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Abstract: For a suspected forgery that involves the falsification of a document or its contents,
the investigator will primarily analyze the document’s paper and ink in order to establish the
authenticity of the subject under investigation. As a non-destructive and contactless technique,
Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis.
HSI returns more information compared to conventional three channel imaging systems due to
the vast number of narrowband images recorded across the electromagnetic spectrum. As a result,
HSI can provide better classification results. In this publication, we present results of an approach
known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have
applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for
dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been
evaluated for the classification of paper data. In this research, we present a hyperspectral dataset
of paper samples, and evaluate the clustering quality of the proposed method both visually and
quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to
traditional PCA with k-means clustering, in both visual and quantitative evaluations.

Keywords: forensic document analysis; hyperspectral dimensionality reduction; forensic paper
analysis; t-SNE; hyperspectral unsupervised clustering

1. Introduction

Paper and ink are the two most important pieces of evidence in forensic document analysis;
understanding the legibility of both of them has a vital role in the investigation of document forgery.
To determine the originality of a document, forensic experts need to examine both paper and inks
used. In the case of a multipage document, the presence of different paper types may lead to potential
chances of forgery. In order to extract this information, the forensics experts rely on different techniques.
The most commonly used techniques to detect forgeries includes ultraviolet (UV) and infrared (IR)
imaging [1], chemical analysis and visual inspection [2]. The document analysts always prefer to use
non-destructive methods, to preserve the original evidence even after the analysis. Unfortunately,
chemical methods usually cause some damage to samples, and are therefore less popular compared to
the non-destructive techniques. The major techniques that follow the non-destructive paradigm are;
Fourier transform infrared (FTIR) [3], Raman spectroscopy [4], video spectral comparator (VSC) [5],
multi-spectral imaging and hyperspectral imaging (HSI) [6,7].

HSI combines spectroscopy and imaging in order to record the spectral information of the sample
across the spatial area of interest. HSI captures hundreds of narrowband images in the visible and
near infrared region, and this results in a large amount of data. Motivated by the possibility of
non-destructive investigation of material properties, HSI has become one of the most popular and
trustworthy tool for analysis in many fields of science, including food quality inspection [8], medical
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imaging [9], material science [10], cultural heritage imaging [11] and forensics investigation [12].
Compared to traditional RGB images, HSI images can be considered as three-dimensional data, with
the third dimension encoding the spectral range as shown in Figure 1. Each pixel of HSI data represents
the spectrum in that spatial point, and this information can be used as a material fingerprint for
characterizing each point.
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Figure 1. Hyperspectral image representation.

The HSI data contains redundant information, and it requires an efficient method to extract the most
interesting and useful information [13]. When considering hyperspectral dimensionality reduction, a
favorite method is the well-known PCA approach [14], as outlined in several papers [3,15,16]. Other
traditional techniques such as Independent Component Analysis (ICA) [17] and Linear Discriminant
Analysis (LDA) [18] as well as statistical methods [19–21]. Aside from the methods discussed, a new
method known as t-Distributed Stochastic Neighbor Embedding (t-SNE) [22] is gaining popularity in
dimensionality reduction related problems. t-SNE dimensionality reduction techniques are already
deployed in HSI processing, and have obtained better results than the traditional methods. However,
this technique has not yet been evaluated in HSI data of paper, hence we have decided to explore
the power of t-SNE algorithm in the dimensionality reduction and visualization of hyperspectral
data of paper samples. The main contribution of this research will be to test and evaluate the t-SNE
based workflow for unsupervised clustering of HSI images of paper samples, and benchmarking the
proposed method against PCA. To implement this, we have created an HSI dataset of 40 different
paper samples.

t-SNE was chosen as a candidate because of the following advantages over the conventional
methods. Primarily, t-SNE is one among the few algorithms that is capable of simultaneously retaining
both local and global structure of the data; also, it calculates the probability similarity for points in high
dimensional space as well as in low dimensional space. Since its invention, t-SNE has been introduced
into many fields. We present a few of them here in order to show the range of applications. Walid et al.
identified that t-SNE has better capability to resolve the bio-molecular intra-tumor heterogeneity
from mass spectroscopy images [23]. Erdogan et al. applied t-SNE on the visualization of human
tissue relationships [24], whilst in another study t-SNE was used as a scalable alternative to create
visualizations (projections) enabling insight into the structure of time dependent data sets [25]. Another
example is the report made by Kunihiko et al. which suggests visualizing curricula using a combination
of cosine similarity, t-SNE, and scatter plots to help students select their courses [26]. In addition,
Chen et al. found that the t-SNE algorithm can be used to optimize underwater target radiated
noise spectrum features for the purpose of improving the accuracy and efficiency of the classification
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algorithm [27]. A few experiments touched upon the t-SNE of HSI data sets. One amongst them is
made by Pouyet et al. [28] which uses t-SNE to visualize HSI data of paint pigments. Song et al. also
demonstrated the capability of t-SNE for remote sensing data processing [29]. In addition, there are a
few reports which are not focused on dimensionality reduction, but which nevertheless utilize t-SNE
and HSI data [30,31].

Performance of the proposed method is evaluated against PCA [14], which is identified as one of
the most commonly used methods for dimensionality reduction. As well as visual comparison and
quantitative methods are also used to get the clustering quality of processed data from both methods
by using k-means clustering.

The remaining part of this paper is organized into three parts; the first part will explain the HSI
acquisition, sample preparation, algorithms and evaluation methods; the following part will discuss
results; and the paper ends with a conclusion that points to possible future works.

2. Materials and Methods

2.1. Hyperspectral Acquisition

The acquisition setup used here is similar to this experiment [32], which used to capture HSI
data of inks. Hyperspectral image acquisition of the paper samples is performed using a push-broom
hyperspectral camera HySpex VNIR-1800 [33]. The VNIR-1800’s wavelength range is from 400 nm to
1000 nm, with a spectral sampling of 3.18 nm and a spatial resolution of 1800 pixels across the field of
view that captures 10 cm in width at the face of the chart. The acquisition setup is shown in Figure 2,
where the chart containing different paper samples is placed on a moving translator with the camera
positioned perpendicular to the translator stage. The samples are illuminated by two halogen light
sources in 45◦:0◦ geometry with respect to the camera. Pre-processing software HySpex RAD performs
the basic camera corrections, such as dark current subtraction, sensor corrections, and radiometric
calibration. Following calibration, the software converts the acquired raw images into the sensor
absolute radiance values.
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A Contrast Multi-Step Target [34] with known reflectance values is used as a reference, and is
present in the scene. This reference target is used in order to recover the reflectance of the paper samples.
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2.2. Samples and Data

Samples from 40 commonly used paper types are collected and randomly arranged as a
checkerboard pattern as shown in Figure 3. The paper samples are arranged in a grid format
of ten rows and four columns, where each sample is a square shape with 4-cm long sides. Since it looks
similar to a standard color checker, we called it a “paper checker”. To ensure a more generic data set,
the paper checker was prepared with papers of different colors, thicknesses, age, purpose and from
different manufacturers.
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Hyperspectral images of the paper checker are captured using the hyperspectral camera, and data
pre-processing is performed with associated software. The acquired HSI data cube has a dimension of
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1800 x 7500 x 186, where 1800 x 7500 is the spatial resolution and 186 indicates the number of spectral
bands. A standard reference target (Contrast Multi-Step Target) with known reflectance is captured
along with the paper samples and this information is later used to calculate the normalized reflectance
of the samples.

To process the t-SNE and PCA, we use different sample areas (from 25 to 2500 pixels in total) from
each paper type, and tuned for better perplexity (an input parameter of t-SNE algorithm). The sample
areas are selected using squares of regions of interest (ROIs) around the center point of each paper
sample by varying the side length of ROI from five to fifty.

2.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

In 2008, Van der Maaten and Hinton [22] introduced the t-SNE algorithm as an innovative tool for
the scaling down of the multidimensional data. This technique gradually gained acceptance in the
machine learning community due to its remarkable ability to scale high dimensional data to lower
dimensions. Initially, the algorithm converts high-dimensional Euclidean distances between data
points into conditional probabilities that represent similarities, by applying SNE (Stochastic Neighbor
Embedding) to the data points. The similarity of data point xj to data point xi is expressed by the
conditional probability Pj|i, defined as in the equation below

P j|i =

exp (
−

∣∣∣∣∣∣xi−x j
∣∣∣∣∣∣2

2σ2
i

)∑
k,i exp (

−||xi−xk||
2

2σ2
i

)

(1)

Then the probabilities in the original space are defined as shown in the equation below

Pi, j =

(
Pi| j + P j|i

)
2n

(2)

where n is the size of the data set. The smoothness measure of the effective number of neighbors is
called “perplexity”, which is an input parameter to the t-SNE algorithm, and it can be defined as below.

Perp(Pi) = 2H(Pi) (3)

where H(Pi) is the Shannon entropy Pi measured in bits.

H(Pi) = −
∑

j

P j|i log2 P j|i (4)

Based on the pairwise distances of the points, this method automatically determines the varianceσi,
such that the effective number of neighbors coincides with the user provided perplexity [22]. The t-SNE
uses the Student t-Distribution with a single degree of freedom, to avoid overcrowding. Using this
distribution, the probability at low dimension qij, can be defined as shown in the equation below.

qi j =
(1 +

∣∣∣∣∣∣yi − y j
∣∣∣∣∣∣2)−1

∑
k,l (1 +

∣∣∣∣∣∣yk − yl
∣∣∣∣∣∣2)−1

(5)

The t-SNE algorithm then uses the Kullback–Leibler divergence [35] together with a gradient-based
technique to find the projections of the input data xi in lower dimension as yi.
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2.4. Principal Component Analysis (PCA)

In this experiment, we consider PCA as a standard reference for comparison of clustering quality
because PCA is arguably the tool most extensively used for dimensionality reduction [14] and is referred
to in several scientific papers within different domains. PCA is a multivariate analysis technique used
to extract important information from the data into a set of new orthogonal variables called principal
components. PCA identifies patterns in data, and can express the data in such a way as to highlight
their similarities and differences [36]. Whilst it is hard to identify the patterns in high dimensional data
because it is difficult to visualize, PCA can solve this problem by mapping the high dimensional data
into lower dimensions.

2.5. Clustering Performance Evaluation

To measure clustering performance, we use four well-known clustering indices; these are Silhouette
Index, Normalized Mutual Information, Homogeneity Index (HI) and Completeness Index (CI). These
methods are used to evaluate the clusters produced by the k-means clustering algorithm [37] from
PCA or t-SNE processed data.

The Silhouette Index (SI) [38] defines how indistinguishable an object is from its own cluster
(tightness) with respect to other clusters (separation). An SI value of 1.0 indicates a perfect clustering
value, whilst -1.0 indicates the poorest clustering, and values near 0.0 indicate intersecting clusters.
Normalized Mutual Information (NMI) [39] gives an estimate of the overlap between clusters. An NMI
value of 1.0 indicates perfect clustering, whilst 0.0 indicates a poor clustering with respect to the given
labels. Homogeneity Index (HI) [40] verifies whether each cluster contains only the data points from a
single class or not. The Completeness Index (CI) [40] score indicates whether or not all data points that
have the same labels are assigned to the same cluster. HI and CI scores can vary between 0.0 and 1.0,
with better clustering yielding higher values.

2.6. Data Processing

The processing pipeline is illustrated in Figure 4. The hyperspectral camera performs the
acquisition, a pre-processing (non-uniformity and dark offset correction of image data) is then done
using the camera software. The next block represents the normalization performed using the data
from the reference target. From the normalized reflectance data, a spectrum corresponding to each
pixel can be extracted using the coordinate positions. The collected spectra are then sent to PCA or
t-SNE algorithms for dimensionality reduction, followed by the k-means algorithm. In the final block,
we calculate the clustering quality matrices from the k-means results using the known labels.
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Figure 5 illustrates the average normalized reflectances for the 40 samples used in this experiment.
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3. Results and Discussions

This experiment used 40 papers samples, and selected different spectral sample sizes between
25 and 2500 pixels from each paper samples, also tuned for perplexity. The clustering indices are
measured 20 times for each combination of sample count and perplexity, and the average classification
indices obtained for optimal perplexities are given in Table 1 below.

Table 1. Average values of clustering indices.

Validation Indices PCA t-SNE

NMI 0.72 0.92

HI 0.70 0.92

CI 0.75 0.92

SI 0.34 0.44

The NMI value for the data from t-SNE obtained a high score (0.92) indicating a good clustering,
compared to 0.72 for the PCA processed data. The CI and HI indices of clustering obtained from
t-SNE processed data also achieved a score close to unity, demonstrating the efficiency of t-SNE
dimensionality reduction compared to PCA. Finally, the SI index, which indicates the tightness of the
clustering, gives t-SNE algorithm an upper hand over PCA.

Figure 6 visualizes the results obtained from dimensionality reduction from PCA and t-SNE
(where the original spectral dimension of 186 bands has been reduced to two-dimensional data).
A simple visual inspection is enough to conclude that the t-SNE clusters are more distinguishable than
those of PCA. In this context, t-SNE provides a better visualization than PCA, and this helps us to
predict the nature of the data.
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Figure 6. Clustering results of 40 paper samples, with a sample size of 100 spectra. Left-hand plot
is obtained using Principal Component Analysis (PCA), and the right-hand plot is obtained using
t-Distributed Stochastic Neighbor Embedding (t-SNE).

From the clustering indices and visual inspection, it is clear that for HSI data of paper samples
the t-SNE algorithm surpasses the results obtained from PCA. These findings are not surprising [32],
since PCA always tries to find a linear relationship between data points, and this may fail at many
data points while dealing with highly non-linear data such as a spectrum with 186 dimensions. This is
because PCA projects the data (n-dimensional) onto an m-dimensional (m < n) linear subspace defined
by the leading eigenvectors of the original data’s covariance matrix, to obtain a global linear model [41].
However, t-SNE is designed to mitigate this problem by extracting non-linear relationships, which
helps t-SNE to produce a better classification.

The experiment uses different sample sizes of between 25 and 2500 pixels, and for each sample
size the t-SNE is executed over a list of perplexities in order to find the optimal perplexity. The list of
perplexities used are 5, 10, 25, 50, 100, 300, 600 and 1000, and we select as our optimal perplexity value
that which gives the highest value for all clustering quality parameters. Table 2 lists the sample counts
used and the optimal perplexity values obtained, along with the clustering index values corresponding
to the optimal perplexity. It is observed that the optimal perplexity value depends on the sample size,
which is visualized in Figure 7.

Table 2. Results obtained for different sample sizes and optimal perplexity.

Sample Count 25 64 100 225 625 900 1600 2500

Optimal Perplexity 25 100 100 300 300 600 600 1000

PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE

NMI 0.78 0.94 0.76 0.90 0.74 0.92 0.73 0.91 0.70 0.93 0.70 0.92 0.69 0.92 0.69 0.92

HI 0.75 0.94 0.73 0.90 0.71 0.92 0.71 0.90 0.67 0.93 0.68 0.92 0.67 0.92 0.67 0.92

CI 0.81 0.94 0.79 0.91 0.76 0.92 0.75 0.91 0.72 0.94 0.73 0.92 0.71 0.92 0.72 0.92

SI 0.39 0.51 0.38 0.48 0.37 0.46 0.34 0.46 0.31 0.42 0.33 0.43 0.29 0.41 0.31 0.39

A more detailed analysis of results leads us to the important finding that when using t-SNE the
clustering indices are quite stable at varying clustering sizes, as seen in Table 2 and visualized in
Figure 8. This demonstrates that the sample size has little influence on the dimensionality reduction
power of the t-SNE algorithm.
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While processing with t-SNE, the parameter perplexity needs to be optimized for those particular
data, compared to the straightforward processing of PCA. This parameter tuning introduces extra
processing into the workflow, which is not required for PCA.

4. Conclusions and Future Work

The proposed unsupervised clustering workflow using the t-SNE dimensionality reduction
technique was applied to our HSI paper data set. The clustering quality was compared to the PCA
results, and it was shown that the proposed method outperformed the PCA. An HSI database of
paper samples containing forty different paper types was created as a part of this work. In addition,
we executed the perplexity tuning, and compared the computational expenses between PCA and
t-SNE. It can be concluded that the non-linear dimensionality reduction method is suitable for paper
spectral data, which is non-linear in nature. This non-linear method for clustering paper spectral data
should ideally be validated against a number of other non-linear methods, which may be considered
for a follow-up to this work.
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