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Abstract

The hydrodynamic loads on simplified structures relevant for deployment of sub-
sea modules are studied in a two-dimensional setting. Experimental investigations
and numerical simulations are performed. In the experiments, models are fixed
in incident waves or forced to oscillate. Numerical simulations are conducted for
models fixed in incident waves, oscillating flow and orbital flow. The simulations
are performed using implemented potential flow and viscous flow (Navier–Stokes)
solvers. Good agreement between the experimental and numerical results is, in
general, found.

The main focus is on perforated platelike structures. The hydrodynamic added
mass and damping coefficients are obtained in experiments and simulations of
forced oscillations. The importance of the damping force is discussed; the hydro-
dynamic force of ideal perforated plates is dominated by damping if the perfo-
ration ratio, τ, is larger than 10 %. In general, the coefficients increase with in-
creasing Keulegan–Carpenter (KC) number and decreasing perforation ratio. An
exception is if the perforation ratio is equal to or smaller than 20 %, in which
case the damping of perforated plates can be larger than that of a corresponding
solid plate for small KC numbers. The largest KC number where this is observed is
KC= 1.25 (τ= 5 %). The coefficients depend on the structural details of the plate,
but are relatively insensitive to the number of perforations or holes. However, for
very small KC numbers, i.e., KC → 0, the number of holes, not the perforation
ratio, is the important parameter for the added mass coefficient of the structure.

The importance of flow-separation from the plate-ends of perforated plates
is highlighted. Comparisons are made between numerical simulations where the
flow is allowed to separate everywhere on the plates, and simulations using a
hybrid numerical scheme where the flow is allowed to separate through the per-
forations of the plate only, not at the plate-ends. The importance of the global
plate-end flow separation increases considerably with increasing KC number and
decreasing perforation ratio, however, it is important even for KC numbers smaller
than KC= 0.5.

The characteristics of the force on perforated structures fixed in incident waves
depend on the distance from the mean free-surface to the structure. Nonlinear
free-surface effects are important if the structure can go in and out of water, in
particular a large slamming peak occurs, due to water entry of the structure into
the incident wave. Contrary, if the model is fully submerged, the force charac-
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iv F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

teristics share strong similarities with the force characteristics of forced orbital
or oscillating flows in infinite fluid domains. The normalized force amplitude of
fully submerged perforated plates in incident waves increases, in general, with in-
creasing KC number, increasing wavelength and increasing distance to the mean
free-surface. The force on fully submerged models in incident waves is similar to
the force on models in oscillating flow for small KC numbers, but considerably
smaller for large KC numbers.

The hydrodynamic loads of single and parallel perforated plates in orbital flow
are similar to that of oscillating flow for small KC numbers, and smaller than
in oscillating flow for large KC numbers. Contrary to the near symmetric plate-
end vortices which are found in oscillating flow, the plate-end flow separation is
asymmetric in orbital flow. This reduces the force in orbital compared to oscillating
flow, and is a likely reason why the force is smaller on fully submerged perforated
plates in incident waves than in oscillating flow.

In oscillating flow, the hydrodynamic loads on a structure consisting of two
perforated plates with five relatively large bodies in between, are completely dom-
inated by the loads on the perforated plates. For two parallel perforated plates in
oscillating flow, interaction effects reduce the total force on the configuration com-
pared to superposition of two single plates. The force is reduced on both plates,
in particular the instantaneously downstream plate. The added mass of parallel
perforated plates is similar to superposition of two corresponding single plates,
however, the damping is considerably reduced.

Based on present results, simple expressions for the force on perforated plates
are presented. The expressions are inspired by the hydrodynamic load model for
solid plates, analytically derived by Graham. The present method yields the added
mass and damping coefficients of ideal perforated plates in oscillating flow as
functions of the perforation ratio and the KC number.
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Nomenclature

Frequently used abbreviations and symbols are presented in the following. If a
symbol is not listed, its use is limited to a small part of the text, e.g. a section, in
which a description is provided.

Abbreviations

BEM Boundary element method

CFD Computational fluid dynamics

CFL Courant–Friedrichs–Lewy condition

DNS Direct numerical simulation

MOVE Marine Operations in Virtual Environments

wp Wave probe

Dimensionless numbers and force coefficients

KC Keulegan–Carpenter number

KCpor Porous Keulegan–Carpenter number

Re Reynolds number

A
A0

Added mass coefficient, CA, Ca

B
ωA0

Damping coefficient, CB, Cb

CD Quadratic damping coefficient (drag)

CM Inertia coefficient, A+ρV
A0

CS Slamming coefficient

ix
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Greek letters

α Drag correction coefficient

β Reynolds number divided by the KC number

∆ Grid cell size

∆t Time-step

δt Duration of impact

δzmax Maximum deflection

ζ Wave elevation

ζa Wave amplitude

η, ηa Vertical motion and vertical motion amplitude

η̇ Vertical velocity

η̈ Vertical acceleration

λ Wavelength

µ Discharge coefficient

ν Kinematic viscosity

ρ Fluid density

τ Perforation ratio

Φ Velocity potential

ω Oscillation/wave frequency

Roman letters

A Added mass

A0 Reference added mass

a0, a1, b1 Constants in analytical method by Graham

B Damping

Bw Wave-radiation damping

D Characteristic length (width/diameter)

d Small characteristic length (width/diameter)



Nomenclature xi

dr Mean relative difference

dg Gap distance between side-by-side plates

F , Fa Force and force amplitude (vertical, hydrodynamic)

g Gravity of Earth, 9.81 ms−2

h Water depth

h f Length of wave flap

K Resistance coefficient

k Wave number

L Length or lateral distance

l Domain size

lh Length of hole/opening

nh Number of holes/openings

np Number of plates or plate elements

ns Number of sources

p Pressure

T Oscillation/wave period

t Time or plate thickness

u, w Horizontal and vertical velocity components

V Volume

x , y , z Cartesian coordinates

zw Wetted vertical coordinate

zm Vertical position of model





Chapter 1

Introduction

In this thesis, I study the hydrodynamic loads on perforated and solid structures
in forced motions and fixed in incident waves in a two-dimensional setting. The
hydrodynamic loads are functions of the Keulegan–Carpenter (KC) number. In
harmonically oscillating flow, the KC number describes the relation between the
amplitude of motion, ηa, and the characteristic length, D,

KC= 2π
ηa

D
. (1.1)

Perforated plates are emphasized. The characteristic length of perforated plates is
the plate width. The perforation ratio, τ, is the ratio between the open area and
the total area of the structure,

τ=
Open area
Total area

= 1−
Solid area
Total area

. (1.2)

Hence, 0 ≤ τ < 1, or alternatively, 0 ≤ τ < 100 %. Further details on relevant
parameters and dimensionless quantities are given in Chapter 2.

1.1 Main findings

The main findings, along with references to the relevant sections of the thesis, are
presented in the following.

• The hydrodynamic force on perforated plates in oscillating flow is, in gen-
eral, dominated by damping. In numerical simulations of ideal perforated
plates, the damping force dominates if τ≥ 0.1. Sections 6.3.2 and 8.2.

• The force coefficients of perforated plates in oscillating flow depend on the
structural details of the plates, but are relatively insensitive to how many
openings/holes the plate has. However, for very small KC numbers, the num-
ber of holes is the important parameter, not the perforation ratio. Sections
4.1.2, 5.5.2 and 6.3.

1



2 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

• Consistent with previous studies, the added mass and damping coefficients
of perforated plates increase with increasing KC and decreasing τ. An excep-
tion is for small τ and limited KC numbers, in which case the damping coef-
ficient can be larger than that of a corresponding solid plate. Nonetheless,
the hydrodynamic force amplitude increases monotonically with increasing
KC and decreasing τ. Sections 6.1, 6.2 and 8.2.

• Plate-end flow separation is important for the hydrodynamic loads of perfo-
rated plates even for relatively small KC numbers. The importance increases,
in general, with increasing KC and decreasing τ. Section 6.4.

• Nonlinear free-surface effects are important for the loads on perforated
structures in incident waves if the structure can go in and out of water, in
particular due to slamming when the wave hits the structure. Section 7.1.

• The normalized force on perforated structures fully submerged in incident
waves increases, in general, with increasing KC, increasing wavelength and
increasing distance to the free-surface. Section 7.2.

• The normalized force amplitude on single perforated plates fully submerged
in incident waves, and single and parallel perforated plates in orbital flow,
is similar to that in oscillating flow for small KC numbers, but reduced com-
pared to that in oscillating flow for large KC numbers. Contrary to oscillating
flow, which yields near symmetric plate-end vortices, the flow is asymmetric
in orbital flow. This reduces the force. Sections 7.3 and 9.2.

• In oscillating flow, the hydrodynamic loads on a structure consisting of two
parallel perforated plates with five cylinders between the plates are domi-
nated completely by the force on the perforated plates. Section 9.1.

• Compared to superposition of two corresponding single plates, the hydro-
dynamic loads on parallel perforated plates in oscillating flow are reduced.
This is mainly due to reduction in the force on the downstream plate. Su-
perposition principles can be applicable for estimating the added mass, but
will considerably overestimate the damping. Section 9.2.

• The hydrodynamic load model for solid plates by Graham is compared with
experiments and simulations. Good agreement is found for KC < 5. The
model is tuned to yield appropriate estimates of the forces on perforated
plates. Relations are provided for the added mass and damping as functions
of KC and τ. Sections 8.1 and 8.4.

1.2 Background

The development of subsea fields rely on marine operations for lifting and low-
ering of structures that are installed on the seabed. Typically, the operations are
performed by lifting the structure with a crane on a vessel, and lowering it off the
side of the vessel. Moonpool operations, where the structure is lowered through
an opening in the ship, is an alternative approach.

There is an increasing demand for all-year operability of marine operations for
subsea fields. Rystad Energy, an energy research and business intelligence com-
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pany, predicted in March 2019 “the subsea market to increase significantly in the
years to come” [1]. Increased activity increases the need for installation of new
structures, but also modifications and maintenance of existing ones.

In order to achieve all-year operability, there is a need for accurate estimates
of the forces that the structures will feel during the operation, important for the
crane hook load. The hydrodynamic loads that act on the structure as it enters
water and is lowered through the wave zone and placed on the seabed, are of
particular interest. If there is a lack of accurate load estimates, a conservative
approach must be taken in order to ensure safe operational conditions. However,
since the hydrodynamic loads will depend on the environmental conditions, being
conservative can reduce the operational weather window. Furthermore, increasing
load estimate accuracy, and reducing conservatism, may be cost-saving by reduced
vessel or crane size requirements for performing the operation.

Subsea structures, or subsea modules, can be, from a geometrical point of view,
quite large and complex. These structure tend to consist of various equipment,
pipes and protection that are densely pack in modules. The size of the structures
depend on their function, and range from a few meters up to a few tens of me-
ters. Larger subsea structures can consist of a large template frame where smaller
modules are installed in different stations. The Åsgard subsea gas compression by
Equinor is one such example [2].

1.3 Scope; simplifications of complex problems

The present project is part of Marine Operations in Virtual Environments (MOVE),
which is a Center for Research-based Innovation (CRI), located in Norway. The
purpose of MOVE is to “support the entire marine operations value chain by de-
veloping knowledge, methods and computer tools for safe and efficient analysis
of both the equipment and the installation process” [3]. One of the projects within
MOVE is related to on-board decision support, which, among other subjects, fo-
cuses on the hydrodynamic loads of subsea structures during lifting operations.
The present thesis is part of this sub-project, and the scope follows from the sub-
project’s objectives and goals.

The focus of the thesis is on hydrodynamic forces on complex structures in the
wave zone. The ultimate goal is to be able to determine the exact force on a subsea
structure during all phases of a lifting operation. In order to do so, the complexity
of the structure and the complexity of its surrounding environment—irregular
waves and flow, nonlinear forces, interaction between the model, crane and ship
motions, and so forth—must be taken into account. This is neither feasible nor
efficient, and simplifications are needed. By making rational simplifications, more
generic results, which can be useful in more than one particular situation, can be
obtained. Further, rational simplifications can be useful to determine the relative
importance of different forces, and to better understand the dominating effects
in the complex real world. Therefore, the goal of this research is to decrease the
knowledge gap that exist for the hydrodynamic loads on complex structures in the
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wave zone, by applying smart simplifications to both 1) the complexity of complex
structures, and 2) the complexity of the wave zone environment.

Complex subsea structures include several members and structure types of
interest. The thesis includes studies of relevant structure types, as well as studies
of the interaction between typical members of subsea structures. A considerable
part of the work has been dedicated to studying perforated platelike structures.
Perforated plates are relevant for several marine applications, in particular for
complex subsea structures. Ventilated or perforated platelike structures of subsea
modules include, among others, protection structures, hatch covers and mudmats.

The complexity of the environment is related to the different phases of a sub-
sea lift operation, which can be expressed in terms of five stages:

0. The structure is lifted from the ship deck and positioning over the side of
the vessel. The lowering of the structure is started, but the structure is dry.

1. The initial water entry occurs, and the structure can go in and out of water,
but is yet to be fully submerged.

2. The structure is fully submerged, but still close to the free-surface.
3. The structure is lowered further and far from the free-surface, but still far

from the seabed.
4. Final lowering. The distance to the seabed becomes important for the hy-

drodynamic loads.

Illustrations of Stages 1–3 are presented in Fig. 1.1. Note that the present defini-
tion of lifting stages may vary slightly from that of others, e.g. [4, 5].

Contrary to Stages 1–4, Stage 0 is a dry stage without hydrodynamic loads on
the structure, and thus the reason I denote this is as Stage 0. Stage 0 is not part
of the scope of this project.

Stage 1 starts with the initial water entry of the structure. Large pressure peaks
and considerable slamming forces can occur in this phase. Consequently, higher-
order effects can be important for the forces on the structure. Depending on the
wave conditions, the structure can go in and out of water in Stage 1. This can be
particularly challenging since slamming and added buoyancy when the structure
gets wet releases tension in the lifting wire, whereas the loss of buoyancy during
water exit increases the tension.

In Stage 2, the structure is fully wet, and the challenges of water entry and exit
are no longer an issue. Nevertheless, the structure is still close to the free-surface,
and the orbital and oscillating motion of the incident waves can be important for
the forces on the structure. Moreover, the oscillating motion of the ship and crane
will contribute to the forces in Stage 2. Additionally, drag forces due to current
and lowering of the module can be of influence.

The forces on the structure in Stage 3 can be similar to those of Stage 2, but
there is no interaction with the free-surface. The motions of the fluid-structure
interaction is less orbital than in Stage 2, since the dynamics of the waves die
out exponentially with depth. If the lowering velocity is relatively small, the fluid-
structure interaction in Stage 3 is similar to that of forced oscillations in an infinite
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Figure 1.1: Stages 1 (top), 2 (middle) and 3 (bottom) of a subsea lift operation.
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fluid domain, where the structure oscillates due to the ship and crane motions.
The operation enters Stage 4 when the presence of the seabed starts to influ-

ence the loads on the structure. Stage 3 is hence a transition stage where there
is interaction with neither the free-surface nor the seabed. Contrary, in Stage 4,
the hydrodynamic forces are expected to increase with decreasing distance to the
seabed [4, 6–8]. Stage 4 ends when the structure is placed and installed on the
seabed.

The studies in this thesis are relevant for Stages 1–4 of a subsea lift operation,
however, there is an emphasis on experiments and simulations using forced os-
cillations. There are three main reasons for this: 1) Oscillating (or orbital) flow
conditions are useful for studying various hydrodynamic effects, and investigate
the sensitivity of changing different parameters, in a (relatively) controlled envi-
ronment. 2) The results from studies of oscillating flow are relevant for all stages.
3) Hydrodynamic coefficients obtained in oscillating flow conditions in infinite
fluid domains are used by project engineers for planing and analysis of a sub-
sea lift operation [4, 5, 9, 10]. The values of the coefficients influence the result
of the analysis, e.g. the limiting sea state and the required vessel and crane ca-
pacity. Therefore, proper estimates of the hydrodynamic coefficients is of inter-
est. The coefficients can be obtained from dedicated experiments or numerical
simulations. A less costly option is to apply values from recommended practices
or experience from previous work. However, such an approach may increase the
uncertainty and reduce the likelihood of safe all-year operability. Consequently,
experimental and numerical investigations of force coefficients in oscillating flow,
for structures relevant for subsea modules, are highlighted. Providing knowledge
and recommendations to project engineers, on how hydrodynamic coefficients
for subsea structures should be estimated, is emphasized as a specific objective
within the relevant MOVE sub-project. Comparisons of oscillating flow conditions
are made with models in orbital flow and incident waves, including both fully sub-
merged conditions, and wave conditions where the structure goes in and out of
water. The studies are two-dimensional, but comparisons with three-dimensional
investigations and three-dimensional effects are discussed. Confidence in results is
achieved by using a combination of analytical, experimental and numerical meth-
ods.

1.4 Previous and related work

1.4.1 Model tests by Øritsland at Marintek

During the 1980s, experiments with scaled imitations of subsea modules of differ-
ent complexity were performed at Marintek in Norway. These studies were lead by
Ola Øritsland. The results were presented in Marintek reports [11–14]. Øritsland
and colleagues considered several relevant flow conditions including steady flows,
oscillating flows and waves. However, most of their testing was devoted to decay
tests for the evaluation of added mass and damping coefficients [13]. The tested
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models were simplifications of complex subsea structures, and included among
others, a framework structure with many openings, a plate, spheres and boxes.
Tests were performed on individual models as well as combinations of structure
parts. Some of their findings and observations are highlighted in the following.

• Interaction effects between members of a simplified subsea structure are
important for the force coefficients. If the interaction effects are not taken
into account, the added mass and damping coefficients can be considerably
overpredicted.

• No considerable changes in natural periods were observed in the decay tests,
hence the KC number dependence of the added mass coefficients could not
be obtained.

• Both linear and quadratic damping is relevant for these structures. Øritsland
argued that for KC numbers relevant for lifting operations of subsea mod-
ules, constant values for the linear and quadratic damping coefficients could
be used. For these KC numbers, the quadratic damping term was found to be
approximately 2-3 times larger than the corresponding quadratic damping
in steady flow.

• The complexity of the forces in waves was highlighted. A coefficient-based
approach, taking into account the influence of submergence on the hydro-
dynamic coefficients, was recommended as the most realistic alternative.

1.4.2 Molin’s force model for perforated structures

Bernard Molin and colleagues have performed an extensive amount of work on
the hydrodynamics of perforated structures, cf. e.g. [15–19]. In his 2011 review
paper, he presents a summary of their results from more than 20 years of work
[19]. Complex subsea structures consist of several member types, of which per-
forated structures are important for the forces that these structures experience
during lifting operations. Therefore, the work by Molin on perforated structures
is highly relevant within the present project. In addition to performing experi-
mental investigations, Molin developed a semi-analytical method for estimating
the hydrodynamic coefficients of perforated structures. A summary of this force
model is presented in the following.

The method by Molin assumes a quadratic pressure-drop condition for the flow
through the openings of a perforated structure, combined with the assumption of
potential flow conditions in the fluid domain, such that all vorticity is constrained
to a thin strip coinciding with the plate. A notable finding of the method is that
both the added mass and damping coefficients are functions of the amplitude
of motion. Further, both coefficients go to zero when the amplitude goes to zero.
Contrary, solid structures have nonzero added mass in the limit of zero amplitude.
For the case of a perforated plate with zero thickness, the added mass will go to
zero when the number of openings goes to infinite, independently on the perfo-
ration ratio. Such a plate is, in the present text, denoted an ideal perforated plate.
Contrary, a perforated plate with finite thickness and finite number of openings is
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denoted a real perforated plate.
The hydrodynamic added mass and damping coefficients are obtained from

Fourier-series by eigenfunction expansion of the velocity potential [19]. The re-
sulting hydrodynamic added mass and damping coefficients are found to be func-
tions only of the so-called porous KC number,

KCpor =
ηa

D
(1−τ)
µτ2

. (1.3)

Hence, the force coefficients are functions of the amplitude of motion, ηa, the
width of the plate, D, the perforation ratio, τ, and the discharge coefficient, µ,
only.

The discharge coefficient is a function of the local geometry of the plate open-
ings, and may be estimated based on model tests. According to Molin et al. [17–
19], the discharge coefficient is usually 0.3 < µ < 1.0. A sensitivity study per-
formed by An and Faltinsen [20], showed that the value of the discharge coeffi-
cient is of importance, especially for the added mass coefficient. In his 2011 review
[19], Molin presents various models for estimating the resistance coefficient, K ,
where the relation between the resistance coefficient and the discharge coefficient
is

µ=
1−τ
Kτ2

. (1.4)

Hence, the discharge coefficients may be estimated based on the resistance coef-
ficient. Values for the resistance coefficient are provided by e.g. Blevins [21].

1.4.3 Sandvik’s drag correction

In 2006, Sandvik et al. [9] proposed a drag correction to Molin’s method, in
order to account for the flow separation at the ends of perforated plates. The
semi-analytical method by Molin including the drag correction term represents
the state-of-the-art for force coefficient calculation of perforated plates. Sandvik
et al. used the method to estimate the hydrodynamic coefficients of subsea roof
structures. They found improved predictions of the hydrodynamic coefficients,
compared with experimental results, when adding the drag correction term.

The drag correction method adds a drag force to the perforated plate, which
in two-dimensional flow is written

F =
1
2
ρCDDwr |wr |, (1.5)

with a drag coefficient,
CD = αKC−

1
3 . (1.6)

The relative velocity in the drag force term, wr , is the plate velocity minus the rel-
ative fluid velocity through the plate, averaged over the plate [19]. Consequently,
with the drag force term added, the added mass and damping coefficients become
functions of KC in addition to KCpor.
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The drag correction coefficient, α, is inspired by the analytical results for solid
plates by Graham [22]. Graham’s theoretical analysis yields α = 11.8. However,
for a perforated plate, the flow separation at the plate ends will be weaker than
for a solid plate [18, 20]. Consequently, α should be less than the value for a solid
plate, and remains an unknown that, intuitively, depends on both the geometry
of the plate and the perforation ratio. Sandvik et al. [9] used α = 2, but other
studies have found better predictions using considerably higher values, e.g α= 6
and α= 9 [18, 20]. Hence, both µ and α are unknowns that must be determined
prior to calculation.

1.4.4 DNVGL-RP-N103

A recommended practice (RP) for modeling and analysis of marine operations is
issued by DNV GL, the DNVGL-RP-N103 [4]. The RP provides “simplified formula-
tions for establishing design loads to be used for planning and execution of marine
operations” [4]. Methods and guidelines for estimating loads and hydrodynamic
coefficients when lifting objects through the wave zone are highlighted in the RP.

Of particular interest are relations provided by DNV GL for estimating the
effect of perforation on a structure’s hydrodynamic coefficients. Two relations for
estimating the added mass of perforated structures are included in the RP. Based
on results from potential flow calculations of the added mass of perforated plates
with circular holes, DNV GL provides the following relation for the added mass in
the low-KC limit [4, Section 3.3.4],

A
A0
= exp

� −τ
0.28

�

. (1.7)

Note that contrary to the result by Molin (zero added mass for KC → 0), the
expression by DNV GL suggests that real (cf. Section 1.4.2) perforated plates have
a considerable added mass in the low-KC limit, e.g. τ = 0.3→ A

A0
= 0.343. The

fact that A
A 6→ 0 is consistent with potential flow solutions of a structure consisting

of several cylindrical members with finite diameter (i.e., a real plate), but the
actual limiting value will depend largely on the diameter of the members.

The second relation for the added mass of perforated structures is “based upon
a limited number of model test data and includes hence a safety margin” [4, Sec-
tion 4.6.4],

A
A0
=











1; τ≤ 0.05,

0.7+ 0.3 cos
�

π
�

τ−0.05
0.34

��

; 0.05< τ < 0.34,

exp
�0.1−τ

0.28

�

; 0.34≤ τ≤ 0.50.

(1.8)

As for the low-KC relation in (1.7), the second relation in (1.8) is a function of
perforation ratio only.
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1.4.5 Other relevant studies

There exist several previous studies of relevance for the present topic. Some of
these are briefly summarized in the following.

Already mentioned Sandvik and colleagues performed experimental investi-
gations of five perforated structures, in addition to the development of the previ-
ously described force model [9]. Models of three roof structures and two simpler
hatches were tested and hydrodynamic coefficients were obtained. The structures
had perforation ratios in a range from τ = 0.15 to τ = 0.47. The added mass co-
efficients of the structures were found dependent on the amplitude of oscillation,
but independent of the oscillation period. If the added mass coefficients for the
different perforation ratios were plotted against a porous KC number, the spread
between the different perforation ratios was reduced. The linearized damping was
presented for the three roof models; an almost linearly increasing damping coef-
ficient was found for increasing KC number.

Tao and Dray [23] performed experiments for 0.2 ≤ KC ≤ 1.2 of four solid
and perforated disks of diameter 400mm. The perforated disks had circular holes
of diameter 4.4mm and perforation ratios τ = 0.05, τ = 0.1 and τ = 0.2. The
hydrodynamic coefficients increased with KC for all perforation ratios. In general,
the coefficients increased with decreasing perforation ratio. An exception was for
very small KC numbers where the damping could be larger for the perforated
disks than for the corresponding solid disk. For KC = 0.2 and frequency 0.1 Hz
(T = 10 s), the disk with perforation ratio τ = 0.2 yielded approximately 30%
larger damping than the solid disk [23].

Sarkar and Gudmedstad [5] evaluated the use of DNVGL-RP-N103 [4], cf. Sec-
tion 1.4.4, for lifting analysis of subsea structures. They concluded that the RP by
DNV GL provides an “excellent basis” for analysis of subsea lifting operations [5].
However, they recommended more model testing in order to better understand
the amplitude dependence of the hydrodynamic coefficients of complex subsea
structures. Challenges with estimating the effect of perforation were highlighted.
The expressions provided by DNV GL, Eqs. (1.7) and (1.8), could be conservative,
in particular for structures with flat surfaces. Moreover, it was pointed out that
the added mass of perforated structures depend on the amplitude of motion.

An and Faltinsen studied perforated plates analytically, experimentally and
numerically [20, 24]. Their experimental studies consisted of three-dimensional
model tests of two rectangular perforated plates with perforation ratios τ= 0.08
and τ = 0.16. Circular holes were used to make the plates perforated. In their
experimental study, the two perforated plates, both with cross-sectional areas of
520mm×365 mm, were forced to oscillate at two different submergences, for dif-
ferent periods of motions and a range of amplitudes corresponding to Keulegan–
Carpenter numbers of 0.17 ≤ KC ≤ 1.7 with KC based on the smallest of the two
plate sides (D = 365mm). They found strong KC number dependence for both
the added mass and damping coefficients.

An and Faltinsen developed a semi-analytical method, similar to that of Molin
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[19], by assuming anti-symmetric vortices distributed along the plate. The re-
sulting hydrodynamic coefficients corresponded to those found using the method
by Molin. Compared with their experimental investigations, improved agreement
was found in the hydrodynamic coefficients of the semi-analytical method when
adding a drag force—similar to that suggested by Sandvik et al. [9]—to account
for flow separation at the plate-ends in an empirical manner.

Li et al. [25] performed an experimental study of heave plates for spar plat-
forms. The plates were flat square sections of 400 mm×400 mm. Four of the tested
plates were perforated, with perforation ratios of τ= 0.01, τ= 0.05 (two differ-
ent hole sizes) and τ = 0.10. The plates were forced to oscillate harmonically in
heave for Keulegan–Carpenter numbers ranging from 0.2 ≤ KC ≤ 1.2. Only mi-
nor differences were found in both hydrodynamic coefficients between the two
hole sizes tested. The added mass coefficients increased with increasing KC and
decreasing τ. A quadratic damping model was used. The quadratic damping co-
efficient decreased, in general, with decreasing perforation ratio and increasing
KC. Note, however, the small perforation ratios considered and that the largest KC
number is 1.2. The differences in the quadratic damping coefficients between the
three different perforation ratios were negligible for KC> 1.0, and were similar to
those of a solid plate. This is consistent with analysis by Molin [16], which found
that the damping from perforated disks can be larger than the damping from solid
disks, but only for KC< 1.

In addition to testing single solid and perforated disks, configurations consist-
ing of three plates in parallel were investigated by Li et al. [25]. The tests included
three times a solid disk and three times a disk with perforated ratio τ = 0.05.
Different gap distances between the plates were tested. The relative spacing of
the plates was varied from 0.5 to 1.5 times the width of the plates. When the
plates were placed relatively far from each other, the hydrodynamic coefficients
were similar to three times that of a single plate, whereas when the plates were
placed closer to each other, interaction effects between the plates reduced the hy-
drodynamic coefficients. The quadratic damping coefficient was in general more
sensitive to the relative spacing than the added mass coefficient. For relative spac-
ing larger than one plate width, the added mass of the three perforated plates in
parallel was similar to superposition of three single plates.

Tian et al. [26] performed an experimental investigation of oscillating flat
circular disks. Unlike many previous studies, their experiments included high
KC numbers, with a total range 0.15 ≤ KC ≤ 3.15 when normalizing with the
disk diameter. Seven perforated disks were investigated, with perforation ratios
τ = 0.05, τ = 0.10 (five different hole sizes), and τ = 0.20. Amplitude depen-
dence was found to be important for both the added mass and damping coeffi-
cients, for all perforation ratios, generally with increasing coefficients for increas-
ing amplitude. A significant decrease in the added mass coefficients was found
when increasing the perforation ratio; for the whole range of considered KC num-
bers, the added mass coefficient of the most perforated disk (τ = 0.20) was ap-
proximately half that of the solid disk. The damping coefficients were less sensitive
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to the perforation ratio, however, a slight reduction was in general found when in-
creasing the perforation ratio. The sensitivity to hole size was found to be small,
and the coefficients were almost identical for the five different versions of the
τ= 0.10 disk, throughout the whole range of KC numbers tested.

In addition to single disk configurations, Tian et al. [26] studied configurations
with solid disks in parallel with varying gap distances. Five gap distances were
tested for two parallel disks, with a ratio of the distance between the two disks to
the disk diameter ranging from 0.075 to 0.755. Four gap distances (from 0.075 to
0.3975 times the disk diameter) were tested for three parallel disks. The obtained
hydrodynamic coefficients increased, in general, with increasing gap distance be-
tween the disks. However, none of the parallel configurations had larger coeffi-
cients than superposition of the single plate results. Furthermore, it was found
that when the gap distance was very small, the coefficients of two parallel disks
could be smaller than those of one disk. According to Tian et al. [26], this is be-
cause the hydrodynamics of two parallel plates with a very small gap is similar to
that of a single thick plate, which for large KC numbers can have hydrodynamic
coefficients smaller than that of thin plates. The study by Tian et al. included both
perforated and solid disks, however, the multiple disk configurations consisted of
solid disks only.

The mentioned previous studies on perforated plates and disks highlight the
following two observations: 1) For a given perforation ratio, increasing the KC
number increases, in general, the hydrodynamic coefficients. 2) For a given KC
number, increasing the perforation ratio decreases, in general, the hydrodynamic
coefficients. An exception to 2) is the damping for small KC numbers which is
found to be larger for dense perforated plates than for corresponding solid plates.
Additionally, the studies of multiple parallel plates agree that plate interactions
decrease the hydrodynamic coefficients relative to superposition of single plates.
Furthermore, several studies have highlighted the importance of flow separation
at the plate-ends [9, 18–20, 25], in particular when the perforation ratio is small
and/or the KC number is large.

1.5 Present contribution and structure of thesis

Despite the considerable amount of valuable and useful studies related to hydro-
dynamic loads of complex subsea structures, knowledge gaps still exist. A typical
industrial approach is to estimate the loads based on hydrodynamic coefficients
for the various members of the structure. The structures are in general very com-
plex, but some main member types are perforated and solid protection structures
like hatch covers and mudmats, suction anchors and various cylindrical elements
like pumps and other equipment. There is still a need for better understanding
of the hydrodynamic forces on these types of structures, and the applicability of
their hydrodynamic coefficients. Moreover, superposition principles are typically
applied, but interaction effects are suspected to be of importance.

The present thesis aims at closing some of the knowledge gaps within hydrody-
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namics of complex subsea structures. Due to the shapes of subsea structures, and
the fact that the structures are lowered to the seabed from a crane on a ship, the
vertical hydrodynamic forces are likely to be most important. Perforated protec-
tion structures can be of particular importance since they can have large surface
areas normal to the direction of flow. Therefore, the vertical hydrodynamic forces
on perforated platelike structures are studied in detail. The present study starts
by considering the forces on these structures subjected to oscillating flow. The in-
fluence of various parameters on the forces is investigated. Previous studies have
suggested that plate-end flow separation can be important for the forces on these
structures; in the present study, a detailed analysis of this effect is presented. Fur-
ther, perforated structures are studied in waves, and the hydrodynamic forces are
compared with those of pure vertical oscillations. The applicability of simplified
force estimates, relevant for industrial use, is discussed. Finally, the complexity
of the structures is increased by joining more sub-structures together; interaction
effects are investigated, and the validity of superposition principles is discussed.

The thesis is organized in nine main chapters. Chapters 1 and 2 serve as in-
troduction; I present the background and motivation for the project, literature
review and the mathematical formulation in terms of governing equations and di-
mensionless quantities. Chapters 3, 4 and 5 cover the methods used—the exper-
imental setup (Chapter 3) and the presently implemented potential flow solver
(Chapter 4) and viscous flow solver (Chapter 5). The results are then presented
and discussed in Chapters 6, 7, 8 and 9. Finally, concluding remarks are given.

The results are divided into four chapters based on the topics covered. Each
of the four result chapters contains both presentation and discussion of results.
In Chapter 6, I present experimental and numerical results of perforated plates in
forced oscillations. In Chapter 7, results for perforated plates in incident waves are
presented and discussed. A simplified method for calculating the hydrodynamic
coefficients of perforated structures is presented in Chapter 8. Lastly, in Chapter
9, aspects related to interaction effects are presented and discussed.





Chapter 2

Governing equations and
dimensionless quantities

In the following, I will give a brief introduction to relevant governing equations
and dimensionless quantities. I start by presenting the governing equations for
viscous flows, which the viscous flow solver implemented in this project is trying
to solve. Potential flows are treated in a separate section with a presentation of
the governing equations for the present potential flow solver. Potential and viscous
methods can be combined, as is done in modeling of the free surface, in simula-
tions of incident waves, within the framework of the numerical viscous flow solver.
Lastly, a presentation of the relevant hydrodynamic coefficients and dimensionless
parameters is given.

2.1 Viscous flows and the Navier–Stokes equation

Humans have been fascinated by viscous flows for many hundreds of years. An
early, systematic approach was taken by Leonardo da Vinci (1452–1519). One of
his sketches, which I find of particular interest within the present work, is pre-
sented in Fig. 2.1 [27].

Figure 2.1: Sketch by Leonardo da Vinci [27].

15
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In the years from 1821 to 1845, Navier, Cauchy, Poisson, Saint-Venant and
Stokes, developed, independently, relations for the momentum of fluid flows that
included frictional resistance based on Euler’s inviscid equation derived in 1755
[28, 29]. Navier was the first to introduce the element of viscosity, and Stokes was
the first to use the concept of viscosity in terms of a coefficient [29]. Today, we
refer to this equation as the Navier–Stokes equation.

The Navier–Stokes equation is the governing equation for the momentum of
viscous flows. Together with the continuity equation, it is the cornerstone of the
present viscous flow solver. For incompressible and isothermal flows of a homoge-
neous Newtonian fluid with negligible bulk viscosity, the equations can be written

∂ ui

∂ x i
= 0, (2.1)

∂ ui

∂ t
+ u j

∂ ui

∂ x j
= −

1
ρ

∂ p
∂ x i

+ ν
∂ 2ui

∂ x2
j

. (2.2)

Here ui represents the velocity component in the x i direction,ρ is the fluid density,
p the pressure and ν the kinematic viscosity. Summation convention is used when
multiple indices are used. Standard index notation is used. In two dimensions, I
use x = x1 as the horizontal coordinate, and z = x2 as the vertical coordinate.
Corresponding velocity components are denoted u= u1 and w= u2.

I use the term Navier–Stokes equation(s) to refer to the momentum equation,
a single vector equation or, in terms of the components, that is, the spatial coor-
dinates, plural equations. Some authors include the continuity equation (and, if
relevant, the energy equation(s) [30]) in addition to the momentum equation(s)
when referring to the Navier–Stokes equations. However, the referred works by
Navier and Stokes are based on Euler’s momentum equation, and do not affect the
continuity equation. Consistent with several authors, working in a broad range of
subdisciplines within fluid dynamics, e.g. [29, 31–33], I therefore refer to Eq.
(2.1) as the continuity equation, and to Eq. (2.2) as the Navier–Stokes or mo-
mentum equation. Regardless of linguistic preferences, the most important thing
to remember is that a continuity equation, or statement of the conservation of
mass—in addition to a momentum equation—is necessary for solving viscous flow
problems.

2.2 Potential flows

If we assume zero vorticity, the velocity field can be described as the gradient of
a scalar, the velocity potential, Φ. Hence, such flows are referred to as potential
flows. In the case of a homogeneous incompressible fluid, from the continuity
equation, Eq. (2.1), the velocity potential satisfies Laplace’s equation,

∇2Φ= 0. (2.3)
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When the vorticity is zero, the Navier–Stokes equation may be greatly simplified.
The viscosity term is zero and the nonlinear convection term can be rewritten.
After integration, one obtains the Bernoulli equation for the pressure from the
Navier–Stokes equation,

p+ρgz +ρ
∂Φ

∂ t
+

1
2
ρ|∇Φ|2 = c(t) (2.4)

Here g = 9.81 ms−2 and pa is the integration constant that satisfies atmospheric
pressure, c(t) = pa, in calm water at the mean free-surface, z = 0.

2.2.1 Linearized free-surface conditions

Boundary conditions for a free surface with mean position z = 0 and wave eleva-
tion z = ζ(x , y, t), can be obtained from the substantial derivatives of the wave
elevation (kinematic condition) and pressure (dynamic condition). First, the ve-
locity potential and wave elevation are expressed as power series of the wave
nonlinearities. Then, the equations are Taylor expanded from z = 0 to the ac-
tual wave elevation, z = ζ. The linearized equations follows by considering linear
terms only,

−
∂ ζ

∂ t
+
∂Φ

∂ z
= 0; z = 0, (2.5)

−ρ
∂Φ

∂ t
−ρgζ= 0; z = 0. (2.6)

A combined equation can be obtained by time differentiation of the dynamic con-
dition. If the velocity potential is assumed to vary harmonically in time, with fre-
quency ω, the combined equation can be written

Φ−
g
ω2

∂Φ

∂ z
= 0; z = 0. (2.7)

The linearized kinematic and dynamic boundary conditions, Eqs. (2.5) and
(2.6), are used when simulating incident waves in the present numerical viscous
flow solver. The combined linearized equation with assumed harmonically time-
varying velocity potential, Eq. (2.7), is used as an assumption for the water entry
module of the present potential flow solver.

2.3 Hydrodynamic coefficients and parameters

2.3.1 Added mass and damping

In 1950, Morison and colleagues presented a semi-empirical relation for the in-line
force on a body in oscillating flow, i.e., the Morison equation [34]. The equation
consists of two terms, one term proportional to the acceleration and one term
proportional to the velocity squared. Based on this decomposition, the force on
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a body in oscillating flow can be calculated from its added mass and quadratic
damping coefficients.

Presently, a similar approach is used to present the forces on bodies in oscil-
lating flow, however, the quadratic damping force is linearized. This has several
favorable consequences, in particular that the limiting value of the damping coef-
ficient is limited as the amplitude goes to zero. The limiting value is typically very
small, although due to friction drag, the limit is not exact zero [8, 35]. Contrary,
the alternative, i.e., using a quadratic damping model, has the unfavorable fea-
ture that the quadratic damping coefficient goes to infinity as the amplitude goes
to zero. This is due to the friction drag force being linearly proportional to the
velocity, cf. discussion by Thiagarajan and Troesch [35]. Furthermore, the tools
used for design and analysis of marine operations typically require a linear model
for the forces.

Consider a body forced to oscillate harmonically in otherwise calm water. Us-
ing the decomposition, the hydrodynamic force is written in terms of an added
mass term and a damping term,

F = Aη̈+ Bη̇ (2.8)

with F being the hydrodynamic force, A the added mass coefficient, η̈ the harmon-
ically oscillating acceleration, B the damping coefficient and η̇ the harmonically
oscillating velocity. If, however, the body is fixed and experiences an oscillating
flow, there is an additional term arising from the unsteady pressure field of the
fluid, the Froude–Krylov force, FFK ,

F = Aη̈+ Bη̇+ FFK = (A+ρV )η̈+ Bη̇ (2.9)

with ρ being the fluid density and V the volume of the body. If the Froude–Krylov
force is subtracted, an experimental investigation of a harmonically oscillating
body in otherwise calm water can be compared with numerical simulations of the
fixed body in an ambient oscillating flow.

Equation (2.8) can be written nondimensional by assuming a harmonically
oscillating flow with velocity η̇=ωηa sinωt, and a reference added mass, A0,

F
ω2ηaA0

=
A
A0

cosωt +
B
ωA0

sinωt. (2.10)

The reference added mass is chosen to be the analytical added mass of a solid
flat plate (or circular cylinder) of equal width, D, as the body. In two-dimensional
flow, this is

A0 = ρ
π

4
D2 L, (2.11)

with L being the length in the lateral direction, that is, into the plane. Note that
by using this reference, A

A0
coincides with the added mass coefficient typically

denoted CA or Ca in the literature, or, if including the Froude–Krylov contribution,
A+ρV

A0
= CM or Cm. Likewise, the damping coefficient, B

ωA0
, is commonly referred

to as CB or Cb.
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The nondimensional force, Eq. (2.10), can be rewritten as

F
ω2ηaA0

=

√

√

√

�

A
A0

�2

+
�

B
ωA0

�2

sin (ωt + θ ) . (2.12)

Here θ is the phase difference between the velocity and the nondimensional force.
The amplitude of the nondimensional force, Fa, is of particular interest,

Fa

ω2ηaA0
=

√

√

√

�

A
A0

�2

+
�

B
ωA0

�2

. (2.13)

I would like to stress that since the amplitude of the nondimensional force is a
function of the squared nondimensional added mass and damping coefficients,
the ratio between the two,

B
ωA0

A
A0

=
B
ωA

, (2.14)

is a parameter that requires attention. A ratio equal to 1 means that both force
components are equally important. If the ratio is larger than 1, the force is domi-
nated by damping. If the ratio is smaller than 1, the force is dominated by added
mass. Note the importance of squaring of terms in Eq. (2.13). Consider for in-
stance that the force is dominated by damping, i.e., a ratio that is larger than one.
Due to squaring of terms, damping alone can be a considerable part of the force,
even for relatively small ratios larger than one,

È

�

B
ωA0

�2

È

�

A
A0

�2
+
�

B
ωA0

�2
=

B
ωA

Ç

1+
� B
ωA

�2
. (2.15)

Take as an example a ratio of 2, which is a typical value for a perforated plate
with 20 % perforation ratio. Since the coefficients are squared, damping alone
corresponds to 89 % of the force amplitude,

B
ωA
= 2→

B
ωA

Ç

1+
� B
ωA

�2
=

2
p

1+ 22
= 89 %.

Correspondingly, added mass alone can be a considerable part of the force ampli-
tude if the ratio is less than one.

In order to obtain added mass and damping coefficients from an experiment or
a numerical simulation where the force and motion are known, several techniques
can be applied. However, not all are equally appropriate, see for example the
discussion by Chakrabarti [36, pp. 189-194]. Furthermore, different test settings,
e.g. forced oscillations versus decay tests, can yield considerable differences in the
hydrodynamic coefficients [37]. In the present studies, hydrodynamic coefficients
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are obtained from forced oscillation experiments and numerical simulations of
oscillating and orbital flow conditions. The added mass and damping coefficients
are obtained by Fourier averaging,

A

∫

mT
η̈η̈ d t + 0=

∫

mT
F η̈ d t, (2.16)

0+ B

∫

mT
η̇η̇ d t =

∫

mT
F η̇ d t. (2.17)

Here m indicates a selected oscillation period and T is the oscillation period.

2.3.2 Keulegan–Carpenter and Reynolds numbers

In 1958, Keulegan and Carpenter [38] reported that the force coefficients of var-
ious bodies in oscillating flow were functions of a dimensionless quantity

W T
D

. (2.18)

Here W is the amplitude of the velocity, T the oscillation period and D the charac-
teristic dimension (width) of the body. Thereafter, the quantity has been referred
to as the Keulegan–Carpenter (KC) number. If the motions are oscillating harmon-
ically, the KC number can be written

KC=
W T

D
= 2π

ηa

D
. (2.19)

Note the use of W as the velocity amplitude. I use W instead of the more
commonly used U since the models are forced to oscillate vertically in the present
forced oscillation experiments and in the presently implemented numerical vis-
cous flow solver. In the numerical viscous flow solver, the vertical coordinate is
z and the vertical velocity component is w, hence the prescribed vertical velocity
component has amplitude W .

In regular waves of amplitude ζa and wave number k = 2π
λ , if a model is

placed at a vertical position zm and the water depth is h, the KC number can be
estimated, using linear wave theory [6], as

KC= 2π
ζa

D
sinh k(zm + h)

sinh kh
. (2.20)

The concept of viscosity introduced by Stokes led the way to another important
dimensionless quantity in fluid flows. In 1883, Osborne Reynolds conducted one
of the most famous experiments within the field of fluid mechanics. He found that
the ratio of inertia forces to viscous forces was important for the behavior of fluid
flows. Later, in 1908, Sommerfeld referred to the quantity simply as the Reynolds
number, a definition that has stuck since,

Re=
W D
ν

, (2.21)



Chapter 2: Governing equations and dimensionless quantities 21

with ν being the kinematic viscosity. The ratio between the Reynolds number and
the KC number is referred to as β [39],

β =
Re
KC
=

D2

νT
. (2.22)

The hydrodynamic loads on complex subsea structures depend, in general, on
both KC and Re. Due to the nature of oscillating flows, all subsea structures should
be expected to depend on the KC number. Bluff bodies, without sharp edges, are in
general Reynolds number dependent due to variations of flow-separation points.
Consequently, the hydrodynamic loads can be sensitive to the scaling in experi-
ments. Scale effects for the hydrodynamic coefficients of solid heave plates were
discussed by Bezunartea-Barrio et al. [37]. The importance of scaling was found
inferior to the effect of the KC number. They concluded that for practical purposes,
the uncertainty of scale effects is less important than the uncertainty related to
choosing the appropriate KC number [37].





Chapter 3

Experimental investigations

3.1 Facilities

The present experiments are conducted in a wave flume at the Marine technology
center in Trondheim, Norway. At the Marine technology center, this wave flume is
commonly referred to as Ladertanken (en: the Lader tank), due to Pål Lader who
got the tank built and started performing experiments there in the late 1990s [40].

A simple sketch of Ladertanken is presented in Fig. 3.1. Ladertanken is a rela-
tively narrow wave flume, 13.5m long and 0.60 m wide. The applied water depth
is 1.0m. The narrow shape makes the tank suitable for facilitating near two-
dimensional experiments. In the south1 end of the tank, a wave flap can be used to
generate waves. Alternatively, if the wave flap is not in use, a parabolic beach can
be installed. The parabolic beach is installed such that it is approximately 2 mm
below the mean free-surface. For the present configuration, this provides efficient
damping of radiated waves. A similar beach is always used in the north2 end of
the tank.

h= 1.0 m
x

z

0.6 m x

y

13.5 m

Figure 3.1: Dimensions of Ladertanken. Upper: Side view. Lower: Bird’s eye view.

1The x-axis in Fig. 3.1 points in a direction approximately 30◦ east of true north, hence, the right
edge of the tank in the sketch is referred to as the north end of the tank.

2See footnote 1.
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Standard tap water is used in the tank. Depending on the season and the
time of the day, the water temperature in the tank varies slightly. The water tem-
perature is monitored with a basic thermometer. During cold winter nights, the
minimum observed temperature is 19 ◦C, whereas during the summer, the water
temperature reaches a maximum of 24 ◦C. This five degrees change in tempera-
ture yields slight variations in the density of water and approximately 10 % change
in viscosity [41]. However, the experiments are performed in blocks with equal
setup, typically lasting from a few days to a couple of weeks. Consequently, large
temperature changes due to the seasons are not considered to affect the present
experimental investigations.

Within each block of experiments, a number of experimental sets are per-
formed, e.g. tests of different structure parts using the same tank setup. Each set
consists of a range of oscillation periods and amplitudes. The total run time lasts,
typically, from a few hours to one day. Some temperature variations during each
set is expected, due to the indoor temperature difference between day and night.

3.2 Experimental setup

Ladertanken is equipped with a rig in which various models can be installed, such
that experimental investigations of the models can be performed. The present
experimental investigations include both forced oscillation experiments and in-
cident wave experiments. In the forced oscillation experiments, the rig is forced
to oscillate in otherwise calm water. In the incident waves experiments, the rig is
fixed and the model experiences forces due to incident waves. A photo of the rig
is presented in Fig. 3.2.

The rig is placed in the middle of the wave flume, with approximately equal
distance from the south and north tank walls. The rig consists of an actuator which
can move the rig in the vertical direction, a force transducer, a frame and two
acrylic glass plates, cf. Fig. 3.2. This particular rig configuration was developed
and installed for the present project3.

The acrylic glass plates consists of a large hole matrix such that various models
can be installed and tested in multiple configurations. The acrylic glass plates are
420mm wide, 1105 mm long and 6 mm thick. The mass of each acrylic glass plate
is 3kg. The gaps between the acrylic glass plates and the tank walls are 9 mm.
The acrylic glass plates act as end-plates for the models, which yields a near two-
dimensional setup, that is, water cannot flow between the installed model and the
acrylic glass plates. The tested models are installed through the screw holes in the
acrylic glass plates. Note that the sole purpose of the hole matrix is to be able to
attach models at various positions. Yellow putty is used to fill holes that are not
used, in order to ensure smooth surfaces on the acrylic glass plates.

In the intersection between the actuator and the frame, the force transducer

3Special thanks go to Trond Innset and Ole Erik Vinje who constructed and installed the present
experimental rig.
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actuator

force transducer

acrylic glass plates

model

Figure 3.2: Photo of the experimental setup. Models can be installed between
the two acrylic glass plates that are partly submerged. The acrylic glass plates are
fastened to the yellow box and frame. Accelerometers are fastened to the frame.
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measures the vertical force on the frame and the acrylic glass plates. Hence, if the
rig is actuated, the measured force includes the force due to the moving frame
and acrylic glass plates, in addition to the force on the model that is tested. In
order to find the net force on the model, identical tests are performed without
models fastened to the acrylic glass plates. The resulting force in these empty
tests is subtracted, time-step by time-step, from the force measured in tests with
a model,

Fmodel = Fri g+model − Fri g , (3.1)

in order to obtain the net force on a model. Further, the dry mass of the model
times the measured acceleration is subtracted from the force in order to find the
hydrodynamic force on the model. Separate analyses were performed to assess
the damping due to the rig and acrylic glass plates alone.

The software package Catman Easy by HBM is used for data acquisition of the
experimental measurements [42]. The applied instrumental setup was carefully
set up to achieve zero phase delay between the different signals, in order to obtain
reliable hydrodynamic force coefficients. The vertical force, motions and wave el-
evation measurements are sampled at 200Hz with Butterworth filtering at 20 Hz.
The measurements are band-pass filtered around the basic harmonic of the oscil-
lation when calculating the wave elevations, hydrodynamic coefficients and nor-
malized hydrodynamic force amplitude. An example of the approach is presented
in Fig. 3.3, in which the force and acceleration are presented for a typical high
load case, illustrating the expected high-frequency noise of the measurements.
Additional example plots from the experiments, including time-series and Fourier
magnitude spectra, are provided in App. A. The measured signals are presented
with blue color, the band-pass filtered signals with red. The acceleration is filtered
around the first harmonic, whereas the force, which contains some contribution
from higher-order components (mainly 3rd and 5th), is filtered around the first
five harmonics.

Calibrations of the sensors are performed regularly to ensure high-quality
measurements. All sensors are calibrated at the start of an experimental block.
During longer lasting blocks, the sensor are calibrated, typically, on a biweekly
schedule. Furthermore, all sensors are zero calibrated (removal of offset drift)
before each set of an experimental block. Linear calibration curves are used for
all sensors. The force transducer is calibrated by applying weights, representative
for the forces measured in the experiments, to the rig and measuring the output
in the data acquisition software. Based on the measured output, the calibration
curve of the force transducer is adjusted in the software. The calibration factor
and zero-crossing of the calibration curve is found based on the best linear fit
from the weight tests. Similarly, the accelerometers are calibrated by physically
turning them upside-down, on the side and the correct way while measuring the
output in the data acquisition software. The calibration curve is then adjusted
based on comparisons between the measured and expected (−g, 0 and g) output.
Calibration of the wave probes is performed by physically adjusting the height of
the sensors in water, reading the output and adjusting the calibration in the data
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acquisition software. The tests are performed for several known heights, within
a range representative for the waves of the experiments. The best linear fit from
the tests is then used to determine the calibration curve.
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Figure 3.3: Measured (blue) and band-pass filtered (red) force and acceleration
time-series from the experiments. The force and acceleration during two oscil-
lation cycles of a typical high load case is presented; rig with perforated plate
model C19 forced to oscillate with ηa = 13 cm (KC= 2.82), T = 2.0 s. Additional
example plots from the experiments are provided in App. A.
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3.2.1 Forced oscillations

Ladertanken is well suited for performing forced oscillation experiments of two-
dimensional models. A sketch of a typical setup is presented in Fig. 3.4. An har-
monically oscillating signal is used to actuate the rig, such that the models oscil-
late in otherwise calm water. The vertical force and motions are measured on the
rig. The oscillating rig and model will generate waves. Therefore, two parabolic
beaches that damp out and avoid wave reflections, are installed in each end of the
tank. The radiated waves are measured by wave probes installed downstream of
the rig.

h= 1.0 m

beachbeach
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model rig
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wp wp

Figure 3.4: Sketch of the tank setup during forced oscillation tests. Parabolic
beaches are placed on both sides of the tank to damp out and avoid reflection of
radiated waves. Wave probes are placed far downstream of the rig to measure the
radiated waves.

The actuator input signal, which is sampled at 50 Hz, consists of a range of sets.
Each set has a prescribed amplitude and period of oscillation. Between each set
there is 2-3 minutes of break (zero input) in order to ensure calm water conditions
before each tested set. The signal is ramped linearly to and from the prescribed
amplitude of motion at the beginning and end of a set. An implementation of the
position of the rig and model before, during and after a set is presented in Code
Listing 3.1.

Different input signals are used, but most of the forced oscillation experiments
are based on a signal that consists of five periods of oscillation (1.00 s, 1.25 s,
1.50 s, 1.75 s, and 2.00 s) and a number of amplitudes of motion between 1.7 cm
and 13cm. In this input signal, each set consists of 20 oscillation cycles, of which
five are used to ramp the signal from zero to the prescribed amplitude of motion,
and five are used to ramp the signal back to zero. The presented force and coeffi-
cients are obtained for the eight oscillation cycles in the middle of the set, ignoring
the ramp-in, ramp-out and the first and last oscillation cycle with full amplitude
of motion. In Fig. 3.5, the first 60 s (top) and 4 minutes (bottom) of the input
signal are presented. The total duration of this particular input signal, including
all sets and breaks, is 15 hours. No exact scaling is set on the experimental mod-
els, however, they are typically of order 1:25-50 compared to full scale subsea
structures. Consequently, the range of tested oscillation periods corresponds to
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full scale (wave) periods in the range from approximately 5 s to 14 s. Limitations
apply to the acceleration and motion of the actuator and rig, which is the reason
for the applied range of amplitudes. Further, the smaller periods of oscillations
are limited to smaller amplitudes within this range (1.7–13cm) due to limitations
on the applied accelerations of the actuator.

Code listing 3.1: Python code for obtaining the position of the rig and model
before, during and after a set.

""" Signal used in forced oscillation experiments """
import numpy as np

def ramp_in(amp, period, time, time_break, n_r):
""" Ramp in signal """
amplitude = (time - time_break)/(n_r*period)*amp
return amplitude*np.sin((2*np.pi/period*(time - time_break)))

def full_oscillation(amp, period, time, time_break):
""" Full oscillation signal """
return amp*np.sin((2*np.pi/period*(time - time_break)))

def ramp_out(amp, period, time, time_break, n_r, n_f):
""" Ramp out signal """
amplitude = (1 - (time - (time_break + (n_r + n_f)*period))/(n_r*period))*amp
return amplitude*np.sin((2*np.pi/period*(time - time_break)))

for time in time_array:
if time < time_break:

eta = 0
elif time >= time_break and time < time_break + n_r*period:

eta = ramp_in(amp, period, time, time_break, n_r)
elif time >= time_break + n_r*period and t < time_break + (n_r + n_f)*period:

eta = full_oscillation(amp, period, time, time_break)
elif (time >= time_break + (n_r + n_f)*period

and time < time_break + (n_r + n_f + n_r)*period):
eta = ramp_out(amp, period, time, time_break, n_r, n_f)

else:
eta = 0

# Description of variables:
# eta: position of the rig and model at time t.
# amp: prescribed amplitude of motion.
# n_r: number of ramp oscillation cycles.
# n_f: number of full oscillation cycles.
# period: prescribed period of oscillation.
# time: time.
# time_array: array of all time.
# time_break: break time before and after a set.

Some bugs were encountered during the first rounds of forced oscillation ex-
periments. Initially, stiffeners fastened between the acrylic glass plates were used.
The idea was that stiffeners would reduce vibrations and motions and increase the
quality of the experiments. Instead, the opposite happened; the acrylic glass plates
were likely to touch the walls of the tank if the stiffeners were used. The stiffen-
ers were removed and new experiments were performed. Despite the acrylic glass
plates only being 6 mm thick, vibrations and motions were not a problem without
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stiffeners. When models are fastened to the acrylic glass plates, the stiffness of the
rig is increased, but even in tests without models between the acrylic glass plates
(empty tests), the acrylic glass plates of the rig oscillated without considerable
high-frequency vibrations.

0 10 20 30 40 50 60
t [s]

−2

−1

0

1

2

z [cm]

0 60 120 180 240
t [s]

−2

−1

0

1

2

z [cm]

Figure 3.5: The first 60 s (top) and 4 minutes (bottom) of the input signal used
in most forced oscillation experiments. The signal, which has a total duration of
15 hours, consists of multiple sets with breaks in between.

3.2.2 Forced oscillations with channel walls

Two walls were installed in the tank in order to test configurations forced to os-
cillate inside a channel. The channel walls were installed with 2 cm gaps to the
acrylic glass plates. A photo of the setup is presented in Fig. 3.6. Two perforated
plates were tested in oscillating channel flow. The purpose was to investigate how
this would influence the hydrodynamic forces on the perforated plates when lim-
iting the space for plate-end vortex generation. A priori, it was expected that the
hydrodynamic force would consist of damping only.

In addition to tests of perforated plates, I tested a single square cylinder inside
the oscillating channel. The purpose was to ensure that the channel wall setup
was done correctly. This case was compared with forced oscillations of the same
cylinder in open conditions, that is, without channel walls. In open conditions, the
distance from the cylinder walls to the bottom and the free surface is the same
as in the channel, 47cm, but the distance to the side-walls of the tank is more
than 6.5 m. As is the case for all the present forced oscillation experiments in
open conditions, the models (perforated plates or cylinder) are forced to oscillate
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vertically (z-direction) inside the channel.

Figure 3.6: Forced oscillation experiments inside a channel. Generation of plate-
end vortices is limited due to the small gap from the plate-end to the channel
wall.

Compared to the dimensions of the channel (width 0.46 m, height 1.0 m), the
cylinder (D = 0.06 m) is relatively small. Oscillating the cylinder vertically 0.5 m
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from the free surface will only generate small disturbances on the free surface.
Additionally, the channel walls are relatively far from the cylinder. Hence, if the
setup is properly done, it is reasonable to expect that the effect of the channel
walls, in terms of forces on the cylinder, is small. This can be seen from potential
flow assumptions. As discussed by Faltinsen [6, p. 54], the potential flow added
mass increases when a body is close to a wall [43]. However, the cylinder must
be “quite close (...) before there is any influence” [6]. Therefore, one could ex-
pect slightly larger added mass coefficients in the channel than what is obtained
when the channel walls are removed. Close inspection of the results presented by
Greenhow and Ahn [43, Fig. 1] suggests that the increase in added mass is ≈ 4 %
when a circular cylinder is four radii from a wall. In the present experiment, the
cylinder has a square cross-section—which has a potential flow added mass that
is 1.51 times that of a circular cylinder [32, pp. 145–146]—and the distance to
two walls is 7.7 radii. Therefore, the result presented by Greenhow and Ahn is not
comparable to the present setup, however, it gives an idea of the order of mag-
nitude of expected increase in added mass due to the channel walls. Moreover,
since the space for the water to circumvent the cylinder is more limited in the
channel compared to without channel walls, the flow velocity is increased close
to the cylinder. This increases the damping. Consequently, both hydrodynamic
coefficients are expected to increase slightly in the channel setup.
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Figure 3.7: Test of the channel wall setup. A cylinder is force to oscillate vertically
(z-direction) with and without channel walls. In the channel, the added mass and
damping coefficients are, on average, 4 % larger than in open conditions.

The same input file was used in both settings; the period of oscillation was
T = 2.0 s and the amplitudes ranged from 2.5 cm to 10cm. A total of 45 sets of
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amplitudes were tested. Each set consists of 20 oscillation cycles of which five
cycles are used to ramp the signal up, then follows 10 cycles with the prescribed
amplitude of motion, before five cycles are used to ramp the signal down.

The added mass and damping coefficients from the square cylinder cases are
presented in Fig. 3.7. The mean and standard deviations (error bars) are based
on the eight cycles with the prescribed amplitude of motion in the middle of the
set. The results in open and channel flow conditions are similar. As expected, the
channel walls increases slightly the coefficients. For many KC numbers, the differ-
ence is within the standard deviations in coefficients for the different oscillation
cycles.

On average, both coefficients are 4% larger in channel than in open condi-
tions. The channel flow added mass coefficient is larger for 45/45 KC numbers,
whereas the damping coefficient is larger for 31/45. The damping force is rela-
tively small, which increases the uncertainty of the damping coefficients, a likely
reason why there is a larger scatter for the damping coefficient than for the added
mass coefficient.

The same comparison of channel and open conditions was done with the
present numerical viscous solver. The numerically obtained differences in coef-
ficients (channel vs. open conditions) were similar to those found in the exper-
imental investigation (3 % and 6 % for, respectively, added mass and damping),
giving further confidence in the experimental results. I concluded that the exper-
imental setup of the oscillating channel was satisfactory.

3.2.3 Incident waves

Two models, both consisting of rows of cylinders, are tested in incident waves.
The experiments are performed by fixing the model, installed in the rig, at given
vertical positions. Sets of regular waves, of different wave amplitudes and peri-
ods, are then generated by the wave flap. Hence, the tested model is fixed and
experiences incident waves. A sketch of the setup is presented in Fig. 3.8. A photo
of one of the tested models placed 10 cm below the mean free-surface during a
incident wave test is presented in Fig. 3.9.
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Figure 3.8: Sketch of the tank setup during incident wave tests. The positions of
the wave flap, model rig, wave probes and beach are indicated.
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Similar to the forced oscillation experiments, an input signal is used to actu-
ate the wave flap. The implementation is similar to that presented in Code List-
ing 3.1. The input signal includes four wave periods (1.0 s, 1.1 s, 1.2 s and 1.3 s)
and a range of flap amplitudes which yield wave amplitudes between 2.1 cm and
6.5cm. Assuming an approximate scaling of the tested models of 1:25-50, the
wave periods correspond to full scale wave periods of 5 s ® T ® 9s. Two periods
of oscillation are used to ramp the signal to and from the prescribed wave flap
amplitude (in Fig. 3.5, the presented input signal use five ramp periods). The ver-
tical position of the models is varied from z = −30 cm to z = 5 cm (z = 0 is the
mean vertical coordinate of the free surface).

Figure 3.9: A perforated structure in incident waves. Yellow putty is used to fill
the holes of the hole matrix of the acrylic glass plates that are not used to fasten
the model, cf. Section 3.2.

Eight wave probes are installed in the tank during the incident wave tests,
cf. Fig. 3.8. The wave profile above the model center is estimated based on the
upstream wave probes. Wave probes 1-6 are used to estimate the wave celerity,
and the measurements of wave probes 1-4 are used to estimate the wave profile
above the geometrical center of the models. Special care is taken to ensure correct
measurements of the horizontal distances between the upstream wave probes and
the position of the geometrical center of the models, essential for calculating the
correct wave celerity and phase of the wave at the position of the models.
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3.3 Error sources and experimental uncertainty

A considerable amount of work is invested to ensure the general quality of the ex-
periments and analysis, including minimizing the effect of random and bias error
sources. Random errors are estimated by performing repetition tests and quanti-
fying differences in the measured force and obtained coefficients from different
oscillation/wave periods, e.g. by presenting both the mean and the standard devi-
ations for a range of oscillation cycles. To minimize bias errors, several measures
are taken, of which some are described in the following.

Different configurations (models and model placements) are tested by in-
stalling them through holes in the acrylic glass plates of the experimental rig.
Consequently, the model rig is loosened and tightened between each configura-
tion. This can yield small differences in the experimental conditions. The distance
between the acrylic glass end-plates and the tank walls pose another challenge.
In order to ensure similar conditions between several experimental trials, guiding
plates and distance measuring are used when fastening the model rig.

In forced oscillation experiments, a common source of error is that the ob-
tained hydrodynamic coefficients (added mass and damping) are sensitive to the
sampling of signals. Problems arise if there is a phase delay between the mea-
sured signals that are larger than the sampling rate, or if the sampling rate is
too small. If the force is almost in the exact phase as either the acceleration
or the velocity, the accuracy of, respectively, the damping coefficient or added
mass coefficient reduces. Three measures are highlighted in this context: 1) The
sampling rate (200 Hz) is relatively high compared to the period of oscillations
(1.00 s ≤ T ≤ 2.00 s, to ensure that the time-series of the force and accelera-
tion have fine resolutions. 2) The applied instrumental setup ensures that there
is no phase difference between the sampled acceleration and force signals. 3) In
addition to the hydrodynamic coefficients, the normalized force is presented. In
cases where one of the coefficients dominates completely, the normalized force is
emphasized and the uncertainty of the smaller coefficient is highlighted.

In the present experimental setup, the force difference between forced oscil-
lation trials with and without models is used to obtain the net force on the model.
Ideally, the only difference in this net force estimation is the force on the model,
but the structural properties of the full model rig will be different than the empty
rig, potentially influencing the force estimates. In addition to increasing the mass
of the oscillating rig, the models will increase the structural stiffness of the rig
since they are fastened to the lower parts of the acrylic glass plates, thereby forc-
ing a constant distance between the plates. Contrary, the distance between the
acrylic glass plates in the empty rig configuration depends on the fastening to the
wooden box, at the top of the rig, only. A compromise is made between reducing
the mass of the rig, which reduces the inertia force, and at the same time ensure
sufficiently high rig stiffness. The acrylic glass plates are optimized with regards
to limiting the size and mass, but at the same time ensuring large flexibility in test
configurations.
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Figure 3.10: Measured force in empty rig trials decomposed in mass and damping
terms, Eq. (3.2). The error bars indicate the variations of the force terms between
oscillation periods.
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If the net force on the model is very small relative to the force of the rig,
the uncertainty of the present force estimation approach increases. The measured
force during empty rig trials can be decomposed in mass and damping terms,

Fempt y = Aη̈+ Bη̇. (3.2)

In Fig. 3.10, the resulting A and B from empty rig trials of the commonly used
input signal consisting of five oscillation periods is presented.

Compared to the measured total mass and damping in experiments with mod-
els, the empty rig results of Fig. 3.10 are small. However, for very small amplitudes
of motion, ηa ® 0.03 m, the mass and damping terms in the empty rig trials can
be of similar magnitude as those obtained for the models, e.g. for the configura-
tion denoted as S28, the smallest tested amplitude yields A ≈ 8 kg and B ≈ 50-
80kgs−1 depending on the period of oscillation. The dry mass of this configuration
is 1.79 kg. Consequently, the total inertia force (dry and added mass) of the model
is of similar magnitude as the total inertia of the rig without models, whereas the
net damping of the model is 3-7 times that of the empty rig (depending on the
period of oscillation), cf. Fig. 3.10. For larger amplitudes of motion, the mass and
damping forces of the models far exceed those found in empty rig trials.

Similar conclusions are drawn from comparison of the measured force am-
plitudes. For the smallest oscillation frequency, T = 2.0 s, the force amplitude
in experiments with models are typically 2-3 times that of the empty rig for the
smallest tested oscillation amplitudes. For the largest oscillation amplitudes, the
force amplitude in experiments with models are, typically, 6-15 times that of the
empty rig force. Consequently, the accuracy of the present net force estimation is
high for moderate and large oscillation amplitudes, but less certain for the small-
est tested amplitudes of oscillation where the empty rig force, compared to the
model force, is relatively large.

The results of Fig. 3.10 are plotted in terms of the mean value (marker) and
the standard deviation (error bars) based on eight full oscillation cycles of the
heaving actuator, cf. Section 3.2.1 and Fig. 3.5. In general, large standard devi-
ations imply that there are large variations in the measured quantities between
the oscillation/wave periods. These variations are either due to changes of the
environmental conditions or due to experimental uncertainties. At the start of all
experimental sets, the water in the tank is calm. As the rig and model starts to
oscillate, some motion of the water in the tank must be expected. These water
motions affect the measurements. Relevant examples are free-surface deflections
(generation of waves) and the presence of the wake due to the previous oscillation
of the model. By including error bars in the result plots, the uncertainty related to
these effects is illustrated. For the specific case of the force terms in Fig. 3.10, the
only fluid-structure interaction is due to the heaving acrylic glass plates, that is,
the rig is empty. This effect is very limited. Consequently, the standard deviations
give an indication of the precision of the experimental measurements. The error
bars for A are hardly visible in Fig. 3.10. On average, the coefficient of variation
(the standard deviation divided by the mean) of A is 0.4 %. For B, the coefficient
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of variation is 1.7%. Larger uncertainty in B is expected due to the force being
dominated by mass when the rig is empty, i.e., B

ωA < 1, cf. Section 2.3.1.
Experimental uncertainties both increase and decrease when testing the mod-

els in incident waves. In terms of error sources, a benefit of this setup is that the
model rig is fixed. Consequently, many of the above mentioned issues are not
relevant. However, some new error sources appear, in particular related to the
measurement of waves.

The results of the incident wave experiments are typically presented in terms
of the normalized force on the models and the KC number. Both quantities depend
on the measured wave elevation. To reduce possible errors, the wave probes are
set up in pairs and calibrated regularly. Further, a total of eight wave probes are
used, of which the six wave probes upstream of the rig are used to calculate the
wave amplitude, cf. Fig. 3.8.

The normalization of force and amplitude also depend on the vertical position
of the model. The position of the model is adjusted by the actuator before an
experimental trial. The distance from the model to the free-surface, as well as the
water depth, is manually checked before testing a new position of the model.

Slight variations of the water level in Ladertanken can occur from day to day,
typically within 5mm during 24 hours. This is related to leakage from the inlet
and outlets of the tank. In the forced oscillation experiments, 5 mm change in
water depth is unimportant and has no considerable effect on the measured force
and obtained coefficients. Contrary, the incident wave experiments are sensitive to
variations in water depth. However, a full experimental trial of a model in incident
waves lasts four hours. Since the water depth is checked at the beginning of each
experimental trial, the expected variations in water depth during the four hours
are insignificant. Note that zero offset calibration is performed before all sets in
both forced oscillations and incident waves. This limits the effect of sensor drift,
related to e.g. water level variations, during long experimental trials.

3.4 List of experimentally tested configurations

I end this chapter by presenting a list of the models that are experimentally tested.
The summary is provided in Table 3.1. All models are tested in forced oscillations.
In addition, C19 and S28 are tested in incident waves.

The experimental studies include models that represent scaled simplifications
of components of actual subsea structures. The models denoted P19, P28, C19
and S28 are perforated platelike structures. Perforated plates are typically used
for protection structures like hatch covers, and are especially important for the
loads of subsea structures. SPD15t, SPD30t and 2SP with varying gaps are mod-
els that consist of solid plates without and with gaps in between. Such models can
be seen as simplifications of e.g. mudmats. Further, subsea structures are complex
and consist of several members and types. How to account for interaction effects
between different members of a subsea structure is one of the unsolved questions
within hydrodynamics of complex structures in the wave zone. Hydrodynamic in-
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teraction between various members is investigated experimentally with the stud-
ies of 5C, 2P28_120+5C, 2P28_120 and 2P28_60. The models are introduced in
more detail in the introduction to the results in Chapters 6–9.

Table 3.1: Experimentally tested models. The models are introduced in more
detail in the result chapters.

Model Description Chapter(s)
P19 Ideal perforated plate with numerous

holes. D = 420mm, τ= 0.19
6 and 9

P28 Ideal perforated plate with numerous
holes. D = 420mm, τ= 0.28

6 and 9

C19 Perforated plate consisting of circular
cylinders. D = 298mm, τ= 0.19

6 and 7

S28 Perforated plate consisting of square
cylinders. D = 360mm, τ= 0.28

6 and 7

SPD15t Solid plate, D = 60mm, width-to-
thickness D

t = 15
8 and 9

SPD30t Solid plate, D = 60mm, width-to-
thickness D

t = 30
8

5C Five circular cylinders of diameter 60mm
placed side-by-side with 30mm gaps. To-
tal width D = 420 mm

9

2P28_120+5C Two times P28 placed in parallel 120 mm
apart with 5C in between

9

2P28_120 Two times P28 placed in parallel 120 mm
apart

9

2P28_60 Two times P28 placed in parallel 60 mm
apart

9

2SP with vary-
ing gaps, dg

Two solid plates of width d = 60 mm,
thickness t = 4mm, placed side-by-side
with varying gaps: dg = 30mm, dg =
60 mm, dg = 90 mm and dg = 120mm

9





Chapter 4

Potential flow solver

A two-dimensional potential flow solver for infinite fluid conditions was imple-
mented within the project. The purpose of the potential flow solver is to effi-
ciently calculate the added mass of various bodies. The potential flow solver gives
the added mass for KC → 0. Added mass coefficients obtained by the potential
flow solver provide useful support when evaluating the validity of other meth-
ods, in particular by comparing with results for small KC numbers in experiments
and viscous flow solver simulations. Additionally, the potential flow solver is used
to determine the variation in added mass of bodies during water entry by a von
Kármán approach, in order to estimate the associated slamming force.

4.1 Implementation

A solution to the Laplace equation for the velocity potential, Eq. (2.3), can, by use
of Green’s identity, be constructed by a sum of source and doublet distributions
placed on the boundaries of the domain, that is, by using a boundary element
method (BEM). When determining the potential flow added mass of a body in
infinite fluid, a distribution of sources is appropriate [6]. From the source dis-
tribution, the source strengths and thereby the velocity potential on the body is
found. The added mass can then be determined from the linearized Bernoulli
equation; numerically integrating the velocity potential times the normal vector
for all elements.

The present implementation is similar to that described by Katz [44, p. 276]
and Faltinsen [6, p. 103]. The implementation assumes that each discretized el-
ement of the body has a constant source strength that is evaluated in the center
of each element, hence it is a constant-strength source method. This assumption
dictates that a large number of sources are used in order to obtain accurate results.

4.1.1 Basic structures

Two types of cross-sections, circular and rectangular, are used in the potential flow
solver. By combining several basic structures side by side, these basic structures

41
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can be used to model perforated plates.
When discretizing a circular cross-section, different implementations are pos-

sible. In the present potential flow solver, circular cross-sections are implemented
such that the maximum radius of the discretized model corresponds to the ra-
dius of the exact circular cross-section. Hence, the area of the discretized circle is
smaller than a true circle; when increasing the number of elements, the area of
the circle will increase towards the area of a true circle. An illustration is given in
Fig. 4.1.

−0.5 −0.3 −0.1 0.1 0.3 0.5
−0.5

−0.3

−0.1

0.1

0.3

0.5

N = 8: elements

N = 8: sources

N = 128: elements

N = 128: sources

Figure 4.1: Discretizations with ns = 8 and ns = 128 sources, using the present
potential flow solver, of a single circular cross-section with diameter equal 1.

4.1.2 Perforated plates

Special care must be taken when modeling perforated plates with the potential
flow solver. In the limit of zero KC, the added mass of a perforated structure will
depend largely on the number of openings. As discussed by Molin [19], the po-
tential flow added mass of a perforated flat plate will go to zero as the number
of openings goes to infinity, independently on the perforation ratio of the plate.
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Consequently, in order to get a realistic added mass of a perforated plate with
the potential flow solver, the exact geometry of the plate—not just its perforation
ratio—must be reproduced in the discretization. This is illustrated with an exam-
ple presented in Table 4.1. The added mass of a perforated plate with perforation
ratio τ = 0.3 is calculated with the potential flow solver using different number
of openings. Included in the table is the relative difference to the relation for the
added mass in the low-KC limit by DNVGL-RP-N103 [4, Section 3.3.4], Eq. (1.7).
The expression by DNV GL is a function of the perforation ratio only. However,
as stated above, the important parameter for KC→ 0 is the number of openings,
that is, the hole size relative to the plate size.

Table 4.1: Added mass of a thin plate (D = 100t) with perforation ratio τ= 0.3
modeled with increasing number of holes, nh, and corresponding hole size, lh, to
plate widths, D. The relative difference to Eq. (1.7) is included.

nh
lh
D

A
A0

|A−AEq.(1.7)|
AEq.(1.7)

1 0.3 0.284 17%
2 0.15 0.207 40%
4 0.075 0.144 58%
8 0.0375 0.098 71%
16 0.01875 0.071 79%
32 0.009375 0.055 84%
DNV GL 0.343

4.1.3 Double-body slamming approximation

In addition to calculating the potential flow added mass of various models, the
potential flow solver is used to estimate the force on a body during water entry,
which can be written [6, p. 299],

F =
dA
d t

w+ A
dw
dt
+ρgΩ. (4.1)

Here A is the added mass, w is the velocity of the body (here defined positive
downwards), g = 9.81 ms−2 and Ω is the instantaneous submerged volume of the
body. The three terms are, from left to right, the slamming force, the added mass
force and the buoyancy force. The slamming force can be written in terms of the
submergence, z,

w
dA
dt
= w

dA
dz

dz
d t
=

dA
dz

w2. (4.2)

A slamming coefficient, CS , is then introduced,

dA
dz

w2 =
1
2
ρCS Dw2, (4.3)

for the two-dimensional slamming force.
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The double-body slamming approximation is based on the von Kármán ap-
proach which ignores the water rise-up. The added mass is estimated as half the
added mass of a body consisting of the submerged part of the body and its mirror
above the free-surface. The latter is justified if the velocity, w, is large such that the
fluid accelerations are much larger than the acceleration due to gravity, g. From
this assumption, the combined linearized free-surface condition, Eq. (2.7), will go
towards Φ = 0 on z = 0. The problem can then be solved by considering the cor-
responding double-body problem in infinite fluid [6, pp. 43–44]. Consequently,
the present potential flow solver can be used to calculate the double-body added
mass, which is then halved to obtain the added mass of the actual body.

4.2 Verification

4.2.1 Added mass of basic structures

The potential flow solver is verified and checked for convergence for a single cir-
cular cross-section and a single square cross-section in infinite fluid. The results
of the convergence study are presented in Table 4.2. Convergent results for both
the circular cross-section and the square cross-section are obtained.

Table 4.2: Convergence study of potential flow solver. Added mass coefficients for
a single circular cross-section and a single square cross-section calculated using
an increasing number of sources to discretize the bodies. Analytical results: 1 and
1.513 for, respectively, a circular and a square cross-section [32, pp. 145–146].

Number of sources Circular Square
8 1.0908 1.6799

16 1.0671 1.5748
32 1.0386 1.5362
64 1.0205 1.5219
128 1.0105 1.5165
256 1.0053 1.5144
512 1.0027 1.5137

1024 1.0013 1.5134
2048 1.0007 1.5132

4.2.2 Water entry of a single circular cylinder

To verify the double-body slamming approximation, the water entry of a single
circular cylinder at constant velocity is studied. The impact is discretized using
80 time-steps from right after the initial impact (zw =

1
82 D) to right before the

cylinder is fully submerged (zw =
81
82 D) The double-body is discretized using 512
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elements in each time-step. The slamming coefficient, cf. Eq. (4.3),

CS =
2
ρD

dA
dz

, (4.4)

is calculated based on the change in added mass for each time-step. The resulting
slamming coefficient is presented as a function of the relative submergence,

wt
D
=

zw

D
, (4.5)

with zw being the wetted vertical coordinate.
The results are presented in Fig. 4.2. Linear extrapolation of the results for

zw =
1
82 D and zw =

2
82 D yields CS(t = 0) = 3.19 which is within 1.6 % of the

classical result by von Kármán, CS(t = 0) = π [45]. Faltinsen presented the added
mass and slamming coefficient of a circular cylinder during water entry [6, Fig.
9.11, p. 300]. He used a potential flow solver. The present results are compared
with the (digitized) results by Faltinsen, which serves as verification of the water
entry module of the present potential flow solver.

0.0 0.2 0.4 0.6 0.8 1.0
zw
D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
CS
4A

ρD 2

Faltinsen: CS
Faltinsen: 4A

ρD 2

Figure 4.2: Slamming coefficient and added mass of a circular cross-section with
diameter D during water entry. The x-axis indicates the relative submergence,
that is, zw is the wetted vertical coordinate which is equal to D when the cylinder
is fully wet. The present results are compared with results by Faltinsen [6, Fig.
9.11, p. 300].





Chapter 5

Viscous flow solver

A two-dimensional viscous flow solver, based on the numerical solution of the con-
tinuity and Navier–Stokes equations, is implemented within the present project.
The viscous flow solver is used to calculate loads on complex structures in differ-
ent conditions, and to investigate different phenomena relevant for hydrodynamic
loads on complex structures in the wave zone.

I use the abbreviation CFD, short for computational fluid dynamics, when re-
ferring to the viscous flow solver. Versteeg and Malalasekera define CFD as “the
analysis of systems involving fluid flow, heat transfer and associated phenomena
such as chemical reactions by means of computer-based simulations” [33, p. 1].
Following this definition, CFD could refer to any numerical solver of fluid flows, for
example a potential flow solver. To distinguish between the two presently imple-
mented numerical solvers—the viscous flow solver and the potential flow solver—
I use the term BEM, short for boundary element method, when referring to the
potential flow solver.

5.1 Governing equations

The presently implemented viscous flow solver is based on a fractional-step method,
as that by Chorin [46], where the Navier–Stokes equation, Eq. (2.2), is split into
two steps,

u∗i − un
i

∆t
= −u j

∂ ui

∂ x j
+ ν
∂ 2ui

∂ x2
j

, (5.1)

un+1
i − u∗i
∆t

= −
1
ρ

∂ p
∂ x i

. (5.2)

Standard index notation is used; ui represents the velocity component in the x i
direction. For simplicity, the velocity components are referred to as u = u1 (hor-
izontal direction) and w = u2 (vertical direction). Unless else is explicitly noted,
the fluid density, ρ, and kinematic viscosity, ν, are set to values similar to the wa-
ter properties of 20◦ C, ρ = 1000kgm−3 and ν = 1× 10−6 m2s−1. n represents
the present time-step, n+ 1 the next time-step, and ∗ an auxiliary step.

47
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Since the velocity field at n+1 is divergence free, cf. continuity Eq. (2.1), the
divergence of Eq. (5.2) yields a Poisson equation for the pressure, p,

∂ 2p

∂ x2
i

=
ρ

∆t

∂ u∗i
∂ x i

. (5.3)

For each time-step, Eq. (5.1) is solved to find the tentative velocity field. Then Eq.
(5.3) is used to determine the pressure, before the velocity field at n+ 1 is found
from Eq. (5.2).

5.1.1 Domain decomposition

Figure 5.1: Illustrations of the domain decomposition principles in the modules
noEndVortex (top) and freeSurface (bottom). The advection and diffusion terms
are included in the blue regions; in the red regions they are omitted.
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The viscous flow solver is implemented such that the numerical domains can
be decomposed into regions with and without consideration of the advection
and diffusion terms. This hybrid approach is similar to that by Kristiansen and
Faltinsen [47]. In regions where the advection and diffusion terms are omitted,
u∗i = un

i . Consequently, the momentum equation is the linearized (no advection)
Euler equation, and the pressure equation, Eq. (5.3), is a Laplace equation.

The domain decomposition technique is applied in two modules of the viscous
flow solver, noEndVortex and freeSurface. Illustrations of the domain decomposi-
tions of the two modules are presented in Fig. 5.1. In the blue regions of the
figures, the viscous flow solver is applied without modifications, whereas in the
red regions, the advection and diffusion terms are omitted. Details on the two
modules are given in the following.

In the first module, noEndVortex, simulation of perforated plates in oscillating
flow are considered. The perforated plates consist of many small plate elements
next to each other. The advection and diffusion terms are solved for all fluid cells
in the domain that have horizontal coordinates between the center of the first and
last plate elements. The terms are omitted for all other fluid cells. This allows for
local flow separation through the openings between each plate element, while the
global plate-end flow separation is not allowed.

The second module, freeSurface, is used in simulations of models in incident
waves. For a few layers of cells close to the free-surface, the advection and diffu-
sion terms are omitted. Kristiansen and Faltinsen [47] noted that no vorticity of
significance should be advected into the part of the domain without considera-
tion of the advection and diffusion terms. Sensitivity analyses of the intersection
between the two parts of the domain are performed. Based on these, the intersec-
tion between the two parts of the domain is set to z = −0.05 m such that there are
10 cell layers without advection and diffusion, cf. Fig. 5.1. An additional variable
is included on the free-surface boundary (z = 0), the wave elevation ζ. The lin-
earized kinematic free-surface condition, Eq. (2.5), yields a differential equation
for the wave elevation,

∂ ζ

∂ t
= w; z = 0, (5.4)

with w being the vertical velocity component. Equation (5.4) is solved based on
the vertical velocity in the previous step,

ζn+1 − ζn

∆t
= wn − bζn

i . (5.5)

A numerical beach is implemented through the function b(x) which is a third-
order polynomial with non-zero values in the right part of the domain, and zero
elsewhere. On the left boundary of the domain, a numerical wave flap generates
waves. The new value of the wave elevation, ζn+1, is used to determine the pres-
sure. A boundary condition for the (net) pressure at the mean free-surface, needed
to solve Eq. (5.3), is obtained by linearizing the Bernoulli equation, Eq. (2.4), and
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define the atmospheric pressure p = pa ≡ 0,

pa +ρgz +ρ
∂Φ

∂ t
= pa ≡ 0. (5.6)

which gives the dynamic pressure used as boundary condition at the free-surface,

−ρ
∂Φ

∂ t
= ρgζ. (5.7)

5.1.2 Solution procedure summary

For clarity, the solution procedures of the viscous flow solver are outlined in the
following. The solution procedure can be summarized in three steps in the simu-
lations without waves:

1. un, wn→ u∗, w∗

2. u∗, w∗→ pn+1

3. u∗, w∗, pn+1→ un+1, wn+1

In simulations with waves, the solution procedure consists of four steps:

1. un, wn→ u∗, w∗

2. ζn, wn→ ζn+1

3. un, wn, u∗, w∗,ζn+1→ pn+1

4. un, wn, u∗, w∗,ζn+1, pn+1→ un+1, wn+1

Note that in the simulations of waves, steps 1 and 2 are independent on each other
and can be solved in the opposite sequence.

5.2 Discretization

5.2.1 Grid

The equations are solved on a forward-staggered rectilinear1 grid. The pressure is
solved in the center of the cell. The horizontal and vertical velocity components
are solved in the center of, respectively, the east and north faces of the pressure
grid cells. In simulations with incident waves, the wave elevation is solved in the
same point as the vertical velocity component, such that the top row of grid cells
have the cell center in the vertical position z = −0.5∆z (z = 0 is the free surface).
An illustration of the forward-staggered approach is given in Fig. 5.2.

The grids consist, in general, of an inner fine region and an outer stretched
region. This allows for a fine resolution around the models while limiting the
computational time. In the inner fine region, which typically extends a few layers
of cells outside the simulated model, all grid cells are of equal size. In the outer
stretched region, the grid cells are geometrically stretched from the fine region

1A two-dimensional rectilinear grid is a tessellation by rectangles. In the case of zero stretching,
the two-dimensional rectilinear grid consists of equally sized rectangles.
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Figure 5.2: Forward-staggered grid arrangement. The horizontal, u, and vertical,
w, velocity components are solved in the center of, respectively, the east and north
cell faces.

grid cell size, towards the boundaries of the computational domain. The stretching
will increase the cell sizes up to a given maximum value, typically set to 50 mm,
beyond which a constant cell size is applied. Such relatively large cell sizes are
justified by that the spatial variation of the flow is small far away from the body.

Based on sensitivity tests on stretching, the increase in adjacent cell size in the
stretched regions is typically set to 20 %. Note that successful results are obtained
by using even higher stretching, for example in simulations of a square cylinder
in oscillating flow, the stretching can be more than 50 % without considerable
influence on the force coefficients of the cylinder. However, when testing even
larger stretching (up to 100%), numerical stability issues were more likely to
occur. As a conservative approach, I’ve limited the stretching to 20 % in the present
simulations.

5.2.2 Spatial discretization schemes

Spatial discretizations in the CFD are of first, second and third orders. The solved
equations are implemented such that their discretization schemes take into ac-
count the stretching of grid cells. The diffusion terms of Eq. (5.1), the pressure
gradient terms of Eq. (5.2), as well as the terms of Eq. (5.3), are solved with
second-order accurate central difference schemes unless else is explicitly high-
lighted. The nonlinear advection terms are linearized in time using the previous
known velocity, that is, un

j of Eq. (5.1). The spatial discretization of the advection
terms is performed using upwind schemes.

Three orders of accuracy are used to discretize the advection schemes. In ad-
dition to the classical first-order upwind scheme, which uses two data points,
second-order and third-order accurate schemes are implemented. By including
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more data points, the spatial accuracy of the advection could be improved. The ap-
plied second-order upwind scheme uses three data points, and includes informa-
tion about the flow two cells upstream of the present. The third-order scheme uses
four data points, two upstream and one downstream in addition to the present
cell.

The presented CFD results are based on first-order accurate upwind schemes
unless else is explicitly written. Due to the extended use of neighbor cells, there
is a computational penalty with the higher-order schemes compared to the first-
order upwind scheme. Consequently, there must be some kind of award, in terms
of generally better results, to defend the use of higher-order schemes. However,
despite increased spatial accuracy, a general increase in accuracy is not found
compared to the first-order upwind scheme, when performing validation and ver-
ification simulations using the two higher-order advection schemes. Moreover, the
stability of the first-order scheme, likely due to the effect of false diffusion [33, p.
150], is found to be superior to the tested higher-order schemes.

5.2.3 Time-stepping

Various methods are used for the temporal discretization. Equation (5.1) is solved
by a first-order implicit scheme (backwards Euler), a second-order two-point scheme
(Crank–Nicholson), and second- and fourth-order explicit Runge–Kutta schemes.
Due to its simplicity and physically satisfactory behavior [48, pp. 56-58], the first-
order implicit scheme is used as default. A first-order forward scheme is always
used to find the velocity field at n + 1 from the auxiliary field (∗) and pressure
gradient in Eq. (5.3).

In incident wave simulations, first-, second- and fourth-order forward Runge–
Kutta schemes are used to find the wave elevation at n+ 1 in Eq. (5.4). The first-
order scheme, i.e., the forward Euler scheme, is used as default. Note that Eq.
(5.1) is solved using the first-order implicit scheme in these simulations as well,
cf. step 1 in Section 5.1.2.

In simulations of oscillating and orbital flows, as well as in simulations with
incident waves, the time-step size is chosen based on requirements for a minimum
temporal resolution, 200 time-steps per oscillation period, and a maximum CFL
number equal to 1 in all cells of the domain,

∆t =min
�

T
200

,
�

∆x
u

,
∆z
w

��

. (5.8)

Since the maximum values of ∆x
u and ∆z

w are not known prior to simulation, the
actual implementation of the time-step size is set based on the velocity amplitude
of the simulation, W , and the smallest cell size, h,

∆t =min
�

T
200

, c
h
W

�

, (5.9)

with c being a constant that ensures the requirement of CFL less than or equal to
one, in all cells, is fulfilled throughout the simulation. The maximum CFL number
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is calculated in each time-step. The code is implemented such that a warning
message will appear if a CFL number larger than one is obtained in a time-step,
such that c can be reduced and the simulation can be restarted. From trial-and-
error, the value of c is, typically, set between 0.2 and 0.4. A constant time-step is
preferred with respect to post-processing.

5.3 Boundary conditions

Different sets of boundary conditions are used to simulate different types of flow.
Cavity flow conditions, presented in Section 5.3.1, are used only during the vali-
dation and verification of the CFD. Oscillating flow conditions, in which the pre-
scribed vertical velocity and acceleration oscillate harmonically, are simulated in
“infinite fluid”, that is, with the boundaries far from the simulated models, pre-
sented in Section 5.3.2, and in a channel flow arrangement, presented in Section
5.3.3. Simulations with orbital flow conditions, presented in Section 5.3.4, use
oscillating conditions for the velocities and accelerations in both the vertical and
horizontal directions. Finally, in Section 5.3.5, the boundary conditions used for
simulating incident waves are presented.

5.3.1 Cavity flow

u= 1.0 ms−1, w= 0

u= 0, w= 0

u= 0, w= 0u= 0, w= 0 ν= 1
Rem2s−1

Figure 5.3: Cavity flow setup. The top lid is moving with a constant horizontal
velocity. The kinematic viscosity is set based on the simulated Reynolds number.

An illustration of the boundary conditions in the cavity flow problem is pre-
sented in Fig. 5.3. The prescribed velocity at the boundaries are zero except for
the top boundary where the tangential velocity is set to u= 1.0 ms−1. The domain
size is fixed to 1.0m× 1.0 m. Different Reynolds numbers are tested by changing
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the prescribed kinematic viscosity of the simulation,

ν=
U L
Re
=

1
Re

m2s−1. (5.10)

The resolution of the grids are based on a prescribed number, N , of cells in
each direction. A constant and equal cell size, h, is used in both directions, that is,

h=∆x =∆z =
1
N

m. (5.11)

5.3.2 Oscillating flow

u= 0, w= D
T KCsinωt

u= 0, w= D
T KCsinωt

u= 0

w= D
T KCsinωt

u= 0

w= D
T KC sinωt

Figure 5.4: Oscillating flow setup. The ambient vertical velocity component is
oscillating harmonically at the boundaries. The simulated model is placed in the
center of the numerical domain.

The boundary conditions in oscillating flow are illustrated in Fig. 5.4. In os-
cillating flow conditions, the velocity field at the boundaries of the computational
domain is set to a prescribed oscillating vertical velocity based on a prescribed
velocity amplitude, W , which from Eq. (2.19) can be written in terms of the KC
number, the period of oscillation, T , and the characteristic width of the structure,
D,

u= 0, (5.12)

w=
D
T

KCsinωt. (5.13)

The period of oscillation (and corresponding circular frequency ω = 2π
T ) is set

to T = 1.0 s to yield similar Reynolds numbers as in the experiments, although
the Reynolds number is expected not to be of importance since the cylinders have
sharp edges.
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Appropriate boundary conditions for the pressure gradient are obtained from
the Navier–Stokes equation assuming uniform flow,

∂ p
∂ x
= −ρ

∂ u
∂ t
= 0, (5.14)

∂ p
∂ z
= −ρ

∂ w
∂ t
= −ρω

D
T

KCcosωt. (5.15)

No-slip conditions are used on the boundaries of the discretized models,

u= w= 0,
∂ p
∂ x
=
∂ p
∂ z
= 0. (5.16)

5.3.3 Oscillating channel flow

u= 0, w= D
T KCsinωt

u= 0, w= D
T KCsinωt

u= 0, w= D
T KCsinωtu= 0, w= D

T KCsinωt

Figure 5.5: Oscillating channel flow setup. Equal setup and boundary conditions
as in oscillating flow, except that the sidewalls are placed next to the model.

Oscillating channel flow represents a special case of oscillating flow. The bound-
ary conditions are equal in both cases, but the sidewalls are placed closer to the
model, as illustrated in Fig. 5.5.

5.3.4 Orbital flow conditions

The boundary conditions in orbital flow are illustrated in Fig. 5.6. Except for non-
zero horizontal prescribed velocities and accelerations, the orbital flow simula-
tions are performed in the exact same manner as the oscillating flow simulations.
The following velocity conditions are set on the boundaries of the computational
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u= − D
T KCcosωt, w= D

T KCsinωt

u= − D
T KCcosωt, w= D

T KCsinωt

u= − D
T KCcosωt

w= D
T KCsinωt

u= − D
T KC cosωt

w= D
T KC sinωt

Figure 5.6: Orbital flow setup. The ambient horizontal and vertical velocity com-
ponents are oscillating harmonically at the boundaries. The gray arrow indicates
the change of direction of flow with time. The simulated model is placed in the
center of the numerical domain.

domains,

u= −
D
T

KCcosωt, (5.17)

w=
D
T

KC sinωt, (5.18)

with corresponding appropriate boundary conditions for the pressure gradient
based on the prescribed accelerations.

In orbital flow, the horizontal and vertical velocity components vary harmoni-
cally in time, but have no spatial variations. Thus, orbital flow conditions may be
regarded as a limit of linear wave theory, where the wave is long compared to the
model and the model is deeply submerged, such that there is no interaction with a
free surface. Consequently, orbital flow simulations may be regarded as a first step
towards simulations in waves. A benefit of this approach is that the simulations
can be set up similar to oscillating flow conditions.

5.3.5 Incident waves

Simulations of incident waves are performed in a numerical wave tank that con-
sists of the free surface, a wave flap and two solid boundaries. A sketch of the
setup is presented in Fig. 5.7. The right and bottom wall of the tank is modeled as
solid walls with no-slip boundary conditions. A harmonically oscillating horizontal
velocity is prescribed at the left boundary of the computational domain, to mimic
the wave flap of the experiments. The wave flap is modeled using a prescribed
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∂ ζ
∂ t = w, p = ρgζ

u= 0, w= 0

u= 0

w= 0

Eq. (5.19)
Eq. (5.20)
Eq. (5.21)

model

Figure 5.7: Incident wave setup.

harmonically oscillating horizontal velocity with amplitude U ,

u=

(

U sinωt
z+h f

h f
, z ≥ zFS − h f

0, z < zFS − h f .
(5.19)

w= 0 (5.20)

∂ p
∂ x
= −ρ

∂ u
∂ t
=

(

−ρωU cosωt
z+h f

h f
, z ≥ zFS − h f

0, z < zFS − h f .
(5.21)

The wave flap is hinged 0.9 m below the free surface in the experimental investiga-
tions (the water depth is 1.0 m), and the same flap design is used in the numerical
simulations, i.e., h f = 0.9m (zFS = 0).

An appropriate boundary condition for the pressure gradient at the free-surface
boundary (z = 0) is taken from a first-order spatial backwards differential of Eq.
(5.7),

∂ p
∂ z
=
ρgζ− pc

0.5∆zc
, (5.22)

with pc being the pressure in the cell center of the grid cell next to the top bound-
ary. ∆zc is the vertical grid cell size of the cell next to the top boundary.

The incident wave simulations are performed for a simplified model of S28, cf.
Table 3.1. Numerical stability issues are experienced in trials attempting to sim-
ulated the physical model in waves. The issues are avoided by using a simplified
model of the S28 structure, denoted R28. R28 has the same perforation ratio,
thickness and width as S28, but the number of cylinders is 11 instead of the 26 of
the original model. Consequently, the plate elements (cross-sections) are rectan-
gular, not squares, hence R instead of S. By using larger plate elements, a coarser
grid can be applied, which increases the numerical stability of the simulation. Al-
though they represent two different models, comparing R28 simulations and S28
experiments is an acceptable approach for most KC numbers. Later in the text, the
sensitivity to the number of holes used to model a perforated plate is investigated
in forced heave simulations.

Considerable time was invested in debugging the incident wave simulations
of S28. I tested decreasing the time-step size and increasing the order of the time-
stepping, using a fourth order Runge–Kutta scheme, but still experienced unstable
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simulations with the original S28 model. Note that these stability issues are not
experienced in simulations using oscillating and orbital flow conditions. There-
fore, the problems are suspected to be related to the hybrid domain coupling and
free-surface modeling. The fine region grid size must be 2mm in order to have two
grid cells between each cylinder of S28. In the coarser model (R28), the smallest
grid size is 5mm. Using larger grid cell sizes increases the general stability in terms
of smaller CFL and increased numerical damping. Additionally, since a stretched
grid is applied, the differences between grid sizes in the x- and z-directions are
generally smaller, and less stretching is required.
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5.4 Validation and verification

Confidence in the numerical viscous solver is obtained by simulating and compar-
ing cases where there exist previous experimental, numerical or analytical results.
In Section 5.4.1, simulations of the lid-driven cavity flow are compared with pre-
vious numerical studies [49, 50]. In Section 5.4.2, the hydrodynamic force on a
square section in oscillating flow is compared with previous experimental [51]
and numerical investigations [52, 53]. In Section 5.4.3, the added mass due to
flow through openings in a channel is compared with analytical expressions [54].

5.4.1 Cavity flow
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Figure 5.8: Streamline plot of cavity flow at Re= 1000 with 160×160 grid cells.
The horizontal velocity at the top boundary is u= 1.0ms−1. The RdBu_r colormap
in Matplotlib [55] is used to indicate the horizontal velocity component, from
−1.0ms−1 (blue) to 1.0 ms−1 (red).
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Simulations of the lid-driven cavity flow problem are performed to verify the
numerical viscous flow solver against previous numerical implementations of the
continuity and Navier–Stokes equations. Unlike the more complex validation and
verification cases, the cavity flow problem has three features that makes it an ideal
case to verify the implementation of the governing equations: 1) An easy setup
with simple, time-independent, boundary conditions. 2) The end result is easy to
obtain without extensive post-processing, that is, the steady-state coordinates of
the vortices. 3) The case has been tested in many previous studies. Consequently,
a satisfactory result in the cavity flow problem gives the developer confidence
in the implementation of the governing equations. Contrary—and in contrast to
more complex validation and verification cases, where an unsatisfactory result can
come from numerous sources—if an unsatisfactory result is obtained, the devel-
oper has a good indication that something is not right with the implementation
of the governing equations.

The cavity flow problem has been simulated for three different Reynolds num-
bers, Re = 100, Re = 400 and Re = 1000. A CFL number of 1 is used in all sim-
ulations, and the simulations are run to steady-state. The simulations use a grid
that has 160 × 160 equally sized grid cells. The results, in terms of position of
vortices, found from inspections of minimum absolute velocity, are compared to
the investigations by Schreiber and Keller [50] and Vanka [49], which have per-
formed simulations with the same Reynolds numbers and with grids that are of
similar resolutions as the present. The sensitivity to the grid cell size is inspected
by simulating Re= 100 with three grids; 80× 80, 160× 160 and 320× 320.

The cavity flow results are presented in Tables 5.1, 5.2 and 5.3, for respec-
tively, Re = 100, Re = 400 and Re = 1000. The present results are compared to
the results by Schreiber and Keller [50] and Vanka [49]. The grid sensitivity is
presented in Table 5.4. Additionally, a streamline plot of Re = 1000 is presented
in Fig. 5.8.

Satisfactory results are obtained for the simulated cavity flows when com-
paring the position of the vortices to those reported in previous studies. Minor
differences are found, likely related to differences in grids and implementations.
Increasing the grid density from 160 × 160 to 320 × 320 grid cells for the cav-
ity flow at Re = 100, changes the position of vortices by 0.2 %. However, the
grid dependence, and need for finer grids, is expected to increase with increasing
Reynolds number [49], which is a likely cause for the general trend of increasing
differences to previous studies when increasing the Reynolds number.
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Table 5.1: Cavity flow results at Re = 100. Result presentation: Horizontal coor-
dinate, vertical coordinate (distance to present result). PV: Primary vortex, BR:
Bottom right vortex, BL: Bottom left vortex.

160× 160 Vanka [49] Schreiber and Keller [50]
PV 0.615625, 0.740625 0.6188, 0.7375 (0.004) 0.61667, 0.74167 (0.001)
BR 0.946875, 0.059375 0.9375, 0.0563 (0.010) 0.94167, 0.05000 (0.011)
BL 0.034375, 0.034375 0.0375, 0.0313 (0.004) 0.03333, 0.02500 (0.009)

Table 5.2: Cavity flow results at Re = 400. Result presentation: Horizontal coor-
dinate, vertical coordinate (distance to present result). PV: Primary vortex, BR:
Bottom right vortex, BL: Bottom left vortex.

160× 160 Vanka [49] Schreiber and Keller [50]
PV 0.565625, 0.615625 0.5563, 0.6000 (0.018) 0.55714, 0.60714 (0.012)
BR 0.896875, 0.115625 0.8875, 0.1188 (0.010) 0.88571, 0.11429 (0.011)
BL 0.046875, 0.040625 0.0500, 0.0500 (0.010) 0.05000, 0.04286 (0.004)

Table 5.3: Cavity flow results at Re = 1000. Result presentation: Horizontal co-
ordinate, vertical coordinate (distance to present result). PV: Primary vortex, BR:
Bottom right vortex, BL: Bottom left vortex.

160× 160 Vanka [49] Schreiber and Keller [50]
PV 0.540625, 0.571875 0.5438 0.5625 (0.010) 0.52857, 0.56429 (0.014)
BR 0.884375, 0.109375 0.8625 0.1063 (0.022) 0.86429, 0.10714 (0.020)
BL 0.084375, 0.065625 0.075 0.0813 (0.018) 0.08571, 0.07143 (0.006)

Table 5.4: Cavity flow grid refinement results at Re = 100. Result presentation:
Horizontal coordinate, vertical coordinate (distance to 160×160 result, cf. Table
5.1).

80× 80 320× 320
PV 0.60625, 0.74375 (0.010) 0.6171875, 0.7421875 (0.002)
BR 0.94375, 0.05625 (0.004) 0.9453125, 0.0609375 (0.002)
BL 0.04375, 0.03125 (0.010) 0.0328125, 0.0359375 (0.002)
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5.4.2 Square in oscillating flow

Oscillating flow of a facing square is one of the simpler studies of a body in an
oscillating flow, and thus an ideal validation case for an oscillating flow solver.
Bearman et al. [51] studied the facing square section in oscillating flow at a ratio
between the Reynolds number and KC number, Eq. (2.22),

β =
D2

νT
= 213, (5.23)

which is used in the present setup as well; the period of oscillation is T = 1.0 s, the
length of the square is D = 0.1 m, and the kinematic viscosity is set to fulfill Eq.
(5.23). In addition to the experimental results by Bearman et al. [51], results from
previous studies using a Navier–Stokes solver [52] and a vortex-in-cell method
[53] are included in the comparison.
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Figure 5.9: Fine region of grid used to simulated a square in oscillating flow.
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The tested square cross-section has sides that are D = 100mm long. The fine
region is defined to be 104mm× 104mm. A constant grid cell size of ∆x

D =
∆z
D =

0.02 is used in the fine region. The grid is then stretched with a stretching pa-
rameter 20% until the maximum grid cell size of ∆xmax

D = ∆zmax
D = 0.5 is reached.

The total domain size is 2 m× 2m ( l
D = 20) and the total number of grid cells is

10956. Additionally, to verify that the boundaries of the domain do not influence
the solution, a second simulation with domain size 4 m × 4 m ( l

D = 40, 21 836
grid cells) is performed. A plot of the fine region of the grid close to the square is
presented in Fig. 5.9.

The results are presented in terms of the added mass coefficient including the
Froude–Krylov contribution, CM , and the quadratic damping coefficient, CD, for
comparison with the previous investigations, that is, the force is decomposed as

F = (A+ρV )η̈+ Bqη̇|η̇|, CM =
A+ρV

A0
, CD =

BqπD

2A0
, (5.24)

cf. the discussion of Section 2.3.
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Figure 5.10: Added mass coefficient including the Froude–Krylov contribution,
CM , of a facing square in oscillating flow. Comparisons with studies by Bearman
et al. [51] (exp.: experiments), Herfjord [52] (NS: Navier–Stokes solver), and
Scolan and Faltinsen [53] (VIC: vortex-in-cell method).

The results are presented in Figs. 5.10 and 5.11. The differences between
l
D = 20 and l

D = 40 are by and large negligible. In general, the present results
are acceptable; main trends are consistent with the previous studies, although the
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present numerical solver yields somewhat higher values of CM for KC > 3 than
what was earlier observed. The CD values are also, in general, somewhat high
compared to the previous studies. There are notable differences between the dif-
ferent studies; experimental vs. numerical, solver technique, grid and cell sizes,
number of oscillation periods, etc., and some variation in the resulting coefficients
is expected.
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Figure 5.11: Quadratic damping coefficient, CD, of a facing square in oscillat-
ing flow. Comparisons with studies by Bearman et al. [51] (exp.: experiments),
Herfjord [52] (NS: Navier–Stokes solver), and Scolan and Faltinsen [53] (VIC:
vortex-in-cell method).

The smallest simulated KC = 0.01 yields CM = 2.901 ( l
D = 20) and CM =

2.894 ( l
D = 40), cf. intersection with y-axis in Fig. 5.10. This is slightly larger

(4 %) than the analytical CM = 2.786 (4.754
π + 4

π) for KC→ 0 [32, pp. 145–146]. A
reason for this discrepancy is due to the Reynolds number in the simulation. For
KC→ 0, the form drag goes to zero, but the friction drag depends on β [35]. The
quadratic damping coefficient is presented in Fig. 5.11, but the linear damping
coefficient is also calculated. For KC = 0.01, B

ωA0
= 0.173 ( l

D = 20) and B
ωA0
=

0.175 ( l
D = 40). In an additional simulation of KC= 0.01 ( l

D = 20), the Reynolds
number is increased by a factor 100 such that β = 21300. This reduces the friction
drag. As a consequence, the damping coefficient is considerably decreased, that is,

B
ωA0
= 0.053. At the same time, the inertia coefficient is reduced to CM = 2.805,

which is only 0.7 % larger than the analytical CM = 2.786.
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5.4.3 Oscillating flow through openings in a channel

The next step towards simulation of perforated plates is the simulations of oscil-
lating flow through openings in a channel. This case is presented by Molin [19].
Simulations are performed with the viscous flow solver for very small KC numbers.
The resulting added mass coefficients are compared to the analytical expression
for the added mass due to potential flow through an opening in a channel by
Morse and Ingard [54, p. 487],

A= ρ
π

4
D2 8
π2

ln
�

1
2

tan
�

πd
4D

�

+
1
2

cot
�

πd
4D

��

. (5.25)

Here d is the width of the opening and D the width of the channel. The expression
can be written in terms of the perforation ratio,

τ=
d
D

, (5.26)

and normalized with a reference added mass, A0, here set to the added mass of a
solid plate of width D,

A
A0
=

8
π2

ln
�

1
2

tan
�πτ

4

�

+
1
2

cot
�πτ

4

�

�

. (5.27)

The expression for one opening can be extended to the case of nh equal openings,

A
A0
=

8
nhπ2

ln
�

1
2

tan
�πτ

4

�

+
1
2

cot
�πτ

4

�

�

. (5.28)

Two comparisons are performed. First, simulations of a single opening with
varying perforation ratios are compared to Eq. (5.27). Second, simulations of τ=
0.5 are performed with increasing number of openings.

All simulations are set up with KC = W T
D = 0.01, β = 1.6× 105, based on

the width of the channel, D. The openings are discretized by using 320 grid cells
across the channel width and one grid cell across the opening height. The channel
length is l

D = 5, and the total number of grid cells is 32480.
The results are presented in Fig. 5.12. The trend predicted with the analyt-

ical expression is well captured by the numerical simulations. Some differences
between the analytical method and the numerical simulations are highlighted; 1)
the thickness of the opening(s), t

D =
1

320 , is finite, 2) the length of the channel,
l
D = 5, is limited, and 3) the KC number is small, but not infinitesimal. These fac-
tors are likely reasons why the numerical simulations yield slightly larger added
mass. Additionally, as discussed in Section 5.4.2, the friction drag for KC → 0
increases the force coefficients compared to analytical methods.
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Figure 5.12: 2D channel flow added mass coefficient. Top: As function of the
perforation ratio, τ= d

D , due to oscillating flow through a single slit. Bottom: As
function of the number of openings, nh, due to oscillating flow through a series of
openings for τ = 0.5. Both: KC = 0.01. Comparisons with analytical expressions
of Eqs. (5.27) and (5.28).
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5.5 Modeling perforated structures

Perforated structures are modeled using a number of structure elements consisting
of solid cells, with fluid cells between each structure element. The total dimensions
and perforation ratio of the perforated structure is set equivalent to that of the
physical structure. Consider as an example a perforated plate of width D, thickness
t and perforation ratio τ. The perforated plate is modeled as a number of smaller
solid plates, of thickness t, that are placed next to each other such that the total
width is D, and the sum of the width of the fluid cells between the plate elements
match the perforation ratio,

∑

∆x f luid = τD (5.29)

Compared to using special porosity-cells, where the governing equations take
into account the perforation ratio of the structure, the present approach has the
advantage that the governing equations are solved in the fluid cells between each
structure element directly, without need for empirical correlations and modifica-
tions to account for the porosity. Additionally, the number of cells in the domain,
and consequently computational time, is reduced, since there is no flow in the
solid cells of the perforated structure, hence, they are not part of the numerical
domain.

A potential drawback of the present approach is that the force on the plate can
be sensitive to the discretization of the perforated structure, i.e., the number of
solid elements used to model the structure and the number of fluid cells between
each solid element. In the limit of zero KC, the number of plate elements is the
important parameter for the added mass of a perforated plate, cf. Section 4.1.2.
Sensitivity studies to the number of plate elements and the number of fluid cells
between each plate element, is carried out and presented in the following.

5.5.1 Grid sensitivity

In order to investigate the grid sensitivity of perforated plates in the viscous flow
solver, simulations are performed using three grid refinements for a perforated
plate, keeping all other parameters constant. The fine regions of the three grids
are presented in Figs. 5.13 and 5.14.
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Figure 5.13: Grid cell size sensitivity study: The fine region of the three grids.

The grid sensitivity is performed for a fictitious plate that resembles the plates
that have been tested experimentally in the present study. The width of the plate
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is 432mm and the thickness is 8 mm. The total width of the plate holes is 80 mm,
such that the perforation ratio is τ = 80

432 = 0.186. The plate is modeled with
11 equally sized plate elements, each having a width of 32 mm. This allows for
testing of three different fine region grid cell sizes, ∆ = 4mm, 2mm and 1 mm.
The total domain sizes are 6 m × 6 m and the number of grid cells are 33 904
(∆ = 4mm), 54 428 (∆ = 2 mm) and 95296 (∆ = 1mm). The time-step sizes in
the simulations are set based on the finest grid, by varying c in Eq. (5.9); c = 0.25
(∆= 1 mm), c = 0.125 (∆= 2 mm) and c = 0.0625 (∆= 4mm).

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

Figure 5.14: Grid cell size sensitivity study: A zoomed-in section of the fine region
grid illustrating the discretization of the three grids close to a plate element.

The results, in terms of added mass and damping coefficients, from the grid
size sensitivity are presented in Fig. 5.15. The hydrodynamic coefficients are nearly
insensitive to the grid cell size within the tested range of ∆. The coarsest grid has
only two grid cells in each opening between the plate elements. Nevertheless, such
an approach seems sufficient when it comes to modeling perforated plates in the
viscous flow solver. Similar findings were made by Firoozkoohi [56], who stud-
ied sloshing in rectangular tanks equipped with a slat screen, that is, a perforated
platelike structure used to damp the fluid motions in the tank. The screens had
perforation ratios τ = 0.21 and τ = 0.53. In numerical simulations using Open-
FOAM, the pressure forces on the slat screens were “very similar” [56]when using
two grid cells in the perforated openings of the screens, compared to using six grid
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cells. A feasible major part of the (quite surprising) fact that only two elements are
sufficient is the use of rectilinear grids. As a consequence, the separation points
are fixed, i.e., the rectilinear grid yields sharp corners, and the boundary layer
flow does not need to be captured.
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Figure 5.15: Grid size sensitivity study: Added mass and damping coefficients
for a perforated plate (τ = 0.185) with three different grid cell sizes in the fine
region close to the plate. β = 186624.
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5.5.2 Hole size sensitivity

A hole size sensitivity study is performed to investigate the sensitivity of the num-
ber and size of holes used to model a perforated plate with perforation ratio
τ = 0.186. Five different hole size configurations are simulated. Details on the
number and size of holes is given in Table 5.5. Illustrations of the plates are pre-
sented in Fig. 5.16.

−0.2 −0.1 0.0 0.1 0.2

Figure 5.16: Hole size sensitivity study: The five configurations of plate elements.

−0.04 −0.02 0.00 0.02 0.04

Figure 5.17: Zoomed-in sections of the fine region grids, cf. Fig. 5.16, illustrating
the discretization of the five configurations of plate elements.

The simulated perforated plate has dimensions D = 420 mm and t = 3 mm.
In the fine region close to the perforated plate, the grid cell size is ∆x = ∆z =
1.5mm, that is, the width of the perforated plate covers 280 grid cells. 228 of these
are solid cells and 52 are fluid cells, hence the perforation ratio is τ= 52

228 = 0.186.
Zoomed-in sections of the fine region grids are presented in Fig. 5.17. Outside
the fine region, the grid is stretched towards the boundaries of the domain. The
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stretching factor in the stretched region is 1.2. Total domain size is 6m×6 m, and
the total number of grid cells is 63688.

Table 5.5: Hole size sensitivity study: Relevant parameters. n: Number of plate
elements, nh: Number of holes, lh: Hole size.

n nh × lh
2 1× 78 mm
4 2× 25.5 mm and 1× 27 mm
7 2× 12 mm and 4× 13.5 mm
14 13× 6 mm
27 26× 3 mm
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Figure 5.18: Hole size sensitivity study: Added mass coefficients for a perforated
plate (τ= 0.186) with five different hole sizes. β = 176 400.

The results are presented in Figs. 5.18 and 5.19. The number of plate elements
is a considerable factor for the smallest KC numbers. This is consistent with the
results of the potential flow solver, cf. Table 4.1. Additionally, dependence on the
number of plate elements (number of holes)—for very small KC numbers—was
demonstrated for the case of oscillating flow through openings in a channel, cf.
Section 5.4.3. For KC≥ 0.23, the differences between the different configurations
are (perhaps surprisingly) small. An exception is the plate with two plate elements
(one large hole), which differ, quite considerably, from the other configurations
for all KC numbers. The results seem to converge when increasing the number of
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plate elements; only minor differences are found when increasing the number of
plate elements from n = 14 to n = 27. The added mass coefficient decreases, in
general, with increasing number of plate elements for all KC numbers. The damp-
ing coefficient increases for increasing number of plate elements for KC < 0.93
and decreases for increasing number of plate elements for KC > 0.93. However,
for all plates with n ≥ 4, only small differences are found in the damping coeffi-
cient.
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Figure 5.19: Hole size sensitivity study: Damping coefficients for a perforated
plate (τ= 0.186) with five different hole sizes. β = 176 400.

As for the coarsest grid in the grid sensitivity, Section 5.5.1, there are only
two fluid cells between each plate element for the n = 27 model. Such a perfo-
rated plate model technique seems to be sufficient compared to using more fluid
elements between each plate element.

5.5.3 Domain decomposition intersection

In simulations of perforated structures in incident waves, a hybrid approach, in
which the domain is decomposed into two parts, is applied, cf. Section 5.1.1. The
sensitivity of the intersection between the two domain parts is investigated for the
R28 plate. The model is placed at zm = −0.3 m. Above the plate, a constant grid
cell size of ∆ = 0.005 m is used. Simulations are performed using intersections
z = −0.075 m, z = −0.050m and z = −0.025 m. Thus, the number of cell layers
without advection and diffusion is 15 (z = −0.075 m), 10 (z = −0.050 m) and
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5 (z = −0.025m). The configuration with 10 cell layers without advection and
diffusion is illustrated in the bottom subplot of Fig. 5.1.

The resulting force amplitude from the simulations is presented in Fig. 5.20.
Similar results are obtained for the different intersections. Small differences are
found for the largest tested KC numbers. However, both KC and Fa are slightly
shifted, such that the trends, in terms of force amplitude as function of KC, are
similar. Unless else is explicitly noticed, the intersection between the two parts of
the domain is set to z = −0.050 m in the present numerical simulations of models
in incident waves.
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Figure 5.20: Sensitivity to the intersection line between the two parts of the
domain in simulations of R28 placed at zm = −0.3 m in incident waves. The wave
period is T = 1.6 s.





Chapter 6

Perforated structures in
oscillating flow

In the sections of this chapter, results from tests and simulations of single perfo-
rated platelike structures in oscillating flow conditions are presented. Experiments
of four different perforated plate models are investigated. The experimental mod-
els are placed in the middle of the tank—with equal distance (0.5 m) to the tank
bottom and to the free surface—and forced to oscillate vertically. Viscous flow
solver simulations are performed for numerical models of three of these struc-
tures. Two of the experimental models are ideal perforated plates consisting of
numerous holes. The results for the ideal perforated plates are presented first.
Then, the results for two real perforated plates—consisting of a limited amount of
cylinders placed in a row—are presented. Comparisons and discussions are given
towards the end of the chapter.

6.1 Ideal perforated plates

6.1.1 Experimental models

Two (almost) ideal perforated plates are experimentally investigated. The perfo-
ration ratios of the plates are τ = 0.19 and τ = 0.28. I refer to these plates as
P19 and P28, P being short for perforated plate and the numbers referring to the
perforation ratio (τ= 0.19 and τ= 0.28). The plates are almost ideal in the sense
that they are very thin and consist of numerous small holes, such that the added
mass of the plates in the low KC limit is almost zero, cf. discussion on ideal vs.
real perforated plates in Sections 1.4.2 and 1.4.4. Photos of the ideal perforated
plate models are presented in Fig. 6.1.

Two identical plates were made for each perforation ratio. Each plate is D =
420mm wide and t = 3 mm thick. The length of the plates in the lateral direction
is L = 570 mm, such that the plates fit in the experimental rig, cf. Section 3.2. The
material used to construct the plates were obtained from Fish Tech AS [57, 58].
The holes on the plates have diameters 2 mm (τ = 0.19) and 3 mm (τ = 0.28).

75
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Figure 6.1: Photos of the ideal perforated plate models.

The arrangement of the holes is visible in Fig. 6.1. Fastening profiles are used
on the plates, in order to be able to attach them to the acrylic glass plates of
the experimental rig, cf. Section 3.2. Additionally, two 20 mm wide aluminum
angle sections are fastened along the length span (tank width direction) of the
plates, 9 cm from each end. These L-shaped stiffeners ensures minimal bending
even for the higher amplitudes and oscillation frequencies tested. Due to stiffeners
and fastening profiles, the perforation ratios of the constructed plate models are
somewhat lower than that of the perforated materials. The perforated materials
have perforation ratios 0.2267 (P19) and 0.326 (P28) [57, 58]. Consequently, the
use of stiffeners and fastening profiles reduces the effective perforation ratio of
the structures by 16 % (P19) and 14 % (P28).

6.1.2 Numerical models

Numerical models of the two experimentally investigated ideal perforated plates,
P19 and P28, are simulated. The dimensions of the numerical plates correspond
to the experiments, D = 420mm and t = 3 mm. The numerical perforated plate
models consist of several plate elements with small gaps in between. Based on the
findings of the hole and grid size sensitivities, Section 5.5, I use 27 plate elements
in the numerical models of P19 and P28.

A fine region of grid cells is used in the vicinity of the plates. The grid cell
sizes are constant equal to ∆ =∆x =∆z = 1.5 mm in the fine region. Thus, 280
grid cells cover the width of the plates. For P19, 52 grid cells are open fluid cells,
while 78 grid cells are open fluid cells in the P28 model. The fine regions of the
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−0.04 −0.02 0.00 0.02 0.04

Figure 6.2: The fine regions of the numerical models of P19 and P28 (top sub-
plot). A zoomed in section of the fine regions is presented in the bottom subplot.

two perforated plate models are presented in Figs. 6.2.
Outside the fine region, the grid cells are geometrically stretched towards the

boundaries of the numerical domain. The stretching is 20 % until a maximum
grid cell size of 50 mm is reached. The total domain size is 6 m×6 m, and the total
number of grid cells are 63 688 (P19) and 63740 (P28). The minor difference
between the two is due to the difference in perforation ratio and thereby number
and size of plate elements.

6.1.3 Results

Examples of force time-series are presented in Fig. 6.3. The plots show the mea-
sured raw force with P19 and P28 inside the experimental rig. The period of oscil-
lation is T = 2.0 s and the amplitude corresponds to KC= 1.42. Clearly, the force
is largest for the smallest perforation ratio.

Note that the plots in Fig. 6.3 show the measured raw forces, and that in order
to obtain the net forces on the models, the force is filtered and the filtered force
in empty rig experiments is subtracted time-step by time-step. In order to obtain
hydrodynamic coefficients, the Fourier averaging procedure of Eqs. (2.16) and
(2.17) is applied for the eight periods of oscillation in the middle of the set (ramp
in and out and the first and last full oscillation cycles are omitted). The (dry)
inertia force of the model is subtracted from the total inertia in order to obtain
the added mass coefficient.

Plots of the normalized force on P19 and P28 in numerical simulations at
KC = 1.43 are presented in Fig. 6.4. The numerical results show that the force is
largest on the plate with smallest perforation ratio. Note that there is no rig in the
numerical simulations, hence the forces are the net forces on the plates, and no
empty-rig subtraction is needed. However, since the numerical simulations are of
fixed models with oscillating flow conditions at the boundaries of the numerical
domain, the Froude–Krylov force is subtracted for comparisons with the experi-
ments of oscillating models in calm water.

The experimental results in this chapter are presented for five oscillation peri-
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Figure 6.3: Example of force measurements from experiments of P19 and P28.
The figures show the raw, unfiltered force during a full experimental test set with
five oscillation cycles of ramp-in, 10 full oscillation cycles and five oscillation
cycles of ramp-out (top) and the two full oscillation cycles in the middle of the
set (bottom). The example is for KC= 1.42, T = 2.0 s.
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Figure 6.4: Example of normalized force during numerical simulations of P19 and
P28 at KC = 1.43. The figures show the numerical ramp-in followed by 28 full
oscillation cycles (top). The normalized force for 6.5T ≤ t ≤ 8.5T is presented in
the bottom subplot. The last 25 full oscillation cycles are used to calculate forces
and coefficients.
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ods, cf. Section 3.2.1. I use the same markers to indicate the periods of oscillations
in all figures. The markers are presented with and without error bars in Fig. 6.5.
These markers are also used for forced oscillation experiments in other chapters.
To keep the legends simple, I label only one of the markers in each result figure,
and refer the reader to Fig. 6.5 for a description of the period of oscillation.

T=1. 00 s
T=1. 25 s
T=1. 50 s
T=1. 75 s
T=2. 00 s

T=1. 00 s
T=1. 25 s
T=1. 50 s
T=1. 75 s
T=2. 00 s

Figure 6.5: Markers used to present results of different periods of oscillation from
forced oscillation experiments. The right plot includes error bars, which are used
to indicate the standard deviation. The standard deviation is calculated based on
the values from each of the considered full oscillation cycles, cf. Section 3.2.1.

The added mass and damping coefficients of P19 and P28 are presented in
Figs. 6.6 and 6.7. Added mass coefficients of the CFD models, calculated with the
potential flow solver, are included. The potential flow solver added mass coeffi-
cients are in line with the viscous flow solver results.

The experimental results are presented for five periods of oscillation. Within
the range of tested periods of oscillation, there is not much period dependence for
neither P19 nor P28. However, some differences are visible, in particular for P19
at the highest KC numbers. A likely reason is free-surface interaction and wave
generation which increases with increasing KC and is dependent on the period
of oscillation. Due to the smaller perforation ratio, forcing P19 to oscillate moves
more water and disturbs the free surface more than for P28.

There is in general good agreement between experimental and numerical re-
sults. The agreement is particularly good for the added mass of P19. For P28, there
is up to ≈ 15% discrepancy. But remember the difference between the physical
plates and the numerical models. The experimental and numerical results agree
that for a given KC number, the perforation ratio is the main parameter for the
hydrodynamic force coefficients of ideal perforated plates. Both coefficients are
highly dependent on the amplitude of motion, and increase with increasing KC in
both the experiments and the numerical simulations.
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Figure 6.6: Added mass coefficients from experimental investigations and nu-
merical simulations of P19 and P28.
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Figure 6.7: Damping coefficients from experimental investigations and numerical
simulations of P19 and P28.



82 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

6.2 Perforated structures consisting of cylinders

6.2.1 Experimental models

Two perforated structures that consist of cylinders aligned in a row, with openings
between the cylinders that makes the structure perforated, are experimentally
investigated. The first model consists of 24 circular cylinders of 10 mm diameter.
The total width of this structure is D = 298 mm, such that the perforation ratio is
τ = 0.19. I use the abbreviation C19 (circular, τ = 0.19) to refer to this model.
The circular cylinders, made from aluminum, have wall-thicknesses of 2mm. The
second model consists of 26 cylinders with square cross-sections of lengths 10 mm.
The structure is D = 360 mm wide, and has a perforation ratio of τ = 0.28.
This model is denoted S28 (square, τ = 0.28) in the text. The square cylinders
are made from aluminum and have wall-thicknesses of 1mm. Photos of the two
models are presented in 6.8. Sketches are presented in Fig. 6.9.

Figure 6.8: Photos of the perforated structures that consist of rows of cylinders,
C19 (top) and S28 (bottom). C19 consists of 24 circular cylinders. S28 consists
of 26 cylinders with square cross-sections. The perforation ratios are τ = 0.19
(C19) and τ= 0.28 (S28).

Contrary to the ideal perforated plates P19 and P28 (numerous holes, D
t =

140), C19 and S28 are real perforated plates in the sense that the number of
openings is limited and that they have a considerable thickness (C19: D

t = 29.8,
S28: D

t = 36).
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Figure 6.9: Schematic sketches of S28 and C19. D = 0.298 m and the number of
cylinders is 24 for C19, whereas D = 0.360m and the number of cylinders is 26
for S28.

The structures are forced to oscillate in otherwise calm water using the same
test series as for P19 and P28. Since C19 and S28 are somewhat narrower than
P19 and P28, the KC range is shifted a little upwards. Representative time-series
and spectra from the experiments of C19, including low and high KC numbers for
the smallest and largest periods of oscillation, are provided in App. A.

6.2.2 Reynolds numbers

The forces on blunt bodies without sharp edges, such as the circular cylinders of
the C19 plate, must be expected to be Reynolds number dependent due to the
lack of fixed flow-separation points. The relevant Reynolds and KC numbers are
local, that is, they are based on the width of each cylinder, d. The local Reynolds
number is

Red =
W d
ν

. (6.1)

The local KC number, KCd , is

KCd =
W T

d
. (6.2)

The range of amplitudes and periods of oscillation in the forced oscillation tests
corresponds to 7.4 ≤ KCd ≤ 85 and 5.3× 102 ≤ Red ≤ 4.9× 103. The effective
local Reynolds and KC numbers will be larger due to the flow restriction, caused
by the row of cylinders, which will increase the speed of the flow around each
cylinder. Using a simple control volume analysis for C19, the increase can be es-
timated to 1

τ ≈ 5, that is, 37 ® KCd ® 425 and 2.7× 103 ® Red ® 2.5× 104.
These estimated KCd and Red numbers are likely conservative since the flow will
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circumvent the plate. Nevertheless, even if the range of Reynolds numbers are
extended to include somewhat smaller values than 2.7× 103, the drag coefficient
for a smooth circular cylinder varies only slightly in this Reynolds number range.
One may expect similar behavior for the present model. For moderate to large KC
numbers, the global wake, i.e., that shed from the two cylinders at the ends of the
model, is expected to dominate the hydrodynamic force on the plate. Therefore,
the effect of the placement of the separation point on each cylinder is expected to
be negligible.

6.2.3 Numerical modeling of S28

In addition to the experimental investigations of the real perforated plates, nu-
merical simulations using the viscous flow solver are conducted for S28. The nu-
merical model of S28 is exactly equal to the two-dimensional cross-section of the
experimentally tested model.
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Figure 6.10: Fine region grid of S28 (top). A zoomed-in section of the fine region
grid is presented in the bottom subplot.

A fine region of grid cells is used in the vicinity of the plate. The fine region is
presented in Fig. 6.10. The grid cell sizes are constant equal to ∆ = ∆x = ∆z =
2mm in the fine region. Each of the 26 cylinders are modeled using five grid
cells in both directions. Two grid cells are used along the opening between two
consecutive cylinders. Consequently, the width (D = 360mm), thickness (t =
10mm) and perforation ratio (τ = 100 mm

360 mm = 0.28) of the numerical model is
exactly equal to the experimentally tested model.

Outside the fine region, the grid cells are geometrically stretched towards the
boundaries of the numerical domain. The stretching is 20 % until a maximum
grid cell size of 50 mm is reached. The total domain size is 6 m×6 m, and the total
number of grid cells are 48630.
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6.2.4 Results

The pressure distribution on the perforated plate S28 is investigated using BEM
and CFD and compared with BEM of a corresponding solid plate. The presently
investigated perforated plates consist of small cylinders placed next to each other.
Numerically, the perforated plates are modeled as a series of small two-dimensional
plate elements with openings between them. In Fig. 6.11, I compare the pressure
distribution on the plate elements in BEM and CFD. For a given x

D along the plate,
I present the pressure loss, that is, the upstream pressure minus the downstream
pressure. The pressure loss is normalized using the maximum and minimum pres-
sure losses along the plate. By utilizing the present normalization, using the max-
imum and minimum pressure from each calculation, it is possible to visualize and
compare the difference between a solid plate and a perforated plate.
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Figure 6.11: Pressure loss distribution on the S28 perforated plate with BEM and
CFD. The pressure loss, that is, the upstream pressure minus the downstream
pressure, is normalized using the maximum and minimum pressure losses on the
plate. The BEM result for a corresponding solid plate ( D

t = 36), and the analytical
expression for a solid flat plate, Eq. (6.3), are included for comparison.

The distribution of sources in the BEM matches the number of cells in the CFD.
In the CFD, the sides of each plate element of S28 have five grid cells, cf. Fig. 6.10.
Therefore, the calculated pressure loss is based on the five grid cells above and
below each plate element. In the BEM, each plate element is modeled using five
sources along each side of the element, and the pressure loss is presented for the
five sources above and below each plate.

Potential flow results are presented for both the S28 model and a correspond-
ing solid plate. The analytical velocity potential for a flat plate yields a reversed
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U-shaped pressure distribution over the plate [6, pp. 285–286],

p = ρ
∂ w
∂ t

√

√D2

4
− x2, −

D
2
< x <

D
2

. (6.3)

The global pressure loss distribution predicted by the BEM for S28 has the same
characteristic reversed U-shape. Further, the pressure loss distribution over each
plate element also follows the same shape.

Included in Fig. 6.11 are CFD results from the forced oscillation simulations at
three KC numbers. The pressure on the plate is obtained at the time-instant t

T =
30.00, that is, when the prescribed ambient acceleration is at its maximum, and
the prescribed ambient velocity is zero. For the smallest KC number, the difference
between the pressure predicted by the CFD and BEM is hardly visible. This serves
as further verification of the CFD. The variations in pressure loss on each plate
element are, in general, smaller when the KC number is increased, that is, the
significance of the local reversed U-shapes are decreased. Hence, the wake behind
each plate element results in a more uniform pressure distribution, similar to the
near uniform base drag pressure profile in the wake of a cylinder. For the very
last plate elements, that is, the plate-ends, instead of a local reversed U-shape,
the normalized pressure loss distribution is similar to that of the solid plate at
the corresponding locations. The similarity with the solid plate at the plate-ends
increases with increasing KC number.

Added mass and damping coefficients for C19 and S28 are presented in Fig.
6.12. The number of openings are similar for the two configurations (C19: 23,
S28: 25), but the cross-section of the cylinders is different (C19: circular, S28:
square). As a result, the potential flow added mass is similar for C19 ( A

A0
= 0.0780)

and S28 ( A
A0
= 0.0799), despite different perforation ratios. The experimentally

obtained added mass coefficients agree with the potential flow solver when ex-
trapolating towards KC → 0. For S28, the potential flow solver result is in line
with the viscous flow solver results. Both coefficients increase with increasing KC
for C19 and S28. There is in general small period dependence, but some depen-
dency to the period of oscillation is found for the larger KC numbers. Similar was
found for the ideal perforated plates; a likely reason is free-surface interaction
and wave generation which increases with increasing KC and is dependent on the
period of oscillation. For a given KC number, the coefficients for C19 (τ = 0.19)
are larger than those for S28 (τ= 0.28). This is consistent with the results for the
ideal perforated plates; for a given KC, the perforation ratio is the most important
parameter for the hydrodynamic force coefficients of perforated plates.

The experiments and CFD are in general in good agreement. The added mass
coefficients agree well for all tested KC numbers, while the damping coefficients
are slightly overpredicted by the viscous flow solver. A possible reason for the small
discrepancy is that in the CFD, the structure elements have sharp-edged corners
exactly equal 90◦, whereas the square sectional tubes (type: Alberts 4004338473518
[59]), used in the physical model, have slightly blunted edges. Blunting of the
edges leads to less sharp corners, a possible reason for reduced damping.
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Figure 6.12: Added mass and damping coefficients from experimental investiga-
tions and numerical simulations of C19 and S28.
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Figure 6.13: Colormap for contours in streamline plots.

One of the advantages of the numerical viscous flow solver is the ability to
easily visualize and observe features of the flow field. In Figs. 6.14 and 6.15,
streamline plots from the simulations of S28 are provided. The colormap for the
contours, cf. Fig. 6.13, represents the vertical velocity. The applied colormap is
the diverging Matplotlib colormap named RdBu_r [55], which is presented in Fig.
6.13. Normalization of the colormap is made against three times the prescribed
amplitude of the velocity at the boundaries, that is, the darkest blue (−1.0 in Fig.
6.13) corresponds to w = −3 D

T KC and the darkest red (1.0 in Fig. 6.13) corre-
sponds to w = 3 D

T KC. The flow field is visualized for the simulation of KC = 1.0
at six time-steps during an oscillation cycle, from t = 29.1T to t = 29.6T . Corre-
sponding plots zoomed in on a section of the model are provided in Figs. 6.16 and
6.17. The plots illustrate the local flow separation from each plate element, the
speed-up of flow through the openings of the perforated plate, and the generation
of global plate-end vortices.
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Figure 6.14: Streamline plots of S28 at KC = 1.0. Time-steps: t = 29.1T (top),
t = 29.2T (middle), t = 29.3T (bottom). Color contours applied to the vertical
velocity (red: positive, blue: negative).
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Figure 6.15: Streamline plots of S28 at KC = 1.0. Time-steps: t = 29.4T (top),
t = 29.5 (middle), t = 29.6T (bottom). Color contours applied to the vertical
velocity (red: positive, blue: negative).
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Figure 6.16: Streamline plots of upper right part of S28 at KC= 1.0. Time-steps:
t = 29.1T (top), t = 29.2T (middle), t = 29.3T (bottom). Color contours ap-
plied to the vertical velocity (red: positive, blue: negative).
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Figure 6.17: Streamline plots of upper right part of S28 at KC= 1.0. Time-steps:
t = 29.4T (top), t = 29.5 (middle), t = 29.6T (bottom). Color contours applied
to the vertical velocity (red: positive, blue: negative).
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6.3 Comparing different perforated plates

6.3.1 Added mass and damping

The experimentally obtained hydrodynamic coefficients for P19, P28, C19 and S28
are presented in Figs. 6.18 and 6.19. These plots serve as comparison of ideal and
real perforated plates. In the introduction of the thesis, I presented the method by
Molin and the finding that if a perforated plate is infinitely thin, the potential flow
added mass goes to zero as the number of openings goes to infinite, no matter the
perforation ratio [19]. P19 and P28 represent almost ideal perforated plates. I also
noted a relation in DNV GL RP-N103 which suggests that real perforated plates,
relevant for subsea structures, with finite thickness and finite number of openings,
have considerable potential flow added masses. C19 and S28 are examples of
models of real perforated plates. The present comparison between the two types
is particularly useful since the perforation ratio is equal for P19 and C19, and for
P28 and S28.
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Figure 6.18: Added mass coefficients from experimental investigations of P19,
P28, C19 and S28.

Unlike an ideal perforated plate, a real perforated plate will have a consider-
able added mass in the low KC limit due to the limited number of perforations
or openings. The smallest experimentally tested KC numbers, KC ≈ 0.25, are too
large to highlight this effect; all four structures have considerable added mass
at KC ≈ 0.25. Note that for a structure with characteristic width equal to 10 m,
KC = 0.25 corresponds to an oscillation amplitude of 0.4m (wave height 0.8 m),
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hence KC= 0.25 is quite small even for large structures.
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Figure 6.19: Damping coefficients from experimental investigations of P19, P28,
C19 and S28.

The results in Figs. 6.18 and 6.19 illustrate that for a given perforation ra-
tio, the type of perforated structure—in particular the type of openings on the
structure—is important for the hydrodynamic forces on the structure. The damp-
ing coefficients are, in general, smaller for the real structures, C19 and S28, than
for the ideal perforated plates, (respectively) P19 and P28. The added mass is
reduced for C19 compared to P19, but not for S28 compared to P28. The circu-
lar elements of C19 give weaker flow separation compared to when the openings
have sharp edges. Consequently, one should expect the hydrodynamic forces on
the model to reduce. In Molin’s method—where the hydrodynamic coefficients are
functions of KCpor, cf. Section 1.4.2—this is similar to a change of the discharge
coefficient, µ, due to change of the geometry of the openings. Accordingly, both
coefficients are reduced for C19 compared to P19. Contrary, for S28 compared
to P28, the damping is considerably reduced, but the added mass is by and large
unchanged. Slight blunting of the edges of S28 may be part of the explanation
for reduced damping, cf. discussion in Section 6.2.4. Note that for the smallest
KC numbers, the damping is similar for S28 and P28, whereas for increasing KC,
there is a difference in slope (larger for P28) of the damping coefficient as func-
tion of KC. Increasing KC increases the importance of the global plate-end flow
separation. The plate-ends are very sharp for P28. For S28, the outermost cylinder
on each side forms the plate-end.
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6.3.2 Hydrodynamic force ratio

Within the range of KC numbers tested, the hydrodynamic force on the four per-
forated plates is dominated by damping. This is illustrated in Fig. 6.20. The ratio
between the two forces is typically within 1.5 < B

ωA < 2.5. Due to squaring of
terms, the effect on the hydrodynamic force amplitude is large even for B

ωA = 1.5,
that is, for B

ωA = 1.5, damping alone is 83 % of the hydrodynamic force amplitude,
cf. Eq. (2.15) and the example in Section 2.3.1.
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Figure 6.20: The ratio between the damping force and the added mass force for
P19, P28, C19 and S28.

The hydrodynamic force ratio depends on both the perforation ratio and the
type of openings. The results for P19 and P28 indicate that the hydrodynamic
force ratio increases with increasing perforation ratio. A reduction in damping
dominance is found for S28 compared to P28. As discussed in Section 6.3.1, this
is due to reduced damping of S28 compared to P28, not increase in added mass.
There is also a reduction for C19 compared to P19 for KC > 1, but here the dif-
ferences are smaller. Both coefficients are smaller for C19 than for P19, but the
relative importance, that is, the hydrodynamic force ratio, is not considerably af-
fected.
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6.3.3 Importance of cylinder type

The two ideal perforated plates are similar in all aspects except for the perforation
ratio, however, the difference between the real perforated plates, C19 and S28,
is both the perforation ratio and the shape of the cylinders. Consequently, it is
hard to know which factor is more important for the change in hydrodynamic
coefficients—change of perforation ratio or change of cylinder shape. Figures 6.18
and 6.19 give some answers in this regard, since the change in perforation ratio
is equal between the ideal and the real perforated plates, that is, τ = 0.19 and
τ= 0.28.

To further investigate the effect of cylinder shape, viscous flow solver simula-
tions, and potential flow added mass calculation, are performed for a numerical
model which is similar to C19, but with square, not circular, cylinders. This model
is denoted S19. The potential flow added mass of S19 is calculated with the BEM
using 128 sources per cylinder, in total 3072, equivalent to the number of sources
used for C19. The viscous flow solver simulations are set up similar to those of
S28, P19 and P28. The total domain size is 6 m×6 m, the fine region grid cell size
is 1.25 mm, the plate width is 297.5 mm and the total number of grid cells in the
domain is 59904. The fine region grid of S19 is presented in Fig. 6.21.
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Figure 6.21: Fine region grid of S19 (top). A zoomed-in section of the fine region
grid is presented in the bottom subplot.

Note the minor difference in the distance between adjacent cylinders in S19
(2.5mm) compared to C19 (2.52 mm, to two decimal places), cf. Fig. 6.9. In or-
der to use a constant grid cell size in the fine region of S19, the distance be-
tween each cylinder is set to 2.5mm in the numerical simulation. Consequently,
there is a slight difference in the width of the plates and the perforation ratio,
D = 298mm,τ = 0.1946 (C19) versus D = 297.5mm,τ = 0.1933 (S19). How-
ever, these differences are very small and within the expected error of measuring
the correct width of C19. Needless to say, these minor differences are without
importance for the present comparison.

Comparing different types of results (numerical and experimental), to inves-
tigate the effect of plate type and cylinder shape, is supported by the viscous flow
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solver results of P19, P28 and S28, which are generally good compared to the
experiments. However, I stress the added uncertainty of such an approach.1
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Figure 6.22: Added mass and damping of the numerical simulations of S19 com-
pared with the experimental investigations of C19.

The results from the simulations of S19 are compared with the experimental
results of C19 in Fig. 6.22. The added mass coefficient for S19 calculated with the
potential flow solver is A

A0
= 0.1438. Both coefficients are larger for S19 than for

C19 for corresponding KC numbers throughout the whole range of considered KC
numbers. Based on the good agreement between the experimental and numerical
results for S28, the considerable differences between S19 and C19 must be, by
and large, a result of different cylinder shapes.

In the semi-analytical method by Molin for calculating the hydrodynamic coef-
ficients of perforated plates, the effect of different types of openings of a perforated
plate is expressed through the discharge coefficient, µ. The discharge coefficient
is inversely proportional to the resistance coefficient [19]. In the case that the
resistance is due to the drag of a cylinder, the discharge coefficient is inversely
proportional to the drag coefficient. For a single cylinder of diameter d = 0.01m,
in the range of Reynolds numbers considered in the experimental investigations,
cf. Section 6.2.2, the drag coefficient of a square cylinder is considerably larger
than that of a circular cylinder. Consequently, the drag coefficient for the row

1One may say that this is a comparison of apples and oranges, but with the particularly good
numerical and experimental accordance of S28 in mind, this is rather a comparison between Pink
Lady and Granny Smith.
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of square cylinders is likely considerably larger than that of the row of circular
cylinders, although one must be careful with superposing the results due to the
small distance between the cylinders, which gives speed-up of flow (increases the
Reynolds number) and considerable interaction effects.

In Molin’s original method without drag correction due to plate-end flow sepa-
ration [19], the hydrodynamic coefficients only depend on the porous KC number,
Eq. (1.3), which can be written

KCpor = KC
1−τ

2πµτ2
, (6.4)

hence increasing the drag coefficient (decreasing the discharge coefficient) is equiv-
alent to increasing the KC number. The results of Fig. 6.22 is consistent with the
analysis of discharge coefficients since both coefficients increase with KC for both
C19 and S19, and, for a given KC number, the coefficients are larger for S19 than
for C19. This is in particular true for the added mass of small KC numbers. How-
ever, the potential flow solver added mass calculated for S19 is almost twice that
of C19, A

A0
= 0.1438 versus A

A0
= 0.0780. Therefore, it is likely that the large rela-

tive differences in added mass for small KC numbers is partly due to the difference
in potential flow added mass of the two structures. Smaller relative differences for
larger KC numbers can be an indication that the effect of plate-end flow separa-
tion is more important than the type of cylinder shape (and, for the added mass
coefficients, potential flow effects) when the KC number is increased.

6.3.4 Additional remarks

The agreement between the experimental and numerical results presented in this
chapter is generally quite good. Geometrically, the most important difference be-
tween the experimental and numerical models is the lateral, that is, into the plane,
extent of the models. The experimental models have no lateral variations, and the
use of end-plates makes the setup of the experiments close to two-dimensional.
However, the flow around these models at the considered Reynolds numbers must
be expected to be turbulent and by nature three-dimensional. Therefore, it may
be somewhat surprising that the numerical viscous flow solver is this well able
to predict the loads of the experiments, considering that it is a two-dimensional
direct numerical simulation (DNS) solver, i.e., the governing equations are solved
without any turbulence model. Two effects are highlighted in this respect. 1) Rec-
tilinear grids yield sharp corners; the separation points are fixed and the boundary
layer flow does not need to be captured. Similarly, the experimentally tested mod-
els that are simulated numerically consist of sharp-edged holes (P19 and P28) or
of cylinders with square cross-sections (S28), and have sharp-edged plate-ends.
2) The wake flow downstream of the perforated plates is barely developed before
the flow reverses; the simulated KC numbers are relatively small and the dissi-
pation of the wake is less important than for higher KC numbers. For solid flat
plates, Singh [60] denotes KC < 3 as the symmetric region. Compared to higher
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KC numbers, the plate-end vortices are weak and do not interact, that is, a sym-
metric pair of vortices is developed. A similar behavior can be expected for the
plate-end vortices of (relatively dense) perforated plates. The use of first order
upwind schemes introduces a diffusion-like error known as false diffusion [33,
p. 150]. A consequence is that the transported properties become smeared. The
numerical dissipation might coincidentally have similar dissipation effect of the
wake as (physical) turbulent dissipation. For large KC numbers with more devel-
oped wake flow, i.e., KC > 3, the accuracy of the solver should be expected to
decrease. However, for perforated plates relevant for subsea structures, the KC
numbers are limited, e.g for a 10 m wide hatch cover, KC = 3 is equivalent to a
wave height of 9.5m(!).

As a first attempt to study the effect of wake dissipation and sensitivity of
the prescribed Reynolds number, numerical simulations with considerably larger
values of the kinematic viscosity, ν, were conducted. The resulting force from
these simulations were almost insensitive to even large changes in the kinematic
viscosity. An exception is for very small Reynolds numbers due to friction drag, cf.
discussion in Section 5.4.2.

The present findings are in line with previous studies on the effect of Reynolds
numbers and need for considering the three-dimensionality of turbulence for cir-
cular disks in oscillating flow. Tian et al. [61] studied the effects of Reynolds
numbers on the hydrodynamic characteristics of solid circular disks. The hydro-
dynamic coefficients of the disks were not considerably affected by even large
variations of the Reynolds number. Note that the study was limited to three rel-
atively modest KC numbers, KC = 0.2, KC = 0.6 and KC = 1.0. However, for the
present investigations, these KC numbers are relevant. They highlighted that even
though the flow becomes non-axissymmetric and turbulent for relatively small
Reynolds numbers (corresponding to β ≥ 8× 103), the effect of turbulence gets
averaged over the disk. As a consequence, hydrodynamic coefficients can be calcu-
lated based on axissymmetric flow assumptions, even for large Reynolds numbers
where the flow in reality is highly turbulent and three-dimensional [61]. This
noteworthy result supports the finding that a relatively simple two-dimensional
DNS solver may be able to yield reliable force estimates for structures in flows
that in reality are highly turbulent and three-dimensional.



100 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

6.4 On the importance of plate-end flow separation
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Figure 6.23: Last plate elements of the P19 (top) and P28 (bottom) plates in
simulations where the domain is decomposed in regions with (blue) and without
(red) solution of the advection and diffusion terms.

Several studies have suggested that the plate-end flow separation is important
for the hydrodynamic coefficients of perforated plates [9, 18–20, 25]. To investi-
gate the effect of plate-end flow separation, further numerical studies of the ideal
perforated plates P19 and P28 are performed. These numerical studies are equal
to the viscous flow solver studies presented in Section 6.1.2, except that the nu-
merical domains are decomposed into regions with and without advection and
diffusion terms, cf. Section 5.1.1. The advection and diffusion terms are solved
for cells with horizontal coordinates between the center of the first and last plate
elements. For all other cells of the numerical domains, the advection and dif-
fusion terms are omitted. Illustrations are presented in Fig. 6.23, in which the
boundary between the two domain parts on the right plate-end is presented. As a
consequence of omitting the advection and diffusion terms on the plate-ends, no
plate-end flow separation occur. This allows for studying the force on the perfo-
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rated plates due to local flow separation through the openings between the plate
elements, without allowing the global plate-end flow separation.

The resulting hydrodynamic coefficients of the numerical simulations are pre-
sented in Fig. 6.24. Compared with the viscous flow solver (CFD) results, the
noEndVortex module increases the added mass and reduces the damping. The
same has been observed in previous studies that have compared the semi-analytical
method by Molin with and without plate-end flow separation [9, 18, 20].

When there is no flow separation at the plate-ends, there is a distinct maxi-
mum peak in the damping coefficients. In the semi-analytical method by Molin, in
infinite fluid domains, the peak in the damping coefficient occurs for the KC num-
ber where the added mass and damping coefficients intersect [19]. Similar results
are obtained when using the noEndVortex module, although the coefficients are
not exactly equal. For τ = 0.19, the maximum damping coefficient, B

ωA0
= 0.40,

is at KC = 0.43 when the added mass coefficient is A
A0
= 0.48. For τ = 0.28,

the maximum damping coefficient, B
ωA0
= 0.38, is at KC = 0.95 when the added

mass coefficient is A
A0
= 0.43. Both plates yield larger added mass than damp-

ing at this KC number. One contribution is that, unlike the method by Molin, the
perforated plates have finite thickness and finite number of openings, and, conse-
quently nonzero potential flow added mass.

The peak in damping does not occur in experiments or CFD when the flow is al-
lowed to separate at the plate ends, cf. for example Fig. 6.19. Contrary, the damp-
ing coefficients continue to increase with increasing KC number. A consequence of
this is that the damping coefficients are largely underpredicted for large KC num-
bers if the plate-end flow separation is not taken into account. The discrepancy
increases with decreasing perforation ratio. As an example, the damping coeffi-
cients at KC = 2.0 in simulations without plate-end flow separation are largely
underpredicted and only 0.135

1.256 = 11 % (τ = 0.19) and 0.308
0.972 = 32% (τ = 0.28)

of the corresponding damping coefficients with plate-end flow separation. For the
same KC number, the added mass coefficients are 0.899

0.595 = 151 % (τ = 0.19) and
0.647
0.382 = 169 % (τ= 0.28) of the corresponding CFD result.

The effect of plate-end flow separation is quantified for all KC numbers in
Fig. 6.25. The hydrodynamic coefficients of P19 and P28 obtained in the simula-
tions without plate-end flow separation are divided by the corresponding viscous
flow solver results. Clearly, the effect of plate-end flow separation depends on KC;
for very small KC numbers, the effect is negligible for both coefficients and both
perforation ratios, whereas for all other KC numbers, the effect is crucial for the
coefficients. Further, the effect of plate-end flow separation depends on the perfo-
ration ratio. An example is the relative increase in added mass for KC> 0.5, which
is larger for τ = 0.28 than for τ = 0.19. Interestingly, the relative difference in
damping is smaller for τ = 0.28 than for τ = 0.19 for all these KC numbers.
Consequently, if using the method by Sandvik et al. to account for plate-end flow
separation in Molin’s method, cf. Sections 1.4.2 and 1.4.3, determining α can be
difficult for two reasons: 1) α is likely to depend on the perforation ratio. 2) The
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best-fit of α to the added mass coefficient is likely different than the best fit of α
to the damping coefficient.
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Figure 6.24: Added mass and damping coefficients of P19 and P28 with and
without plate-end flow separation.



Chapter 6: Perforated structures in oscillating flow 103

0.0 0.5 1.0 1.5 2.0

KC

0.0

0.5

1.0

1.5

2.0

P19 AnoEndVortex

ACFD

P19 BnoEndVortex

BCFD

P28 AnoEndVortex

ACFD

P28 BnoEndVortex

BCFD

Figure 6.25: Relative magnitude of added mass and damping coefficients be-
tween the simulations without plate-end flow separation and the CFD.
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In Fig. 6.26, the difference in the normalized force amplitude, i.e., the sum of
the coefficients squared, Eq. (2.12), is presented for P19 and P28. Note that the
y-axis is from 0.6. If the plate-end vortices are neglected, the normalized force
amplitude is reduced. The reduction increases with KC and is, in general, larger
for τ = 0.19 than for τ = 0.28. Since the damping is underestimated and the
added mass is overestimated in simulations without plate-end flow separation,
the effect on the normalized force amplitude is less than the effect on the indi-
vidual coefficients. Nevertheless, the normalized force amplitude is considerably
underestimated if the plate-end flow separation is not taken into account, increas-
ingly so with increasing KC.

I end this chapter by presenting streamline plots of P19 and P28 in simulations
with and without plate-end flow separation. The comparisons are presented in
Figs. 6.27 (P19) and 6.28 (P28). The streamline plots are obtained for KC = 1.0
at t = 29.36T , that is, when the prescribed ambient velocity is positive upwards
and 36 % into the oscillation cycle. The colormap for the contours, cf. Fig. 6.13,
represents the vertical velocity. Normalization of the colormap is made against
two times the prescribed amplitude of the velocity at the boundaries, that is, the
darkest blue (−1.0) in Fig. 6.13 corresponds to w = −2 D

T KC and the darkest red
(1.0) corresponds to w = 2 D

T KC. Clearly, not taking into account the plate-end
flow separation changes the flow patterns completely.
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Figure 6.27: Streamline plots of P19 at KC = 1.0 obtained at t = 29.36T . Com-
parison between simulations using the viscous flow solver (top) and the hybrid
method without plate-end flow separation (bottom). Color contours applied to
the vertical velocity (red: positive, blue: negative).
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Figure 6.28: Streamline plots of P28 at KC = 1.0 obtained at t = 29.36T . Com-
parison between simulations using the viscous flow solver (top) and the hybrid
method without plate-end flow separation (bottom). Color contours applied to
the vertical velocity (red: positive, blue: negative).



Chapter 7

Perforated structures in waves

Experimental investigations and numerical simulations of perforated structures
in waves are presented in this chapter. The experiments are performed on two
perforated plates consisting of rows of cylinders. The models are fixed in the ex-
perimental rig and subjected to incident waves. These models were introduced in
Section 6.2 and are referred to as C19 and S28.
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Figure 7.1: Example of force time-series of C19 fixed in incident waves: Nondi-
mensional force on the C19 model placed at zm = 2.5 cm ( zm

D = 0.08) and
zm = −30cm ( zm

D = −1.01). Wave parameters: ζa = 5.4 cm, T = 1.3 s. The
nondimensional wave elevation at the rig center is presented with dotted line.
The forces are, in this figure, made nondimensional based on the maximum force
during the zm = 2.5cm set.
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A range of wave amplitudes, wave periods and vertical distances to the mean
free-surface is presented. The experiments are performed for varying wave param-
eters T = 1.0 s, 1.1 s, 1.2 s and 1.3 s, and a range of amplitudes between 2.1 cm
and 6.5cm. The wave parameters are chosen due to four main reasons: 1) To
obtain a relatively wide range of KC numbers and wave periods, such that the
sensitivity to KC and wave period/length can be investigated. 2) Limitations to
the wave-flap and tank facilities; due to the length of the parabolic beach and the
wave flume, longer waves are not feasible. 3) To ensure that the waves are regu-
lar, linear and not too steep. This limits the wave amplitudes and KC numbers, as
well as the lower bound of the wave periods. 4) To ensure similar conditions as in
the corresponding forced oscillation experiments, that is, the scaling, KC numbers
and Reynolds numbers are similar to that of the forced oscillation experiments.
The forced oscillation experiments of C19 and S28 (the models tested in waves)
are performed for oscillation periods 1.0 s ≤ T ≤ 2.0 s and oscillation amplitudes
between 1.7 cm ≤ ηa ≤ 13 cm. These oscillation periods correspond to full scale
(wave) periods 5 s® T ® 14s, cf. Section 3.2.1. Assuming the same scaling (1:25-
50), the wave tests correspond to full scale wave periods 5 s ® T ® 9s. Note that
in the wave tests, the KC and Reynolds numbers depend on the vertical position
of the models, zm.

Table 7.1: Tested wave parameters: Amplitudes, periods and corresponding (in-
verse) wave steepnesses.

T = 1.0 s T = 1.1 s T = 1.2 s T = 1.3 s
ζa

λ
2ζa

ζa
λ

2ζa
ζa

λ
2ζa

ζa
λ

2ζa

1 2.1 cm 38 2.5 cm 38 2.9 cm 38 3.4 cm 38
2 2.2 cm 36 2.6 cm 36 3.1 cm 36 3.6 cm 36
3 2.3 cm 34 2.8 cm 34 3.3 cm 34 3.8 cm 34
4 2.4 cm 32 2.9 cm 32 3.5 cm 32 4.1 cm 32
5 2.6 cm 30 3.1 cm 30 3.7 cm 30 4.3 cm 30
6 2.8 cm 28 3.4 cm 28 4.0 cm 28 4.6 cm 28
7 3.0 cm 26 3.6 cm 26 4.3 cm 26 5.0 cm 26
8 3.3 cm 24 3.9 cm 24 4.7 cm 24 5.4 cm 24
9 3.5 cm 22 4.3 cm 22 5.1 cm 22 5.9 cm 22
10 3.9 cm 20 4.7 cm 20 5.6 cm 20 6.5 cm 20

Table 7.2: Ratio of wavelength to width for C19 and S28.

T = 1.0 s T = 1.1 s T = 1.2 s T = 1.3 s
C19 λ

D = 5.25 λ
D = 6.35 λ

D = 7.51 λ
D = 8.74

S28 λ
D = 4.33 λ

D = 5.23 λ
D = 6.20 λ

D = 7.21

A presentation of all test sets is given in Table 7.1. Ratios of the wavelength
to the characteristic dimensions of the two models are presented in Table 7.2.
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The vertical position of the models, zm, is varied from zm = −30cm to zm =
5cm, that is, from 30 cm below the mean free-surface to 5 cm above. A list of the
tested vertical positions, and corresponding ratio of the vertical position to the
characteristic dimensions of the two models, is presented in Table 7.3.

Table 7.3: Ratio of vertical position to width for C19 and S28.

zm C19 zm
D S28 zm

D

Section 7.1

5 cm 0.17 0.14
2.5 cm 0.08 0.07
0 cm 0 0
−2.5 cm −0.08 −0.07
−5 cm −0.17 −0.14

Section 7.2

−10 cm −0.34 −0.28
−15 cm −0.50 −0.42
−20 cm −0.67 −0.56
−25 cm −0.84 −0.69
−30 cm −1.01 −0.83

An example of force time-series is presented in Fig. 7.1. The time-series are
extracted for T = 1.3 s, ζa = 5.4cm. The force on the C19 model is presented for
model position zm = 2.5 cm and zm = −30cm. Clearly, both the magnitude and
characteristics of the forces are highly dependent on the vertical position of the
model. I return to the set of T = 1.3 s, ζa = 5.4 cm throughout the chapter, and
use the force time-series of C19 to present, qualitatively, some differences of the
load characteristics at varying vertical positions.

The measured force in the experiments is obtained from the force transducer
which is located in the intersection between the model rig and the actuator, cf. Sec-
tion 3.2. Hence, the measured force includes the force on the rig and the model.
In the forced oscillation tests, the measured force in tests without models is sub-
tracted, time-step by time-step, in order to obtain a good estimate for the net force
on the model. However, unlike in forced oscillation tests, there is no inertia force
since the rig is fixed in the incident wave tests. Furthermore, the only parts of
the rig that are in water and subjected to waves are the two acrylic glass plates.
Therefore, a different approach is used in the incident wave tests to obtain the net
force on the model. Since the two acrylic glass plates are relatively thin (6 mm),
and their position is fixed, the main contribution to the force on the rig is due
to varying buoyancy as the wave elevation varies. The corresponding buoyancy
force, based on the measured wave elevation, is subtracted time-step by time-step,
from the measured force on the rig and model. This gives an estimate of the net
force on the model. Note that only the varying buoyancy force on the acrylic glass
plates is subtracted. Consequently, in cases where the model may go in and out of
water, the presented force includes the variation in buoyancy of the model. Fur-
thermore, the effect of varying buoyancy of the acrylic glass plates on the forces
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is small, and whether or not this contribution is subtracted does not affect any
conclusions.

The forces on the models as functions of the vertical position of the models,
zm, for six of the tested wave amplitudes are presented in Figs. 7.2 (C19) and 7.3
(S28). The wave period is T = 1.3 s for all the presented wave amplitudes. In the
top subplots, the maximum unfiltered force is presented, while the amplitudes of
the band-pass filtered forces using the first five harmonics, FFT5, are presented
in the bottom subplots. Both forces are made nondimensional based on the wave
frequency, the wave amplitude, and the reference added mass of the plates, that
is, A0 from Eq. (2.11). Hence, the normalization is—for a given model—equal for
all submergences. This allows for a direct comparison of how the magnitude of
the wave force depends on the vertical position of a model. Since the wave ve-
locity reduces with water depth, the inflowing velocity on the models will reduce
with decreasing zm. Consequently, one should expect the force to reduce with de-
creasing zm for vertical positions that are below the mean free-surface. The force
amplitude on both models decrease, in general, with decreasing zm below the
mean free-surface. Furthermore, consistent with the oscillating flow results pre-
sented in Section 6.2, the force increases with decreasing perforation ratio, that
is, the force is larger on C19 than on S28.

Both the maximum unfiltered force, Fmax, and the amplitudes of the band-
pass filtered forces using the first five harmonics, Fa,FFT5, are included in Figs. 7.2
and 7.3. A large difference between the two could indicate one or several of the
following: 1) Considerable high-frequency noise in the measurements; 2) A large
difference between the magnitude of the force maximum and the force minimum;
3) Higher-order nonlinear effects are important. Closer investigations of time-
series from the measurements reveal that 1) is relevant for all submergences, in
particular when the model is fully submerged, and when the wave amplitude and
corresponding force are small such that the background noise is relatively large
(compared to other test sets with larger wave amplitudes). High frequency noise
can typically contribute to a difference between the unfiltered maximum and the
filtered force amplitude of 20 %.

As the models are placed closer to the mean free-surface, the difference be-
tween Fmax and Fa,FFT5 increases. This is due to both 2) and 3). In cases close
to the mean free-surface, the dynamics of the force is, in general, not well cap-
tured by the FFT5-filter. When a model is installed close to the mean free-surface,
depending on the wave parameters, the model may go in and out of water. Con-
sequently, higher-order nonlinear effects can be important for the forces on the
models. Contrary, when the model is fully submerged and (relatively) far from
the mean free-surface, higher-order nonlinear effects are less important, and the
FFT5-filter is more appropriate. Furthermore, close to the mean free-surface, the
force amplitude is asymmetrical, with, typically, a larger maximum positive peak
than negative peak, due to differences between the water-entry and the water-exit
forces. This is in fact opposite to that of water entry and exit of a rectangular body,
where the water exit load can be of larger magnitude.
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Figure 7.2: Normalized forces as function of the submergence of C19 for six
of the tested wave amplitudes. The maximum measured raw force (Butterworth
filtered at 20 Hz) and the amplitude of the band-pass filtered force using the first
five harmonics are presented. T = 1.3 s, −0.30m≤ zm ≤ 0.05m.
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Figure 7.3: Normalized forces as function of the submergence of S28 for six of the
tested wave amplitudes. The maximum measured raw force (Butterworth filtered
at 20 Hz) and the amplitude of the band-pass filtered force using the first five
harmonics are presented. T = 1.3 s, −0.30m≤ zm ≤ 0.05m.
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Considering the large number of test sets, and that the two models are tested
in 10 different vertical positions, clear and effective result presentation is a chal-
lenge. Therefore, I included only six of the total 56 test sets in Figs. 7.2 and 7.3.
In the following, I make a distinction between experiments where the models can
go in and out of water, and experiments where the models are fully submerged.
In Section 7.1, the experiments for model positions −5cm ≤ zm ≤ 5cm are pre-
sented. Then, in Section 7.2, the experiments for model positions −30cm≤ zm ≤
−10 cm are presented. In the latter cases, the force on the model is, qualitatively,
similar to that of tests without waves or free-surface, for example in forced os-
cillations or orbital flow conditions. The main focus in this chapter is on the ex-
perimental investigations, but numerical results are also presented. Comparisons
with numerical simulations are presented in Section 7.4. The simulations are per-
formed for a numerical model of S28 and numerical models similar to S28, but
with other open-area ratios. I also compare the results in incident waves with
simulations of forced oscillations and orbital flow conditions.

7.1 Partly submerged—water entry and exit

The experimental results for model positions −5.0 cm ≤ zm ≤ 5.0 cm are pre-
sented in the following. This close to the mean free-surface, the model may go
in and out of water, depending on the vertical position and the wave parameters.
Consequently, higher-order nonlinear effects can be important for the forces on
the plates.

The force is zero calibrated at the beginning of each time-series. For zm =
2.5cm and zm = 5.0 cm, the complete model is out of water at the beginning of
the time-series. Consequently, the model will get a positive force contribution due
to buoyancy when the model gets wet. For zm = −2.5cm and zm = −5.0 cm, the
model is initially fully submerged and the buoyancy force is included when doing
the zero calibration. Lastly, for zm = 0, the zero calibration includes buoyancy of
half the model.

In Fig. 7.4, the force on C19 during two wave periods for zm = 2.5cm (top)
and zm = 0 (bottom) with wave parameters T = 1.3 s, ζa = 5.4cm is presented.
A low-pass filter (cutoff at 12 Hz) is applied to filter out high-frequency noise in
the force measurements. The wave elevation and forces are made nondimensional
based on the maximum values during each set. Note that the wave elevation is
estimated for the center of the model, hence the model starts to get wet some
time-steps before the wave elevation is equal to zm. The force is characterized by
a large peak which occurs during the initial water entry when the wave hits the
model. After the initial peak, the force reduces somewhat during the phase when
the model is fully wetted. Further, as the wave passes the model, the water exit
gives a negative contribution to the force. Compared to the magnitude of the water
entry peak, the magnitude of the negative peak is small. Note that the maximum
peak force is largest for zm = 0 which is the critical position in terms of maximum
peak force for both C19 and S28, cf. Figs. 7.2 and 7.3.
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Figure 7.4: Nondimensional force and wave elevation (at model center) in test
of C19 placed at zm = 2.5cm (top) and zm = 0 (bottom). Wave parameters:
ζa = 5.4 cm, T = 1.3 s. The wave elevation and forces are made nondimensional
based on the maximum during each set.
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Figure 7.5: Nondimensional force and wave elevation (at model center) in test of
C19 placed at zm = −2.5cm (top) and zm = −5.0 cm (bottom). Wave parameters:
T = 1.3 s, ζa = 5.4cm. The wave elevation and forces are made nondimensional
based on the maximum during each set.
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Figure 7.6: Photos of S28 at zm = 0 during water entry of the largest incident
wave, ζa = 6.5cm, T = 1.3 s. The time increases from top to bottom in time-steps
∆t = 0.1T .
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In Fig. 7.5, force plots of C19 placed at zm = −2.5cm (top) and zm = −5.0 cm
(bottom), subjected to incident waves with wave parameters T = 1.3 s, ζa =
5.4cm, are presented. For zm = −2.5 cm, when the wave elevation is at its mini-
mum, the model is dry and experiences a negative force due to water exit and loss
of buoyancy. Note that the force is zero calibrated before each test set, hence the
considerable negative force at minimum wave elevation compared to when the
model is zero calibrated when dry as for e.g. zm = 2.5 cm. As the wave elevation
rises, the model enters water, but the relative magnitude of the wave slamming
force is not as severe as for zm = 0, since the velocity of the wave is relatively
small during the impact.

The force on C19 for zm = −5.0 cm is presented in the bottom subplot of Fig.
7.5. Since ζa − zm = 0.4cm this configuration is on the borderline of being fully
submerged during the full wave period. Instead of distinct water entry and exit
phases, the force resembles that of fully submerged conditions. Note, however,
that there is still a considerable difference between the magnitudes of the maxi-
mum peak force and the minimum peak force at zm = 5cm.

Photos of S28 at zm = 0 are presented in Fig. 7.6. The photos are taken at four
time-steps during the wave slamming of the largest incident wave, ζa = 6.5cm,
T = 1.3 s. The wave slamming causes the water to accelerate and form small jets
through the perforated openings of the plate. Jets are seen above the plate in the
second and third photo due to flow through the openings. In the last photo, the
flow separation at the right plate-end is visible.

7.1.1 Force as function of KC

In the following, the results for all test sets with models close to the mean free-
surface are presented. I use five colors, one for each vertical position, and four
markers, one for each wave period, in the result figures. The complete legends
are presented in Fig. 7.7.

The normalized forces on the models are presented as functions of the KC
number. For all positions below the mean free-surface, i.e., zm < 0, the KC num-
bers are estimated based on the measured incident wave amplitude and the verti-
cal distance from the mean free-surface to the structure, using linear wave theory,
Eq. (2.20). Further, the characteristic velocity, W , used to normalize the force,
takes into account the vertical position and is calculated as D

T KC. Since all ver-
tical positions are relatively close to the mean free-surface, the reduction in KC
due to submergence is limited, and similar plots are obtained if the effect of sub-
mergence is excluded. However, when the models are placed further below the
mean free-surface, taking into account the reduced velocity will, in general, re-
duce the spread between the results for different submergences. For consistency,
I have used this normalization in the result plots for models close to the mean
free-surface as well.

In Figs. 7.8 (C19) and 7.9 (S28), the maximum and minimum magnitudes
of the force are presented. The measured force is sampled at 200 Hz with Butter-
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worth filtering at 20 Hz. Additionally, a low-pass filter with cutoff frequency 12 Hz
is applied to avoid influence from high-frequent noise. Both the maximum peak
and the minimum peak are presented, due to large differences in the magnitudes
of the water entry and water exit force.
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Figure 7.7: Legends for result figures: C19 (left) and S28 (right).

The results for both models indicate large differences in the magnitudes of the
maximum and minimum normalized forces for the vertical positions close to the
mean free-surface. zm = 0 yields, in general, the largest maximum normalized
forces. These findings are consistent with the examples presented in Figs. 7.4 and
7.5. Both structures have the largest absolute minimum normalized forces when
the plates are installed at zm = −2.5cm. This is due to water exit and loss of buoy-
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Figure 7.8: Normalized force as function of KC for C19. Different colors indicate
different vertical positions, zm. Different markers indicate different wave periods.
Legend in Fig. 7.7.
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Legend in Fig. 7.7.
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ancy when the wave trough is below zm. In relative terms, the effect is largest for
the smallest wave amplitudes that completely dry up the models (C19: T = 1.3 s,
0.6® KC® 0.8. S28: T = 1.2 s and 1.3 s, 0.4® KC® 0.6). However, this is due to
the fact that the normalized force is made non-dimensional with the characteris-
tic velocity, which, for a given zm and T , increases linearly with increasing KC. In
dimensional terms (i.e., Newton), the maximum absolute negative forces are not
within these narrow KC ranges, but instead similar for all waves that completely
dry up the models.

Contrary to the forced oscillation results, the results presented in Figs. 7.8
and 7.9 are highly period dependent, with generally larger magnitudes for longer
waves. A potential reason can be sensitivity to λ

D . However, compared to the char-
acteristic dimensions of the plates, all tested waves are relatively long, cf. Table
7.2.

7.1.2 Water entry force with BEM

The water entry force is predicted with a von Kármán approach using the potential
flow solver, cf. Section 4.1.3. In the experiments, C19 at zm = 0 with wave period
T = 1.3 s yields the largest forces. This scenario is simulated with the von Kármán
approach. Four amplitudes are tested, ζa = 4.1 cm, 4.3 cm, 5.4 cm and 6.5 cm,
that is, series 4, 6, 8 and 10, cf. Table 7.1. Sensitivity to the number of sources
used to discretize the model is tested for ζa = 5.4 cm.

Three important assumptions are made to model the impact between the
model and the incident wave in the potential flow solver. 1) The impact between
the wave and the model is simplified as an impact acting normally on the model,
that is, each cylinder of C19 is similarly wetted at equal time. This can be thought
of as a long-wave approximation. Hydrodynamic interaction between the cylin-
ders is included. 2) No flow separation is considered. 3) The velocity of the impact
is assumed constant throughout the impact. Consequently, the added mass term
of Eq. (4.1) is zero. The force on the model simplifies to

F =
dA
dz

w2 +ρgΩL, (7.1)

with Ω being the two-dimensional instantaneous submerged part of the cross-
section of the 24 cylinders of C19. The lateral length of the model is L = 0.57 m
in order to have comparable three-dimensional force with the experimental in-
vestigations. Since the model is placed at zm = 0, the vertical velocity is assumed
constant equal w=ωζa.

The duration of the impact, δt, is estimated as the time from the first cylinder
starts to get wet in the experiments, to the last cylinder is fully wet,

δt =
arcsin

�

0.5d
ζa

�

− arcsin
�

−0.5d
ζa

�

+ kD

ω
. (7.2)

Here d is the diameter of the cylinders, d = 1.0 cm, k = 2π
λ is the wave number

and D = 298mm is the width of the C19 model. The number of time-steps in
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the simulations is fixed such that the sampling rate is 200Hz, that is, equal to
the sampling rate of the experimental investigations. This corresponds to 36-40
time-steps. A summary of the parameters used in the simulations is given in Table
7.4.

Table 7.4: Parameters in water entry BEM simulations of C19. The velocity of
the simulations is w = ωζa. nt is the number of time-steps, ns,cyl the number of
sources per cylinder (24 cylinders in total) and zm is the mean position of the
model.

ζa T nt ns,cyl zm

4.1 cm 1.3 s 40 160 0
4.6 cm 1.3 s 39 160 0
5.4 cm 1.3 s 38 20, 40, 80, 160, 320 0
6.5 cm 1.3 s 36 160 0

A sensitivity study of the number of sources used to model each cylinder is
performed. The parameters used in the simulations correspond to the parameters
used for ζa = 5.4cm, cf. Table 7.4. Note that the buoyancy force is calculated from
geometrical considerations and insensitive to the number of sources. Therefore,
the sensitivity study is performed for the slamming coefficient, CS , Eq. (4.3). The
slamming coefficient is here normalized based on the diameter of each cylinder
of C19, d = 1.0 cm,

CS =
2
ρd

dA
dz

. (7.3)

This makes it easy to compare with superposition of the results for 24 individual
cylinders with diameter d. The slamming coefficient of one cylinder was presented
in Section 4.2.2.

The results of the sensitivity study are presented in Fig. 7.10. The results of
superposition of 24 single cylinders, cf. Section 4.2.2, is included for comparison.
The variations in added mass, and consequently smoothness of the slamming co-
efficient along the relative submergence, zw

d , increase with increasing number of
sources. Based on the results, ns = 24 × 160 = 3840 is used in the rest of the
simulations.

The results in Fig. 7.10 highlight the need for considering the hydrodynamic
interaction between the cylinders. However, in the first time-step, the results for
C19 and superposition of 24 single cylinders are similar. If the coefficient for C19
in the first time-step is divided by 24 (the total number of cylinders), CS(t = 0) is
within 3 % of the classical result by von Kármán, CS(t = 0) = π [45]. Contrary to
the results for one cylinder, where the maximum peak in CS occurs at the initial
time of impact, the maximum peak for C19 in the simulations is when zw ≈ 0.5d.
This is due to potential flow interaction between the cylinders, which gives the
largest variations in added mass when each cylinder is approximately 50 % wet.
The importance of hydrodynamic interaction between the cylinders can be esti-
mated by the impulse of the slamming force. The impulse of the slamming force
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Figure 7.10: Added mass and slamming coefficient of C19 as function of the
relative submergence. Numerical results using varying number of sources, ns, in
BEM. Normalization against one cylinder. Comparison with superposition of 24
single cylinders, cf. Section 4.2.2.



124 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

is proportional to the impulse of the slamming coefficient,

ICS
=

∫ t= d
w

t=0

CSd t =
1
w

∫ zw=d

zw=0

CSdzw. (7.4)

Since the added mass is zero before the cylinders start to get wet, the difference
in impulse is proportional to the difference in added mass when the cylinders are
fully wet, cf. Eq. (7.3). For a single cylinder, ICS

= 1.05 d
w , hence superposition

of 24 cylinders yields ICS
= 25 d

w . The impulse of C19 yields ICS
= 96 d

w which is
almost four times the result of superposition 24 individual cylinders. The results
of the top subplot of Fig. 7.10 indicate some variation in the impulse between
the different discretizations of C19. An alternative illustration of the difference
in impulse between 24 single cylinders and C19 discretized using ns = 3840 is
presented in Fig. 7.11.
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Figure 7.11: Illustration of difference in impulse between C19 and superposition
of 24 single cylinders, cf. Section 4.2.2.

Results for the four simulated wave amplitudes in BEM are compared with
the corresponding experimental results in Figs. 7.12 and 7.13. The experimental
results are presented in terms of the mean and standard deviation of the measured
force for the last five wave periods, cf. Fig 7.1. The experimental force is presented
for the first half wave period, 0≤ t < 0.5T , where t = 0 refers to the initial water
entry of the first cylinder of the model and T = 1.3 s. Contrary, the predicted water
entry load by the von Kármán approach is presented during the water entry phase
only, since the potential flow simulations end when the cylinders are fully wetted.

The potential flow solver water entry module provides acceptable estimates
of the maximum peak force for all considered wave amplitudes, in particular for
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the largest wave amplitude ζa = 6.5 cm where the peak force in BEM is within
5% of the experiment. However, there is a considerable phase difference between
the force in the BEM and in the experiments. This is related to the assumption
of normal impact in BEM, in which all cylinders are wetted at the same time.
Contrary, in the experiments, the cylinders are wetted at different times.
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Figure 7.12: Force on C19 placed at zm = 0 from initial water entry of model
due to incident wave. Wave parameters T = 1.3 s, ζa = 4.1cm (top) and ζa =
4.6 cm (bottom). The experimental results are presented in terms of the mean
and standard deviation of the measured force for five wave periods.
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Figure 7.13: Force on C19 placed at zm = 0 from initial water entry of model
due to incident wave. Wave parameters T = 1.3 s, ζa = 5.4cm (top) and ζa =
6.5 cm (bottom). The experimental results are presented in terms of the mean
and standard deviation of the measured force for five wave periods.
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7.2 Fully submerged

In Fig. 7.14, plots of the nondimensional wave amplitude and forces for C19 at
zm = −10cm (top) and zm = −30 cm (bottom) are presented. The wave parame-
ters are ζa = 5.4 cm, T = 1.3 s. The bottom subplot is a zoomed-in section of the
blue line in Fig. 7.1, but with different scaling of the force.

The band-pass filtered forces including the first, FFT1, and first five, FFT5,
harmonics are included in Fig. 7.14. The FFT5 filter seems appropriate for both
cases, in particular for zm = −30cm. For zm = −10 cm, the effect of filtering is
somewhat reduced, in particular, there is a considerable difference between the
force maximum and force minimum. Nevertheless, the first order filter includes
a considerable part of the forces; the force magnitudes calculated with the FFT1
filter is 94 % (zm = −30 cm) and 89 % (zm = −10 cm) of the magnitudes of the
corresponding FFT5 filtered forces. It may be surprising that the load character-
istics are this well captured by the basic harmonics since the wave trough is less
than 5cm from the model when zm = −10 cm.

The experimental results for all test sets for model positions −30cm ≤ zm ≤
−10 cm are presented in the following. The legends for the result figures are pre-
sented in Fig. 7.15. Compared to vertical positions close to the mean free-surface,
there is less difference between the maximum peak magnitude, the minimum peak
magnitude and the amplitude of the band-pass filtered forces, when the mod-
els are fully submerged. Therefore, the amplitude of the band-pass filtered forces
(FFT1 and FFT5) are used to present the results for the fully submerged positions.

The results are presented in Figs. 7.16 (C19) and 7.17 (S28). Consistent with
previous results, the force amplitude is in general larger for C19 than for P28.
The normalized force amplitudes increases with increasing KC. Some period de-
pendence is noted, in particular for larger KC numbers and for increasing wave
steepnesses. For a given KC number, increasing the wave period—which increases
λ
D and λ

2ζa
—increases, in general, the normalized force amplitude. The variations

in the flow over the plates are larger when λ
D is small, which is a likely explana-

tion. The sensitivity to the vertical position is, in general, small when the depth
dependence of the velocity is included in the normalization of the force amplitude.
This is in particular true for the longest waves. However, there is a tendency that
the normalized force is slightly larger when the distance from the free-surface is
increased, given a fixed KC number.
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Figure 7.14: Nondimensional force and wave elevation (at model center) in test
of C19 placed at zm = −10 cm (top) and zm = −30cm (bottom). Wave parame-
ters: ζa = 5.4cm, T = 1.3 s. The wave elevation and forces are made nondimen-
sional based on the maximum during each set.
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Figure 7.15: Legends for result figures: C19 (left) and S28 (right).
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Figure 7.16: The normalized force amplitudes on C19 in incident waves for
−30cm ≤ zm ≤ −10cm. The results are based on the band-pass filtered force
using the first, FFT1, and first five, FFT5, harmonics. Legend in Fig. 7.15.



Chapter 7: Perforated structures in waves 131

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fa,FFT1

ωWA0

0.0 0.2 0.4 0.6 0.8 1.0
KC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fa,FFT5

ωWA0

Figure 7.17: The normalized force amplitudes on S28 in incident waves for
−30cm ≤ zm ≤ −10cm. The results are based on the band-pass filtered force
using the first, FFT1, and first five, FFT5, harmonics. Legend in Fig. 7.15.
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7.3 Comparing incident waves and forced oscillations

The normalized force amplitudes in experiments of fully submerged models in
incident waves, presented in Section 7.2, are compared with the forced oscillation
experiments presented in Section 6.2. In the forced oscillation experiments, the
normalized force amplitude is based on the obtained added mass and damping
coefficients, cf. Fig. 6.12. In order to compare the two methods, the Froude–Krylov
contributions are added in the forced oscillation experiments, that is,

Fa

ωWA0
=

√

√

√

�

A+ρV
A0

�2

+
�

B
ωA0

�2

. (7.5)

Here the amplitude of the vertical velocity component is

W =ωηa =
D
T

KC. (7.6)
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Figure 7.18: Experimentally obtained normalized force amplitude for C19. Inci-
dent wave results (legend in Fig. 7.15) compared with forced oscillations (black
markers).

The normalized force amplitudes are presented in Figs. 7.18 (C19) and 7.19
(S28). The legends for the incident wave results are given in Fig. 7.15. For con-
sistency, the three smallest periods of oscillation, that is, T = 1.00 s, T = 1.25 s
and T = 1.50 s, are considered, in order to have similar conditions as the incident
wave experiments (1.0 s≤ T ≤ 1.3 s). However, note that the dependence on the
period of oscillation is small in the forced oscillation experiments, in particular
for KC< 1.1 which is presently considered.
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The normalized force on the models in incident waves is considerably smaller
compared to when the models are forced to oscillate. An exception is for the small-
est tested KC numbers in forced oscillations, in which the forces are similar to
those experienced in waves. Contrary, for the largest considered KC numbers in
incident waves, there is a 60-70 % increase in force when the models are forced
to oscillate.
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Figure 7.19: Experimentally obtained normalized force amplitude for S28. Inci-
dent wave results (legend in Fig. 7.15) compared with forced oscillations (black
markers).

A possible reason for the large difference in force between incident waves and
forced oscillations is the presence of a nonzero horizontal velocity component in
waves. In oscillating flow, the interaction between the harmonically oscillating
plate and the fluid generates large plate-end vortices on both sides of the plate.
Flow visualization with the viscous flow solver reveals that the flow is near sym-
metric with large similar plate-end vortices on both sides of the plate, cf. Figs.
6.14 and 6.15. In waves, it is likely that the nonzero horizontal velocity compo-
nent breaks this symmetry; for example that the plate-end vortices are advected
away from the plate. Another source of difference is the free surface.

In order to study the effect a nonzero horizontal velocity component has on
the force on a perforated plate, orbital flow simulations of S28 are performed. A
numerical study using S28 is particularly useful considering the good agreement
between the numerical and experimental results, cf. Fig. 6.12. The orbital flow
simulations use the same setup as for oscillating flow of S28, the only difference
is the boundary conditions, that is, the ambient harmonically oscillating flow has
nonzero horizontal component in the orbital flow simulations, cf. Section 5.3.4.
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Figure 7.20: Normalized force on S28 during the first six oscillation cycles for
KC= 0.5, 1.5 and 2.5 from numerical simulations of oscillating (top) and orbital
(bottom) flow conditions.
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In Fig. 7.20, the normalized vertical force time-series on the S28 plate is pre-
sented for three KC numbers, KC= 0.5, 1.5 and 2.5, for oscillating and orbital flow
conditions. The normalized force is plotted against time for the first six periods of
oscillation, including the ramp. In oscillating flow, the normalized force increases
with increasing KC. For KC = 0.5, the magnitude of the force in orbital flow is
similar to that of oscillating flow, whereas for KC = 1.5 and KC = 2.5, the force
is considerably larger in oscillating flow. Note in particular that the normalized
force in orbital flow conditions in fact reduces from KC= 1.5 to KC= 2.5.
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Figure 7.21: Normalized force amplitude, i.e., the square root of the sum of the
normalized added mass and damping coefficients squared, from numerical sim-
ulations of oscillating and orbital flow conditions for S28. The reduction in force
in orbital compared to oscillating flow for high KC numbers is due to reduction
of both the added mass and the damping.

The normalized force amplitude as function of KC is presented in Fig. 7.21.
The results supports the observations of Fig. 7.20. In general, the normalized force
amplitude in orbital and oscillating flow is similar for small KC numbers, whereas
there is a relative decrease in orbital flow for increasing KC numbers. It is particu-
larly interesting that there is a clear reduction in the normalized force amplitude
for KC ¦ 1.6. Note that the KC number is defined based on the amplitude of the
vertical velocity in both simulation types. Hence, the normalized force amplitude
is smaller, even though the absolute velocities,

p
u2 +w2, are larger in orbital than

in oscillating flow conditions for a given KC number.
Flow visualizations, comparing the orbital and oscillating flow fields, at KC=

0.5, 1.5 and 2.5, are analyzed. Streamline plots are presented in Figs. 7.22–7.24.
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The colormap for the contours, cf. Fig. 6.13, represents the vertical velocity. Nor-
malization of the colormap is made against two times the prescribed amplitude
of the velocity at the boundaries in the case of KC = 2.5, that is, the darkest blue
(−1.0) in Fig. 6.13 corresponds to w= −5 D

T and the darkest red (1.0) corresponds
to w= 5 D

T . The plots are zoomed in on the plates at a time-instant 0.26T into an
oscillation period (w = D

T KC sinωt). Hence, at this time-instant, the boundary
conditions are approximately equal in oscillating and orbital flow conditions; the
vertical velocity is w≈W , while the horizontal velocity is u≈ 0 (exactly u= 0 in
oscillating flow conditions).
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Figure 7.22: Streamline plots of S28 with orbital (top) and oscillating (bottom)
flow conditions at KC = 0.5. The time-instant is 0.26T into an oscillation period
(w = D

T KCsinωt, orbital: u = − D
T KC cosωt, oscillating: u = 0). Color contours

applied to the vertical velocity (red: positive, blue: negative).

The flow visualizations at KC= 0.5 are presented in Fig. 7.22. The normalized
force amplitude is reduced by 7 % in orbital compared to oscillating flow condi-
tions at KC = 0.5. In both orbital and oscillating flow conditions, local wakes
downstream of each plate element of the perforated structure are observed . The
local wakes are of similar magnitude as the global vortical structures caused by
flow separation at the plate-ends.

Corresponding flow visualizations at KC= 1.5 are presented in Fig. 7.23. Here,
the normalized force amplitude is 20% less in orbital than in oscillating flow con-
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ditions. The importance of the flow separation at the plate-ends, relative to the
local flow separation at each plate element, is increased compared to KC= 0.5. In
both flow conditions, there is a significant global wake formation downstream of
the left plate-end, but only the oscillating flow has a similar wake downstream of
the right plate-end. A reduction in flow velocity is observed upstream of the right
plate-end in orbital flow.
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Figure 7.23: Streamline plots of S28 with orbital (top) and oscillating (bottom)
flow conditions at KC = 1.5. The time-instant is 0.26T into an oscillation period
(w = D

T KCsinωt, orbital: u = − D
T KC cosωt, oscillating: u = 0). Color contours

applied to the vertical velocity (red: positive, blue: negative).

As the KC number is further increased to KC = 2.5, Fig. 7.24, the extent of
the global vortical structures from the plate-ends is considerably larger than the
local vortical structures in the wakes behind each plate element. The reduction
in the normalized force amplitude is 50 % in orbital compared to oscillating flow
conditions. A large plate-end vortex is observed on the left side only in orbital
conditions, whereas a symmetric pattern is seen in oscillating flow. The fact that
there is only one vortex rather than two, creating low pressure, might explain the
lower force amplitude.

The numerical study of orbital versus oscillating flow explains, to some de-
gree, why the force is smaller in incident waves than in forced oscillations. In
particular, the presence of a non-zero horizontal velocity component in the or-
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bital flow simulations affects the global flow separation, important for the force
on the structure. However, in the incident wave experiments, the force is consid-
erably reduced compared to forced oscillation experiments even for KC ≈ 0.5,
whereas in the numerical simulations for corresponding KC numbers, the normal-
ized force is only slightly reduced in orbital compared to oscillating flow. Possible
reasons are free-surface effects and λ

D . The experimental results indicate that both
parameters affect the force; the normalized force amplitude reduces with reduced
distance to the free-surface and reduced λ

D . Orbital flow represents an idealization
of the orbital motion of waves, without free-surface effects. Further, since there
are no spatial variations, that is, the ambient flow is equal along the width of the
plate, orbital flow conditions can be thought of as a long-wave approximation,
λ
D →∞. Consequently, the orbital flow results support the findings from the ex-
perimental investigations of incident waves, although there are additional effects
that must matter.
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Figure 7.24: Streamline plots of S28 with orbital (top) and oscillating (bottom)
flow conditions at KC = 2.5. The time-instant is 0.26T into an oscillation period
(w = D

T KCsinωt, orbital: u = − D
T KC cosωt, oscillating: u = 0). Color contours

applied to the vertical velocity (red: positive, blue: negative).
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7.4 Numerical simulations of incident waves

Numerical simulations of incident waves are performed with the hybrid CFD, that
is, the freeSurface module of the viscous flow solver, cf. Section 5.1.1, for a simpli-
fied model of S28. The simplified model, denoted R28, consists of 11 rectangular
cylinders instead of the 26 square cylinders of S28. This difference is due to nu-
merical stability in the simulations, cf. discussion in Section 5.3.5. The fine region
grid of R28 is presented in Fig. 7.25.
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Figure 7.25: Fine region grid of R28, a simplified model of S28 consisting of 11
rectangular cross-sections instead of the 26 square cross-sections of S28, cf. Fig
6.10. The perforation ratio of R28 is equal to S28, τ= 0.28.

In Fig. 7.26, the hybrid CFD numerical wave tank results of R28 are presented.
The CFD includes numerical simulations of R28 at zm = −0.30m ( zm

D = −0.83)
including linearized free-surface conditions, as well as orbital flow simulations of
R28. The experimental results with S28 placed at zm = −0.30m are included for
comparison. There is in general good agreement between the numerical simula-
tions of incident waves and the experiments.
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Figure 7.26: The normalized force amplitudes in incident waves for zm
D = −0.83.

Experimental results for S28 compared with numerical simulations of R28. Or-
bital flow simulations of R28 are included for comparison.
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The orbital flow simulations of R28 are included in Fig. 7.26 as well. For KC¦
0.4, the force is overpredicted in orbital flow relative to the experiments and CFD
with waves. However, for KC® 0.4, the force is very similar to that in waves. This
is interesting from a practical point of view, since the orbital flow simulations are
significantly less cumbersome.

A general trend in the experimental results is that the normalized force ampli-
tude, for a given KC number, decreases for decreasing wave period. This is found
for both experimentally tested model, C19 and S28, cf. Figs. 7.16 and 7.17. Similar
tendencies are observed in the incident wave simulations of R28, with T = 1.0 s
yielding smaller normalized force amplitudes than T = 1.3 s, for a given KC.
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Figure 7.27: Examples of time-series extracted from the experimental investi-
gations of S28. The wave elevations 2 m upstream (wp3) and 2 m downstream
(wp7) of the model is presented, in addition to the raw and filtered (first five
harmonics—FFT5) force. T = 1.3 s, KC= 0.29.

Examples of time-series extracted from the experiments are presented in Fig.
7.27. The measured wave elevations, 2 m upstream and 2 m downstream of the
rig, and the force on the model are presented for the case of S28 placed at zm =
−0.3 m with wave parameters T = 1.3 s and ζa = 0.036m ( λH = 36). In addition
to the raw measurements, the force filtered around the first five harmonics (FFT5)
is presented. Higher harmonics are observed in the downstream wave measure-
ments.

In Fig. 7.28, the numerical counterpart of the experimental time-series is pre-
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sented. Due to the hybrid numerical approach with linear free-surface conditions,
the higher harmonics of the wave profiles in the experiments cannot be repro-
duced in the CFD. Contrary, the force on the plate, which is solved in the Navier–
Stokes part of the domain, contains higher harmonics, similar to those in the ex-
periments. Consequently, most of the nonlinearity in the force must be associated
with the quadratic pressure jump on the plate. There is generally good agreement
between the numerical simulation and the experiment.
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Figure 7.28: Examples of time-series extracted from the numerical simulations
of S28. The wave elevations 2 m upstream (wp3) and 2 m downstream (wp7) of
the model is presented, in addition to the raw and filtered (first five harmonics—
FFT5) force. T = 1.3 s, KC= 0.29.

In addition to the incident wave simulations of R28, two similar models with
perforation ratios τ= 0.19 and τ= 0.36 are simulated. The models are denoted,
respectively, R19 and R36. The fine region grids of R19 and R36 are presented in
Fig. 7.29. The fine region grid of R28 is included for comparison. Two wave peri-
ods are simulated, T = 1.3 s ( λD = 7.21) and T = 1.6 s ( λD = 10.4). By simulating
longer waves, larger KC numbers are obtained.

The normalized force amplitudes from the incident wave simulations are com-
pared with corresponding orbital flow simulations in Fig. 7.30. Similar to previ-
ous results, the force increases with decreasing perforation ratio. The orbital flow
simulations yield results that are similar to the incident wave simulations, in par-
ticular for R36. In general, the accordance is better when the waves are long and
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Figure 7.29: Fine region grid of R19 (top), R28 (middle) and R36 (bottom).

when the perforation ratio is high. A denser perforated plate means stronger fluid-
structure interaction; more flow must circumvent the plate, the global plate-end
flow separation and the local flow-separation through the perforated openings are
stronger. Thus, a larger pressure difference over the plate as consequence, which
potentially interacts more with the free surface. Consequently, the flow is more
likely to interfere with the free-surface for decreasing perforation ratio in incident
waves, whereas in orbital flow, the flow conditions are forced on all boundaries.
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Figure 7.30: The normalized force amplitudes in simulations of incident waves
and orbital flow of R19, R28 and R36. The submergence is zm = −30cm, that is,
zm
D = −0.83.



Chapter 8

A semi-analytical method for
forces on perforated plates

A simple method for calculating the hydrodynamic force of perforated plates in os-
cillating flow is presented in this chapter. The method is based on curve-fitting the
results of a large numerical study, on the effect of perforation ratio and KC num-
ber on the hydrodynamic coefficients of perforated plates, to expressions similar
to those by Graham for solid plates [22]. In Section 8.1, a summary of the analyt-
ical method by Graham is given. Graham’s analysis is for small KC numbers. The
applicability of the method for higher KC numbers is discussed. Comparisons are
made with present numerical and experimental results. Details and results of the
numerical study is presented in Section 8.2. In Section 8.3, the numerical study
is compared with calculations using the semi-analytical method by Molin. The
expressions and details of the new curve-fits are then given in Section 8.4. The
method is based on a two-dimensional analysis using two-dimensional results. In
Section 8.5, the hydrodynamic forces estimated by the obtained expressions are
compared with previous three-dimensional experiments.

8.1 Graham’s plate in oscillating flow

In his analysis of the hydrodynamic forces on sharp-edged objects at low KC num-
bers [22], Graham presents the following relations for the hydrodynamic force on
a solid flat plate in oscillating flow,

F =
π

4
ρCM D2η̈+

1
2
ρCDDη̇|η̇|, CM = a0 + a1KC

2
3 , CD = b1KC−

1
3 . (8.1)

The theoretical analysis yielded a1 = 0.25 and b1 = 11.8. For a solid flat plate,
a0 = 1. Equation (8.1) can be expressed accordingly to Eq. (2.8), that is, with an
added mass coefficient and a linear damping coefficient. Since the plate consid-
ered by Graham is flat, the inertia term yields A

A0
= CM ,

A
A0
= a0 + a1KC

2
3 . (8.2)

143
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The motions are oscillating harmonically. Consequently, the quadratic damping
term yields the following equivalent linearized damping coefficient,

B
ωA0

=
b1

π2
KC

2
3 . (8.3)

Graham’s method was compared with experimental results by Singh [60],
which yielded somewhat smaller coefficients, a1 = 0.2 and b1 = 8.0 [22]. Note
that this curve-fit was based on a limited amount of experimentally tested KC
numbers, and that the results by Singh do not agree with results for flat plates by
Keulegan and Carpenter [38]. According to Singh, the reason for the discrepancies
is likely due to differences in experimental setup and geometry of the plates [60].
Contrary to the results by Singh, the results by Keulegan and Carpenter show that
the added mass coefficient increases with increasing KC numbers up to a local
maximum of CM ≈ 2.5 for KC≈ 7. Assuming that the plate by Keulegan and Car-
penter was thin, such that CM ≈

A
A0

, the coefficient in the added mass expression
would need to be a1 = 0.41 in order to have CM = 2.5 at KC = 7. However, the
analysis by Graham is applicable for small KC numbers; when KC= 7, the ampli-
tude of motion is larger that the plate width, hence, this is not a small KC number
for a flat plate.

In order to analyze the applicability of the method by Graham, simulations
and experiments of flat plates are compared to the analytical expressions. Graham
states that his analysis yields force expressions that are applicable for small KC.
For practical purposes, it is important to assess how small KC must be in order to
get acceptable force estimates with the method.
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Figure 8.1: Fine region of grid used to simulated a solid plate in oscillating flow.

A solid flat plate has been simulated with the viscous flow solver and compared
with the analytical results by Graham [22]. A plot of the fine region of the grid
close to the plate is presented in Fig. 8.1. The simulated plate is D = 100mm× t =
1mm, that is D

t = 100. A constant grid cell size of ∆x = ∆z = 1mm is used in
the fine grid region close to the plate, which is defined to be 102 mm×3 mm. The
grid is then stretched with a stretching parameter 20% until the maximum grid
cell size of∆xmax =∆zmax = 50 mm is reached. The total domain size is 2 m×2 m
and the total number of grid cells is 13 298.

In addition to the comparison with the analytical method by Graham, I have in-
cluded results from present experimental investigations of two solid plates1. This

1Special thanks go to Frøydis Solaas and Mia Abrahamsen-Prsic who led the experimental study.
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experimental study was conducted in a collaboration project within CRI MOVE.
We presented the results at the International Conference on Offshore Mechanics
and Arctic Engineering (OMAE) in 2019 [62].

Figure 8.2: Side and top view of the experimentally tested plate. The plate is D =
60 mm wide, t = 4mm thick ( D

t = 15) and has a lateral length of L = 570 mm.
Photo by Frøydis Solaas.

In the experiments, solid plate elements of width D = 60mm are installed in
the rig and forced to oscillate. A photo of the plate elements is presented in Fig.
8.2. To ensure sufficient stiffness, the plate elements are t = 4mm thick and made
from steel. An estimate of the maximum deflection is obtained from elementary
beam theory for static loads [63], assuming quasi-static behavior of the plate, i.e.,
the oscillation period is far from the wet natural period of the plate. For a fixed
beam of width D and length L, subjected to a uniformly distributed force F , the
maximum deflection is

δzmax =
1

384
F L3

DEI
. (8.4)

Here E = 2× 1011 Pa is the Young modulus of steel and I = 1
12 t3D is the moment

of inertia. Thus, for the tested plate element, EI = 64 Nm2 and

δzmax = 7.5× 10−6 mN−1F. (8.5)

The force depends on the tested KC number and period of oscillation, T . The
maximum force during the experiments of a single plate element is approximately
F = 40 N. Consequently, δzmax = 0.3 mm. Equation (8.4) is a theoretical estimate
based on a fixed beam. A more conservative approach is to assume that the beam
is allowed to rotate at the ends. The maximum deflection is then five times the
estimate of Eq. (8.4), that is, δzmax = 1.5 mm. The present arrangement is be-
tween these two configurations, cf. Fig. 8.2. Furthermore, the time-series of force
and acceleration were investigated; we did not find signs of plate vibrations. We
concluded from this that the stiffness of the plate elements is satisfactory.

Two solid plate configurations are experimentally investigated. In the first, a
single plate element is forced to oscillate, hence D

t = 15. In the second, two plate
elements are placed next to each other without any gap in between, acting as
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a single solid plate of D
t = 30. The experiments are performed similarly to the

other forced oscillation experiments in the thesis, cf. Chapter 3. An exception is
for D

t = 30 in which only one period of oscillation, T = 2.00 s, is tested. For more
details on these experiments, I refer to the cited conference paper [62].

The results are presented in Fig. 8.3. Clearly, the assumption of small KC num-
bers in Graham’s method is important for the added mass coefficient. The numer-
ical results agree well with the theory by Graham for KC< 3. For larger KC num-
bers, the theory by Graham underpredicts the added mass coefficient compared
to the numerical results. Curve-fitting to the expressions of Eqs. (8.2) and (8.3)
yields a1 = 0.228 and b1 = 10.41, when considering the viscous flow solver re-
sults for KC≤ 3. Note that due to the finite thickness of the numerically simulated
plate, the limiting added mass coefficient for KC→ 0 is slightly larger than 1.

As discussed for the experimental results by Keulegan and Carpenter, the value
of a1 in Eq. (8.2) depends on the range of KC numbers considered. The coefficients
a1 and b1, in Eqs. (8.2) and (8.3), for different ranges of KC numbers lower than a
given KCmax, are presented in Tables 8.1 and 8.2. In these curve-fits, the potential
flow added mass, calculated with the present potential flow solver, is used to find
a0, in order to reduce the effect of difference in D

t . The potential flow solver added
mass coefficients are a0 = 1.026 ( D

t = 100), a0 = 1.066 ( D
t = 30) and a0 =

1.107 ( D
t = 15). If the KC range is limited to the smallest KC numbers, Graham’s

analytical a1 = 0.25 is close to the present experimental and numerical results.

Table 8.1: Graham’s flat plate: Curve-fitted a1 from CFD and experimental results
for varying KC number ranges up to a given KCmax. Graham’s analytical result for
low-KC: a1 = 0.25.

KCmax CFD D
t = 100 Exp. D

t = 30 Exp. D
t = 15, T = 2.00 s

1.0 0.211 0.196 -
1.5 0.209 0.220 -
2.0 0.211 0.243 0.187
2.5 0.215 0.279 0.225
3.0 0.228 0.328 0.276
3.5 0.256 0.373 0.330
4.0 0.313 0.404 0.373
4.5 0.351 0.436 0.394
5.0 0.384 0.459 0.415

The experimental results agree, in general, well with the numerical results
for KC < 5. Some differences should be expected due to the differences in D

t .
In the experiments, the bottom wall of the tank and the free surface may also
influence the coefficients, although D

h =
0.06 m
1.0 m = 0.06 ( D

t = 15) and D
h =

0.12m
1.0m =

0.12 ( D
t = 30). The plates are installed in the rig with equal distance to the free

surface and the bottom wall of the tank, i.e., the distance is half the water depth,
0.5h. For KC > 5, the experimentally obtained added mass coefficient decreases
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Figure 8.3: Added mass and damping coefficients of a solid plate in oscillating
flow. Comparison between the analysis by Graham [22] using Eqs. (8.2) and (8.3)
and present numerical and experimental results. Five periods of oscillation are
tested for D

t = 15, cf. Fig. 6.5.
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with increasing KC. Contrary, the numerically obtained added mass coefficient
continues to increase.

The damping coefficient is less sensitive to the applied range of KC numbers.
All considered KC ranges yield somewhat smaller b1 than what was analytically
found by Graham. However, the present experimentally and numerically obtained
b1 coefficients are considerably larger than the experiments result by Singh, b1 =
8.0. Note that the KC number range for which this was based on, was quite modest.

Table 8.2: Graham’s flat plate: Curve-fitted b1 from CFD and experimental results
for varying KC number ranges up to a given KCmax. Graham’s analytical result for
low-KC: b1 = 11.8.

KCmax CFD D
t = 100 Exp. D

t = 30 Exp. D
t = 15, T = 2.00 s

1.0 9.07 9.73 -
1.5 9.38 10.26 -
2.0 9.76 10.82 10.47
2.5 10.00 11.29 10.42
3.0 10.41 11.54 10.52
3.5 10.72 11.49 10.47
4.0 11.01 11.35 10.26
4.5 11.07 11.16 10.15
5.0 11.07 10.94 10.01

Based on the present results, the method by Graham seems appropriate for
predicting the hydrodynamic coefficients of solid plates in oscillating flow for
KC < 3. For KC > 3, the added mass coefficient is, in general, underestimated
with Graham’s method compared to the present viscous flow solver and experi-
mental results. This is consistent with previous experimental results by Keulegan
and Carpenter [38]. Interaction between the two plate-end vortices is expected
for the higher KC numbers. As a consequence, one of the vortices grows larger and
quicker than the other, hence, Singh [60] refers to 4< KC< 7 as the asymmetric
region. For even higher KC numbers, “very strong vortices, sometime occupying
the width of the plate, are formed” [60].

The hydrodynamic force on a solid plate is dominated by damping for higher
KC numbers (KC ¦ 2), cf. y-axes in Fig. 8.3. All considered results—numerical,
experimental and analytical—agree on this. Graham’s analytical method predicts
the intersection between the damping and added mass as

B
ωA
=

b1
π2 KC

2
3

a0 + a1KC
2
3

= 1 → KC= 1.1. (8.6)

Consequently, even though the added mass coefficient from Graham’s method is
not accurate for KC> 3, the predicted normalized force amplitude can be accept-
able since the force is dominated by damping. The normalized force amplitude is
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presented in Fig. 8.4. The analysis by Graham gives similar force as the experi-
mental and numerical results for KC < 5. For higher KC numbers, the analytical
and numerical force estimates are similar; both methods overestimate the results
of the experiments.
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Figure 8.4: Normalized force amplitude of a solid plate in oscillating flow. Com-
parison between the analysis by Graham [22] using Eqs. (8.2) and (8.3) and
present numerical and experimental results. Five periods of oscillation are tested
for D

t = 15, cf. Fig. 6.5.

The comparison of experimental and numerical results suggests that the ac-
curacy of the viscous flow solver is limited for high KC numbers. The viscous flow
solver is a fully two-dimensional code of DNS type. No turbulence modeling is in-
cluded. 3D effects and correlation length may matter, but they are not investigated
further. As the flow velocity increases, these simplifications are less appropriate,
cf. the discussion in Section 6.3.4. Nevertheless, the range of KC numbers that are
relevant for subsea lifting operations is limited. Within a more limited (and rele-
vant) KC range, the present investigations suggest that the viscous flow solver—as
well as the analytical method by Graham for solid plates—are efficient and useful
tools.
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8.2 Numerical study on the perforation effect

A large numerical study on the effect of the perforation ratio and KC number on
the force coefficients of perforated plates, in oscillating flow, is performed. The
study is based on numerical simulations with the presently implemented viscous
flow solver. Ten perforation ratios, from τ= 0.05 to τ= 0.50 in steps of τ= 0.05,
are simulated. Additionally, corresponding solid plates (τ= 0) are simulated. The
simulations are performed for oscillation amplitudes corresponding to 0.002 ≤
KC ≤ 2.2. These ranges of τ and KC cover typical conditions for perforated plate
structures used in marine operations.

Table 8.3: Discretization of plate models I and II. Plate width (D), width-to-
thickness ( D

t ), width-to-hole-size ( D
lh

), width-to-cell size in the fine grid region

close to the plate ( D
∆), domain size to plate width ( l

D ), and total number of grid
cells in the domain.

Model D D
t

D
lh

D
∆

l
D Cell count

I 0.42 m 140 140 280 14.3 74 268
II 0.36 m 120 80 240 16.7 67 860

Two different numerical perforated plate models, I and II, with different nu-
merical grids, widths and number of fluid cells in the openings, are tested for
each perforation ratio, in order to increase the confidence in the results, and to
investigate the numerical uncertainty of different modeling of the same plate per-
foration. Details of plate models I and II are given in Table 8.3. The numerical
modeling is similar to that of the perforated plates that were thoroughly investi-
gated and validated against dedicated experiments in Chapter 6. Illustrations of
the plate element setup are presented in Figs. 8.5 and 8.6.

Examples of flow fields are provided in Figs. 8.7 and 8.8. Here, streamline
plots for simulations with plate model I at KC= 0.95 are provided for τ= 0 (top),
τ = 0.20 (middle) and τ = 0.40 (bottom). The red-blue colormap presented in
Fig. 6.13 is used to indicate the vertical velocity. Normalization of the colormap is
made against three times the prescribed amplitude of the velocity at the bound-
aries, that is, the darkest blue (−1.0 in Fig. 6.13) corresponds to w= −3 D

T KC and
the darkest red (1.0 in Fig. 6.13) corresponds to w= 3 D

T KC. The plots are zoomed
in on the plates at a time-instant 41 % into an oscillation period; the velocity at
the boundaries is set to w = D

T KC sinωt. Note that the flow is globally deflected
towards the sides of the plate even for high perforation ratios, similar to that for
a solid plate. Vortices due to plate-end flow separation are easily observed for
τ = 0.20. Figure 8.8 presents a closer view of the perforated plates presented in
Fig. 8.7, with streamline representations zoomed in on the right end of the plates.
The closer view reveals vortical structures behind each plate element at the scale
of the plate element lengths for all perforation ratios.
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Figure 8.5: Plate models type I.
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Figure 8.6: Plate models type II.
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Figure 8.7: Streamlines for τ = 0 (top), τ = 0.20 (middle) and τ = 0.40 (bot-
tom) at KC = 0.95. Color contours applied to the vertical velocity (red: positive,
blue: negative).
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Figure 8.8: Streamlines zoomed in on the upper right plate-ends of τ= 0 (top),
τ = 0.20 (middle) and τ = 0.40 (bottom) at KC = 0.95. Color contours applied
to the vertical velocity (red: positive, blue: negative).
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Added mass and damping coefficients obtained in the numerical simulations
are presented in Figs. 8.9 and 8.10. There are small differences between the re-
sults of plate models I and II. The added mass clearly increases with decreasing
perforation ratio. The largest rate of absolute changes in A appear for τ ® 0.20.
For the damping, B, there is a more steady rate of absolute change with decreasing
perforation ratio. Notably, τ = 0.05, τ = 0.10, τ = 0.15 and τ = 0.20 all yield
larger damping coefficients than the solid plate for a range of low KC numbers. For
increasing KC, the damping coefficients are largest for the solid plates. The perfo-
rated plates yield larger damping than the solid plates for KC < 0.36 (τ = 0.20),
KC < 0.69 (τ = 0.15), KC < 0.97 (τ = 0.10) and KC < 1.31 (τ = 0.05). The fact
that the damping at small KC numbers can be larger for dense perforated plates
than for corresponding solid plates, is consistent with previous studies [16, 23,
25], cf. Section 1.4.5.
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Figure 8.9: Added mass coefficients for numerically simulated perforated plates.
Circular markers: Model I. Square markers: Model II.

The ratio between the damping force and added mass force is presented in
Fig. 8.11. For practical values of the KC number, perforation ratios larger than
τ = 0.10 are found to be damping dominant. Even the densest perforated plate,
τ = 0.05, is damping dominant for KC > 0.95. The flat solid plate is damping
dominant for KC≥ 1.43.

The normalized force amplitude is presented in Fig. 8.12. The hydrodynamic
force amplitude increases with decreasing perforation ratio and increasing KC
number. Due to the importance of the damping force, the results are similar to the
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Figure 8.10: Damping coefficients for numerically simulated perforated plates.
Circular markers: Model I. Square markers: Model II.
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Figure 8.11: Ratio between damping force and added mass force for numerically
simulated perforated plates. Circular markers: Model I. Square markers: Model
II. Legend in Fig. 8.10.
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Figure 8.12: Normalized force amplitude for numerically simulated perforated
plates. Circular markers: Model I. Square markers: Model II. Legend in Fig. 8.10.

damping coefficients alone, Fig. 8.10. However, an importance differences is that
the force amplitude, for a given KC number, always increases when the perforation
ratio decreases.

8.3 Comparison with Molin’s method

Calculations using Molin’s semi-analytical method [19], including drag correction,
for added mass and damping coefficients of perforated structures, are performed.
Ten perforated plates are considered, with perforation ratios equal to that of the
numerical study, that is, from τ = 0.05 to τ = 0.50 in steps of τ = 0.05. Further,
the same range of KC numbers is considered as in the numerical study, that is,
0.002≤ KC≤ 2.2, cf. Section 8.2.

In the method by Molin when including a drag correction term as proposed
by Sandvik et al. [9], the added mass and damping coefficients are functions only
of τ, KC, µ and α, cf. Sections 1.4.2 and 1.4.3. Hence, τ, KC, µ and α are the
only input parameters when performing calculations using this method. Two of
these parameters, the perforation ratio, τ, and the KC number, are (at least in
the present context) trivial, since they define the considered case. Contrary, the
drag correction coefficient, α, and the discharge coefficient, µ, are (in general) un-
known and must be set in advance of the calculation. The discharge coefficient,
µ, which relates the pressure loss to the relative velocity through the perforated
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openings [19], is a function of the local geometry of the plate openings. As an
example, µ will differ between a plate that has sharp-edged holes, and a plate
that consists of circular cylinders in a row. The drag correction coefficient, α, is
proportional to the drag coefficient and drag force due to plate-end flow separa-
tion. Sandvik et al. [9] were inspired by the analytical results for solid plates by
Graham [22], and a similar model for the drag force was applied, that is, the drag
correction coefficient, α, is equivalent to b1 in Eq. (8.1). In his analytical study,
Graham found that for a solid plate, b1 = α= 11.8 [22]. Consequently, the appro-
priate value of α for a perforated plate is 0 < α < 11.8, cf. discussion in Section
1.4.3.

For the present comparison, calculations are performed for a range of µ and
α. For each perforation ratio, 24 different values of α ranging from α = 0.5 to
α = 12.0, with increments of 0.5, are tested. Further, for each combination of
τ and α, calculations are performed for 15 discharge coefficients, ranging from
µ = 0.3 to µ = 1.0 with increments of 0.05. The choice of discharge coefficients
are made based on resistance coefficients provided by Blevins [21, pp. 314–315],
which correspond to discharge coefficients in the range 0.35 < µ < 0.65 for the
present perforation ratios, and by statements by Molin et al. [17–19], where it is
commented that the discharge coefficient is usually 0.3< µ < 1.0.

Taking into account the 10 different perforation ratios, the 24 values of α
and the 15 discharge coefficients, a total of 3600 semi-analytical calculations are
performed. A summary of the calculation variables is provided in Table 8.4.

Table 8.4: Calculation variables in study using Molin’s method

Parameter Min value Max value Increment
τ 0.05 0.50 0.05
α 0.05 12.0 0.05
µ 0.30 1.0 0.05

In order to compare effectively the results of the semi-analytical calculations
with the viscous flow solver results, only the best fitting results of the various
combinations of α and µ are provided. Hence, from the 360 calculations (24 α
times 15 µ) for each perforation ratio, only the best fit is presented. The best fit
is determined by calculating the mean relative difference, dr , between the results
of the semi-analytical method and the viscous flow solver for the range of KC
considered, 0.002 ≤ KC ≤ 2.2. For each perforation ratio, the combination of
α and µ that corresponds to the smallest mean relative difference is presented.
Three results are provided for each plate perforation, the combination of µ and
α that yields the smallest relative difference for 1) the added mass coefficient,
2) the damping coefficient, and 3) the square root of the sum of the coefficients
squared, that is, the normalized force amplitude.

The results from calculations with Molin’s semi-analytical method are pre-
sented in Tables 8.5 and 8.6. The presented mean relative difference (dr) and
correlation coefficient (r) are between the CFD results and the semi-analytical
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Table 8.5: The combination of µ and α that yields the best fit with the added
mass and damping coefficients of the CFD results. Mean relative difference (dr)
and correlation coefficient (r) between semi-analytical best fits and CFD results.

τ
Best added mass fit Best damping fit
µ α dr r µ α dr r

0.05 0.30 0.5 10 % 0.869 1.00 10.5 17 % 0.999
0.10 0.95 2.0 10 % 0.975 1.00 9.5 6 % 0.997
0.15 0.85 4.5 11 % 0.983 0.95 9.0 3 % 0.998
0.20 0.75 5.5 13 % 0.982 0.85 8.0 4 % 0.998
0.25 0.65 6.5 16 % 0.972 0.80 7.5 5 % 0.998
0.30 0.55 7.0 18 % 0.958 0.80 7.0 5 % 0.999
0.35 0.45 7.0 19 % 0.947 0.75 5.5 6 % 0.998
0.40 0.45 6.5 20 % 0.953 0.75 4.5 6 % 0.999
0.45 0.45 5.5 21 % 0.968 0.75 3.0 7 % 0.997
0.50 0.40 6.0 23 % 0.944 0.80 3.5 8 % 0.998

Table 8.6: The combination of µ and α that yields the best fit with the normalized
force amplitude of the CFD results. Mean relative difference (dr) and correlation
coefficient (r) between combined semi-analytical best fit and CFD results.

τ µ α dr r
0.05 0.50 12.0 3 % 0.999
0.10 0.95 11.5 5 % 0.998
0.15 0.85 10.0 6 % 0.998
0.20 0.80 9.0 7 % 0.998
0.25 0.80 8.0 8 % 0.998
0.30 0.75 7.0 8 % 0.998
0.35 0.75 7.0 9 % 0.999
0.40 0.75 6.0 9 % 0.999
0.45 0.75 5.0 10 % 0.998
0.50 0.75 0.5 10 % 0.997
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method for the same KC numbers as was simulated in the CFD. Two observations
are highlighted in the following. 1) There are no generic values of µ and α, and
it is not obvious how these parameters should be chosen. Nonetheless, the drag
correction coefficient, α, is found to decrease with increasing perforation ratio.
This is consistent with weaker plate-end flow separation for increasing perfora-
tion ratio. Note that the best fit for the added mass coefficient is not obtained for
decreasing α with increasing τ. The resistance coefficients for a perforated plate
with square edges provided by Blevins [21, p. 314] suggests that µ should in-
crease from µ= 0.35 for the smallest perforation ratio, τ= 0.05, to µ= 0.50 for
the largest perforation ratio, τ= 0.5. However, the present results found the best
fit when µ is larger than 0.5, without consistent dependence on the perforation
ratio. 2) The best fit to both added mass and damping is in general not found for
a single combination of µ and α. Most noticeable are the inconsistent trends in
α. For smaller perforation ratios, the best fit to the damping coefficient is found
with a larger α than what gives the best fit for the added mass coefficient. This
behavior is opposite for higher perforation ratios, that is, for the largest perfora-
tion ratios, the added mass best fit is found with a larger α than the damping best
fit. A similar problem has previously been observed when comparing the semi-
analytical method to experimental results; when comparing the semi-analytical
method with experiments of a perforated disk with a perforation ratio of τ= 0.20,
Molin et al. [18] found that α = 6 was needed to get a good fit for the damping
coefficient, but this would underestimate the added mass coefficient. The results
by An and Faltinsen [20], comparing the semi-analytical method with experimen-
tal results of two rectangular perforated plates of perforation ratios τ= 0.08 and
τ= 0.16, yielded a similar conclusion. However, since the hydrodynamic force on
perforated plates in oscillating flow is, in general, dominated by damping, incon-
sistent dependence on α for the added mass coefficient is less important than for
the damping coefficient.

8.4 Semi-analytical method inspired by Graham

The results of the numerical study using the viscous flow solver are combined with
the expressions for the hydrodynamic coefficients of solid plates by Graham, in or-
der to develop simple expressions for the force coefficients of perforated plates.
The method is semi-analytical in the sense that it is based on Graham’s analyti-
cally derived expressions for solid plates, but with the parameters curve-fitted to
the present results for perforated plates. A benefit of the method by Graham is
that the analytical expressions are very simple to use. In Section 8.1, good agree-
ment between Graham’s method and present numerical and experimental results
of solid plates was demonstrated. In Section 8.2, a large numerical study of per-
forated plates was presented. In the following, the parameters of Eqs. (8.2) and
(8.3), that yields the best curve-fit to the simulated perforated plates are provided.

For each perforation ratio, the resulting parameters, a0, a1 and b1, are pre-
sented in Table 8.7. A simple code for obtaining the added mass and damping
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coefficients for a given τ and KC is given in Code listing 8.1. In Table 8.7, the
mean relative difference (dr) and correlation coefficient (r) are obtained based
on the normalized force amplitude. The results of the CFD are compared to the
estimated result using the curve-fits applied to the same KC numbers as was sim-
ulated in the CFD. A visual comparison of the curve-fits to the viscous flow solver
results is presented in Fig. 8.13.

Table 8.7: Coefficients in Eqs. (8.2) and (8.3) when curve-fitted to the present
CFD results. The mean relative difference (dr) and correlation coefficient (r) are
based on comparing the normalized force amplitude estimated with the curve-fits
and the CFD results.

τ a0 a1 b1 dr r
0.00 1.000 0.216 10.1 2% 0.998
0.05 0.748 0.230 10.1 2% 0.999
0.10 0.498 0.252 9.58 3% 0.998
0.15 0.281 0.271 8.72 4% 0.998
0.20 0.132 0.261 7.67 3% 0.998
0.25 0.055 0.222 6.57 2% 0.999
0.30 0.017 0.181 5.48 3% 0.999
0.35 0.000 0.156 4.44 6% 0.999
0.40 0.000 0.120 3.49 10 % 0.998
0.45 0.000 0.087 2.69 12 % 0.995
0.50 0.000 0.057 2.04 13 % 0.994

The applied functional relationship, i.e., Eqs. (8.2) and (8.3), seems to pro-
vide a reasonable model. A deficiency is that the damping coefficients are under-
estimated for the densest perforated plates at low KC numbers, cf. discussions in
Sections 1.4.5 and 8.2. Moreover, for τ ≥ 0.35, there is a considerable increase
in the mean relative difference between the curve-fits and the CFD results. This is
consistent with the fact that the analysis by Graham only takes the plate-end flow
separation into account, that is, Eqs. (8.2) and (8.3) were developed for solid—not
perforated—plates. Plate-end flow separation is important for perforated plates as
well, but the effect is less important for increasing perforation ratio as more flow
can pass through the perforated openings. The streamline plots of Fig. 8.7 illus-
trate the differences in flow for different perforation ratios; clearly, the plate-end
vortices are weaker when the perforation ratio increases.

The curve fits for the perforated plates are based on results for both plate
models I and II for 0.24≤ KC≤ 2.2. The results from the smallest KC numbers are
ignored when performing the curve fitting for the perforated plates. The reason
is that plate-end flow separation is not of importance for small KC numbers and
Graham’s flat plate theory should not be expected to be representative. In reality,
the low limit KC in the method should depend onτ since increasing the KC number
and/or decreasing the perforation ratio increases the importance of the plate-end
flow separation, cf. Section 6.4. For instance from Fig. 6.24, τ= 0.19: KClow ' 0.2
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Figure 8.13: Added mass (top) and damping (bottom) coefficients. Markers rep-
resent present CFD and curves are based on curve-fit of the CFD results to Eqs.
(8.2) and (8.3). Curve-fit coefficients presented in Table 8.7. Circular markers:
Model I. Square markers: Model II.
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and τ= 0.28: KClow ' 0.3. When using a constant low limit of KClow = 0.24, there
is a considerable mean relative difference between the curve-fits and the CFD
results for the highest perforation ratios. In order to have smaller mean relative
difference than 5 %, the low limit KC must be KClow = 0.28 (τ = 0.35), KClow =
0.56 (τ = 0.4), KClow = 0.83 (τ = 0.45) and KClow = 0.97 (τ = 0.5). Note that
for very small KC numbers, i.e., KC→ 0, the number of holes on the plate is the
important parameter for the (added mass) force. If a value for the added mass in
the low-KC limit is needed, one should use an alternative approach, e.g. a source
method calculation, cf. Section 4.1.2.

Compared to the semi-analytical method by Molin, a benefit of the proposed
model is its simplicity. No advanced calculations are needed, and the estimated
force depends only on τ and KC, not µ and α. Even from the large range of τ,
µ and α considered (3600 combinations), consistent trends and clear recommen-
dations of use are not obtained, in particular for µ. However, since the present
method does not take a discharge coefficient into account, and is based on simu-
lations using rectilinear grids (sharp edges), the method will be conservative for
perforated structures without sharp edges, cf. Section 6.3.3.

0.0 0.1 0.2 0.3 0.4 0.5
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
A0

B
ωA0

A
A0

KC=0. 24

A
A0

KC=0. 95

A
A0

KC=1. 55

B
ωA0

KC=0. 24

B
ωA0

KC=0. 95

B
ωA0

KC=1. 55

A
A0
 DNV GL low KC

A
A0
 DNV GL all KC

Figure 8.14: Added mass and damping coefficients as functions of perforation
ratio for three KC numbers in the present numerical study. Comparisons with the
recommended practice by DNV GL [4], cf. Section 1.4.4.

In Section 1.4.4, methods for estimating the effect of perforation, provided by
DNV GL [4], are presented. Compared to the recommended practice by DNV GL,
a strength of the proposed method is that estimates for both the added mass and



Chapter 8: A semi-analytical method for forces on perforated plates 163

damping coefficients of perforated plates are obtained. The results of the numer-
ical study highlight the importance of damping. Experimental studies presented
in Chapter 6 support the numerical findings. Furthermore, the present expres-
sions are functions of KC. The hydrodynamic force and coefficients of perforated
plates are highly KC dependent. An illustration is presented in Fig. 8.14. The
present results are plotted for three KC numbers. Both τ and KC are important,
e.g. for τ= 0.25, the damping coefficient at KC= 0.95 is more than twice that at
KC= 0.24.

Code listing 8.1: Python code for obtaining added mass and damping coefficients
for a given perforation ratio and KC number using the semi-analytical method.

""" Semi-analytical force model: 0 < tau < 0.5, 0.2 < KC < 2.2 """

import numpy as np

def coefficient_interpolation(tau):
""" Interpolation of curve-fits """
taus = np.linspace(0, 0.5, 11)
a_0s = [1.000, 0.748, 0.498, 0.281, 0.132,

0.055, 0.017, 0.000, 0.000, 0.000, 0.000]
a_1s = [0.216, 0.230, 0.252, 0.271, 0.261,

0.222, 0.181, 0.156, 0.120, 0.087, 0.057]
b_1s = [10.1, 10.1, 9.58, 8.72, 7.67,

6.57, 5.48, 4.44, 3.49, 2.69, 2.04]
a_0 = np.interp(tau, taus, a_0s)
a_1 = np.interp(tau, taus, a_1s)
b_1 = np.interp(tau, taus, b_1s)
return a_0, a_1, b_1

def coefficients_from_tau_kcn(tau, kcn):
""" Added mass and damping for a given tau and KC number """
a_0, a_1, b_1 = coefficient_interpolation(tau)
return a_0 + a_1*kcn**(2/3.0), b_1/np.pi**2*kcn**(2/3.0)

# Example of use: Coefficients for a given perforation ratio and KC number
A_A0, B_OMEGAA0 = coefficients_from_tau_kcn(tau=0.24, kcn=1.5)

8.5 Comparison with 3D experiments

The coefficients in the semi-analytical method, presented in Table 8.7, are based
on the two-dimensional analytical investigation by Graham and two-dimensional
numerical viscous flow solver results of perforated plates. In the following, the
applicability of the method to predict the force on three-dimensional perforated
structures is investigated. The present verification includes experimental inves-
tigations of five structures by Sandvik et al. [9] and two structures by An and
Faltinsen [20]. Parameters of the three-dimensional studies are presented in Ta-
ble 8.8.

Sandvik et al. [9] performed three-dimensional experimental model tests of
a realistic protection roof structure, consisting of rows of circular cylinders sur-
rounded by an outer bumper frame. The perforation ratio of the structure as a
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Table 8.8: Parameters in experimental studies by An and Faltinsen [20] and Sand-
vik et al. [9]; perforation ratios, aspect ratios, and periods of oscillation in the
experiments. The aspect ratio is the length divided by the width. The width of
the structures is used as the characteristic length (D) in the KC number.

τ Aspect ratio T Reference
0.08 1.4 1.5 s, 2.0 s, 2.5 s, 3.0 s An and Faltinsen [20]
0.16 1.4 1.5 s, 2.0 s, 2.5 s, 3.0 s An and Faltinsen [20]
0.16 2.0 1.5 s, 2.0 s Sandvik et al. [9]
0.25 2.0 1.5 s, 2.0 s Sandvik et al. [9]
0.27 1.3 6 s, 10 s Sandvik et al. [9]

0.375 1.1 6 s, 10 s Sandvik et al. [9]
0.47 1.1 6 s, 10 s Sandvik et al. [9]

whole is τ= 0.27. Two similar roof models with perforation ratios τ= 0.375 and
τ = 0.47 were also tested. In addition to the roof structures, two simpler hatch
covers, also consisting of rows of cylinders, but without outer bumper frames,
were investigated. The simpler hatch covers have perforation ratios τ= 0.25 and
τ = 0.16. Photos of one of the roofs and one of the simpler hatch covers are pre-
sented in Fig. 8.15. The experimental results for these structures, as well as the
photos in Fig. 8.15, were provided by Frøydis Solaas, co-author of the referred
study.

Figure 8.15: Photos of two of the structures experimentally investigated by Sand-
vik et al. [9]. The poster Hatch 18 refers to the number of cylinders. Photos from
Frøydis Solaas.

An and Faltinsen [20] investigated experimentally three-dimensional plates
with sharp-edged circular holes. The plates are 520 mm long and 365 mm wide.
The plates consist of many holes and are relatively thin with thickness equal to
5mm. Consequently, the plates are almost ideal. An and Faltinsen tested two
plates. The plates are similar except for the number of holes which is 192 and
384. Each hole has diameter 10 mm. Thus, the perforation ratios are τ = 0.08
and τ = 0.16. The latter is particularly useful in the present comparison, since
one of the structures by Sandvik et al. also has perforation ratio τ= 0.16. Hence,
these structures have equal perforation ratios, but different shapes—20 circular



Chapter 8: A semi-analytical method for forces on perforated plates 165

cylinders (Sandvik, τ= 0.16) versus 384 sharp-edged holes (An, τ= 0.16).
The normalized force amplitudes are presented in Figs. 8.16 and 8.17. The

semi-analytical expressions are given with solid lines. The experimental results
by An and Faltinsen [20] are presented with four rotations of triangle markers
(four different periods of oscillation), while the results by Sandvik et al. [9] are
given with circular and square markers (two different periods of oscillation). Note
that the reference added mass, A0, differ between 2D and 3D; Sandvik et al. es-
timated the potential flow added mass taking into account the aspect ratio and
using a correction factor [64], while An and Faltinsen performed potential flow
calculations of a corresponding solid plate to determine A0.
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Figure 8.16: Normalized force amplitude of three-dimensional perforated plates
[9, 20]. The different markers indicate different periods of oscillation. Compar-
isons with the semi-analytical method (solid lines), Table 8.7.

The agreement between the semi-analytical method and the previous three-
dimensional experimental investigations is, in general, reasonable, keeping in
mind that the models are 3D, while the method is based on two-dimensional ideal
plates. Good agreement is obtained for τ= 0.08 and τ= 0.16. For higher perfora-
tion ratios, the semi-analytical method overpredicts the force. An exception is for
τ= 0.47, in which the semi-analytical method agrees well with the experimental
investigations.

It is not surprising that there are discrepancies. One obvious candidate is the
geometry of the members. In the roof model with τ = 0.27, all members are
cylindrically shaped with circular cross-sections. For this case, the semi-analytical
method overpredicts considerably. The plates by An and Faltinsen have circular
sharp-edged holes, which is more consistent with the present CFD model. Further,



166 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

one may expect weaker global vortex structures shed from the plate ends when
the structure edge is not sharp. The roof models have bumper frames with circular
cylinders. The hatch covers (τ = 0.25 and τ = 0.16) have sharp edges along the
two short sides. The plates by An (τ= 0.08 and τ= 0.16) have sharp edges along
all four sides. Nevertheless, in terms of geometry, Sandvik’s roofs of τ= 0.375 and
τ = 0.47 are very similar, yet the semi-analytical method is poor for τ = 0.375
and good for τ= 0.47.
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Figure 8.17: Normalized force amplitude of three-dimensional perforated plates
[9, 20]. The different markers indicate different periods of oscillation. Compar-
isons with the semi-analytical method (solid lines), Table 8.7.

Another candidate is three-dimensionality of the geometry. One would expect
this to give effects most pronounced for length-to-width aspect ratios of 1. The as-
pect ratios are given in Table 8.8. However, there is no clear trend in the presented
data that higher aspect ratios provide better comparison with the semi-analytical
model. For instance, the plate with aspect ratio 1.4 (An τ = 0.16) agrees better
than the hatch cover with aspect ratio of 2.0 (Sandvik τ= 0.25).

There is in general reasonable agreement between the semi-analytical method—
which is based on Graham’s two-dimensional analysis and two-dimensional nu-
merical simulations—and the three-dimensional experiments. As elaborated ear-
lier, plate-end flow separation is important for the hydrodynamic force on perfo-
rated plates. The flow separation will occur on two sides of a two-dimensional
plate, and on four sides of a three-dimensional plate. Nevertheless, the predicted
force on the plates using the two-dimensional method agrees reasonable when
comparing with the three-dimensional experiments. Two effects are highlighted
in this respect. 1) Interaction between the flow separation from the four sides in
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3D is more dominant than the interaction from flow separation at the two sides
in 2D. 2) The flow has more freedom to circumvent the plate in 3D. This is illus-
trated in the sketch in Fig. 8.18. The flow will separate on the sides 1 and 2 in
the two-dimensional case, and from sides 1, 2, 3 and 4, including their corners,
in the three-dimensional case. However, the freedom to flow in the intermediate
quadrants A, B, C and D without separation is only possible in 3D.

1 2 1

2

3

4

A B

C D

Figure 8.18: Explanation of parameters used in discussion of 2D (left) vs 3D
(right) plate flow. The flow will separate at the plate-ends in both cases (num-
bered edges), but is allowed to circumvent the plate without separation in 3D (A,
B, C and D).





Chapter 9

Interaction effects

One of the unsolved questions within hydrodynamics of complex structures in the
wave zone is how and when interaction effects influence the forces on a complex
structure. In the recommended practice for modeling and analysis of marine op-
erations, DNV GL notes that for subsea structures, “interaction effects between
members caused by flow restrictions can cause a significant increase in the added
mass and damping” [4, Section 3.3.3]. Thus, according to DNV GL, estimating the
hydrodynamic force coefficients of a subsea structure based on superposition of
each member can lead to an underestimation of the actual total force. At worst,
this can increase the probability of unsafe operations with risk for equipment and
personnel.

In this chapter I present some new results in this regard, and highlight some as-
pects of interaction effects relevant for subsea structures. The results are obtained
from experimental and numerical methods in forced oscillation conditions. Re-
sults from numerical simulations of orbital flow conditions are included as well.
The focus in this chapter is mostly on interaction between different members, for
example wake effects. I’ve also included results from the type of interaction effect
that is due to the presence of a boundary (wall) close to the model.

9.1 Simplified subsea structure

A simplified subsea structure is experimentally investigated. The simplified sub-
sea structure consists of two ideal perforated plates of τ = 0.28, identical to P28
presented in Section 6.1. In general, I refer to models consisting of two perforated
plates of τ = 0.28 as 2P28. The plates are placed in parallel with a gap distance
of 120mm, that is, 2P28_120. Between the two perforated plates, five circular
cylinders (5C) are installed. The perforated plates may be thought of as simpli-
fications of the top and bottom covers of a subsea module, while the cylinders
represent simplifications of equipment on the module. The cylinders have equal
radius R = 30mm. The wall-to-wall distance between each cylinder is 30mm,
such that the total width of the cylinders is 5 × 60mm + 4 × 30 mm = 420mm.

169
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Figure 9.1: Photo of 2P28_120+5C, a simplified subsea structure model. Between
two perforated plates of τ= 0.28, five circular cylinders are installed. The width
of the model is D = 420mm, the gap distance between the two perforated plates
is 120 mm.

The full model is referred to as 2P28_120+5C. A photo of the model is presented
in Fig. 9.1.

Examples of time-series from the experimental investigations of 2P28_120+5C
are presented in Fig. 9.2. The measured raw, unfiltered force and acceleration are
presented for one set (combination of period and amplitude of oscillation) of the
experimental investigations. Both quantities are made nondimensional by their
maximum values during the set. Clearly, there is a phase delay between the first
harmonic of the acceleration and force, indicating that the force consists of both
added mass and damping terms. Note that the force coefficients are obtained for
the eight oscillation cycles in the middle of the set, ignoring the ramp-in, ramp-out
and the first and last oscillation cycle with full amplitude of motion. Furthermore,
both signals are filtered around the basic harmonics; the acceleration is band-pass
filtered from 0.7T to 1.3T , while the force is filtered from 0.7T to 5.3T . The fil-
tered force and acceleration are included with dotted lines in the bottom plot of
Fig. 9.2.

The obtained added mass and damping coefficients of 2P28_120+5C are pre-
sented in Fig. 9.3. Included in the figure are the coefficients from experimental
investigations of the five cylinders without perforated plates, 5C, as well as the
two perforated plates without cylinders between them, 2P28_120. Interestingly,
the force coefficients are, in general, larger for the two parallel perforated plates
without cylinders than when the cylinders are included. An exception is the added
mass coefficient for small KC numbers. However, the hydrodynamic force ratio of
both 2P28_120 and 2P28_120+5C are dominated by damping (cf. the values of
the vertical axes), and the increased added mass of 2P28_120+5C is more than
compensated for by a smaller damping coefficient. This becomes clearer by study-
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Figure 9.2: Example of force and acceleration measurements from experiments of
2P28_120+5C. The figures show the measured force and acceleration normalized
with their maximum during a full experimental test set (top) and the two full
oscillation cycles in the middle of the set (bottom).



172 F. Mentzoni: Hydrodynamic Loads on Complex Structures in the Wave Zone

0.0 0.5 1.0 1.5 2.0 2.5
KC

0.0

0.2

0.4

0.6

0.8

1.0

A
A0

2P28_120+5C

2P28_120

5C

5C BEM

0.0 0.5 1.0 1.5 2.0 2.5
KC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
ωA0

2P28_120+5C

2P28_120

5C

Figure 9.3: Added mass and damping coefficients from experimental investiga-
tions of 2P28_120+5C, 2P28_120 and 5C.
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ing Fig. 9.4, in which the normalized force amplitude is presented. Obviously, due
to the potential flow added mass of solid cylinders—and the negligible potential
flow added mass of ideal perforated plates—for very small KC numbers, the hy-
drodynamic force amplitude of 2P28_120+5C must be larger than of 2P28_120.
Nevertheless, for all tested KC numbers, the normalized force amplitude is larger
on 2P28_120 than on 2P28_120+5C.
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Figure 9.4: Normalized hydrodynamic force amplitude from experimental inves-
tigations of 2P28_120+5C, 2P28_120 and 5C.

In addition to the experimental results, I have included the added mass coeffi-
cient of 5C calculated with the potential flow solver. Note that the reference added
mass, A0, is for a cylinder/plate of characteristic width D = 420 mm, which gives
A
A0
= 0.1658 for 5C. This is 8.12 times that of a single circular cylinder with radius

R= 30 mm. Consequently, there is an increase in added mass of 8.12−5
5 = 62 % due

to potential flow interaction between the five cylinders. If using superposition of
five individual cylinders to estimate the added mass coefficient of 5C, the added
mass is considerably underestimated.

Some features of 5C are highlighted, in particular that there exists a critical
minimum value of the added mass coefficient, and that the hydrodynamic force
ratio is dominated by added mass for all KC < 0.7. This deviates from the perfo-
rated plates presented so far, including the model consisting of circular cylinders
(C19), cf. Section 6.2.
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Unlike the various perforated plate models, the added mass coefficient of
5C does not increase rapidly when increasing KC from the smallest KC numbers
tested. Instead, the added mass coefficient decreases to a critical minimum value,
following an increase for higher KC numbers. This behavior is similar to previ-
ous results for one cylinder. Keulegan and Carpenter [38] found the critical KC
number for a single cylinder to be KC ≈ 15. The results by Sarpkaya [39, 65]
show a similar behavior at KC≈ 13. In the present study, the smallest added mass
coefficient for the five cylinder configuration is found when the amplitude of mo-
tion is ηa = 48 mm, ηa = 50 mm, ηa = 49mm, ηa = 49 mm, and ηa = 48mm,
for T = 1.00 s to T = 2.00 s, respectively. This corresponds to a mean KC = 5.1,
when normalizing with the diameter of one cylinder (D = 60 mm). The speed
up due to the flow restriction, caused by the row of cylinders, is not reflected in
this KC number. If a simple control volume analysis is applied, where the distance
between the center of the two outermost cylinders is used as the total change in
area compared with a one cylinder configuration, there is 4R unrestricted flow
distance over a distance of 12R. Consequently, the critical KC number could be
expected to be of order 4R/12R= 1/3 of the critical KC number for one cylinder,
which is in reasonable agreement with the results for one cylinder (KC≈ 13-15).

The drop in the added mass coefficient at the critical KC number is significant,
but unlike the results by Sarpkaya [39] for one cylinder at similar β values, the
added mass coefficient does not become negative in the present study. Here, the
five forcing periods of oscillations correspond to 1750≤ β ≤ 3500, and the critical
added mass is approximately 65 % of the potential flow solver result, independent
on the period of oscillation. On the other hand, the results for one cylinder by
Sarpkaya [39] yield critical added mass coefficients of −0.2, 0.3, and 0.6 for β =
1985, β = 3123, and β = 4480, when normalizing with the area of one cylinder.
As has been pointed out by Singh [60], other studies have shown negligible β
dependence or opposite trends to that found by Sarpkaya, with decreasing added
mass coefficient when increasing β .

9.2 Parallel ideal perforated plates

Due to the importance of the perforated plates in the simplified subsea structure
of Section 9.1, parallel perforated plates are studied in more detail. Both experi-
mental and numerical studies are conducted. The studies are based on the ideal
perforated plates with perforation ratio τ= 0.28.

Two 2P28 configurations are experimentally investigated. In the first, 2P28_60,
the vertical gap distance between the two plates is 60mm. In the second, 2P28_120,
the vertical gap distance between the two plates is 120mm. A photo of 2P28_120
placed in the experimental rig is presented in Fig. 9.5.

Numerical counterparts of 2P28_60 and 2P28_120 are simulated with the
viscous flow solver. Additionally, a numerical model with gap distance 90 mm,
2P28_90, is simulated. All models are D = 420mm wide, hence the ratios of the
vertical gap distance between the two plates compared to the width of the plates
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are 0.143 (2P28_60), 0.214 (2P28_90) and 0.286 (2P28_120).
The numerical implementations of the parallel perforated plate configurations

are similar to that of the numerical model of the single P28 plate, cf. Section 6.1.2.
However, the fine regions of the grids are vertically extended to cover both perfo-
rated plates. This increases the number of grid cells and corresponding calculation
times. The total number of grid cells are 80216 (2P28_60), 87812 (2P28_90) and
96252 (2P28_120).

Figure 9.5: Photo of 2P28_120, two ideal parallel perforated plates (τ = 0.28)
with width D = 420 mm and a gap distance of 120mm.

9.2.1 Parallel versus single perforated plates

Normalized force plots for 2P28_60 are presented in Fig. 9.6 for KC = 0.05 (top
subplot) and KC= 2.0 (bottom subplot). The plots illustrate the total force as well
as the individual forces on the upper and lower plates. Comparisons are made
with the force on a corresponding single plate, P28. There is almost no difference
between the force on the upstream plate and the force on the downstream plate
of 2P28_60 for KC = 0.05. Each plate has a force that resembles the force on
the single P28 plate. Nevertheless, close inspection reveals that there are minor
differences, suggesting minor interaction effects even at this small KC number. The
amplitude of the force on the parallel configuration is slightly smaller. In addition,
the phase is shifted a little to the left, indicating that the force in the parallel
configuration is shifted away from the prescribed velocity (∝ sinωt) and towards
the prescribed acceleration (∝ cosωt). Consequently, the relative importance
of the damping force to the added mass force is reduced for the parallel plates
compared to the single plate. For KC = 2.0, large differences are found between
the forces on each plate, in particular, there is a strong wake effect which reduces
the force amplitude on the downstream plate. Compared to the corresponding
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Figure 9.6: The normalized force on 2P28_60 during two oscillation cycles of the
numerical simulations at KC = 0.05 (top) and KC = 2.0 (bottom). Comparison
with the force on the corresponding single plate, P28.
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single plate, P28, the individual forces on both plates are reduced considerably.
Further, a shift in phase towards the acceleration is noted, i.e., reduced damping
force to added mass force ratio in the parallel case compared to the single plate.

The added mass and damping coefficients from the experimental investiga-
tions and numerical simulations of parallel configurations are presented in Fig.
9.7. The agreement between experimental and numerical results is in general
good. In general, the coefficients depend on both KC and the vertical gap be-
tween the plates. Nonetheless, despite some differences between the three gap
distances, overall the hydrodynamic coefficients are quite similar. Note that the
range of tested ratios of the vertical gap distance to the width of the plates is lim-
ited; the ratios are 0.143 (2P28_60), 0.214 (2P28_90) and 0.286 (2P28_120).
The calculated potential flow added mass coefficients are very similar between
the three configurations, A

A0
= 0.0647 (2P28_60), A

A0
= 0.0652 (2P28_90) and

A
A0
= 0.0650 (2P28_120). Thus, only the last plotted marker and line (2P28_120)

are visible in the figure.
Included in Fig. 9.7 are the experimentally obtained coefficients for a single

perforated plate multiplied by two, that is, superposition of a corresponding sin-
gle plate. The plots suggest that interaction effects of parallel perforated plates
are not very important for the added mass coefficients, meaning that simple su-
perposition of the added mass of two single perforated plates could be a sufficient
approach. This is especially true for KC < 0.8. For KC > 0.8, there are somewhat
larger differences. Nevertheless, for all tested KC numbers and gap distances, the
presently investigated parallel perforated plate configurations yield added mass
coefficients that are similar (typically within 15 %) to that of two corresponding
single plates. Notably, this is not the case for solid plates [26, 66, 67]. In their
study of multiple heave plates, Zhang and Ishihara [66] found that if the gap dis-
tance between two octagonal disks attached to a cylindrical column is relatively
small, the added mass is similar to that of one single disk, whereas if the gap dis-
tance is relatively large, the added mass is similar to that of two single disks. For
a range of gap distances between the two extremes, the added mass is between
that of one and that of two solid disks [66]. Corresponding findings are presented
by Tao et al. [67] for two circular disks attached to a cylinder, in which the KC
number dependence is highlighted, i.e., the interaction between the plates, and
the influence on the coefficients, depend on the gap distance and the KC number.
Note that for the presently investigated parallel plate configurations, within the
range of tested KC numbers, the added mass coefficient is always smaller than
one (the potential flow added mass for a solid flat plate). The perforation ratio
of the plates is τ = 0.28; larger added mass coefficients should be expected for
smaller perforation ratios since more water must circumvent the plates.

Interestingly, for a given KC larger than 0.8, the added mass is in general
smaller for 2P28_60 than for two times the single plate, while it is larger for
2P28_120 than for two times the single plate. Tian et al. [26] found a somewhat
similar result for solid plates. They found that the added mass coefficients for par-
allel solid plates could become smaller than that of a single plate if the KC number
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Figure 9.7: Added mass and damping coefficients from experimental investiga-
tions and numerical simulations of 2P28_60, 2P28_90 and 2P28_120. The ra-
tios of the gap distance to the width of the plates are 0.143 (2P28_60), 0.214
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was large and the gap distance was very small, cf. Section 1.4.5. However, unlike
their results, all the presently investigated parallel perforated plate configurations
have larger added mass coefficients than that of one corresponding single plate.

Contrary to the added mass coefficients, the superposition approach overesti-
mates the damping coefficients considerably. For large KC numbers, the damping
coefficients of two single plates are 40-60% larger than those of the parallel con-
figurations, but even for the smallest tested KC numbers, there is an interaction
effect which reduces the damping coefficient of the parallel configurations com-
pared to two single plates.

Differences between single and parallel perforated plates are illustrated with
flow visualizations plots in Fig. 9.8. Streamlines are presented for 2P28_60 and
the corresponding single plate for KC = 1.95 at a time-step that is 0.32T into an
oscillation period (u = 0, w = D

T KCsinωt). The red-blue colormap presented in
Fig. 6.13 is used to indicate the vertical velocity. Normalization of the colormap
is made against two times the prescribed amplitude of the velocity at the bound-
aries, that is, the darkest blue (−1.0 in Fig. 6.13) corresponds to w = −2 D

T KC
and the darkest red (1.0 in Fig. 6.13) corresponds to w = 2 D

T KC. Clearly, the ex-
tent of the global plate-end vortices is much larger than the distance between the
two plates. Consequently, two combined (not four separated) plate-end vortices
are generated downstream of the parallel plate configuration. These vortices are
larger than what is found for the corresponding single perforated plate. However,
the combined wake and pressure drop should not be expected to be twice that of
a single plate.

9.2.2 Wave-radiation damping

A reason for deviations between the numerical viscous flow solver results and
the experimental results is free-surface effects, not included in the infinite fluid
simulations. The harmonic oscillations of the models generate waves in the ex-
periments. The corresponding wave-radiation damping is calculated from energy
relations [6, p. 47],

Bw =
ρg2ζ2

a L

η2
aω

3
. (9.1)

In Eq. (9.1), ζa is the amplitude of the radiated waves. Further, ρ is the water
density, g is the gravity of Earth, L = 0.6 m is the lateral dimension of the wave
flume, ηa is the oscillation amplitude and ω is the oscillation frequency.

The wave-radiation damping coefficients, Bw
ωA0

, are presented in Fig. 9.9. The
wave-radiation damping coefficients increase, in general, with increasing KC num-
ber, and depend on the period of oscillation. The largest experimentally tested con-
figuration (2P28_120) yields, in general, somewhat larger wave-radiation damp-
ing coefficients than the smallest configuration (2P28_60). Bw

ωA0
is in general below

0.12 and therefore rather small compared to B
ωA0

, although not negligible.
In Fig. 9.10, the ratio between the wave-radiation damping and the total

damping is presented. A summary is given in Table 9.1; the mean ratio for all
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Figure 9.9: Wave-radiation damping, Bw, due to radiated waves in the forced os-
cillation experiments of P28_60 and P28_120. The markers for the five oscillation
periods are presented in Fig. 6.5.
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tested KC numbers, as well as the maximum and minimum ratios are given. Typi-
cally, the wave-radiation damping coefficients are within 8% of the total damping.
For oscillation periods T = 1.25 s and T = 1.50 s, the largest tested KC numbers
yield wave-radiation damping that exceeds 8% of the total damping. The largest
relative wave-radiation damping is obtained for 2P28_120 with T = 1.50 s and
KC = 1.7, where the wave-radiation damping is 11 % of the total damping. The
slight underestimation of the damping coefficients predicted with the numerical
viscous flow solver, cf. Fig. 9.7, is of same order as the wave-radiation damping
contributions in the experiments.

Table 9.1: Ratio between wave radiation damping and total damping, Bw
B , of

2P28_60 and 2P28_120. Note that some of the differences between the periods
are due to different KC ranges, cf. Fig. 9.10.

T Mean Max Min

2P28_60

1.00 s 4.0 % 5.1 % 2.6 %
1.25 s 7.0 % 9.5 % 3.6 %
1.50 s 6.5 % 9.8 % 2.8 %
1.75 s 4.7 % 6.1 % 1.5 %
2.00 s 3.7 % 4.5 % 2.6 %

2P28_120

1.00 s 4.5 % 5.8 % 3.0 %
1.25 s 7.8 % 10.7 % 4.2 %
1.50 s 7.4 % 11.0 % 3.6 %
1.75 s 5.1 % 6.7 % 1.9 %
2.00 s 3.9 % 4.7 % 2.9 %

9.2.3 Parallel plates in orbital versus oscillating flows

In addition to the experiments and numerical simulations of oscillating flow con-
ditions, the parallel configurations are simulated in orbital flow conditions. The
resulting coefficients are presented in Fig. 9.11. Comparisons are made with the
numerical simulations of oscillating flow conditions.

In general, the coefficients are similar for small KC numbers, and deviate be-
tween different configurations and flow conditions for higher KC numbers. All con-
figurations and flow conditions have similar added mass coefficients for KC< 0.7.
For higher KC numbers, the added mass coefficients are, in general, reduced in
orbital flow compared to oscillating flow conditions. An exception is 2P28_60 for
0.9< KC< 2.0. The damping coefficients deviate in general more than the added
mass coefficients for the two flow conditions. Orbital flow conditions, compared
to oscillating flow, reduce the damping coefficients for all configurations. Similar
tendencies are found for single perforated plates; the normalized hydrodynamic
force amplitude and coefficients are similar for small KC numbers and reduced in
orbital compared to oscillating flow for high KC numbers, cf. Section 7.3.

The normalized hydrodynamic force amplitude is presented in Fig. 9.12. The
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Figure 9.12: The normalized force amplitude from numerical simulations of 2P28
in oscillating flow and orbital flow conditions.

force reduction in orbital compared to oscillating flow conditions is found to de-
pend on the gap between the two perforated plates in parallel. The maximum
normalized force amplitude in orbital flow is at KC= 2.00 (2P28_60), KC= 1.76
(2P28_90) and KC= 1.48 (2P28_120). To investigate the effect on the total force
of the configuration, caused by interaction between the two plates in orbital mo-
tion, flow visualization plots of 2P28_60 are studied at KC= 1.95 and KC= 2.05,
that is, slightly below and above KC = 2.0 which yields the largest normalized
force amplitude. The flow visualizations are presented in Figs. 9.13–9.17. The
colormap for the contours, cf. Fig. 6.13, represents the vertical velocity. Normal-
ization of the colormap is made against two times the prescribed amplitude of
the velocity at the boundaries corresponding to KC = 2, that is, the darkest blue
(−1.0 in Fig. 6.13) corresponds to w= −4 D

T and the darkest red (1.0 in Fig. 6.13)
corresponds to w= 4 D

T .

In Figs. 9.13 and 9.14, streamline plots covering the full model and surround-
ing flow patterns of 2P28_60 in orbital flow conditions for KC = 1.95 and KC =
2.05 are presented. The plots are obtained at two time-steps early in the oscilla-
tion cycle. The arrow indicates the ambient prescribed flow direction. The red-
blue color scale represents the vertical velocity (red positive upwards, blue posi-
tive downwards). Despite the small difference in the prescribed velocity, relatively
large differences in the flow fields are demonstrated. In particular, the large vortex
upstream of the right part of the lower plate, generated during an earlier phase
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when the vertical velocity was negative, is considerably larger for KC= 2.05 com-
pared to KC= 1.95.

Figures 9.13 and 9.14 illustrate that the vortex ceases to exist at an earlier
time instant for KC = 1.95 than for KC = 2.05. In order to investigate the reason
for this, flow visualizations of a zoomed-in section of the right part of the plates
are presented in Figs. 9.15–9.17, for time-instants about one half-cycle prior to
those in Figs. 9.13 and 9.14. Both the prescribed vertical and horizontal velocity
components are negative at these time-instants, that is, the ambient flow is from
upper right to lower left. These time-instants are selected as they illustrate the
development of the large vortex below the right part of the lower plate in Figs.
9.13 and 9.14. Flow separation from the right plate-end of the upper plate, and
global deflection of the flow, is observed at the first of these time-instants, cf. Fig.
9.15. As time increases, cf. Fig. 9.16, and the ambient horizontal velocity increases
in magnitude from right to left, the plate-end vortex generated from the upper
plate loses its strength in the case of KC = 1.95. Further in time, cf. Fig. 9.17,
flow enters between the two plates from right to left. Contrary, for KC= 2.05, the
vortex in between the plates remains for a longer time, and the flow continues to
deflect globally around the whole configuration. The flow visualizations illustrate
how slight differences in the flow separation from the right plate-end of the top
plate plays a role in global flow behavior; the vortex blocks the flow into the gap.
This results in a higher incident velocity on the lower plate, with resulting stronger
vortex shedding (as was clearly shown in Fig. 9.13).

Note that the asymmetric flow patterns of orbital flow is not found in oscillat-
ing flow. Contrary, the flow field is very symmetric in oscillating flow conditions.
An illustration is presented in the top subplot of Fig. 9.8 which represents the ex-
act same configuration and KC number as presented for orbital flow in the upper
subplot of Figs. 9.13–9.17, that is, 2P28_60 at KC = 1.95. The global plate-end
vortices in Fig. 9.8 continue to grow for increasing time-steps before the direction
of the prescribed velocity turns at t = 0.5T . Furthermore, no inflow between the
parallel plates is observed in oscillating flow.

Large standard deviations, indicating variations in the force between each os-
cillation cycle, were demonstrated in Fig. 9.11 in the hydrodynamic coefficients
from orbital flow simulations for large KC numbers, in particular for the added
mass coefficient for KC > 2 (2P28_60), KC > 1.8 (2P28_90) and KC > 1.5
(2P28_120). Taking into account the findings from inspection of streamlines in
Figs. 9.13–9.17, it is likely that the plate-end flow separation, vortex generation
and blocking of the flow into the gap between the plates, which is important for
the force on the plates, is sensitive to small differences in the flow around these
KC numbers, and that this causes the variations in the force. An illustration of
this is given in Fig. 9.18 where time-series of the force on 2P28_60 in orbital flow
conditions at KC = 1.95, 2.05 and 2.14, for the whole length of the simulation,
is presented. For KC = 1.95, the force increases from the ramp and reaches what
seems to be near steady-state after the 10-12 first periods of oscillation. Contrary,
for KC = 2.05 and KC = 2.14 the force decreases after an initial increase, and
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Figure 9.13: Flow visualizations of 2P28_60 with orbital flow conditions for
KC = 1.95 (top) and KC = 2.05 (bottom). The time-instant is 0.12T into an
oscillation period (u = − D

T KCcosωt, w = D
T KC sinωt). The colormap for the

contours represent the vertical velocity (red for positive, blue for negative).



Chapter 9: Interaction effects 187

−0.2

−0.1

0.0

0.1

0.2

D
ir
e
ct
io
n

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.2

−0.1

0.0

0.1

0.2

D
ir
e
ct
io
n

Figure 9.14: Flow visualizations of 2P28_60 with orbital flow conditions for
KC = 1.95 (top) and KC = 2.05 (bottom). The time-instant is 0.22T into an
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Figure 9.15: Flow visualizations zoomed in on the right part of 2P28_60 with
orbital flow conditions for KC = 1.95 (top) and KC = 2.05 (bottom). The time-
instant is 0.76T into an oscillation period (u= − D

T KC cosωt, w= D
T KC sinωt).
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Figure 9.16: Flow visualizations zoomed in on the right part of 2P28_60 with
orbital flow conditions for KC = 1.95 (top) and KC = 2.05 (bottom). The time-
instant is 0.86T into an oscillation period (u= − D
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then oscillates with a smaller amplitude of motion during the rest of the simu-
lation. These variations in force amplitude yield large standard deviations in the
coefficient plots since a time-window extending from t = 5T to the end of the sim-
ulation, t = 30T , is used. There is always a questions regarding what time-interval
to use. Choosing a shorter time-interval towards the end of the time-series where
one seemingly has reached, at least partly to some degree, a steady state, would
further decrease the mean values of the added mass and damping coefficients,
while considerably reducing the standard deviation.
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Figure 9.18: Time-series of the nondimensional force on 2P28_60 in orbital flow
at KC= 1.95, KC= 2.05 and KC= 2.14.

The large variations in force and coefficients occur for large KC numbers,
but for smaller structures these KC numbers can be relevant. However, real sea
states are irregular. Steady state does not exist. As (almost poetically) stated by
Bezunartea-Barrio et al. [37], during movement in irregular seas, a structure is
constantly transitioning through different KC numbers. A practical question then
becomes what KC number to choose in a typical industrial study, and how to es-
timate the force that the structures will be exposed to during a lifting operation.
The present results for parallel perforated plates suggest that for a given KC num-
ber, coefficients from oscillating flow conditions yield similar or somewhat larger
hydrodynamic force amplitude than if estimated based on orbital flow conditions.
Corresponding results were obtained for a single perforated plate, cf. Section 7.3.
Hence, oscillating flow studies are relevant for estimating the hydrodynamic force
on perforated platelike structures in waves.
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9.3 Hydrodynamic interaction of perforated plates and
channel walls

In an attempt to investigate the forces on ideal perforated plates without allowing
the massive flow separation at the plate-ends, experiments and numerical simula-
tions were set up using channel walls on both sides of the experimental rig. This
allows for testing of oscillating flow conditions inside a channel. The ideal perfo-
rated plates P19 and P28 were tested in this channel configuration. The channel
walls were placed approximately 2 cm from the ends of the perforated plates in
both the experiments and the numerical simulations. Results from the channel
flow investigations are denoted with a C appended to the model name, that is,
P19C and P28C for, respectively, the ideal perforated plates with perforation ra-
tios τ= 0.19 and τ= 0.28.
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Figure 9.19: Added mass coefficients from experimental investigations and nu-
merical simulations of P19C and P28C.

The added mass and damping coefficients of P19C and P28C are presented
in Figs. 9.19 and 9.20. When the plates are forced to oscillate inside the chan-
nel, vortex shedding from flow separation at the plate-ends will be limited. The
possibility for the fluid to flow around the plate is also limited, since the water
is forced to pass the plate either through the perforated openings or through the
small gaps between the plate-end and the channel walls. As a result, the force that
acts on the plate will be in almost exact phase with the velocity of the ambient
flow or plate, and therefore completely dominated by a large damping force (and
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correspondingly large damping coefficient), and only yields a minor added mass
coefficient. Note the difference in y-axis in the plots; the damping coefficients are
dominating completely. Both the experimental and numerical results indicate a
nearly perfect linear relation between the damping coefficient and KC, meaning
that a quadratic pressure-loss model is very good for this setup. Consequently, if
a quadratic damping model is applied, the quadratic damping coefficient (CD) is
almost constant with KC.
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Figure 9.20: Damping coefficients from experimental investigations and numer-
ical simulations of P19C and P28C.

The numerical and experimental channel flow added mass coefficients agree
reasonable well. One reason for differences between the numerical and experi-
mental results is uncertainty related to the distance from the plate-ends to the
channel walls; neither the channel walls nor the experimental rig are perfectly
straight. Consequently, the distance from the plate-ends to the channel walls vary
slightly during an oscillation period. Further, some period dependence in the ex-
periments are noted, in particular for P19C where the drop in added mass occurs
at different KC numbers for different periods of oscillation. This can be related to
free-surface effects, not captured in the CFD simulations.

The total hydrodynamic force on the perforated plates is larger in channel
flow conditions compared to open conditions. A presentation of the normalized
force amplitude, i.e., the square root of the sum of the normalized added mass and
damping coefficients squared, is given in Fig. 9.21. For the smallest KC numbers
tested, the normalized force amplitude on the plates are similar in open condi-
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Figure 9.21: The normalized force amplitude on P19, P28, P19C and P28C.

tions and in the channel. Contrary, for moderate and large KC numbers, there is a
considerable larger force in the channel. The effect is dependent on the perfora-
tion ratio; increasingly so as the perforation ratio is decreased. The fact that the
hydrodynamic force on the plates increases considerably in channel flow condi-
tions, and that the damping force is dominating completely, can have relevance
for operations performed in an environment restricted by walls or boundaries.
Moonpool operations, where objects are lowered through an opening in the hull
of the ship, is a relevant example.

Differences between open and channel flow conditions are illustrated in Fig.
9.22. Here, flow visualizations from the numerical simulations of the perforated
plate with τ= 0.19, are presented for KC= 1.0. The plots are obtained at a time-
step 28 % into an oscillation period, that is, the vertical velocity is w= D

T sin (0.6π)
at the boundaries. The colormap for the contours, cf. Fig. 6.13, represents the
vertical velocity. Normalization of the colormap is made against three times the
prescribed amplitude of the velocity at the boundaries, that is, the darkest blue
(−1.0 in Fig. 6.13) corresponds to w = −3 D

T KC and the darkest red (1.0 in Fig.
6.13) corresponds to w = 3 D

T KC. In both channel and open conditions, the fluid
flow is forced through the perforations of the plates. Further, in open conditions,
large vortices are developed from the plate-ends. For channel flow conditions, a
similar vortex is not seen. Instead, the fluid between the plate and the channel
wall is accelerated in the vertical direction, similar to the acceleration of fluid
through the openings, but to a greater extent.



Chapter 9: Interaction effects 195

−0.2

−0.1

0.0

0.1

0.2

−0.2 −0.1 0.0 0.1 0.2
−0.2

−0.1

0.0

0.1

0.2

Figure 9.22: Streamline plots of a perforated plate in channel, P19C (top), and
a perforated plate in infinite fluid, P19 (bottom), at KC = 1.0. The colormap for
the contours represent the vertical velocity (red for positive, blue for negative).
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9.4 Simplified mudmats

A mudmat is a relatively flat protection structure used on various subsea mod-
ules. Typically, a mudmat consists of plate elements with openings between them.
The plate elements can have small holes, but the perforation ratio of these plate
elements is usually very small.

In addition to single solid plates, our collaboration study—presented at OMAE
in 2019 [62]—included simplified mudmats. The simplified mudmats consist of
multiple solid plate elements placed next to each other with varying gaps between
them. Each plate element is 60mm wide and 4 mm thick. A photo of the plate
elements, illustrating both the width and the thickness, is presented in Fig. 8.2.

When there are gaps between the plate elements, the open-area ratio of a
simplified mudmat is

1−
npd

D
, (9.2)

with np being the number of plates, d = 60 mm is the width of each plate ele-
ment, and D is the total width of the configuration. Consequently, a simplified
mudmat can be thought of as a perforated plate with perforation ratio equal to
the open area ratio. In the hole size sensitivity study, cf. Section 5.5.2, small dif-
ferences are in general found in the force coefficients when varying the number
of plate elements used to model a perforated plate beyond a certain threshold
value of np ' 7. Similar results have been observed in experimental studies [25,
26]. However, when the width of each plate element is relatively large and the
number of openings is very small, as is relevant for mudmats, the perforated plate
approximation is questionable. An example is for very small KC numbers in which
the number of openings is the important parameter, not the perforation ratio, cf.
Section 4.1.2.

The study of simplified mudmats includes configurations with one, two and
three openings. An extended analysis of the two-plate configurations with a sin-
gle opening between them is presented in the following. For results obtained for
configurations consisting of more than one hole, I refer to the cited conference
paper [62].

Table 9.2: Parameters of two-plate configurations. Illustrations in Fig. 9.23. dg is
the distance of the gap.

Configuration Plates Gap: dg D 1− npd
D

dg = 0.5d 2× 60 mm 30mm 150 mm 0.2
dg = 1.0d 2× 60 mm 60mm 180 mm 0.33
dg = 1.5d 2× 60 mm 90mm 210 mm 0.43
dg = 2.0d 2× 60 mm 120mm 240 mm 0.5

Four configurations consisting of two plate elements with a single opening
between them, are tested. The configurations are all similar except for the distance
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of the gap, dg , between the two plate elements. Tested gap distances between the
two plates are dg = 0.5d, dg = 1.0d, dg = 1.5d and dg = 2.0d, with d being the
width of a single plate element. Consequently, D in Eq. (9.2), and thus, KC ∝
D−1 and A0 ∝ D2 vary between the configurations. In Table 9.2, the relevant
parameters is presented; illustrations are provided in Fig. 9.23.

−0.10 −0.05 0.00 0.05 0.10

Figure 9.23: Illustrations of the four two-plate configurations, cf. Table 9.2.

The experimentally obtained hydrodynamic coefficients are presented in Figs.
9.24 and 9.25. The results are obtained for a period of oscillation equal to T =
2.00 s. The coefficients are here normalized against two times the added mass of
one single plate of width d, here denoted A∗0,

A∗0 = 2ρπ
d2

4
L. (9.3)

L is the lateral distance of the physical model (L = 1 in two-dimensional simula-
tions). The amplitude of motion is normalized against two times the width of a
single plate,

KC∗ = 2π
ηa

2d
. (9.4)

By utilizing this normalization, nondimensional coefficients are presented in terms
of nondimensional amplitudes, but various gap distances can be compared di-
rectly. Included in the plots are the corresponding results from experiments of
one plate element multiplied by two, which is the limiting case of having the two
plates infinitely far apart. The corresponding analytical expressions by Graham
[22], cf. Section 8.1, are also included.

Large differences are found in the added mass coefficients, in particular for
large amplitudes of motion. The added mass is, in general, largest for the config-
uration with the smallest distance between the two plate elements. For KC∗ < 4,
the added mass of this configuration is similar to two times the added mass of the
single plate. The configurations with larger gap distances have, in general, smaller
added mass than two times the solid plate for KC∗ < 4. For large amplitudes of
motion, there is a large scatter in the added mass coefficients. The overall trend
is that increasing the distance between the two plates reduces the added mass
coefficient.

The added mass of the various configurations are calculated with the potential
flow solver using 100 sources per plate element. The potential flow added mass
of the two-plate configurations are larger than that of a single plate times two.
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Figure 9.24: Added mass of two-plate configurations of varying gap distances.
Normalization against the added mass of two times a solid plate of width d. Com-
parison with Graham’s method for solid plates, cf. Section 8.1.
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Figure 9.25: Damping of two-plate configurations of varying gap distances. Nor-
malization against the added mass of two times a solid plate of width d. Compar-
ison with Graham’s analytical method for solid plates, cf. Section 8.1.
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Compared to the potential flow added mass of a single plate times two ( A
A∗0
=

1.107), the two-plate configurations yield the following increases: 9.8 % (dg =
0.5d), 4.9 % (dg = 1.0d), 2.9 % (dg = 1.5d), and 1.9 % (dg = 2.0d).

The relative differences in damping are smaller between the various config-
urations. All two-plate configurations have, in general, larger damping than two
times the solid plate. In general, the damping reduces when the distance between
the plates is increased. A likely reason is that the flow is accelerated in the gap
opening, increasing the strength of the flow separation which increases the damp-
ing. Note that all configurations are damping dominant, cf. the y-axes of Figs.
9.24 and 9.25. Consequently, the normalized force amplitude is dominated by
damping. The damping dominance increases, in general, with increasing KC∗. A
consequence of this is that the large scatter in added mass for KC∗ > 4 is of little
importance for the force on the models.
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Figure 9.26: Normalized force amplitude of two-plate configurations of varying
gap distances. Comparison with Graham’s method for solid plates, cf. Section 8.1.

In Fig. 9.26, the normalized force amplitude is presented. The normalized
force amplitude is here expressed as

F∗a
ω2ηaA∗0

=

√

√

√

�

A
A∗0

�2

+

�

B
ωA∗0

�2

. (9.5)

Due to the damping dominance, the results are similar to the damping coefficients
alone, cf. Fig. 9.25.

In Fig. 9.27, the normalized force amplitude is expressed relative to the nor-
malized force amplitude of a single plate multiplied by two. This comparison ex-
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presses the additional force due to interaction effects between the two plate el-
ements. Note the added uncertainty of such a presentation since experimental
results are divided by experimental results.

0 1 2 3 4 5 6 7

KC ∗ =2π
ηa
2d

0.50

0.75

1.00

1.25

1.50

F ∗
a

F ∗
a, 2× single

dg =0. 5d

dg =1. 0d

dg =1. 5d

dg =2. 0d

Figure 9.27: The normalized force amplitude of the two-plate configurations
compared to the normalized force amplitude of a single plate times two.

The results of Fig. 9.27 clearly illustrate that two plate elements placed close
to each other can increase the force considerably compared to superposition of
two single plates. On average (the mean for all considered KC∗), the normalized
force amplitude is 28 % and 8.6 % larger when the gap is, respectively, dg = 0.5d
and dg = 1.0d. These increases are significant (probability values: p = 1e−8 and
p = 0.025). Contrary, when the gap is dg = 1.5d or dg = 2.0d, no increase in
force is found. Interestingly, the increase in force is only somewhat sensitive to
the flow velocity, e.g. for 6< KC∗ < 7 the mean increase in force is similar to that
found for 3< KC∗ < 4, independent of the configuration considered.

Numerical simulations of the four two-plate configurations are performed. Ad-
ditionally, a corresponding solid plate (D = 60mm, t = 4 mm) is simulated. Illus-
trations of the fine region grids of the two-plate configurations are presented in
Fig. 9.28.

The normalized force amplitude from the numerical simulations is presented
in Fig. 9.29. There is in general acceptable agreement between the numerical
and experimental results, cf. Fig. 9.26. However, the force on the single plate
multiplied by two is, in general, smaller than the force on the configuration with
dg = 0.5d and larger than the force on the configurations with dg = 1.0d, dg =
1.5d and dg = 2.0d. This is not intuitive. As discussed for the simulations of
a single plate with regards to the applicability of Graham’s method, cf. Section
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Figure 9.28: The fine region grids of the four two-plate configurations and the
corresponding single plate configuration.
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Figure 9.29: The normalized force amplitude of the two-plate configurations
compared to the normalized force amplitude of a single plate times two. Ana-
lytical single plate results by Graham included [22].
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8.1, the validity of the viscous flow solver is questionable for high KC numbers
when simulating a solid plate; for KC > 5 (KC∗ > 2.5), the force on a very flat
plate ( D

t = 100) is overpredicted compared to the experiments of D
t = 15 and

D
t = 30, cf. Fig. 8.4. For smaller KC numbers, the normalized force amplitude
of the numerical simulations of the single plate is similar to the experimental
results. Interestingly, the anomaly is not found for the two-plate configurations;
the numerical and experimental results agree, in general, well for the whole range
of simulated KC∗ numbers. Why the viscous flow solver is (seemingly) better at
simulating two plates than one plate remains unknown.

Both experimental and numerical results indicate a considerable increase in
force when the gap between two plates is reduced. In order to study these effects in
more detail, flow visualization plots of the two-plate configurations are presented.
The flow visualization plots are presented in Figs. 9.30–9.33. The colormap for the
contours, cf. Fig. 6.13, represents the vertical velocity. Equal normalization of the
colormap is applied in all these figures, with the darkest blue (−1.0 in Fig. 6.13)
corresponding to w= −2.4 d

T and the darkest red (1.0 in Fig. 6.13) corresponding
to w= 2.4 d

T .
In Fig. 9.30, streamlines obtained for KC∗ = 1 are presented. The plots are

obtained when t = 29.3T , hence the ambient vertical velocity component is pos-
itive upwards, w = 0.12 sin 0.6π. The plot color indicate the vertical velocity, red
for positive, blue for negative. In terms of KC normalized by the width of a sin-
gle plate, KC = 2KC∗ = 2. For KC = 2, a single plate is in the symmetric region
according to Singh [60], cf. Section 8.1. In the symmetric region, the plate-end
vortices have similar size. Accordingly, the plate-end vortices of all two-plate con-
figurations are similarly sized. However, reducing the gap distance reduces the
symmetry due to increased flow through the opening.

A difference between the two-plate configurations is upstream of the gap be-
tween the two plates. Upstream of the plate centers, stagnation points are ob-
served near the center-plane of the configuration. The flow is accelerated towards
the plate-ends. For dg = 0.5d and dg = 1.0d, the acceleration of the flow creates
a region of reversed flow upstream of the gap. This is not observed for dg = 1.5d
and dg = 2.0d when t = 29.3T . However, similar patterns are found for dg = 1.5d
and dg = 2.0d as well, as time goes by and the ambient prescribed velocity is re-
duced. An example is presented in Fig. 9.31, in which the time-step is t = 29.42T
(w= 0.12 sin 0.84π). For dg = 2.0d, in terms of the total width (D) of the config-
uration, the KC number is only KC= 0.5. Nevertheless, the streamline plots reveal
considerable interaction effects.

Similar plots for KC∗ = 2 are presented in Figs. 9.32 and 9.33. According to
Singh [60], a single plate would be in the lower end of the asymmetric region
when KC = 2KC∗ = 4. Clearly, the plate-end vortices are larger and more asym-
metric than those found for KC∗ = 1. The plots are obtained for equal time-steps
as in Figs. 9.30 and 9.31, that is, t = 29.3T and t = 29.4T ; the vertical velocity
component is positive upwards, w= 0.24 sin0.6π and w= 0.24 sin 0.8π. Reversal
of flow upstream of the gap is now visible at t = 29.3T for dg = 1.5 in addition to
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dg = 0.5d and dg = 1.0. Only the configurations with smallest and largest gaps,
dg = 0.5d and dg = 2.0d, are presented in Fig. 9.33. This allows extending the
plots vertically such that more of the flow patterns are visible. At this time-step,
the reversal of flow upstream of the gap is asymmetric for dg = 0.5d and symmet-
ric for dg = 2.0d. The streamline plot indicates that decreasing the gap distance
increases the size and strength of the plate-end vortices.
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Figure 9.30: Streamline plots of the two-plate configurations at KC∗ = 1, t =
29.3T . The colormap for the contours represent the vertical velocity (red for pos-
itive, blue for negative).
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Figure 9.31: Streamline plots of the two-plate configurations at KC∗ = 1, t =
29.42T . The colormap for the contours represent the vertical velocity (red for
positive, blue for negative).
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Figure 9.32: Streamline plots of the two-plate configurations at KC∗ = 2, t =
29.3T . The colormap for the contours represent the vertical velocity (red for pos-
itive, blue for negative).
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Figure 9.33: Streamline plots of dg = 0.5d and dg = 2.0d at KC∗ = 2, t = 29.42T .
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Conclusion

The hydrodynamic loads on simplified structures relevant for deployment of sub-
sea modules were studied in a two-dimensional setting. Experimental investiga-
tions and numerical simulations were performed. In the experiments, models were
fixed in incident waves or forced to oscillate. Numerical simulations were con-
ducted for models fixed in incident waves, oscillating flow and orbital flow.

The main focus was on perforated platelike structures. The importance of the
damping force was discussed; the hydrodynamic force of ideal perforated plates
was dominated by damping for τ ≥ 0.1. In general, the added mass and damp-
ing coefficients increased with increasing KC number and decreasing perforation
ratio. An exception was for small perforation ratios and limited KC numbers, in
which case the damping of dense perforated plates was larger than that of a cor-
responding solid plate. The coefficients depended on the structural details of the
plate, but were relatively insensitive to the number of perforations or holes.

The importance of plate-end flow separation of perforated plates was high-
lighted and quantified for two perforated plates of τ = 0.19 and τ = 0.28. In
general, the importance increased with increasing KC and decreasing τ. Never-
theless, even for small KC numbers, the plate-end flow separation had an effect.
When omitting the plate-end flow separation, considerable changes in the force
coefficients were found for KC> 0.2 (τ= 0.19) and KC> 0.3 (τ= 0.28).

The normalized force amplitude of perforated plates fully submerged in inci-
dent waves increased, in general, with increasing KC number, increasing wave-
length and increasing distance to the mean free-surface. The force was similar to
the force on models in oscillating flow for small KC numbers, but considerably
smaller for large KC numbers. Moreover, the hydrodynamic loads of single and
parallel perforated plates in orbital flow was similar to that of oscillating flow
for small KC numbers, and smaller than in oscillating flow for large KC numbers.
Contrary to the near symmetric plate-end vortices that was found in oscillating
flow, the plate-end flow separation was asymmetric in orbital flow. This reduced
the force in orbital compared to oscillating flow, and is a likely reason why the
force was smaller on fully submerged perforated plates in incident waves than in
oscillating flow.

Some aspects of interaction effects were investigated. In oscillating flow, the
hydrodynamic loads on a structure consisting of two perforated plates with five
relatively large bodies in between, was completely dominated by the loads on the

209
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perforated plates. For two parallel perforated plates in oscillating flow, interac-
tion effects considerably reduced the total force on the configuration compared to
superposition of two single plates. The force was reduced on both plates, in partic-
ular the instantaneously downstream plate. The added mass of parallel perforated
plates was similar to superposition of two corresponding single plates, however,
the damping was considerably reduced.

Based on the present results, simple expressions for the force on perforated
plates—inspired by the method by Graham for solid plates—were presented. The
expressions yield the added mass and damping coefficients of ideal perforated
plates in oscillating flow as functions of the perforation ratio and the KC number.

In general, good agreement between the experimental and numerical results
was found in the present study. This was somewhat surprising given that relatively
simple numerical tools were used, in particular the implemented CFD code was
intended to be a two-dimensional DNS solver, without any turbulence model.
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Appendix A

Experimental time-series and
spectra

Some examples of time-series and spectra from the experimental investigations
are presented in the following. The plots are obtained for the C19 model forced
to oscillate at either small or large amplitudes of oscillation, and small or large
periods of oscillation. The measured and band-pass filtered force and acceleration
are presented.
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Figure A.1: Forced oscillation experiments of C19. ηa = 1.7cm (KC = 0.35),
T = 2.0 s. Time-series of measured (blue) and filtered (red) force. The sampling
rate is 200 Hz. Top subplot: The full set with five oscillation cycles of ramp-in,
10 oscillation cycles with the prescribed amplitude of motion and five oscillation
cycles of ramp-out. Bottom subplot: The two oscillation cycles in the middle of
the set. Spectrum in Fig. A.3.
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Figure A.2: Forced oscillation experiments of C19. ηa = 1.7cm (KC = 0.35),
T = 2.0 s. Time-series of measured (blue) and filtered (red) acceleration. The
sampling rate is 200Hz. Top subplot: The full set with five oscillation cycles of
ramp-in, 10 oscillation cycles with the prescribed amplitude of motion and five
oscillation cycles of ramp-out. Bottom subplot: The two oscillation cycles in the
middle of the set. Spectrum in Fig. A.4.
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Figure A.3: Forced oscillation experiments of C19. ηa = 1.7cm (KC = 0.35),
T = 2.0 s. Magnitude spectrum of measured force during the ten oscillation cycles
with the prescribed amplitude of motion. The band-pass filter is indicated with
red fill color. f is the frequency. The sampling rate is 200 Hz. Top subplot: Full
spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.4: Forced oscillation experiments of C19. ηa = 1.7 cm (KC= 0.35), T =
2.0 s. Magnitude spectrum of measured acceleration during the ten oscillation
cycles with the prescribed amplitude of motion. The band-pass filter is indicated
with red fill color. f is the frequency. The sampling rate is 200Hz. Top subplot:
Full spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.5: Forced oscillation experiments of C19. ηa = 13 cm (KC = 2.82),
T = 2.0 s. Time-series of measured (blue) and filtered (red) force. The sampling
rate is 200 Hz. Top subplot: The full set with five oscillation cycles of ramp-in,
10 oscillation cycles with the prescribed amplitude of motion and five oscillation
cycles of ramp-out. Bottom subplot: The two oscillation cycles in the middle of
the set. Spectrum in Fig. A.7.
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Figure A.6: Forced oscillation experiments of C19. ηa = 13 cm (KC = 2.82),
T = 2.0 s. Time-series of measured (blue) and filtered (red) acceleration. The
sampling rate is 200Hz. Top subplot: The full set with five oscillation cycles of
ramp-in, 10 oscillation cycles with the prescribed amplitude of motion and five
oscillation cycles of ramp-out. Bottom subplot: The two oscillation cycles in the
middle of the set. Spectrum in Fig. A.8.
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Figure A.7: Forced oscillation experiments of C19. ηa = 13 cm (KC = 2.82),
T = 2.0 s. Magnitude spectrum of measured force during the ten oscillation cycles
with the prescribed amplitude of motion. The band-pass filter is indicated with
red fill color. f is the frequency. The sampling rate is 200 Hz. Top subplot: Full
spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.8: Forced oscillation experiments of C19. ηa = 13 cm (KC= 2.82), T =
2.0 s. Magnitude spectrum of measured acceleration during the ten oscillation
cycles with the prescribed amplitude of motion. The band-pass filter is indicated
with red fill color. f is the frequency. The sampling rate is 200Hz. Top subplot:
Full spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.9: Forced oscillation experiments of C19. ηa = 1.7cm (KC = 0.35),
T = 1.0 s. Time-series of measured (blue) and filtered (red) force. The sampling
rate is 200 Hz. Top subplot: The full set with five oscillation cycles of ramp-in,
10 oscillation cycles with the prescribed amplitude of motion and five oscillation
cycles of ramp-out. Bottom subplot: The two oscillation cycles in the middle of
the set. Spectrum in Fig. A.11.
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Figure A.10: Forced oscillation experiments of C19. ηa = 1.7 cm (KC = 0.35),
T = 1.0 s. Time-series of measured (blue) and filtered (red) acceleration. The
sampling rate is 200Hz. Top subplot: The full set with five oscillation cycles of
ramp-in, 10 oscillation cycles with the prescribed amplitude of motion and five
oscillation cycles of ramp-out. Bottom subplot: The two oscillation cycles in the
middle of the set. Spectrum in Fig. A.12.
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Figure A.11: Forced oscillation experiments of C19. ηa = 1.7 cm (KC = 0.35),
T = 1.0 s. Magnitude spectrum of measured force during the ten oscillation cycles
with the prescribed amplitude of motion. The band-pass filter is indicated with
red fill color. f is the frequency. The sampling rate is 200 Hz. Top subplot: Full
spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.12: Forced oscillation experiments of C19. ηa = 1.7 cm (KC = 0.35),
T = 1.0 s. Magnitude spectrum of measured acceleration during the ten oscilla-
tion cycles with the prescribed amplitude of motion. The band-pass filter is in-
dicated with red fill color. f is the frequency. The sampling rate is 200 Hz. Top
subplot: Full spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.13: Forced oscillation experiments of C19. ηa = 5.0 cm (KC = 1.05),
T = 1.0 s. Time-series of measured (blue) and filtered (red) force. The sampling
rate is 200 Hz. Top subplot: The full set with five oscillation cycles of ramp-in,
10 oscillation cycles with the prescribed amplitude of motion and five oscillation
cycles of ramp-out. Bottom subplot: The two oscillation cycles in the middle of
the set. Spectrum in Fig. A.15.
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Figure A.14: Forced oscillation experiments of C19. ηa = 5.0 cm (KC = 1.05),
T = 1.0 s. Time-series of measured (blue) and filtered (red) acceleration. The
sampling rate is 200Hz. Top subplot: The full set with five oscillation cycles of
ramp-in, 10 oscillation cycles with the prescribed amplitude of motion and five
oscillation cycles of ramp-out. Bottom subplot: The two oscillation cycles in the
middle of the set. Spectrum in Fig. A.16.
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Figure A.15: Forced oscillation experiments of C19. ηa = 5.0 cm (KC = 1.05),
T = 1.0 s. Magnitude spectrum of measured force during the ten oscillation cycles
with the prescribed amplitude of motion. The band-pass filter is indicated with
red fill color. f is the frequency. The sampling rate is 200 Hz. Top subplot: Full
spectrum. Bottom subplot: The first 10 harmonics.
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Figure A.16: Forced oscillation experiments of C19. ηa = 5.0 cm (KC = 1.05),
T = 1.0 s. Magnitude spectrum of measured acceleration during the ten oscilla-
tion cycles with the prescribed amplitude of motion. The band-pass filter is in-
dicated with red fill color. f is the frequency. The sampling rate is 200 Hz. Top
subplot: Full spectrum. Bottom subplot: The first 10 harmonics.
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Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 
Floating Body. (Dr.Ing. Thesis) 
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UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a 
Two-Stroke Diesel Engine with Thermal Barriers 
(in Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90-
75 

Torbjørn Sotberg, MK Application of Reliability Methods for Safety 
Assessment of Submarine Pipelines. (Dr.Ing. 
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Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible 
Risers. (Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue 
Degradation. (Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response 
of Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 
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MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
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Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 
Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 
Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 
IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 
and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 
fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-
based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 
Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 
Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 
layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 
Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 
maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 
propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 
and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 
behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 
plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 
stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 
Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 
collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 
Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 
Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 
current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 
Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-
Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 
Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 
operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 
Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 
in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 
Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 
Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 
axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 
monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 
presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 
 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 
Marine Structures 
 

IMT-23-
2018 

Jan-Tore Horn 
 

Statistical and Modelling Uncertainties in the 
Design of Offshore Wind Turbines 
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IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 
 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 
 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-
Roll Tank 
 

IMT-3-
2019 

Håkon Strandenes 
 

Turbulent Flow Simulations at Higher Reynolds 
Numbers 
 

IMT-4-
2019 

Siri Mariane Holen 
 

Safety in Norwegian Fish Farming – Concepts and 
Methods for Improvement 
 

IMT-5-
2019 

Ping Fu 
 

Reliability Analysis of Wake-Induced Riser 
Collision 
 

IMT-6-
2019 

Vladimir Krivopolianskii 
 

Experimental Investigation of Injection and 
Combustion Processes in Marine Gas Engines using 
Constant Volume Rig 
 

IMT-7-
2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 
to Ventilation and out of Water Condition. 

IMT-8-
2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 
Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 
Sea Ice 

IMT-9-
2019| 
 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 
Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 

IMT-12-
2019 

Jørgen Bremnes Nielsen Modeling and Simulation for Design Evaluation 

IMT-13-
2019 

Yuna Zhao Numerical modelling and dyncamic analysis of 
offshore wind turbine blade installation 

IMT-14-
2019 

Daniela Myland Experimental and Theoretical Investigations on the 
Ship Resistance in Level Ice 

IMT-15-
2019 

Zhengru Ren Advanced control algorithms to support automated 
offshore wind turbine installation 

IMT-16-
2019 

Drazen Polic Ice-propeller impact analysis using an inverse 
propulsion machinery simulation approach 

IMT-17-
2019 

Endre Sandvik Sea passage scenario simulation for ship system 
performance evaluation 
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IMT-18-
2019 

Loup Suja-Thauvin Response of Monopile Wind Turbines to Higher 
Order Wave Loads 

IMT-19-
20119 

Emil Smilden Structural control of offshore wind turbines – 
Increasing the role of control design in offshore 
wind farm development 

IMT-20-
2019 

Aleksandar-Sasa Milakovic On equivalent ice thickness and machine learning 
in ship ice transit simulations 

IMT-1-
2020 

Amrit Shankar Verma Modelling, Analysis and Response-based 
Operability Assessment of Offshore Wind Turbine 
Blade Installation with Emphasis on Impact 
Damages 

IMT-2-
2020 

Bent Oddvar Arnesen 
Haugaløkken 

Autonomous Technology for Inspection, 
Maintenance and Repair Operations in the 
Norwegian Aquaculture 

IMT-3-
2020 

Seongpil Cho Model-based fault detection and diagnosis of a 
blade pitch system in floating wind turbines 

IMT-4-
2020 

Jose Jorge Garcia Agis Effectiveness in Decision-Making in Ship Design 
under Uncertainty 

IMT-5-
2020 

Thomas H. Viuff Uncertainty assessment of wave-and current-
induced global response of floating bridges 

IMT-6-
2020 

Fredrik Mentzoni Hydrodynamic Loads on Complex Structures in the 
Wave Zone 
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