = 200,∆t = 0.1, M = 1000.

Again we see that the energy preserving schemes preserve both Hamiltoni-
ans better than the Runge–Kutta scheme, but we do also observe that the DG1
scheme preserves H2

p better than the DG1MM scheme, and vice versa for the
DG2 and DG2MM schemes. Note also that an increase in the errors can be
observed when the two waves interact, but that this increase is temporary.

2.6 Conclusions

In this paper, we have presented energy preserving schemes for a class of PDEs,
first on general fixed meshes, and then on adaptive meshes. These schemes are
then applied to the BBM equation, for which discrete schemes preserving two
of the Hamiltonians of the problem are explicitly given.

Numerical experiments are performed, using the energy preserving moving
mesh schemes on two different BBM problems: a soliton solution, and two
waves interacting. Plots of the phase and shape errors illustrate how, for the
given parameters, the usage of moving meshes gives improved accuracy, while
the integral preservation gives comparable results to existing methods, without
yielding a categorical improvement. We will remark, however, that in many
cases, the preservation of a quantity such as one of the Hamiltonians in itself
may be a desired property of a numerical scheme. For the two wave interaction
problem, we do not have an analytical solution to compare to, but plots of the
solution indicate that our schemes perform well compared to a Runge–Kutta
scheme.
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Although the numerical examples presented here are simple one-
dimensional problems, the adaptive discrete gradient methods should also be
applicable for multi-dimensional problems. This could be an interesting direc-
tion for further work, since the advantages of adaptive meshes are typically
more evident when increasing the number of dimensions.
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Energy preserving methods on Riemannian
manifolds

Abstract. The energy preserving discrete gradient methods are generalized
to finite-dimensional Riemannian manifolds by definition of a discrete ap-
proximation to the Riemannian gradient, a retraction, and a coordinate center
function. The resulting schemes are formulated only in terms of these three
objects and do not otherwise depend on a particular choice of coordinates or
embedding of the manifold in a Euclidean space. Generalizations of well-
known discrete gradient methods, such as the average vector field method
and the Itoh–Abe method, are obtained. It is shown how methods of higher
order can be constructed via a collocation-like approach. Local and global
error bounds are derived in terms of the Riemannian distance function and the
Levi-Civita connection. Numerical results are presented, for problems on the
two-sphere, the paraboloid and the Stiefel manifold.

3.1 Introduction

A first integral of an ordinary differential equation (ODE) is a scalar-valued
function on the phase space of the ODE that is preserved along solutions. The
potential benefit of using numerical methods that preserve one or more such
invariants is well-documented, and several energy-preserving methods have
been developed in recent years. Among these are the discrete gradient meth-
ods, which were introduced for use in Euclidean spaces in [10], see also [23].
These methods are based on the idea of expressing the ODE using a skew-
symmetric operator and the gradient of the first integral, and then creating a
discrete counterpart to this in such a way that the numerical scheme preserves
the first integral.

For manifolds in general, one can use the same schemes expressed in local
coordinates. A drawback is that the numerical approximation will typically
depend on the particular choice of coordinates and also on the strategy used
for transition between coordinate charts. Another alternative is to use a global
embedding of the manifold into a larger Euclidean space, but then it typically
happens that the numerical solution deviates from the manifold. Even if the
situation can be amended by using projection, it may not be desirable that the
computed approximation depends on the particular embedding chosen. Crouch
and Grossmann [7] and Munthe-Kaas [25, 26] introduced different ways of
extending existing Runge–Kutta methods to a large class of differentiable man-
ifolds. Both these approaches are generally classified as Lie group integrators,
see [14] or the more recent [4] for a survey of this class of methods. They
can also both be formulated abstractly by means of a post-Lie structure which
consists of a Lie algebra with a flat connection of constant torsion, see e.g. [27].
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In the present paper we shall state the methods in a slightly different context,
using the notion of a Riemannian manifold. It is then natural to make use of
the Levi-Civita connection, which in contrast to the post-Lie setting is torsion-
free, and which in general has a non-zero curvature. For our purposes it is
also an advantage that the Riemannian metric provides an intrinsic definition
of the gradient. Taking an approach more in line with this, Leimkuhler and
Patrick [19] considered mechanical systems on the cotangent bundle of a Rie-
mannian manifold and succeeded in generalising the classical leap-frog scheme
to a symplectic integrator on Riemannian manifolds.

Some classical numerical methods in Euclidean spaces preserve certain
classes of invariants; for instance, symplectic Runge–Kutta methods preserve
all quadratic invariants. This can be useful when there is a natural way of em-
bedding a manifold into a linear space by using constraints that are expressed
by means of such invariants. An example is the 2-sphere which can be embed-
ded in R3 by adding the constraint that these vectors should have unit length.
The classical midpoint rule will automatically ensure that the numerical ap-
proximations remain on the sphere as it preserves all quadratic invariants. In
general, however, the invariants preserved by these methods are expressed in
terms of coordinates. Hence the preservation property of the method may be
lost under coordinate changes if the invariant is no longer quadratic. In [5], a
generalization of the discrete gradient method to differential equations on Lie
groups and a broad class of manifolds was presented. Here we develop this
further by introducing a Riemannian structure that can be used to provide an
intrinsic definition of the gradient and a means to measure numerical errors.

The structure of this paper is as follows: In section 2, we formulate the
problem to be solved and introduce discrete Riemannian gradient methods, as
well as presenting some particular examples with special attention to a general-
ization of the Itoh–Abe discrete gradient. We also briefly discuss the Euclidean
setting as a special choice of manifold and show how the standard discrete
gradient methods are recovered in this case. In the third section, we consider
higher order energy preserving methods based on generalization of a colloca-
tion strategy introduced by Hairer [12] to Riemannian manifolds. We present
some error analysis in section 4, and show numerical results in section 5, where
the methods are applied to models of a body moving on the two-sphere and on
the paraboloid, and on a system on the Stiefel manifold.
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3.2 Energy preservation on Riemannian manifolds

3.2 Energy preservation on Riemannian manifolds

Consider an initial value problem on the finite-dimensional Riemannian mani-
fold (M , g ),

u̇ = F (u), u(0) = u0 ∈ M , (3.1)

where F is a smooth vector field, u0 ∈ M is the initial value and g is a Rieman-
nian metric. We denote by F (M) the space of smooth functions on M . The
set of smooth vector fields and differential one-forms are denoted Γ(T M) and
Γ(T ∗M) respectively, and for the duality pairing between these two spaces we
use the angle brackets 〈·, ·〉.

A first integral associated with a vector field F ∈ Γ(T M) is a function H ∈
F (M) such that 〈dH ,F 〉 vanishes identically on M . First integrals are preserved
along solutions of (3.1), since

d

dt
H(u(t )) = 〈

dH(u(t )), u̇(t )
〉= 〈

dH(u(t )),F (u(t ))
〉= 0.

3.2.1 Preliminaries

The fact that a vector field F has a first integral H is closely related to the
existence of a tensor field Ω ∈ Γ(T M ⊗ T ∗M) =: Γ(T 1

1 M), skew-symmetric
with respect to the metric g , such that

F (u) =Ω(u)gradH(u), (3.2)

where gradH ∈ Γ(T M) is the Riemannian gradient, the unique vector field sat-
isfying 〈dH , ·〉 = g (gradH , ·). Any ODE (3.1) where F is of this form preserves
H , since

d

dt
H(u) = 〈

dH(u), u̇
〉= 〈

dH(u),ΩgradH(u)
〉= g (gradH(u),ΩgradH(u)) = 0.

A converse result is detailed in the following proposition.

Proposition 3.1. Any system (3.1) with a first integral H can be written with
an F of the form (3.2). The skew tensor field Ω can be chosen so as to be
bounded near every nondegenerate critical point of H .

Proof. Similar to the proof of Proposition 2.1 in [23], we can write an explicit
expression for a possible choice of Ω,

Ωy = g (gradH , y)F − g (F, y)gradH

g (gradH ,gradH)
. (3.3)

Clearly, g (y,Ωy) = 0 for all y . Since H is a first integral, g (F,gradH) =
〈dH ,F 〉 = 0, so ΩgradH = F . For a proof that Ω is bounded near nondegenerate
critical points, see [23].
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In fact, such a tensor field Ω often arises naturally from a two-form ω through
the assignment Ωy =ω(·, y)]. A well-known example is when ω is a symplectic
two-form. Note that Ω is not necessarily unique.

Retractions, viewed as maps from T M to M , will play an important role in
the methods we discuss here. Their formal definition can be found e.g. in [1]:

Definition 3.1. Let φ be a smooth map defined on a neighborhood of M in
T M and let φp denote the restriction of φ to the tangent space Tp M at p ∈ M ,
with 0p being the zero-vector in Tp M . Then φ is a retraction if it satisfies the
conditions

1. φp is defined in an open ball Brp (0p ) ⊂ Tp M of radius rp about 0p ,

2. φp (x) = p if and only if x = 0p ,

3. Dφp
∣∣
0p

= IdTp M .

A canonical example of a retraction on (M , g ) is obtained via the Rieman-
nian exponential, setting φp (x) = expp (x), i.e., following along the geodesic
emanating from p in the direction x. The Riemannian exponential may be more
computationally expensive to evaluate than other retractions, but its geometric
position in the Riemannian framework could provide for an informative error
analysis.

3.2.2 The discrete Riemannian gradient method

We adapt the discrete gradients in Euclidean space to discrete Riemannian
gradients (DRG) on (M , g ) by means of a retraction map φ and a center point
function c.

Definition 3.2. A discrete Riemannian gradient is a triple (grad,φ,c)1 where

1. c : M ×M → M is a continuous map such that c(u,u) = u for all u ∈ M ,

2. grad :F (M) → Γ(c∗T M),

3. φ : T M → M is a retraction,

such that for all H ∈F (M), u ∈ M , v ∈ M , c = c(u, v) ∈ M ,

H(v)−H(u) = g (gradH(u, v),φ−1
c (v)−φ−1

c (u)), (3.4)

gradH(u,u) = gradH(u). (3.5)

1To avoid cluttered notation we will just write grad for the triple (grad,φ,c) in the sequel.
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The DRG gradH is a continuous section of the pullback bundle c∗T M ,
meaning that π◦gradH = c, where π : T M → M is the natural projection. We
also need to define an approximation to be used for the tensor field Ω ∈ Γ(T 1

1 M).
To this end we let Ω ∈ Γ(c∗T 1

1 M) be a continuous skew-symmetric tensor field
such that

Ω(u,u) =Ω(u) ∀u ∈ M .

Inspired by [3, 5], we propose the scheme

uk+1 =φck (W (uk ,uk+1)), ck = c(uk ,uk+1) (3.6)

W (uk ,uk+1) =φ−1
ck (uk )+hΩ(uk ,uk+1)gradH(uk ,uk+1), (3.7)

where h is the step size. The scheme (3.6)–(3.7) preserves the invariant H ,
since

H(uk+1)−H(uk ) = g (gradH(uk ,uk+1),φ−1
ck (uk+1)−φ−1

ck (uk ))

= g (gradH(uk ,uk+1),hΩ(uk ,uk+1)gradH(uk ,uk+1)) = 0.

Here and in the following we adopt the shorthand notation c = c(u, v) as long
as it is obvious what the arguments of c are.

The Average Vector Field (AVF) method has been studied extensively in
the literature; some early references are [13, 23, 28]. This is a discrete gradient
method, and we propose a corresponding DRG satisfying (3.4)-(3.5) as follows:

gradAVFH(u, v) =
∫ 1

0
(Dγξ

φc )T gradH(φc (γξ))dξ, (3.8)

where γξ = (1 − ξ)φ−1
c (u) + ξφ−1

c (v), and (Dxφc )T : Tφc (x)M → Tc M is the
unique operator satisfying

g ((Dxφc )Ta,b) = g (a,Dxφc b), ∀x,b ∈ Tc M , a ∈ Tφc (x)M .

Furthermore, we have the generalization of Gonzalez’ midpoint discrete gradi-
ent [10],

gradMPH(u, v) =gradH(c(u, v))

+ H(v)−H(u)− g (gradH(c(u, v)),η)

g (η,η)
η

(3.9)

where η=φ−1
c (v)−φ−1

c (u).
Note that both these DRGs involve the gradient of the first integral. This

may be a disadvantage if H is non-smooth or if its gradient is expensive to
compute. Also, the implicit nature of the schemes requires the solution of an
n-dimensional nonlinear system of equations at each time step. An alternative
is to consider the Itoh–Abe discrete gradient [15], also called the coordinate
increment discrete gradient [23], which in certain cases requires only the solu-
tion of n decoupled scalar equations. We now present a generalization of the
Itoh–Abe discrete gradient to finite-dimensional Riemannian manifolds.
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3.2.3 Itoh–Abe discrete Riemannian gradient

Definition 3.3. For any tangent space Tc M one can choose a basis {E1, ...,En}
composed of tangent vectors Ei , i = 1, ...,n, orthonormal with respect to the
Riemannian metric g . Then, given u, v ∈ M , there exists a unique

{
αi

}n
i=1 so

that

φ−1
c (v)−φ−1

c (u) =
n∑

i=1
αi Ei .

The Itoh–Abe DRG of the first integral H is then given by

gradIAH(u, v) =
n∑

j=1
a j E j , (3.10)

where

a j =


H(w j )−H(w j−1)

α j
if α j 6= 0,

g (gradH(w j−1),Dφc (η j−1)E j ) if α j = 0,

w j =φc (η j ), η j =φ−1
c (u)+

j∑
i=1

αi Ei .

We refer to [3] for proof that this is indeed a DRG satisfying (3.4)-(3.5).

3.2.4 Euclidean setting

Let M = V be an R-linear space, and let g be the Euclidean inner product,
g (x, y) = xT y . The operator Ω is a solution dependent skew-symmetric n ×n
matrix Ω(u). For any u ∈ V , we have TuV ≡ V . The retraction φ : V → V is
defined as φp (x) = p + x, the Riemannian exponential on V , so that φ−1

c (v)−
φ−1

c (u) = v −u. The gradient gradH is an n-vector whose i th component is
∂H
∂ui

, and the definition of the discrete Riemannian gradient coincides with the
standard discrete gradient, since (3.4) now reads

H(v)−H(u) = grad(u, v)T(v −u).

Furthermore, (3.6)-(3.7) simply becomes the discrete gradient method intro-
duced in [10], given by the scheme

uk+1 −uk = hΩ(uk ,uk+1)gradH(uk ,uk+1), (3.11)

where Ω is a skew-symmetric matrix approximating Ω. Typical choices are
Ω(uk ,uk+1) = Ω(uk ), or Ω(uk ,uk+1) = Ω((uk+1 +uk )/2) if one seeks a sym-
metric method.
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The DRGs (3.8) and (3.9) become the standard AVF and midpoint discrete
gradients in this case. For the Itoh–Abe DRG, the practical choice for the
orthogonal basis would be the set of unit vectors, {e1, ...,en}, so that αi = vi −ui ,
and we get (3.10) with

a j =


H(w j )−H(w j−1)

v j −u j
if u j 6= v j ,

∂H
∂u j

(w j−1) if u j = v j ,

w j =
∑ j

i=1 vi ei +
∑n

i= j+1 ui ei ,

which is a reformulation of the Itoh–Abe discrete gradient as it is given in [15],
[23] and the literature otherwise.

3.2.5 Lie group setting

Consider the case where M is a Lie group, M = G, equipped with a right-
invariant Riemannian metric g . The methods described in reference [5] can be
seen as a special case of the methods presented in the current paper, with the
retraction map chosen to be the Lie group exponential, see [5] for details. In the
special case when the Riemannian metric is bi-invariant (and the exponential
map of the Lie group setting coincides with the Riemannian exponential [24])
the methods of [5] are an example of the methods presented here, implemented
using normal coordinates (see [17, p. 76]).

3.3 Methods of higher order

In the Euclidean setting, a strategy to obtain energy preserving methods of
higher order was presented in [2] and later in [12], see also [6]. This technique
is generalized to a Lie group setting in [5]. We will here formulate these
methods in the context of Riemannian manifolds.

3.3.1 Energy-preserving collocation-like methods on Riemannian
manifolds

Let c1, ...,cs be distinct real numbers, where s is the order of the collocation
polynomial specified below. Consider the Lagrange basis polynomials,

li (ξ) =
s∏

j=1, j 6=i

ξ−c j

ci −c j
, and let bi :=

∫ 1

0
li (ξ)dξ. (3.12)

We assume that c1, . . . ,cs are such that bi 6= 0 for all i . A step of the energy-
preserving collocation-like method, starting at u0 ∈ M , is defined via a polyno-
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mial σ : R→ Tc M of degree s satisfying

σ(0) =φ−1
c (u0), (3.13)

d

dξ
σ(ξh)

∣∣∣
ξ=c j

= DU j φ
−1
c

(
Ω j grad j H

)
, U j :=φc

(
σ(c j h)

)
(3.14)

u1 :=φc
(
σ(h)

)
, (3.15)

where

grad j H :=
∫ 1

0

l j (ξ)

b j

(
DU j φ

−1
c

)T
(Dσ(ξh)φc )T gradH

(
φc (σ(ξh))

)
dξ,

and Ω j :=Ω(U j ). Notice that with s = 1 and independently on the choice of c1,
we reproduce the DRG method (3.6)-(3.7) with the AVF DRG (3.8).

Using Lagrange interpolation and (3.14), the derivative of σ(ξh) at every
point ξh is

d

dξ
σ(ξh) =

s∑
j=1

l j (ξ)DU j φ
−1
c

(
Ω j grad j H

)
, (3.16)

from which by integrating we get

σ(τh) =φ−1
c (u0)+h

s∑
j=1

∫ τ

0
l j (ξ)dξDU j φ

−1
c

(
Ω j grad j H

)
.

The defined method is energy preserving, which we see by using

d

dξ

(
φc (σ(ξh))

)= Dσ(ξh)φc

(
d

dξ
σ(ξh)

)
,

and (3.16) to get

H(u1)−H(u0) =
∫ 1

0
g

(
gradH

(
φc (σ(ξh))

)
,

d

dξ
φc (σ(ξh))

)
dξ

=
∫ 1

0
g

gradH
(
φc (σ(ξh))

)
, Dσ(ξh)φc

 s∑
j=1

l j (ξ)DU j φ
−1
c

(
Ω j grad j H

)
 dξ

=
∫ 1

0
g

(
Dσ(ξh)φc

)T
gradH

(
φc (σ(ξh))

)
,

s∑
j=1

l j (ξ)DU j φ
−1
c

(
Ω j grad j H

) dξ

=
s∑

j=1
b j g

(∫ 1

0

l j (ξ)

b j

(
DU j φ

−1
c

)T (
Dσ(ξh)φc

)T
gradH

(
φc (σ(ξh))

)
dξ, Ω j grad j H

)

=
s∑

j=1
b j g

(
grad j H , Ω j grad j H

)
= 0,

and hence repeated use of (3.13)-(3.15) ensures H(uk ) = H(u0) for all k ∈N.

82



3.4 Error analysis

3.3.2 Higher order extensions of the Itoh–Abe DRG method

From the Itoh–Abe DRG one can get a new DRG, also satisfying (3.4), by

gradSIAH(u, v) = 1

2

(
gradIAH(u, v)+gradIAH(v,u)

)
. (3.17)

We call this the symmetrized Itoh–Abe DRG. Note that we need the base point
c to be the same in the evaluation of gradIAH(u, v) and gradIAH(v,u). When
c(u, v) = c(v,u) and Ω(u,v) = Ω(v,u), we get a symmetric DRG method (3.6)-
(3.7), which is therefore of second order.

Alternatively, one can get a symmetric 2-stage method by a composition of
the Itoh–Abe DRG method and its adjoint. Furthermore, one can get energy pre-
serving methods of any order using a composition strategy. To ensure symmetry
of an s-stage composition method, one needs ci (u, v) = cs+1−i (v,u) for different
center points ci belonging to each stage and, similarly, Ωi (u, v) =Ωs+1−i (v,u).

3.4 Error analysis

3.4.1 Local error

In this section, ϕt (u) is the t-flow of the ODE vector field F . The most stan-
dard discrete gradient methods have a low or moderate order of convergence,
and this is also the case for the DRG methods unless special care is taken in
designing Ω and gradH . We shall not pursue this approach here, but refer to
the collocation-like methods if high order of accuracy is required. We shall
see, however, that the methods designed here are consistent and can be made
symmetric. Analysis of the local error can be done in local coordinates, as-
suming that the step size is always chosen sufficiently small, so that within
a fixed step, uk ,uk+1,c(uk ,uk+1) and the exact local solution u(tk+1) all be-
long to the same given coordinate chart. From the definition (3.6)-(3.7) it
follows immediately that the representation of uk+1(h) satisfies uk+1(0) = uk

and d
dh uk+1(0) = F (uk ). Then, by equivalence of local coordinate norms and

the Riemannian distance, we may conclude that the local error in DRG methods
satisfies

d(uk+1,ϕh(uk )) ≤C h2.

Similar to what was also observed in [5], the DRG methods (3.6)-(3.7) are sym-
metric whenever gradH(u, v) = gradH(v,u), Ω(u, v) =Ω(v,u), and c(u, v) =
c(v,u) for all u, v ∈ M . In that case we obtain an error bound for the local error
of the form d(uk+1,ϕh(uk )) ≤C h3.

The collocation-like methods of section 3.3 have associated nodes {ci }s
i=1

and weights {bi }s
i=1 defined by (3.12). The order of the local error depends on
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the accuracy of the underlying quadrature formula given by these nodes and
weights. The following result is a simple consequence of Theorem 4.3 in [6].2

Theorem 3.2. Let ψh be the method defined by (3.13)-(3.15). The order of the
local error is at least

p = min(r,2r −2s +2)

where r is the largest integer such that
∑s

i=1 bi cq−1
i = 1

q for all 1 ≤ q ≤ r . This
means that there are positive constants C and h0 such that

d(ψh(u),ϕh(u)) ≤C hp+1 for h < h0, u ∈ M .

Proof. Choose h small enough such that the solution can be represented in the
form u(hξ) =φc (γ(ξh)),ξ ∈ [0,1], and consider the corresponding differential
equation for γ in Tc M :

d

d t
γ(t ) = (

φ∗
c F

)
(γ(t )) =

(
Tγ(t )φc

)−1
ΩgradH

(
φc (γ(t ))

)
. (3.18)

Notice that
(
Tγφc

)−1 = TUφ−1
c where U =φc ◦γ and TU (t )φ

−1
c : TU (t )M → Tc M

for every t . We obtain

d

d t
γ(t ) = TU (t )φ

−1
c Ω

(
TU (t )φ

−1
c

)T (
Tγ(t )φc

)T
gradH

(
φc (γ(t ))

)
. (3.19)

Considering the Hamiltonian H̃ : Tc M → R, H̃(γ) := φ∗
c H(γ) = H ◦φc (γ), we

can then rewrite (3.18) in the form

d

d t
γ(t ) = Ω̃(γ)gradH̃(γ), Ω̃(γ) := TU (t )φ

−1
c Ω

(
TU (t )φ

−1
c

)T
, (3.20)

where we have used that gradH̃ = Tγ(t )φ
T
c gradH (φc (γ(t ))), which is now a

gradient on the linear space Tc M with respect to the metric inherited from M ,
g |c . Locally in a neighborhood of c, (3.13)-(3.15) applied to (3.20) coincides
with the methods of Cohen and Hairer, and therefore the order result [6, Thm
4.3] can be applied. Since the Riemannian distance d(·, ·) and any norm in local
coordinates are equivalent, the result follows.

3.4.2 Global error

We prove the following result for the global error of DRG methods.

2The local error results of this section are valid for general retractions. For the special choice
φc = expc , an analysis in a purely Riemannian setting could provide sharper geometric insight
into the properties of the error.
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Theorem 3.3. Let u(t ) be the exact solution to (3.1) where F is a complete
vector field on a connected Riemannian manifold (M , g ) with flow u(t ) =ϕt (u0).
Let ψh represent a numerical method uk+1 =ψh(uk ) whose local error can be
bounded for some p ∈N as

d(ψh2(u),ϕh(u)) ≤C hp+1 for all u ∈ M .

Suppose there is a constant L such that

‖∇F‖g ≤ L,

where ∇ is the Levi-Civita connection and ‖ · ‖g is the operator norm with
respect to the metric g . Then the global error is bounded as

d
(
u(kh),uk

)
≤ C

L
(ekhL −1)hp for all k > 0.

Proof. Denoting the global error as ek := d(u(kh),uk ), the triangle inequality
yields

ek+1 ≤ d
(
ϕh(u(kh)

)
,ϕh(uk ))+d

(
ϕh(uk ),ψh(uk )

)
.

The first term is the error at nh propagated over one step, the second term is the
local error. For the first term, we find via a Grönwall type inequality of [16],

d
(
ϕh(u(kh)),ϕh(uk )

)
≤ ehLd

(
u(kh),uk

)
= ehLek .

Using the local error estimate for the second term, we get the recursion

ek+1 ≤ ehLek +C hp+1,

which yields

ek ≤C
ekhL −1

ehL −1
hp+1 ≤ C

L
(ekhL −1)hp .

Remark: Following Theorem 1.4 in [16], the condition that F is complete
can be relaxed if ϕt (u0) and {uk }k∈N lie in a relatively compact submanifold N
of M containing all the geodesics from uk to ϕkh(u0). This is the case if, for
instance, H has compact, geodesically convex sublevel sets, since both ϕt (u0)
and {uk }k∈N are restricted to the level set MH(u0) = {p ∈ M |H(p) = H(u0)} and
hence lie in the sublevel set NH(u0) = {p ∈ M |H(p) ≤ H(u0)}.
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3.5 Examples and numerical results

To demonstrate how to construct schemes of the type presented, we consider
first an example on the two-sphere. The AVF DRG and Midpoint DRG schemes
presented in this example could also be obtained by the discrete differential
methods on homogeneous manifolds presented in [5]. The novel schemes here
are the Itoh–Abe DRG scheme and its symmetrized variant, and the higher
order methods obtained by composition or collocation techniques. Then, to
demonstrate the usefulness of our methods for problems on more challeng-
ing manifolds, we consider first the motion of a particle under gravity on a
paraboloid, and then a conservative system on the Stiefel manifold.

3.5.1 Example 1: Perturbed spinning top

We consider a nonlinear perturbation of a spinning top, see [22]. This is a body
whose orientation is represented by a vector s of unit length in R3, so that s

lies on the manifold M = S2 =
{

s ∈R3 : ‖s‖ = 1
}
. Here and in what follows, ‖·‖

denotes the 2-norm. The ODE system can be written in the form

ds

dt
=Ω(s)gradH(s), s ∈ S2, H ∈F

(
S2

)
, (3.21)

where Ω(s)y = s × y . Given the inertia tensor I= diag(I1, I2, I3), and denoting by
s2 the component-wise square of s, we consider the Hamiltonian

H(s) = 1

2
(I−1s)T(s + 2

3
s2).

Geometric integrators for spin systems are discussed widely in the literature, see
e.g. [9, 20–22] and references therein. The two-sphere has a simple geometry
which makes it attractive for illustrating our new schemes while at the same
time being different from Euclidean space, where the standard discrete gradient
schemes can be used.

The Riemannian metric g on S2 restricts to the so-called round metric,
coinciding with the Euclidean inner product on the tangent plane of the sphere.
Our choice of retraction φ is as in [5], given by its restriction to p,

φp (x) = p +x∥∥p +x
∥∥ , (3.22)

with the inverse
φ−1

p (u) = u

pTu
−p
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defined when pTu > 0. We note that pTx = 0 for all x ∈ Tp S2. The derivative
of the retraction and its inverse are given by

Dxφp = 1∥∥p +x
∥∥

I − (p +x)⊗ (p +x)∥∥p +x
∥∥2

 ,

Duφ−1
p = 1

pTu

(
I − u ⊗p

pTu

)
,

(3.23)

where ⊗ denotes the outer product3 of the vectors.
We approximate the system (3.21) numerically, testing the scheme (3.6)-

(3.7) with different discrete Riemannian gradients: the AVF (3.8), the midpoint
(3.9), the Itoh–Abe (3.10) and its symmetrized version (3.17). For the three
symmetric methods, we have chosen c(s, s̃) = s+s̃

‖s+s̃‖ , so that φ−1
c (s̃) =−φ−1

c (s).
Using that gradH(s) = I−1(s + s2) and considering the transpose of Tγξ

φc from
(3.23), the AVF DRG becomes

gradAVFH(s, s̃) =
∫ 1

0

1

‖lξ‖

(
I − lξ⊗ lξ

‖lξ‖2

)
I−1(φc (γξ)+φc (γξ)2)dξ

=
∫ 1

0

1

‖lξ‖
(
I−1

(
φc (γξ)+φc (γξ)2

)
−φc (γξ)TI−1

(
φc (γξ)+φc (γξ)2

)
φc (γξ)

)
dξ,

with γξ = (1−ξ)φ−1
c (s)+ξφ−1

c (s̃) = (1−2ξ)φ−1
c (s) and lξ = c+γξ. Similarly, the

midpoint DRG becomes

gradMPH(s, s̃) =
I−1

(
s + s̃ + 2

3

(
s2 + ss̃ + s̃2

))
+

1
2 ‖s+s̃‖2−2
‖s̃−s‖2

(
H(s̃)−H(s)

)
(s̃ − s)

‖s + s̃‖ ,

where we have used that g (s, s) = sTs = 1 for all s ∈ S2. To obtain the basis of
Tc M for the definition of the Itoh–Abe DRG, we have used the singular-value
decomposition. For the first order scheme, noting that φ−1

s (s) = 0, we choose
c(s, s̃) = s, and get α j = φ−1

s (s̃)TE j , for j = 1,2. Then the DRG (3.10) can be
written as

gradIAH(s, s̃) =H(s′)−H(s)

φ−1
s (s̃)TE1

E1 + H(s̃)−H(s)

φ−1
s (s̃)TE2

E2, (3.24)

where s′ =φs((φ−1
s (s̃)TE1)E1).

We solve the same problem using the 4th, 6th and 8th order variants of
the collocation-like scheme (3.13)-(3.15). Choosing in the 4th order case the

3 If x and y are in R3, x ⊗ y is the matrix-matrix product of x taken as a 3×1 matrix and y
taken as a 1×3 matrix.
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Gaussian nodes c1,2 = 1
2 ∓

p
3

6 as collocation points and setting c(s, s̃) = s, we
get the nonlinear system

S1 = h φs0

1

2
TS1φ

−1
s0

(
Ω1 grad1H

)+(
1

2
−
p

3

3

)
TS2φ

−1
s0

(
Ω2 grad2H

) ,

S2 = h φs0

(
1

2
+
p

3

3

)
TS1φ

−1
s0

(
Ω1 grad1H

)+ 1

2
TS2φ

−1
s0

(
Ω2 grad2H

) ,

s1 = h φs0

(
TS1φ

−1
s0

(
Ω1 grad1H

)+TS2φ
−1
s0

(
Ω2 grad2H

))
,

where

σ(ξh) =
((

3+2
p

3
)
φ−1

s0
(S1)+

(
3−2

p
3
)
φ−1

s0
(S2)

)
ξ

+
(
3
(p

3−1
)
φ−1

s0
(S2)−3

(
1+p

3
)
φ−1

s0
(S1)

)
ξ2,

and we use the transposes of (3.23) and gradH(s) = I−1(s+s2) in the evaluation
of grad1H and grad2H . The 6th and 8th order schemes are derived in a similar
manner, using the standard Gaussian nodes.

A second order scheme is derived by composing the Itoh–Abe DRG method
with its adjoint, and a 4th order scheme is obtained by composing this method
again with itself, as well as one by composition of the symmetrized Itoh–Abe
DRG method with itself. In all stages of these composition methods, a symmet-
ric c(u, v) is used.

Plots confirming the order of all methods can be seen in Figure 3.1, where
solutions using the different schemes are compared to a reference solution
obtained using a comparatively small step size. See the left hand panel of
Figure 3.2 for numerical confirmation that our methods do indeed preserve
the energy to machine precision, while the implicit midpoint method does
not. In the right hand panel of Figure 3.2, the solution obtained by the Itoh–
Abe DRG scheme with a step size h = 1 is plotted together with a solution
obtained using the symmetrized Itoh–Abe DRG method with a much smaller
time step. We observe, as expected for a method that conserves both the energy
and the angular momentum, that the solution stays on the trajectory of the exact
solution, although not necessarily at the right place on the trajectory at any
given time.
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Figure 3.1: Error norm at t = 10 for the perturbed spinning top problem solved with
different schemes, plotted with black, dashed reference lines of order 1, 2, 4, 6 and 8.
Initial condition s = (−1,−1,1)/

p
3 and I= diag(1,2,4). Left: The AVF, midpoint (MP),

Itoh–Abe (IA) and symmetrized Itoh–Abe (SIA) DRGs and a 3-stage composition of
the IA DRG scheme (Comp-2). Right: Collocation-type schemes of order 4, 6 and 8, a
3-stage composition of the SIA DRG scheme (Comp-SIA), and a 6-stage composition
of the IA DRG scheme (Comp-4).
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Figure 3.2: Left: Energy error with increasing time for the AVF, midpoint (MP) and
Itoh–Abe (IA) DRG methods, as well as the implicit midpoint (IMP) method, with
step size h = 1, initial condition s = (−1,−1,1)/

p
3 and I= diag(1,2,4). Right: Curves

of constant energy on the sphere, found by our method with different starting values.
The black solid line is the solution using the symmetrized Itoh–Abe DRG method with
step size h = 0.01, while the red dots are the solutions obtained by the Itoh–Abe DRG
method with step size h = 1.
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3.5.2 Example 2: Particle moving under gravity on a paraboloid

We consider a particle of unit mass moving under a gravitational field on an
elliptic paraboloid given by

P =
{

q ∈R3 :
x(q)2

a2 + y(q)2

b2 −2z(q) = d

}
,

where x, y, z are the Cartesian coordinate functions, and a,b,d ∈ R+. See [29,
pp. 106-108] and [11] on discussion of such a system and the existence of
solutions. Using, as in [18], an inertial Euclidean frame to express the position
of the particle in R3, we obtain the Hamiltonian

H(q, p) = 1

2
pT p + g q3,

where p = ∂L
∂q̇ = q̇ are the momentum coordinates and g is the gravitational

constant. Thus the dynamics can be described on the cotangent bundle T ∗P =:
M by the Hamiltonian equations, for i = 1,2,3,

q̇i = ∂H

∂pi
(q, p), ṗi =−∂H

∂qi
(q, p), q ∈ P, p ∈ Tq P.

We define the retraction by its restriction to a center point c = (cP ,cT ), cP ∈
P , cT ∈ TcP P , so that φ : T M → M is given by φc (u, v) = (φP,c (u),φT,c,u(v)),
where φP,c : TcP P → P and φT,c,u : TcT TcP P → TφP,c (u)P . Our choice of φP,c (u)
is the projection onto the paraboloid P along the straight line in R3 from cP +u
to the origin. The second component φT,c (u, v) is the linear projection in R3 of
cT + v to TcP P . That is,

φP,c (u) = d

α− cP,3 −u3
(cP +u),

α=
√√√√(cP,3 +u3)2 +d

(
(cP,1 +u1)2

a2 + (cP,2 +u2)2

b2

)
,

φT,c,u(v) = cT + v − β(φP,c (u))T (cT + v)

β(φP,c (u))T β(φP,c (u))
β(φP,c (u)),

β(q) =
(

q1

a2 ,
q2

b2 ,−1

)T

.

This has the inverse φ−1
c (q, p) = (φ−1

P,c (q),φ−1
T,c,q (p)), where

φ−1
P,c (q) = cP,3 +d

β(cP )T q
q − cP , φ−1

T,c,q (p) = p − cT − β(cP )T (p − cT )

β(cP )T β(q)
β(q).

90



3.5 Examples and numerical results

10
-3

10
-2

10
-1

10
0

Step size

10
-8

10
-6

10
-4

10
-2

10
0

N
o
rm

 o
f 
e
rr

o
r

AVF

MP

IA

SIA

Comp-2

Figure 3.3: Particle moving under gravity on the paraboloid. Left: The system solved
by the symmetrized Itoh–Abe DRG method with step size h = 0.01, from t0 = 0 to
T = 20. Right: Error norm at t = 1 for the problem solved with different schemes: The
AVF, midpoint (MP), Itoh–Abe (IA) and symmetrized Itoh–Abe (SIA) DRG methods
and a 3-stage composition of the IA DRG scheme (Comp-2), plotted against black,
dashed reference lines of order 1 and 2.

We test our schemes on the problem with the paraboloid given by a = 1,
b = 2, d = 2, and starting values q = (1/2,1/2,−27/32), p = (3/2,7/2,19/16).
We compare to the solution of standard methods in R6 with a comparatively
small time step size to confirm numerically that the methods converge to the
correct solution. The numerical results show that our schemes have the expected
order, see Figure 3.3. Preservation of the Hamiltonian was also observed.

3.5.3 Example 3: Conservative system on the Stiefel manifold

Lastly we consider an ODE

Ẏ = S(Y )gradH(Y ), Y ∈Vp (Rn), H ∈F
(
Vp (Rn)

)
, (3.25)

on the Stiefel manifold M = Vp (Rn) =
{

Y ∈Rn×p : Y T Y = Ip

}
, i.e. the set of

all n ×p matrices whose p columns are orthonormal. The solution of (3.25)
stays on the Stiefel manifold at all times if

d

dt
(Y T Y ) = Y T Ẏ + Ẏ T Y = Y T S(Y )gradH(Y )+gradH(Y )T S(Y )T Y

= 0,
(3.26)

i.e. if Y T S(Y )gradH(Y ) is a skew-symmetric p ×p matrix. We shall consider
a problem on Vp (Rn) with first integral

H(Y (t )) = H(Y (t0)), H(Y ) = tr(Y T Y 2), (3.27)

91



Energy preserving methods on Riemannian manifolds

0 2 4 6 8 10

Time

10
-15

10
-10

10
-5

E
n
e
rg

y
 e

rr
o
r

MP DRGM

MP DGM

IMP

0 2 4 6 8 10

Time

10
-20

10
-15

10
-10

10
-5

D
e
v
ia

ti
o
n
 f
ro

m
 S

ti
e
fe

l 
m

a
n
if
o
ld

MP DRGM

MP DGM

IMP

Figure 3.4: Relative energy error (left) and deviation from Vp (Rn) (right) with increas-
ing time for the midpoint discrete Riemannian gradient method (MP DRGM), as well
as the standard midpoint discrete gradient method (MP DGM) and the implicit mid-
point (IMP) method, with step size h = 0.1, n = 5 and p = 2. The relative energy error
in step k is measured by |(H(Yk )−H(Y0))/H(Y0)|, while the deviation from the Stiefel
manifold is measured by ‖Ip −Y T

k Yk‖F , where ‖·‖F denotes the Frobenius norm.

where Y 2 means the component-wise square of Y . In (3.25), H is a first integral
whenever S(Y ) ∈ Rn×n fulfills (3.26) as well as being skew-symmetric with
respect to the Riemannian metric g ,

gY (U ,V ) = tr(U T (In − 1

2
Y Y T )V ), U ,V ∈ TY M ,

named the canonical metric by Edelman et al. in [8]. The Riemannian
gradient of H follows from this; it is the tangent vector gradH satisfying
gY (gradH ,V ) = tr(∇H(Y )T V ) for all V ∈ TY M , where ∇H(Y ) denotes the
Euclidean gradient. That is, as stated in [8],

gradH(Y ) =∇H(Y )−Y ∇H(Y )T Y .

The intrinsic Riemannian structures provide the components needed in a DRG
scheme. We choose the Riemannian exponential as retraction. That is, φC (V )
is given by going the distance 1 along the geodesic path emanating from the
base point C ∈ M in the direction V ∈ TC M . Similarly, the inverse retraction
is given by the Riemannian logarithm, and the base point C (Y , Ỹ ) is given by
the geodesic midpoint between Y and Ỹ . To calculate the geodesic and the
Riemannian exponential, we use the method introduced by Edelman et al. in [8,
Corollary 2.2]. For the logarithm, we use the algorithm of Zimmermann [30].

Any numerical method preserving quadratic invariants, like symplectic
Runge–Kutta methods, will find solutions on Vp (Rn). However, such a method
will in general not preserve the cubic invariant (3.27). A standard discrete gra-
dient method can be implemented to preserve either (3.26) or (3.27), but not
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both. For our numerical experiments, we have considered (3.25) with n = 5
and p = 2, and S(Y ) chosen so that H(Y ) is conserved. As demonstrated in
Figure 3.4, a DRG method can be used to get solutions that stay on the Stiefel
manifold while preserving the first integral.

3.6 Conclusions and further work

We have presented a general framework for constructing energy preserving nu-
merical integrators on Riemannian manifolds. The main tool is to generalize
the notion of discrete gradients as known from the literature. The new methods
make use of an approximation to the Riemannian gradient coined the discrete
Riemannian gradient, as well as a retraction map and a coordinate center func-
tion.

Particular examples of discrete Riemannian gradient methods are given
as generalizations of well-known schemes, such as the average vector field
method, the midpoint discrete gradient method and the Itoh–Abe method. Ex-
tensions to higher order are proposed via a collocation-like method. We have
analysed the local and global error behaviour of the methods, and they have
been implemented and tested for problems on the two-sphere, the paraboloid
and the Stiefel manifold.

Possible directions for future research include a more detailed study of the
stability and propagation of errors, taking into account particular features of
the Riemannian manifold; for instance, it may be expected that the sectional
curvature will play an important role. We believe, inspired by [3], that there is
a potential for making our implementations more efficient by tailoring them to
the particular manifold, as well as the ODE problem considered.
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Dissipative numerical schemes on Riemannian
manifolds with applications to gradient flows

Abstract. This paper concerns an extension of discrete gradient methods to
finite-dimensional Riemannian manifolds termed discrete Riemannian gradi-
ents, and their application to dissipative ordinary differential equations. This
includes Riemannian gradient flow systems which occur naturally in optimiza-
tion problems. The Itoh–Abe discrete gradient is formulated and applied to
gradient systems, yielding a derivative-free optimization algorithm. The algo-
rithm is tested on two eigenvalue problems and two problems from manifold
valued imaging: InSAR denoising and DTI denoising.

4.1 Introduction

When designing and applying numerical schemes for solving systems of ODEs
and PDEs there are several important properties which serve to distinguish
schemes, one of which is the preservation of geometric features of the original
system. The field of geometric integration encompasses many types of numeri-
cal schemes for ODEs and PDEs specifically designed to preserve one or more
such geometric features; a non-exhaustive list of features includes symmetry,
symplecticity, first integrals (or energy), orthogonality, and manifold structures
such as Lie group structure [14]. Energy conserving methods have a successful
history in the field of numerical integration of ODEs and PDEs. In a simi-
lar vein, numerical schemes with guaranteed dissipation are useful for solving
dissipative equations such as gradient systems.

As seen in [17], any Runge–Kutta method can be dissipative when applied
to gradient systems as long as step sizes are chosen small enough; less severe
but still restrictive conditions for dissipation in Runge–Kutta methods are pre-
sented in [13]. In [10], Gonzalez introduces the notion of discrete gradient
schemes with energy preserving properties, later expanded upon to include dis-
sipative systems in [21]. These articles consider ODEs in Euclidian spaces only
with the exception of [13] where the authors also consider Runge–Kutta meth-
ods on manifolds defined by constraints. Unlike the Runge–Kutta methods,
discrete gradient methods are dissipative for all step sizes, meaning one can em-
ploy adaptive time steps while retaining convergence toward fixed points [25].
However, one may experience a practical step size restriction when applying
discrete gradient methods to very stiff problems, due to the lack of L-stability
as seen when applying the Gonzalez and mean value discrete gradients to prob-
lems with quadratic potentials [13] [15]. Motivated by their work on Lie group
methods, the energy conserving discrete gradient method was generalized to
ODEs on manifolds, and Lie groups particularly, in [7] where the authors in-

99



Dissipative numerical schemes on Riemannian manifolds

troduce the concept of discrete differentials. In [5], this concept is specialized
in the setting of Riemannian manifolds. To the best of our knowledge, the
discrete gradient methods have not yet been formulated for dissipative ODEs
on manifolds. Doing so is the central purpose of this article.

One of the main reasons for generalizing discrete gradient methods to dis-
sipative systems on manifolds is that gradient systems are dissipative, and
gradient flows are natural tools for optimization problems which arise in e.g.
manifold-valued image processing and eigenvalue problems. The goal is then to
find one or more stationary points of the gradient flow of a functional V : M →R,
which correspond to critical points of V . This approach is, among other opti-
mization methods, presented in [1]. Since gradient systems occur naturally on
Riemannian manifolds, it is natural to develop our schemes in a Riemannian
manifold setting.

A similarity between the optimization algorithms in [1] and the manifold
valued discrete gradient methods in [7] is their use of retraction mappings. Re-
traction mappings were introduced for numerical methods in [26], see also [2];
they are intended as computationally efficient alternatives to parallel transport
on manifolds. Our methods will be formulated as a framework using general
discrete gradients on general Riemannian manifolds with general retractions.
We will consider a number of specific examples that illustrate how to apply the
procedure in practical problems.

As detailed in [11] and [22], using the Itoh–Abe discrete gradient [18], one
can obtain an optimization scheme for n-dimensional problems with a limited
degree of implicitness. At every iteration, one needs to solve n decoupled
scalar nonlinear subequations, amounting to O(n) operations per step. In other
discrete gradient schemes a system of n coupled nonlinear equations must
be solved per iteration, amounting to O(n2) operations per step. The Itoh–
Abe discrete gradient method therefore appears to be well suited to large-scale
problems such as image analysis problems, and so it seems natural to apply
our new methods to image analysis problems on manifolds, see Section 4.4.2.
In [7], the authors generalize the average vector field [16] and midpoint [10]
discrete gradients, but not the Itoh–Abe discrete gradient, to Lie groups and
homogeneous manifolds. A novelty of this article is the formulation of the
Itoh–Abe discrete gradient for problems on manifolds.

As examples we will consider two eigenvalue finding problems, in addition
to the more involved problems of denoising InSAR and DTI images using total
variation (TV) regularization [30]. The latter two problems we consider as
real applications of the algorithm. The two eigenvalue problems are included
mostly for the exposition and illustration of our methods, as well as for testing
convergence properties.

The paper is organized as follows: Below, we introduce notation and fix
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some fundamental definitions used later on. In the next section, we formulate
the dissipative problems we wish to solve. In section 3, we present the discrete
Riemannian gradient (DRG) methods, a convergence proof for the family of
optimization methods obtained by applying DRG methods to Riemannian gra-
dient flow problems, the Itoh–Abe discrete gradient generalized to manifolds,
and the optimization algorithm obtained by applying the Itoh–Abe DRG to
the gradient flow problem. In section 4, we provide numerical experiments to
illustrate the use of DRGs in optimization, and in the final section we present
conclusions and avenues for future work.

Notation and preliminaries

Some notation and definitions used in the following are summarized below. For
a more thorough introduction to the concepts, see e.g. [19] or [20].

Table 4.1: Notational conventions

Notation Description
M n-dimensional Riemannian manifold

Tp M tangent space at p ∈ M with zero vector 0p

T ∗
p M cotangent space at p ∈ M

T M tangent bundle of M
T ∗M cotangent bundle of M
X(M) space of vector fields on M
g (·, ·) Riemannian metric on M
‖ ·‖p Norm induced on Tp M by g

{El }n
l=1 g -orthogonal basis of Tp M

On any differentiable manifold there is a duality pairing 〈·, ·〉 : T ∗M×T M →
R which we will denote as 〈ω, v〉 =ω(v). Furthermore, the Riemannian metric
sets up an isomorphism between T M and T ∗M via the linear map v 7→ g (v, ·).
This map and its inverse, termed the musical isomorphisms, are known as the
flat map [ : T M → T ∗M and sharp map ] : T ∗M → T M , respectively. The
applications of these maps are also termed index raising and lowering when
considering the tensorial representation of the Riemannian metric. Note that
with the above notation we have the idiom x[(y) =

〈
x[, y

〉
= g (x, y).

On a Riemannian manifold, one can define gradients: For V ∈C∞(M), the
(Riemannian) gradient with respect to g , gradg V ∈X(M), is the unique vector
field such that g (gradg V , X ) = 〈

dV , X
〉

for all X ∈ X(M). In the language of
musical isomorphisms, gradg V = (dV )]. For the remainder of this article, we
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will write gradV for the gradient and assume that it is clear from the context
which g is to be used.

Furthermore, the geodesic between p and q is the unique curve of mini-
mal length between p and q , providing a distance function dM : M ×M → R.
The geodesic γ passing through p with tangent v is given by the Riemannian
exponential at p, γ(t ) = expp (t v). For any p, expp is a diffeomorphism on
a neighbourhood Np of 0p , The image expp (Sp ) of any star-shaped subset
Sp ⊂ Np is called a normal neighbourhood of p, and on this, expp is a radial
isometry, i.e. dM (p,expp (v)) = ‖v‖p for all v ∈ Sp .

4.2 The problem

We will consider ordinary differential equations (ODEs) of the form

u̇ = F (u), u(0) = u0 ∈ M , (4.1)

where F ∈X(M) has an associated energy V : M →R dissipating along solutions
of (4.1). That is, with u(t ) a solution of (4.1):

d

dt
V (u) = 〈

dV (u), u̇
〉= 〈

dV (u),F (u)
〉= g (gradV (u),F (u)) ≤ 0.

An example of such an ODE is the gradient flow. Given an energy V , the
gradient flow of V with respect to a Riemannian metric g is

u̇ =−gradV (u), (4.2)

which is dissipative since if u(t ) solves (4.2), we have

d

dt
V (u) =−g

(
gradV (u),gradV (u)

)≤ 0.

Remark: This setting can be generalized by an approach similar to [21]. Sup-
pose there exists a (0,2) tensor field h on M such that h(x, x) ≤ 0. We can
associate to h the (1,1) tensor field H : T M → T M given by H x = h(x, ·)].
Consider the system

u̇ = HgradV (u). (4.3)

This system dissipates V , since

d

dt
V (u) = 〈

dV (u), HgradV (u)
〉

= g
(
gradV (u), HgradV (u)

)
= h

(
gradV (u),gradV (u)

)≤ 0.
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Any dissipative system of the form (4.1) can be written in this form on the set
M\{p ∈ M : g (F (p),gradV (p)) = 0} since, given F and V , we can construct h
as follows:

h = 1

g (F,gradV )
F [⊗F [.

If F =−gradV , we take h =−g such that H becomes −Id, and recover (4.2). In
the following, we mainly discuss the case F =−gradV for the sake of notational
clarity.

4.3 Numerical scheme

The discrete differentials in [7] are formulated such that they may be used
on non-Riemannian manifolds. Since we restrict ourselves to Riemannian
manifolds, we define their analogues: discrete Riemannian gradients. As with
the discrete differentials, we shall make use of retractions as defined in [26].

Definition 4.1. Let φ : T M → M and denote by φp the restriction of φ to Tp M .
Then, φ is a retraction if the following conditions are satisfied:

• φp is smooth and defined in an open ball Brp (0p ) of radius rp around 0p ,
the zero vector in Tp M .

• φp (v) = p if and only if v = 0p .

• Identifying T0p Tp M ' Tp M , φp satisfies

dφp
∣∣
0p

= idTp M ,

where idTp M denotes the identity mapping on Tp M .

From the inverse function theorem it follows that for any p, there exists a
neighbourhood Up,φ ∈ Tp M of 0p , such that φp : Up,φ →φp (Up,φ) is a diffeo-
morphism. In general, φp is not a diffeomorphism on the entirety of Tp M and
so all the following schemes must be considered local in nature. The canonical
retraction on a Riemannian manifold is the Riemannian exponential. It may be
computationally expensive to evaluate even if closed expressions for geodesics
are known, and so one often wishes to come up with less costly retractions if
possible. We are now ready to introduce the notion of discrete Riemannian
gradients.

Definition 4.2. Given a retraction φ, a function c : M×M → M where c(p, p) =
p for all p ∈ M and a continuous V : M → R, then gradV : M ×M → T M is a
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discrete Riemannian gradient of V if it is continuous and, for all p, q ∈Uc(p,q),φ,

V (q)−V (p) = g
(
gradV (p, q),φ−1

c(p,q)(q)−φ−1
c(p,q)(p)

)
(4.4)

gradV (p, p) = gradV |p . (4.5)

We formulate a numerical scheme for equation (4.2) based on this definition.
Given times 0 = t0 < t1 < ..., let uk denote the approximation to u(tk ) and let
τk = tk+1 − tk . Then, we take

uk+1 =φck

(
W (uk ,uk+1)

)
(4.6)

W (uk ,uk+1) =φ−1
ck (uk )−τk gradV (uk ,uk+1) (4.7)

where ck = c(uk ,uk+1) and In the above and all of the following, we assume
that uk and uk+1 lie in Uck ,φ∩Sck . The following proposition verifies that the
scheme is dissipative.

Proposition 4.1. The sequence {uk }k∈N generated by the DRG scheme (4.6)-
(4.7) satisfies V (uk+1)−V (uk ) ≤ 0 for all k ∈N.

Proof. Using property (4.4) and equations (4.6) and (4.7), we get

V (uk+1)−V (uk ) = g
(
gradV (uk ,uk+1),φ−1

ck (uk+1)−φ−1
ck (uk )

)
= g

(
gradV (uk ,uk+1),W (uk ,uk+1)−φ−1

ck (uk )
)

=−τk g
(
gradV (uk ,uk+1),gradV (uk ,uk+1)

)
≤ 0

Remark: This extends naturally to schemes for (4.3) by exchanging (4.7)
for

W (uk ,uk+1) =φ−1
ck (uk )+τk H (uk ,uk+1) gradV (uk ,uk+1),

where H (p,q) is the (1,1) tensor associated with a negative semi-definite (0,2)
tensor field h(p,q) : Tc(p,q)M ×Tc(p,q)M →R approximating h|p consistently.

Two DRGs, the AVF DRG and the Gonzalez DRG, can be easily found by
index raising the discrete differentials defined in [7]. We will later generalize
the Itoh–Abe discrete gradient, but first we present a proof that the DRG scheme
converges to a stationary point when used as an optimization algorithm. We
will need the following definition of coercivity:

Definition 4.3. A function V : M → R is coercive if, for all v ∈ M , every se-
quence {uk }k∈N ⊂ M such that lim

k→∞
dM (uk , v) =∞ also satisfies lim

k→∞
V (uk ) =

∞.
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We will also need the following theorem from [28], concerning the bound-
edness of the sublevel sets Mµ = {u ∈ M : V (u) ≤µ} of V :

Theorem 4.1. Assume M is unbounded. Then the sublevel sets of V : M → R

are bounded if and only if V is coercive.

Proof. See [28], Theorem 8.6, Chapter 1 and the remarks below it.

Equipped with this, we present the following theorem, the proof of which
is inspired by that of the convergence theorem in [11].

Theorem 4.2. Assume that M is geodesically complete, that V : M → R is
coercive, bounded from below and continuously differentiable, and that gradV
is continuous. Then, the iterates {uk }k∈N produced by applying the discrete
Riemannian gradient scheme (4.6)-(4.7) with time steps 0 < τmi n ≤ τk ≤ τmax

and ck = uk or ck = uk+1, to the gradient flow of V satisfy

lim
k→∞

gradV (uk ,uk+1) = lim
k→∞

gradV (uk ) = 0.

Additionally, there exists at least one accumulation point u∗ of {uk }k∈N, and
any such accumulation point satisfies gradV (u∗) = 0.

Proof. Since V is bounded from below and by Proposition 4.1, we have

C ≤V (uk+1) ≤V (uk ) ≤ ... ≤V (u0)

such that, by the monotone convergence theorem, V ∗ := limk→∞V (uk ) exists.
Furthermore, by property (4.4) and using the scheme (4.6)-(4.7):

1

τk

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
= τk

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck

= g
(
gradV (uk ,uk+1),φ−1

ck (uk )−φ−1
ck (uk+1)

)
=V (uk )−V (uk+1).

From this, it is clear that for any i , j ∈N,

j−1∑
k=i

τk

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck
=V (ui )−V (u j ) ≤V (u0)−V ∗

and

j−1∑
k=i

1

τk

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
=V (ui )−V (u j ) ≤V (u0)−V ∗.
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In particular,

∞∑
k=0

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck
≤ V (u0)−V ∗

τmi n
,

and
∞∑

k=0

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
≤ τmax

(
V (u0)−V ∗

)
,

meaning

lim
k→∞

∥∥∥gradV (uk ,uk+1)
∥∥∥

ck
= 0,

lim
k→∞

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥

ck
= 0.

Since uk+1 is in a normal neighbourhood of ck ,

dM (ck ,uk+1) = dM (ck ,expck (exp−1
ck (uk+1))) = ‖exp−1

ck (uk+1)‖ck . (4.8)

Introduce ψck : Tck M → Tck M by ψck = exp−1
ck ◦φck . Since both exp and φ are

retractions,

ψck (0ck ) = 0ck ,

Dψck |0ck = idTck M .

Thus, per definition of Fréchet derivatives,

ψck (x)−ψck (0ck )−Dψck |0ck x =ψck (x)−x = o(x),

in particular: choosing x =φ−1
ck (uk+1) we get

exp−1
ck (uk+1)−φ−1

ck (uk+1) = o(‖φ−1
ck (uk+1)‖ck ),

meaning

‖exp−1
ck (uk+1)‖ck ≤ ‖φ−1

ck (uk+1)‖ck +o(‖φ−1
ck (uk+1)‖ck ). (4.9)

Taking ck = uk and combining (4.8) and (4.9) we find

d(uk ,uk+1) = ‖exp−1
ck (uk+1)‖ck ≤ ‖φ−1

ck (uk+1)‖ck +o(‖φ−1
ck (uk+1)‖ck ).

Hence, since
∥∥∥φ−1

ck (uk )−φ−1
ck (uk+1)

∥∥∥
ck

=
∥∥∥φ−1

ck (uk+1)
∥∥∥

ck
when ck = uk ,

lim
k→∞

d(uk ,uk+1) ≤ lim
k→∞

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥

ck
= 0. (4.10)
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Note that we can exchange the roles of uk and uk+1 and obtain the same result.
Since V is bounded from below, the sublevel sets Mµ of V are the preim-

ages of the closed subsets [C ,µ] and are hence closed as well. Since V is
assumed to be coercive, by Theorem 4.1 the Mµ are bounded, and so since M
is geodesically complete, by the Hopf-Rinow theorem the Mµ are compact [28].
In particular, MV (u0) is compact such that gradV is uniformly continuous on
MV (u0) ×MV (u0) by the Heine-Cantor theorem. This means that for any ε> 0
there exists δ > 0 such that if dM×M ((uk ,uk+1), (uk ,uk )) = dM (uk ,uk+1) < δ,
then∥∥∥gradV (uk,uk+1)−gradV (uk )

∥∥∥
ck

=
∥∥∥gradV (uk,uk+1)−gradV (uk,uk )

∥∥∥
ck

< ε.

Since dM (uk ,uk+1) → 0, given ε> 0 there exists K such that for all k > K ,∥∥∥gradV (uk )
∥∥∥

ck
≤

∥∥∥gradV (uk,uk+1)−gradV (uk )
∥∥∥

ck
+

∥∥∥gradV (uk,uk+1)
∥∥∥

ck
≤2ε.

This means

lim
k→∞

gradV (uk ) = 0.

Since MV (u0) is compact, there exists a convergent subsequence {ukl } with limit
u∗. Since V is continuously differentiable,

gradV (u∗) = lim
l→∞

gradV (ukl ) = 0.

Remark: In the above proof, we assumed ck = uk or ck = uk+1. Although
these choices may be desirable for practical purposes, as discussed in the next
subsection, one can also make a more general choice. Specifically, if φ= exp
and ck , let γk (t ) be the geodesic between uk and uk+1 such that

γk (t ) = expuk (t vk )

where vk = exp−1
uk (uk+1). Then, taking ck = γk (s) for some s ∈ [0,1], unique-

ness of geodesics implies that

expck (t γ̇k (s)) = expuk ((t + s)vk ).

Hence,

exp−1
ck (uk ) =−sγ̇k (s), exp−1

ck (uk+1) = (1− s)γ̇k (s),

and so, since geodesics are constant speed curves:

d(uk ,uk+1) = ‖v‖uk = ‖γ̇k (s)‖ck = ‖exp−1
ck (uk )−exp−1

ck (uk+1)‖ck .

This means that (4.10) holds in this case. No other arguments in Theorem 4.2
are affected.
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4.3.1 Itoh–Abe discrete Riemannian gradient

The Itoh–Abe discrete gradient [18] can be generalized to Riemannian mani-
folds.

Proposition 4.2. Given a continuously differentiable energy V : M →R and an
orthogonal basis {E j }n

j=1 for Tc(u,v)M such that

φ−1
c (v)−φ−1

c (u) =
n∑

i=1
αi Ei ,

define gradIAV : M ×M → Tc(u,v)M by

gradIAV (u, v) =
n∑

j=1
a j E j ,

where

a j =


V (w j )−V (w j−1)

α j
, α j 6= 0

g (gradV (w j−1),dφc
∣∣
η j−1

E j ), α j = 0.

w j =φc (η j ), η j =φ−1
c (u)+

j∑
i=1

αi Ei .

Then, gradIAV is a discrete Riemannian gradient.

Proof. Continuity of gradIAV can be seen from the smoothness of the local
coordinate frame {E j }n

j=1 and from the continuity of the a j (α j ):

lim
α j→0

a j (α j ) = lim
α j→0

V

(
φc

(
η j−1 +α j E j

))
−V

(
φc

(
η j−1

))
α j

= d

dα j

∣∣∣∣
α j=0

V

(
φc

(
η j−1 +α j E j

))

=
〈

dV

(
φc

(
η j−1

))
,dφc

∣∣
η j−1

E j

〉
= g (gradV (w j−1),dφc

∣∣
η j−1

E j ).
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Property (4.4) holds since

g
(
gradIAV (u, v),φ−1

c (v)−φ−1
c (u)

)
=

n∑
i=1

n∑
j=1

αi a j g (Ei ,E j )

=
n∑

j=1
V (w j )−V (w j−1)

=V (wn)−V (w0)

=V (v)−V (u).

Furthermore, (4.5) holds since when v = u, all α j = 0 and c(u, v) = u so that

gradIAV (u,u) =
n∑

j=1
g (gradV (u),E j )E j = gradV (u).

The map gradIAV is called the Itoh–Abe discrete Riemannian gradient. For
the Itoh–Abe DRG to be a computationally viable option it is important to
compute the αi efficiently. Consider for instance the gradient flow system.
Applying the Itoh–Abe DRG to this we get the scheme

uk+1 =φck

(
W (uk ,uk+1)

)
,

W (uk ,uk+1) =φ−1
ck (uk )−τk gradIAV (uk ,uk+1),

meaning

φ−1
ck (uk+1)−φ−1

ck (uk ) =−τk gradIAV (uk ,uk+1),

and in coordinates
n∑

i=1
αi Ei =−τk

n∑
j=1

V (w j )−V (w j−1)

α j
E j ,

so that the αi are found by solving the n coupled equations

αi =−τk
V (wi )−V (wi−1)

αi
.

Note that these equations in general are fully implicit in the sense that they
require knowledge of the endpoint uk+1 since the wi are dependent on ck .
However, if we take ck = uk , there is no dependency on the endpoint and all
the above equations become scalar, although one must solve them successively.
For this choice of ck we present, as Algorithm 4.1, a procedure for solving the
gradient flow problem on a Riemannian manifold with Riemannian metric g
using the Itoh–Abe DRG.
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Algorithm 4.1 (DRG-OPTIM).
Choose tol > 0 and u0 ∈ M . Set k = 0.
repeat

Choose τk and an orthogonal basis {E k
i }n

i=1 for Tuk M

vk
0 = uk

wk
0 =φ−1

uk (vk
0 )

for j = 1, ...,n do

Solve αk
j =−τk

(
V

(
φuk (wk

j−1 +αk
j E k

j )
)
−V

(
vk

j−1

))
/αk

j

wk
j = wk

j−1 +αk
j E k

j

vk
j =φuk (wk

j )

uk+1 = vk
n

k = k +1
until

(
V (uk )−V (uk−1)

)
/V (u0) < tol

There is a caveat to this algorithm in that the αk
j should be easy to compute.

For example, it is important that the E j and φ are chosen such that the difference
V (φuk (wk

j−1 +αk
j E k

j ))−V (vk
j−1) is cheap to evaluate. In many cases, M has a

natural interpretation as a submanifold of Euclidean space defined locally by
constraints g : Rm → Rn , M = {y ∈ U ⊂ Rm : g (y) = 0}. Then, one may find
{E j }n

j=1 as an orthogonal basis for ker g ′(c) and define φc implicitly by taking
q =φc (v) such that q − (c + v) ∈ (Tc M)⊥ and g (q) = 0, as detailed in [6]. This
requires the solution of a nonlinear system of equations for every coordinate
update, which is computationally demanding compared to evaluating explicit
expressions for {E j }n

j=1 and φc as is possible in special cases, such as those

considered in Section 4.4. To compute the αk
j at each coordinate step one

can use any suitable root finder, yet to stay in line with the derivative-free
nature of Algorithm 4.1, one may wish to use a solver like the Brent–Dekker
algorithm [3]. Also worth noting is that the parallelization procedure used
in [22] works for Algorithm 4.1 as well.

4.4 Numerical experiments

This section concerns four applications of DRG methods to gradient flow sys-
tems. In each case, we specify all details needed to implement Algorithm 4.1
the manifold M , retraction φ, and basis vectors {Ek }. The first two examples
are eigenvalue problems, included to illuminate implementational issues with
examples in a familiar setting. We do not claim that our algorithm is compet-
itive with other eigenvalue solvers, but include these examples for the sake of
exposition and to have problems with readily available reference solutions. The
first of these is a simple Rayleigh quotient minimization problem, where issues
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of computational efficiency are raised. The second one concerns the Brockett
flow on SO(m), the space of orthogonal m ×m matrices with unit determinant,
and serves as an example of optimization on a Lie group. The remaining two
problems are examples of manifold-valued image analysis problems concern-
ing Interferometric Synthetic Aperture Radar (InSAR) imaging and Diffusion
Tensor Imaging (DTI), respectively. Specifically, the problems concern total
variation denoising of images obtained through these techniques [30]. The
experiments do not consider the quality of the solution paths, i.e. numerical
accuracy. For experiments of this kind, we refer to [5].

All programs used in the following were implemented as MATLAB func-
tions, with critical functions implemented in C using the MATLAB EXecutable
(MEX) interface when necessary. The code was executed using MATLAB
(2017a release) running on a Mid 2014 MacBook Pro with a four-core 2.5 GHz
Intel Core i7 processor and 16 GB of 1600 MHz DDR3 RAM. We used a C
language port of the built-in MATLAB function fzero for the Brent-Dekker
algorithm implementation.

4.4.1 Eigenvalue problems

As an expository example, our first problem consists of finding the small-
est eigenvalue/vector pair of a symmetric m ×m matrix A by minimizing its
Rayleigh quotient. We shall solve this problem using both the extrinsic and
intrinsic view of the (m −1)-sphere. In the second example we consider the
different approach to the eigenvalue problem proposed by Brockett in [4]. Here,
the gradient flow on SO(m) produces a diagonalizing matrix for a given sym-
metric matrix.

Eigenvalues via Rayleigh quotient minimization

In our first example, we wish to compute the smallest eigenvalue of a symmetric
matrix A ∈Rm×m by minimizing the Rayleigh quotient

V (u) = uT Au

with u on the (m −1)-sphere Sm−1.
Taking the extrinsic view, we regard Sm−1 as a submanifold in Rm ,

equipped with the standard Euclidian metric g (x, y) = xT y . In this representa-
tion, TuSm−1 is the hyperplane tangent to u, i.e. TuSm−1 = {x ∈Rm : xT u = 0}.
A natural choice of retraction is

φp (x) = p +x

‖p +x‖ .
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There is a difficulty with this φ; it does not preserve sparsity, meaning Algo-
rithm 4.1 will be inefficient as discussed above. To see this, consider that at
each time step, to find the αk

j , we must compute the difference

V (zk
j )−V (zk

j−1) = (zk
j )T Azk

j − (zk
j−1)T Azk

j−1

for some zk
j−1, zk

j ∈ Sm−1. We can compute this efficiently if zk
j = zk

j−1 +δ,
where δ is sparse. Then,

V (zk
j )−V (zk

j−1) = 2(zk
j−1)T Aδ+δT Aδ,

which is efficient since one may assume Azk
j−1 to be precomputed so that the

computational cost is limited by the sparsity of δ. In our case, we have

zk
j−1 =φc (wk

j−1), zk
j =φc (wk

j−1 +αk
j E j ).

However, with φc as above, δ=φc (wk
j−1+αk

j E j )−φc (wk
j−1) is non-sparse, and

so computing the energy difference is costly.
Next, let us consider the intrinsic view of Sm−1, representing it in spherical

coordinates θ ∈Rm−1 by

u1(θ) = cos(θ1),

ur (θ) = cos(θr )
r−1∏
i=1

sin(θi ), 1 < r < m,

um(θ) =
m−1∏
i=1

sin(θi ).

Due to the simple structure of Rm−1, we take φθ(η) = θ+η. Then, we have

ur (φθ(αEl )) = ur (θ+αEl ) =


ur (θ), r < l
cos(θl +α)

cos(θl )
ur (θ), r = l

sin(θl +α)

sin(θl )
ur (θ), r > l .

Using this relation, the energy difference after a coordinate update becomes:

V (u(θ+αEl ))−V (u(θ)) =2κ1l

l−1∑
i=1

ui (θ)ul (θ)Ai l +2κ2l

l−1∑
i=1

m∑
j=l+1

ui (θ)u j (θ)Ai j

+2κ3l

m∑
j=l+1

ul (θ)u j (θ)Al j

+κ4l

m∑
i=l+1

m∑
j=l+1

ui (θ)u j (θ)Ai j +κ5l ul (θ)ul (θ)Al l ,
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with

κ1l = cl −1, κ2l = sl −1, κ3l = sl cl −1, κ4l = s2
l −1, κ5l = c2

l −1,

where

cl =
cos(θl +α)

cos(θl )
, sl =

sin(θl +α)

sin(θl )
.

With prior knowledge of V (u(θ)) (and thus the four partial sums in the differ-
ence), evaluating V (u(θ+αEl ))−V (u(θ)) amounts to five scalar multiplications
and four scalar additions after evaluating the κl

i . With correct bookkeeping, new
sums can be evaluated from previous sums after coordinate updates, reducing
the computational complexity of the algorithm. Although not producing an algo-
rithm competitive with standard eigenvalue solvers, this example demonstrates
that the correct choice of coordinates is vital to reducing the computational
complexity of the Itoh–Abe DRG method.

Eigenvalues via Brockett flow

Among other things, the article of Brockett [4] discusses how one may find the
eigenvalues of a symmetric matrix A by solving the following gradient flow
problem on M = SO(m):

Q̇ =−Q(DQT AQ −QT AQD) (4.11)

Here, D is a real diagonal matrix with non-repeated entries. It can be shown
that limt→∞Q =Q∗, where (Q∗)T AQ∗ =Λ is diagonal and hence contains the
eigenvalues of A, ordered as the entries of D. Equation (4.11) is the gradient
flow of the energy

V (Q) = tr(AQT DQ) (4.12)

with respect to the trace metric on SO(m). One can check that SO(m) is a Lie
group [29], with Lie algebra

so(m) = {B ∈Rm×m : B T =−B}.

Also, since SO(m) is a matrix Lie group, the exponential coincides with the
matrix exponential. However, we may consider using some other function as a
retraction, such as the Cayley transform φ : so(m) → SO(m) given by

φ(B) = (I −B)−1(I +B).

Figure 4.1 shows the results of numerical tests with constant time step τk =
0.1 and m = 20. In the left hand panel, the evolution of the diagonal values of
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Figure 4.1: Brockett flow with τk = 0.1 and 20 eigenvalues. Random initial matrix.
Left: Evolution of eigenvalues. Right: Optimality error (V (uk )−V ∗)/(V (u0)−V ∗).

Qk AQk compared to the spectrum of A is shown; it is apparent that the diagonal
values converge to the eigenvalues. The right hand panel shows the convergence
rate of Algorithm 4.1 to the minimal value V ∗ as computed with eigenvalues
and eigenvectors from MATLAB’s eigen function. It would appear that the
convergence rate is linear, meaning ‖D−(Qk+1)T AQk+1‖ =C‖D−(Qk )T AQk‖,
with C < 1, which corresponds to an exponential reduction in ‖D − (Qk )T AQk‖.
No noteworthy difference was observed when using the matrix exponential in
place of the Cayley transform.

4.4.2 Manifold valued imaging

In the following two examples we will consider problems from manifold valued
2D imaging. We will in both cases work on a product manifold M = M l×m

consisting of l ×m copies of an underlying data manifold M . An element of
M will in this case be called an atom, as opposed to the regular term pixel.
As explained in [20], product manifolds of Riemannian manifolds are again
Riemannian manifolds. The tangent spaces of product manifolds have a natural
structure as direct sums, with T(u11,u12,...,ul m )M=⊕l ,m

i , j=1 Tui j M , which induces
a natural Riemannian metric G : TM×TM→R fiberwise as

G(u11,u12,...,ulm )((x11, ..., xl m), (y11, ..., yl m)) =
l ,m∑

i , j=1
gui j (xi j , yi j ).

Also, given a retraction φ : T M → M , one can define a retraction Φ : TM→M
fiberwise as

Φ(u11,u12,...,ul m )(x11, ..., xlm) = (φu11 (x11),φu12 (x12), ...,φulm (xl m)).
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Discrete gradients were first used in optimization algorithms for image anal-
ysis in [11] and [22]. As an example of a manifold-valued imaging problem,
consider Total Variation (TV) denoising of manifold valued images [30], where
one wishes to minimize, based on generalizations of the Lβ and Lγ norms:

V (u) = 1

β

l ,m∑
i , j=1

d(ui j , si j )β

+λ

l−1,m∑
i , j=1

d(ui j ,ui+1, j )γ+
l ,m−1∑
i , j=1

d(ui j ,ui , j+1)γ

 .

(4.13)

Here, s = (s11, ..., sl m) ∈ M is the input image, u = (u11, ...,ulm) ∈ M is the
output image, λ is a regularization strength constant, and d is a metric on M ,
which we will take to be the geodesic distance induced by g .

InSAR image denoising

We first consider Interferometric Synthetic Aperture Radar (InSAR) imaging,
used in earth observation and terrain modelling [24]. In InSAR imaging, ter-
rain elevation is measured by means of phase differences between laser pulses
reflected from a surface at different times. Thus, the atoms gi j are elements of
M = S1, represented by their phase angles: −π< gi j ≤π. After processing, the
phase data is unwrapped to form a single, continuous image of displacement
data [9]. The natural distance function in this representation is the angular
distance

d(ϕ,θ) =
|ϕ−θ|, |ϕ−θ| ≤π

2π−|ϕ−θ|, |ϕ−θ| >π.

Also, TϕM is simply R, and φ is given, with +
2π

denoting addition modulo 2π,
as:

φϕ(θϕ) = (θ +
2π

(ϕ+π))−π.

Figure 4.2 shows the result of applying TV denoising to an InSAR image of
a slope of Mt. Vesuvius, Italy, with β= 2. The left column shows the phase data,
while the right hand side shows the phase unwrapped data. The input image
was taken from [23]. It is evident that the algorithm is successful in removing
noise. Computation time was 0.1 seconds per iteration on a 150×150 image. A
logarithmic plot showing convergence in terms of (V (uk )−V ∗)/(V (u0)−V ∗)
is shown in Figure 4.3, where V ∗ is a near-optimal value for V , obtained
by iterating until V (uk+1)−V (uk ) ≤ 10−15. The plot shows the behaviour of
Algorithm 4.1 with constant time steps τk = τ0 = 0.002 and an ad-hoc adaptive
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Figure 4.2: Left column: Interferogram. Right column: Phase unwrapped image. Top
row: Original image. Bottom row: L2 fidelity denoising, λ= 0.3.
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Figure 4.3: Logarithmic plot of optimality error (V (uk )−V ∗)/(V (u0)−V ∗).

method with τ0 = 0.005 where τk is halved each 200 iterations; for each of these
strategies a separate V ∗ was found since they did not produce convergence to
the same minimizer. The reason for the different minimizers is that the TV
functional, and thus the minimization problem, is non-convex in S1 [27]. We
can observe that the convergence speed varies between O(1/k) and O(1/k2),
with faster convergence for the ad-hoc adaptive method. The reason for this
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sublinear convergence as compared to the linear convergence observed in the
Brockett flow case may be the non-convexity.

DTI image denoising

Diffusion Tensor Imaging (DTI) is a medical imaging technique where the goal
is to make spatial samples of the tensor specifying the diffusion rates of water in
biological tissue. The tensor is assumed to be, at each point (i , j ), represented
by a matrix Ai j ∈ Sym+(3), the space of 3×3 symmetric positive definite (SPD)
matrices. Experimental measurements of DTI data are, as with other MRI tech-
niques, contaminated by Rician noise [12], which one may attempt to remove
by minimizing (4.13) with an appropriate choice of Riemannian structure on
M= Sym+(3)m×l .

As above, since the manifold we are working on is a product manifold, it
suffices to define the Riemannian structure on Sym+(3). First off, one should
note that TASym+(3) can be identified with Sym(3), the space of symmetric
3×3 matrices [19]. In [30], the authors consider equipping Sym+(3) with the
affine invariant Riemannian metric given pointwise as

g A(X ,Y ) = tr(A− 1
2 X A−1Y A− 1

2 ),

and for purposes of comparison, so shall we. The space Sym+(3) equipped with
this metric is a Cartan-Hadamard manifold [19], and thus is complete, meaning
that Theorem 4.2 holds. This metric induces the explicitly computable geodesic
distance

d(A,B) =
√√√√ 3∑

i=1
log(κi )2

on Sym+(3), where κi are the eigenvalues of A− 1
2 B A− 1

2 . Furthermore, the
metric induces a Riemannian exponential given by

expA(Y ) = A1/2eA−1/2Y A−1/2
A1/2

where e denotes the matrix exponential, and A1/2 is the matrix square root
of A. We could choose the retraction as φ = exp, but there are less computa-
tionally expensive options that do not involve computing matrix exponentials.
More specifically, we will make use of the second-order approximation of the
exponential,

φA(Y ) = A+Y + 1

2
Y A−1Y .
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While a first-order expansion is also a retraction, there is no guarantee that
A +Y ∈ Sym+(3), whereas the second-order expansion, which can be written
on the form

φA(Y ) = 1

2
A+ 1

2
(A

1
2 + A− 1

2 Y )T (A
1
2 + A− 1

2 Y ),

is clearly symmetric positive definite since A is so. Note that using a sparse
basis Ei j (in our example we use Ei j = ei eT

j +e j eT
i ) for the space Sym(3), eval-

uating φA(X +αEi j ) amounts to, at most, four scalar updates when φA(X ) and
A−1 is known, as is possible with proper bookkeeping in the software imple-
mentation. Also, since all matrices involved are 3×3 SPD matrices, one may
find eigenvalues and eigenvectors directly, thus allowing for fast computations
of matrix square roots and, consequently, geodesic distances.

Figure 4.4: DTI scan, axial slice. Left: Noisy image. Right: Denoised with β = 2,
λ= 0.05.

Figure 4.4 shows an example of denoising DTI images using the TV regu-
larizer. The data is taken from the publicly available Camino data set [8]. The
DTI tensor has been calculated from underlying data using linear least-squares
fitting, and is subject to Rician noise (left hand side), which is mitigated by TV
denoising (right hand side). The denoising procedure took about 7 seconds for
57 iterations, on a 72×73 image. The algorithm was stopped when the rela-
tive change in energy, (V (u0)−V (uk ))/V (u0) dropped below 10−5. Each atom
A ∈ Sym+(3) is visualized by an ellipsoid with the eigenvectors of A as princi-
pal semi-axes, scaled by the corresponding eigenvalues. The colors are coded
to correspond to the principal direction of the major axis, with red denoting left-
right orientation, green anterior-posterior and blue inferior-superior. Figure 4.5
shows the convergence behaviour of Algorithm 4.1, with three different time
steps: τ = 0.05, τ = 0.01 and a mixed strategy of using τ = 0.05 for 12 steps,
then changing to τ= 0.01. Also, baseline rates of 1/k2 and 1/k are shown. It is
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Figure 4.5: Logarithmic plot of optimality error.

apparent that the choice of time step has great impact on the convergence rate,
and that simply changing the time step from τ = 0.05 to τ = 0.01 is effective
in speeding up convergence. This would suggest that time step adaptivity is a
promising route for acceleration of these methods.

4.5 Conclusion and outlook

We have extended discrete gradient methods to Riemannian manifolds, and
shown how they may be applied to gradient flows. The Itoh–Abe discrete
gradient has been formulated in a manifold setting; this is, to the best of our
knowledge, the first time this has been done. In particular, we have used the
Itoh–Abe DRG on gradient systems to produce a derivative-free optimization
algorithm on Riemannian manifolds. This optimization algorithm has been
proven to converge under reasonable conditions, and shows promise when
applied to the problem of denoising manifold valued images using the total
variation approach of [30].

As with the algorithm in the Euclidian case, there are open questions. The
first question is which convergence rate estimates can be made; one should es-
pecially consider the linear convergence exhibited in the Brockett flow problem,
and the rate observed in Figure 4.5 which approaches 1/k2. A second question
is how to formulate a rule for choosing step sizes so as to accelerate conver-
gence toward minimizers. There is also the question of how the DRG methods
perform as ODE solvers for dissipative problems on Riemannian manifolds; in
particular, convergence properties, stability, and convergence order. The above
discussion is geared toward optimization applications due to the availability of
optimization problems, but it would be of interest to see how the methods work
as ODE solvers in their own right similar to the analysis and experiments done
in [5].
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Abstract. We present a subclass of the discrete gradient methods, which are
integrators designed to preserve invariants of ordinary differential equations.
From a formal series expansion of the methods, we derive conditions for
arbitrarily high order. We devote considerable space to the average vector
field discrete gradient, from which we get P-series methods in the general
case, and B-series methods for canonical Hamiltonian systems. Higher order
schemes are presented and applied to the Hénon–Heiles system and a Lotka–
Volterra system.

5.1 Energy preservation and discrete gradient
methods

For an ordinary differential equation (ODE)

ẋ = f (x), x ∈Rd , f : Rd →Rd , (5.1)

a first integral, or invariant, is a function H : Rd → R such that H(x(t )) =
H(x(t0)) along the solution curves of (5.1). If we can write

f (x) = S(x)∇H(x), (5.2)

where S(x) : Rd×d → Rd is a skew-symmetric matrix, then (5.1) preserves H :
this follows from the skew-symmetry of S(x), which yields

d

dt
H(x) =∇H(x)T ẋ =∇H(x)T S(x)∇H(x) = 0. (5.3)

The converse is also true: McLachlan et al. showed in [20] that, whenever (5.1)
has a first integral H , there exists a skew-symmetric matrix S(x), bounded near
every non-degenerate critical point of H , such that (5.1) can be written on what
is called the skew-gradient form:

ẋ = S(x)∇H(x). (5.4)

The proof provided in [20] for this is based on presenting a general form of one
such S(x), the so-called default formula

S(x) = f (x)∇H(x)T −∇H(x) f (x)T

∇H(x)T ∇H(x)
. (5.5)

Unless d = 2, this is generally not a unique choice of S(x), as e.g.

S(x) = f (x)g (x)T − g (x) f (x)T

g (x)T ∇H(x)
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will satisfy (5.2) for any non-vanishing function g : Rd → Rd . Many ODEs
with first integrals have a well-known skew-gradient form (5.4). This includes
Poisson systems, and the important class consisting of canonical Hamiltonian
ODEs. For the latter, S will be constant, so that we may write

ẋ = S∇H(x). (5.6)

A numerical integrator preserving a first integral H exactly is called an
integral-preserving, or energy-preserving, method. Starting in the late 1970s, a
few energy-preserving methods were proposed which relied on some discrete
analogue of the property (5.3), see e.g. [4,15–17]. Most prominent among these
is the class of methods called discrete gradient methods, defined formally by
Gonzalez in [11] and given their current name in [20].

Given the first integral H , a discrete gradient ∇H : Rd ×Rd →Rd is a func-
tion satisfying the conditions

∇H(x, y)T(y −x) = H(y)−H(x), (5.7)

∇H(x, x) =∇H(x), (5.8)

for all x, y ∈Rd . Introducing also the discrete approximation S(x, y,h) to S(x),
skew-symmetric and satisfying S(x, x,0) = S(x), the corresponding discrete
gradient method is given by

x̂ −x

h
= S(x, x̂,h)∇H(x, x̂). (5.9)

This scheme satisfies a discrete analogue to (5.3):

H(x̂)−H(x) = h∇H(x, x̂)T S(x, x̂,h)∇H(x, x̂) = 0.

We say that (5.9) is consistent to the skew-gradient system (5.4), since S(x, x̂,h)
is a consistent approximation of S(x) and ∇H(x, x̂) is a consistent approxima-
tion of ∇H(x).

If d ≥ 2, there are in general infinitely many functions satisfying (5.7)–(5.8).
Many explicit definitions of concrete discrete gradients have been suggested,
and we will discuss the most prominent among them in Section 5.2.1. One of
these is the average vector field (AVF) discrete gradient, first introduced in [14]
and sometimes called the mean value discrete gradient [20]. For a given H , it
is given by the average of ∇H on the segment [x, y]:

∇AVFH(x, y) =
∫ 1

0
∇H((1−ξ)x +ξy)dξ. (5.10)

When applied to the constant S system (5.6), the discrete gradient method with
S(x, y,h) = S and ∇H =∇AVFH coincides with the scheme

x̂ −x

h
=

∫ 1

0
f ((1−ξ)x +ξx̂)dξ. (5.11)
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This is sometimes viewed as a method by itself, applicable to any system (5.1),
in which case it is called the average vector field (AVF) method [26]. This was
shown in [2] to be a B-series method.

As pointed out in [20], the discrete gradient is restricted by its definition to
be at best a second order approximation to point values of ∇H . In much of the
literature on discrete gradient methods, see e.g. [11, 13], the approximation S
is defined as being independent of h. In that case, the discrete gradient scheme
(5.9) can at best guarantee second order convergence towards the exact solution.
Over the last two decades, there have been published some notable papers
on higher order discrete gradient methods. McLaren and Quispel were first
out with their bootstrapping technique derived in [21, 22]. Given any discrete
gradient ∇H and an approximation to S(x) given by S(x, y,h), they compare the
Taylor expansion of the corresponding discrete gradient scheme to that of the
exact solution, and thus find a new approximation S̃(x, y,h) to S(x) which yields
higher order. This quickly becomes a very involved procedure, but by using a
symmetric discrete gradient, they derive fourth order methods. A downside of
this method is that the schemes of order higher than two require the calculation
of tensors of order three or higher at every time step.

A fourth order generalization of the AVF method is proposed by the same
authors in [26]. This can be viewed as a fourth-order discrete gradient method
for all skew-gradient systems where S is constant. Also worth mentioning in
this setting is the collocation-like method introduced by Hairer [12] and then
generalized to Poisson systems by Cohen and Hairer [5]. This is a multi-stage
extension of the AVF discrete gradient method. To get higher than second
order, more than one stage is required. In that case the method is not a discrete
gradient method, although it is energy-preserving.

Norton et al. show in [24] that linear projection methods can be viewed as
a class of discrete gradient methods for skew-gradient systems with S(x) given
by the default formula (5.5). In connection to this, Norton and Quispel suggest
in [25] the class of approximations to (5.5) given by

S(x, y,h) = f̃ (x, y,h)g̃ (x, y,h)T − g̃ (x, y,h) f̃ (x, y,h)T

ĝ (x, y,h)T ğ (x, y,h)
, (5.12)

where f̃ (x, y,h) is a consistent approximation to f (x), and g̃ (x, y,h), ĝ (x, y,h)
and ğ (x, y,h) are all consistent approximations to ∇H(x). The correspond-
ing discrete gradient method then inherits the order of the method x̂ = x +
h f̃ (x, x̂,h).

To the best of our knowledge, no one has so far suggested higher than
fourth order discrete gradient methods for a general skew-gradient system (5.4).
Furthermore, for this general case, all discrete gradient methods suggested of
higher than second order involve tensors of order three or higher. Our aim
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with this paper is to remedy this. Largely inspired by the above mentioned
references, especially [21,22,26], we present here a general form giving a class
of approximations S(x, y,h) to any S(x) in (5.4), with corresponding conditions
for achieving an arbitrary order of the discrete gradient method (5.9). We do this
step by step. In the next chapter, we derive some useful properties of a general
discrete gradient and discuss the most common specific discrete gradients. Then
we consider the AVF method and use order theory for B-series methods to
obtain a generalization of this, with corresponding order conditions. In Chapter
5.4, we build on this to develop higher order discrete gradient methods for
a general skew-gradient system, using the AVF discrete gradient. Then, in
Chapter 5.5, we generalize this further to allow for a free choice of the discrete
gradient, thus arriving at the general form S(x, y,h) mentioned above, and a
formal series expansion of the corresponding discrete gradient methods. We
present several examples of higher order schemes for the different cases, and
conclude the paper with some numerical experiments.

5.2 A preliminary analysis of discrete gradients

To simplify notation in the following derivations, we define g := ∇H . Fur-
thermore, we suppress the first argument of ∇H and define ḡ (y) := ∇H(x, y).
We use Einstein summation convention and write ḡ (y)i

j := ∂ḡ (y)i

∂y j and so forth.
Taylor expanding ḡ (y) around x, we get

ḡ (y)i = ḡ (x)i + ḡ (x)i
j (y j −x j )+ 1

2
ḡ (x)i

j k (y j −x j )(yk −xk )

+ 1

6
ḡ (x)i

j kl (y j −x j )(yk −xk )(y l −x l )+O(|y −x|4),
(5.13)

or

ḡ (y) =
∞∑

κ=0

1

κ!
ḡ (κ)(x)(y −x)κ. (5.14)

By the consistency criterion (5.8), we have ḡ (x) = g (x). However, if we require
the discrete gradient to be a differentiable function in its second argument, (5.8)
follows directly from (5.7). To see this, we write (5.7) as

H(y)−H(x) = ḡ (y)i (y i −xi ). (5.15)

Differentiating this with respect to y j , we get

g (y) j = H(y) j = ḡ (y)i , j (y i −xi )+ ḡ (y) j , (5.16)

where H j = ∂H
∂y j and ḡ (y)i , j = ∂ḡ (y)i

∂y j . The case y = x immediately gives

g (x) j = ḡ (x) j , or (5.8). Assuming further that ∇H ∈ C 2(Rd ×Rd ,Rd ), we can
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differentiate once more to get

g (y) j ,k = H(y) j k = ḡ (y)i , j k (y i −xi )+ ḡ (y) j ,k + ḡ (y)k, j , (5.17)

which means that

g (x) j ,k = H(x) j k = ḡ (x) j ,k + ḡ (x)k, j ,

or
∇2H(x) = D2∇H(x, x)+ (D2∇H(x, x))T, (5.18)

where ∇2H := D∇H denotes the Hessian of H , and D2∇H denotes the Jacobian
of ∇H with respect to its second argument.

Lemma 5.1. If the discrete gradient ∇H is symmetric, i.e. ∇H(x, y) =∇H(y, x)
for all x, y ∈Rd , then

D2∇H(x, x) = 1

2
∇2H(x). (5.19)

Proof. Disclosing the suppressed argument x in (5.16), we have

g (y) j = ∂

∂y j
(ḡ (x, y)i )(y i −xi )+ ḡ (x, y) j ,

which we can differentiate by xk to get

0 = ∂2

∂xk∂y j
(ḡ (x, y)i )(y i −xi )− ∂

∂y j
ḡ (x, y)k +

∂

∂xk
ḡ (x, y) j .

If ∇H is symmetric,
∂

∂xk
ḡ (x, y) j = ∂

∂xk
ḡ (y, x) j .

Thus, for y = x we get ḡ (x)k, j = ḡ (x) j ,k , or (D2∇H(x, x))T = D2∇H(x, x). In-
serting that in (5.18), we obtain (5.19).

Definition 5.1. Given a discrete gradient ∇H ∈C 1(Rd ×Rd ,Rd ), we define the
function Q : Rd ×Rd →Rd×d by

Q(x, y) := 1

2

(
(D2∇H(x, y))T −D2∇H(x, y)

)
. (5.20)

Note that Q(x, y) is a skew-symmetric matrix. From (5.18), we see that
Q(x, x) = 1

2∇2H(x)−D2∇H(x, x). Differentiating (5.20) with respect to the
second argument and setting y = x, we obtain

(D2Q(x, x)) j kl =
1

2
ḡ (x)k, j l −

1

2
ḡ (x) j ,kl .
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Similarly, differentiating (5.17) with respect to the second argument and setting
y = x, we obtain

g (x) j ,kl = ḡ (x) j ,kl + ḡ (x)k, j l + ḡ (x)l , j k .

Using these results, we get that, for any v ∈Rd ,

(D2Q(x, x)(v, v)) j = (D2Q(x, x)) j kl vk v l

= 1

2
ḡ (x)k, j l vk v l − 1

2
ḡ (x) j ,kl vk v l

= 1

4
ḡ (x)k, j l vk v l + 1

4
ḡ (x)l , j k vk v l

+ 1

4
ḡ (x) j ,kl vk v l − 3

4
ḡ (x) j ,kl vk v l

= 1

4
g (x) j ,kl vk v l − 3

4
ḡ (x) j ,kl vk v l ,

or

D2Q(x, x)(v, v) = 1

4
D2∇H(x)(v, v)− 3

4
D2

2∇H(x, x)(v, v). (5.21)

Continuing in this manner, we get the following general result, which will be
useful when developing higher order discrete gradient methods.

Lemma 5.2. For a discrete gradient ∇H ∈C p (Rd ×Rd ,R) and the correspond-
ing Q given by (5.20),

Dκ
2∇H(x, x)vκ = 1

κ+1
Dκ∇H(x)vκ− 2κ

κ+1
Dκ−1

2 Q(x, x)vκ,

for any κ ∈ [1, p], v ∈Rd .

Proof. Differentiating (5.17) κ−1 times by y and setting y = x, we find that
the κ-th derivatives of g (x) can be expressed by the κ-th derivatives of ḡ (x)
through the relation

g (x) j ,I = ḡ (x) j ,I +
κ∑

m=1
ḡ (x)im ,{ j ,Im}, for all j , I ,κ, (5.22)

where I = {
i1, i2, . . . , iκ

}
is an ordered set of κ indices, and Im = I \

{
im

} ={
i1, i2, . . . im−1, im+1, . . . , iκ

}
, i.e. I with the m-th element excluded. Similarly,

by continued differentiation of (5.20), we obtain

(Dκ−1
2 Q(x, x)) j ,I = 1

2
ḡ (x)i1,{ j ,I1} −

1

2
ḡ (x) j ,I .
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5.2 A preliminary analysis of discrete gradients

Thus

(Dκ−1
2 Q(x, x)vκ) j = (Dκ−1

2 Q(x, x)) j ,I v I

= 1

2
ḡ (x)i1,{ j ,I1}v{ j ,I1} − 1

2
ḡ (x) j ,I v I

= 1

2κ

κ∑
m=1

ḡ (x)im ,{ j ,Im}v{ j ,Im}

+ 1

2κ
ḡ (x) j ,I v I − 1

2κ
ḡ (x) j ,I v I − 1

2
ḡ (x) j ,I v I

= 1

2κ
g (x) j ,I v I − (

1

2κ
+ 1

2
)ḡ (x) j ,I v I

= 1

2κ
g (x) j ,I v I − κ+1

2κ
ḡ (x) j ,I v I .

5.2.1 A review of explicitly defined discrete gradients

While introducing the discrete gradient methods in [11], Gonzalez also gave
an example of a discrete gradient satisfying (5.7)–(5.8): the midpoint discrete
gradient is given by

∇MH(x, y) :=∇H

(
x + y

2

)
+

H(y)−H(x)−∇H
(

x+y
2

)T (
y −x

)
(y −x)T (y −x)

(
y −x

)
.

Even when H is analytical, this discrete gradient is often not; the second order
partial derivatives are in general singular in y = x. For that reason, it is not
suited for achieving higher order methods by the techniques we consider in this
paper.

The Itoh–Abe discrete gradient, introduced in [15], notably does not require
evaluation of the gradient. This discrete gradient, which has also been called
the coordinate increment discrete gradient [20], is defined by

∇IAH(x, y) :=
d∑

j=1
α j e j , (5.23)

where e j is the j th canonical unit vector and

α j =


H(w j )−H(w j−1)

y j −x j
if y j 6= x j ,

∂H
∂x j (w j−1) if y j = x j ,

w j =
∑ j

i=1 y i ei +
∑n

i= j+1 xi ei .
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While the other discrete gradients we consider in this paper are symmetric and
thus second order approximations to ∇H , the Itoh–Abe discrete gradient is
only of first order. However, a second order discrete gradient, which we call
the symmetrized Itoh–Abe (SIA) discrete gradient, is given by

∇SIAH(x, y) := 1

2

(
∇IAH(x, y)+∇IAH(y, x)

)
. (5.24)

Furihata presented the discrete variational derivative method for a class of
partial differential equations (PDEs) in [9], a method which has been developed
further by Furihata, Matsuo and co-authors in a series of papers, e.g. [19, 27],
as well as the monograph [10]. As shown in [7], these schemes can also be
obtained by semi-discretizing the PDE in space and then applying a discrete
gradient method on the resulting system of ODEs. The specific discrete gradient
that gives the schemes of Furihata and co-authors is defined for a class of
invariants that includes all polynomial functions:

Definition 5.2. Assume that we can write the first integral as

H(x) =∑
l

cl

d∏
j=1

f l
j (x j ), (5.25)

for functions f l
j : R→ R. The Furihata discrete gradient ∇FH(x, y) is defined

by

∇FH(x, y) :=
d∑

j=1
α j e j , (5.26)

where e j is the j th canonical unit vector and

α j =


∑
l

cl
2

f l
j (y j )− f l

j (x j )

y j−x j

(
j−1∏
k=1

f l
k (xk )+

j−1∏
k=1

f l
k (yk )

)
d∏

k= j+1

f l
k (xk )+ f l

k (yk )
2 if y j 6=x j ,

∑
l

cl
2

d f l
j (x j )

dx j

(
j−1∏
k=1

f l
k (xk )+

j−1∏
k=1

f l
k (yk )

)
d∏

k= j+1

f l
k (xk )+ f l

k (yk )
2 if y j =x j .

Lastly we consider the AVF discrete gradient (5.10), which distinguishes
itself from the others in a number of ways.

Lemma 5.3. The Q(x, y) corresponding to the AVF discrete gradient is the zero
matrix, since (D2∇AVFH(x, y))T = D2∇AVFH(x, y).

Proof. For ḡ (y) :=∇AVFH(x, y), we have

ḡ (y)i , j = ∂

∂y j

∫ 1

0
g ((1−ξ)x +ξy)i dξ=

∫ 1

0

∂

∂y j
g ((1−ξ)x +ξy)i dξ

=
∫ 1

0
ξg ((1−ξ)x +ξy)i , j dξ=

∫ 1

0
ξg ((1−ξ)x +ξy) j ,i dξ

= ḡ (y) j ,i .
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Proposition 5.1. The AVF discrete gradient is the unique discrete gradient
satisfying (D2∇H(x, y))T = D2∇H(x, y) for all H , x and y , and it has the formal
expansion

∇AVFH(x, y) =
∞∑

κ=0

1

(κ+1)!
Dκ∇H(x)(y −x)κ. (5.27)

Proof. Assume that ∇H is an analytic function. As in the proof of Lemma 5.2,
let I = {

i1, i2, . . . , iκ
}

be an ordered set of κ indices, and let Im be I with the mth

element excluded. If ḡ (y)i , j = ḡ (y) j ,i for all i , j , then also

ḡ (y)i ,I = ḡ (y)im ,{i ,Im} for all i , I ,m. (5.28)

Inserting (5.28) in (5.22) we get g (κ)(x) = (1+κ)ḡ (κ)(x). Then inserting this
for ḡ (κ)(x) in (5.14), we get (5.27), which uniquely defines the AVF discrete
gradient.

A consequence of the above result is that the AVF discrete gradient is the
unique discrete gradient for which the scheme (5.9) with S(x, x̂,h) = S is a
B-series method when applied to the system (5.6). Furthermore, from the
Integrability Lemma (see e.g. [13, Lemma VI.2.7]) and the above, we have that
it is the only discrete gradient which defines a gradient vector field in general:

Corollary 1. The AVF discrete gradient is the gradient with respect to the
second argument of a function H̃(x, y). That is,

∇AVFH(x, y) =∇2H̃(x, y),

for some H̃ : Rd ×Rd → R and all x, y ∈ Rd . The AVF discrete gradient is the
unique discrete gradient to have this property for all H .

As we see from the above definitions and discussion, each of the discrete
gradients have their advantages and disadvantages. Gonzalez’ midpoint discrete
gradient is easily calculated from the energy H and the gradient ∇H , but it is
in general only once differentiable. The Itoh–Abe discrete gradient does not
require knowledge of the gradient, but is only a first order approximation of the
gradient. The AVF discrete gradient is the unique discrete gradient whose series
expansion is given by the differentials of the gradient. It does however require
an integral to be calculated. If that poses a challenge, the SIA or Furihata
discrete gradients are second-order alternatives, but the latter is only defined
for H of the form (5.25).

5.2.2 Third and fourth order schemes for the constant S case

Consider now only the cases where S is constant, i.e. (5.6). By comparing
the Taylor series of the exact solution and that of the discrete gradient method,
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and by using the properties of the discrete gradient developed above, we may
achieve higher order discrete gradient methods.

In search of a third order scheme, we assume that x̂ is a third order in h
approximation of x(t0 +h), and find

S∇H(x, x̂)=S(∇H(x)+D2∇H(x, x)(hS∇H(x)+1

2
h2S∇2H(x)S∇H(x)+O(h2))

+ 1

2
D2

2∇H(x, x)(hS∇H(x)+O(h2),hS∇H(x)+O(h2))+O(h3)

= f +hSD2∇H f + 1

2
h2SD2∇H f ′ f + 1

2
h2SD2

2∇H( f , f )+O(h3),

where we have suppressed the argument x of f , D2∇H and D2
2∇H in the last

line. Furthermore, we use that

Q(x, x +γh f (x)) =Q(x, x)+γhD2Q(x, x)( f , ·)+O(h2)

and (5.21) to get

SQ(x, x +γh f (x))S∇H(x, x̂)

=SQ(x, x)S∇H(x, x̂)+γhSD2Q(x, x)( f ,S∇H(x, x̂))+O(h2)

=SQ(x, x)S(∇H(x)+D2∇H(x, x)(hS∇H(x)+O(h2))

+γhSD2Q(x, x)( f ,S(∇H(x)+O(h))+O(h2)

=SQ(x, x) f +hSQ(x, x)SD2∇H(x, x) f +γhSD2Q(x, x)( f , f )+O(h2)

= 1

2
f ′ f −SD2∇H f + 1

2
h f ′SD2∇H f −hSD2∇HSD2∇H f

+ 1

6
γh f ′′( f , f )− 1

2
γhSD2

2∇H( f , f )+O(h2),

where again we suppress the argument x in the last expression. Thus the
discrete gradient scheme (5.9) is of order 3 if ∇H ∈ C 2(Rd × Rd ,Rd ) and
S(x, x̂,h) = S(x,h) is given by

S(x,h) =S +hSQ(x, x + 2

3
h f (x))S

+h2S
(
Q(x, x)SQ(x, x)− 1

12
∇2H(x)S∇2H(x)

)
S.

Finding an approximation of S that guarantees higher order of the discrete
gradient method quickly becomes significantly more complicated, and results
in increasingly complicated expressions for S(x, x̂,h). For example, it can be
shown that one fourth order scheme of the form (5.9) is given by any ∇H ∈
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C 3(Rd ×Rd ,Rd ) and

S(x,h) =S +hS
(8

9
Q(x, z3)+ 1

9
Q(x, x)

)
S

+h2S
(
Q(x, z2)SQ(x, z2)− 1

12
∇2H(z1)S∇2H(z1)

)
S

+h3S
(
Q(x, x)SQ(x, x)SQ(x, x)

− 1

12
∇2H(x)S∇2H(x)SQ(x, x)

− 1

12
Q(x, x)S∇2H(x)S∇2H(x)

)
S,

(5.29)

where

z1 = x + 1

2
h f (x), z2 = x + 2

3
h f (x), z3 = x + 3

4
h f (z1).

Note that if we choose a symmetric discrete gradient, we have by Lemma
5.1 that Q(x, x) = 0, and many of the terms in (5.29) disappear. If we use the
AVF discrete gradient, (5.29) simplifies to

S(x,h) = S − 1

12
h2S∇2H(z1)S∇2H(z1)S. (5.30)

This is very similar to the higher order AVF methods of Quispel and McLaren,
as given in [26], applied to (5.4) with S constant: if we replace z1 in (5.30)
by x, we get their third order scheme; if we replace z1 by x+x̂

2 , we get their
symmetric fourth order scheme.

Seeing as (5.29) simplifies considerably when the AVF discrete gradient is
chosen, and since we in this case get a B-series method, we begin our gener-
alization to arbitrary order by studying this case specifically in the chapter to
follow.

5.3 A generalization of the AVF method

Let us recall the concept of B-series. Referring to the definitions in [13, Section
III.1], we let T be the set of rooted trees, built recursively from starting with
τ= and letting τ= [τ1, . . . ,τm] be the tree obtained by grafting the roots of the
trees τ1, . . . ,τm to a new root. Furthermore, F (τ) is the elementary differential
associated with the tree τ, defined by F ( )(x) = f (x) and

F (τ)(x) = f (m)(x)
(
F (τ1)(x), . . . ,F (τm)(x)

)
,

and σ(τ) is the symmetry coefficient for τ, defined by σ( ) = 1 and

σ(τ) =σ(τ1) · · ·σ(τm) ·µ1!µ2! · · · , (5.31)
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where the integers µ1, µ2, . . . count equal trees among τ1, . . . ,τm . Then, if
φ : T ∪ {;} →R is an arbitrary map, a B-series is a formal series

B(φ, x) =φ(;)x + ∑
τ∈T

h|τ|

σ(τ)
φ(τ)F (τ)(x). (5.32)

The exact solution of (5.1) can be written as the B-series B( 1
γ , x), where the

coefficient γ satisfies γ(;) = γ( ) = 1 and

γ(τ) = |τ|γ(τ1) · · ·γ(τm) for τ= [τ1, . . . ,τm], (5.33)

where |τ| is the order, i.e. the number of nodes, of τ.

Definition 5.3. The generalized AVF method is given by

x̂ −x

h
=

(
I +

p−1∑
n=2

hn
∑

j
bn j

( n∏
k=1

f ′(zn j k )+ (−1)n
n∏

k=1
f ′(zn j (n−k+1))

))

·
∫ 1

0
f ((1−ξ)x +ξx̂)dξ,

(5.34)

where each zn j k := zn j k (x, x̂,h) = B(φn j k , x) can be written as a B-series with
φ(;) = 1.

Note that we may alternatively write (5.34) in the slightly more compact
form

x̂ −x

h
=

p−1∑
n=0

hn
∑

j
bn j

(
n∏

k=1
f ′(zn j k )+ (−1)n

n∏
k=1

f ′(zn j (n−k+1))

)

·
∫ 1

0
f ((1−ξ)x +ξx̂)dξ

with
∑

j b0 j = 1
2 .

Theorem 5.1. When applied to (5.1) with f (x) = S∇H(x), where S is a constant
skew-symmetric matrix, the scheme (5.34) preserves H , in that H(x̂) = H(x).

Proof. With f (x) = S∇H(x), (5.34) becomes

x̂ −x

h
= S(x, x̂,h)∇AVFH(x, x̂),

with

S(x, x̂,h) = S+
p−1∑
n=2

hn
∑

j
bn j

(
n∏

k=1
S∇2H(zn j k )+ (−1)n

n∏
k=1

S∇2H(zn j (n−k+1))

)
S.
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We have(
n∏

k=1
S∇2H(zn j k ) ·S + (−1)n

n∏
k=1

S∇2H(zn j (n−k+1)) ·S

)T

= ST
n∏

k=1

(∇2H(zn j (n−k+1))
T ST )+ (−1)nST

n∏
k=1

(∇2H(zn j k )T ST )
= (−1)i+1S

n∏
k=1

∇2H(zn j (n−k+1))S −S
n∏

k=1
∇2H(zn j k )S

=−
(

n∏
k=1

S∇2H(zn j k ) ·S + (−1)n
n∏

k=1
S∇2H(zn j (n−k+1)) ·S

)
,

and thus S(x, x̂,h) is a skew-symmetric matrix.

Before considering the order conditions of the generalized AVF method, let
us recall a couple of results from the literature on B-series.

Lemma 5.4 ([13, Lemma III.1.9]). Let B(a, x) be a B-series with a(;) = 1.
Then h f (B(a, x)) = B(a′, x) is also a B-series, with a′(;) = 0, a′( ) = 1 and
otherwise

a′(τ) = a(τ1) · · ·a(τm) for τ= [τ1, . . . ,τm].

Lemma 5.5 ([23, Theorem 2.2]). Let B(a, x) and B(b, x) be two B-series with
a(;) = 1 and b(;) = 0. Then h f ′(B(a, x))B(b, x) = B(a ×b, x), i.e. a B-series,
with (a ×b)(;) = (a ×b)( ) = 0 and otherwise

(a ×b)(τ) =
m∑

i=1

m∏
j=1, j 6=i

a(τ j )b(τi ) for τ= [τ1, . . . ,τm].

Proposition 1 in [2] states that the standard AVF method is a B-series
method. We build on the proof of that proposition to prove the following
result.

Proposition 5.2. The generalized AVF method (5.34) is a B-series method.

Proof. First we define ê : T ∪ {;} → R by ê(;) = 1 and ê(τ) = 0 for all τ 6= ;.
Then, assuming that the solution x̂ of (5.34) can be written as the B-series
x̂ = B(Φ, x), we find the B-series

h
∫ 1

0
f
(
(1−ξ)x +ξx̂

)
dξ= h

∫ 1

0
f
(
B((1−ξ)ê +ξΦ, x)

)
dξ

=
∫ 1

0
B

(
((1−ξ)ê +ξΦ)′, x

)
dξ

= B
(∫ 1

0
((1−ξ)ê +ξΦ)′ dξ, x

)
.
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Setting θ := ∫ 1
0 ((1− ξ)ê + ξΦ)′ dξ = ∫ 1

0 ((1− ξ)ê)′ dξ+ ∫ 1
0 (ξΦ)′ dξ = ∫ 1

0 (ξΦ)′ dξ,
we get

θ(;) = 0, θ( ) = 1, θ([τ1, . . . ,τm]) = 1

m +1
Φ(τ1) · · ·Φ(τm). (5.35)

Then we may rewrite (5.34) as

x̂ =x +
(
I +

p−1∑
n=2

hn
∑

j
bn j

( n∏
k=1

f ′(B(φn j k , x))

+ (−1)n
n∏

k=1
f ′(B(φn j (n−k+1), x))

))
B(θ, x)

=x +B(θ, x)+
p−1∑
n=2

∑
j

bn j
(
B(φn j 1 ×·· ·×φn j n ×θ, x)

+ (−1)nB(φn j n ×·· ·×φn j 1 ×θ, x)
)

=B(Φ, x),

with

Φ= ê +θ+
p−1∑
n=2

∑
j

bn j
(
φn j 1 ×·· ·×φn j n ×θ

+ (−1)n φn j n ×·· ·×φn j 1 ×θ
)
.

(5.36)

Comparing the B-series of the exact solution and the B-series of the solution
of (5.34), and noting that the elementary differentials are independent, we
immediately get the following result.

Theorem 5.2. The generalized AVF method (5.34) is of order p if and only if

Φ(τ) = 1

γ(τ)
for |τ| ≤ p, (5.37)

where Φ is given by (5.36) and γ is given by (5.33).

The terms Φ(τ) can be found from (5.36) by applying Lemma 5.5 recur-
sively, as illustrated by the following example.

Example 5.1. Consider τ= , and assume we have found Φ for all trees up to
and including order four already, as given in Table 5.1. We have

θ( ) = 1

3
Φ( )Φ( ) = 1

3
(

1

4
+2

∑
j

b2 j ) = 1

12
+ 2

3

∑
j

b2 j .
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|τ| F (τ)i τ σ(τ) γ(τ) Φ(τ)
1 f i 1 1 1
2 f i

j f j 1 2 1
2

3 f i
j k f j f k 2 3 1

3

f i
j f j

k f k 1 6 1
4 +2

∑
j b2 j

4 f i
j kl f j f k f l 6 4 1

4

f i
j k f j f k

l f l 1 8 1
6 +

∑
j ,k b2 j φ2 j k ( )

f i
j f j

kl f k f l 2 12 1
6 +2

∑
j ,k b2 j φ2 j 1( )

f i
j f j

k f k
l f l 1 24 1

8 +2
∑

j b2 j

Table 5.1: Elementary differentials and their coefficients in the B-series of the solution
of (5.34), up to fourth order.

Then we calculate

(φ2 j 1 ×φ2 j 2 ×θ)( ) =φ2 j 1( )(φ2 j 2 ×θ)( )+φ2 j 1( )(φ2 j 2 ×θ)( )

=φ2 j 1( )(φ2 j 2 ×θ)( ) =φ2 j 1( )φ2 j 2(;)θ( ) = 1

2
φ2 j 1( ),

where we have used in the second equality that (φ2 j 2 ×θ)( ) =φ2 j 2(;)θ(;) = 0.

Similarly we find (φ2 j 2 ×φ2 j 1 ×θ)( ) = 1
2φ2 j 2( ). Furthermore,

(φ3 j 1 ×φ3 j 2 ×φ3 j 3 ×θ)( ) =φ3 j 1( )(φ3 j 2 ×φ3 j 3 ×θ)( )

=φ3 j 1( )φ3 j 2(;)(φ3 j 3 ×θ)( )

=φ3 j 1( )φ3 j 3(;)θ( ) =φ3 j 1( ),

and (φ3 j 3 ×φ3 j 2 ×φ3 j 1 ×θ)( ) =φ3 j 3( ). Hence,

Φ( ) = 1

12
+ 2

3

∑
j

b2 j + 1

2

∑
j

b2 j (φ2 j 1( )+φ2 j 2( ))+∑
j

b3 j (φ3 j 1( )−φ3 j 3( )).

Now, if we assume the order condition (5.37) to be satisfied for all trees up to
and including order four, we can replace∑

j
b2 j =− 1

24
and

∑
j

b2 j (φ2 j 1( )+φ2 j 2( )) =− 1

24
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in the above expression, use that γ( ) = 30, and get that (5.37) is satisfied for

if and only if ∑
j

b3 j (φ3 j 1( )−φ3 j 3( )) =− 1

720
. (5.38)

5.3.1 Construction of higher order schemes

As the size of the trees grows, finding Φ(τ) from (5.36) can become quite a
cumbersome operation. Furthermore, we observe from Table 5.1 that there are
some equivalent order conditions for different trees. Before presenting more
convenient techniques for finding order conditions for the generalized AVF
method, let us define some more concepts related to B-series and trees.

First, recall that the Butcher product of two trees u = [u1, . . . ,um] and v =
[v1, . . . , vn] is given by u ◦ v = [u1,u2, . . . ,um , v]. This operation is neither
associative nor commutative, and in contrast to the practice in [13], we here
take the product of several factors without parentheses to mean evaluation from
right to left:

u1 ◦u2 ◦ · · · ◦uk := u ◦ (u2 ◦ (· · · ◦uk )).

Given a forest µ= (τ1, . . . ,τm), the tree obtained by grafting the roots of every
tree in µ to a new root is denoted by [µ] = [τ1, . . . ,τm]. Moreover, µ−1(τ)
denotes the forest such that [µ−1(τ)] = τ. We extend the maps φ : T ∪ {;} → R

and γ : T ∪ {;} → R to forests by the letting φ(µ) = ∏m
i=1 φ(τi ) and γ(µ) =∏m

i=1 γ(τi ) for µ= (τ1, . . . ,τm).
Consider now a tree τ consisting of |τ| nodes. We may number every tree

from 1 to |τ|, starting at the root and going from left to right on the increasing
levels above. For a given node i ∈ [1, . . . , |τ|] on level n+1, there exists a unique
set of forests τ̂i = {µi

1, . . . ,µi
n+1} such that

τ= [µi
1]◦ [µi

2]◦ · · · ◦ [µi
n+1].

That is, labeling node i ,

τ= i

µi
n+1

µi
2

µi
1

Proposition 5.3. The Φ of (5.37) can alternatively be found by

Φ(τ) = ê(τ)+θ(τ)+ ∑
i s.t. n≥2

Λ(τ̂i ) (5.39)
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where ê(;) = 1 and ê(τ) = 0 for all τ 6= ;, θ(;) = 0, θ( ) = 1,

θ([τ1, . . . ,τm]) = 1

m +1
Φ(τ1) · · ·Φ(τm),

and

Λ(τ̂i ) =θ([µi
n+1])

∑
j

bn j
(
φn j 1(µi

1) · · ·φn j n(µi
n)

+ (−1)nφn j n(µi
1) · · ·φn j 1(µi

n)
)
.

(5.40)

Proof. Define ni so that ni +1 is the level of node i . Collect the children of
node i in the set Ci . We have

[µi
ni+1] = [µk

nk
]◦ [µk

nk+1] for all k ∈Ci ,

and thus
(a ×b)([µi

ni+1]) = ∑
k∈Ci

a(µk
nk

)b([µk
nk+1]).

Note also that µi
ni

=µk
ni

=µk
nk−1 if k ∈Ci . Then we get

(φn j 1×·· ·×φn j n ×θ)(τ) = (φn j 1 ×·· ·×φn j n ×θ)([µ1
1])

= ∑
i1∈C1

φn j 1(µi1
1 )(φn j 2 ×·· ·×φn j n ×θ)([µi1

2 ])

= ∑
i1∈C1

φn j 1(µi1
1 )

∑
i2∈Ci1

φn j 2(µi2
2 )(φn j 3 ×·· ·×φn j n ×θ)([µi2

3 ])

= ∑
i1∈C1

∑
i2∈Ci1

φn j 1(µi2
1 )φn j 2(µi2

2 )(φn j 3 ×·· ·×φn j n ×θ)([µi2
3 ])

...

= ∑
i1∈C1

∑
i2∈Ci1

· · · ∑
in∈Cin−1

φn j 1(µin
1 ) · · ·φn j n(µin

n )θ([µin
n+1])

= ∑
i on level n+1

φn j 1(µi
1) · · ·φn j n(µi

n)θ([µi
n+1]).

Inserting this and the corresponding result for (φn j n×·· ·×φn j 1×θ)(τ) in (5.36),
we get (5.40).

In [3, 8], conditions are derived for a B-series method to be energy preserv-
ing when applied to the system (5.6). In [26], while giving the AVF method as
one such method, Quispel and McLaren present a general form of what they
call energy-preserving linear combinations of rooted trees:

ω=

µn

µ2

µ1

+ (−1)n

µ1

µn−1

µn
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Here we give their result as a lemma, which is proved later by the proof of the
more general Theorem 5.5.

Lemma 5.6. Let µ1, . . . ,µn be n arbitrary forests. Then, if f (x) = S∇H(x) for
some skew-symmetric constant matrix S, we have that F (ω)(x) ·∇H(x) = 0 for

ω= [µ1]◦ [µ2]◦ · · · [µn]◦ [;]+ (−1)n [µn]◦ [µn−1]◦ · · · [µ1]◦ [;]. (5.41)

There is a connection between (5.39) and Lemma 5.6 such that instead
of order conditions for every tree, we can calculate order conditions for every
energy-preserving linear combination. To see this we start by collecting the
leaf nodes, i.e. nodes with no children, of the tree τ in a set Il and the other
nodes in the set In . If node i ∈ In , we may then use the relation

Λ({µi
1, . . . ,µi

n ,µi
n+1}) = θ([µi

n+1])Λ({µi
1, . . . ,µi

n ,;})

to find Λ(τ̂i ) from the previously calculated Λ for a smaller tree. Then if lower
order conditions are satisfied, we have numerical values for these Λ. The leaf
nodes on the other hand, with their corresponding τ̂i = {µi

1, . . . ,µi
n ,;}, gives an

energy-preserving linear combination (5.41) which τ belongs to. If i is on level
two, this combination is simply τ−τ= 0, and accordingly Λ is not calculated
for these nodes in (5.39). Moreover, leaves on the same level have identical τ̂i .
Thus, a tree with leaves on m different levels above level two will belong to at
most m non-zero energy-preserving linear combinations (5.41).

If we assume the conditions for order < p to be satisfied, we may replace
(5.37) by ∑

i∈Il

Λ(τ̂i ) = 1

γ(τ)
− ê(τ)− ∑

i∈In

Λ({µi
1, . . . ,µi

n ,;})

(|µi
n+1|+1)γ(µi

n+1)
, (5.42)

where |µ| denotes the number of trees in the forest µ. Note that Λ({;}) = 1 and
hence Λ(τ̂1) = θ(τ). Then we can calculate the numerical value for the right
hand side and, if τ has leaves on only one level > 2, find an order condition for
both τ and the other tree in the combination (5.41). This warrants an example.

Example 5.2. Consider again the tree τ = , which is part of the energy-

preserving linear combination ω = − . Ignoring the two nodes on level 2,
there are three nodes to calculate Λ for: i = 1, i = 4 and i = 5. We find

Λ(τ̂1) = 1

(2+1)γ( )γ( )
= 1

3 ·1 ·6
= 1

18

Λ(τ̂4) = 1

(1+1)γ( )
Λ({ ,;,;}) = 1

2γ( )

(
1

γ( )
− 1

3γ( )γ( )

)
= 1

2

(1

8
− 1

6

)
=− 1

48
,

Λ(τ̂5) =Λ({ ,;,;,;}) =∑
j

b3 j
(
φ3 j 1( )−φ3 j 3( )

)
.
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The right hand side of (5.42) becomes

1

γ(τ)
− 1

18
− (− 1

48
) = 1

30
− 1

18
+ 1

48
=− 1

720
,

and we have the order condition (5.38) for the linear combination − .

If there are leaves on r > 1 different levels levels above level two, things
get slightly more complicated. Then we get r different terms on the left hand
side of (5.42) and we need to consider the order condition for τ and the r trees
it forms energy-preserving linear combinations with, so that we get an equation
for every energy-preserving combination of these trees, also those not including
τ. This is illustrated by the following example.

Example 5.3. The tree forms energy-preserving combinations with both

and . Thus we have to calculate (5.42) for all three trees to find order

conditions for the corresponding linear combinations. Starting with τ = ,
which has three nodes above level two, two leaves and one non-leaf, we get

Λ(τ̂4) =Λ({ , ,;}) =∑
j

b2 j
(
φ2 j 1( )φ2 j 2( )+φ2 j 2( )φ2 j 1( )

)
,

Λ(τ̂5) = 1

(1+1)γ( )
Λ({ , ,;}) = 1

2γ( )

1

2

(
1

γ( )
− 1

3γ( )γ( )

)

= 1

2

1

2

( 1

15
− 1

9

)
=− 1

90
,

Λ(τ̂6) =Λ({ , ,;,;}) =∑
j

b3 j
(
φ3 j 1( )φ3 j 2( )−φ3 j 3( )φ3 j 2( )

)
=∑

j
b3 j φ3 j 2( )(φ3 j 1 −φ3 j 3)( ).

For the right hand side of (5.42), we get

1

γ(τ)
− 1

(2+1)γ( )γ( )
− (− 1

90
) = 1

48
− 1

3 ·1 ·8
+ 1

90
=− 7

720
,

and hence the order condition for is∑
j

b2 j
(
φ2 j 1( )φ2 j 2( )+φ2 j 2( )φ2 j 1( )

)
+∑

j
b3 j φ3 j 2( )(φ3 j 1 −φ3 j 3)( ) =− 7

720
.

(5.43)
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Similarly we calculate (5.42) for ,

∑
j k

b2 j φ2 j k ( )−2
∑

j
b3 j φ3 j 2( )(φ3 j 1 −φ3 j 3)( ) =− 1

120
, (5.44)

and for ,

∑
j k

b2 j φ2 j k ( )+2
∑

j
b2 j

(
φ2 j 1( )φ2 j 2( )+φ2 j 2( )φ2 j 1( )

)=− 1

36
. (5.45)

Combining (5.43), (5.44) and (5.45), we get the equivalent system of equations

∑
j

b3 j φ3 j 2( )(φ3 j 1( )−φ3 j 3( )) = 1

240
+α, (5.46)

∑
j

b2 j (φ2 j 1( )φ2 j 2( )+φ2 j 1( )φ2 j 2( )) =− 1

72
−α, (5.47)∑

j ,k
b2 j φ2 j k ( ) = 2α, (5.48)

where the choice of α ∈ R is arbitrary. The order conditions (5.46)–(5.48)

can be associated to the linear combinations − , + and + ,
respectively.

By considering the order conditions in Table 5.2, we find a fifth order
scheme of the form (5.34) given by

x̂ −x

h
=

(
I − 5

136
h2( f ′(z2) f ′(z3)+ f ′(z3) f ′(z2)

)− 1

102
h2 f ′(x) f ′(x)

+ 1

288
h3( f ′(x) f ′(x) f ′(z1)+ f ′(z1) f ′(x) f ′(x)

)
+ 1

120
h4 f ′(x) f ′(x) f ′(x) f ′(x)

)∫ 1

0
f ((1−ξ)x +ξx̂)dξ,

(5.49)

where

z1 = x+ 2

5
h f (x), z2 = x+ 17+p

17

30
h f (z1), z3 = x+ 17−p

17

30
h f (z1).
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|τ| ω Order condition
1 –
2 – –

3
∑

j b2 j =− 1
24

4 + ∑
j ,k b2 j φ2 j k ( ) =− 1

24

5 + ∑
j ,k b2 j φ2 j k ( )2 =− 1

40∑
j b2 j φ2 j 1( )φ2 j 2( ) =− 1

90

− ∑
j b3 j (φ3 j 1( )−φ3 j 3( )) =− 1

720

+ ∑
j ,k b2 j φ2 j k ( ) =− 1

60

∑
j b4 j = 1

240

6 + ∑
j ,k b2 j φ2 j k ( )3 =− 1

60

+ ∑
j b2 j (φ2 j 1( )2φ2 j 2( )+φ2 j 1( )φ2 j 2( )2) =− 1

72

− ∑
j b3 j (φ3 j 1( )2 −φ3 j 3( )2) =− 1

720

+ ∑
j ,k b2 j φ2 j k ( )φ2 j k ( ) =− 1

96

− ∑
j b3 j φ3 j 2( )(φ3 j 1( )−φ3 j 3( )) = 1

240 +α1

+ ∑
j b4 j (φ4 j 1( )+φ4 j 4( )) = 1

240

+ ∑
j b2 j (φ2 j 1( )φ2 j 2( )+φ2 j 1( )φ2 j 2( )) =− 1

72 −α1

− ∑
j b3 j (φ3 j 1( )−φ3 j 3( )) =− 1

180 −α2

+ ∑
j ,k b2 j φ2 j k ( ) = 2α1

+ ∑
j ,k b2 j φ2 j k ( ) =α2

+ ∑
j b4 j (φ4 j 2( )+φ4 j 3( )) =− 1

1440 −α2

Table 5.2: Energy-preserving linear combinations of elementary differentials, and their
associated order conditions for the scheme (5.34), up to sixth order. The coefficients
α1,α2 ∈R are arbitrary.
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A symmetric sixth order scheme is given by

x̂ −x

h
=

(
I − 13

360
h2 f ′(x̄ +

p
13

26
h f (x̄ − 3

p
13

26
h f (x̄))

)
· f ′(x̄ −

p
13

26
h f (x̄ + 3

p
13

26
h f (x̄))

)
− 13

360
h2 f ′(x̄ −

p
13

26
h f (x̄ + 3

p
13

26
h f (x̄))

)
· f ′(x̄ +

p
13

26
h f (x̄ − 3

p
13

26
h f (x̄))

)
− 1

180
h2 f ′(x) f ′(x)− 1

180
h2 f ′(x̂) f ′(x̂)

+ 1

720
h3 f ′(x̄ − 1

2
h f (x̄)) f ′(x̄) f ′(x̄ + 1

2
h f (x̄))

− 1

720
h3 f ′(x̄ + 1

2
h f (x̄)) f ′(x̄) f ′(x̄ − 1

2
h f (x̄))

+ 1

120
h4 f ′(x̄) f ′(x̄) f ′(x̄) f ′(x̄)

)∫ 1

0
f ((1−ξ)x +ξx̂)dξ,

(5.50)

where x̄ = x+x̂
2 . If we wish to calculate the matrix in front of the integral

explicitly, we have a non-symmetric sixth order scheme given by

x̂ −x

h
=

(
I − 13

360
h2( f ′(z6) f ′(z7)+ f ′(z7) f ′(z6)

)
− 1

180
h2( f ′(x) f ′(x)+ f ′(z1) f ′(z1)

)
+ 1

720
h3( f ′(x) f ′(z2) f ′(z3)− f ′(z3) f ′(z2) f ′(x)

)
+ 1

120
h4 f ′(z2) f ′(z2) f ′(z2) f ′(z2)

)∫ 1

0
f ((1−ξ)x +ξx̂)dξ,

(5.51)

with

z1 = x + 1

4
h f (x)+ 3

4
h f

(
x + 2

3
h f (x + 1

3
h f (x))

)
,

z2 = x + 1

2
h f (x), z3 = x +h f (z2),

z4 = 1

2
(x + z3)− 3

p
13

26
h f (z2), z5 = 1

2
(x + z3)+ 3

p
13

26
h f (z2),

z6 = 1

2
(x + z1)+

p
13

26
h f (z4), z7 = 1

2
(x + z1)−

p
13

26
h f (z5).
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5.4 AVF discrete gradient methods for general skew-
gradient systems

We will now build on the results of the previous paper by generalizing the
results to the situation where S(x) in the skew-gradient system (5.4) is not
necessarily constant. Consider therefore now an ODE of the form (5.4), and
set again g :=∇H . By Taylor expansion of x around t = t0 we get

x(t0 +h) =x +hSg + h2

2
(S′g Sg +Sg ′Sg )+ h3

6
(S′′g (Sg ,Sg )+2S′g ′(Sg ,Sg )

+Sg ′′(Sg ,Sg )+S′g S′g Sg +S′g Sg ′Sg +Sg ′S′g Sg +Sg ′Sg ′Sg )

+O(h4),

where x := x(t0), and S, g and their derivatives are evaluated in x. Introducing
the notation f ◦ := S′g and f • := Sg ′, we can write this in the abbreviated form

x(t0 +h) =x +h f + h2

2
( f ◦ f + f • f )+ h3

6
( f ◦◦( f , f )+2 f ◦•( f , f )

+ f ••( f , f )+ f ◦ f ◦ f + f ◦ f • f + f • f ◦ f + f • f • f )+O(h4).
(5.52)

5.4.1 Skew-gradient systems and P-series

A P-series is given by

P (φ, (x, y)) =
φ(;)x +∑

τ∈T P
h|τ|
σ(τ)φ(τ)F (τ)(x, y)

φ(;)y +∑
τ∈T P

h|τ|
σ(τ)φ(τ)F (τ)(x, y)

 , (5.53)

where T P is the set of rooted bi-colored trees and T P and T P are the subsets
of T P whose roots are black and white, respectively [13, Section III.2]. The bi-
colored trees are built recursively; starting with and , we let τ= [τ1, . . . ,τm]
be the tree you get by grafting the roots of τ1, . . . ,τm to a black root and τ =
[τ1, . . . ,τm] the tree you get by grafting τ1, . . . ,τm to a white root. No subscript,
i.e. τ= [τ1, . . . ,τm], means grafting to a black root.

The exact solution of a partitioned system

ẋ = f (x, y), x(t0) = x0,

ẏ = g (x, y), y(t0) = y0,
(5.54)

can be written as (x(t0+h), y(t0+h)) = P (1/γ, (x0, y0)), where the coefficient γ
is given by γ(;) = γ( ) = γ( ) = 1 and (5.33). As noted in [5], setting f (x, y) :=
S(y)∇H(x), the skew-gradient system (5.4) can be written as (5.54) with g = f .
When g = f , all coefficients and the elementary differentials F (τ) in (5.53) are
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given independent of the color of the root. Thus for the system (5.4), it suffices
to consider

P (φ, x) =φ(;)x + ∑
τ∈T P

h|τ|

σ(τ)
φ(τ)F (τ)(x), (5.55)

and we have that the exact solution of (5.4) can be written as x(t0 + h) =
P (1/γ, x0). Breaking slightly with convention, we define a P-series to be the
single row version (5.55) in the remainder of this paper. Denoting black-rooted
subtrees by τi and white-rooted subtrees by τ̄i , the elementary differentials
F (τ) for the skew-gradient system are given recursively by F ( )(x) = F ( )(x) =
S(x)∇H(x), and

F (τ)(x) = S(l )Dm∇H(F (τ1)(x), . . . ,F (τm)(x),F (τ̄1)(x), . . . ,F (τ̄l )(x)) (5.56)

for both τ = [τ1, . . . ,τm , τ̄1, . . . , τ̄l ] and τ = [τ1, . . . ,τm , τ̄1, . . . , τ̄l ] . The bi-
colored trees in T P and their corresponding elementary differentials F are
given up to order three in Table 5.3. The number of trees grows very quickly
with the order; see https://oeis.org/A000151.

|τ| F (τ)i F (τ) τ α(τ) γ(τ) σ(τ)
1 Si

j g j f 1 1 1

2 Si
j k g j Sk

l g l f ◦ f 1 2 1

Si
j g j

k Sk
l g l f • f 1 2 1

3 Si
j km g j Sk

l g l Sm
n g n f ◦◦( f , f ) 1 3 2

Si
j k g j

mSk
l g l Sm

n g n f ◦•( f , f ) 2 3 1

Si
j g j

kmSk
l g l Sm

n g n f ••( f , f ) 1 3 2

Si
j k g j Sk

l m g l Sm
n g n f ◦ f ◦ f 1 6 1

Si
j g j

k Sk
lm g l Sm

n g n f • f ◦ f 1 6 1

Si
j k g j Sk

l g l
mSm

n g n f ◦ f • f 1 6 1

Si
j g j

k Sk
l g l

mSm
n g n f • f • f 1 6 1

Table 5.3: Bi-colored trees and their elementary differentials up to third order.

The following lemma is Lemma III.2.2 in [13] amended to fit our setting.

Lemma 5.7. Let P (a, x) and P (b, x) be two P-series with a(;) = b(;) = 1.
Then

hS(P (a, x))∇H(P (b, x)) = P (a ∨b, x),

where (a ∨b)(;) = 0, (a ∨b)( ) = 1, and

(a ∨b)(τ) = a(τ1) · · ·a(τm)b(τ̄1) · · ·b(τ̄l ) for τ= [τ1, . . . ,τm , τ̄1, . . . , τ̄l ] .

148



5.4 AVF discrete gradient methods for general skew-gradient systems

Proposition 5.4. The AVF discrete gradient scheme

x̂ −x

h
= S

(
x + x̂

2

)∫ 1

0
∇H((1−ξ)x +ξx̂)dξ (5.57)

is a second order P-series method.

Proof. As in the proof of Proposition 5.2, we define ê by ê(;) = 1 and ê(τ) = 0
for all τ 6= ;. Now, assume that the solution x̂ of (5.57) can be written as the
P-series x̂ = P (Φ, x). Then, using Lemma 5.7, we find the P-series

h S

(
x + x̂

2

)∫ 1

0
∇H((1−ξ)x +ξx̂)dξ

= h S
(
P

(1

2
ê + 1

2
Φ, x

)) ∫ 1

0
∇H

(
P ((1−ξ)ê +ξΦ, x)

)
dξ

=
∫ 1

0
h S

(
P

(1

2
ê + 1

2
Φ, x

))∇H
(
P ((1−ξ)ê +ξΦ, x)

)
dξ

= P

(∫ 1

0

((1

2
ê + 1

2
Φ

)∨ (
(1−ξ)ê +ξΦ

))
dξ, x

)
.

Thus we get Φ= ê+∫ 1
0

((1
2 ê+ 1

2Φ
)∨(

(1−ξ)ê+ξΦ
))

dξ= ê+∫ 1
0

((1
2Φ

)∨(
ξΦ

))
dξ.

That is, Φ(;) = 1, Φ( ) = 1, and

Φ([τ1, . . . ,τm , τ̄1, . . . , τ̄l ]) = 1

(m +1)2l
Φ(τ1) · · ·Φ(τm)Φ(τ̄1) · · ·Φ(τ̄l ).

Writing out the first few terms of the series, we have

x̂ =x +h f + h2

2
( f ◦ f + f • f )+h3(

1

8
f ◦◦( f , f )+ 1

4
f ◦•( f , f )+ 1

6
f ••( f , f )

+ 1

4
f ◦ f ◦ f + 1

4
f ◦ f • f + 1

4
f • f ◦ f + 1

4
f • f • f )+O(h4),

which, after comparing with the expanded exact solution (5.52), we see is of
order two.

The following lemma is obtained in a manner similar to Lemma 5.5, i.e.
Theorem 2.2 in [23], and hence we present it without its proof.

Lemma 5.8. Let P (a, x), P (b, x) and P (c, x) be three P-series with a(;) =
b(;) = 1 and c(;) = 0. Then

h S(P (a, x))∇2H(P (b, x))P (c, x) = P ((a,b)× c, x)
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with ((a,b)× c)(;) = ((a,b)× c)( ) = 0 and otherwise

((a,b)× c)(τ) =
m∑

i=1

m∏
j=1, j 6=i

l∏
k=1

a(τ̄k )b(τ j )c(τi ) (5.58)

for τ= [τ1, . . . ,τm , τ̄1, . . . , τ̄l ].

Note that {;} counts as both a black-rooted and a white-rooted tree. Hence
we have e.g.

((a,b)× c)( ) = a( )b(;)c( ) = a( )c( ),

where we also use that a( ) = a( ).
We now present a subclass of the AVF discrete gradient method, for which

we will find order conditions using Lemma 5.7 and Lemma 5.8. This subclass
is every AVF discrete gradient method for which the approximation of S(x) can
be written on the form

S(x, x̂,h) =
p−1∑
n=0

hn
∑

j
bn j

(
n∏

k=1
S(z̄n j k )∇2H(zn j k ) ·S(z̄n j (n+1))

+ (−1)n S(z̄n j (n+1))
n∏

k=1
∇2H(zn j (n−k+1))S(z̄n j (n−k+1))

)
,

(5.59)

where, if x̂ is the solution of

x̂ −x

h
= S(x, x̂,h)∇AVFH(x, x̂),

each zn j k := zn j k (x, x̂,h) = P (φn j k , x) and each z̄n j k := z̄n j k (x, x̂,h) =
P (ψn j k , x) can be written as a P-series with φn j k (;) = ψn j k (;) = 1 for all
n, j ,k. We require that

∑
j b0 j = 1

2 , which ensures that (5.59) is a consistent
approximation of S(x).

Theorem 5.3. The discrete gradient scheme (5.9) with the AVF discrete gradi-
ent (5.10) and the approximation of S(x) given by (5.59) is a P-series method.

Proof. Generalizing the argument in the proof of Proposition 5.4, we find the
P-series

h S
(
P (a, x)

)∫ 1

0
∇H((1−ξ)x +ξx̂)dξ= P

(∫ 1

0

(
a ∨ (

(1−ξ)ê +ξΦ
))

dξ, x

)
,

where θ̄(a) := ∫ 1
0

(
a ∨ (

(1−ξ)ê +ξΦ
))

dξ= ∫ 1
0

(
a ∨ξΦ

))
dξ, so that θ̄(a)(;) = 0,

θ̄(a)( ) = 1, and

θ̄(a)([τ1, . . . ,τm , τ̄1, . . . , τ̄l ]) = 1

m +1
Φ(τ1) · · ·Φ(τm)a(τ̄1) · · ·a(τ̄l ). (5.60)
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Thus we may write the solution x̂ found from applying the scheme (5.9) with
the AVF discrete gradient (5.10) and S(x, x̂,h) given by (5.59) as

x̂ = x +
p−1∑
n=0

hn
∑

j
bn j

(
n∏

k=1
S(P (ψn j k , x))∇2H(P (φn j k , x)) ·P (θ̄(ψn j (n+1)), x)

+(−1)n
n∏

k=1
S(P (ψn j (n−k+2), x))∇2H(P (φn j (n−k+1), x)) ·P (θ̄(ψn j 1), x)

)

= x +
p−1∑
n=0

∑
j

bn j

(
P ((ψn j 1,φn j 1)×·· ·× (ψn j n ,φn j n)× θ̄(ψn j (n+1)), x)

+(−1)nP ((ψn j (n+1),φn j n)×·· ·× (ψn j 2,φn j 1)× θ̄(ψn j 1), x)
)

= P (Φ, x),

(5.61)

with

Φ=ê +
p−1∑
n=0

∑
j

bn j
(
(ψn j 1,φn j 1)×·· ·× (ψn j n ,φn j n)× θ̄(ψn j (n+1))

+ (−1)n (ψn j (n+1),φn j n)×·· ·× (ψn j 2,φn j 1)× θ̄(ψn j 1)
)
.

(5.62)

Theorem 5.4. The AVF discrete gradient method with S given by (5.59) is of
order p if and only if

Φ(τ) = 1

γ(τ)
for |τ| ≤ p. (5.63)

The values Φ(τ) can be found from (5.62) using (5.58) recursively and then
(5.60). However, a more convenient approach is derived in the next section.

5.4.2 Order conditions

This section is devoted to generalization of the results in Section 5.3.1 to the
cases where S(x) is not necessarily constant. To that end, for a tree τ ∈ T P ,
we cut off all branches between black and white nodes and denote the mono-
colored tree we are left with by τb . We number the nodes in that tree as before,
from 1 to |τb |, and reattach the cut-off parts to the tree to get τ again. Let µ

denote a forest of black-rooted trees and η a forest of white-rooted trees. Then,
for a given node i ∈ [1, . . . , |τb |] on level n+1, there exists a unique set of forests
τ̂i = {(µi

1,ηi
1), . . . , (µi

n+1,ηi
n+1)} such that

τ= [(µi
1,ηi

1)]◦ [(µi
2,ηi

2)]◦ · · · ◦ [(µi
n+1,ηi

n+1)].
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That is,

τ= i

ηi
n+1µi

n+1

ηi
2µi

2

ηi
1µi

1

Now we can generalize Proposition 5.3 as follows.

Proposition 5.5. The Φ of (5.62) can be found by

Φ(τ) = ê(τ)+
|τb |∑
i=1

Λ(τ̂i ) (5.64)

where ê(;) = 1 and ê(τ) = 0 for all τ 6= ;, and

Λ(τ̂i ) =θ([µi
n+1])

∑
j

bn j

(
ψn j 1(ηi

1)φn j 1(µi
1) · · ·

·ψn j n(ηi
n)φn j n(µi

n)ψn j (n+1)(η
i
n+1)

+ (−1)nψn j (n+1)(η
i
1)φn j n(µi

1)ψn j n(ηi
2) · · ·

·φn j 1(µi
n)ψn j 1(ηi

n+1)

)
,

(5.65)

with

θ([τ1, . . . ,τm]) = 1

m +1
Φ(τ1) · · ·Φ(τm).

Proof. Defining ni and Ci as in the proof of Proposition 5.3, we have

[(µi
ni+1,ηi

ni+1)] = [(µk
nk

,ηk
nk

)]◦ [(µk
nk+1,ηk

nk+1)] for all k ∈Ci ,

((a,b)× c)([(µi
ni+1,ηi

ni+1)]) = ∑
k∈Ci

a(ηk
nk

)b(µk
nk

)c([µk
nk+1,ηk

nk+1]).

Observe that θ̄(a)([µ,η]) = a(η)θ([µ]). For n = 0 we have

θ̄(ψ0 j 1)(τ) = θ̄(ψ0 j 1)([µ1
1,η1

1]) =ψ0 j 1(η1
1)θ([µ1

1]),
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and for n > 0 we get

((ψn j 1,φn j 1)×·· ·× (ψn j n ,φn j n)× θ̄(ψn j (n+1)))(τ)

= ((ψn j 1,φn j 1)×·· ·× (ψn j n ,φn j n)× θ̄(ψn j (n+1)))([µ1
1,η1

1])

= ∑
i1∈C1

ψn j 1(ηi1
1 )φn j 1(µi1

1 )((ψn j 2,φn j 2)×·· ·

× (ψn j n ,φn j n)× θ̄(ψn j (n+1)))([µi1
2 ,ηi1

2 ])

...

= ∑
i1∈C1

· · · ∑
in∈Cin−1

ψn j 1(ηin
1 )φn j 1(µin

1 ) · · ·

·ψn j n(ηin
n )φn j n(µin

n )θ̄(ψn j (n+1))([µin
n+1,ηin

n+1])

= ∑
i on level n+1

ψn j 1(ηi
1)φn j 1(µi

1) · · ·

·ψn j n(ηi
n)φn j n(µi

n)ψn j (n+1)(η
i
n+1)θ([µi

n+1]).

Inserting this and the corresponding result for ((ψn j (n+1),φn j n) × ·· · ×
(ψn j 2,φn j 1)× θ̄(ψn j 1))(τ) in (5.62), we get (5.65).

Note that if τ only has black nodes, we have Λ(τ̂1) = θ(τ)
∑

j b0 j (ψ0 j 1(;)+
ψ0 j 1(;)) = θ(τ), and also Λ(τ̂i ) = 0 for all nodes i on level 2. Thus (5.64)
simplifies to (5.39).

Like for the constant S case, the order conditions can be given for energy-
preserving linear combinations of elementary differentials instead for each el-
ementary differential. In the following generalization of Lemma 5.6, we state
that the energy-preserving linear combinations of bi-colored rooted trees are
given by

ω=

ηn+1

ηnµn

η2µ2

η1µ1

+ (−1)n

η1

η2µ1

ηnµn−1

ηn+1µn

Theorem 5.5. Let µ1,µ2, . . . ,µn be arbitrary forests of black-rooted trees and
η1,η2, . . . ,ηn+1 arbitrary forests of white-rooted trees. Given f (x) = S(x)∇H(x),
where S(x) is a skew-symmetric matrix, and elementary differentials defined by
(5.56), the linear combinations of trees given by

ω= [(µ1,η1)]◦ · · · ◦ [(µn ,ηn)]◦ [ηn+1]

+ (−1)n [(µn ,ηn+1)]◦ · · · ◦ [(µ1,η2)]◦ [η1]
(5.66)
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are energy-preserving in the sense that F (ω)(x) ·∇H(x) = 0.

Proof. For any forest of black-rooted trees µ j , we have F ([µ j ]◦[;]) = SB j S∇H
for some symmetric matrix B j , suppressing the argument x. Similarly, for
a forest of white-rooted trees η j , we have F ([η j ]) = W j∇H for some skew-
symmetric matrix W j . Note that the empty forest is considered both a black-
rooted and a white-rooted forest, and accordingly we have F ([;]◦ [;]) = F ( ) =
S(∇2H)S∇H and F ([;]) = F ( ) = S∇H . For these matrices B j and W j corre-
sponding to the forests µ j and η j , we get

F
(
[(µ1,η1)]◦ · · · ◦ [(µn ,ηn)]◦ [ηn+1]

)=W1B1W2B2 · · ·BnWn+1∇H .

We have

(W1B1W2B2 · · ·BnWn+1)T =
−Wn+1BnWnBn−1 · · ·B1W1 if n even,

Wn+1BnWnBn−1 · · ·B1W1 if n odd.

Thus F (ω)(x) is a skew-symmetric matrix times ∇H(x), and the statement in
the above theorem follows directly.

Example 5.4. We show that the combination + is energy-preserving.

: ( f • f ••( f , f ◦ f ))i = Si
j g j

k Sk
l g l

moSm
n g nSo

pq g p Sq
r g r

= Si
j g j

k Sk
l g l

moSm
n g nSo

pq Sq
r g r g p .

: ( f ◦••( f , f , f • f ))i = Si
j k g j

moSk
l g l Sm

n g nSo
p g p

q Sq
r g r

= Si
j k Sk

l g l g j
moSm

n g nSo
r g r

q Sq
p g p .

For this linear combination on the form (5.66), we have η1 = η2 = ;,η3 = ,
µ1 =;,µ2 = , with the corresponding matrices W1 =W2 = S, (W3)i

j = Si
j k Sk

l g l

and B1 =∇2H , (B2) j
m = g j

kmSk
l g l . Thus we get

+ = f • f ••( f , f ◦ f )+ f ◦••( f , f , f • f ) = Z∇H ,

where Z := S(∇2H)SB2W3 +W3B2S(∇2H)S is a skew-symmetric matrix.

For bi-colored trees, we define a node on the tree τ to be a leaf if it is a
leaf on the corresponding cut tree τb by the definition of leaves given in the
previous chapter. We let Il be the set of leaves and In the set of non-leaf nodes
which are also in τb , so that Il ∪ In = [1, . . . , |τb |]. In contrast to the case with
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mono-colored trees, a leaf i on level one or two of a bi-colored tree may give
rise to a non-zero energy-preserving linear combination; it does so if and only
if ηi

k 6= ; for any k = 1,2. Accordingly, Λ(τ̂i ) is calculated in (5.64) also when
n = 0,1. Furthermore, two leaves i and j on the same level will belong to
two different energy-preserving combinations if ηi

n+1 6= η
j
n+1. Therefore we

now simply state that a tree with r leaves, also including the lower two levels,
belong to at most r non-zero linear combinations. We thus get r terms on the
left hand side of

∑
i∈Il

Λ(τ̂i ) = 1

γ(τ)
− ê(τ)− ∑

i∈In

Λ({(µi
1,ηi

1), . . . , (µi
n ,ηi

n), (;,ηi
n+1)})

(|µi
n+1|+1)γ(µi

n+1)
, (5.67)

which is equivalent to (5.63) if we assume the conditions for lower order to be
satisfied.

Example 5.5. Consider the tree τ= , which is part of the energy-preserving

linear combination − . Assume that the order conditions up to and includ-
ing order three are all satisfied. The cut tree τb = has three nodes of which
two are leaves. Node number 2 is a leaf on level 2 with η2

1 = η2
2 =;, and thus

gives Λ(τ̂2) = 0. We find for the other two,

Λ(τ̂1) =Λ({(( , ),;)}) = 1

(|µ1
1|+1)γ(µ1

1)
Λ

(
{(;,;)}

)= 1

(2+1)γ( )γ( )

1

γ( )
= 1

6
,

Λ(τ̂3) =Λ({( ,;), (;, )}) =∑
j

b1 j (φ1 j 1( )ψ1 j 2( )−ψ1 j 1( )φ1 j 1( ))

=∑
j

b1 j φ1 j 1( )(ψ1 j 2 −ψ1 j 1)( ).

For the right hand side of (5.67) we get

1

γ(τ)
−Λ(τ̂1) = 1

8
− 1

6
=− 1

24
,

and thus the order condition∑
j

b1 j φ1 j 1( )(ψ1 j 2 −ψ1 j 1)( ) =− 1

24

for the energy-preserving linear combination − .

Even though the number of black-rooted bi-colored trees grows very
quickly, e.g. to 26 for |τ| = 4 and 107 for |τ| = 5, finding and satisfying the
order conditions is not as daunting a task as it might first appear. First of all, it
suffices to find order conditions for the non-zero linear combinations given by
(5.66). Moreover, a couple key observations simplifies the process further:
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|τ| ω Order condition
1 2

∑
j b0 j = 1

2 2
∑

j b0 j ψ0 j 1( ) = 1
2

3 2
∑

j b0 j ψ0 j 1( )2 = 1
3∑

j b2 j =− 1
24

2
∑

j b0 j ψ0 j 1( ) = 1
6

2
∑

j b0 j ψ0 j 1( ) = 1
6

− ∑
j b1 j (ψ1 j 2 −ψ1 j 1)( ) =− 1

12
4 2

∑
j b0 j ψ0 j 1( )3 = 1

4

2
∑

j b2 j ψ2 j 2( ) =− 1
24

2
∑

j b0 j ψ0 j 1( ) = 1
12

2
∑

j b0 j ψ0 j 1( ) = 1
12

2
∑

j b0 j ψ0 j 1( ) = 1
12

2
∑

j b0 j ψ0 j 1( )ψ0 j 1( ) = 1
8

2
∑

j b0 j ψ0 j 1( )ψ0 j 1( ) = 1
8

+ ∑
j b2 j (φ2 j 1 +φ2 j 2)( ) =− 1

24

− ∑
j b1 j (ψ1 j 2( )2 −ψ1 j 1( )2) =− 1

12

− ∑
j b1 j φ1 j 1( )(ψ1 j 1 −ψ1 j 0)( ) =− 1

24

2
∑

j b0 j ψ0 j 1( ) = 1
24

2
∑

j b0 j ψ0 j 1( ) = 1
24

2
∑

j b0 j ψ0 j 1( ) = 1
24

2
∑

j b0 j ψ0 j 1( ) = 1
24

+ ∑
j b2 j (ψ2 j 1 +ψ2 j 3)( ) =− 1

24

− ∑
j b1 j (ψ1 j 2 −ψ1 j 1)( ) =− 1

24

− ∑
j b1 j (ψ1 j 2 −ψ1 j 1)( ) =− 1

24

Table 5.4: Linear combinations ω of bi-colored black-rooted trees corresponding to
energy-preserving elementary differentials of f (x) = S(x)∇H(x), where S(x) is a skew-
symmetric matrix, as well as their associated order conditions for the discrete gradient
method (5.9) with the AVF discrete gradient (5.10) and S(x, x̂,h) given by (5.59).
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• The large number of trees τ for which τb = , i.e. trees with no black
nodes on level 2, are all energy-preserving. They can be written τ= [η1

1],
and their order condition is given by

2
∑

j
b0 j ψ0 j 1(η1

1) = 1

γ(τ)
.

• For trees that are identical except for the colors of the descendants of

white nodes, it suffices to calculate one order condition. E.g. for we
have the order condition 2b0 j ψ0 j 1( ) = 1

12 , where each of the gray nodes
may be black or white. To satisfy these conditions, it is natural to require
that z̄0 j 1 in (5.59) is a B-series up to order p −1.

From the order conditions displayed in Table 5.4 we find that one second
order scheme is given by (5.9) using the AVF discrete gradient (5.10) and an
explicit skew-symmetric approximation of S given by S(x, ·,h) = S(x+ 1

2 h f (x)).
A third order scheme is obtained if we instead use the skew-symmetric approx-
imation of S explicitly given by

S(x, ·,h) = 1

4
S(x)+ 3

4
S(z2)

+ 1

4
h

(
S(z1)∇2H(x)S(x)−S(x)∇2H(x)S(z1)

)
− 1

12
h2 S(x)∇2H(x)S(x)∇2H(x)S(x),

(5.68)

where z1 = x + 1
3 h f (x), z2 = x + 2

3 h f (z1).
A symmetric fourth order scheme is given by (5.9) using the AVF discrete

gradient (5.10) and the skew-symmetric approximation of S

S(x, x̂,h) = 1

2
S
(
x̄ − 1p

12
h f

(
x̄ + 1p

12
h f (x̄)

))
+ 1

2
S
(
x̄ + 1p

12
h f

(
x̄ − 1p

12
h f (x̄)

))
+ 1

2
h S

(
x̄ + 1

12
h f (x̄)

)∇2H(x̄)S
(
x̄ − 1

12
h f (x̄)

)
− 1

2
h S

(
x̄ − 1

12
h f (x̄)

)∇2H(x̄)S
(
x̄ + 1

12
h f (x̄)

)
− 1

12
h2 S(x̄)∇2H(x̄)S(x̄)∇2H(x̄)S(x̄),

(5.69)

where x̄ = x+x̂
2 . Another fourth order scheme is obtained if we instead use the
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explicit skew-symmetric approximation of S found by

S(x, ·,h) = 1

2
(S(z5 + z6)+S(z5 − z6))

+ 1

12
h

(
S(z2)∇2H(z1)S(x)−S(x)∇2H(z1)S(z2)

)
− 1

12
h2 S(z1)∇2H(z1)S(z1)∇2H(z1)S(z1),

(5.70)

where

z1 = x + 1

2
h f (x), z2 = x +h f (z1), z3 = x +h f (z2), z4 = x +h f (z3),

z5 = 1

3
(x + z1 + z2)+ 1

12
(−z3 + z4), z6 =

p
3

36
(7x −2z1 −4z2 + z3 −2z4).

5.5 Order conditions for general discrete gradient
methods

We will now generalize the results of the two previous chapters to discrete
gradient methods with a general discrete gradient, as defined by (5.7)–(5.8). To
that end, we introduce two new series in the vein of B- and P-series, as well as
related tree structures.

5.5.1 The constant S case

Consider mono-colored rooted trees whose nodes can have two different shapes:
the circle shape of the nodes in trees of B-series, but also a triangle shape. Let
TG be the set of such trees whose leaves are always circles. That is, from the
first tree , every tree τ ∈ TG can be built recursively through

[τ1, . . . ,τm] , [τ1, . . . ,τm] , τ1, . . . ,τm ∈ TG ,

which denotes the grafting of the trees τ1, . . . ,τm to a root or , respectively.
The elementary differentials F (τ) corresponding to a tree τ ∈ TG are likewise
defined recursively by F ( )(x) = f (x) = S∇H(x) and

F (τ)(x) =
SDm∇H(x)(F (τ1)(x), . . . ,F (τm)(x)) for τ= [τ1, . . . ,τm] ,

SDm−1
2 Q(x, x)(F (τ1)(x), . . . ,F (τm)(x)) for τ= [τ1, . . . ,τm] .

We can then define a generalization of B-series which includes these elementary
differentials.
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5.5 Order conditions for general discrete gradient methods

Definition 5.4. A G-series is a formal series of the form

G(φ, x) =φ(;)x + ∑
τ∈TG

h|τ|

σ(τ)
φ(τ)F (τ)(x), (5.71)

where φ : TG ∪ {;} →R is an arbitrary mapping, and the symmetry coefficient
σ is given by (5.31).

The G-series of the exact solution is given by x(t0 +h) =G(ξ, x(t0)), with

ξ(τ) =
 1

γ(τ) if τ ∈ T,

0 otherwise.
(5.72)

For use in the remainder of this paper, we generalize the Butcher product by
the definition

u ◦ v = [u1, . . . ,um , v] , for u = [u1, . . . ,um] , ∈ { , }.

Furthermore, we let |τ| denote the total number of nodes in τ, and |τ| the
number of nodes of type . Let SG be the set of tall trees in T G; that is, the set
of threes with only one node on each level. For a tree τ ∈ TG , number every
tree from 1 to |τ|, as before. For any node i on level n +1, we define the stem
si ∈ SG to be the tall tree consisting of the nodes connecting the root to node i ,
including the root and node i . Denote the j th node of si by si

j , so that si
1 is the

root and si
n+1 = i . Then we have a unique set of forests τ̂i = {µi

1, . . . ,µi
n+1} such

that
τ= [µi

1]si
1
◦ [µi

2]si
2
◦ · · · ◦ [µi

n+1]si
n+1

.

That is,

τ=

si
1

si
2

si
n+1

µi
n+1

µi
2

µi
1

The following lemma is a generalization of Lemma 5.5 to G-series. Its
proof is very similar to the proof of [23, Theorem 2.2], and hence omitted.

Lemma 5.9. Let G(a, x) and G(b, x) be two G-series with a(;) = 1 and b(;) =
0. Then the G-series hS∇2H(G(a, x))G(b, x) = G(a × b, x) is given by (a ×
b)(;) = (a ×b)( ) = 0 and otherwise

(a ×b)(τ) =


∑m
i=1

∏m
j=1, j 6=i a(τ j )b(τi ) for τ= [τ1, . . . ,τm] ,

0 for τ= [τ1, . . . ,τm] .

159



Order theory for discrete gradient methods

Moreover, hSQ(x,G(a, x))G(b, x) =G(a ⊗b, x), with (a ⊗b)(;) = (a ⊗b)( ) = 0
and otherwise

(a ⊗b)(τ) =
0 for τ= [τ1, . . . ,τm] ,∑m

i=1

∏m
j=1, j 6=i a(τ j )b(τi ) for τ= [τ1, . . . ,τm] .

To every stem s ∈ SG of height n+1 = |s|, we associate coefficients bs j and
φs j k . Letting sk be the k th node of s, we define the function

R(φs j k , x) :=
∇2H(G(φs j k , x)) if sk = ,

Q(x,G(φs j k , x)) if sk = .

Then we have hSR(φs j k , x)G(b, x) = G(φs j k ¦b), with (φs j k ¦b)(;) = (φs j k ¦
b)( ) = 0 and

(φs j k ¦b)(τ) =


∑m
i=1

∏m
j=1, j 6=i φs j k (τ j )b(τi ) for τ= [τ1, . . . ,τm]sk ,

0 if root of τ 6= sk .

Consider now the class of skew-symmetric and consistent approximations
to S that can be written on the form

S(x, y,h) = ∑
s∈SG

hn
∑

j
bs j

(
n∏

k=1
SR(φs j k , x)+ (−1)|s| −1

n∏
k=1

SR(φs j (n−k+1), x)

)
S

(5.73)

whenever y is the solution of
y −x

h
= S(x, y,h)∇H(x, y),

with φs j k (;) = 1 for every s, j ,k, and with
∑

j b j = 1
2 .

Lemma 5.10. The discrete gradient method (5.9) with S(x, x̂,h) given by (5.73)
and ∇H ∈C∞(Rd ×Rd ,Rd ) is a G-series method when applied to a constant S
skew-gradient system (5.6).

Proof. Assume that the solution x̂ of (5.9) with S(x, x̂,h) given by (5.73) can
be written as the G-series x̂ =G(Φ, x). Then, using Lemma 5.2 and ∇H(x, x) =
∇H(x),

hS∇H(x, x̂) =hS
∞∑

m=0

1

m!
Dm

2 ∇H(x, x)(G(Φ, x)−x)m

=hS
∞∑

m=0

1

(m +1)!
Dm∇H(x)(G(Φ, x)−x)m

−hS
∞∑

m=1

2m

(m +1)!
Dm−1

2 Q(x, x)(G(Φ, x)−x)m .
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5.5 Order conditions for general discrete gradient methods

Arguing as in the proof of Lemma III.1.9 in [13], we get h S∇H(x, x̂) =G(θ, x),
with θ(;) = 0, θ( ) = 1, and

θ([τ1, . . . ,τm] ) = 1

m +1
Φ(τ1) · · ·Φ(τm),

θ([τ1, . . . ,τm] ) = −2m

m +1
Φ(τ1) · · ·Φ(τm).

(5.74)

Then we can write (5.9) with S(x, x̂,h) given by (5.73) as

x̂ = x + ∑
s∈SG

hn
∑

j
bs j

(
n∏

k=1
SR(φs j k , x)+ (−1)|s| −1

n∏
k=1

SR(φs j (n−k+1), x)

)
G(θ, x)

= x +G(θ, x)+ ∑
s∈SG , n>0

∑
bs

j

(
G(φs j 1 ¦ · · · ¦φs j n ¦θ, x)

+ (−1)|s| −1G(φs j n ¦ · · · ¦φs j 1 ¦θ, x)
)

=G(Φ, x),

with

Φ=ê +θ+ ∑
s∈SG , n>0

∑
j

bs j

(
φs j 1 ¦ · · · ¦φs j n ¦θ+ (−1)|s| −1φs j n ¦ · · · ¦φs j 1 ¦θ

)
.

(5.75)

Theorem 5.6. The discrete gradient method (5.9) with S(x, x̂,h) given by (5.73)
and ∇H ∈C∞(Rd ×Rd ,Rd ) is of order p if and only if

Φ(τ) = ξ(τ) for |τ| ≤ p, (5.76)

where Φ is given by (5.75) and the ξ is given by (5.72).

We remark that ∇H ∈ C∞(Rd ×Rd ,Rd ) is a necessary condition for the
method to be a G-series method for all S and H , but not for its order; ∇H ∈
C p−1(Rd ×Rd ,Rd ) is sufficient for the scheme to be of order p. The following
proposition is presented without its proof, which follows along the lines of the
proof of Proposition 5.3.

Proposition 5.6. The Φ of (5.76) satisfies

Φ(τ) = ê(τ)+θ(τ)+ ∑
i s.t. n≥1

Λ(τ̂i , si ) (5.77)

where ê(;) = 1 and ê(τ) = 0 for all τ 6= ;, θ is given by (5.74), and

Λ(τ̂i , si ) = θ([µi
n+1]si

n+1
)
(∑

j
bsi j φsi j 1(µi

1) · · ·φsi j n(µi
n)

+ (−1)|s
i | −1

∑
j

b ŝi j φŝi j n(µi
1) · · ·φŝi j 1(µi

n)
)
,

(5.78)

with ŝi given by ŝi
k = si

n−k+1 for k = 1, . . . ,n, and ŝi
n+1 = si

n+1.
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Order theory for discrete gradient methods

As for the AVF method, one does not need to find the order conditions for
every tree; it suffices to find the order condition for each energy-preserving
linear combination of the form

ω= [µ1]s1 ◦ [µ2]s2 ◦ · · · [µn]sn ◦ [;]

+ (−1)n [µn]sn ◦ [µn−1]sn−1 ◦ · · · [µ1]s1 ◦ [;] .
(5.79)

The above does not give every energy-preserving linear combination of the
elementary differentials of G-series; it gives the combinations one gets in the
scheme (5.9) with S(x, x̂,h) given by (5.73). Now, let again Il and In denote the
sets of leaf nodes and non-leaf nodes, respectively. If we assume the conditions
for order < p to be satisfied, we have an equivalent order condition to (5.76) by∑

i∈Il

Λ(τ̂i , si ) = ξ(τ)− ê(τ)− ∑
i∈In

Λ(τ̂i , si ), (5.80)

where we may use the relation

Λ({µi
1, . . . ,µi

n ,µi
n+1}, si ) = θ̂([µi

n+1]si
n+1

)Λ({µi
1, . . . ,µi

n ,;}, s̄i )

to calculate Λ(τ̂i ) for i ∈ In . Here s̄i is si with si
n+1 replaced by , and θ̂(;) = 0,

θ̂( ) = 1, and

θ̂([τ1, . . . ,τm] ) = 1

m +1
ξ(τ1) · · ·ξ(τm),

θ̂([τ1, . . . ,τm] ) = −2m

m +1
ξ(τ1) · · ·ξ(τm).

(5.81)

Note that Λ(τ̂1, s1) = θ̂(τ).

Example 5.6. Consider τ= , which is part of two combinations of the form

(5.79): ω= + and ω= 2 . We calculate

Λ(τ̂1, s1) =Λ({( , )}, ) = θ̂( ) = 0,

Λ(τ̂2, s2) =Λ({ ,;}, ) =∑
j

bs2 j φs2 j 1( )+∑
j

b ŝ2 j φŝ2 j 1( ) = 2
∑

j
bs2 j φs2 j 1( )

Λ(τ̂3, s3) =Λ({ , }, ) = θ̂( )Λ({ ,;}, ) = θ̂( )(−1

2
θ̂( )) =−1(−1

2
(−4

3
)) =−2

3
,

Λ(τ̂4, s4) =Λ({ ,;,;}, ) =∑
j

bs4 j φs4 j 1( )+∑
j

b ŝ4 j φŝ4 j 2( ) =∑
j ,k

bs4 j φs4 j k ( ).

Thus (5.80) becomes

2
∑

j
bs2 j φs2 j 1( )+∑

j ,k
bs4 j φs4 j k ( ) = 2

3
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5.5 Order conditions for general discrete gradient methods

|τ| ω s Order condition
1

∑
j bs j = 1

2
2

∑
j bs j = 1

2
3

∑
j bs j φs j 1( ) = 1

3∑
j bs j = 1

2

− ∑
j bs j −∑

j b s̄ j = 0∑
j bs j =− 1

24
4

∑
j bs j φs j 1( )2 = 1

4∑
j bs j φs j 1( ) = 0∑
j bs j φs j 1( ) = 1

6

+ ∑
j ,k bs j φs j k ( ) = 2

3

− ∑
j bs j φs j 2( )−∑

j b s̄ j φs̄ j 1( ) = 0

− ∑
j bs j φs j 2( )−∑

j b s̄ j φs̄ j 1( ) = 0

+ ∑
j ,k bs j φs j k ( ) =− 1

24∑
j bs j = 1

2

− ∑
j bs j −∑

j b s̄ j = 0

+ ∑
j bs j −∑

j b s̄ j = 0∑
j bs j = 0

Table 5.5: Energy-preserving linear combinations of the form (5.79) and their asso-
ciated order conditions for the discrete gradient method (5.9) with S(x, x̂,h) given by
(5.73).
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Order theory for discrete gradient methods

for τ= . We do similar calculations for , and get (5.80) for that to be

2
∑
j ,k

bs4 j φs4 j k ( ) = 4

3
.

Thus we have the order condition∑
j ,k

bs4 j φs4 j k ( ) = 2

3
(5.82)

for ω= + , and ∑
j

bs2 j φs2 j 1( ) = 0

for ω= 2 . Note that although the tree gives an energy-preserving elemen-
tary differential, this by itself is not of the form (5.79).

From the order conditions in Table 5.5, we can find an S(x, y,h) so that (5.9)
becomes a fourth order scheme for any ∇H ∈C 3(Rd ×Rd ,Rd ). For instance, the

stem s = has the related order conditions
∑

j bs j = 1
2 and

∑
j ,k bs j φs j k ( ) = 2

3 ,
which sets the requirements for the term

h2
∑

j
bs j (SQ(x, z1 j )SQ(x, z2 j )+SQ(x, z2 j )SQ(x, z1 j ))S.

Choosing bs1 = 1
2 and z11 = z21 = x + 2

3 h f (x), we have fulfilled these condi-
tions. Likewise, finding terms that satisfy the other order conditions, we get
an approximation of S that ensures fourth order convergence, like the S(x, y,h)
given by (5.29).

5.5.2 The general case

Allowing for S to be a function of the solution, we define now the set T V of
bi-colored trees whose nodes are either circles of triangles, and whose leaves on
the cut tree τb , defined as the mono-colored tree left when all branches between
black and white nodes are cut off, are always circles. Denoting as before
black-rooted subtrees by τi and white-rooted subtrees by τ̄i , the elementary
differentials of trees τ ∈ T V are given F ( )(x) = F ( )(x) = f (x) = S∇H(x) and

F (τ)(x) =


S(l )Dm∇H(x)(F (τ1)(x), . . . ,F (τ̄l )(x))

for τ= [τ1, . . . ,τm , τ̄1, . . . , τ̄l , ] ,

S(l )Dm−1
2 Q(x, x)(F (τ1)(x), . . . ,F (τ̄l )(x))

for τ= [τ1, . . . ,τm , τ̄1, . . . , τ̄l , ] ,

where can be either or and can be either or . Let T V denote the set of
trees in T V with black roots, either of the shape or .
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Definition 5.5. A V-series is a formal series of the form

V (φ, x) =φ(;)x + ∑
τ∈T V

h|τ|

σ(τ)
φ(τ)F (τ)(x), (5.83)

where φ : T V ∪ {;} →R is an arbitrary mapping, and the symmetry coefficient
σ is given by (5.31).

Proofs of the theorems in this section can be obtained similarly to the proofs
in Chapter 5.4 and Section 5.5.1, and are therefore omitted.

We consider now approximations of S(x) that can be written as

S(x, y,h) = ∑
s∈SG

hn
∑

j
bs j

(
n∏

k=1
S(V (ψs j k , x))R(φs j k , x) ·S(V (ψs j (n+1), x))

+(−1)|s| −1S(V (ψs j (n+1), x))
n∏

k=1
R(φs j (n−k+1), x)S(V (ψs j (n−k+1), x))

)
(5.84)

whenever y is the solution of

y −x

h
= S(x, y,h)∇H(x, y),

with φs j k (;) =ψs j k (;) = 1 for every s, j ,k, and with
∑

j b j = 1
2 .

Theorem 5.7. The discrete gradient scheme (5.9) with the approximation of
S(x) given by (5.84) and ∇H ∈C∞(Rd ×Rd ,Rd ) is a V-series method. It can be
written x̂ =V (Φ, x), with

Φ=ê + ∑
s∈SG

∑
j

bs j
(
(ψs j 1,φs j 1)¦ · · · ¦ (ψs j n ,φs j n)¦ θ̂(ψs j (n+1))

+ (−1)n (ψs j (n+1),φs j n)¦ · · · ¦ (ψs j 2,φs j 1)¦ θ̂(ψs j 1)
)
.

(5.85)

where

θ̂(a)([τ1, . . . ,τm , τ̄1, . . . , τ̄l ] ) = 1

m +1
Φ(τ1) · · ·Φ(τm)a(τ̄1) · · ·a(τ̄l ),

θ̂(a)([τ1, . . . ,τm , τ̄1, . . . , τ̄l ] ) = −2m

m +1
Φ(τ1) · · ·Φ(τm)a(τ̄1) · · ·a(τ̄l ).

(5.86)

The scheme is of order p if and only if

Φ(τ) = ξ(τ) for |τ| ≤ p, (5.87)

where

ξ(τ) =
 1

γ(τ) if τ ∈ T P,

0 otherwise.
(5.88)
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As in section 5.4.2, we cut the branches between black and white nodes,
regardless of the shape of the nodes, and denote this tree by τb . Number the
nodes and reattach the cut-off parts. For the node i and the corresponding stem
si , there exists a unique set of forests τ̂i = {(µi

1,ηi
1), . . . , (µi

n+1,ηi
n+1)} such that

τ= [(µi
1,ηi

1)]si
1
◦ · · · [(µi

n ,ηi
n)]si

n
◦ [(µi

n+1,ηi
n+1)]si

n+1

Proposition 5.7. The Φ of (5.85) satisfies

Φ(τ) = ê(τ)+
|τb |∑
i=1

Λ(τ̂i , si ) (5.89)

where ê(;) = 1 and ê(τ) = 0 for all τ 6= ;, and

Λ(τ̂i, si)=θ([µi
n+1]si

n+1
)
(∑

j
bsi j ψsi j 1(ηi

1)φsi j 1(µi
1) · · ·φsi j n(µi

n)ψsi j (n+1)(η
i
n+1)

+ (−1)|s
i | −1

∑
j

b ŝi j ψŝi j (n+1)(η
i
1)φŝi j n(µi

1) · · ·φŝi j 1(µi
n)ψŝi j 1(ηi

n)
)
,

(5.90)

with θ given by (5.74) and ŝi given by ŝi
k = si

n−k+1 for k = 1, . . . ,n, and ŝi
n+1 =

si
n+1.

The number of trees in T V grows very quickly. However, in our task of
finding higher order schemes we may use the lessons of the previous chapters,
and require that the arguments of S, ∇2H and Q in (5.84) are B-series up to
order p −1. Then we only need to find order conditions for energy-preserving
linear combinations of the form

ω= [(µ1,η1)]s1 ◦ · · · ◦ [(µn ,ηn)]sn ◦ [ηn+1]

+ (−1)n [(µn ,ηn+1)]sn ◦ · · · ◦ [(µ1,η2)]s1 ◦ [η1] ,
(5.91)

where µi and ηi are forests of trees in T P and T P respectively, for i =
1, . . . ,n + 1. Thus we can disregard any tree with in it. Furthermore, we
may color all nodes of the trees in µi and ηi except the roots gray, and let
the elementary differentials corresponding to these trees be the same as the
elementary differentials of B-trees.

We find the order conditions∑
i∈Il

Λ(τ̂i , si ) = ξ(τ)− ê(τ)− ∑
i∈In

Λ(τ̂i , si ),

by using the relation

Λ({(µi
1,ηi

1), . . . , (µi
n+1,ηi

n+1)}, si ) = θ̂([µi
n+1]si

n+1
)Λ({(µi

1,ηi
1), . . . , (;,ηi

n+1)}, s̄i )

to calculate Λ(τ̂i ) for i ∈ In . The θ̂ is given by (5.81), and s̄i is si with si
n+1

replaced by .
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|τ| ω s Order condition
1

∑
j bs j = 1

2
2 2

∑
j bs j ψs j 1( ) = 1

2∑
j bs j = 1

2
3 2

∑
j bs j ψs j 1( )2 = 1

3

2
∑

j bs j ψs j 1( ) = 1
6∑

j bs j φs j 1( ) = 1
3

+ ∑
j bs j (ψs j 1 +ψs j 2)( ) = 1

2

− ∑
j bs j (ψs j 2 −ψs j 1)( ) =− 1

12∑
j bs j = 1

2

− ∑
j bs j −∑

j b s̄ j = 0∑
j bs j =− 1

24
4 2

∑
j bs j ψs j 1( )3 = 1

4

2
∑

j bs j ψs j 1( )ψ0 j 1( ) = 1
8

2
∑

j bs j ψs j 1( ) = 1
12

2
∑

j bs j ψs j 1( ) = 1
24∑

j bs j φs j 1( )2 = 1
4∑

j bs j φs j 1( ) = 1
6∑

j bs j ψs j 1( )ψs j 2( ) = 1
8

+ ∑
j bs j φs j 1( )(ψs j 1 +ψs j 2)( ) = 1

3

+ ∑
j bs j (ψs j 1( )2 +ψs j 2( )2) = 1

3

+ ∑
j bs j (ψs j 1 +ψs j 2)( ) = 1

6

− ∑
j bs j φs j 1( )(ψs j 2 −ψs j 1)( ) =− 1

24

− ∑
j bs j (ψs j 2( )2 −ψs j 1( )2) =− 1

12

− ∑
j bs j (ψs j 2 −ψs j 1)( ) =− 1

24

+ ∑
j ,k bs j φs j k ( ) = 2

3∑
j bs j ψs j 2( ) = 2

3

+ ∑
j bs j (ψs j 1 +ψs j 3)( ) = 1

2

Table 5.6: Energy-preserving linear combinations of the form (5.91) and their asso-
ciated order conditions for the discrete gradient method (5.9) with S(x, x̂,h) given by
(5.84). Continued in Table 5.7.
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|τ| ω s Order condition

4 − ∑
j bs j φs j 2( )−∑

j b s̄ j φs̄ j 1( ) = 0

− ∑
j bs j (ψs j 1 −ψs j 3)( ) = 1

12

− ∑
j bs j φs j 2( )−∑

j b s̄ j φs̄ j 1( ) = 0

− ∑
j bs j ψs j 3( )−∑

j b s̄ j ψs̄ j 1( ) = 0

+ ∑
j ,k bs j φs j k ( ) =− 1

24

2
∑

j b2 j ψ2 j 1( ) =− 1
24

+ ∑
j bs j (ψs j 1 +ψs j 3)( ) =− 1

24∑
j bs j = 1

2

− ∑
j bs j −∑

j b s̄ j = 0

+ ∑
j bs j =− 1

12∑
j bs j = 0

Table 5.7: Energy-preserving linear combinations of the form (5.91) and their asso-
ciated order conditions for the discrete gradient method (5.9) with S(x, x̂,h) given by
(5.84). Continuing from Table 5.6.

Example 5.7. Consider , which is part of the energy-preserving linear com-

bination + . We have two black nodes, and calculate

Λ(τ̂1, s1) =Λ({( , )}, ) = θ̂( )Λ({(;, )}, ) =−ξ( )ξ( ) =−1

6
,

Λ(τ̂2, s2) =Λ({(;, ), (;,;)}, ) =∑
j

bs2 j ψs2 j 1( )+∑
j

b s̄2 j ψs̄2 j 2( )

=∑
j

bs2 j (ψs2 j 1 +ψs2 j 2)( ).

Hence the order condition associated to this linear combination is∑
j

bs2 j (ψs2 j 1 +ψs2 j 2)( ) = 1

6
.
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5.5 Order conditions for general discrete gradient methods

We consider the order conditions for trees with |τ| ≤ 3 displayed in Table
5.6, and find that

S(x, ·,h) = 1

4
S(x)+ 3

4
S(z3)+hS(z2)Q(x, z3)S(z2)

+ 1

4
h

(
S(z1)∇2H(x)S(x)−S(x)∇2H(x)S(z1)

)
+h2S(x)Q(x, x)S(x)Q(x, x)S(x)

− 1

12
h2 S(x)∇2H(x)S(x)∇2H(x)S(x),

(5.92)

where

z1 = x + 1

3
h f (x), z2 = x + 1

2
h f (x), z3 = x + 2

3
h f (z1),

guarantees third order convergence of the scheme (5.9) if ∇H(x) ∈ C 2(Rd ×
Rd ,Rd ). An approximation of S(x) satisfying all the order conditions in tables
5.6 and 5.7 is given by

S(x, ·,h) =1

2
(S(z11 + z12)+S(z11 − z12))

+ 1

12
h

(
S(z6)∇2H(z2)S(x)−S(x)∇2H(z2)S(z6)

)
+ 3

7
h
(
S(z3)Q(x, z5)S(z4)+S(z4)Q(x, z5)S(x, z3)

)
+ 8

105
hS(x)Q(x, z7)S(x)+ 1

15
hS(x)Q(x, x)S(x)

+h2 S(z2)Q(x, z5)S(z8)Q(x, z5)S(z2)

− 1

12
h2 S(z2)∇2H(z2)S(z2)∇2H(z2)S(z2)

+ 1

6
h2(S(z2)−S(x))∇2H(x)S(x)Q(x, x)S(x)

− 1

6
h2S(x)Q(x, x)S(x)∇2H(x)(S(z2)−S(x))

+h3S(x)Q(x, x)S(x)Q(x, x)S(x)Q(x, x)

− 1

12
h3S(x)∇2H(x)S(x)∇2H(x)S(x)Q(x, x)S(x)

− 1

12
h3S(x)Q(x, x)S(x)∇2H(x)S(x)∇2H(x)S(x),

(5.93)
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with

z1 = x + 1

3
h f (x), z2 = x + 1

2
h f (x), z3 = x + 7−p

7

12
h f (z1),

z4 = x + 7+p
7

12
h f (z1), z5 = x + 2

3
h f (z2), z6 = x +h f (z2),

z7 = x + 5

4
h f (z2), z8 = x + 4

3
h f (z2), z9 = x +h f (z6), z10 = x +h f (z9),

z11 = 1

3
(x + z2 + z6)+ 1

12
(−z9 + z10), z12 =

p
3

36
(7x −2z2 −4z6 + z9 −2z10),

and hence a discrete gradient scheme with this S(x, ·,h) and any ∇H(x, y) ∈
C 3(Rd ×Rd ,Rd ) will be of fourth order.

One advantage of choosing the AVF discrete gradient is that the resulting
scheme generally requires fewer computations at each time step. This is clearly
evident in the above example: if ∇=∇AVF, then (5.92) collapses to (5.68), and
(5.93) collapses to (5.70). However, if the AVF discrete gradient is difficult to
calculate, there can also be much to gain in computational cost by choosing a
symmetric discrete gradient, like the symmetrized Itoh–Abe discrete gradient
(5.24) or the Furihata discrete gradient (5.26). Then one can ignore the order
condition for any combination (5.91) for which s j = and µ j = ; for some
j ∈ [1,n], since this corresponds to elementary differentials involving Q(x, x),
which we recall is zero when the discrete gradient is symmetric. If we consider
the conditions for fourth order presented in tables 5.6 and 5.7, this eliminates 17
of the 22 conditions for trees with in the stem. By considering the remaining
order conditions we get that, if ∇H(x, y) ∈ C 3(Rd ×Rd ,Rd ) and ∇H(x, y) =
∇H(y, x), the discrete gradient scheme (5.9) is of fourth order if

S(x, ·,h) = 1

2
(S(z5 + z6)+S(z5 − z6))+ 8

9
hS(z1)Q(z7)S(z1)

+ 1

12
h

(
S(z2)∇2H(z1)S(x)−S(x)∇2H(z1)S(z2)

)
− 1

12
h2 S(z1)∇2H(z1)S(z1)∇2H(z1)S(z1),

(5.94)

with

z1 = x + 1

2
h f (x), z2 = x +h f (z1), z3 = x +h f (z2),

z4 = x +h f (z3), z5 = 1

3
(x + z1 + z2)+ 1

12
(−z3 + z4),

z6 =
p

3

36
(7x −2z1 −4z2 + z3 −2z4), z7 = x + 3

4
h f (z1).

If S is constant, (5.94) simplifies to

S(x, ·,h) = S + 8

9
hSQ(z7)S − 1

12
h2 S∇2H(z1)S∇2H(z1)S. (5.95)
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5.6 Numerical experiments and conclusions

The Hénon–Heiles system can be written on the form (5.6) with

S =
(

0 I
−I 0

)
, H(q, p) = 1

2
(q2

1 +q2
2 +p2

1 +p2
2)+q2

1 q2 − 1

3
q3

2 , (5.96)

where I is the 2×2 identity matrix. We use here the same initial conditions
used in [26]: q1 = 1

10 , q2 =−1
2 , p1 = p2 = 0. The order of some of the energy-

preserving methods proposed in this paper are confirmed by the left plot in
Figure 5.1. We compare the performance of the fourth order discrete gradient
methods obtained by using the S given by (5.29) coupled with three different
discrete gradients: the Itoh–Abe discrete gradient (5.23), the Furihata discrete
gradient (5.26), and the AVF discrete gradient (5.10). The symmetrized Itoh–
Abe discrete gradient (5.24) is for this H identical to the Furihata discrete
gradient. The AVF and Furihata discrete gradient methods perform in this case
very similarly, and thus the error from the Furihata discrete gradient method is
excluded from the right plot in Figure 5.1. We observe that, although it initially
performs on par with the AVF method, the Itoh–Abe discrete gradient method
gives a lower global error than the other fourth order methods as time goes on.
Note however that this method requires the most computations at every time
step.
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Figure 5.1: Error plots for the Hénon–Heiles system (5.96) solved by various discrete
gradient methods: AVFM2 is the standard AVF method (5.11); AVFM4 is the AVF
discrete gradient method with S given by (5.30); FDGM4 is the Furihata discrete
gradient method with S given by (5.95); IADGM4 is the Itoh–Abe discrete gradient
method with S given by (5.29); AVFM5 is the scheme (5.49); AVFM6 is (5.51). RK4 is
the classic Runge–Kutta method and GL4 is the fourth order Gauss–Legendre method,
included for comparison. The black dashed lines in the order plot are reference lines
of order two, four, five and six. The step size in the plot to the right is h = 0.1.
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The methods should also be tested on a skew-gradient system with non-
constant S. We choose the Lotka–Volterra system also used for numerical
experiments in [5]. It is given by

S = 1

2

 0 −x1x2 x1x3

x1x2 0 −2x2x3

−x1x3 2x2x3 0

 , H(x) = 2x1+x2+2x3+ln(x2)−2ln(x3),

and initial conditions x1 = 1, x2 = 19
10 , x3 = 1

2 . For this H , the Itoh–Abe, Furihata
and AVF discrete gradients are all equivalent. We consider fourth order discrete
gradient methods where ∇S is given either dependent on or independent of x̂;
that is, (5.69) or (5.70). The implicitly given (5.70) yields a significantly lower
error in the solution of the corresponding discrete gradient method, as can be
witnessed from the left plot in Figure 5.2. In contrast to what we observed for
the canonical Hamiltonian system studied above, none of the discrete gradient
methods give a global error lower than that of the fourth order Gauss–Legendre
method.
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Figure 5.2: Error in the solution and in the energy for discrete gradient methods with
S given by S(x, x̂) = S( x+x̂

2 ) for DGM2, (5.68) for DGM3, (5.70) for DGM4-exp and
(5.69) for DGM4-imp, applied to the Lotka–Volterra system, with step size h = 0.05.
For comparison, errors from using the standard fourth order Runge–Kutta (RK4) and
Gauss–Legendre (GL4) methods are also included.

The main purpose of this paper has been to develop order theory for discrete
gradient methods, rather than the development of specific schemes. Hence
we have simply proposed some higher order schemes satisfying the derived
order conditions; analysis to find more optimal schemes is something we leave
for the future. After such an analysis is performed, the methods could be
tested on more advanced problems than those considered above, e.g. for the
temporal discretization of Hamiltonian partial differential equations, and their
performance as measured by accuracy relative to computational cost could be
compared to existing methods.
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Figure 5.3: Order or discrete gradient methods applied to the Lotka–Volterra system,
with different S: S(x, x̂) = S( x+x̂

2 ) for DGM2, (5.68) for DGM3, (5.70) for DGM4-exp,
(5.69) for DGM4-imp. The dashed lines are reference lines of order two, three and
four.

The order theory presented here can possibly be developed further in a cou-
ple of different directions. The schemes given in this paper with S independent
of x̂ are linearly implicit when H is quadratic; if the order theory is extended
to the polarized discrete gradient methods of [6, 18], we could get higher order
linearly implicit multi-step schemes for systems with polynomial first integrals
of any degree. Another avenue could be to consider order conditions for the
discrete Riemannian gradient methods presented in [1]. Then the results in
the previous chapter are especially interesting, since the integral in the AVF
discrete Riemannian gradient can be challenging to compute analytically.
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Linearly implicit structure-preserving
schemes for Hamiltonian systems

Abstract. Kahan’s method and a two-step generalisation of the discrete gra-
dient method are both linearly implicit methods that can preserve a modified
energy for Hamiltonian systems with a cubic Hamiltonian. These methods are
here investigated and compared. The schemes are applied to the Korteweg–de
Vries equation and the Camassa–Holm equation, and the numerical results are
presented and analysed.

6.1 Introduction

The field of geometric numerical integration has garnered increased attention
over the last three decades. It considers the design and analysis of numerical
methods that can capture geometric properties of the flow of the differential
equation to be modelled. These geometric properties are mainly invariants
over time; they are conserved quantities such as Hamiltonian energy, angular
momentum, volume or symplecticity. Among them the conservation of energy
is particularly important for proving the existence and uniqueness of solutions
for partial differential equations (PDEs) [19]. Numerical schemes inheriting
such properties from the continuous dynamical system have been shown in
many cases to be advantageous, especially when integration over long time
intervals is considered [10].

For general non-linear differential equations, one may use a standard fully
implicit scheme to solve a problem numerically. Then a non-linear system of
equations must be solved at each time step. Typically this is done by the use of
an iterative solver where a linear system is to be solved at each iteration. This
quickly becomes a computationally expensive procedure, especially since the
number of iterations needed in general increases with the size of the system;
see a numerical example comparing the computational cost for implicit and
linearly implicit methods in [5]. A fully explicit method on the other hand, may
over-simplify the problem and lead to the loss of important information, and
will often have inferior stability properties. The golden middle way may be
found in linearly implicit schemes, i.e. schemes where the non-linear terms are
discretized such that the solution at the next time step is found from solving
one linear system.

Our aim is to present and analyse linearly implicit schemes with preserva-
tion properties. We consider ordinary differential equations (ODEs) that can be
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written in the form

ẋ = f (x) = S∇H(x), x ∈Rd ,

x(0) = x0,
(6.1)

where S is a constant skew-symmetric matrix and H is a cubic Hamiltonian
function. The famous geometric characteristic for equations like (6.1) is that
the exact flow is energy-preserving,

d

d t
H(x) =∇H(x)T d x

d t
=∇H(x)T S∇H(x) = 0,

and symplectic if S is the canonical skew-symmetric matrix:

Ψy0 (t )T SΨy0 (t ) = S, (6.2)

where Ψy0 (t ) := ∂ϕt (y0)
∂y0

, with ϕt : Rd → Rd , ϕt (y0) = y(t ) the flow map of
(6.1) [10]. A numerical one-step method is said to be energy-preserving if H
is constant along the numerical solution, and symplectic if the numerical flow
map is symplectic. Both the energy-preserving methods and the symplectic
methods, the latter of which has the ability to preserve a perturbation of the
Hamiltonian H of (6.1), have their own advantages. In particular, the energy-
preserving property has been found to be crucial in the proof of stability for
several such numerical methods, see e.g [6]. However, there is no numerical in-
tegration method that can be simultaneously symplectic and energy-preserving
for general Hamiltonian systems [20]. In this paper we will focus on energy-
preserving numerical integration.

We wish to study and compare two types of existing methods with geo-
metric properties. The first one is Kahan’s method for quadratic ODE vector
fields [12], which by construction is linearly implicit, and for which the geomet-
ric properties have been studied in [3]. Kahan’s method has not been extensively
studied for solving PDEs so far, with the notable exception [13]. This is a one-
step method, but we will also give its formulation as a two-step method in this
paper, for easier comparison to the other method to be studied. That method,
which we call the polarised discrete gradient (PDG) method, is based on the
multiple points discrete variational derivative method for PDEs presented by
Furihata, Matsuo and coauthors in the papers [14–16] and the monograph [8].
A more general framework for such schemes is given by Dahlby and Owren
in [5]. With the aim of easing the comparison to Kahan’s method, we present
here the two-step method of [5,8] as it looks for ODEs of the form (6.1). When
Hamiltonian PDEs are considered, by semi-discretizing in space to obtain a
system of Hamiltonian ODEs and then applying the PDG method, one may
obtain the schemes of the aforementioned references; a specific scheme will
depend on the choice of spatial discretization as well as the choices of some
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functions to be explained in the next section: the polarised energy and the
polarised discrete gradient.

This paper is divided into two main parts. In the next chapter, we present the
methods in consideration, and give some theoretical results on their geometric
properties. In Chapter 3, we present numerical results for the Camassa–Holm
equation and the Korteweg–de Vries equation, including analysis of stability
and dispersion, comparing the methods.

6.2 Linearly implicit schemes

We will present an ODE formulation of the linearly implicit schemes presented
by Furihata, Matsuo and coauthors in [8, 14–16] and by Dahlby and Owren in
[5]. Inspired by the nomenclature of the latter reference, we call these schemes
polarised discrete gradient methods. Then we present a special case of this
polarisation method in the same framework as Kahan’s method, with the goal
of obtaining more clarity in comparison of the methods.

6.2.1 Polarised discrete gradient methods

The idea behind the PDG methods is to generalise the discrete gradient method
in such a way that a relaxed variant of the preservation property is intact, while
nonlinear terms are discretized over consecutive time steps to ensure linearity
in the scheme. Let us first recall the concept of discrete gradient methods. A
discrete gradient is a continuous map ∇H : Rd ×Rd → Rd such that for any
x, y ∈Rd

H(y)−H(x) = (y −x)T ∇H(x, y).

The discrete gradient method for (6.1) is then given by

xn+1 −xn

∆t
= S∇H(xn , xn+1),

which will preserve the energy of the system (6.1) at any time step. Here and
in what follows, xn is the numerical approximation of x at t = tn and xn

k is the
numerical approximation of the kth component of x at t = tn .

Restricting ourselves to two-step methods, we define the PDG methods as
follows.

Definition 6.1. For the energy H of (6.1), consider the polarised energy as a
function H̃ : Rd ×Rd →R satisfying the properties

H̃(x, x) = H(x),

H̃(x, y) = H̃(y, x).
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A polarised discrete gradient (PDG) for H̃ is a function ∇H̃ : Rd ×Rd ×Rd →Rd

satisfying

H̃(y, z)− H̃(x, y) = 1

2
(z −x)T ∇H̃(x, y, z), (6.3)

∇H̃(x, x, x) =∇H(x),

and the corresponding polarised discrete gradient scheme is given by

xn+2 −xn

2∆t
= S∇H̃(xn , xn+1, xn+2). (6.4)

Proposition 6.1. The numerical scheme (6.4) preserves the polarised invariant
H̃ in the sense that H̃(xn , xn+1) = H̃(x0, x1) for all n ≥ 0.

Proof.

H̃(xn+1, xn+2)− H̃(xn , xn+1) = 1

2
(xn+2 −xn)T ∇H̃(xn , xn+1, xn+2)

=∆t∇H̃(xn , xn+1, xn+2)T S∇H̃(xn , xn+1, xn+2)

= 0,

where the last equality follows from the skew-symmetry of S.

We remark here that in the cases where we seek a time-stepping scheme
for the system of Hamiltonian ODEs resulting from discretizing a Hamiltonian
PDE in space in an appropriate manner, e.g. as described in [2], H will be a
discrete approximation to an integral H. Thus a two-step PDG method and a
standard one-step discrete gradient method, the latter in general fully implicit,
will preserve two different discrete approximations separately to the same H.

The task of finding a PDG satisfying (6.3) is approached differently in our
two main references, [8,14–16] and [5]. Furihata, Matsuo and coauthors apply a
generalisation of the approach introduced by Furihata in [7] for finding discrete
variational derivatives, while Dahlby and Owren suggest a generalisation of the
average vector field (AVF) discrete gradient [17], given by

∇AVFH̃(x, y, z) = 2
∫ 1

0
∇x H̃(ξx + (1−ξ)z, y)dξ,

where ∇x H̃(x, y) is the gradient of H̃(x, y) with respect to its first argument.
Provided that the spatial discretization is performed in the same way, these
two approaches lead to the same scheme for an H̃ quadratic in each of its
arguments, as does a generalisation of the midpoint discrete gradient of Gonza-
lez [9]. Based on this, we present the most straightforward approach for finding
this specific PDG for the cases we are studying in this paper:
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Proposition 6.2. Given an H̃(x, y) that is at most quadratic in each of its argu-
ments, define ∇x H̃(x, y) as the gradient of H̃ with respect to its first argument.
Then a PDG for H̃ is given by

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y). (6.5)

Proof. We may write

H̃(x, y) = xT A(y)x +b(y)T x + c(y),

for some symmetric A : Rd →Rd ×Rd , b : Rd →Rd and c : Rd →R. Then

∇x H̃(x, y) = 2A(y)x +b(y),

and

∇x H̃(
x + z

2
, y)T (z −x) = (2A(y)

x + z

2
+b(y))T (z −x)

= zT A(y)z +b(y)T z −xT A(y)x −b(y)T x

= H̃(y, z)− H̃(x, y).

Furthermore,
∇H̃(x, x, x) = 2∇x H̃(x, x) =∇H(x).

As remarked in Theorem 4.5 of [5]: if the polarised energy H̃(x, y) is at
most quadratic in each of its arguments, the scheme (6.4) with the PDG (6.5)
is linearly implicit.

An alternative to (6.5) could be a generalisation of the Itoh–Abe discrete
gradient [11], defined by its i -th component

∇IAH̃(x, y, z)i = 2

∂̄H̃(x, y, z)i if xi 6= zi ,
∂H̃
∂xi

((z1, . . . , zi−1, xi , . . . , xd ), y) if xi = zi ,

where

∂̄H̃(x, y, z)i = H̃((z1, . . . , zi , xi+1, . . . , xd ), y)− H̃((z1, . . . , zi−1, xi , . . . , xd ), y)

zi −xi
.

A symmetrized variant of this, given by ∇SIAH̃(x, y, z) := 1
2 (∇IAH̃(x, y, z) +

∇IAH̃(z, y, x)) is again identical to (6.5), whenever H̃ is quadratic in each of its
arguments.
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Linearly implicit structure-preserving schemes

6.2.2 A general framework and Kahan’s method

For ODEs of the form (6.1), consider the two-step schemes of the form

xn+2 −xn

2∆t
= S

3∑
i , j=1

αi j (H ′′(xn−1+i )xn−1+ j +β(xn−1+i )), (6.6)

where H ′′ : Rd → Rd ×Rd is the Hessian matrix of H and β(x) := 2∇H(x)−
H ′′(x)x. For cubic H , this scheme is linearly implicit if and only if α33 = 0.

In this section, we first consider the case when the Hamiltonian is a cubic
homogeneous polynomial, in which case the term β(x) in (6.6) will disappear,
and then generalise the results to the non-homogeneous case.

Theorem 6.3. The scheme (6.6) with α21 =α23 = 1
4 , αi j = 0 otherwise, i.e.

xn+2 −xn

2∆t
= 1

4
SH ′′(xn+1)(xn +xn+2), (6.7)

where x1 is found from x0 by Kahan’s method, is equivalent to Kahan’s method
over two consecutive steps, when applied to ODEs of the form (6.1) with homo-
geneous cubic H .

Proof. As shown in [3], Kahan’s method can be written into a Runge–Kutta
form

xn+1 −xn

∆t
=−1

2
f (xn)+2 f (

xn +xn+1

2
)− 1

2
f (xn+1). (6.8)

Two steps of this can be written as

xn+2 −xn

2∆t
=− 1

4
f (xn)− 1

2
f (xn+1)− 1

4
f (xn+2)

+ f (
xn +xn+1

2
)+ f (

xn+1 +xn+2

2
).

(6.9)

Using that for a homogeneous cubic H we have ∇H(x) = 1
2 H ′′(x)x, H ′′(x)y =

H ′′(y)x and H ′′(x + y) = H ′′(x)+H ′′(y), and inserting f (x) = S∇H(x) in (6.9),
we get (6.7). On the other hand, if we have found xn+1 by Kahan’s method and
xn+2 by (6.9), we see that by subtracting (6.8) from (6.9) we get (6.8) with n
replaced by n +1.

Remark 6.1. The scheme (6.7) with the first step computed by Kahan’s method
preserves the polarised invariant H̃(xn , xn+1) = 1

6 (xn)T H ′′( xn+xn+1

2 )xn+1, since
Kahan’s method preserves this polarised invariant [3]. We note that the scheme
(6.7) satisfies

(xn)T H ′′(xn)xn+1 = (xn+1)T H ′′(xn+2)xn+2,
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6.2 Linearly implicit schemes

independent of how x1 is found, following from the skew symmetry of the matrix
S. However, it preserves the polarised invariant 1

6 (xn)T H ′′( xn+xn+1

2 )xn+1 only
if Kahan’s method or an equivalent scheme is used to calculate x1 from x0.

A special case of the PDG method which preserves the same polarised
Hamiltonian as Kahan’s method, can also be written on the form (6.6):

Theorem 6.4. For a homogeneous cubic H and the polarised energy given by

H̃(x, y) = 1

6
xT H ′′(

x + y

2
)y,

the scheme (6.4) with the PDG (6.5) applied to (6.1) is equivalent to (6.6) with
α21 =α22 =α23 = 1

6 , αi j = 0 otherwise, i.e.

xn+2 −xn

2∆t
= 1

6
SH ′′(xn+1)(xn +xn+1 +xn+2). (6.10)

Proof.

∇x H̃(x, y) = 1

6
H ′′(

x + y

2
)y + 1

6
H ′′(

y

2
)x = 1

12
H ′′(2x + y)y,

and thus

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y) = 1

6
H ′′(x + y + z)y = 1

6
H ′′(y)(x + y + z).

It can be shown that many well known Runge–Kutta methods performed
over two consecutive steps are methods in the class (6.6) when applied to (6.1)
with H cubic. As two examples, the implicit midpoint method over two steps
is (6.6) with α11 =α33 = 1

16 ,α21 =α22 =α23 = 1
8 , αi j = 0 otherwise, while the

trapezoidal rule is (6.6) with α11 = α33 = 1
8 ,α22 = 1

4 , αi j = 0 otherwise. The
integral-preserving average vector field method [18] over two steps is (6.6) with
α11 =α21 =α23 =α33 = 1

12 ,α22 = 1
6 , αi j = 0 otherwise.

Now, in the cases where H is non-homogeneous, one can use the technique
employed in [3], i.e. adding one variable x0 to generate an equivalent problem
to the original one, for a homogeneous Hamiltonian H̄ : Rd+1 →R defined such
that H̄(1, x1, . . . , xd ) = H(x1, . . . , xd ). Also constructing the (d+1)×(d+1) skew-
symmetric matrix S̄ by adding a zero initial row and a zero initial column to S,
we get that solving the system

˙̄x = S̄∇H̄(x̄), x̄ ∈Rd+1

x̄(0) = (1, x0),
(6.11)
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is equivalent to solving (6.1). Following the above results for the homogeneous
H̄ and (6.11), we can generalise Theorem 6.3 and Theorem 6.4 for all cubic
H . Generalisations of the preservation properties follow directly; e.g., Kahan’s
method and the PDG method can preserve the perturbed energy H̃(xn , xn+1) :=
1
6 (x̄n)T H̄ ′′( x̄n+x̄n+1

2 )x̄n+1 also for non-homogeneous cubic H .

6.3 Numerical experiments

To have a better understanding of the above methods, we will apply them to
systems of two different PDEs: the Korteweg–de Vries (KdV) equation and
the Camassa–Holm equation. We will compare our methods to the midpoint
method, which is a symplectic, fully implicit method. We solve the two PDEs
by discretizing in space to obtain a Hamiltonian ODE system of the type (6.1)
and then applying the PDG method (denoted by PDGM), Kahan’s method
(Kahan) and the midpoint method (MP) to this.

6.3.1 Camassa–Holm equation

In this section, we consider the Camassa–Holm equation

ut −uxxt +3uux = 2ux uxx +uuxxx

defined on the periodic domain S :=R/LZ. It has the conserved quantities

H1 [u] = 1

2

∫
S

(u2 +u2
x )dx, H2 [u] = 1

2

∫
S

(
u3 +uu2

x

)
dx.

Here we consider the variational form of the Hamiltonian H2:

(1−∂2
x )ut =−∂x

δH2

δu
,

δH2

δu
= 3

2
u2 + 1

2
u2

x − (uux )x . (6.12)

We follow the approach presented in [2] and semi-discretize the energy H2

of (6.12) as

H2(u)∆x = 1

2

K∑
k=1

(
u3

k +uk
(δ+

x uk )2 + (δ−
x uk )2

2

)
∆x, (6.13)

where the difference operators δ+
x and δ−

x are defined by

δ+
x uk := uk+1 −uk

∆x
, δ−

x uk := uk −uk−1

∆x
.

For later use, we here also introduce the notation

δ〈1〉
x uk := uk+1 −uk−1

2∆x
, δ〈2〉

x uk := uk+1 −2uk +uk−1

(∆x)2 ,
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µ+
x uk := uk+1 +uk

2
, µ−

x uk := uk +uk−1

2
,

and the matrices corresponding to the difference operators δ+
x , δ−

x , δ〈1〉
x , δ〈2〉

x , µ+
x

and µ−
x , which are denoted by D+, D−, D〈1〉, D〈2〉, M+ and M−. Denoting the

numerical solution U = [u1, . . . ,uK ]T , and by using the properties of the above
difference operators, we thus get

∇H2(U ) = 3

2
U 2

··· +
1

2
M−(D+U )2

··· −
1

2
D〈2〉U 2

··· ,

where U 2··· is the elementwise square of U . Then the semi-discretized system
for the Camassa–Holm equation becomes

U̇ = S∇H2(U ) =−(I −D〈2〉)−1D〈1〉∇H2(U ). (6.14)

The above-mentioned schemes applied to (6.14) give us

(I −D〈2〉)
U n+1 −U n

∆t
=−D〈1〉∇H2(

U n+1 +U n

2
), (MP)

(I −D〈2〉)
U n+1 −U n

∆t
=−1

2
D〈1〉H

′′
2 (U n)U n+1, (Kahan)

(I −D〈2〉)
U n+2 −U n

2∆t
=−D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM)

where H
′′
2 (U ) = 3diag(U )+M−diag(D+U )D+−D〈2〉diag(U ) is the Hessian of

H2(U ) and
∇H̃2(U n ,U n+1,U n+2) is the PDG of Proposition 6.2 with polarised discrete
energy

H̃2(U n ,U n+1)∆x :=1

2

K∑
k=1

(
un

k un+1
k

un
k +un+1

k

2

+a(µ+
x

un
k +un+1

k

2
)(δ+

x un
k )(δ+

x un+1
k )

+ (1−a)
(µ+

x un
k )(δ+

x un+1
k )2 + (µ+

x un+1
k )(δ+

x un
k )2

2

)
∆x,

for some a ∈R, typically between −1 and 2.

Remark 6.2. We performed numerical experiments for finding a good choice
of the parameter a in PDGM and based on these set a = 1

2 in the following.

Numerical tests for the Camassa–Holm equation

Example 1 (Single peakon solution): In this numerical test, we consider the
same experiment as in [4], where multisymplectic schemes are considered for
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Figure 6.1: In this experiment, space step size ∆x = 0.04 and time step size ∆t =
0.0002. Left: shape error. Middle: phase error. Right: global error.

the Camassa–Holm equation with

u(x,0) = cosh(|x − L
2 |− L

2 )

cosh(L/2)
,

x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, spatial step size ∆x = 0.04 and time step
size ∆t = 0.0002. All our methods keep a shape close to the exact solution
except some small oscillatory tails, also observed in [4], resulting from the semi-
discretization, see Figure 6.2 (the right two plots). The numerical simulations
show that the global error is mainly due to the shape error1, see Figure 6.1.
In Figure 6.2 (the left plot), we can see that the numerical energy for all the
methods oscillate, but it appears to be bounded. Here we consider also coarser
grids. We observe that there appear some small wiggles for both PDGM and
Kahan’s method for ∆t = 0.02 and long time integration T = 100. However,
the wiggles in the solution by PDGM are much more evident than those in the
solution of Kahan’s method, see Figure 6.3 (the left two plots). We keep on
increasing ∆t to 0.15 and 0.2; we observe that the numerical solution obtained
with the PDG method with ∆t = 0.15 suffers from evident numerical dispersion,
while Kahan’s method seems to keep the shape well when comparing to the
exact wave. Spurious oscillations appear also in Kahan’s method when the
time-step is increased to the value ∆t = 0.2, see Figure 6.3 (right).

Example 2 (Two peakons solution): Now we consider the initial condition

u(x,0) = cosh(|x − L
4 |− L

2 )

cosh(L/2)
+ 3

2

cosh(|x − 3L
4 |− L

2 )

cosh(L/2)
,

where x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, and ∆x = 0.04, ∆t = 0.0002. We
observe that all the methods keep the shape of the exact solution very well
and the numerical energy appears bounded, see Figure 6.5. The numerical

1 Shape error is defined by εshape := min
τ

∥ U n −u(· −τ) ∥2
2, and phase error is defined by

εphase := |argmin
τ

∥U n −u(·−τ) ∥2
2 −ctn |, [5].
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Figure 6.2: In this experiment, ∆x = 0.04, ∆t = 0.0002. Left: relative energy errors.
Middle: propagation of the wave by PDGM. Right: propagation of the wave by
Kahan’s method.
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Figure 6.3: In this experiment, space step size ∆x = 0.04. Left: propagation of the
wave by PDGM, ∆t = 0.02. Middle: propagation of the wave by Kahan’s method,
∆t = 0.02. Right: propagation of the wave by Kahan’s method, ∆t = 0.15.

simulation shows that the global error is mainly due to the shape error, see
Figure 6.4. When a coarser time grid and longer time integration is considered,
∆t = 0.02 and T = 100, small wiggles appear in the solution of PDGM and
Kahan’s method, see Figure 6.6 (the left two figures). We increase ∆t to
0.2, and observe that PDGM fails to preserve the shape of the solution, while
Kahan’s method can still keep a shape close to the exact solution even though
also for this method the numerical dispersion increases, see Figure 6.6 (right).
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Figure 6.4: In this experiment, space step size ∆x = 0.04, time step size ∆t = 0.0002.
Left: shape error. Middle: phase error. Right: global error.
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Figure 6.5: In this experiment, ∆x = 0.04, ∆t = 0.0002. Left: relative energy errors.
Middle: propagation of the wave by PDGM. Right: propagation of the wave by
Kahan’s method.
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Figure 6.6: In this experiment, ∆x = 0.04. Left: propagation of the wave by PDGM,
∆t = 0.02. Middle: propagation of the wave by Kahan’s method, ∆t = 0.02. Right:
propagation of the wave by Kahan’s method, ∆t = 0.2.

6.3.2 Korteweg–de Vries equation

For the Camassa–Holm equation, the vector field of the semi-discretized system
is a homogeneous quadratic polynomial. In this section, we deal with the KdV
equation, for which the vector field of the semi-discretized equation is a non-
homogeneous quadratic polynomial. Kahan’s method has also previously been
used for the temporal discretization of this equation, see [13].

The KdV equation

ut +6uux +uxxx = 0 (6.15)

on the periodic domain S :=R/LZ has the conserved Hamiltonians

H1(u(t )) = 1

2

∫
S

u2 dx, H2(u(t )) =
∫
S

(
−u3 + 1

2
u2

x

)
dx.

In the following we consider the variational form based on the Hamiltonian
H2:

ut = ∂x
δH2

δu
,

δH2

δu
=−3u2 −uxx . (6.16)
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Numerical schemes for the KdV equation

We discretize the energy H2 for the KdV equation (6.16) as

H2(U )∆x =
K∑

k=1

(
−u3

k +
(δ+

x uk )2 + (δ−
x uk )2

4

)
∆x.

From simple calculations, the corresponding gradient is given by

∇H2(U ) =
(
−3U 2

··· −D〈2〉U
)

,

and thus we have the semi-discretized form for (6.16):

U̇ = D〈1〉
(
−3U 2

··· −D〈2〉U
)

. (6.17)

Applying the schemes under consideration to (6.17) gives

U n+1 −U n

∆t
=D〈1〉∇H2(

U n +U n+1

2
), (MP) (6.18)

U n+1 −U n

∆t
=− 1

2
D〈1〉(∇H(U n)+∇H(U n+1))

+2D〈1〉∇H(
U n +U n+1

2
),

(Kahan) (6.19)

U n+2 −U n

2∆t
=D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM) (6.20)

where H
′′
2 (U ) = −6diag(U )−D〈2〉 is the Hessian of H2(U ) and the polarised

discrete gradient ∇H̃2(U n ,U n+1,U n+2) is found as in Proposition 6.2, with
polarised discrete energy

H̃2(un
k ,un+1

k )∆x :=
K∑

k=1
(−un

k un+1
k

un
k +un+1

k

2
+ a

2
(δ+

x un
k )(δ+

x un+1
k )

+ 1−a

2

(δ+
x un

k )2 + (δ+
x un+1

k )2

2
)∆x.

Remark 6.3. We perform several numerical simulations to find a good choice
of the parameter a, and we take a =−1

2 for PDGM in the following numerical
examples for the KdV equation.

Stability analysis of the schemes

To analyse the stability of the above methods, we perform the von Neumann
stability analysis for the Kahan and PDGM schemes applied to the linearized
form of the KdV equation (6.15)

ut +uxxx = 0. (6.21)
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The equation for the amplification factor for Kahan’s method is

(1+ iλ(cosθ−1)sinθ)g + iλ(cosθ−1)sinθ−1 = 0,

and its root is

g = 1− iλ(cosθ−1)sinθ

1+ iλ(cosθ−1)sinθ
,

where λ := ∆t
∆x3 . Since g is a simple root on the unit circle, Kahan’s method is

unconditionally stable for the linearized KdV equation.
The equation for the amplification factor for PDGM is

g 2 −1+ iλ(3g 2 −2g +3)(cosθ−1)sinθ = 0. (6.22)

The two roots of the above equation are thus

g1 = 3b2 +
p

1+8b2 + i b(3
p

1+8b2 −1)

1+9b2 ,

g2 = 3b2 −
p

1+8b2 − i b(3
p

1+8b2 +1)

1+9b2 ,

where b = λ(1 − cosθ)sinθ. We observe that |g1| = |g2| = 1, and g1 6= g2,
therefore PDGM is unconditionally stable for the linearized KdV equation.

Numerical tests for the KdV equation

Example 1 (One soliton solution): Consider the initial value

u(x,0) = 2sech2(x −L/2),

where x ∈ [0,L], L = 40. We apply our schemes over the time interval [0,T ],
T = 100, with step sizes ∆x = 0.05, ∆t = 0.0125. From our observations, all the
methods behave well. The shape of the wave is well kept by all the methods,
also for long time integration, see Figure 6.7. The energy errors of all the
methods are rather small and do not increase over long time integration, see
Figure 6.8 (left). We then use a coarser time grid, ∆t = 0.035, and both methods
are still stable, see Figure 6.9 (left two). However we observe that the global
error of PDGM becomes much bigger than that of Kahan’s method. When an
even larger time step-size, ∆t = 0.04, is considered, the solution for PDGM
blows up while the solution for Kahan’s method is rather stable. In this case,
the PDG method applied to the nonlinear KdV equation is unstable and the
numerical solution blows up at around t = 8. Even if we increase the time
step-size to ∆t = 0.1, Kahan’s method still works well, see Figure 6.9 (middle).
When ∆t = 0.15 is considered, we observe evident signs of instability in the
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Figure 6.7: Space step size ∆x = 0.05, time step size ∆t = 0.0125. Left: shape error.
Middle: phase error. Right: global error.
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Figure 6.8: With ∆x = 0.05, ∆t = 0.0125. Left: relative energy errors. Right two:
propagation of the wave by PDGM and Kahan’s method.
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Figure 6.10: In this experiment, ∆x = 0.05, ∆t = 0.001. Left: relative energy errors.
Right two: propagation of the wave by PDGM and Kahan’s method.

solution of Kahan’s method. The solution will blow up rapidly when ∆t =
0.2 À∆x.

Example 2 (Two solitons solution): We choose initial value

u(x,0) = 6sech2x,

and consider periodic boundary conditions u(0, t ) = u(L, t ), where x ∈ [0,L],
L = 40. We set the space step size ∆x = 0.05 and apply the aforementioned
schemes on time interval [0,T ] with T = 100, ∆t = 0.001. All the methods
behave stably. The profiles of Kahan’s method and the midpoint method are
almost indistinguishable, and the profiles for the midpoint method are thus
not presented here. Kahan’s method and PDGM preserve the modified energy,
and accordingly the energy error of all the methods are rather small over long
time integration, see Figure 6.10 (left). After a short while the solution has
two solitons; one is tall and the other is shorter, see Figure 6.10 (the right two
plots).

When we consider a coarser time grid, ∆t = 0.00375, both methods are still
stable, see Figure 6.11 (the left two plots). However, there appear more small
wiggles in the solution by PDGM and we observe that the solution of PDGM
will blow up rather soon, around t = 1, for an even coarser time grid ∆t = 0.005.
When we increase the time step size to ∆t = 0.0125 and consider T = 100, the
shape of the exact solution is still well preserved by Kahan’s method, even
though there appear some small wiggles in the solution at around t = 100. We
observe that the solution of Kahan’s method will blow up when ∆t = 0.05 is
considered. Similar experiments as in this subsection, but for the multisym-
plectic box schemes, can be found in a paper by Ascher and McLachlan [1].
However, here we consider even coarser time grid than there, and the numeri-
cal results show that Kahan’s method is quite stable, even though it is linearly
implicit.
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Figure 6.11: ∆x = 0.05. Left: Propagations of the wave by PDGM, ∆t = 0.00375.
Middle: propagations of the wave by Kahan’s method, ∆t = 0.00375. Right: Propaga-
tions of the wave by Kahan’s method, ∆t = 0.0125.

Dispersion analysis

We consider the traditional linear analysis of numerical dispersion relations
for the numerical schemes applied to the KdV equation, getting the dispersion
relation of frequency ω and wave number ξ to be

ω= ξ3, (exact solution) (6.23)

sinω=λ(1−cosξ)(3cosω−1)sinξ, (PDGM) (6.24)
sinω

1+cosω
=λ(1−cosξ)sinξ, (Kahan) (6.25)

where λ = ∆t
∆x3 . The dispersion curve is displayed in Figure (6.9) (right). We

observe that Kahan’s method is better than PDGM at preserving the exact
dispersion relation. This coincides with the behaviour of the methods applied
to the nonlinear KdV equation shown in Section 6.3.2.

6.4 Conclusion

In this paper we perform a comparative study of Kahan’s method and what
we call the polarised discrete gradient (PDG) method. To that end, we present
a general form encompassing a class of two-step methods that includes both
a specific case of the PDG method and Kahan’s method over two steps. We
also compare the methods for two Hamiltonian PDEs: the KdV equation and
the Camassa–Holm equation. Both Kahan’s method and the PDG method are
linearly implicit methods, which will save computational cost. A series of nu-
merical experiments has been performed here, for the KdV equation with one
and two solitons, and the Camassa–Holm equation with one and two peakons.
These experiments show that Kahan’s method is more stable than the PDG
method. They also indicate that Kahan’s method yields more accurate results,
as we have witnessed in the energy error and the shape and phase error when
comparing to analytical solutions. Based on our results, we would recommend
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the use of Kahan’s method if one seeks a linearly implicit scheme for a Hamil-
tonian system with H cubic.
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Linearly implicit local and global
energy-preserving methods for Hamiltonian

PDEs

Abstract. We present linearly implicit methods that preserve discrete approx-
imations to local and global energy conservation laws for multi-symplectic
PDEs with cubic invariants. The methods are tested on the one-dimensional
Korteweg–de Vries equation and the two-dimensional Zakharov–Kuznetsov
equation; the numerical simulations confirm the conservative properties of the
methods, and demonstrate their good stability properties and superior running
speed when compared to fully implicit schemes.

7.1 Introduction

In recent years, much attention has been given to the design and analysis of nu-
merical methods for differential equations that can capture geometric properties
of the exact flow. The increased interest in this subject can mainly be attributed
to the superior qualitative behaviour over long time integration of such structure-
preserving methods, see [13, 17, 19]. A popular class of structure-preserving
methods are energy-preserving methods. In particular, the energy preservation
property has been found to be crucial in the proof of stability for several of
these numerical methods, see e.g [16].

Energy-preserving methods are well studied for finite-dimensional Hamilto-
nian systems [5,7,25,30]. It is also highly conceivable that the ideas behind the
finite-dimensional setting can be extended to the infinite-dimensional Hamilto-
nian systems or Hamiltonian partial differential equations (PDEs) [4]. There
are two popular ways to construct energy-preserving methods for Hamiltonian
PDEs. One approach is to semi-discretize the PDE in space so that one obtains
a system of Hamiltonian ordinary differential equations (ODEs), and then apply
an energy-preserving method to this semi-discrete system, see for example [7].
In this way, it is straightforward to generalise the energy-preserving methods
for finite-dimensional Hamiltonian systems to Hamiltonian PDEs. However,
such methods conserve only a global energy that relies on a proper boundary
condition, such as a periodic boundary condition. If this is not present, the
energy-preserving property will be destroyed. The other approach is based on
a reformulation of the Hamiltonian PDE into a multi-symplectic form, which
provides the PDE with three local conservation laws: the multi-symplectic
conservation law, the energy conservation and the momentum conservation
law [2, 3, 26]. Then one may consider methods that preserve the local con-
servation laws, see for example [34]. These locally defined properties are not
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dependent on the choice of boundary conditions, giving the methods that pre-
serve local energy an advantage over methods that preserve a global energy,
especially since local conservation laws will always lead to global conservation
laws whenever periodic boundary conditions are considered. The concept of a
multi-symplectic structure for PDEs was introduced by Bridges in [2, 3], see
also [28] for a framework based on a Lagrangian formulation of the Cartan
form. Local energy-preserving methods were first studied in [33], and have
garnered much interest recently, see for example [18, 27, 34].

Most of the local energy-preserving methods proposed so far are fully im-
plicit methods, for which a non-linear system must be solved at each time step.
This is normally done by using an iterative solver where a linear system is
solved at each iteration, which can lead to computationally expensive proce-
dures, especially since the number of iterations needed in general increases
with the size of the system. A fully explicit method on the other hand, may
over-simplify the problem and often has inferior stability properties, so that a
strong restriction on the grid ratio is needed. A good alternative may therefore
be to develop linearly implicit schemes, where the solution at the next time step
is found by solving only one linear system.

One example of linearly implicit methods for Hamiltonian ODEs is Ka-
han’s method, which was designed for solving quadratic ODEs [24] and whose
geometric properties have been studied in a series of papers by Celledoni et
al. [8, 10, 11]. For Hamiltonian PDEs, Matsuo and Furihata proposed the idea
of using multiple points to discretize the variational derivative and thus design
linearly implicit energy-preserving schemes [29]. Dahlby and Owren gener-
alised this concept and developed a framework for deriving linearly implicit
energy-preserving multi-step methods for Hamiltonian PDEs with polynomial
invariants [14]. A comparison of this approach and Kahan’s method applied
to PDEs is given in [15]. Recently, more work has been put into developing
linearly implicit energy-preserving schemes for Hamiltonian PDEs, e.g. the
partitioned averaged vector field (PAVF) method [6] and schemes based on the
invariant energy quadratization (IEQ) approach [35] or the multiple scalar aux-
iliary variables (MSAV) approach [23]. However, little attention has been given
to linearly implicit local energy-preserving methods. To the best of the authors’
knowledge, the only existing method is one based on the IEQ approach, specific
for the sine-Gordon equation [22]. In this paper, we use Kahan’s method to
construct a linearly implicit method that preserves a discrete approximation to
the local energy for multi-symplectic PDEs with a cubic energy function.

The rest of this paper is organized as follows. First, we give an overview
of Kahan’s method and formulate it by using a polarised energy function.
A brief introduction to multi-symplectic PDEs and their conservation laws
are presented in Section 7.3. In Section 7.4, new linearly implicit local and
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global energy-preserving schemes are presented. Numerical examples for the
Korteweg–de Vries (KdV) and Zakharov–Kuznetsov equations are given in
Section 7.5, before we end the paper with some concluding remarks.

7.2 Kahan’s method

Consider an ODE system

ẏ = f (y) = Q̂(y)+ B̂ y + ĉ, y ∈RM , (7.1)

where Q̂(y) is an RM valued quadratic form, B̂ ∈RM×M is a symmetric constant
matrix, and ĉ ∈RM is a constant vector. Kahan’s method is then given by

yn+1 − yn

∆t
= Q̄(yn , yn+1)+ B̂

yn + yn+1

2
+ ĉ,

where

Q̄(yn , yn+1) = 1

2

(
Q̂(yn + yn+1)−Q̂(yn)−Q̂(yn+1)

)
is the symmetric bilinear form obtained by polarisation of the quadratic form
Q̂ [10]. Polarisation, which maps a homogeneous polynomial function to a
symmetric multi-linear form in more variables, was used to generalise Kahan’s
method to higher degree polynomial vector fields in [9].

Suppose we restrict the problem (7.1) to be a Hamiltonian system on a
Poisson vector space with a constant Poisson structure:

ẏ = A∇H(y), (7.2)

where A is a constant skew-symmetric matrix, and H : RM → R is a cubic
polynomial function. We first consider the Hamiltonian H to be homogeneous.
Then, following the result in Proposition 2.1 of [9], Kahan’s method can be
reformulated as

yn+1 − yn

∆t
= 3AH̄(yn , yn+1, ·), (7.3)

where H̄(·, ·, ·) : RM × RM × RM → R is a symmetric 3-tensor satisfying
H̄(x, x, x) = H(x). Consider the 3-tensor H̄(x, y, z) = xT Q(y)z, where Q(y) =
1
6∇2H(y), with ∇2H being the Hessian of H ; then we can rewrite Kahan’s
method (7.3) as

yn+1 − yn

∆t
= 3A

∂H̄

∂x

∣∣∣∣
(yn ,yn+1)

, (7.4)
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where ∂H̄
∂x denotes the partial derivative with respect to the first argument of H̄ .

Consider then the cases where the Hamiltonian in problem (7.2) is non-
homogeneous, i.e. of the general form

H(y) = yT Q(y)y + yT B y + cT y +d , (7.5)

where Q(y) is the linear part of ∇2H(y) and thus a symmetric matrix whose
elements are homogeneous linear polynomials, B is the constant part of ∇2H(y)
and thus a symmetric constant matrix, c is a constant vector and d is a constant
scalar. We follow the technique in [10], adding one variable to y = (y1, . . . , yM )T

to get ỹ = (y0, y1, . . . , yM )T , extending A to Ã by adding a zero initial row
and a zero initial column, considering a homogeneous function H̃(ỹ) based
on the non-homogeneous Hamiltonian H(y) such that H̃(ỹ)|y0=1= H(y), and
finally solving instead of (7.2) the equivalent, homogeneous cubic Hamiltonian
problem

˙̃y = Ã∇H̃(ỹ)

with y0 = 1. In this way we can still get the reformulation of Kahan’s method
as (7.4) with

H̄(x, y, z) =xT Q(y)z + 1

3
(xT B y + yT B z + zT B x)

+ 1

3
cT (x + y + z)+d .

(7.6)

Remark 7.1. The R-valued function H̄(x, y, z) has the following properties:

1. H̄(x, y, z) is symmetric1 w.r.t. x, y and z,

2. H̄(x, x, x) = H(x),

3. ∂H̄(x,y,z)
∂x =Q(y)z + B(y+z)

3 + c
3 is symmetric w.r.t. y and z.

In this paper, we will use the form of Kahan’s method in (7.4) to prove the
energy preservation of the proposed methods.

1Denote the elements in Q(y) by qi j y = ∑
k qk

i j yk , where qk
i j , i , j ,k = 1, · · · , M , are

scalars and yk is the kth element of y . We have that qk
i j satisfies qk

i j = q
j
ki = q i

j k since

qk
i j = 1

6
∂3 H̄

∂yi ∂y j ∂yk
, which is unchanged under any permutation of i , j ,k. This provides the

symmetry of H̄(x, y, z).
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7.3 Conservation laws for multi-symplectic PDEs

Many PDEs, including all one-dimensional Hamiltonian PDEs, can be written
on the multi-symplectic form

K zt +Lzx =∇S(z), z ∈Rl , (x, t ) ∈R×R, (7.7)

where K , L ∈Rl×l are two constant skew-symmetric matrices and S : Rl 7→R is
a scalar-valued function. Following the results about multi-symplectic structure
in [3], it can be shown that multi-symplectic PDEs satisfy the following local
conservation laws [31]: the multi-symplectic conservation law

∂tω+∂xκ= 0, ω= d z ∧K+d z, κ= d z ∧L+d z,

the local energy conservation law (LECL)

Et +Fx = 0, E = S(z)+ zT
x L+z, F =−zT

t L+z, (7.8)

and the local momentum conservation law (LMCL)

It +Gx = 0, G = S(z)+ zT
t K+z, I =−zT

x K+z,

where K+ and L+ satisfy

K = K+−K T
+ , L = L+−LT

+.

Decomposition of the matrices is done to make deduction of the conservations
laws for energy and momentum more efficient [26, Section 12.3.1].

The multi-symplectic form (7.7) can also be generalised to problems in
higher dimensional spaces. Consider d spatial dimensions; based on the work
by Bridges [3], a multi-symplectic PDE can then be written as

K zt +
d∑

α=1
Lαzxα

=∇S(z), z ∈Rl , (x, t ) ∈Rd ×R, (7.9)

where K , Lα ∈ Rl×l (α = 1, . . . ,d) are constant skew-symmetric matrices and
S : Rl →R is a smooth functional. Equation (7.9) has the following local energy
conservation law:

Et +
d∑

α=1
Fα

xα
= 0, (7.10)

where E(z) = S(z)+∑d
α=1 zT

α Lα+z, Fα = −zT
t Lα+z, and Lα+ are splittings of Lα

satisfying Lα = Lα+− (Lα+)T .
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Say we have (7.9) defined on the spatial domain Ω ∈ Rd with periodic
boundary conditions. Integrating over the domain Ω on both sides of the equa-
tion (7.10) and using the periodic boundary condition then leads to the global
energy conservation law for the multi-symplectic PDEs,

d

d t
E(z) = 0, (7.11)

where E(z) = ∫
Ω E(z)dΩ.

Example 7.1. Korteweg–de Vries equation. Consider the KdV equation for
modeling shallow water waves,

ut +ηuux +γ2uxxx = 0, (7.12)

where η,γ ∈ R. Introducing the potential φx = u, momenta v = γux and the
variable w = γvxφt + γ2u2

2 by the covariant Legendre transform from the La-
grangian, we obtain

1

2
ut +wx = 0,

−1

2
φt −γvx =−w + η

2
u2,

γux = v,

−φx =−u,

(7.13)

from which we find the multi-symplectic formulation (7.7) for the KdV equation
with z = (φ,u, v, w)T , the Hamiltonian S(z) = v2

2 −uw + ηu3

6 , and

K =


0 1

2 0 0
−1

2 0 0 0
0 0 0 0
0 0 0 0

 , L =


0 0 0 1
0 0 −γ 0
0 γ 0 0
−1 0 0 0

 .

As for the conservation laws, there are many choices of K+ and L+, for example
K+ = K

2 ,L+ = L
2 , or K+ and L+ being the upper triangular parts of K and L,

respectively.

Example 7.2. Zakharov–Kuznetsov equation. Zakharov and Kuznetsov intro-
duced in [37] a (2+1)-dimensional generalisation of the KdV equation which
includes weak transverse variation,

ut +uux +uxxx +ux y y = 0. (7.14)
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A multi-symplectification of this leads to a system (7.9) for two spatial dimen-
sions,

K zt +L1zx +L2zy =∇S(z), z ∈R6, (x, y, t ) ∈R2 ×R. (7.15)

Following [4], we have that (7.14) is equivalent to a system of first-order PDEs,

φx = u,

1

2
φt + vx +wy = p − 1

2
u2,

wx − vy = 0,

−1

2
ut −px = 0,

−ux +qy =−v,

−qx −uy =−w,

(7.16)

which is (7.15) with z = (p,u, q,φ, v, w)T , the Hamiltonian S(z) = up − 1
2 (v2 +

w2)− 1
6 u3, and the skew-symmetric matrices

K =



0 0 0 0 0 0
0 0 0 1

2 0 0
0 0 0 0 0 0
0 −1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

L1 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0


, L2 =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0


.

7.4 New linearly implicit energy-preserving schemes

In [18], Gong, Cai and Wang present a scheme that preserves the local energy
conservation law (7.8) of a one-dimensional multi-symplectic PDE, obtained by
applying the midpoint rule in space and the averaged vetor field (AVF) method
in time. They also present schemes that preserve the global energy, but not
(7.8), obtained by considering spatial discretizations that preserve the skew-
symmetric property of the difference operator ∂x . We build on their work by
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considering Kahan’s method for the discretization in time, ensuring linearly
implicit schemes and also energy preservation.

To introduce our new schemes, we begin with some basic difference opera-
tors:

δt vn
j :=

vn+1
j − vn

j

∆t
, δx vn

j :=
vn

j+1 − vn
j

∆x

µt vn
j :=

vn+1
j + vn

j

2
, µx vn

j :=
vn

j+1 + vn
j

2
.

The operators satisfy the following properties [34]:

1. All the operators commute with each other, e.g.

δtδx vn
j = δxδt vn

j , δtµx vn
j =µxδt vn

j , µtδx vn
j = δxµt vn

j .

2. They satisfy the discrete Leibniz rule

δt (uv)n
j = (εun+1

j +(1−ε)un
j )δt vn

j +δt un
j ((1−ε)vn+1

j +εvn
j ), 0 ≤ ε≤ 1.

Specifically,

δt (uv)n
j = un

j δt vn
j +δt un

j vn+1
j , for ε= 0,

δt (uv)n
j =µt un

j δt vn
j +δt un

j µt vn
j , for ε= 1

2
,

δt (uv)n
j = un+1

j δt vn
j +δt un

j vn
j , for ε= 1.

One can obtain a series of similar commutative equations and discrete Leibniz
rules that are not presented here, but which are also crucial in the proofs of the
preservation properties of the schemes to be introduced in the remainder of this
section.

7.4.1 A local energy-preserving scheme for multi-symplectic PDEs

In this section, we apply the midpoint rule in space and Kahan’s method in
time to construct a local energy-preserving method for multi-symplectic PDEs.
Introducing the concept by first considering the one-dimensional system (7.7),
we apply the midpoint rule in space to get

K∂tµx z j +Lδx z j =∇S(µx z j ), j = 0, . . . , M −1.

Then applying Kahan’s method gives us the linearly implicit local energy-
preserving (LILEP) scheme

Kδtµx zn
j +Lδxµt zn

j = 3
∂S̄

∂x

∣∣∣∣
(µx zn

j ,µx zn+1
j )

. (7.17)
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7.4 New linearly implicit energy-preserving schemes

Here we consider S of the form S(y) = yT Q(y)y + yT B y + cT y +d , as in (7.5),
and accordingly S̄(x, y, z) of the form (7.6).

Theorem 7.1. The scheme (7.17) satisfies the discrete local energy conserva-
tion law

δt (ĒL)n
j +δx (F̄L)n

j = 0, (7.18)

where

(ĒL)n
j = S̄(µx zn

j ,µx zn
j ,µx zn+1

j )+ 1

3
(δx zn

j )T L+µx zn
j

+ 1

3
(δx zn

j )T L+µx zn+1
j + 1

3
(δx zn+1

j )T L+µx zn
j ,

(7.19)

(F̄L)n
j = − 1

3
(δt zn

j )T L+µt zn
j −

1

3
(δt zn

j )T L+µt zn+1
j − 1

3
(δt zn+1

j )T L+µt zn
j .

Proof. Taking the inner product with 1
3δtµx zn

j on both sides of (7.17) and using
the skew-symmetry of matrix K , we have

1

3
(δtµx zn

j )T Lδxµt zn
j = (δtµx zn

j )T ∂S̄

∂x

∣∣∣∣
(µx zn

j ,µx zn+1
j )

.

Taking the inner product with 1
3δtµx zn+1

j on both sides of (7.17), we get

1

3
(δtµx zn+1

j )TKδtµx zn
j +

1

3
(δtµx zn+1

j )TLδxµt zn
j =(δtµx zn+1

j )T ∂S̄

∂x

∣∣∣∣
(µx zn

j ,µx zn+1
j )

.

Taking the inner product with 1
3δtµx zn

j on both sides of the scheme (7.17) for
the next time step, we get

1

3
(δtµx zn

j )TKδtµx zn+1
j +1

3
(δtµx zn

j )TLδxµt zn+1
j =(δtµx zn

j )T ∂S̄

∂x

∣∣∣∣
(µx zn+1

j ,µx zn+2
j )

.

Adding the last three equations and using the skew-symmetry of matrix K , we
obtain

1

3

(
(δtµx zn

j )T Lδxµt zn
j + (δtµx zn+1

j )T Lδxµt zn
j + (δtµx zn

j )T Lδxµt zn+1
j

)
= (δtµx zn

j )T ∂S̄

∂x
|(µx zn

j ,µx zn+1
j ) +(δtµx zn+1

j )T ∂S̄

∂x

∣∣∣∣
(µx zn

j ,µx zn+1
j )

+ (δtµx zn
j )T ∂S̄

∂x

∣∣∣∣
(µx zn+1

j ,µx zn+2
j )

,

= 1

∆t

(
S̄(µx zn+1

j ,µx zn+1
j ,µx zn+2

j )− S̄(µx zn
j ,µx zn

j ,µx zn+1
j )

)
,

=δt S̄(µx zn
j ,µx zn

j ,µx zn+1
j ).

(7.20)
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On the other hand, using the aforementioned commutative laws and discrete
Leibniz rules for the operators, we can deduce

δt ((δx zn
j )T L+µx zn

j ) = (δtδx zn
j )T L+µtµx zn

j + (δxµt zn
j )T L+δtµx zn

j ,

δx ((δt zn
j )T L+µt zn

j ) = (δtδx zn
j )T L+µtµx zn

j + (δtµx zn
j )T L+δxµt zn

j ,

δt ((δx zn+1
j )T L+µx zn

j ) = (δtδx zn+1
j )T L+µtµx zn

j + (δxµt zn+1
j )T L+δtµx zn

j ,

δx ((δt zn+1
j )T L+µt zn

j ) = (δtδx zn+1
j )T L+µtµx zn

j + (δtµx zn+1
j )T L+δxµt zn

j ,

δt ((δx zn
j )T L+µx zn+1

j ) = (δtδx zn
j )T L+µtµx zn+1

j + (δxµt zn
j )T L+δtµx zn+1

j ,

δx ((δt zn
j )T L+µt zn+1

j ) = (δtδx zn
j )T L+µtµx zn+1

j + (δtµx zn
j )T L+δxµt zn+1

j .

Using the above relations, the fact that L = L+−LT+ and the result (7.20), we
obtain

δt E n
j +δx F n

j =δt S̄(µx zn
j ,µx zn

j ,µx zn+1
j )

+ 1

3

(
δt ((δx zn

j )T L+µx zn
j )+δt ((δx zn

j )T L+µx zn+1
j )

+δt ((δx zn+1
j )T L+µx zn

j )
)− 1

3

(
δx ((δt zn

j )T L+µt zn
j )

+δx ((δt zn
j )T L+µt zn+1

j )+δx ((δt zn+1
j )T L+µt zn

j )
)

=δt S̄(µx zn
j ,µx zn

j ,µx zn+1
j )− 1

3

(
(δtµx zn

j )T Lδxµt zn
j

+ (δtµx zn+1
j )T Lδxµt zn

j + (δtµx zn
j )T Lδxµt zn+1

j

)
=0.

Corollary 2. For periodic boundary conditions z(x+P, t ) = z(x, t ), the scheme
(7.17) satisfies the discrete global energy conservation law

Ēn+1
L = Ēn

L , Ēn
L :=∆x

M−1∑
j=0

(ĒL)n
j , (7.21)

where ∆x = P/M and (ĒL)n
j is given by (7.19).

Proof. With periodic boundary conditions, we get
∑M−1

j=0 δx (F̄L)n
j = 0, and thus

(7.21) follows from (7.18).

The polarised global energy Ēn
L may be considered as a function of the

solution in time step n only, similarly to the modified Hamiltonian defined in
Proposition 3 of [10].

210



7.4 New linearly implicit energy-preserving schemes

Proposition 7.1. With the solution zn+1 found from zn by (7.17), the discrete
global energy Ēn

L of (7.21) satisfies

Ēn
L = En

L +∆x
M−1∑
j=0

1

3
(∇EL(zn

j ))T (zn+1
j − zn

j ), (7.22)

where

En
L :=∆x

M−1∑
j=0

EL(zn
j ), EL(zn

j ) := S(µx zn
j )+ (δx zn

j )T L+µx zn
j , (7.23)

while zn+1
j − zn

j satisfies

RL(zn
j )(zn+1

j − zn
j ) =∆t gL(zn

j ), (7.24)

with gL(zn
j ) =∇S(µx zn

j )−Lδx zn
j and RL(zn

j ) = Kµx − ∆t
2 ∇gL(zn

j ).

Proof. Note that

S̄(µx zn
j ,µx zn

j ,µx zn+1
j ) = S(µx zn

j )+ 1

3
∇S(µx zn

j )T (µx zn+1
j −µx zn

j )

= S(µx zn
j )+ 1

3
∇zn

j
(S(µx zn

j ))T (zn+1
j − zn

j ),

and

1

3
(δx zn

j )T L+µx zn
j +

1

3
(δx zn

j )T L+µx zn+1
j + 1

3
(δx zn+1

j )T L+µx zn
j

= (δx zn
j )T L+µx zn

j

+ 1

3

(
(δx zn

j )T L+(µx zn+1
j −µx zn

j )+ (δx zn+1
j −δx zn

j )T L+µx zn
j

)
= (δx zn

j )T L+µx zn
j +

1

3

(
(µx zn

j )T LT
x δx + (δx zn

j )T Lxµx
)
(zn+1

j − zn
j )

= (δx zn
j )T L+µx zn

j +
1

3

(
∇zn

j

(
(δx zn

j )T L+µx zn
j

))T
(zn+1

j − zn
j ).

Inserting this in (7.19), we get (7.22) from (7.21). Furthermore, observing that

3
∂S̄

∂x

∣∣∣∣
(µx zn

j ,µx zn+1
j )

=∇S(µx zn
j )+ 1

2
∇2S(µx zn

j )(µx zn+1
j −µx zn

j ),

we may rewrite (7.17) as(
Kµx + ∆t

2
Lδx − ∆t

2
∇2S(µx zn

j )µx

)
(zn+1

j − zn
j ) =∆t

(∇S(µx zn
j )−Lδx zn

j

)
,

which is (7.24).
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Note that (7.23) is the discrete energy preserved by the fully implicit lo-
cal energy-preserving method of [18]. Also, for methods based on the multi-
symplectic structure, instead of solving for z directly, the normal procedure is
to eliminate the auxiliary variables from the scheme and get an equation for one
variable u. Therefore we do not give an explicit expression for the modified
energy in zn . However, in Section 7.5, we present an explicit expression for
the modified energy in un when our scheme is applied to the KdV equation.

The results about the energy conservation for the LILEP method applied
to one-dimensional multi-symplectic PDEs can be generalised to problems in
spatial dimensions of any finite degree. Consider for example a 2-dimensional
multi-symplectic PDE

K zt +L1zx +L2zy =∇S(z), z ∈Rl , (x, y, t ) ∈R3, (7.25)

for which we have the following corollary. This is presented without its proof,
which is rather technical but similar to the proof of Theorem 7.1.

Corollary 3. The scheme obtained by applying the midpoint rule in space and
Kahan’s method in time to equation (7.25),

Kδtµxµy zn
j ,k +L1δxµtµy zn

j ,k +L2δyµtµx zn
j ,k = 3

∂S̄

∂x

∣∣∣∣
(µxµy zn

j ,k ,µxµy zn+1
j ,k )

,

where j = 0, . . . , Mx −1 and k = 0, . . . , My −1, satisfies the discrete local energy
conservation law

δt (ĒL)n
j ,k +δx (F̄ 1

L )
n
j ,k +δy (F̄ 2

L )
n
j ,k = 0,

where

(ĒL)n
j ,k = S̄(µxµy zn

j ,k ,µxµy zn
j ,k ,µxµy zn+1

j ,k )

+ 1

3
(δxµy zn

j ,k )T L1
+µxµy zn

j ,k +
1

3
(δxµy zn

j ,k )T L1
+µxµy zn+1

j ,k

+ 1

3
(δxµy zn+1

j ,k )T L1
+µxµy zn

j ,k +
1

3
(δyµx zn

j ,k )T L2
+µxµy zn

j ,k

+ 1

3
(δyµx zn

j ,k )T L2
+µxµy zn+1

j ,k + 1

3
(δyµx zn+1

j ,k )T L2
+µxµy zn

j ,k ,

(F̄ 1
L )

n
j ,k = − 1

3
(δtµy zn

j ,k )T L1
+µtµy zn

j ,k −
1

3
(δtµy zn

j ,k )T L1
+µtµy zn+1

j ,k

− 1

3
(δtµy zn+1

j ,k )T L1
+µtµy zn

j ,k ,

(F̄ 2
L )

n
j ,k = − 1

3
(δtµx zn

j ,k )T L2
+µtµx zn

j ,k −
1

3
(δtµx zn

j ,k )T L2
+µtµx zn+1

j ,k

− 1

3
(δtµx zn+1

j ,k )T L2
+µtµx zn

j ,k .
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7.4.2 Global energy-preserving methods for multi-symplectic
PDEs

As shown in Section 7.3, Hamiltonian PDEs of the form (7.7) with periodic
boundary conditions have global energy conservation which can be deduced
from the local conservation law. On the other hand, the local conservation law
is not inherent in the global conservation law. In this section, we will focus on
giving a systematic method that preserves the global energy conservation law
directly. We discretize ∂x with an antisymmetric differential matrix D and get
the semi-discretized variant of (7.7),

K∂t z j +L(Dz) j =∇S(z j ), j = 0,1, . . . , M −1, (7.26)

where z := (z0, z1, . . . , zM−1)T ∈ RM×l and (Dz) j = ∑M−1
k=0 D j ,k zk . We then ap-

ply Kahan’s method to (7.26) and obtain the linearly implicit global energy-
preserving (LIGEP) scheme

Kδt zn
j +L(Dµt zn) j = 3

∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

. (7.27)

Define the polarised energy density by

Ē n
j = S̄(zn

j , zn
j , zn+1

j )+ 1

3
(Dzn)T

j L+zn
j

+ 1

3
(Dzn)T

j L+zn+1
j + 1

3
(Dzn+1)T

j L+zn
j ,

(7.28)

and we get the following result.

Theorem 7.2. For periodic boundary conditions z(x+P, t ) = z(x, t ), the scheme
(7.27) satisfies the discrete global energy conservation law

Ēn+1 = Ēn , Ēn :=∆x
M−1∑
j=0

Ē n
j , ∆x = P/M . (7.29)

Proof. Taking the inner product with 1
3δt zn

j on both sides of equation (7.27)
and using the skew-symmetry of the matrix K , we get

1

3
(δt zn

j )T L(Dµt zn) j = (δt zn
j )T ∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

. (7.30)

Taking the inner product with 1
3δt zn+1

j on both sides of (7.27), we get

1

3
(δt zn+1

j )T Kδt zn
j +

1

3
(δt zn+1

j )T L(Dµt zn) j = (δt zn+1
j )T ∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

. (7.31)
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Furthermore, taking the inner product with 1
3δt zn

j on both sides of (7.27) for
the next time step, we have

1

3
(δt zn

j )T Kδt zn+1
j + 1

3
(δt zn

j )T L(Dµt zn+1) j = (δt zn
j )T ∂S̄

∂x

∣∣∣∣
(zn+1

j ,zn+2
j )

. (7.32)

Adding equations (7.30), (7.31) and (7.32), we get

1

3

(
(δt zn

j )T L(Dµt zn) j + (δt zn
j )T L(Dµt zn+1) j

+ (δt zn+1
j )T L(Dµt zn) j

)= δt S̄(zn
j , zn

j , zn+1
j ).

(7.33)

By using the commutative laws and discrete Leibniz rules,

δt ((Dzn)T
j L+zn

j ) = (Dδt zn)T
j L+µt zn

j + (Dµt zn) j L+δt zn
j ,

δt ((Dzn)T
j L+zn+1

j ) = (Dδt zn)T
j L+µt zn+1

j + (Dµt zn) j L+δt zn+1
j ,

δt ((Dzn+1)T
j L+zn

j ) = (Dδt zn+1)T
j L+µt zn

j + (Dµt zn+1) j L+δt zn
j .

(7.34)

Based on the above equations (7.33) and (7.34), we obtain

δt E n
j =δt S̄(zn

j , zn
j , zn+1

j )

+ 1

3

(
δt ((Dzn)T

j L+zn
j )+ (Dzn)T

j L+zn+1
j + (Dzn+1)T

j L+zn
j

)
= 1

3

(
(δt zn

j )T L+(Dµt zn) j + (Dδt zn)T
j L+µt zn

j

)
+ 1

3

(
(δt zn+1

j )T L+(Dµt zn) j + (Dδt zn+1)T
j L+µt zn

j

)
+ 1

3

(
(δt zn

j )T L+(Dµt zn+1) j + (Dδt zn)T
j L+µt zn+1

j

)
=

N−1∑
k=0

(D) j ,kG j ,k ,

where

G j ,k :=1

3

(
(δt zn)T

j L+µt zn
L + (δt zn)T

L L+µt zn
j

)
+ 1

3

(
(δt zn+1)T

j L+µt zn
L + (δt zn+1)T

L L+µt zn
j

)
+ 1

3

(
(δt zn)T

j L+µt zn+1
L + (δt zn)T

L L+µt zn+1
j

)
.

Since D is skew-symmetric and G j ,k =Gk, j , we get

M−1∑
j=0

δt Ē n
j = 0,

which implies that the discrete global energy conservation law Ēn+1 = Ēn is
satisfied.
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The polarised energy Ē preserved by (7.27) may also be expressed as a
modification of the discrete energy

En :=∆x
M−1∑
j=0

E(zn
j ), E(zn

j ) = S(zn
j )+ (Dzn)T

j L+zn
j , (7.35)

which is preserved by the fully implicit global energy-preserving scheme of [18].
The proof of the following proposition is similar to the proof of Proposition 7.1,
and hence omitted.

Proposition 7.2. If the solution zn+1 is found from zn by (7.27), the discrete
global energy Ēn of (7.29) satisfies

Ēn = En +∆x
M−1∑
j=0

1

3
(∇E(zn

j ))T (zn+1
j − zn

j ),

and zn+1
j − zn

j satisfies

R(zn
j )(zn+1

j − zn
j ) =∆t g (zn

j ),

where g (zn
j ) =∇S(zn

j )−L(Dz)n
j and R(zn

j ) = K + ∆t
2 ∇g (zn

j ).

The above global conservation results can be generalised to multi-
symplectic formulations in higher spatial dimensions, as demonstrated for the
two-dimensional case by the following corollary, whose omitted proof is in the
same vein as the proof of Theorem 7.2.

Corollary 4. Discretizing ∂x and ∂y by skew-symmetric differential matri-
ces Dx and D y in equation (7.25) and then applying Kahan’s method to the
semi-discrete system, one obtains the linearly implicit global energy-preserving
(LIGEP) scheme

Kδt zn
j ,k +L1µt (Dx zn) j ,k +L2µt (D y zn) j ,k = 3

∂S̄

∂x

∣∣∣∣
(zn

j ,k ,zn+1
j ,k )

, (7.36)

where j = 0, . . . , Mx −1 and k = 0, . . . , My −1. For periodic boundary conditions
z(x +Px , y, t ) = z(x, y, t ), z(x, y +Py , t ) = z(x, y, t ), the scheme (7.36) satisfies
the discrete global energy conservation law

Ēn+1 = Ēn ,
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where

Ēn :=∆x∆y
Mx−1∑

j=0

My−1∑
k=0

Ē n
j ,k , ∆x = Px /Mx , ∆y = Py /My ,

Ē n
j ,k = S̄(zn

j ,k , zn
j ,k , zn+1

j ,k )+ 1

3
(Dx zn)T

j ,k L1
+zn

j ,k

+ 1

3
(Dx zn)T

j ,k L1
+zn+1

j ,k + 1

3
(Dx zn+1)T

j ,k L1
+zn

j ,k ,

+ 1

3
(D y zn)T

j ,k L2
+zn

j ,k +
1

3
(D y zn)T

j ,k L2
+zn+1

j ,k + 1

3
(D y zn+1)T

j ,k L2
+zn

j ,k .

7.5 Numerical examples

In this section, we apply our proposed new linearly implicit energy-preserving
schemes to the KdV equation and Zakharov–Kuznetsov equation, and com-
pare them with fully implicit schemes. Among our reference methods are the
methods introduced in [18], for which the local energy-preserving method is
denoted by LEP, and the global energy-preserving method by GEP. For the
GEP and LIGEP schemes, two different choices are considered for approx-
imating the spatial derivative: the central difference operator δc

x defined by
δc

x vn
j := 1

2 (δx vn
j−1+δx vn

j ) and the first order Fourier pseudospectral operator [4].
The latter results in the M ×M matrix D, given explicitly by its elements

Di , j =
π

P (−1)i+ j cot
(
π(i − j )/M

)
, if i 6= j ,

0, if i = j ,

evaluated on the domain
[
0,P

]
, where we assume M even and periodic bound-

ary conditions [12]. If M is odd, we have instead

Di , j =


π
P (−1)i+ j cot

(
π(i − j )/M

)
, if |i − j | < M/2,

π
P (−1)i+ j cot

(
π( j − i )/M

)
, if |i − j | > M/2,

0, if i = j .
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7.5.1 Korteweg–de Vries equation

Consider the multi-symplectic structure of the KdV equation as presented in
Example 7.1. Applying the LILEP scheme (7.17) to (7.13), we obtain

1

2
δtµx un

j +δxµt wn
j = 0,

−1

2
δtµxφ

n
j −γδxµt vn

j =−µtµx wn
j +

η

2
µx un

j µx un+1
j ,

γδxµt un
j =µtµx vn

j ,

δxµtφ
n
j =µtµx un

j .

By eliminating the auxiliary varibles φ, v and w , we see that this is equivalent
to

δtµtµ
3
x un

j +
η

2
δxµtµx (µx un

j µx un+1
j )+γ2δ3

xµ
2
t un

j = 0.

Omitting the average operator µt gives us

δtµ
3
x un

j +
η

2
δxµx (µx un

j µx un+1
j )+γ2δ3

xµt un
j = 0. (7.37)

The polarised discrete energy preserved by this scheme is

Ēn
L =∆x

M−1∑
j=0

(
− 1

6
γ2((δx un

j )2 +2δx un
j δx un+1

j

)+ 1

6
η
(
µx un

j )2µx un+1
j

)
. (7.38)

On the other hand, the discrete energy preserved by the LEP method of [18] is

En
L =∆x

M−1∑
j=0

(
− 1

2
γ2(δx un

j )2 + 1

6
η(µx un

j )3
)
. (7.39)

By Proposition 7.1 and elimination of the variables φ, v and w , (7.38) can be
expressed as a modification of (7.39): we may rewrite (7.37) as

un+1
j −un

j

=−∆t
(
µ3

x +
∆t

2
γ2δ3

x +
∆t

2
ηδxµxdiag(µx un)µx

)−1(
γ2δ3

x un + η

2
δxµx (µx un)2),

where (µx un)2 denotes the element-wise square of µx un . Inserting this in
(7.38), we get

Ēn
L =En

L − ∆t ∆x

3

(−γ2δT
x δx un + η

2
µT

x (µx un)2)T

(
µ3

x +
∆t

2
γ2δ3

x +
∆t

2
ηδxµxdiag(µx un)µx

)−1(
γ2δ3

x un + η

2
δxµx (µx un)2)

=En
L + ∆t

3
(∇En

L )T (
µ3

x −
∆t

2
ζ′L(un)

)−1
ζL(un),
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with
ζL(un) =−γ2δ3

x un − η

2
δxµx (µx un)2,

where ∇En
L means the gradient of En

L with respect to un , and ζ′L(un) denotes
the Jacobian matrix of ζL(un).

Similarly for the LIGEP method (7.27); applying it to the the multi-
symplectic KdV equations (7.13) and eliminating the auxiliary varibles φ, v
and w , we obtain

δtµt un
j +

η

2
µt (D(unun+1)) j +γ2µ2

t (D3un) j = 0,

where unun+1 denotes element-wise multiplication of the vectors. Omitting
the average operator µt , we get

δt un
j +

η

2
(D(unun+1)) j +γ2µt (D3un) j = 0. (7.40)

The discrete global energy preserved by the GEP method is

En =∆x
M−1∑
j=0

(
− 1

2
γ2(Dun)2

j +
1

6
η(un

j )3
)
, (7.41)

while the polarised discrete energy preserved by (7.40) is

Ēn =∆x
M−1∑
j=0

(
− 1

6
γ2((Dun)2

j +2(Dun) j (D3un+1) j
)+ 1

6
η
(
un

j )2un+1
j

)
=En − ∆t ∆x

3

(−γ2DT Dun + η

2
(un)2)T

(
I + ∆t

2
γ2D3 + ∆t

2
ηD diag(un)

)−1(
γ2D3un + η

2
D(un)2)

=En + ∆t

3
(∇En)T (

I − ∆t

2
ζ′(un)

)−1
ζ(un),

(7.42)

where ζ(un) =−γ2D3un − η
2 D(un)2.

Test problem 1

In the first numerical experiment, we consider the problem introduced in [36]
and then used by Zhao and Qin [38] and Ascher and McLachlan [1] to test
various symplectic and multi-symplectic schemes: the KdV equation with γ=
0.022, η= 1, and initial value

u0(x) = cos(πx),

with x ∈ [0,P ], P = 2. This problem is also considered in Example 3 of [18],
where it is solved by implicit schemes that preserve local and/or global energy.
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As observed by Gong et al., the global energy-preserving scheme (GEP) with
the central difference operator used to approximate ∂x gives unsatisfactory re-
sults for this problem; we observed that the same is true for the LIGEP scheme.
Therefore, the Fourier pseudospectral operator is used to approximate the spa-
tial derivatives in the GEP and LIGEP schemes. This seems to result in more
accurate solutions than the LEP and LILEP schemes for the same number of
discretization points, but at a considerably higher computational cost, as seen
from Table 7.1. From Figure 7.1, we can conclude that our linearly implicit
schemes give results close to their fully implicit counterparts introduced in [18],
and that the different schemes converge to the same solution. Here and in the
following test problem, we have solved the fully implicit schemes in each step
by Newton’s method until ‖F (un)‖2 < 10−10.

M 200 400 600 1000 1500 2000
LEP 1.87 3.16 4.43 13.81 21.53 28.54
LILEP 4.24e-1 7.40e-1 1.07 1.73 2.67 3.58
GEP 12.29 78.11 242.48 1888.69 5793.18 13154.20
LIGEP 2.16 11.15 33.50 136.93 398.53 894.52

Table 7.1: Computational time, in seconds, for finding the solution of the first test
problem at time t = 5 by a temporal step size ∆t = 0.005 and various number of
discretization points in space, M .
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Figure 7.1: Solution of test problem 1 at time t = 5 by our schemes and the fully
implicit schemes of Gong et al. Left: M = 250, ∆t = 0.02. Right: M = 1000, ∆t =
0.002.

Compared to the schemes tested in [1, 38], our schemes do also perform
well; see Figure 7.2, where we have plotted solutions by our schemes for the
same discretization parameters used in Example 5.3 of [1]. The reference
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solution is found by the implicit midpoint scheme of [1] with θ = 1 and very
fine discretization in space and time: M = 2000 and ∆t = 0.0001. We observe
that the LILEP scheme behaves similarly to the multi-symplectic box scheme
of Arscher and McLachlan (see figures 3 and 4 in [1]), seemingly with the
same superior stability for rough discretization in space and time. The LIGEP
scheme, on the other hand, starts to blow up at around t = 1 when M = 60,
∆t = 1/150, but produces for M = 100, ∆t = 0.004 a solution that is much
closer to the correct solution than any of the schemes tested in [1] (see Figure
3 in that paper for comparison).
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Figure 7.2: Solutions of test problem 1 at time t = 10 by our schemes and the implicit
midpoint scheme (IMP) as given in [1] (with θ = 2/3 in the left figure and θ = 1 in the
right figure). Left: M = 60, ∆t = 1/150. Right: M = 100, ∆t = 0.004.

Test problem 2

To get quantitative results on the performance of our methods, we wish to
study a problem with a known solution. For the KdV equation with γ= 1, η=
6, initial value u0(x) = 1

2 c sech2(−x +P/2) and periodic boundary conditions
u(x+P, t ) = u(x, t ), the exact solution is a soliton moving with a constant speed
c in the positive x-direction while keeping its initial shape. That is,

u(x, t ) = 1

2
c sech2((−x + ct ) mod P −P/2).

In our numerical experiments, c = 4 and P = 20. For this problem, we have
used the central difference operator to approximate ∂x in the GEP and LIGEP
schemes, since it gives good results and yields considerably shorter computa-
tional time than if the pseudospectral operator is used. The proposed methods
all show very good stability conditions when applied to this problem, as ex-
pected by methods conserving some invariant. The initial shape of the wave is
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well kept for long integration times, even when quite large step sizes in space
and time are used; Figure 7.3 gives a good illustration of this. As in the previous
example, we again observe that little is lost in accuracy by choosing linearly im-
plicit over fully implicit time integration. A close inspection of Figure 7.3 also
indicates that the local energy-preserving schemes preserve the shape of the
wave better than the global energy-preserving schemes, while on the other hand,
the GEP and LIGEP schemes are better than the LEP and LILEP schemes at
preserving the speed of the wave. This is confirmed in Table 7.2 by measuring
the shape error

εshape :=min
τ

∥U N −u(·−τ) ∥2
2

and phase error

εphase := c |argmin
τ

∥U N −u(·−τ) ∥2
2 −ct |,

where U N is the numerical solution at end time t .
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Figure 7.3: The soliton solution of the KdV equation at time t = 100, with M = 250
discretization points in space and a time step ∆t = 0.01.

M 200 600
εshape εphase CT εshape εphase CT

LEP 4.67e-3 1.12 21.86 5.86e-4 2.43e-1 51.92
LILEP 4.10e-3 1.23 5.14 1.45e-4 3.50e-1 10.89
GEP 1.62e-2 8.61e-1 19.53 1.71e-3 2.32e-2 49.45
LIGEP 1.71e-2 7.50e-1 6.84 2.47e-3 1.31e-1 12.52

Table 7.2: Phase and shape errors and the computational time (CT) for different
schemes applied to test problem 2 of the KdV equation, for varying number of dis-
cretization points M , with time step ∆t = 0.01 and end time t = 100.
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In Figure 7.4, we have plotted the computational time required to reach
a certain accuracy in the global error for the different methods, both at time
t = 0.5 and at time t = 10. We compare our methods to the fully implicit LEP
and GEP schemes of [18], and also to two of the schemes studied in [1]: the
multi-symplectic box scheme (MSB) and the implicit midpoint scheme (IMP).
Most notably we see from both plots in Figure 7.4 that the linearly implicit
schemes perform better than the fully implicit schemes. Also, we see that at
time t = 0.5 the global error is lowest for the LILEP scheme, while at t = 10 it
is lowest for the LIGEP scheme. This is in accordance with the schemes’ phase
and shape errors, which can be observed from Figure 7.3 and Table 7.2; with
increasing time, the phase error becomes more dominant, and thus the scheme
with the smallest phase error becomes increasingly advantageous.
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Figure 7.4: Computational time required to reach a given global error, with ∆x
∆t fixed,

for test problem 2 of the KdV equation solved at time t . Left: t = 0.5, ∆x
∆t = 40. Right:

t = 10, ∆x
∆t = 8.

Figure 7.5 illustrates how the different schemes preserve a discrete approxi-
mation to the energy to machine precision. That is, the linearly implicit schemes
LILEP and LIGEP preserve exactly the discrete energies (7.38) and (7.42), re-
spectively, while keeping the discrete energies (7.39) and (7.41), respectively,
within some bound which depends on the discretization parameters. Likewise,
the reverse is true for the fully implicit schemes. These observations fit well
with our above results about the different discrete approximations to the en-
ergy: that for both the local energy preserving and the global energy preserving
schemes, either discrete energy given can be seen as a modification of the other
approximation. Finally, we have included plots in Figure 7.6 which confirm
that our schemes are of second order in space and time.
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Figure 7.5: Error in discrete approximations to the global energy, by our methods and
the fully implicit schemes of Gong et al. Left: The error in (7.38) for LEP/LILEP and
the error in (7.42) for GEP/LIGEP, for test problem 2 solved with M = 250 discretiza-
tion points in space and time step ∆t = 0.01. Right: The error in (7.39) for LEP/LILEP
and the error in (7.41) for GEP/LIGEP.
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Figure 7.6: Order plots for the LILEP and LIGEP schemes, solving the second test
problem for the KdV equation at time t = 1. The black, dashed line is a reference line
with slope 2 in both plots. Left: Fixed temporal step ∆t = 2×10−4. Right: Fixed spatial
step ∆x = 4×10−3.

7.5.2 Zakharov–Kuznetsov equation

Kahan’s method is previously shown to have nice properties when applied to
integrable ODE systems [8,10], and to perform well compared to other linearly
implicit methods when applied to the KdV and Camassa–Holm equations [15],
which are completely integrable PDEs. We wish to test our methods also on
non-integrable systems, as well as on higher-dimensional problems. Therefore
we consider the Zakharov–Kuznetsov equation, which is a non-integrable PDE
[20,32]. This two-dimensional generalisation of the KdV equation has a variety
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of applications, see e.g. [21] for a brief summary.
Applying the (2+1)-dimensional LILEP scheme from Corollary 3 to the

Zakharov–Kuznetsov equation (7.14) multi-symplectified as described in Ex-
ample 7.2, we find

δxµtµyφ
n
j ,k =µtµxµy un

j ,k ,

1

2
δtµxµyφ

n
j ,k+δxµtµy vn

j ,k+δyµtµx wn
j ,k =µtµxµy pn

j ,k−
1

2
µxµy un

j ,kµxµy un+1
j ,k ,

δxµtµy wn
j ,k −δyµtµx vn

j ,k = 0,

−1

2
δtµxµy un

j ,k −δxµtµy pn
j ,k = 0,

−δxµtµy un
j ,k +δyµtµx qn

j ,k =−µtµxµy vn
j ,k ,

−δxµtµy qn
j ,k −δyµtµx un

j ,k =−µtµxµy wn
j ,k .

Upon eliminating all variables except u, we are left with

δtµtµ
3
xµy un

j ,k +
1

2
δxµtµxµy (µxµy un

j ,kµxµy un+1
j ,k )

+δ3
xµ

2
t µ

2
y un

j ,k +δxδ
2
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2
t µ

2
x un

j ,k = 0.

The operator µt is again superfluous. Hence we get the scheme

δtµ
3
xµy un

j ,k+
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2
δxµxµy (µxµy un
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This scheme preserves

Ēn
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)
,

which is a two-step discrete approximation of the energy

E =
∫

(
1

2
(∇u)2 − 1

6
u3)dΩ.

Similarly, applying the linearly implicit global energy-preserving method
(7.36) to (7.16), we get the scheme

δt un
j ,k +

1

2
(Dx (unun+1)) j ,k +µt (D3

x (un)) j ,k +µt (Dx D2
y (un)) j ,k = 0,

which preserves the two-step discrete energy approximation
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2(Dx un) j ,k (Dx un+1) j ,k + ((Dx un) j ,k )2

+2(D y un) j ,k (D y un+1) j ,k + ((D y un) j ,k )2 − (un
j ,k )2un+1
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)
.
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Test problem

Taking a note from a numerical experiment performed in [4], we study the
formation of cylindrical soliton pulses on the domain

[
0,P

]× [
0,P

]
, P = 30,

following the initial condition

u0(x, y) = 3c sech2(1

2

p
c(x −P/2)

)+ξ(y),

where ξ(y) is a random perturbation.

Upon trying the different schemes we can immediately conclude that the
local energy-preserving schemes are superior for this problem when compared
to the global energy-preserving schemes. The GEP and LIGEP schemes are too
costly when the pseudospectral operator is used, and gives oscillatory behaviour
in the y-direction when the central difference operator is used, unless the dis-
cretization in this direction is very fine. Although the global energy-preserving
schemes with the central difference operator are slightly faster then the local
energy-preserving schemes, as can be seen in Table 7.3, this is undermined
by the cost of the extra discretization points needed to avoid oscillations in
the former case. As was the case for the KdV problem, we see little differ-
ence between the linearly implicit schemes and their fully implicit counterparts.
This can be seen in Figure 7.7, as can the oscillations in y-direction of the
solution found by the GEP and LIGEP methods. The plots in Figure 7.7 can
be compared to the plot in Figure 7.8, where the same problem is solved by the
LILEP method using finer discretization in space and time. The initial random
perturbation in y-direction over 75 points is then transferred over to 225 points
using linear interpolation.

M 45 75 105 135 165 195 225
LEP 5.10 32.20 48.43 101.59 125.23 258.64 353.98
LILEP 2.04 8.87 14.57 31.02 37.25 78.98 108.02
GEP 3.62 19.54 41.87 73.59 122.31 186.74 258.19
LIGEP 1.38 6.00 13.45 23.79 39.31 60.27 83.32

Table 7.3: Running time, in seconds, for computing 100 steps in time by the various
schemes and various number of discretization points M = Mx = My in each spatial
direction, solving our test problem for the Zakharov–Kuznetsov equation. As for
the KdV equation test problems, a tolerance of 10−10 is used when solving the fully
implicit schemes by Newton’s method.
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(a) LEP (b) LILEP

(c) GEP (d) LIGEP

Figure 7.7: The test problem of the Zakharov–Kuznetsov equation solved at time t =
15 by the different schemes, with M = Mx = My = 75 points in each spatial direction
and ∆t = 0.1.

7.6 Concluding remarks

In this paper, we propose two types of linearly implicit methods with conser-
vation properties for cubic invariants of multi-symplectic PDEs. The linearly
implicit local energy-preserving (LILEP) method preserves a discrete approxi-
mation to the local energy conservation law, and by extension, the global energy
whenever periodic boundary conditions are considered. The linearly implicit
global energy-preserving (LIGEP) method preserves the global energy without
inheriting the local preservation from the continuous system.

We test our methods on two PDEs: the one-dimensional, integrable
Korteweg–de Vries (KdV) equation and the two-dimensional, non-integrable
Zakharov–Kuznetsov equation. The numerical experiments confirm that the
proposed methods are of second order both in space and time and that they pre-
serve the expected local and global energy conservation laws. We have observed
excellent stability properties for the LILEP scheme in particular, and very high
accuracy in the LIGEP scheme even for quite coarse discretization when a
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Figure 7.8: The test problem of the Zakharov–Kuznetsov equation solved at time
t = 15 by the LILEP scheme, with M = Mx = My = 225 discretization points in each
spatial direction and a temporal step size ∆t = 0.001.

Fourier pseudospectral operator is used to approximate the spatial derivative.
Compared to the fully implicit methods of Gong et al. in [18], which was an
inspiration for this paper, our methods show comparable wave profiles, global
errors and energy errors, at a significantly lower computational cost. For two-
dimensional problems, where fully implicit schemes quickly become very ex-
pensive to compute, the combination of local energy-preservation and a linearly
implicit method seems to provide for a very competitive method.

Although we have only considered the preservation of cubic invariants in
this paper, our schemes can be extended to preserve higher order polynomials
by the polarisation techniques for generalising Kahan’s method suggested in [9].
This would result in (p −2)-step methods for preservation of a discrete p-order
polynomial invariant.
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Shape analysis on Lie groups and
homogeneous spaces

Abstract. In this paper we are concerned with the approach to shape analysis
based on the so called Square Root Velocity Transform (SRVT). We propose
a generalisation of the SRVT from Euclidean spaces to shape spaces of curves
on Lie groups and on homogeneous manifolds. The main idea behind our
approach is to exploit the geometry of the natural Lie group actions on these
spaces.

Shape analysis methods have significantly increased in popularity in the
last decade. Advances in this field have been made both in the theoretical
foundations and in the extension of the methods to new areas of application.
Originally developed for planar curves, the techniques of shape analysis have
been successfully extended to higher dimensional curves, surfaces, activities,
character motions and a number of different types of digitalized objects.

In the present paper, shapes are unparametrized curves, evolving on a vector
space, on a Lie group, or on a manifold. Shape spaces and spaces of curves are
infinite-dimensional Riemannian manifolds, whose Riemannian metrics are the
crucial tool to compare and analyse shapes.

We are concerned with one particular approach to shape analysis, which is
based on the Square Root Velocity Transform (SRVT) [10]. On vector spaces,
the SRVT maps parametrized curves (i.e. smooth immersions) to appropriately
scaled tangent vector fields along them via

R : Imm([0,1],Rd ) →C∞([0,1],Rd \ {0}), c 7→ ċp‖ċ‖ . (8.1)

The transformed curves are then compared computing geodesics in the L2 met-
ric, and the scaling induces reparametrization invariance of the pullback metric.
Note that it is quite natural to consider an L2 metric directly on the original
parametrized curves. Constructing the L2 metric with respect to integration by
arc-length, one obtains a reparametrisation invariant metric. However, this met-
ric is unsuitable for our purpose as it leads to vanishing geodesic distance on
the quotient shape space [6] and consequently also on the space of parametrised
curves [1]. This infinite-dimensional phenomenon prompted the investigation
of alternative, higher order Sobolev type metrics [7], which however can be
computationally demanding. Since it allows geodesic computations via the L2

metric on the transformed curves, the SRVT technique is computationally at-
tractive. It is also possible to prove that this algorithmic approach corresponds,
at least locally, to a particular Sobolev type metric, see [2, 4].
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We propose a generalisation of the SRVT to construct well-behaved Rie-
mannian metrics on shape spaces with values in Lie groups and homoge-
neous manifolds. Our methodology is alternative to what was earlier proposed
in [5,11] and the main idea is, following [4], to take advantage of the Lie group
acting transitively on the homogeneous manifold. Since we want to compare
curves, the main tool here is an SRVT which transports the manifold valued
curves into the Lie algebra or a subspace of the Lie algebra.

8.1 SRVT for Lie group valued shape spaces

In the Lie group case, the obvious choice for this tangent space is of course the
Lie algebra g of the Lie group G . The idea is to use the derivative Te Rg of the
right translation for the transport and measure with respect to a right-invariant
Riemannian metric.1 Instead of the ordinary derivative, one thus works with
the right-logarithmic derivative δr (c)(t ) = Te Rc(t )−1 (ċ(t )) (here e is the identity
element of G) and defines an SRVT for Lie group valued curves as (see [4]):

R : Imm([0,1],G) →C∞([0,1],g\ {0}), c 7→ δr (c)p‖ċ‖ . (8.2)

We will use the short notetion I = [0,1] in what follows. Using tools from Lie
theory, we are then able to describe the resulting pullback metric on the space
P∗ of immersions c : [0,1] →G which satisfy c(0) = e:

Theorem 8.1 (The Elastic metric on Lie group valued shape spaces [4]). Let
c ∈P∗ and consider v, w ∈ TcP∗. The pullback of the L2-metric on C∞(I ,g\{0})
under the SRVT (8.2) to P∗ is given by the first order Sobolev metric:

Gc (v, w) =
∫

I

1

4

〈
Ds v,uc

〉〈
Ds w,uc

〉
+

〈
Ds v −uc

〈
Ds v,uc

〉
,Ds w −uc

〈
Ds w,uc

〉〉
ds,

(8.3)

where Ds v := Tcδ
r (v)/‖ċ‖, uc := δr (c)/

∥∥δr (c)
∥∥ is the unit tangent vector of

δr (c) and ds =∥∥ċ(t )
∥∥dt .

The geodesic distance of this metric descends to a nonvanishing metric
on the space of unparametrized curves. In particular, this distance is easy to
compute as one can prove [4, Theorem 3.16] that

Theorem 8.2. If dim g> 2, then the geodesic distance of C∞(I ,g\ {0}) is glob-
ally given by the L2-distance. In particular, in this case the geodesic distance
of the pullback metric (8.3) on P∗ is given by

dP∗(c0,c1) :=
√∫

I
‖R(c0)(t )−R(c1)(t )‖2 dt .

1Equivalently one could instead use left translations and a left-invariant metric here.
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8.2 The structure of the SRVT

These tools give rise to algorithms which can be used in, among other
things, tasks related to computer animation and blending of curves, as shown
in [4]. The blending c(t , s) of two curves c0(t ) and c1(t ), t ∈ I , amounts simply
to a convex linear convex combination of their SRV transforms:

c(t , s) =R−1 (
sR(c0(t ))+ (1− s)R(c1(t ))

)
, s ∈ [0,1].

Using the transformation of the curves to the Lie algebra by the SRVT, we also
propose a curve closing algorithm allowing one to remove discontinuities from
motion capturing data while preserving the general structure of the movement.
(See Figure 8.1.)

Original

Discontinuities

t

Closed

t

Figure 8.1: Application of closing algorithm to a cartwheel animation. Note the large
difference between start and end poses, on the right and the left respectively. The
motion is repeated once and suffers from a strong jerk when it repeats, especially in
the left hand. In the second row, the curve closing method has been used to alleviate
this discontinuity.

8.2 The structure of the SRVT

Analysing the constructions for the square root velocity transform, e.g. (8.1)
and (8.2) or the generalisations proposed in the literature, every SRVT is com-
posed of three distinct building blocks. While two of these blocks can not be
changed, there are many choices for the second one (transport) in constructing
an SRVT:
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• Differentiation: The basic building block of every SRVT, taking a curve
to its derivative.

• Transport: Bringing a curve into a common space of reference. In
general there are many choices for this transport2 (in our approach we
use the Lie group action to transport data into the Lie algebra of the
acting group).

• Scaling: The second basic building block, assures reparametrization
invariance of the metrics obtained.

In constructing the SRVT, we advocate the use of Lie group actions for the
transport. This action allows us to transport derivatives of curves to our choice
of base point and to lift this information to a curve in the Lie algebra.

Other common choices for the transport usually arise from parallel transport
(cf. e.g. [5, 11]). The advantage of using the Lie group action is that we obtain
a global transport, i.e. we do not need to restrict to certain open submanifolds
to make sense of the (parallel) transport.3 Last but not least, right translation
is in general computationally more efficient than computing parallel transport
using the original Riemannian metric on the manifold.

8.3 SRVT on homogeneous spaces

Our approach [3] for shape analysis on a homogeneous manifold M = G/H
exploits again the geometry induced by the canonical group action Λ : G×M→
M. We fix a Riemannian metric on G which is right H-invariant, i.e. the maps
Rh for h ∈ H are Riemannian isometries. The SRVT is obtained using a right
inverse of the composition of the Lie group action with the evolution opera-
tor (i.e. the inverse of the right-logarithmic derivative) of the Lie group. If
the homogeneous manifold is reductive,4 there is an explicit way to construct
this right inverse. Identifying the tangent space at [e], the equivalence class
of the identity, via ωe : T[e]M→m⊆ g with the reductive complement. Then
we define the map ω([g ]) = Ad(g ).ωe (TΛ(g−1, ·)[g ]) (which is well-defined by

2In the literature, e.g. [11], a common choice is parallel transport with respect to the Rieman-
nian structure.

3The problem in these approaches arises from choosing curves along which the parallel
transport is conducted. Typically, one wants to transport along geodesics to a reference point
and this is only well-defined outside of the cut locus (also cf. [8]).

4Recall that a homogeneous space G/H is reductive if the Lie subalgebra h of H ⊆G admits
a reductive complement, i.e. g= h⊕m, where m is a subvector space invariant under the adjoint
action of H .
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8.4 Numerical experiments

reductivity) and obtain a square root velocity transform for reductive homoge-
neous spaces as

R : Imm([0,1],M) →C∞([0,1],g\ {0}), c 7→ ω◦ ċp‖ω◦ ċ‖ (8.4)

Conceptually this SRVT is somewhat different from the one for Lie groups, as
it does not establish a bijection between the manifolds of smooth mappings.
However, one can still use (8.4) to construct a pullback metric on the manifold
of curves to the homogeneous space by pulling back the L2 inner product of
curves on the Lie algebra through the SRVT. Different choices of Lie group
actions will give rise to different Riemannian metrics (with different properties).

8.4 Numerical experiments

We present some results about the realisation of this metric through the SRVT
framework in the case of reductive homogeneous spaces. Further, our results
are illustrated in a concrete example. We compare the new methods for curves
into the sphere SO(3)/SO(2) with results derived from the Lie group case.

In the following, we use the Rodrigues’ formula for the Lie group exponen-
tial exp: so(3) → SO(3),

exp(x̂) = I + sin(α)

α
x̂ + 1−cos(α)

α2 x̂2, α= ‖x‖2

and the corresponding formula for the logarithm log: SO(3) → so(3),

log(X ) = sin−1(‖y‖)

‖y‖ ŷ, X 6= I , X close to I ,

are used, where ŷ = 1
2 (X −X T), and the relationship between x and x̂ is given

by the isomorphism between R3 and so(3) known as the hat map

x =

x1

x2

x3

 7→ x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

8.4.1 Lie group case

Consider a continuous curve z(t ), t ∈ [t0, tN ], in SO(3). We approximate it by
z̄(t ), interpolating between N +1 values z̄i = z(ti ), with t0 < t1 < ... < tN , as:

z̄(t ) :=
N−1∑
i=0

χ[ti ,ti+1)(t )exp

(
t − ti

ti+1 − ti
log

(
z̄i+1 z̄T

i

))
z̄i , (8.5)
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where χ is the characteristic function.
The SRVT (8.2) of z̄(t ) is a piecewise constant function p̄(t ) in so(3) with

values p̄i = p̄(ti ), i = 0, ..., N −1, found by

p̄i = ηi√‖ηi‖
, ηi =

log(z̄i+1 z̄T
i )

ti+1 − ti
.

The inverse R−1 : so(3) → SO(3) is then given by (8.5), with the discrete points

z̄i+1 = exp
(‖p̄i‖p̄i

)
z̄i , i = 1, ..., N −1, z̄0 = z(t0).

8.4.2 Homogeneous manifold case

As an example of the homogeneous space case, consider the curve c(t ) on the
sphere SO(3)/SO(2) (i.e. S2), which we approximate by c̄(t ), interpolating
between the N +1 values c̄i = c(ti ):

c̄(t ) :=
N−1∑
i=0

χ[ti ,ti+1)(t )exp

(
t − ti

ti+1 − ti

(
vi c̄T

i − c̄i vT
i

))
c̄i , (8.6)

where vi are approximations to d
d t

∣∣∣
t=ti

c(t ) found by solving the equations

c̄i+1 = exp
(
vi c̄T

i − c̄i vT
i

)
c̄i , (8.7)

constrained by vT
i c̄i = 0. (8.8)

Observing that if κ= c̄i ×vi , then κ̂= vi c̄T
i − c̄i vT

i , and assuming that the sphere
has radius 1, we have by (8.8) that ‖c̄i × vi‖2 = ‖c̄i‖2‖vi‖2 = ‖vi‖2. By (8.7)
we get

c̄i+1 = sin(‖vi‖2)

‖vi‖2
vi +cos

(‖vi‖2
)
c̄i .

Calculations give c̄T
i c̄i+1 = 1−cos

(‖vi‖2
)

and ‖vi‖2 = arccos
(
c̄T

i c̄i+1

)
, lead to

vi =
(
c̄i+1 − c̄T

i c̄i+1c̄i

) arccos
(
c̄T

i c̄i+1

)
√

1−
(
c̄T

i c̄i+1

)2
which we insert into (8.6) to get

c̄(t ) =
N−1∑
i=0

χ[ti ,ti+1)(t )exp

 t − ti

ti+1 − ti

arccos
(
c̄T

i c̄i+1

)
√

1−
(
c̄T

i c̄i+1

)2

(
c̄i+1c̄T

i − c̄i c̄T
i+1

)c̄i .

(8.9)
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The SRVT (8.4) of c̄(t ) is a piecewise constant function q̄(t ) in so(3), taking
values q̄i = q̄(ti ), i = 0, ..., N −1, where

q̄i =R(c̄i ) = ac̄i (vi )

‖ac̄i (vi )‖ 1
2

= vi c̄T
i − c̄i vT

i

‖vi c̄T
i − c̄i vT

i ‖
1
2

=
arccos

1
2

(
c̄T

i c̄i+1

)
(
1−

(
c̄T

i c̄i+1

)2
) 1

4 ‖c̄i+1c̄T
i − c̄i c̄T

i+1‖
1
2

(
c̄i+1c̄T

i − c̄i c̄T
i+1

)

The inverse of this SRVT is given by (8.9), with the discrete points found as in
the Lie group case by c̄i+1 = exp

(‖q̄i‖q̄i
)
c̄i and c̄0 = c(t0).

In Figure 8.2 we show instants of the computed geodesic in the shape space
of curves on the sphere between two curves c̄1 and c̄2. We compare this to the
geodesic between the curves z̄1 and z̄2 in SO(3) which when mapped to S2 gives
c̄1 and c̄2. We show the results obtained before and after reparametrization.
In the latter case, a dynamic programming algorithm, see [9], was used to
reparametrize the curve c̄2(t ) such that its distance to c̄1(t ), measured by taking
the L2 norm of q̄1(t )− q̄2(t ) in the Lie algebra, is minimized. The various
instances of the geodesics between c̄1(t ) and c̄2(t ) are found by interpolation,

c̄int(c̄1, c̄2,θ) =R−1
((

1−θ
)
R(c̄1)+θR(c̄2)

)
, θ ∈ [0,1].
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(a) From left to right: Two curves on the sphere, their original parametrizations, the
reparametrization minimizing the distance in SO(3) and the reparametrization minimizing the
distance in S2, using the reductive SRVT.

(b) The interpolated curves at times θ =
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1
4 , 1

2 , 3
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}
, from left to right, before reparametrization, on

S2 (blue line) and SO(3) (yellow line).

(c) The interpolated curves at times θ =
{

1
4 , 1

2 , 3
4

}
, from left to right, after reparametrization, on

S2 (blue line) and SO(3) (yellow line).

Figure 8.2: Interpolation between two curves on S2, with and without reparametriza-
tion, obtained by the reductive SRVT. The results are compared to the corresponding
SRVT interpolation between curves on SO(3). The SO(3) curves are mapped to S2 by
multiplying with the vector (0,1,1)T/

p
2.

242



8.4 Bibliography

[5] A. Le Brigant. Computing distances and geodesics between manifold-
valued curves in the srv framework, 2016.

[6] P. W. Michor and D. Mumford. Vanishing geodesic distance on spaces of
submanifolds and diffeomorphisms. Doc. Math., 10:217–245, 2005.

[7] P. W. Michor and D. Mumford. Riemannian geometries on spaces of
plane curves. J. Eur. Math. Soc. (JEMS), 8(1):1–48, 2006.

[8] A. Schmeding. Manifolds of absolutely continuous curves and the square
root velocity framework, Dec. 2016.

[9] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning curves. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(1):116–
125, Jan 2003.

[10] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn. Shape analysis of elas-
tic curves in euclidean spaces. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33:1415–1428, 2011.

[11] J. Su, S. Kurtek, E. Klassen, and A. Srivastava. Statistical analysis of tra-
jectories on Riemmannian manifolds: bird migration, hurricane tracking
and video surveillance. The Annals of Applied Statistics, 8(2):530–552,
2014.

243



Shape analysis on Lie groups and homogeneous spaces

244



Shape analysis on homogeneous spaces: a generalised
SRVT framework

Elena Celledoni, Sølve Eidnes and Alexander Schmeding

Published in Abel Symposia 13, pp. 187–220 (2018)

245



246



Shape analysis on homogeneous spaces: a
generalised SRVT framework

Abstract. Shape analysis is ubiquitous in problems of pattern and object recog-
nition and has developed considerably in the last decade. The use of shapes is
natural in applications where one wants to compare curves independently of
their parametrisation. One computationally efficient approach to shape anal-
ysis is based on the Square Root Velocity Transform (SRVT). In this paper
we propose a generalised SRVT framework for shapes on homogeneous man-
ifolds. The method opens up for a variety of possibilities based on different
choices of Lie group action and giving rise to different Riemannian metrics.

9.1 Shapes on homogeneous manifolds

Shapes are unparametrised curves, evolving on a vector space, on a Lie group
or on a manifold. Shape spaces and spaces of curves are infinite dimensional
Riemannian manifolds, whose Riemannian metrics are the essential tool to
compare and analyse shapes. By combining infinite dimensional differential
geometry, analysis and computational mathematics, shape analysis provides a
powerful approach to a variety of applications.

In this paper, we are concerned with the approach to shape analysis based
on the Square Root Velocity Transform (SRVT), [26]. This method is effective
and computationally efficient. On vector spaces, the SRVT maps parametrised
curves to appropriately scaled tangent vector fields along them. The trans-
formed curves are compared computing geodesics in the L2 metric, and the
scaling can be chosen suitably to yield reparametrisation invariance, [26], [5].
Notably, applying a (reparametrisation invariant) L2 metric directly on the orig-
inal parametrised curves is not an option as it leads to vanishing geodesic
distance on parametrised curves and on the quotient shape space [4, 20]. As
an alternative, higher order Sobolev type metrics were proposed [21], even
though they can be computationally demanding, since computing geodesics
in this infinite dimensional Riemannian setting amounts in general to solving
numerically partial differential equations. These geodesics are used in prac-
tice for finding distances between curves and for interpolation between curves.
The SRVT approach, on the other hand, is quite practical because it allows the
use of the L2 metric on the transformed curves: distances between curves are
just L2 distances of the transformed curves, and geodesics between curves are
“straight lines" between the transformed curves. It is also possible to prove that
this algorithmic approach corresponds (at least locally) to a particular Sobolev
type metric, see [5, 9].
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In the present paper we propose a generalisation of the SRVT, from vector
spaces and Lie groups, [5, 26], to homogeneous manifolds. This problem has
been previously considered for manifold valued curves in [18, 27], but our
approach is different, the main idea is to take advantage of the Lie group acting
transitively on the homogeneous manifold. The Lie group action allows us to
transport derivatives of curves to our choice of base point in the homogeneous
manifold. Then this information is lifted to a curve in the Lie algebra. It is
natural to require that the lifted curve does not depend on the representative of
the class used to pull back the curve to the base point.

The main contribution of this paper is the definition of a generalised square
root velocity transform framework using transitive Lie group actions for curves
on homogeneous spaces. Different choices of Lie group actions will give rise to
different metrics on the infinite dimensional manifold of curves on the homoge-
neous space, with different properties. These different metrics, their geodesics
and associated geometric tools for shape analysis can all be implemented in the
computationally advantageous SRVT framework.

We extend previous results for Lie group valued curves and shapes [9], to
the homogeneous manifold setting. Using ideas from the literature on differen-
tial equations on manifolds [10], we describe the main tools necessary for the
definition of the SRVT and discuss the minimal requirements guaranteeing that
the SRVT is well defined, section 9.2. On a general homogeneous manifold,
the SRVT is obtained using a right inverse of the composition of the Lie group
action with the evolution operator of the Lie group. If the homogeneous mani-
fold is reductive, there is an explicit way to construct this right inverse (based
on a canonical 1-form for the reductive space, cf. 9.3.3 - 9.3.4), see also [22].
We prove smoothness of the defined SRVT in section 9.2.1. Detailed examples
on matrix Lie groups are provided in section 9.4.

A Riemannian metric on the manifold of curves on the homogeneous space
is obtained by pulling back the L2 inner product of curves on the Lie algebra
through the SRVT, Theorem 9.6. To ensure that the distance function obtained
on the space of parametrised curves descends to a distance function on the
shape space, it is necessary to prove equivariance with respect to the group of
orientation preserving diffeomorphisms (reparametrization invariance), these
results are presented in section 9.2.3.

For the case of reductive homogeneous spaces, fixed the Lie group action,
two different approaches are considered: one obtained pulling back the curves
to the Lie algebra g (Proposition 9.10) and one obtained pulling back the curves
to the reductive subspace m ⊂ g (section 9.3.6). The resulting distances are
both reparametrization invariant, see Lemmata 9.8 and 9.13. For the second
approach it follows similarly to what shown in [9] that the geodesic distance is
globally defined by the L2 distance, Proposition 9.12. We conjecture that also
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9.1 Shapes on homogeneous manifolds

for general homogeneous manifolds, at least locally, the geodesic distance of
the pullback metric is given by the L2 distance of the curves transformed by the
SRVT, see end of section 9.2.2. To illustrate the performance of the proposed
approaches we compute geodesics between curves on the 2-sphere (viewed as a
homogeneous space with respect to the canonical SO(3)-action), see Figure 9.1
for an example. Numerical experiments show that the two algorithms perform
differently when applied to curves on the sphere (section 9.5).

Figure 9.1: The blue curve shows the deformation of the green curve into the purple
one along a geodesic γ : [0,1] → Imm(I ,S2) plotted for the three times

{
1
4 , 1

2 , 3
4

}
from

left to right.

This work appeared on arXiv on the 5th of April 2017. Later a related but
different work from colleagues at Florida State University was completed and
posted on arXiv on the 9th of June 2017. The latter work has now appeared
in [28], see also the follow-up [29]. Moreover, loc.cit. treats quotients by
compact subgroups focuses on the existence of optimal reparametrisations.

9.1.1 Preliminaries and notation

Fix a Lie group G with identity element e and Lie algebra g.1 Denote by
Rg : G → G and Lg : G → G the right resp. left multiplication by g ∈ G. Let
H be a closed Lie subgroup of G and M :=G/H the quotient with the manifold
structure turning π : G → G/H , g 7→ g H into a submersion (see [12, Theorem
G (b)]). Then M becomes a homogeneous space for G with respect to the
(transitive) left action:

Λ : G ×M→M, (g ,kH) 7→ (g k)H .

For c0 ∈M we write Λ(g ,c0) =Λc0 (g ) = g .c0 =Λg (c0), i.e. Λc0
: G →M (the

orbit map of the orbit through c0) and Λg :M→M.

1 In this paper we assume all Lie groups and Lie algebras to be finite dimensional. Note
however, that many of our techniques carry over to Lie groups modelled on Hilbert spaces, [9].
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Shape analysis on homogeneous spaces

9.1.2. We will consider smooth curves on M and describe them using the Lie
group action. Namely for c : [0,1] →M we choose a smooth lift g : [0,1] →G
of c, i.e.:

c(t ) = g (t ).c0, c0 ∈M, t ∈ [0,1].

The dot denotes the action of G on G/H . In general, there are many different
choices for a smooth lifts g .2 For brevity we will in the following write I :=
[0,1].

Later on we consider smooth functions on infinite-dimensional manifolds
beyond the realm of Banach manifolds. Hence the standard definition for
smooth maps (i.e. the derivative as a (continuous) map to a space of continuous
operators) breaks down. We base our investigation on the so called Bastiani
calculus (see [3]): A map f : E ⊇U → F between Fréchet spaces is smooth if
all iterated directional derivatives exist and glue together to continuous maps.3

9.1.3. Let M be a (possibly infinite-dimensional) manifold. By C∞(I , M) we
denote smooth functions from I to M . Recall that the topology on these spaces,
the compact-open C∞-topology, allows one to control a function and its deriva-
tives. This topology turns C∞(I , M) into an infinite-dimensional manifold (see
e.g. [17, Section 42]).

Denote by Imm(I , M) ⊆ C∞(I , M) the set of smooth immersions (i.e.
smooth curves c : I → M with ċ(t ) 6= 0) and recall from [17, 41.10] that
Imm(I , M) is an open subset of C∞(I , M).

9.1.4. We further denote by Evol the evolution operator, which is defined as

Evol : C∞(I ,g) → {g ∈C∞(I ,G) : g (0) = e} =: C∞
∗ (I ,G)

Evol(q)(t ) := g (t ) where


d

dt g = Rg (t )∗(q(t )),

g (0) = e

and Rg∗ = Te Rg is the tangent of the right translation.Recall from [13, Theorem
A] that Evol is a diffeomorphism with inverse the right logarithmic derivative

δr : C∞
∗ (I ,G) →C∞(I ,g), δr g := R−1

g∗ (ġ ).

2Every homogeneous space G/H is a principal H-bundle, whence there are smooth horizontal
lifts of smooth curves (depending on some choice of connection, cf. e.g. [23, Chapter 5.1]).

3In the setting of manifolds on Fréchet spaces (with which we deal here) our setting of
calculus is equivalent to the so called convenient calculus (see [17]). Convenient calculus
defines a map f to be smooth if it “maps smooth curves to smooth curves", i.e. f ◦c is smooth
for any smooth curve c. This yields a calculus on infinite-dimensional spaces where smoothness
does not necessarily imply continuity (though this does not happen on Fréchet spaces), we refer
to [17] for a detailed exposition. Note that both calculi can handle smooth maps on intervals
[a,b], see e.g. [13, 1.1] and [17, Chapter 24].
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9.1 Shapes on homogeneous manifolds

9.1.5. We fix a Riemannian metric (〈·, ·〉g )g∈G on G which is right H-invariant
(i.e. the maps Rh ,h ∈ H are Riemannian isometries). Since M = G/H is
constructed using the right H-action on G , an H-right invariant metric descends
to a Riemannian metric on M. We refer to [11, Proposition 2.28] for details
and will always endow the quotient with this canonical metric to relate the
Riemannian geometries.

Hence H-right invariance should be seen as a minimal requirement for
the metric on G. Note that a natural way to obtain (right) invariant metrics
is to transport a Hilbert space inner product from the Lie algebra by (right)
translation in the group. This method yields a G-right invariant metric and we
will usually work with such a metric induced by 〈·, ·〉 on g. Albeit it is very
natural, G-invariance does not immediately add any benefits. In the following
table we record properties of H , the Riemannian metric and of the canonical
G-action on the quotient.

Table 9.1: Riemannian metrics and dsectionecompositions of the Lie algebra

H / h metric on G special decompositions of g G-action on M

compact G-left invariant, g= h⊕h⊥, the orthogonal by isometries
H-biinvariant complement h⊥ is Ad(H)-invariant

compact G-right invariant, as above only H acts
H-biinvariant by isometries

admits reductive G-right invariant g= h⊕m, m is Ad(H)-invariant not by isometries
complement in g4 g= h⊕h⊥, where in general m 6= h⊥

G-right invariant g= h⊕h⊥ but h⊥ is not not by isometries
Ad(H) invariant

9.1.6. Let f : M → N be a smooth map and denote postcomposition by

θ f : C∞(I , M) →C∞(I , N ), c 7→ f ◦ c.

Note that θ f is smooth as a map between (infinite-dimensional) manifolds.

9.1.7 (The SRVT on Lie groups). For a Lie group G with Lie algebra g, con-
sider an immersion c : I →G . The square root velocity transform of c is

R : Imm(I ,G) →C∞(I ,g\ {0}), R(c) = δr (c)p‖ċ‖ =

(
R−1

c(t )

)
∗ (ċ)

p‖ċ‖ , (9.1)

where the norm ‖ · ‖ is induced by a right G-invariant Riemannian metric, [9].
The SRVT consists of the composition of three maps:

4h = L(H) admits a reductive complement m, if m is an Ad(H)-invariant subspace and g =
h⊕m as vector spaces, cf. 9.3.1. Then M=G/H is a reductive homogeneous space.
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Shape analysis on homogeneous spaces

• differentiation D : C∞(I ,G) →C∞(I ,T G),D(c) := ċ,

• transport α : C∞(I ,TG) →C∞(I ,g), γ 7→ (R−1
πTG◦γ)∗(γ) and

• scaling sc: C∞(I ,g\ {0}) →C∞(I ,g\ {0}), q 7→
(

t 7→ q(t )p‖q(t )‖

)
.

The scaling by the square root of the norm of the velocity is crucial to obtain a
parametrisation invariant Riemannian metric, see [9] and Lemma 9.8.

9.2 Definition of the SRVT for homogeneous manifolds

Our aim is to construct the SRVT for curves with values in the homogeneous
manifold M. It was crucial in our investigation of the Lie group case [9] that
the right-logarithmic derivative inverts the evolution operator, see 9.1.4. To
mimic this behaviour we introduce a version of the evolution for homogeneous
manifolds.

Definition 9.1. Fix c0 ∈M and denote by C∞
c0

(I ,M) all smooth curves c : I →
M with c(0) = c0. Then we define

ρc0
: C∞(I ,g) →C∞

c0
(I ,M), ρc0 (q) =Λc0 (Evol(q)(t )) =Λ(Evol(q)(t ),c0).

Remark 9.1. Fix q ∈ C∞(I ,g) and c0 ∈M and denote by g (t ) = Evol(q)(t ).
Then

ρc0 (q) := c(t ) where


d

dt c(t ) = TeΛc(t )( q(t ) ),

c(0) = c0.

Proof. In fact

d

dt
ρc0 (q)(t ) = Tg (t )Λc0

(
d

dt
g (t )

)
= Tg (t )Λc0 ((Rg (t ))∗(q(t )))

= Tg (t )Λc0 ◦ (Rg (t ))∗ (q(t )) = Te (Λc0 ◦Rg (t ))(q(t ))

= TeΛΛc0 (g (t ))(q(t )) = TeΛρc0 (q)(t )(q(t )),

with Tg (t )Λc0
: Tg (t )G → TΛc0 (g (t ))M = Tρc0 (q)(t )M, TeΛc(t ) : g → Tc(t )M.

Hence we can interpret ρc0 as a version of the evolution operator Evol for
homogeneous manifolds.
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9.2 Definition of the SRVT for homogeneous manifolds

Example 9.1. Consider the two dimensional unit sphere M= S2 in R3. Con-
sider the action of SO(3) on S2 by matrix-vector multiplication: Λ : SO(3)×S2 →
S2, Λ(Q,u) = Q · u. Assume c0 := e1 the first canonical vector in R3, then
given a curve in the Lie algebra of skew-symmetric matrices q(t ) ∈ so(3),
ρe1 (q(t )) = y(t ), where y(t ) satisfies ẏ = q(t )y with y(0) = e1.

We want to construct a section of the submersion ρc0 to mimic the construc-
tion for Lie groups, see also [10, Proposition 2.2]. As we have seen in the Lie
group case, the SRVT factorises into a derivation map, a map transporting the
derivative to the Lie algebra and a scaling in the Lie algebra. For homogeneous
spaces, we can make sense of this procedure if we can replace the transport
from the Lie group case by a map which transports derivatives from the tangent
bundle of the homogeneous manifold to the Lie algebra. Thus we search for a
map α : C∞(I ,TM) →C∞(I ,g) such that the following diagram commutes:

C∞
c0

(I ,M)

idC∞
c0

(I ,M)

66
D // C∞(I ,TM)

α // C∞(I ,g)
ρc0 // C∞

c0
(I ,M)

Moreover, in the Lie group case we see that the mapping α◦D maps the sub-
manifold of immersions into the subset C∞(I ,g \ {0}). We will require this
property in general, as derivatives of immersions should vanish nowhere and
this property should be preserved by the transport α. The next definition details
necessary properties of α.

Definition 9.2 (Square root velocity transform). Let c0 ∈M be fixed and define
the closed submanifold5 Pc0

:= {c ∈ Imm(I ,M) | c(0) = c0} = Imm(I ,M)∩
C∞

c0
(I ,M) of C∞(I ,M). Assume there is a smooth α : C∞(I ,TM) →C∞(I ,g),

such that

ρc0 ◦α◦D = idC∞
c0

(I ,M) and (9.2)

α◦D(Pc0 ) ⊆C∞(I ,g\ {0}). (9.3)

Then we define the square root velocity transform on M at c0, with respect to
α as

R : Pc0 →C∞(I ,g\ {0}), R(c) := α(ċ)p‖α(ċ)‖ ,

where ‖ ·‖ is the norm induced by the right invariant Riemannian metric on the
Lie algebra. We will see in Lemma 9.4 that R is smooth.

5As Imm(I ,M) ⊆ C∞(I ,M) is open and the evaluation map ev0 : Imm(I ,M) →M is a
submersion, Pc0 = ev−1

0 (c0) is a closed submanifold of Imm(I ,M) (cf. [12]).
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Shape analysis on homogeneous spaces

The SRVT allows us to transport curves (via α) from the homogeneous
manifold to curves with values in a fixed vector space (i.e. the Lie algebra g).
The crucial property here is that α◦D is a right-inverse of ρc0 , and we note that
our construction depends strongly on the choice of the map ρc0 .

Example 9.2. Let G be a Lie group and H = {e} the trivial subgroup (with
e the Lie group identity). Then G = G/{e} is a homogeneous manifold and
ρe = Evol. Taking α(v) = (R−1

g )∗(v), we reproduce the definition of the SRVT
on Lie groups 9.1.7. However, contrary to Evol, ρc0 is not invertible if the
subgroup H (with M=G/H) is non-trivial, but we might still be able to find a
right inverse.

Example 9.3. We have TuS2 := {v ∈R3 |v ·u = 0} where we have denoted with
“ ·” the Euclidean inner product in R3. Then we can write

v = (vuT −uvT )u, ∀v ∈ TuS2

and we can define the map

α : v ∈ TuS2 7→ vuT −uvT ∈ so(3).

For c a curve evolving on S2 with c(0) = e1, we have ρe1 (α(ċ)) = c, so α◦D is
the right inverse of ρe1 . The SRVT is then

R(c) = ċcT − cċT√
‖ċcT − cċT ‖

,

and ‖ · ‖ is the norm deduced by the usual Frobenius inner product of matri-
ces (the scaled negative Killing form in so(3) see table in example 9.5). See
section 9.4 and 9.5, for further details and more examples.

The definition of α and the SRVT in Definition 9.2 depend on the initial
point c0 ∈M. In many cases our choices of α satisfy (9.2) for every c0 ∈M,
i.e. α satisfies

ρ(c(0),α(ċ)) := ρc(0)(α(ċ)) = c for all c ∈C∞(I ,M).

Further, the SRVT also depends on the choice of the left-action Λ : G ×M→
M. A different action will yield a different SRVT. For example, there are
several ways to interpret a Lie group as a homogeneous manifold with respect
to different group actions. One of these recovers exactly the SRVT from [9]
(see Example 9.2). See [22, Section 5.1] for more information on Lie groups
as homogeneous spaces, e.g. by using the Cartan-Schouten action.
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9.2 Definition of the SRVT for homogeneous manifolds

Remark 9.2. Fix c ∈ C∞(I ,M) to obtain a smooth map Λc : C∞(I ,G) →
C∞(I ,M), f 7→ (t 7→ Λ( f ,c)(t ) [19, Corollary 11.10 1. and Theorem 11.4].
Further we recall from [17, Theorem 42.17] that C∞(I ,TM) ∼= TC∞(I ,M).
Identifying the tangent space over the constant e : I →G (taking everything to
the unit) we obtain

TeΛc : C∞(I ,g) → TcC∞(I ,M), q 7→ (
t 7→ TeΛc(t )(q(t ))

)
.

If TeΛc was invertible (which it will not be in general), we could use it to define
α.

9.2.1 Smoothness of the SRVT

One of the most important properties of the square root velocity transform is that
it allows us to transport curves from the manifold to curves in the Lie algebra,
and this operation is smooth and invertible. The details are summarised in the
following two lemmata. Following [9, Lemma 3.9], we consider the smooth
scaling maps

sc: C∞(I ,g\ {0}) →C∞(I ,g\ {0}), q 7→
(

t 7→ q(t )√‖q(t )‖

)
,

sc−1 : C∞(I ,g\ {0}) →C∞(I ,g\ {0}), q 7→ (t 7→ q(t )‖q(t )‖).

(9.4)

Lemma 9.3. Fix c0 ∈M, then

1. C∞
c0

(I ,M) is a closed and split submanifold6 of C∞(I ,M),

2. ρc0
: C∞(I ,g) →C∞

c0
(I ,M) is a smooth surjective submersion.

Proof. 1. Note that C∞
c0

(I ,M) is the preimage of c0 under the evaluation
map

ev0 : C∞(I ,M) →M, c 7→ c(0).

One can show, similarly to the proof of [9, Proposition 4.1] that ev0 is a
submersion.Hence, [12, Theorem C] implies that C∞

c0
(I ,M) is a closed

submanifold of C∞(I ,M).

2. Recall that ρc0 = θΛc0
◦Evol, with

θΛc0
: C∞(I ,G) →C∞(I ,M), f 7→Λc0 ◦ f .

6A submanifold N of a (possibly infinite-dimensional) manifold M is called split if it is
modeled on a closed subvectorspace F of the model space E of M , such that F is complemented,
i.e. E = F ⊕G as topological vector spaces (see [12, Section 1]).
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As M is a homogeneous space, π : G → M is a surjective submer-
sion. Hence [23, Chapter 5.1] implies that θπ : C∞(I ,G) → C∞(I ,M)
is surjective. Further, the Stacey-Roberts Lemma [2, Lemma 2.4] as-
serts that θπ is a submersion. Picking g ∈ π−1(c0), we can also write
θΛc0

( f ) = π ◦Rg ◦ f = θπ(θRg ( f )). Thus θΛc0
= θπ ◦θRg is a surjective

submersion and

θ−1
Λc0

(C∞
c0

(I ,M)) =C∞
∗ (I ,G) = {c ∈C∞(I ,G) | c(0) = e}.

By [13, Theorem C], θΛc0
restricts to a smooth surjective submersion

C∞∗ (I ,G) → C∞
c0

(I ,M). Finally, since Evol : C∞(I ,g) → C∞∗ (I ,G) is a
diffeomorphism (cf. 9.1.4), ρc0 = θΛc0

◦Evol is a smooth surjective sub-
mersion.

Lemma 9.4. Fix c0 ∈M and let α be as in Definition 9.2. Then the square root
velocity transform R = sc ◦α ◦D constructed from α is a smooth immersion
R : Pc0 →C∞(I ,g\ {0}).

Proof. The map D : C∞(I ,M) →C∞(I ,TM),c 7→ ċ is smooth by Lemma 9.16.
Hence on Pc0 , the restriction of D is smooth. As a composition of smooth maps,
R= sc◦α◦D|Pc0

is also smooth.
Since sc: C∞(I ,g \ {0}) → C∞(I ,g \ {0}) is a diffeomorphism, it suffices

to prove that α ◦ D|Pc0
is an immersion. As we are dealing with infinite-

dimensional manifolds, it is not sufficient to prove that the derivative of α◦D|Pc0

is injective (which is evident from (9.2)). Instead we have to construct immer-
sion charts for x ∈Pc0 , i.e. charts in which α◦D is conjugate to an inclusion of
vector spaces.7

To construct these charts, recall from (9.2) that f := α ◦D|Pc0
is a right-

inverse to ρc0 . In Lemma 9.3 we established that ρc0 is a surjective sub-
mersion which restricts to a submersion ρ−1

c0
(Pc0 ) → Pc0 by [12, Theorem

C]. Fix x ∈ Pc0 and use the submersion charts for ρc0 . By [12, Lemma 1.2]
there are open neighborhoods x ∈ Ux ⊆ Pc0 and f (x) ∈ U f (x) ⊆ ρ−1

c0
(Pc0 ) to-

gether with a smooth manifold N and a diffeomorphism θ : Ux × N → U f (x)

such that ρc0 ◦ θ(u,n) = u. Thus θ−1 ◦ f |Ux = (idUx , f2) for a smooth map
f2 : Ux →U fx . Hence θ−1 ◦ f |Ux induces a diffeomorphism onto the split sub-
manifold Γ( f2) := {(y, f2(y)) | y ∈Ux } ⊆Ux ×U fx . Following [12, Lemma 1.13],
we see that f =α◦D|Ux is an immersion. As x was arbitrary, the SRVT R is
an immersion.

Exploiting that R is an immersion, we transport Riemannian structures and
distances from C∞(I ,g \ {0}) to Pc0 by pullback. Note that the image of the
SRVT for a homogeneous space is in general only an immersed submanifold

7See [12] for more information on immersions between infinite-dimensional manifolds.
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9.2 Definition of the SRVT for homogeneous manifolds

of C∞(I ,g\ {0}). For reductive homogeneous spaces, a certain SRVT will al-
ways yield a smooth embedding (see Lemma 9.11). We investigate now the
Riemannian structure on Pc0 .

9.2.2 The Riemannian geometry of the SRVT

As a first step, we construct a Riemannian metric using the L2 metric on
C∞(I ,g).

Definition 9.5. Endow C∞(I ,g) with the L2 inner product

〈 f , g 〉L2 =
∫ 1

0
〈 f (t ), g (t )〉dt ,

where 〈·, ·〉 is induced by the right H-invariant Riemannian metric of G on g.

The L2 inner product induces a weak Riemannian metric. The L2-geodesics
are straight lines, i.e. a curve c(t ) ∈C∞(I ,g) is a L2-geodesic if and only if for
every t , s 7→ c(t )(s) is a straight line in the vector space g. In Lemma 9.4 the
square root velocity transform was identified as an immersion, which we now
turn into a Riemannian immersion by pulling back the L2 metric. Arguing as
in the proof of [9, Theorem 3.11] one obtains the following formula for this
pullback metric.

Theorem 9.6. Let c ∈ Pc0 and consider v, w ∈ TcPc0 , i.e. v, w : I → TM are
curves with v(t ), w(t ) ∈ Tc(t )M. The pullback of the L2 metric on C∞(I ,g\{0})
under the SRVT to the manifold of immersions Pc0 is given by:

GR
c (v, w) =

∫
I

1

4

〈
Ds v,uc

〉〈
Ds w,uc

〉
+

〈
Ds v −uc

〈
Ds v,uc

〉
,Ds w −uc

〈
Ds w,uc

〉〉
ds,

(9.5)

where Ds v := Tc (α◦D)(v)/
∥∥α(ċ)

∥∥, uc :=α(ċ)/
∥∥α(ċ)

∥∥ is the (transported) unit
tangent vector of c, and ds =∥∥α(ċ(t ))

∥∥dt . The pullback of the L2 norm is given
by

GR
c (v, v) =

∫
I

1

4

〈
Ds v,uc

〉2 +
∥∥∥Ds v −uc

〈
Ds v,uc

〉∥∥∥2
ds.

The formula for the pullback metric in Theorem 9.6 depends on α and its
derivative. However, notice that we always obtain a first order Sobolev metric
which measures the derivative Ds v of the vector field over a curve c.

The distance on Pc0 will now be defined as the geodesic distance of the first
order Sobolev metric GR, i.e. of the pullback of an L2 metric. Thus we just need
to pull the L2 geodesic distance on R(Pc0 ) back using the SRVT. But, in general,
the geodesic distance of two curves on the submanifold R(Pc0 ) with respect to
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the L2 metric will not be the L2 distance of the curves (see e.g. [8, Section 2]).
The question is now, under which conditions is the geodesic distance at least
locally given by the L2 distance. Note first that the image of the SRVT will
in general not be an open submanifold of C∞(I ,g) (this was the key argument
to derive the geodesic distance in [9, Theorem 3.16]). As a consequence we
were unable to derive a general result describing the links between the geodesic
distance by GR on Pc0 and the SRVT algorithmic approach for homogeneous
manifolds. Nonetheless, we conjecture that at least locally the geodesic distance
should be given by the L2 distance (note that ρ−1

c0
(Pc0 ) is an open set, whence

the geodesic distance is locally given by the L2 distance). On the other hand,
for reductive homogeneous spaces (discussed in Section 9.3), an auxiliary map
can be used to obtain a geodesic distance which globally coincides with the
transformed L2 distance.

9.2.3 Equivariance of the Riemannian metric

Often in applications, one is interested in a metric on the shape space

Sc0
:=Pc0 /Diff+(I ) = Immc0 (I ,M)/Diff+(I ),

where Diff+(I ) is the group of orientation preserving diffeomorphisms of I
acting on Pc0 from the right (cf. [6]). To assure that the distance function dPc0

descends to a distance function on the shape space, we need to require that it is
invariant with respect to the group action.

Definition 9.7. Let d : Pc0 ×Pc0 → [0,∞[ be a metric. Then d is reparametri-
sation invariant if

d( f ,h) = d( f ◦ϕ, g ◦ϕ) ∀ϕ ∈ Diff+(I ). (9.6)

In other words d is invariant with respect to the diagonal (right) action of
Diff+(I ) on Pc0 ×Pc0 .

Let [ f ], [g ] ∈ S be equivalence classes and pick arbitrary representatives
f ∈ [ f ] and g ∈ [g ]. If d is a reparametrisation invariant, we define a metric on
S as

dS ([ f ], [g ]) := inf
ϕ∈Diff+(I )

d( f , g ◦ϕ). (9.7)

Since d is reparametrisation invariant, the definition of dS makes sense (cf. [9,
Lemma 3.4]). To obtain a metric on S , we need reparametrisation invairance of

dPc0
: Pc0 ×Pc0 →R, dPc0

( f , g ) :=
√∫ 1

0

∥∥R( f )(t )−R(g )(t )
∥∥2 dt .

258



9.3 SRVT for curves in reductive homogeneous spaces

Lemma 9.8. LetR be the square root velocity transform with respect to c0 ∈M
and α : C∞(I ,TM) ∼= T C∞(I ,M) →C∞(I ,g). Then dPc0

is reparametrisation
invariant if α is a C∞(I ,g)-valued 1-form on C∞(I ,M), e.g. if α = θω for a
g-valued 1-form on M.

Proof. Consider ϕ ∈ Diff+(I ) and f , g ∈Pc0 . Then a computation yields

R( f ◦ϕ) = α( ḟ ◦ϕ · ϕ̇)√∥∥∥α( ḟ ◦ϕ · ϕ̇)
∥∥∥ = α( ḟ ◦ϕ) · ϕ̇√∥∥∥α( ḟ ◦ϕ) · ϕ̇

∥∥∥ = (R( f )◦ϕ) ·√ϕ̇,

where we have used that α is fibre-wise linear as a 1-form. Thus we can now
compute

dPc0
( f ◦ϕ, g ◦ϕ) =

√∫
I

∥∥R( f )◦ϕ(t )−R(g )◦ϕ(t )
∥∥2

ϕ̇(t )dt = dPc0
( f , g ).

The condition on α from Lemma 9.8 is satisfied in all examples of the SRVT
considered in the present paper. For example, for a reductive homogeneous case
(see Section 9.3), we can always choose α as the pushforward of a g-valued
1-form.

9.3 SRVT for curves in reductive homogeneous spaces

A fundamental problem in our approach to shape spaces with values in homo-
geneous spaces is that we need to somehow lift curves from the homogeneous
space to the Lie group. Ideally, this lifting process should be compatible with
the Riemannian metrics on the spaces. Note that for our purposes it suffices
to lift the derivatives of smooth curves to curves in the Lie algebra of the Lie
group. Hence we need a suitable Lie algebra valued 1-form, which turns out to
exist for reductive homogeneous spaces, cf. e.g. [16, Chapter X] (see also [22]
for a recent account)

9.3.1. Recall that Ad(g ) := Teconjg , where conjg = Lg ◦Rg−1 denotes conjuga-
tion conjg : G →G . Suppose m is a subspace of g such that g= h⊕m.
Let ωe : TeHM→m be the inverse of Teπ|m : g ⊇m→ TeHM. Identify g =
TeG and observe that Teπ : g→ TeHM induces an isomorphism Teπ|m : m→
TeHM.

By definition π◦Rh = π holds for all h ∈ H . Now the group actions of G
on itself by left and right multiplication commute and we observe that, for all
g ∈G ,

π◦Lg =Λg ◦π and Teπ◦Ad(h) = TΛh ◦Teπ for h ∈ h. (9.8)
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9.3.2. We will from now on assume that M is a reductive homogeneous
manifold. This means that the subalgebra h admits a reductive complement, i.e.
a vector subspace m⊆ g such that

g= h⊕m and Ad(h).m⊆m for all h ∈ H .

If it exists, a reductive complement will in general not be unique. However, we
choose and fix a reductive complement m for h.

9.3.3. As a reductive complement, m is closed with respect to the adjoint
action of H . Hence one deduces (cf. [22, Lemma 4.6] for a proof) that ωe is
H-invariant with respect to the adjoint action, i.e.

ωe (TΛh(v)) = Ad(h).ωe (v) for all v ∈ TeHM and h ∈ H .

Thus the following map is well-defined:

ω : TM→ g, v 7→ Ad(g ).ωe (TΛg−1
(v)) for all v ∈ Tg HM.

From the definition it is clear that ω is a smooth g-valued 1-form on M. More-
over, ω is even G-equivariant with respect to the canonical and adjoint action:

ω(TΛk (v)) = Ad(k).ω(v) for all v ∈ TM and k ∈G . (9.9)

Note that ω depends by construction on our choice of reductive complement
m. However, we will suppress this dependence in the notation. As noted
in [22, Section 4.2], the 1-forms ω correspond bijectively to reductive structures
on G/H .8

9.3.4. Let ω be the 1-form constructed in 9.3.3. Then we define the map

θω : C∞(I ,TM) →C∞(I ,g), f 7→ω◦ f .

Note first that θω is smooth by [17, Theorem 42.13]. We will prove that θω

indeed satisfies (9.2) and (9.3), whence α= θω yields an SRVT as in 9.2.

To motivate the computations, let us investigate an important special case.

Example 9.4. Similarly to example 9.2, let G be a Banach Lie group and
H = {e} the trivial subgroup. Then G =G/{e} can be viewed as a reductive ho-
mogeneous manifold with m= g, π= idG and ωe = idg. From the definition of ω
we obtain ω(v) = Ad(g ).(Lg−1

)∗(v) = (R−1
g )∗(v) = κr (v), where κr denotes the

right Maurer-Cartan form, [17, Section 38] or [22, Section 5.1]. In particular,
for c : I →G we have θ(c) = κr (ċ) = δr (c) (right logarithmic derivative). As we
have Evol◦δr (c) = c for a curve starting at e.

The SRVT for reductive spaces coincides thus with the SRVT for Lie group
valued shape spaces as outlined in 9.1.7.

8Note that there might be different reductive structures on a homogeneous manifold. We
refer to [22, Section 5.1] for examples and further references.
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Albeit Example 9.4 is quite trivial as a homogeneous space, it highlights a
general principle of the construction for reductive homogeneous spaces.

Remark 9.3. We here provide an alternative interpretation for θω◦D: A smooth
curve c : I → M admits a smooth horizontal lift c̃ : I → G depending on a
choice of connection for the principal bundle G →M [23, Chapter 5.1]. For
a reductive homogeneous manifold we construct a horizontal lift c̃ using the
canonical invariant connection (depending on the reductive complement, see
[16, X.2]). Now we take the (right) Darboux derivative (aka right logarithmic
derivative) of c̃ : I →G (see [25, 3.§5]). Then unraveling the definitions similar
to Examples 9.2 and 9.4, one can show that δr (c̃) = θω ◦D(c) holds for the
1-form θω as in 9.3.4. Thus for a reductive homogeneous space the proposed
SRVT can be viewed (up to scaling) as the Darboux derivative of a horizontal
lift of a curve in M. Note that this interpretation justifies again to view ρc0 as
a generalised version of the evolution operator Evol (which inverts the right
logarithmic derivative, see Remark 9.1).

A rich source for reductive homogeneous spaces are quotients of semisim-
ple Lie groups. We recall now some of the main examples.

Example 9.5. Let G be a semisimple Lie group and H a Lie subgroup of G
which is also semisimple. Then the homogeneous space M=G/H is reductive.
A reductive complement of h in g is the orthogonal complement h⊥ with respect
to the Cartan-Killing form on g (recall that the Killing form of a semisimple
Lie algebra is non-degenerate by Cartan’s criterion [15, I.§7 Theorem 1.45]).
For example, this occurs for G = SL(n) and H = SL(n −p) or G = SO(n) and
H = SO(n −p) (where 1 ≤ p < n), since by [15, I.§8 and I.§18] the following
properties hold:

Lie group G compact? semisimple? Killing form B(X ,Y ) on g

SO(n) yes yes (for n ≥ 3) (n −2)Tr(X Y )
SL(n) no yes 2nTr(X Y )
GL(n) no no 2nTr(X Y )−2Tr(X )Tr(Y )

Here Tr denotes the trace of a matrix. All main examples in this paper are
reductive.

Proposition 9.9. Let M = G/H be a reductive homogeneous space, c0 ∈M,
ω and θω as in 9.3.4. Consider D : C∞

c0
(I ,M) →C∞(I ,TM),c 7→ ċ. Then

ρc0 ◦θω ◦D = idC∞
c0

(I ,M) .

Proof. As a shorthand write θ := θω ◦D. We establish in Lemma 9.17 the
identity

idC∞
eH (I ,M) = ρeH ◦θ =ΛeH ◦Evol◦θ =π◦Evol◦θ . (9.10)

261



Shape analysis on homogeneous spaces

Let now c ∈ C∞
c0

(I ,M) with c0 = g0H . Then we obtain Λg−1
0 ◦ c ∈ C∞

eH (I ,M)
and

ρc0 ◦θ(c) = (Λc0 ◦Evol)◦θω(ċ) =Λc0 ◦Evol◦ω(TΛg0 TΛg−1
0 ċ)

(9.9)= Λc0 ◦Evol(Ad(g0).ω(TΛg−1
0 ċ)) =Λc0 ◦Evol(Ad(g0).θ(Λg−1

0 ◦ c)).

Recall from [13, 1.16] that for a Lie group morphism ϕ one has the iden-
tity Evol◦L(ϕ) = ϕ ◦Evol. By definition, Ad(g ) = L(conjg ) := Teconjg , where
conjg = Lg ◦Rg−1 denotes the conjugation morphism. Insert this into the above
equation:

ρc0 ◦θ(c) =Λc0 ◦Evol◦θ(c) =Λc0 ◦Lg0 ◦Rg−1
0
◦Evol(θ(Λg−1

0 ◦ c))

=π◦Lg0 Evol(θ(Λg−1
0 ◦ c)) =Λg0 ◦π◦Evol(θ(Λg−1

0 ◦ c))

(9.10)= Λg0 ◦Λg−1
0 ◦ c = c.

In passing to the second line we used that left and right multiplication maps
commute and that Λc0 (Rg−1

0
(k)) =Λc0 (kg−1

0 ) = kg−1
0 c0 = kg−1

0 g0H =π(k).

Proposition 9.10. Let M=G/H be a reductive homogeneous space, c0 ∈M,
ω and θω as in 9.3.4. Then θω satisfies (9.2) and (9.3), whence for a reductive
homogeneous space we can define the SRVT as

R(c) := θω(ċ)√∥∥θω(ċ)
∥∥ for c ∈ Imm(I ,M)

Proof. In Proposition 9.9 we have already established (9.2). To see that
(9.3) also holds for θω, observe first that for v ∈ Tg HM, we have ω(v) =
Ad(g ).ωe (TΛg−1

(v)). Since ωe ◦TΛg−1
: Tg HM → m and Ad(g ) : g → g are

linear isomorphisms, we see that ω(v) = 0 if and only if v = 0g H . As θω is
post-composition by ω, θω satisfies (9.3).

9.3.5 Riemannian geometry and the reductive SRVT

In the reductive space case, it is easier to describe the image of the square root
velocity transform. It turns out that the image is a split submanifold with a
global chart. Using this chart, we can also obtain information on the geodesic
distance.

The idea is to transform the image of the SRVT such that it becomes
C∞(I ,m \ {0}), where m is again the reductive complement. Pick g0 ∈ π−1(c0)
and use the adjoint action of G and the evolution Evol : C∞(I ,g) →C∞(I ,G) to
define

Ψg0 (q) :=−Ad(g0 Evol(q)−1).q for q ∈C∞(I ,g)
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where the dot denotes pointwise application of the linear map Ad(Evol(q)−1).
Then Ψg0 is a diffeomorphism with inverse Ψg−1

0
(see Lemma 9.19). We will

now see that Ψg−1
0

maps the image of the SRVT to C∞(I ,m\ {0}).

Lemma 9.11. Choose c0 ∈M in the reductive homogeneous space M, and let
ω and θω, D be as in Proposition 9.9. Then Im θω ◦D is a split submanifold
of C∞(I ,g \ {0}) modelled on C∞(I ,m) and θω ◦D is a smooth embedding. In
particular, R(Pc0 ) =Ψg0 (C∞(I ,m\ {0})) is a split submanifold of C∞(I ,g\ {0})
and R is a smooth embedding.

Proof. As g = h⊕m, we have C∞(I ,g) = C∞(I ,h⊕m) ∼= C∞(I ,h)⊕C∞(I ,m).
Thus C∞(I ,m \ {0}) is a closed and split submanifold of C∞(I ,g \ {0}). Fix
g0 ∈G with π(g0) = c0 and note that Ψg0 restricts to a diffeomorphism C∞(I ,g\
{0}) →C∞(I ,g \ {0}) by Lemma 9.19. Now as Ψg0 (C∞(I ,m \ {0})) = Im θω ◦D
(cf. Lemma 9.20), the image Im θω ◦D is a closed and split submanifold of
C∞(I ,g\ {0}). Further, we deduce from Lemma 9.20 that ρc0 |Imθω◦D is smooth
with θω ◦D ◦ρc0 |Imθω◦D = idImθω◦D . As also ρc0 ◦ θω = idImmc0 (I ,M), we see
that θω is a diffeomorphism onto its image. Thus θω ◦D is indeed a smooth
embedding.

Since the scaling maps are diffeomorphisms C∞(I ,g\ {0}) →C∞(I ,g\ {0}),
the assertions on the image of R and on R follow directly from the assertions
on θω.

9.3.6 (Reductive SRVT). Let M be a reductive homogeneous space with reduc-
tive complement m and θω : C∞(I ,TM) →C∞(I ,g), f 7→ω◦ f be constructed
with respect to the 1-form ω from 9.3.3. Then Ψg−1

0
◦θω(Pc0 ) =C∞(I ,m \ {0})

(see Appendix 9.7.1). Now one constructs a version of the SRVT for reductive
spaces via

Rm : Pc0 →C∞(I ,m\ {0}), f 7→
Ψg−1

0
◦θω( ḟ )√

‖Ψg−1
0
◦θω( ḟ )‖

.

We call this map reductive SRVT, to distinguish it from the usual SRVT. Con-
trary to the SRVT, the reductive SRVT will go into the reductive complement,
but it will not be a section of ρc0 . Instead it is a section of ρc0 ◦Ψg0 . Finally, we
note that by construction (cf. Lemma 9.19) the image of the reductive SRVT is
C∞(I ,m\ {0}).

Arguing as in Theorem 9.6, we also obtain a first order Sobolev metric by
pullback with the reductive SRVT. In general this Riemannian metric will not
coincide with the pullback metric obtained from the SRVT. The advantage of
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the reductive SRVT is that we have full control over its image, which happens
to be an open subset (of a subspace of C∞(I ,g)). Since C∞(I ,g) with respect
to the L2 inner product is a flat space (in the sense of Riemannian geometry), it
follows that at least locally the geodesic distance on the image of the SRVT is
given by the distance

dPc0 ,m( f , g ) := dL2 (Rm( f ),Rm(g )).

However, we argue as in [9, Theorem 3.16] to obtain the following result.

Proposition 9.12. If dim h + 2 < dim g, then the geodesic distance of
(R(Pc0 ),〈·, ·〉L2 ) coincides with the L2 distance. In this case the geodesic dis-
tance on Pc0 induced by the pullback metric (9.5) (with respect to the reductive

SRVT) is given by dPc0 ,m( f , g ) =
√∫

I

∥∥Rm( f )(t )−Rm(g )(t )
∥∥2 dt .

Note that the modification by the reductive SRVT is highly non-linear, e.g.
in the Lie group case, Example 9.4, we obtain:

Example 9.6. Let G be a Lie group, c ∈∞ (I ,G) and δl (c) = c−1ċ. Then

Ψ(δr (c)) =−Ad(Evol(δr (c))−1).δr (c) =−Ad(c−1).ċc−1 =−δl (c).

Recall from [17, 38.4] that Evol(−δl (c))(t ) = (c(t ))−1. In the Lie group case, the
reductive SRVT modifies the formulae to compute distances and interpolations
between the pointwise inverses of curves instead of the curves themselves. In
particular, this shows that the reductive SRVT will not be a section of ρc0 .

In particular, we have to prove a version of Lemma 9.8 for the reductive
SRVT.

Lemma 9.13. For a reductive space, dPc0 ,m is reparametrisation invariant.

Proof. For Rm we use Ψg−1
0

◦ θω instead of α = θω. Consider f ∈ Pc0 and
ϕ ∈ Diff+(I ) to compute as in Lemma 9.8: Ψ−1

g0
(θω( f ◦ϕ)) =Ψ−1

g0
(ϕ̇ ·θω( f )◦ϕ).

Now
Evol(q)◦ϕ= Evol(ϕ̇ ·q ◦ϕ)Evol(q)(ϕ(0))︸ ︷︷ ︸

=e since ϕ(0)=0

= Evol(ϕ̇ ·q ◦ϕ)

follows from [17, p. 411]. Linearity of the adjoint action yields Ψ−1
g0

(θω( f ◦
ϕ)) = (Ψ−1

g0
(θω( f ))◦ϕ)·ϕ̇. Inserting this in (9.9) yields reparametrisation invari-

ance.
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9.4 The SRVT on matrix Lie groups

In order to illustrate our definition of the SRVT in different instances of homo-
geneous manifolds, we consider in what follows two examples of quotients of
finite dimensional matrix Lie groups (for n ≥ 3 and p < n):

1. SO(n)/(SO(n −p)×SO(p)) (see 9.4.3).

2. SO(n)/SO(n −p) (see 9.4.2).

Note that in both cases the quotients are reductive homogeneous spaces. To
prepare our investigation, we will now collect some information on relevant
tangent spaces for the matrix Lie groups. These examples are relevant in appli-
cations [1].

9.4.1 Tangent space of G/H and tangent map of G →G/H

For G and H finite dimensional (matrix) Lie groups, we here describe the
tangent space of G/H at a prescribed point c0 and the tangent mapping of the
canonical projection π : G →G/H . We have seen that any curve c(t ) on G/H ,
c(0) = c0, can be expressed non-uniquely by means of a curve on the Lie group
c(t ) = π(g (t )). For matrix Lie groups, the elements of G/H are equivalence
classes of matrices. Let the elements of G, g ∈ G, be n ×n matrices, then
the group multiplication coincides with matrix multiplication. We identify
elements of H ⊂G with matrices

h =
[

I 0
0 Γ

]
, (9.11)

where Γ is an (n −p)× (n −p) matrix and I is the p ×p identity.
We obtain Tg0π : Tg0G → Tπ(g0)G/H , v 7→ w , by differentiating c(t ) =

π(g (t )). Assuming g (0) = g0, π(g0) = c0, ġ (0) = v ∈ Tg0G , we have

w := Tπ(g0)(v) = d

d t

∣∣∣∣∣
t=0

π(g (t )) =
 d

d t

∣∣∣∣∣
t=0

g̃ (t ) | g̃ (t ) = g (t )h(t ), h(t ) ∈ H

 .

Assuming ġ (t ) = A(t )g (t ), where A(t ) ∈ g, v = A0g0 = g0 Adg−1
0

(A0), and as-
suming also that d

d t h(t ) = B(t )h(t ), B(t ) ∈ h, B(0) = B0, in analogy to (9.32),
we get

d

d t
g̃ (t ) =

(
A(t )+Adg (t )(B(t ))

)
g (t )h(t )

= g (t )
(
Adg (t )−1 (A(t ))+B(t )

)
h(t ),

(9.12)
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so we obtain

w := Tπ(g0)(v) =
w̃ = d

d t

∣∣∣∣∣
t=0

g̃ (t ) | w̃ = (A0 +Adg0 (B0)) g0 h, h ∈ H ,B0 ∈ h


=
w̃ = d

d t

∣∣∣∣∣
t=0

g̃ (t ) | w̃ = g0 (Adg−1
0

(A0)+B0)h, h ∈ H ,B0 ∈ h
 ,

which gives a description of the tangent vector w ∈ Tc0G/H as well as the char-
acterisation of Tπ for matrix Lie groups. Suppose that we fix a complementary
subspace m of h, g= h⊕m, then there is a unique isotropy element B0 ∈ h such
that Adg−1

0
(A0)+B0 ∈m.

Repeating this procedure for each value of t along a curve c(t ), we can
assume c(t ) =π(g (t )) and w(t ) ∈ Tπ(g (t ))G/H , w(t ) = (A(t )+Adg (t )(B(t )))c(t )
with A(t ) ∈ g, B(t ) ∈ h, such that Adg (t )−1 (A(t ))+B(t ) ∈m, then we can define

α : Tπ(g (t ))G/H → Adg (t )(m), α(w(t )) = A(t )+Adg (t )(B(t )).

This map corresponds to the map θω of 9.3.4 with ω as described in 9.3.3. If
m is reductive, this map is well defined (independently of the choice of repre-
sentative g (t ) of c(t ) = π(g (t ))). We refer to Table 9.1 for different, possible
choices of m and their implications. In the following examples m is reductive
and H is compact.

9.4.2 SRVT on the Stiefel manifold: SO(n)/SO(n −p).

In this section we consider the case when G = SO(n) and H = SO(n − p) ⊂
SO(n), where the elements of SO(n − p) are of the type (9.11) with Γ a
(n −p)× (n −p) orthogonal matrix with determinant equal to 1. We consider
the canonical left action of SO(n) on the quotient SO(n)/SO(n−p). This homo-
geneous manifold can be identified with the Stiefel manifold, M=Vp (Rn), i.e.
the set of p-orthonormal frames in Rn (real matrices n ×p with orthonormal
columns). We will in the following denote by [U ,U⊥] the elements of SO(n)
where we have collected in U the first p orthonormal columns and in U⊥ the
last n −p. Multiplication from the right by an arbitrary element in the isotropy
subgroup SO(n − p) gives [U ,U⊥Γ], leaving the first p columns unchanged
and orthonormal to the last n − p, for all choices of Γ. Here U alone repre-
sents the whole coset of [U ,U⊥]. When thought of as a map from SO(n) to
SO(n)/SO(n −p), the projection π : SO(n) → SO(n)/SO(n −p) is

π([U ,U⊥]) = {g̃ ∈ SO(n) | g̃ = [U ,U⊥Γ], ∀Γ ∈ SO(n −p)}.

Otherwise, when thought of as a map from π : SO(n) →Vp (Rn), the canonical
projection conveniently becomes π([U ,U⊥]) = [U ,U⊥] Ip =U , where Ip is the
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n×p matrix whose columns are the first p columns of the n×n identity matrix.
The equivalence class of the group identity element π(e) is identified with the
n ×p matrix Ip . Similarly the tangent mapping of the projection π,

Tπ : T SO(n) → T SO(n)/SO(n −p),

v ∈ Tg SO(n) 7→ w ∈ Tπ(g )SO(n)/SO(n −p), with g = [U ,U⊥], v = A [U ,U⊥] ∈
T[U ,U⊥]SO(n) and A ∈ so(n)), can be realised as

T[U ,U⊥]π(A [U ,U⊥])

=
w̃ ∈ T[U ,U⊥Γ] SO(n)

∣∣∣∣∣∣ w̃ = [U ,U⊥](Ad[U ,U⊥]T (A)+B)Γ,

∀Γ ∈ SO(n −p), B ∈ so(n −p)

 ,
(9.13)

while Tπ : T SO(n) → TVp (Rn) by multiplication from the right by Ip , and

T[U ,U⊥]π(A [U ,U⊥]) = A [U ,U⊥] Ip = AU ∈ TUVp (Rn). (9.14)

Alternatively, a characterisation of tangent vectors can be obtained by differen-
tiation of curves on Vp (Rn). We have then that

TQVp (Rn) = {V n ×p matrix | QTV p ×p skew-symmetric}.

Proposition 9.14. [10] Any tangent vector V at Q ∈Vp (Rn) can be written as

V = (FQT −QF T)Q, (9.15)

F : =V −Q
QTV

2
∈ TQM. (9.16)

And notice that replacing F with F :=V −Q(QTV
2 +S), where S is an arbitrary

p ×p symmetric matrix, does not affect (9.15).
We proceed by using the representation (9.15) of TQVp (Rn) and the frame-

work described in Definition 9.2 for defining an SRVT on the Stiefel manifold.
Consider

fQ : TQM→ TQM, fQ (V ) =V −Q
QTV

2
, (9.17)

aQ : TQM→mQ ⊂ g, aQ (V ) = fQ (V )QT −Q fQ (V )T. (9.18)

The SRVT of a curve Y (t ) on the Stiefel manifold is a curve on so(n) defined
by

R(Y ) := aY (Ẏ )√
‖aY (Ẏ )‖

= fY (Ẏ )Y T −Y fY (Ẏ )T√
‖ fY (Ẏ )Y T −Y fY (Ẏ )T‖

. (9.19)
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As the Stiefel manifold is a reductive homogeneous space, we can define a
reductive SRVT in this case. Denoting with [Q,Q⊥] a representative in SO(n)
of the equivalence class identified by Q on Vp (Rn), we observe that

V = Ad[QQ⊥](G)Ip with G := [QQ⊥]T F I T
p − Ip F T [QQ⊥].

Assuming the right invariant metric on SO(n) is the negative Killing form, then
we observe that G belongs to the orthogonal complement of the subalgebra
so(n − p) in so(n) with respect to this inner product. As stated in Table 9.1,
this orthogonal complement is the reductive complement, i.e. m= so(n −p)⊥,
and AdSO(n−p)(so(n −p)⊥) ⊂ so(n −p)⊥. The elements of such an orthogonal
complement so(n −p)⊥ are matrices W ∈ so(n) of the form

W =
[

Ω ΣT

−Σ 0

]
, (9.20)

with Ω ∈ so(p) and Σ an arbitrary (n −p)×p matrix. Consider the maps

f̃Q : TQM→ TIpM, f̃Q (V ) = [QQ⊥]T V − Ip
QTV

2
, (9.21)

ãQ : TQM→m⊂ g, ãQ (V ) = f̃Q (V )I T
p − Ip f̃Q (V )T, (9.22)

and we observe that ãQ (V ) ∈m. Then the reductive SRVT is

Rm(Y ) := ãY (Ẏ )√
‖ãY (Ẏ )‖

=
f̃Y (Ẏ )I T

p − Ip f̃Y (Ẏ )T√
‖ f̃Y (Ẏ )I T

p − Ip f̃Y (Ẏ )T‖
. (9.23)

9.4.3 SRVT on the Grassmann manifold: SO(n)/(SO(n−p)×SO(p))

In this section we consider the case when G = SO(n) and H = SO(n − p)×
SO(p) ⊂ SO(n) where the elements of SO(n −p)×SO(p) are of the type

h =
[

Λ 0
0 Γ

]
, (9.24)

with Λ a p×p matrix and Γ an (n−p)×(n−p) matrix, both orthogonal with de-
terminant equal to 1. We consider the canonical left action of SO(n) on the quo-
tient SO(n)/(SO(n−p)×SO(p)). This homogeneous manifold can be identified
with a quotient of the Stiefel manifold Vp (Rn)/SO(p) with equivalence classes
[Q] = {Q̃ ∈Vp (Rn) |Q̃ =Q Λ, Λ ∈ so(p)}. We denote such a manifold here with
Gp,n(R)9. The reductive subspace is m= (so(p)×so(n −p))⊥ with elements as

9An alternative representation of Gp,n is given by considering symmetric matrices P , n ×n,
with rank(P ) = p and P 2 = P , [14].
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in (9.20) but with Ω= 0. Imposing a choice of isotropy B ∈ so(p)×so(n −p)
such that (Ad[Q,Q⊥]T (A)+B) ∈m leads to the following characterisation of tan-
gent vectors.

Proposition 9.15. Any tangent vector V at Q ∈ Gp,n(R) is an n×p matrix such
that QT V = 0, and V can be expressed in the form (9.15) with F =V .

The proof follows from (9.12) assuming g (t ) = [Q(t )Q(t )⊥] ∈ SO(n), and
h(t ) of the form (9.24), imposing the stated choice of isotropy, and projecting
the resulting curves on Vp (Rn) by post-multiplication by Ip .

We proceed by using (9.15) but with F = V . Define aQ : TQM→ g as in
(9.18) with fQ : TQM→ TQM, the identity map fQ (V ) =V . Suppose that Y (t )
is a curve on the Grassmann manifold, then the SRVT of Y is a curve on so(n)
and takes the form (9.19) which here becomes

R(Y ) := Ẏ Y T −Y Ẏ T√
‖Ẏ Y T −Y Ẏ T‖

. (9.25)

The reductive SRVT is defined by (9.23) with

f̃Q (V ) = [Q,Q⊥]T V =
[

O
(Q⊥)T V

]

and ãQ as in (9.22), which implies ãQ (V ) ∈m.

9.5 Numerical experiments

To demonstrate an application of the SRVT introduced in this paper, we present
a simple example of interpolation between two curves on the unit 2-sphere. In
the following we describe some implementation details for this example.

9.5.1 (Preliminaries). We will use Rodrigues’ formula for the Lie group expo-
nential,

exp(x̂) = I + sin(α)

α
x̂ + 1−cos(α)

α2 x̂2,

with

α= ‖x‖2, x =

x1

x2

x3

 7→ x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,

where x 7→ x̂ defines an isomorphism between vectors in R3 and 3×3 skew-
symmetric matrices in so(3).
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9.5.2 (Interpolated curves). Given a continuous curve c(t ), t ∈ [t0, tN ] on the
Stiefel manifold SO(3)/SO(2), which is diffeomorphic to S2, we replace c(t )
with the curve c̄(t ) interpolating between N +1 values c̄i = c(ti ), with t0 < t1 <
... < tN , as follows:

c̄(t ) :=
N−1∑
i=0

χ[ti ,ti+1)(t )exp

(
t − ti

ti+1 − ti

(
vi c̄T

i − c̄i vT
i

))
c̄i , (9.26)

where χ is the characteristic function, exp is the Lie group exponential, and vi

are approximations to d
d t c(t )

∣∣∣
t=ti

found by solving the equations

c̄i+1 = exp
(
vi c̄T

i − c̄i vT
i

)
c̄i (9.27)

constrained by vT
i c̄i = 0. (9.28)

The vi , i = 1, . . . , N , can be found explicitly, by a simple calculation. We
observe that if κ = c̄i × vi , then κ̂ = vi c̄T

i − c̄i vT
i . By (9.28), we have that

‖c̄i × vi‖2 = ‖c̄i‖2‖vi‖2 = ‖vi‖2, where the last equality follows because we
assume the sphere to have radius 1, and so ‖c̄i‖2 = c̄T

i c̄i = 1. Using Rodrigues’
formula, from (9.27) we obtain

c̄i+1 = sin(‖vi‖2)

‖vi‖2
vi +cos

(‖vi‖2
)
c̄i .

Thus c̄T
i c̄i+1 = 1−cos

(‖vi‖2
)

and so ‖vi‖2 = arccos
(
c̄T

i c̄i+1

)
leading to

vi =
(
c̄i+1 − c̄T

i c̄i+1c̄i

) arccos
(
c̄T

i c̄i+1

)
√

1−
(
c̄T

i c̄i+1

)2
.

Inserting this into (9.26) gives

c̄(t ) =
N−1∑
i=0

χ[ti ,ti+1)(t )exp

 t − ti

ti+1 − ti

arccos
(
c̄T

i c̄i+1

)
√

1−
(
c̄T

i c̄i+1

)2

(
c̄i+1c̄T

i − c̄i c̄T
i+1

)c̄i .

(9.29)

9.5.3 (The SRVT and its inverse). By Definition 9.2 and formulae (9.17), (9.18)
and (9.19), the SRVT of the curve (9.29) is a piecewise constant function q̄(t )
in so(3), taking values q̄i = q̄(ti ), i = 0, ..., N −1, where q̄i = R(c̄)

∣∣
t=ti

is given
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by

q̄i =
vi c̄T

i − c̄i vT
i

‖vi c̄T
i − c̄i vT

i ‖
1
2

=
arccos

1
2

(
c̄T

i c̄i+1

)
(
1−

(
c̄T

i c̄i+1

)2
) 1

4 ‖c̄i+1c̄T
i − c̄i c̄T

i+1‖
1
2

(
c̄i+1c̄T

i − c̄i c̄T
i+1

)
.

(9.30)

Here the norm ‖·‖ is induced by the negative (scaled) Killing form, which for
skew-symmetric matrices corresponds to the Frobenius inner product, ‖A‖ =√

tr(A AT).
The inverse SRVT is then given by (9.29), with

c̄i+1 = exp
(‖q̄i‖q̄i

)
c̄i , i = 1, ..., N −1, c̄0 = c(t0).

9.5.4 (The reductive SRVT). Since Evol(ac̄i (vi )) = exp(ac̄i (vi )), the reductive
SRVT (9.3.6) becomes then

Rm(c̄)
∣∣

t=ti
= R(c̃)

∣∣
t=ti

=
arccos

1
2

(
c̃T

i c̃i+1

)
(
1−

(
c̃T

i c̃i+1

)2
) 1

4 ‖c̃i+1c̃T
i − c̃i c̃T

i+1‖
1
2

(
c̃i+1c̃T

i − c̃i c̃T
i+1

)
, (9.31)

with

c̃i = [U ,U⊥]T
i c̄, i = 0, ..., N ,

[U ,U⊥]i+1 = exp(ac̄i (vi ))[U ,U⊥]i i = 0, ..., N −1,

where [U ,U⊥]0 can be found e.g. by QR-factorization of c(t0).

9.5.5 (Curve blending on the 2-sphere). We wish to compute the geodesic
in the shape space of curves on the sphere between the two curves c̄1(t ) and
c̄2(t ). Following [9], we use a dynamic programming algorithm to solve the
optimization problem (9.7) (see [7, 24] for a detailed description on the use of
dynamic programming for shapes):

Algorithm 9.1. REPARAMETRISATION [7, Section 3.2]
Given q̄1(t ), q̄2(t ), N ,

{
ti

}N
i=0

for i , j ∈ {0, . . . , N } do
cmin =∞
for k ∈ {0, ..., i −1}, l ∈ {0, ..., j −1} do

cloc =
∫ tk

ti
|q̄1(t )− q̄2(tl + t j−tl

ti−tk
t )|2dt
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if Ψm(k, l ) =Ψ◦ · · · ◦Ψ(k, l ) = (0,0) for some m ≥ 0 then
z = 0

else
z =∞

c = cloc + Ak,l + z
if c < cmin then

cmin = c
Ψ(i , j ) = (k, l )

Ai , j = cmin

Create two vectors of indices (p, q) by setting (p0, q0) = (N , N ) and
(pm+1, qm+1) =Ψ(pm , qm) until (pm+1, qm+1) = (0,0)
Flip (p, q) so it starts at (0,0) and ends at (N , N )
for i ∈ {0, ..., N } do

si = tq j + (tq j+1 − tq j )
ti−tp j

tp j+1−tp j
for j s.t. p j ≤ i < p j+1

Return s = {
si

}N
i=0

With this approach, we reparametrise optimally the curve c̄2(t ) while mini-
mizing its distance to c̄1(t ). This distance is measured by taking the L2 norm
of q̄1(t )− q̄2(t ) in the Lie algebra. In the discrete case, this reparametrisation
yields an optimal set of grid points

{
si

}N
i=0, where s0 = t0 < s1 < ... < sN = tN ,

from which we find c̄ ′2i = c̄2(si ) by (9.29). See [9] for further details.
We interpolate between c̄1(t ) and c̄ ′2(t ) by performing a linear convex com-

bination of their SRV transforms q̄1(t ) and q̄ ′2(t ), and then by taking the inverse
SRVT of the result. We obtain

c̄int(c̄1, c̄ ′2,θ) =R−1
((

1−θ
)
R(c̄1)+θR(c̄ ′2)

)
, θ ∈ [0,1].

Examples are reported in Figures 9.2, 9.3 and 9.4, where interpolation
between two curves is performed with and without reparametrisation. We show
curves resulting from using both (9.30) and (9.31), and compare these to the
results obtained when employing the SRVT introduced in [9] on curves in SO(3)
which are then traced out by a vector in R3 to match the curves in S2 studied
here.

9.5.6 (Conclusions). We have proposed generalisations of the SRVT approach
to curves and shapes evolving on homogenous manifolds using Lie group ac-
tions. Different Lie group actions lead to different Riemannian metrics in the
infinite dimensional manifolds of curves and shapes opening up for a variety
of possibilities which can all be implemented in the same generalised SRVT
framework. We have presented only a few preliminary examples here, and
further tests and analysis will be the subject of future work. A number of open
questions related to the properties of the pullback metrics through the SRVT, to
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9.7 Appendix: Auxiliary results for Section 9.3

9.7.1 (Auxiliary results for Section 9.3).

Lemma 9.16. For the homogeneous space M=G/H with projection π : G →
G/H the derivation map DM : C∞(I ,G/H) →C∞(I ,T (G/H)),c 7→ ċ is smooth.

Proof. The map DG : C∞(I ,G) → C∞(I ,TG), γ 7→ γ̇ is a smooth group ho-
momorphism by [13, Lemma 2.1]. As π : G → G/H is a smooth submersion,
θπ : C∞(I ,G) →C∞(I ,G/H),c 7→π◦c is a smooth submersion [2, Lemma 2.4].
Write θTπ ◦DG = D ◦θπ, whence by [12, Lemma 1.8] DM is smooth.

Lemma 9.17. With θ := θω ◦D The identity (9.10) idC∞
eH (I ,M) = π ◦Evol◦θ

holds.

Proof. Let c : I →M be smooth with c(0) = eH and choose g : I →G smooth
with g (0) = e and π◦ g = c. Set γ(t ) := Evol(θ(c))(t ). It suffices to prove that
γ(t )−1g (t ) ∈ H for all t ∈ I . Then π◦γ=π◦ g = c and the assertion follows.

As γ(0)−1g (0) = e ∈ H , we only have to prove that d
dt π(γ(t )−1g (t )) van-

ishes everywhere to obtain γ(t )−1g (t ) ∈ H . Before we compute the derivative of
π(γ(t )−1g (t )), let us first collect some facts concerning the logarithmic deriva-
tives δr ( f ) = ḟ . f −1 and δl ( f ) = f −1. ḟ . By definition δr (γ) = δr (Evol(θ(c))) =
θ(c). Further, [17, Lemma 38.1] yields for smooth f ,h : I →G:

δr ( f ·h) = δr ( f )+Ad( f ).δr (h) and δr ( f −1) =−δl ( f ), (9.32)

whence

d

dt
(γ(t )−1g (t )) = (γ(t )−1g (t )) ·δl (γ−1g )(t )

(9.32)= −(γ(t )−1g (t )) ·δr (g−1γ)(t )

(9.32)= (γ(t )−1g (t )) · (δl (g )(t )−Ad(g (t )−1).θ(c)(t ))
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(a) From left to right: Two curves on the sphere, their original parametrisations, the reparametri-
sation minimizing the distance in SO(3) and the reparametrisation minimizing the distance in
S2, using the reductive SRVT (9.31).

(b) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, before reparametrisation, on

SO(3) (yellow, dashed line) and S2 (blue, solid line).

(c) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, after reparametrisation, on

SO(3) (yellow, dashed line) and S2 (blue, solid line).

Figure 9.2: Interpolation between two curves on S2, with and without reparametri-
sation, obtained by the reductive SRVT (9.31). The results obtained by using the
SRVT (9.30) are not identical to these, but in this case very similar, and therefore
omitted. The results are compared to the corresponding SRVT interpolation be-
tween curves on SO(3), which are then mapped to S2 by multiplying with the vec-
tor (1,0,0)T. The curves are c1(t ) = Rx (πt 3)Ry (πt 3)Ry (πt 3/2) · (1,0,0)T and c2(t ) =
Rz (3πt/4)Rx (πt ) · (1,0,0)T for t ∈ [0,1], where Rx (t ), Ry (t ) and Rz (t ) are the rotation
matrices in SO(3) corresponding to rotation of an angle t around the x-, y- and z-axis,
respectively.
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(a) From left to right: Two curves on the sphere, their original parametrisations and the
reparametrisation minimizing the distance in S2, using the reductive SRVT (9.31).

(b) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, before reparametrisation.

(c) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, after reparametrisation.

Figure 9.3: Interpolation between two curves on S2, with and without
reparametrisation, found by the reductive SRVT (9.31). The curves are
c1(t ) = Rx (2πt )Ry (2πt )Rz (πt ) · (0,1,1)T/

p
2 and c2(t ) = Rz (2πt )Rx (2πt )Ry (πt/2) ·

(0,1,1)T/
p

2 for t ∈ [0,1], where Rx (t ), Ry (t ) and Rz (t ) are the rotation matrices in
SO(3) corresponding to rotation of an angle t around the x-, y- and z-axis, respec-
tively.
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(a) From left to right: The original parametrisations of the curves to be interpolated, the
reparametrisation minimizing the distance in SO(3) and the reparametrisation minimizing the
distance in S2, using the SRVT (9.30).

(b) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, before reparametrisation, on

SO(3) (yellow, dashed line) and S2 (red, solid line).

(c) The interpolated curves at times t =
{

1
4 , 1

2 , 3
4

}
, from left to right, after reparametrisation, on

SO(3) (yellow, dashed line) and S2 (red, solid line).

Figure 9.4: Interpolation between the same curves as in Figure 9.3, with and without
reparametrisation, obtained here with the SRVT (9.30), compared to the corresponding
interpolation between curves on SO(3) mapped to S2 by multiplication with the vector
(0,1,1)T/

p
2.
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Recall that by definition, θ(c)(t ) =ω(ċ(t )) = Ad(g (t )).ωe (TΛg (t )−1
(ċ(t ))) (here

π◦ g = c is used). Inserting this into the above equation we obtain

d

dt
(γ(t )−1g (t )) = (γ(t )−1g (t )) · (δl (g )(t )−ωe (TΛg (t )−1 ◦ ċ(t ))). (9.33)

Observe that Teπ(δl (g )(t )) = TΛg (t )−1
Tπġ (t ) = TΛg (t )−1

ċ(t ) since π ◦ g = c.
As ωe is a section of Teπ, Teπ(δl (g )(t ) −ωe (TΛg (t )−1 ◦ ċ(t ))) = 0 ∈ TeHM.
Summing up

d

dt
π(γ(t )−1g (t ))

(9.33)= Tπ((γ(t )−1g (t )) · (δl (g )(t )−ωe (TΛg (t )−1 ◦ ċ(t )))

(9.8)= TΛγ(t )−1g (t )Teπ(δl (g )(t )−ωe (TΛg (t )−1 ◦ ċ(t ))) = 0.

9.7.2 (A chart for the image of the SRVT). Let G be a Lie group with Lie
algebra g. Using the adjoint action of G on g and the evolution Evol : C∞(I ,g) →
C∞(I ,G), we define the map

Ψ : C∞(I ,g) →C∞(I ,g), q 7→ −Ad(Evol(q)−1).q,

where the dot denotes pointwise application of the linear map Ad(Evol(q)−1).
Observe that Ψ (co)restricts to a mapping C∞(I ,g\ {0}) →C∞(I ,g\ {0}).

Lemma 9.18. The map Ψ : C∞(I ,g) →C∞(I ,g) is a smooth involution.

Proof. To establish smoothness of Ψ, consider the commutative diagram

C∞(I ,g)
Ψ //

(Evol,idC∞(I ,g)

��

C∞(I ,g)

C∞(I ,G)×C∞(I ,g)
( f ,g )7→Ad( f ).g // C∞(I ,g)

.

As Ad: G×g→ g is smooth, so is ( f , g ) 7→ Ad( f ).g (cf. [13, Proof of Proposition
6.2]) and Ψ is smooth as a composition of smooth maps. Compute for q ∈
C∞(I ,g)

Ψ(Ψ(q)) =−Ad(Evol(Ψ(q))−1).Ψ(q)

=−Ad(Evol(−Ad(Evol(q)−1).q)−1).(−Ad(Evol(q)−1).q)

= Ad((Evol(q)Evol(−Ad(Evol(q)−1).q))−1).q.

To see that Ψ(Ψ(q)) = q , we prove that γq := Evol(q)Evol(−Ad(Evol(q)−1).q)
is a constant path. Recall that Evol(q) and Evol(−Ad(Evol(q)−1).q) are smooth
paths starting at the identity in G . Hence it suffices to prove δr (γq ) = 0. To this
end, apply the product formula (9.32) and δr (Evol(q)) = q:

δr (γq )) = δr (Evol(q))+Ad(Evol(q)).δr (Evol(−Ad(Evol(q)−1).q))

= q +Ad(Evol(q)).(−Ad(Evol(q)−1).q) = q −q = 0.
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To account for the initial point c0 ∈M, fix g0 ∈π−1(c0) and define

Ψg0
: C∞(I ,g) →C∞(I ,g), Ψg0 (q) := Ad(g0).Ψ(q) =−Ad(g0 Evol(q)−1).q.

For k in the center of G, Ψk = Ψ holds, but in general Ψg0 will not be an
involution.

Lemma 9.19. For each g0 ∈G , the map Ψg0 is a diffeomorphism with inverse
Ψg−1

0
.

Proof. From the definition of Ψg0 and Lemma 9.18, it is clear that Ψg0 is a
smooth diffeomorphism. We use that Ad: G →GL(g) is a group morphism and
compute

Ψg−1
0

(Ψg0 (q)) = Ad(g−1
0 ).Ψ(Ψg0 (q)) = Ad(g0).Ψ(Ad(g0).Ψ(q))

= Ad(g−1
0 ).

(
−Ad(Evol(Ad(g0).Ψ(q)))−1).Ad(g0).Ψ(q)

)
=−Ad(g−1

0 g0 Evol(Ψ(q))−1g−1
0 g0).Ψ(q) =Ψ(Ψ(q)) = q.

Here we used that Evol(Ad(g ). f ) = g Evol( f )g−1, for g ∈G .

Lemma 9.20. Fix c0 ∈M and choose g0 ∈G with π(g0) = c0. Assume that M
is reductive with g= h⊕m, then

Ψg0 (C∞(I ,m\ {0})) = { f ∈C∞(I ,g) | f = θω(ċ) for some c ∈ Immc0 (I ,M)}.

With θω as in 9.3.4 the formula θω ◦D(ρc0 ◦Ψg0 (q)) =Ψg0 (q) holds.

Proof. Consider c ∈ Immc0 (I ,M) and recall from Proposition 9.9 the identity
Λc0 (Evol(θω(ċ)) =π(Evol(θω(ċ))g0) = c. Choose ĉ = Evol(θω(ċ))g0 as a smooth
lift of c to G and compute as follows:

Ψg−1
0

(θω(ċ)) = Ad(g−1
0 ).

(
−Ad(Evol(θω(ċ))−1).(θω(ċ))

)
= Ad(g−1

0 ).
(
−Ad(Evol(θω(ċ))−1).Ad(ĉ).ωe (TΛĉ−1

(ċ))
)

= Ad(g−1
0 ).

(
−Ad(Evol(θω(ċ))−1).Ad(Evol(θω(ċ))g0).ωe (TΛĉ−1

(ċ))
)

=−ωe (TΛĉ−1
(ċ)) ∈m\ {0}.

Conversely, let us show that Ψg0 (C∞(I ,m \ {0})) is contained in the image of
θω ◦D|Immc0 (I ,M). To this end, consider q =Ψg0 (v) for v ∈C∞(I ,m \ {0}). We
compute

ρc0 (q) =Λc0 (Evol(Ad(g0).Ψ(v))) =π(Evol(Ad(g0).Ψ(v)g0))

=π(g0 Evol(Ψ(v))) =π(g0 Evol(−Ad(Evol(v)−1).v))

=Λg0 (π(Evol(Ψ(v)))).

(9.34)
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Since Λg0 is a diffeomorphism, ρc0 (q) : I →M is an immersion if and only
if the curve π(Evol(Ψ(v))) has a non-vanishing derivative everywhere. Recall
from the proof of Lemma 9.18 that Evol(v)Evol(Ψ(v)) = e, whence we compute
the derivative

d

dt
π(Evol(Ψ(v))(t )) = Tπ

(
d

dt
Evol(Ψ(v))(t )

)
= Tπ(Ψ(v)Evol(Ψ(v)))(t )

= Tπ(−Ad(Evol(v)−1).v Evol(Ψ(v)))(t )

=−Tπ◦ (LEvol(v)−1(t ))∗ ◦ (REvol(v)(t )Evol(Ψ(v))(t ))∗(v(t ))

=−TΛEvol(v)−1(t ) ◦Teπ(v(t )).

(9.35)

In passing to the last line, we used that π commutes with the left action.
Since TΛg is an isomorphism, d

dt π(Evol(Ψ(v))(t )) vanishes if and only if
v(t ) ∈ kerTeπ= h. However, v(t ) ∈m\ {0}, whence ρc0 (Ψg0 (v)) ∈ Immc0 (I ,M)
and we can apply θω ◦D to ρc0 (q). A combination of (9.34) and (9.35) yields
d

dt ρc0 (Ψg0 (v))(t ) =−TΛg0(Evol(v))−1(t ) ◦Teπ(v(t )). With

π(g0 Evol(v)−1) = ρc0 (Ψg0 (v)(t )),

this yields

θω

(
d

dt
ρc0 (v(t ))

)
=θω

(
d

dt
ρc0 (Ψg0 (v))(t )

)
=θω(−TΛg0(Evol(v))−1(t )◦Teπ(v(t )))

=Ad(g0(Evol(v))−1).ωe (−TΛ(g0(Evol(v))−1(t ))−1
TΛg0(Evol(v))−1(t ) ◦Teπ(v(t )))

=−Ad(g0(Evol(v))−1).ωe (Teπ(v(t )) =−Ad(g0(Evol(v))−1).v(t ) =Ψg0 (v)(t ).

Note that as ωe = (Teπ|m)−1, we have ωe (Teπ(v(t )) = v(t ).
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