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Abstract—Current problems related to high-level security ac-
cess are increasing, leaving organizations and persons unsafe. A
recent good candidate to create a robust identity authentication
system is based on brain signals recorded with electroencephalo-
grams (EEG). In this paper, EEG-based brain signals of 56
channels, from event-related potentials (ERPs), are used for
Subject identification. The ERPs are from positive or negative
feedback-related responses of a P300-speller system. The feature
extraction part was done with empirical mode decomposition
(EMD) extracting 2 intrinsic mode functions (IMFs) per channel,
that were selected based on the Minkowski distance. After that, 4
features are computed per IMF; 2 energy features (instantaneous
and teager energy) and 2 fractal features (Higuchi and Petrosian
fractal dimension). Support vector machine (SVM) was used for
the classification stage with an accuracy index computed using 10-
folds cross-validation for evaluating the classifier’s performance.
Since high-density EEG information was available, the well-
known backward-elimination and forward-addition greedy algo-
rithms were used to reduce or increase the number of channels,
step by step. Using the proposed method for subject identification
from a positive or negative feedback-related response and then
identify the subject will add a layer to improve the security
system. The results obtained show that subject identification
is feasible even using a low number of channels: E.g., 0.89 of
accuracy using 5 channels with a mixed population and 0.93
with a male-only population.

Index Terms—biometrics, security, identity authentication sys-
tem, subject identification, electroencephalograms (EEG), empir-
ical mode decomposition (EMD)

I. INTRODUCTION

Security systems are important for business and personal
purposes, to protect places and information where privileges
are required, and different measures have been proposed.
Traditional security systems use metrics ranging from security-
guards, smart-cards, fingerprint and recently face-recognition,
depending on whether the protection is for an organization
or for a low-cost portable device [1], [2]. Systems based on
image processing or fingerprint techniques, were accepted in
the industry very fast. However, the vulnerabilities of au-
thentication/authorization process of current security systems
are growing, since authentications systems cannot discriminate
between an authorized user and an intruder who fraudulently
obtains the access privileges. Due to this, the interest in
exploring new biometric measures is growing steadily [2].

Recently, the interest in using brain signals to create a
biometric marker analyzing different neuro-paradigms has
emerged as a good candidate to replace traditional security
systems overcoming the vulnerabilities mentioned previously
[3], [4]. Brain signals can be used as a measure to create a
security system since they satisfy the requirements of univer-
sality, permanence, collectability, performance, acceptability,
and circumvention [1].

Electroencephalography (EEG) is a popular non-invasive
technique to record bio-electrical brain activity from a given
neurological mechanism or neuro-paradigm, which can be
adopted by Brain Computer Interfaces (BCI) for varied ob-
jectives [5]. Since brain signals are typically used to analyze
problems relative to the subject internal state of mind, this
suggests the existence of unique patterns in the subject.
Additionally, EEG recordings will not be possible to replicate
or duplicate since the brain is highly individual, even in the
same task at the same time [6].

Event-related potentials (ERPs) are very small voltages that
appear on the scalp of human brain as a response to specific
events or stimuli that are time- and phase-locked. These have
been used to evaluate the brain functioning and response to
stimuli. ERPs produce several well-known patterns and one of
the most studied is the P300 peak, that occurs approximately
300 ms after the stimulus onset. The P300-speller paradigm
is developed with the initial aim to restore communication
in locked-in state patients [7] and it normally consists of a
NxN matrix of characters that are presented to the subject
in random sequences of intensified column and row (flashed).
This constitute an oddball paradigm [7], [8].

Using machine-learning techniques it’s possible to create
models to categorize different sets of features. In the case
of the EEG signals it’s not computationally effective to use
all the data generated by the human brain as a response
to a specific event. For that purpose, a feature extraction
stage is used to obtain strong descriptors or characteristics
that can increase the classifier performance. The empirical
mode decomposition (EMD) has been successfully employed
to analyze brain signals and extract information through the
shifting process and it has shown to be robust decomposing
non-stationary and non-linear data.

Once a set of features is extracted, it’s possible to create



machine learning based models to use it in real-time. Another
important point is the channel placement, which in this paper
is explored gradually by increasing or removing the number
of used channels. There are some relevant approaches in the
state-of-the-art, which are presented in next section.

II. RELATED WORK

Previous research works report the use of different con-
figurations of neural networks, for example, authors in [9]
presented an approach called global spatial and local temporal
filter (GSLT) for the well-known convolutional neural network
(GSLT-CNN) without feature extraction. They used visual
evoked potentials from high-density EEG channels (28, 32,
64, and 256). They argue that using the neural network
they obtained the highest accuracy compared with the use
of support vector machine (SVM) (0.96 vs 0.93). In the case
of SVM they used power spectral density (PSD) to extract
features.

Authors in [10] presented and approach using 1D con-
volutional long short-term memory neural network (1D-
Convolutional LSTM) validating the method with a dataset
of 119 subjects and 64 channels. They report an accuracy of
0.92 using only 4 channels, the validation was made using
only 3-folds cross-validation. However they used 12 seconds
of the EEG signals per instance, which is impractical for a
real-time system.

Recently, the EMD algorithm has been successfully applied
to decompose raw EEG signals, extracting thus the intrinsic
mode functions (IMFs) [3], [4]. The methods used for subject
identification have been tested using imagined speech [4], [11]
and resting-state [3]. Another approach for feature extrac-
tion using resting-state as neuro-paradigm, is the well-known
power spectral density (PSD), reported in [12] considering 18
channels and obtaining an accuracy around 0.97 in the best
case.

In [11], the discrete wavelet transform (DWT) was used to
extract 4 levels of decomposition from the raw EEG data, and
extracting instantaneous and teager energy from each level of
decomposition. In that work, the approach was to investigate
the feasibility of using imagined speech for subject recognition
using a dataset of 27 subjects and EEG data from 14 channels
of the Emotiv Epoc device. Additionally, the EMD method
has been compared with the DWT, and it has been shown that
EMD performs better when using a low number of channels
and a low number of instances [3].

Because resting-state do not need any special or prior
training, it has been shown to be a good candidate for this
task [3], [12]. Event-related and visual-evoked potentials have
also been successfully used for subject identification [13].

In summary, the state-of-the-art reports different approaches
for subject identification. There are some proposals for feature
extraction [4], [9], for classification [3], [4], [9], [10] and
others using different neuro-paradigms [4], [11]–[14]. In addi-
tion, more aspects of the subject can be exploited to improve
the performances of the proposals. Some works have shown
that using male-only population or female-only population, the

Fig. 1: Protocol design using P300-speller paradigm for recording
positive or negative feedback-related responses [16].

accuracy and the localization of the channels may differ [15].
In this work, a comprehensive set of experimental results are
provided to support this case.

In the next sections, the dataset and methods used are
described to then present a set of experiments to evaluate the
proposal.

III. MATERIALS AND METHODS

This section describes the process used with the aim of sub-
jects identification. First, the dataset used is described briefly,
then the methods for feature extraction and classification are
presented. After that, the channel selection criteria, as well as
the elbow point technique to find an approximation to the best
combination between the lowest number of channels and the
highest accuracy, are described.

A. Dataset

The complete dataset consists of EEG signals from 26
subjects (24 right-handed, 2 left-handed; 13 Females, 13
Males; Average age of 29.2 ± 5.5, age range 20-40) from
56 passive EEG electrodes placed following the extended 10-
20 international system. The data is down-sampled at 200 Hz
[16].

The protocol followed to record EEG signals is presented
in Fig. 1. In summary, the protocol used to record the EEG
signals from each subject is as follow: The target letter (The
letter to be presented) was indicated by a green circle for
1 second. After that, letters and numbers (6X6 items, 36
possible items displayed on a matrix) are flashed by groups of
6 characters. Next, there are no changes in the display during
a period of random delay/resting-state of 2.5 to 4 seconds.
During the random delay (2.5 to 4 seconds) the subjects
remember the letter displayed. Then, the letter chosen by the
implemented P300 classifier is displayed during 1.3 seconds.
If the presented letter is the one that was presented before, the
subject sends a positive feedback, otherwise the subject sends
a negative feedback [16].

Fig. 1 also shows an example of positive feedback-related
response corresponding to the target letter i presented during
1 second and the feedback during 1.3 seconds.

For this study, only 24 subjects were taken into account,
since there are 2 subjects (one female and one male) that are
left-handed and to provide more information about left-handed
population a higher number of subjects will be necessary.



B. Feature extraction

The EMD algorithm, has been effective in decomposing
non-linear and non-stationary signals into a finite number of
IMFs by applying the sifting process [17].

The method used for feature extraction was presented in [4].
In summary, the method is based on the EMD algorithm for
which the first 2 more relevant IMFs were chosen based on
the Minkowski distance. Then, for each IMF, 4 features were
computed: instantaneous and teager energy distribution, and
Higuchi and Petrosian fractal dimension.

This process is repeated for each channel to extract 8
features for each channel and then all the features are con-
catenated to obtain a feature vector that represents the EEG
signal for each instance.

C. Classification

Because of the high computational cost required by most
classifiers based on neural networks, and since our purpose is
real-time classification using large datasets, SVM is used in
this paper.

A key feature of SVM is that the classification complexity
does not depend on the dimensionality of the features space
and that the sensitivity to the number of features is relatively
low. Therefore, it can learn a larger set of descriptors and also
might be able to scale the number of features and classes in
a better way than neural networks [18], [19]. To evaluate the
performance of the classifiers created, an accuracy index using
10-folds cross-validation is used.

From the computational cost point of view, the necessary
time to create a machine-learning model using SVM is O(N3),
where N is the length of the feature vector. To predict the class
of a new instance using the created model needs O(1)+O(N)
[20].

D. Channel reduction criteria

The logic of the first method for channel reduction is based
on a greedy algorithm described in details in [3]. The idea is
to obtain all the possible combinations removing 1 channel at
a time (k-combinations: k = 1), perform the feature extraction
considering only the subset and then perform the classification
stage. This process is repeated with each subset and the subset
with the highest accuracy (local maximum) is selected. Then,
the procedure to delete another channel is repeated with the
subset obtained while the length of the subset is still higher
than 1 channel.

The second method used for channel reduction is opposite
to the previous one. The idea is to create a classifier for each
channel and select the one with the highest accuracy, then
repeat the process trying to add another channel and select the
subset of two channels with the highest accuracy. The process
is repeated adding another channel and it is completed when
all the channel are added to the subset. This method provides
an idea of the channels with more useful information for the
classification stage.

These methods are also known in combinatorial opti-
mization and artificial intelligence as forward-addition and

Fig. 2: An illustrative example of the elbow method for selecting the
“optimal” number of channels.

backward-elimination algorithms and have been used in fea-
ture subset selection [21]–[23].

Both methods provide an optimal solution at each step,
but also none of them is able to predict complex iterations
between channels or features that might affect the accuracy
of the classification, that is why it is not considered as a
global solution. To provide an idea of how many channels
are necessary, it’s also required to automatically select the
“optimal” number of channels, considering that it must be low
for a real-life implementation.

E. Elbow method for computing the optimal number of EEG
channels

A well-known method for automatic selection of the optimal
number of clusters in the k-means algorithm is named elbow
method.

The elbow method uses within-cluster sum of errors (wcss)
that is the sum of each clusters distance between that specific
clusters to each point against the cluster centroid [24]. Drawing
a straight line from point 1 to N, where N is the max
number of clusters, and calculating the distance from each
point (corresponding to the number of clusters used) to this
line, the point with the largest distance is the optimal k for
k-means algorithm.

The previous idea can be used to select automatically the
“optimal” number of EEG channels calculating the maximum
distance from the line created between the first accuracy and
the last one. This “optimal” number will be a relationship
between the highest accuracy reached and the lower amount
of EEG channels used. In Fig. 2, an example of this concept
is shown.

IV. EXPERIMENTS

In the following subsections, we present the experiments
performed using feedback-related potential from EEG signals
to identify subjects. For each subject in the experiment,



EEG signals from 5 different sessions and 60 instances per
session were used, therefore 100 instances per subject. For the
classification stage we use SVM, because of the good results
obtained for EEG signals classification in different tasks [3].

A. Subject identification reducing or increasing the number of
EEG channels

For this experiment, 24 subjects were used to create the
classifiers. In Fig. 3, the accuracies obtained with SVM using
10-folds cross-validation are presented. The experiment was
repeated by removing and adding channels, and during positive
or negative feedback-related responses. In Fig. 3, the point
when the maximum accuracy was reached in all the cases and
the channels used for each case are shown 4.

Using the accuracies from one channel to the number of
channels when the highest accuracy is reached, it is possible
to calculate the “optimal” number of channels using the elbow
method.

Fig. 4 also shows with a black label if the channel used to
obtain the highest accuracy is used when removing or when
adding channels following the method described previously,
in both cases, using positive and negative feedback-related
potentials.

The accuracies reached using positive feedback-related re-
sponse are 4% higher than using negative feedback-related re-
sponse. This is true for both cases, when reducing or increasing
the number of channels. In the case of positive feedback, the
highest accuracy is reached with only 19 channels, which is
still high, but if the elbow method is applied the number of
channels selected is 4, with an accuracy of 0.89.

After the maximum accuracy is reached, using more chan-
nels shows only some fluctuations, without providing useful
information to improve/increase the accuracy.

Another interesting result of this experiment is shown in Fig.
4, where it is shown that channels from both hemispheres are
used in all the cases and as it is expected from nature of the
neuro-paradigm, most of the useful channels found following
the methods are around the occipital lobe.

B. Subject identification in a male-only population

To figure out if the accuracy is affected by only taking
into account a male population, the experiment was repeated
but considering only the 12 right-handed males subjects in
the dataset. Fig. 5 shows the accuracies reached and the
corresponding channels in Fig. 6.

In the case of positive feedback-related response and com-
paring the results from Fig. 3 and 5, the maximum accuracy
(0.99) reached was using 18 channels but if only the males
population is used, the maximum accuracy (0.99) is reached
only with 9 channels. Fig. 6 shows another important differ-
ence using only the male population: the number of channels
used in the case of the positive feedback-related potential
is lower (both cases, reducing or increasing the number of
channels) than the case of subject identification with the
negative feedback-related response.

Fig. 6 shows also clear differences using positive feedback-
related responses, and the channels found using both methods
are around the occipital lobe and from both brain hemispheres
as well. In the case of the negative feedback-related responses,
the number of channels to reach the highest accuracy is
relatively high, but using around 6 channels the accuracy
reached is 0.94, only 2% lower than the highest one.

C. Subject identification in a female-only population

The previous experiment was repeated but considering only
the 12 right-handed females subjects in the dataset, with the
aim of comparing the accuracies in both populations and the
results from the first experiment. Fig. 5 shows the accuracies
reached and the corresponding channels in Fig. 6.

The channel distribution in the female population is similar
to the experiment mixing both populations (the first experi-
ment presented in sec IV-A), in the sense that channels are
distributed around the entire head.

Using only a female population the maximum accuracy
reached during positive feedback-related is with 8 and 10 chan-
nels respectively for both channel reduction methods (forward-
addition and backward-elimination). For negative feedback-
related response the maximum accuracy reached is 0.98 using
18 channels, compared with the experiment 1 where the
maximum accuracy reached was 0.95.

D. A fixed EEG channel configuration

After analyzing the previous experiments, it’s possible to
find a common channel configuration used in all the ex-
periments, for both positive and negative feedback-related
responses, which are: Pz, O1, POz, O2, FP2, PO7, P7.
Using this subset of channels and taken into account that
high accuracies were reached using around 9 channels in all
the previous experiments, the following new experiment is
proposed.

The idea is to provide experimental results when using
an EEG device with 9 fixed channels. With this 9 fixed
channel configuration, the subject identification experiments
were reproduced for the mixed population, the female- only
population and the male-only population, during positive and
negative feedback-related responses. Fig. 9 shows the accura-
cies reached using both the backward-elimination and Fig. 10
the forward-addition algorithms.

Figs. 9 and 10, show that in most of the cases, using only
4 channels, a close accuracy (average: 0.90 ± 0.04 ) to the
highest one (average: 0.92±0.04), is reached. These channels
are O1, POz, Pz, O2. It must be noted that most of the time,
reducing or increasing the number of channels in the different
plots in the experiment, the channel subset is different. In
average, comparing the accuracy reached using 4 channels
and 7 channels increases only 3% but the feature vector size
increases 57%.

V. SUMMARY AND DISCUSSION

The experiments carried out in this paper have shown that
ERPs can be used to create a biometric security system since



Fig. 3: Accuracies obtained removing or adding EEG channels for subject identification, during positive or negative feedback-related potential.

Fig. 4: Channels used to obtain the highest accuracy for subject
identification, according to Fig. 3.

the classification accuracy to classify 24 subject was 0.97 using
9 channels. Reducing the number of channels with forward-
addition and backward-elimination algorithms, the accuracy
decreases to 0.91 when only 5 channels are used.

The above results, and the high accuracies reached in
Error-Related Potential (ErrP) classification as reported in
[25], indicate the potential for creating a two-step biometric
recognition system based on low density EEG. Such subject
identification system would record EEG signals during a short
time period (1-2 seconds) and use them to detect if it corre-
sponds to a positive or negative feedback-related responses;
where the positive or negative response will correspond to a
valid password for that user (from a set of passwords). This last
check will add a second layer to the process of authentication
for providing access. The previous idea may improve the false
rejection rate and false acceptance rate, which will be tested

in future steps.
At this point, it will be possible to create a headset with

a fixed array of electrodes, but as it was shown in the
experiments, if a female-only or male-only population is taken
into account, the best channel configuration for each one, will
be different. Also, if the same configuration is used for all
the population, the accuracy decreases around 4%, compared
with a tailored configuration for each population. The lower
accuracy reached is more evident in the case of the female-
only population (see Fig. 9 and 10).

Recently reported research discusses experiment results
showing that female and male brains are different, taking
into account not only the sex but also age, culture, IQ and
the performed tasks [15], [26]–[29]. These assumptions will
further highlight the importance of channel placement for
the creation of a new EEG device based on the low density
concept.

According to the protocol followed to record the brain
signals, the 1.3 seconds used in this paper is presented to
the subject to check if the letter shown is the last of a word,
which include several cognitive processes highly related to the
subject’s internal mechanism of associating and remembering
the word [30], [31]. Also, in a real-life biometric recognition
system the process of remembering is not an exact repetition
of the past event. Instead, it is a process mixing the subject
internal state and the constructive episodic simulation hypoth-
esis, creating thus a very unique subject-related characteristic
to distinguish one subject from the rest [32], [33].

Nevertheless, there exist some assumptions about the meth-
ods for channel selection, and some techniques are based on
multi-objective functions and using different soft computing
techniques. The methods are limited by the analysis of some
instances and some subjects and without the analysis of previ-
ous characteristics mentioned. But if the amount of instances,
channels or the population changes, the result of the algorithms
might also change, since some complex combinations between
channels depends on the subject internal state and the record-
ings quality. This is true also because the paradigm involves a



Fig. 5: Accuracies obtained removing or adding EEG channels for subject identification in a male-only population, during positive or negative
feedback-related potentials.

Fig. 6: Channels used to obtain the highest accuracy for subject
identification in a male-only population, according to Fig. 5.

lot of subject information and because of brain plasticity. With
these assumptions, a low-density EEG device will not have a
unique or fixed channel configuration.

In a low-density device, the multi-objective channel selec-
tion approach will be possible to use to modify the channel’s
position or at least the active sensors in real time and thus
increase the classification accuracy, according to the ideas
discussed in [3], [34]. But in a high-density EEG device the
channel selection is not possible for real-time applications,
even using greedy algorithms.

There exist, different feature extraction techniques, methods
and different neuro-paradigms used for the subject identifi-
cation task. However, the exploration of channel reduction
techniques for a real implementation is necessary [3], [4].
Considering the advances in feature extraction techniques
and the high classification accuracies obtained using different

machine/deep learning algorithms, the channel placement has
not yet been explored. Up to now, the purpose of most low-
density EEG devices is just to reduce the computational time
to process the data and most of the cases for off-line testing. In
addition, the available low-density EEG devices are designed
to suit specific neuro-paradigms and tasks. With a 3D printer
it will be easy to create an EEG device suitable for a specific
task, in this case for subject identification using a channel
configuration based on the results of this paper.

In the first 3 experiments, the elbow point was marked to
show that if an algorithm is used to select the best combination
between the lowest number of channels and the highest
accuracy reached, it is possible to increase substantially adding
only 1 or 2 channels and also shows that removing another
channel, the accuracy can decrease drastically. Our future work
will be dedicated to comparing different methods for channel
selection and creating a new multi-criteria optimization strat-
egy [35]. In this, we will take into account that the resulting
strategy must be a greedy algorithm or a similar one to select
the optimal number of channels in real-time.

As an example, comparing the method proposed in this
paper and the one presented in [10], the accuracy reached using
16 channels is quite similar, but additionally, in this paper,
the accuracy is reached with a lower number of channels.
Considering the computational cost of the neural networks,
the proposed method shown that can be a good candidate
with a lower cost. However, as in most of the cases, the
experiments are not directly comparable, and additional tests
must be performed to compare the different approaches.

VI. CONCLUSION AND FUTURE WORK

In this paper, low-density EEG-based brain signals from
ERPs of positive and negative feedback-related responses of
a P300-speller system were successfully used for subject
identification. The experimental results indicate that a low-
density EEG concept is feasible and practical for a two-step
identity authentication system based on ERPs.

Further efforts will also be directed to use/test Riemannian
geometry classifiers since they are considered the current state-



Fig. 7: Accuracies obtained removing or adding EEG channels for subject identification in a female-only population, during positive or
negative feedback-related potential.

Fig. 8: Channels used to obtain the highest accuracy for subject
identification in a female-only population, according to Fig. 7.

of-the-art for multiple BCI problems [25]. The next step to
provide more results, taking into account the methods studied
and the results in this paper, will be a real implementation of
the low density EEG concept. The implementation will use
ensemble learning, to allow or deny the authorization process.
In a real-life implementation, it is necessary to provide ex-
perimental results considering the real-life noise and test the
proposed methods for feature extraction and classification in a
noisy environment, but first testing by adding artificial noise.

A low-density EEG device with wireless dry non-invasive
active electrodes will take less time to install, will be highly
portable and will consume less power. Such EEG concept can
become competitive over classical authentication systems for
industrial level security access.

Fig. 9: Subject identification with positive and negative feedback-
related potentials using the forward-addition algorithm.
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