
Doctoral theses at NTNU, 2020:151

Doctoral theses at N
TN

U, 2020:151

Shao-Fang Wen

Shao-Fang W
en A Multi-Discipline Approach for

Enhancing Developer Learning in
Software Security

ISBN 978-82-326-4650-0 (printed version)
ISBN 978-82-326-4651-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Shao-Fang Wen

A Multi-Discipline Approach for
Enhancing Developer Learning in
Software Security

Gjøvik, May 2020

Faculty of Information Technology
and Electrical Engineering
Department of Information Security and Communication
Technology

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-4650-0 (printed version)
ISBN 978-82-326-4651-7 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2020:151

© Shao-Fang Wen

Faculty of Information Technology
and Electrical Engineering
Department of Information Security and Communication
Technology

Printed by Skipnes Kommunikasjon as

Dedicated to my beloved parents and family.

Declaration of Authorship

I, Shao-Fang Wen, hereby declare that this thesis and the work presented in it

are entirely my own. Where I have consulted the work of others, this is

always clearly stated.

Signed:

(Shao-Fang Wen)

Date:

i

Abstract

Building secure software is challenging. Developers should possess proper security

knowledge and skills so that they can resist security attacks and implement security

countermeasures effectively. However, the lack of knowledge about security among

software developers has become a major problem in software communities. Software

developers come in the field from different academic disciplines, and many of them

lack formal, college-level software development and security training. Even in the

curricula of computer science or engineering, educational programs seem to fail at

providing students (future developers) with essential knowledge and skills in secure

software development. Without appropriate knowledge to resist security attacks and

implement corresponding security countermeasures, developers lose the capability

to handle the growing complexity of software development, and the software

products become more vulnerable to security risks consequently.

To help software developers become aware of the increasing cybersecurity threats,

security experts and software practitioners are devoted to offering a large body of

security knowledge regarding standards, guidelines, and techniques, which are

available in the open literature or on the internet. However, such exponential growth

of knowledge resources does not make a considerable contribution to improve the

problem of software insecurity. The conventional approaches on security knowledge

instruction seem to lose effectiveness in fostering developers’ learning of software

security. What is more, the contextual factors within software development

organizations, technical and non-technical, are influencing developers’ learning

processes toward the achievement of secure software development. The lack of

supportive learning environments in software development, along with ineffective

teaching approaches for software security, has created difficulties for developers in

learning security knowledge.

This thesis is centered in the discipline of Information System and draws from cross-

disciplinary thinking at the intersections of sociology, education, software

engineering and others, to undertake the complex task of identifying how to help

enhance developers learning in software security. With the goals of investigating

contextual factors that affect developers’ learning of software security and suggesting

a learning tool for effective security education and learning, this thesis contributes to

the fields of software development and security education. This thesis employs a five-

cycles of Design Science Research (DSR) methodology to apply existing models and

means from the theories of socio-technical system and context-based teaching and

learning to suggest a multi-discipline approach that integrates necessary elements for

the goal achievement. The contribution of the thesis is twofold: First, this thesis offers

a conceptual framework to identifying the complex relationship between technical

and social factors, pointing out the limitations and opportunities of security learning

in software development. The conceptual framework allows software organizations

to think holistically about their strategies so that they can undertake the challenges of

ii

secure software development through establishing a supportive security learning

environment within the organization. Second, this thesis forges a concrete artifact

designed to promote context-based learning of security knowledge: the ontology-

based contextualized learning system. Through evaluation in both pedagogical and

software development environments, it is proved to contribute a solution to the

problem domain. While these results are positive, the innovative context-based

artifact benefits not only the domain of software security, but also other educational

fields, such as information security and computer security.

iii

Acknowledgment

Research depends on a set of enabling conditions including funding, protected time

and encouragement. Without these conditions being so generously available, this

work would not have been possible. I am therefore thankful for people's efforts to

make this doctoral work a reality. This gratitude is primarily directed towards my

supervisors, Stewart Kowalski, Basel Katt, and Rune Hjelsvold, who patiently have

guided me through the process with a lot of engagement and encouragement. I do

not think I could have done this without your advice, enthusiasm, and support. I am

deeply indebted to you.

Besides my supervisors, I would like to express my full appreciation to the staff of the

Department of Information Security and Communication Technology (IIK) of NTNU

for their administrative support, Nils Karlstad Svendsen, Kathrine Huke

Markengbakken, Hilde Bakke, Jingjing Yang, Linda Derawi, Urszula Nowostawska,

Ingrid Schantz Bakka, and Marina Shalaginova. Numerous others have also

contributed to inspire and challenge my ideas underpinning this work. In particular,

I want to thank my NTNU colleagues and friends, Bian Yang, Mariusz Nowostawski,

Gaute Wangen, Vasileios Gkioulos, Vivek Agrawal, Adam Szekeres, Mazaher

Kianpour, Greth Østby, Muhammad Mudassar Yaminm, and others. I have a

fantastic experience spending time in your company.

Most importantly, I must thank my wife, Hung-Pei Chen, who was with me through

this entire journey from start to finish. I thank you for the inspiration, encouragement,

love, support, and most of all your patience! I also wish to thank my three precious

daughters, Shin-Ru, Shin-Rung and Wan-Chi, whose smiles and hugs are a source of

endless delight. The most stressful moments are endured better with your laughter.

Immense thanks go also to my parents who raised me and taught me to study hard

and to give priority in my life to the quest for knowledge. Thanks for your love and

blessing.

Last but certainly not least, through this journey, I have met many talented and

compassionate individuals who did not hesitate to devote their valuable time to me

when it was needed. I dare not risk missing to mention anyone’s names, so I will

simply say “Thank you ALL for being there for me”.

iv

v

Content

Abstract.. i

Acknowledgment.. iii

Content ... v

List of Figures .. xi

List of Tables .. xv

List of Acronyms and Abbreviations ... xvii

PART I INTRODUCTORY CHAPTERS ... 1

CHAPTER 1 INTRODUCTION .. 3

 Research Context .. 3

 Research Problem ... 5

 Research Motivation .. 7

 Research Objectives and Research Questions .. 10

 List of Included Publications ... 14

 Thesis Structure .. 17

CHAPTER 2 SCIENTIFIC BACKGRPUND AND RELATED WORK 19

2.1 Fundamentals of Software Security .. 19

2.2 Teaching and Learning Software Security.. 27

2.3 A Context-Based Learning Perspective .. 31

2.4 Ontology Modeling .. 34

2.5 Socio-Technical System Theory ... 36

2.6 Open Source Software Development .. 39

CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY ... 43

3.1 Design Science Research .. 43

3.2 Theorizing in DSR .. 44

3.3 DSR Process Model .. 49

3.4 Research design in the thesis ... 53

CHAPTER 4 SUMMARY OF INCLUDED PUBLICATIONS ... 61

4.1 (RP I) Software Security in Open Source Development: A Systematic

Literature Review ... 61

vi

4.2 (RP II) An Empirical Study of Security Culture in Open Source Software

Communities .. 62

4.3 (RP III) Learning Secure Programming in Open Source Software

Communities: A Socio-Technical View .. 64

4.4 (RP IV) An Empirical Study on Security Knowledge Sharing and Learning

in Open Source Software Communities ... 65

4.5 (RP V) Towards a Context-Based Approach for Software Security

Learning .. 67

4.6 (RP VI) Managing Software Security Knowledge in Context-An Ontology-

Based Approach ... 68

4.7 (RP VII) Development of Ontology-Based Software Security Learning

System with Contextualized Learning Approaches 69

4.8 (RP VIII) Preliminary Evaluation of an Ontology-Based Contextualized

Learning System for Software Security .. 70

4.9 (RP IX) Learning Software Security in Context: An Evaluation in Open

Source Software Development Environment ... 71

CHAPTER 5 SUMMARY OF CONTRIBUTION .. 73

CHAPTER 6 CONCLUSION .. 81

6.1 Limitations of the Research ... 81

6.2 Future Research Opportunities ... 83

6.3 Epilogue .. 84

PART II PUBLISHED RESEARCH PAPERS ... 87

CHAPTER 7 SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW... 91

7.1 Introduction .. 92

7.2 Related work ... 93

7.3 Classification framework ... 93

7.4 Research Method .. 94

7.5 Selection Execution .. 96

7.6 Result ... 97

7.7 Discussion ... 99

7.8 Limitation of the study .. 102

7.9 Conclusion .. 103

7.10 Acknowledgment ... 104

7.11 Appendix .. 104

vii

CHAPTER 8 AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE

SOFTWARE COMMUNITIES ... 107

8.1 Introduction .. 108

8.2 Literature Review ... 109

8.3 Research Framework .. 111

8.4 Research Methodology .. 114

8.5 Data Analysis .. 116

8.6 Discussion ... 121

8.7 Limitations .. 124

8.8 Conclusion .. 124

CHAPTER 9 LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE

COMMUNITIES: A SOCIO-TECHNICAL VIEW ... 127

9.1 Introduction .. 128

9.2 Literature Review ... 129

9.3 Methodology... 131

9.4 Data Collection ... 132

9.5 Data Analysis .. 133

9.6 Discussion ... 138

9.7 Limitation .. 141

9.8 Conclusion .. 142

9.9 Acknowledgment ... 142

CHAPTER 10 AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND

LEARNING IN OPEN SOURCE SOFTWARE COMMUNITIES 143

10.1 Introduction .. 144

10.2 Theoretical Background ... 145

10.3 Conceptual Framework ... 147

10.4 Methodology... 151

10.5 Analysis and Result .. 154

10.6 Discussion ... 157

10.7 Conclusions ... 159

10.8 Limitations .. 160

CHAPTER 11 TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY

LEARNING ... 163

11.1 Introduction .. 164

11.2 Conventional Security Learning Materials ... 165

viii

11.3 General Concepts of Context-Based Knowledge for Learning 165

11.4 The Proposed Context-Based Approach .. 167

11.5 Study Method ... 170

11.6 Findings... 174

11.7 Discussion ... 177

11.8 Conclusion .. 178

CHAPTER 12 MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN

ONTOLOGY-BASED APPROACH ... 181

12.1 Introduction .. 182

12.2 Context and Knowledge Management ... 183

12.3 Design of the Ontology .. 183

12.4 Evaluation of the Ontology ... 187

12.5 Discussion ... 190

12.6 Related Work .. 192

12.7 Conclusion and Future Work .. 193

CHAPTER 13 DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING

SYSTEM WITH CONTEXTUALIZED LEARNING APPROACH 195

13.1 Introduction .. 196

13.2 Theoretical Background ... 197

13.3 Related Work .. 198

13.4 Design Approach.. 200

13.5 Underlying Ontology-Based Knowledge Model 202

13.6 The Developed Prototype .. 206

13.7 Conclusion and Future Work .. 209

CHAPTER 14 PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED

CONTEXTUALIZED LEARNING SYSTEM FOR SOFTWARE SECURITY 2101

14.1 Introduction .. 212

14.2 Background ... 213

14.3 Design Approach.. 214

14.4 The Underlying Ontology-Based Knowledge Model 216

14.5 The Developed Prototype .. 218

14.6 Prototype Evaluation ... 220

14.7 Data Collection ... 221

14.8 Experimental Procedure .. 222

14.9 Experimental Analysis ... 222

ix

14.10 Discussion and conclusion... 225

CHAPTER 15 LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN

OPEN SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT 229

15.1 Introduction .. 230

15.2 Contextualized Learning ... 231

15.3 Contextualized Learning System for Software Security............................ 232

15.4 Implementation .. 236

15.5 Study Method ... 239

15.6 Result ... 241

15.7 Discussion ... 244

15.8 Conclusion .. 245

BIBLIOGRAPHY ... 247

x

xi

List of Figures

Figure 1.1: The number of security-related vulnerabilities .. 5

Figure 1.2: The knowledge gap for secure software development................................ 7

Figure 1.3: A schematic overview of research problems and motivation 10

Figure 1.4: Research flow and research questions .. 11

Figure 1.5: The relationship between the research questions and research papers ... 15

Figure 1.6: Contribution of research papers to academic disciplines.......................... 17

 Security knowledge and secure software development lifecycle 24

 The software security knowledge schema .. 25

 Two types of conventional learning materials for software security 29

 Security ontology ... 34

 A model of Socio-Technical System ... 38

Figure 3.1: Design theorizing framework proposed by Lee et al. 46

Figure 3.2: Design theorizing framework based on Lee et al. 48

Figure 3.3: The theorizing process in the thesis (Adapted from Lee et al.) 49

Figure 3.4: DSRM process model proposed by Peffers et al. 50

Figure 3.5: Iterations of DSR design cycles. .. 54

Figure 4.1: Paper selection process of SLR .. 62

Figure 4.2: The mean score of security culture dimensions ... 63

Figure 4.3: The conceptual framework for security knowledge sharing 66

Figure 4.4: The ontology-based security knowledge model. 69

Figure 5.1: An integrated view of contributions in the thesis 79

Figure 7.1: Software Assurance Maturity Model .. 93

Figure 7.2: Socio-technical system .. 94

Figure 7.3: SBC Model ... 94

Figure 7.4: The paper screening process of SLR ... 97

Figure 7.5: Number of publications versus the year .. 98

Figure 7.6: Frequency of studies in security areas .. 100

Figure 7.7: The coverage rate of socio-technical aspects .. 101

Figure 8.1: Top 10 fields that the respondents’ majors or anticipated majors 116

Figure 8.2: The mean score of security culture dimensions 118

Figure 9.1: Socio-technical system .. 131

Figure 9.2: A socio-technical analysis of findings ... 138

Figure 10.1: The conceptual framework. ... 147

Figure 11.1: A conceptual representation of the proposed learning approach 167

xii

Figure 11.2: Components of the application context .. 168

Figure 11.3: The relationship among security concepts .. 169

Figure 11.4: The constructed learning path based on the context-based approach . 170

Figure 11.5: The simplified view of two learning materials for SQLi 172

Figure 11.6: Knowledge gain for the two groups in each round of experiments 175

Figure 11.7: Radar diagram for learning satisfaction scores 176

Figure 12.1: Three models span the modeling of security knowledge 183

Figure 12.2: Application Context Model ... 184

Figure 12.3: Security domain Model .. 185

Figure 12.4: Security contextualization model .. 187

Figure 12.5: The ontology-based security knowledge model 187

Figure 12.6: The ontology evaluation process ... 187

Figure 12.7: Ontology design in Protégé editor .. 188

Figure 12.8: The objective property and data property of concrete knowledge 188

Figure 12.9: An example of SPARQL (to query Scenarios) .. 189

Figure 12.10: An example of SPARQL (to query security knowledge) 189

Figure 12.11: The user interface for context selection ... 190

Figure 12.12: The user interface for security knowledge presentation 191

Figure 13.1: The design approach of the learning system .. 200

Figure 13.2: Application context model... 203

Figure 13.3: Security domain model .. 204

Figure 13.4: Security contextualization model .. 205

Figure 13.5: The ontology-based security knowledge model 205

Figure 13.6: High-level system architecture diagram... 206

Figure 13.7: Ontology design in Protégé editor .. 206

Figure 13.8: An example of SPARQL and the executed result 207

Figure 13.9: The user interface of the developed prototype 208

Figure 13.10: The constructed learning process of the learning system.................... 208

Figure 13.11: The screenshot of viewing security weakness of the scenario 210

Figure 13.12: A scenario for memory buffer operations in C/C++ 210

Figure 14.1: The design approach of the learning system .. 214

Figure 14.2: The ontology-based security knowledge model 216

Figure 14.3: High-level system architecture diagram... 218

Figure 14.4: The user interface of the developed prototype 219

Figure 14.5: A sample of the learning materials for the control group 221

Figure 14.6: Knowledge gain for the control and experiment groups 223

Figure 15.1: The design concept of the proposed security learning system 232

xiii

Figure 15.2: An overview of the ontology-based security knowledge model 234

Figure 15.3: System architecture diagram ... 236

Figure 15.4: Snapshots of the contextualized learning system 238

Figure 15.5: The embedded learning process in the system 238

Figure 15.6: The distribution of programming languages .. 241

Figure 15.7: Radar chart showing the mean score of system features 242

Figure 15.8: SPSS reliability test of evaluation items ... 243

Figure 15.9: Stacked bar chart: responses to questions of the proposed approach .. 244

xiv

xv

List of Tables

Table 3.1: Descriptions of theorizing activities in the thesis .. 50

Table 3.2: Mapping table for research questions, and research papers 59

Table 4.1: Testing results of research hypo0theses ... 66

Table 7.1: Distribution of studies according to the publication venues 98

Table 7.2: Top five publication venues of identified articles 98

Table 7.3: Security areas of the selected studies.. 99

Table 7.4: Socio-technical aspects of the selected studies ... 101

Table 7.5: Knowledge problems addressed in the selected security studies 102

Table 7.6: List of Selected Papers ... 104

Table 8.1: Security culture dimensions and corresponding survey questions. 115

Table 8.2: General demographic characteristics ... 116

Table 8.3: OSS Characteristics of the respondents .. 117

Table 8.4: Descriptive analysis of the Attitude dimension... 118

Table 8.5: Descriptive analysis of the Behavior dimension .. 119

Table 8.6: Descriptive analysis of the Competency dimension 120

Table 8.7: Descriptive analysis of the Subjective Norms dimension 120

Table 8.8: Descriptive analysis of the Governance dimension 121

Table 8.9: Descriptive analysis of the Communication dimension 121

Table 9.1: Overview of the selected projects ... 131

Table 10.1: Measurement instrument for key variables in the questionnaire. 152

Table 10.2: Demographic characteristics of the respondents 153

Table 10.3: The convergent validity and reliability test results. 154

Table 10.4: The correlation analysis for security culture and knowledge sharing. .. 155

Table 10.5: The correlation analysis for expertise coordination 156

Table 10.6: The multiple-regression analysis for expertise coordination 156

Table 10.7: The correlation analysis for security knowledge sharing 157

Table 10.8: The multiple-regression analysis for security knowledge sharing......... 157

Table 10.9: Testing results of research hypotheses. .. 158

Table 11.1: The definition of security concepts .. 169

Table 11.2: Questionnaire items for measuring learning satisfaction 173

Table 11.3: Learning materials dispatching rules ... 173

Table 11.4: Comparative means analysis of students’ performance 174

Table 11.5: Independent sample t-test results for pre-test scores (1st round) 175

Table 11.6: Independent sample t-test results for the post-test scores (1st round) .. 175

Table 11.7: Independent sample t-test for pre- and post-test score (2nd round) 175

xvi

Table 11.8: Comparative means of students’ performance 177

Table 14.1: Experiment Design ... 220

Table 14.2: The experimental procedure ... 222

Table 14.3: Compared means analysis of students’ performance 223

Table 14.4: Independent sample t-test for pre-test score .. 223

Table 14.5: Independent sample t-test for the post-test score 224

Table 14.6: Paired sample t-test of pre- and post-test for the experimental group .. 224

Table 14.7: The evaluation of student’ learning satisfaction 225

Table 14.8: The evaluation of student’ learning preferences 225

Table 15.1: Evaluation items for system features .. 240

Table 15.2: Evaluation items for the learning approach ... 240

Table 15.3: Demographic analysis of the respondents (n= 21) 241

Table 15.4: Descriptive analysis of the proposed learning approach 244

xvii

List of Acronyms and Abbreviations

CAPEC Common Attack Pattern Enumeration and Classification

CBK Common Body of Knowledge

CBL Context-Based Learning

CERT Computer Emergency Response Team

CIA Confidentiality, Integrity, and Availability

CoP Community of Practice

CSIS Center for Strategic and International Studies

CSRF Cross-Site Request Forgery

CVE Common Vulnerabilities and Exposures

CVS Concurrent Versions System

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DC Design Cycle

DHS United States Department of Homeland Security

DoS Denial-of-Service

DSR Design Science Research

GPL General Public License

KM Knowledge Management

ICT Information and Communication Technology

IDE Integrated Development Environment

IM4TD Idealized Model for Theory Development

IMR Introduction, Methodology and Result

IS Information System

IT Information Technology

MDA Model Driven Architecture

xviii

MMR Mixed-Method Research

NIST National Institute of Standards and Technology

NTNU Norwegian University of Science and Technology

NVD National Vulnerability Database

OBTL Outcome-Based Teaching and Learning

OSD Open Source Definition

OSS Open Source Software

OSSC Open Source Software Community

OWASP Open Web Application Security Project

OWL Web Ontology Language

PoC Proof-of-Concept

QaR Qualitative Research

QnR Quantitative Research

RDF Resource Description Framework

RP Research Paper

RQ Research Question

SAMM Software Assurance Maturity Model

SDLC Software Development Lifecycle

SLR Systematic Literature Review

SPARQL Protocol and RDF Query Language

SPC Secure Programming Clinic

SQL Sequential Query Language

SQLi SQL Injection

SSDLC Secure Software Development Lifecycle

SSL Secure Socket Layer

STACK Security Toolbox: Attacks & Countermeasures

STS Socio-Technical System

XSS Cross-Site Scripting

1

Part I

Introductory Chapters

2

3

Chapter 1

Introduction

This chapter offers contexts of the research before presenting the problem description,

the motivation for the research, and the research questions. Furthermore, it provides

an overview of related research publications and their relationship to this thesis’s

research questions. Lastly, a thesis outline is presented.

 Research Context

In the modern world, information and communication technology (ICT) is broadly

used as a tool or facilitator supporting the development of society in general. Society

heavily relies on ICT to carry out daily activities such as manipulating and storing

personal information, health records, financial transactions, and other sensitive

information. Software, as a dominant factor in the development of ICT systems, plays

a crucial role in the entire ICT value chain, including the platform, network, and

device. According to a forecast by Gartner, Inc., worldwide ICT spending was

projected to total $3.8 trillion in 2019, with software products and services

representing nearly 33% of that figure. The software has developed over time to fit

changing needs; for example, people can connect with each other easily through the

internet. However, as software becomes increasingly complex and connected, it also

features many more flaws for hackers to exploit [341]. A global report by the Center

for Strategic and International Studies1 and McAfee2 [273] has stated that close to $600

billion is lost to cybercrime each year. Some of the most widespread software-based

1 The Center for Strategic and International Studies, based in Washington, D.C. (United States),

conducts policy studies and performs strategic analyses on political, economic, and security issues

throughout the world.
2 McAfee is a U.S.-based global security technology company and part of the Intel Security division.

CHAPTER 1. INTRODUCTION

4

crimes include stealing information via hacking, carrying out virus attacks to cripple

computer systems, and implanting spyware with the intent of watching people

perform computer activities. In the age of cybercrime, and with threats to software on

the rise and attacks increasingly complex, the importance of not only application

security (e.g., encryption, firewalls, and access control) but also software security3 has

been recognized [295].

In this era of information explosion, numerous possibilities exist to become a software

developer, regardless of one’s background and expertise. According to the 2018 Stack

Overflow4 developer survey [426], of the more than 10,000 participating developers,

one-third were from other academic disciplines, such as natural science, mathematics,

and business disciplines, while nearly 90% of respondents reported that they were

self-taught about programming skills. With internet technologies, people enjoy easy

access to many sorts of information helpful for learning and practicing software

programming; they can even release their software products for public use or

distribute software codes among broad communities of developers around the world.

Yet, only a small fraction of developers are competent at secure software

development5. Many computer science courses such as programming and system

development leave software security out of their mandatory curricula [380, 511],

while software security is an optional discipline. A survey by Veracode 6

and DevOps.com7 [261] found that only 2.8% of undergraduate computer science

programs require a security course, while only 24% of 397 respondents, who were

college-educated developers, were required to complete cybersecurity courses as part

of their education. What is more, 70% of the respondents said that the security

education they received was not adequate for what their job positions required [261].

To emphasize software security, security researchers and software practitioners have

mounted substantial efforts towards providing guidelines, standards, or frameworks

for secure software development, which are available in open literature or on the

internet [155, 194, 453, 510]. Such works have resulted in the creation of a huge body

of security knowledge 8 that developers can learn and refer to. Nevertheless, the

3 Software security is “the idea of engineering software so that it continuous to function correctly

under malicious attacks” [293]. The concept of software security is introduced in Section 2.1.1.
4 Stack Overflow is an online community for people interested in learning to code and sharing their

knowledge regarding software development: https://stackoverflow.com
5 Secure software development encompasses the security-related methods to an existing software

development process. The details about secure software development are given in Section 2.1.3.
6 Veracode is a service provider of enterprise-class application security, integrating agile security

solutions for organizations around the globe.
7 DevOps.com collects original content related to DevOps on the web, including philosophy, tools,

business impact, and best practices.
8 The terms “security knowledge,” “secure software knowledge,” and “software security knowledge”

are used as inclusive terms in this thesis. They all refer to knowledge of engineering software that

allows one to ensure that software continues to function correctly under malicious attacks. The details

are discussed in the Section 2.1.4.

CHAPTER 1. INTRODUCTION

5

number of new vulnerabilities in software systems has continued to increase.

According to Common Vulnerabilities and Exposures (CVE)9 vulnerability statistics

[102]—available in Figure 1.1—2.5 times more software vulnerabilities were disclosed

in 2018 than in 2010. The 2018 figure represents an all-time high of 16,555

vulnerabilities, with almost 45 vulnerabilities reported on an average day. Of these

vulnerabilities, nearly 70% were due to programming errors; the rest were due to

configuration or design problems [256]. Despite the fact that vulnerabilities have been

a focus of the security community for years, a substantial majority of the

vulnerabilities were classic and fairly well-known programming errors. Such errors,

including cross-site scripting (XSS) and injection flaws, have been repeatedly

reported and have appeared on the OWASP10 Top 10 vulnerabilities list every year

since 2010 [495], and nearly 80% of recently scanned applications still suffer from such

issues [457].

Figure 1.1: The number of security-related vulnerabilities registered in the Common

Vulnerabilities and Exposures system from 2010 to 2018 [102]

 Research Problem

One of the major problems in software security is the lack of knowledge about

security among software developers [31, 430, 438]. Building secure software is

challenging: technologies advance rapidly, and the growing intricacy of ICT systems

has made all software projects quite different in terms of context and development

techniques [294]. Such complexity means that developers should possess proper

9The CVE system provides a reference-method for publicly known information security vulnerabilities

and exposures: https://cve.mitre.org/.
10 The Open Web Application Security Project (OWASP) is an online community that produces freely

available articles, methodologies, documentation, and technologies in the field of web application

security: https://www.owasp.org/

CHAPTER 1. INTRODUCTION

6

security knowledge and skills so that they can resist security attacks and implement

security countermeasures effectively [46]. However, software developers are not

experts in security in general [2, 387]. Many of them come in the field from other

academic disciplines and have no formal, college-level software development and

security training. Even in the curricula of computer science or software engineering,

education programs seem to fail at providing students with essential competence in

software security.

To help developers stay on the cutting edge, security communities and industries are

devoted to offering a substantial amount of security learning materials in the form of

checklists, standards, and best practices; developers can access these materials via

books, open literature, or the internet. However, without fundamental security

education, developers lack capabilities to sort out the complex and scattered pieces of

security information and to distinguish between relevance and irrelevance. Such

exponential growth in learning materials has also created excessive amount of

information, leading to a heavy cognitive load for learners [508], which makes it

difficult for them to learn the required subjects quickly and conveniently from various

sources [208]. Consequently, the attitude of learners towards learning generally

declines during the progression through learning sessions because of the overloaded

state [317]. Further, in the conventional learning materials11, instructions commonly

start with abstract security concepts, as opposed to being situated in real-life contexts.

Learners who learn security concepts solely in a decontextualized setting might not

be able to apply the necessary skills when facing real-life security threats [384] or with

the feeling that secure software development is so difficult to achieve that they simply

cast it aside [23].

Another important consideration related to the difficulty of acquiring security

knowledge is the learning environment that surrounds developers, which relates to

the culture, business goals, and structures of the organizations. The world of

technologies advances constantly, and business requirements are continuously

changing. Software development organizations face high pressure regarding

productivity and constant demands for innovation and rapid responses to markets.

As a result, software developers would typically focus on their programming skills,

implementing as many functionalities as possible before their deadline, and they later

patch any bugs before the next release or hotfix [175, 218]. Stress and resource fatigue

is common among software project teams. Given these social and organizational

influence, developers often lack opportunities to reflect on the quality of their code or

lack a strong desire to continue learning [262]. In this setting, obtaining security

knowledge becomes an occasional activity, which is highly dependent on the learning

environment given to developers.

The lack of supportive learning environments in software development, along with

ineffective teaching and learning approaches for software security, has created

11 The weakness of conventional security learning materials is discussed in Section 2.2.2

CHAPTER 1. INTRODUCTION

7

difficulties in learning essential security knowledge, ranging from basic

vulnerabilities to in-depth security practices on secure software development.

Consequently, developers fail to possess adequate security knowledge and skills to

build secure software. This is attributed to the knowledge gap between where

learners are now (initial state) and where they need to be (goal state or solution) [193].

Developers’ level of security knowledge acquired from the learning materials is the

initial state, and what they need to know to secure their software systems is the goal

state. Figure 1.2 hypothetically depicts software system complexity and secure

software knowledge as functions over time. The knowledge gap described above is

also visible as a function over time. The explosion in security learning materials does

not make a considerable contribution to improving the problem. Without appropriate

measures to help developers gain security knowledge effectively, the gap will

continue to widen.

Figure 1.2: The knowledge gap for secure software development

 Research Motivation

Improving software security requires many different approaches. One is to give

software developers the knowledge to develop and maintain software programs that

handle errors and resist attacks appropriately [46]. Such knowledge makes

developers more sensitive to the intimation of security mistakes. However, today’s

teaching practices and learning materials for software security seem to lose the

effectiveness of fostering security learning, either for students or developers.

Meanwhile, the social and technical conditions within software development

environments are complicating the learning process for developers in terms of

security aspects. In the research of computing disciplines12, the lack of integrative

research and the limited use of relevant reference disciplines have been identified

12 ACM outlines five major disciplines within the computing field: computer engineering, computer

science, information systems, information technology and software engineering.

CHAPTER 1. INTRODUCTION

8

problems for some time [165, 167]. These facts demonstrate a need for a multi-

discipline approach, technical and non-technical, for alternative and complementary

teaching and learning techniques facilitating a learning environment that offers

continuous security education for developers.

To facilitate effective learning13, researchers have provided a variety of frameworks

offering a comprehensive view of general teaching and learning contexts. For

example, Biggs [43] developed the Presage-Process-Product (3P) model of learning,

emphasizing on the curriculum and course design, which is synthesized with

Outcome-Based Teaching and Learning (OBTL). Race’s model [362], which suggests

there are five factors underpinning successful learning (i.e. wanting, needing, doing,

feedback and digesting), drew on ideas emanating from psychology. As this research

is concerned with supportive conditions for security learning in software

development and the creation of effective learning opportunities, this thesis utilizes

Fenstermacher and Richardson’s framework [142] in the conceptualization of the

research phenomenon. Fenstermacher and Richardson [142] have presented four

ingredients that focus on teaching, learning, and their interaction in learning

environments: (a) willingness and effort on the part of the learner, (b) social

surroundings that are supportive of teaching and learning, (c) opportunities to teach

and learn, and (d) good teaching [142]. The four ingredients highlight the value of a

setting as a framework within which learners encounter social and content related

focal events, determining tasks as opportunities to learn and talk about relevant

knowledge, initiating willingness and effort if successfully designed. Fenstermacher

and Richardson’s framework centers on practices of classroom teaching, however, it

has been used to deal with many areas with the science of learning. These areas

include online learning practices [121, 285], instructional quality [221, 285], didactics

[270], pedagogical content knowledge [12, 96], and learners’ interest and motivation

[305]. Consequently, this framework offers researchers a platform to study effective

security-learning environments, which should be essential to consider the state of the

learners (e.g., interest, motivation, and other aspects related to willingness and effort),

the character of the social surroundings (e.g., policies, culture, and norms of the

groups that support and assist in learning), and the availability and extent of

opportunities for learning.

On the one hand, learning could be conceptualized within different contexts and

applied to numerous organizational activities related to people, processes, and

learning techniques. In the context of software development, software developers

collaborate in teams and groups embedded within their work organizations. The

activities that developers perform are not only technical tasks but also a social process

embedded within organizational and cultural structures [109]. Such socio-technical

structures include a wide range of contextual factors with potential influence in terms

of guiding developers or inspiring learning, for instance, the security value of the

13 Effective learning encompasses appropriate approaches and strategies that provide effectiveness for

the particular goals and context [477].

CHAPTER 1. INTRODUCTION

9

organization, peers’ expectation and encouragement toward security, and the project

structure for secure software development; these factors also lead to the success or

failure of software development projects. The socio-technical view of learning focuses

on the organizational strategy of harmonizing learning activities with technological

drivers and social enablers to achieve objectives [201]. The theory of socio-technical

systems embraces the combined social and technical complexity of work organization

[128, 442], and it has the explicit ambition of improving peoples’ job satisfaction and

productivity while simultaneously creating the conditions necessary for an adaptive

and learning-centric organization [442]. Researchers have continuously addressed the

importance of the social and human side of learning in software engineering [63, 111,

148, 166]; however, the socio-technical perspectives of developer learning in software

security have not yet been well examined.

On the other hand, effective teaching techniques require motivation on the part of the

learner and opportunities for learning through the provision of appropriate facilities

and resources [142]. These features of learning suggest a proposal for developing an

engaged learning environment to cultivate learners’ intrinsic motivation, which could

significantly increase the likelihood of teaching being successful. According to

Jonassen and Land [224], “learners must be introduced to the context of the problem

and its relevance, and this must be done in a way that motivates and engages them”

(p. 33). Context and the particulars of that context can provide a powerful motivation

for learning [88]. This thesis recommends that to create opportunities and conditions

supporting more effective learning about software security in software development,

and to motivate developers to learn about software security, educators should

contextualize security teaching and learning, placing the knowledge in a context familiar to

learners. Context-based approaches14 aim to bring science learning closer to the lives

and interests of learners and to illustrate how using familiar contexts can increase

their interest in science and therefore enhance their understanding [38]. Researchers

have identified several interrelated problems and challenges in science education and

learning that context-based learning approaches intend to address: (a) curricula are

overloaded [162, 411], (b) too many isolated facts and concepts prevent students from

developing a worthwhile “mental model” [307], and (c) an excessive emphasis on

correct explanations and solid foundations leaves students confused about reasons

for learning science [162, 323]. As these problems have plagued security education,

context-based learning may be relevant as regards software security. This approach

is not new, and education researchers have emphasized learning in context over the

years; however, such approaches are not embraced in practice in the domain of

software security, and much remains to be learned about designing learning support

artifacts for use in context-based education.

To overcome the aforementioned problems and socio-technical challenges regarding

security learning and the limitations of related research, this thesis addresses the

elements of both socio-technical and context-based approaches that are necessary for

14 Context and Context-Based Learning are discussed in Section 2.3.

CHAPTER 1. INTRODUCTION

10

security learning to be effective. Figure 1.3 contains a schematic overview of the

research problems and motivation.

Figure 1.3: A schematic overview of research problems and motivation

 Research Objectives and Research Questions

This thesis is centered in the discipline of Information System (IS)15 and draws from

cross-disciplinary thinking at the intersections of sociology, education, software

engineering and others, to undertake the complex task of identifying how to help

developers bridge the security knowledge gap. The underlying research relied on

multifaceted approaches aimed at expanding the current understanding of security

education and learning. Consequently, this thesis aims to accomplish the following

objectives: (a) establishing a socio-technical foundation for understanding security

learning in the context of software development and (b) proposing an online learning

system, restructuring security knowledge and facilitating a context-based learning

process to help developers and other learners learn software security. To achieve the

research objectives, four main research questions (RQs) were formulated to guide the

research activities. Figure 1.4 illustrates the research activities with the corresponding

research questions.

RQ 1: How do socio-technical aspects affect individuals’ learning of software

security in the context of open source software development?

The first research question encourages empirical investigations of the magnitude of

the real-world problems in secure software development. This question attempts to

identify opportunities, prospectus, and limitations related to learning software

security, specifically in open source software (OSS) development environments. In

the domain of software development, it is difficult to draw precise and conclusive

boundaries regarding what constitutes useful background and what does not.

Additionally, for reasons of practicality, investigating all possible sources of influence

15 Information System disciplines examine topics related largely to organizational concepts, especially

technology adoption and operation, all primarily at a behavioral level of analysis. The academic

disciplines of this thesis are described in Section 1.5.

CHAPTER 1. INTRODUCTION

11

would not be viable—nor would it be fair to readers to present background

information of seemingly trivial importance. Since the notion of software

development has evolved from a different context, it is essential to investigate the

research topics within the field in which the software security learning process is

embedded and implemented. In this case, the context of open-source software

development was chosen. OSS has had a growing impact on society and today’s ICT

systems: approximately 80% of companies run their operations on OSS [330], and 96%

of applications utilize OSS as software components [50]. In 2018, the Linux

Foundation16 reported that the Linux kernel has been committed over 25 million lines

of code from over 33,000 open source contributors [261]. However, over 80% of OSS

project maintainers and users believe developers should own security, but they aren’t

well-equipped, according to the State of Open Source Security Report - 2019 [420].

Research question 1 was elaborated into more detailed research questions to establish

the magnitude of real-world problems in OSS development.

RQ 1-1: What are the strengths and weaknesses, both technical and non-technical, of

software security research conducted in the setting of OSS development?

Many studies have been conducted by both researchers and practitioners on the

practices of building security into OSS applications. This research question untangles

the domain by investigating the research challenges related to OSS security practices

16 The Linux Foundation (LF) is a non-profit technology consortium founded in 2000 as a merger

between Open Source Development Labs and the Free Standards Group to standardize Linux.

Figure 1.4: Research flow and research questions

CHAPTER 1. INTRODUCTION

12

in the literature, and it aims to discover gaps in current research and to thus define

relevant research opportunities. This research question is answered in the research

paper I (RP I; listed in section 1.5).

RQ 1-2: What issues and challenges need to be addressed and managed to develop

and maintain sound security culture in the OSS development context?

Organizational cultures lead people to behave and interact in certain ways, which can

be either helpful or harmful regarding learning and job satisfaction [393]. Specific

elements of an organization’s culture may affect the organization’s capacity to learn

and may influence what it learns and how it does so [281]. This research question

aims at (a) framing the key social and cultural dimensions of software security in OSS

development and (b) investigating the current state of security maturity in OSS

development through a security culture assessment. This research question is

answered in RP II.

RQ 1-3. How have technical, cultural and social aspects affected software-security

learning in OSS development?

Open-source software is developed collectively by the online community of practices

with a strong relationship between technical and social interactions in a knowledge-

intensive process [198, 245]. Therefore, we must recognize and value the setting as a

social, spatial, and temporal framework within which learning occurs in the interplay

between social and technical aspects. Many OSS proponents believe that OSS

development offers significant learning opportunities based on its best practices [204,

257], which are different from traditional educational models [71, 144]. However,

studies specifically exploring security knowledge learning in OSS development are

quite rare. Hence, this research question involves identifying socio-technical factors

in OSS development that influence security learning and investigating structural

dependencies among them. The answer to this research question is outlined in RPs

III and IV.

RQ 2: How can context-based approaches be applied in software security to

motivate learners and to improve learning outcomes?

The traditional security instruction design does not effectively draw learners’

attention and is not particularly successful at fostering effective learning of security

knowledge. Context-based teaching and learning approaches, however, have been

demonstrated in various scientific teaching and learning environments. Yet, it

remains unclear how this concept can be synthesized in the domain of software

security and how to apply it in the construction of learning materials. This question

investigates how security learning can be facilitated via a context-based approach and

to what extent this approach motivates students’ learning of software security in

terms of knowledge gain and learning satisfaction. Research question 2 is split into

two sub-research questions, both answered in RP V.

CHAPTER 1. INTRODUCTION

13

RQ 2-1: What is the design of a learning approach to software security that considers

real software scenarios integrated with corresponding security knowledge?

Context-based learning usually takes the form of real-world examples of problems

that help to sequence the delivery of facts and concepts; it hence creates a mental

model for orienting oneself toward the learning subject. This research question

focuses on designing a context-based approach to software security learning that

adapts these strategies to software security teaching and learning.

RQ 2-2: What effect does the proposed context-based learning approach have on

students’ learning outcomes and learning satisfaction?

Building on RQ 2-1, RQ 2-2 is based on the premise that to improve the effectiveness

of security learning, the learning approach must promote positive learning outcomes

and learning satisfaction. This question investigates whether the proposed learning

approach more effectively supports students in learning about software security than

traditional methods. This research question also assesses the potential of the

proposed learning approach to guide learning material construction.

RQ 3: How can one design an ontology that manages contextualized software

security knowledge?

To address weaknesses in security learning regarding knowledge management,

including information overload and isolated security concepts, this thesis remodels

security knowledge so that it can be retrieved in a manner that takes real-world cases

into consideration. Ontologies make this kind of goal possible since they facilitate the

capture and construction of domain knowledge and enable the representation of

skeletal knowledge [181]. To answer this research question, the thesis first addresses

the design pattern of an ontology for appropriately managing contextualized and

theoretical security knowledge. Next, it applies ontology evaluation techniques to

assess the ontological artifact in terms of its feasibility and applicability in

constructing an ontology-based learning system. This research question is answered

in RP VI.

RQ 4: How can one construct a learning system that facilitates context-based

learning of security knowledge in software development?

While RQ 2 and RQ 3 investigate the feasibility and effectiveness of the proposed

context-based learning approach and the ontological knowledge base, respectively,

RQ 4 focuses on integrating the two artifacts into the development of a learning

system, and it is divided into three sub-questions.

RQ 4-1: How can the proposed context-based learning approach and ontology be

appropriately integrated into a contextualized learning system?

CHAPTER 1. INTRODUCTION

14

This sub-research question investigates how to develop a web-based learning system

for software security, which utilizes developed ontology as the kernel knowledge

base, meanwhile, facilitates the contextual learning process following the proposed

learning approach. The answer to this research question is given in the research paper

RP VII.

RQ 4-2: What are the effects of the learning system on students’ learning of software

security in terms of learning outcomes and learning satisfaction?

The second sub-research question was answered via a preliminary evaluation of the

learning system in the context of a controlled laboratory experiment. The aim was to

validate whether the system has a positive effect on learning performance and

whether it can stimulate learners’ interest. This research question is answered in RP

VIII.

RQ 4-3: To what extent does the proposed security learning system affect the learning

outcome in OSS development environments?

After the initial validation in the school context, the next step was to evaluate the

security learning system in a real-world setting, namely, the OSS development

environment. To measure learners’ satisfaction, this research question explores the

perceived usability of OSS developers in terms of system features and the embedded

learning approach. The answer to this research question is in RP IX.

 List of Included Publications

Because software development is a field of applied research that draws upon different

research disciplines, such integrative efforts are important for identifying important

research contributions in each discipline [478] and subsequently the advancement of

software development excellence. This research was conducted within a multi-

disciplinary academic framework at Norwegian University of Science and

Technology, which resulted in a number of research papers (RP) on different

disciplines, including sociology, education, information system and others that give

important insights to software security learning. This section provides a list of the

nine research papers included as part of this thesis, published in either international

journals or international conference proceedings. Figure 1.5 illustrates the

relationship between research questions and the included research papers. The

extended descriptions of the linkages (research questions, research studies, research

papers, and contributions) will be presented in Chapter 5.

With the goals of investigating contextual factors that affect developers’ learning of

software security and suggesting context-based artifacts for effective security

education and learning, this thesis contributes to the fields of software development

and security education. In Figure 1.6, an overview of the contribution of research

papers to academic disciplines is presented, which is placed on a continuum of social

CHAPTER 1. INTRODUCTION

15

and technical disciplines with sociology represented at one end and information

technology on the other. The length of the bar graphs represents the amount of study

that was undertaken.

1. RP I [481]:

Wen, Shao-Fang. "Software security in open source development: A systematic

literature review." In 2017 21st Conference of Open Innovations Association (FRUCT),

IEEE, 2017, pp. 364-373. doi: 10.23919/FRUCT.2017.8250205.

Academic discipline: Information System, Software Engineering

2. RP II [490]:

Wen, Shao-Fang, Mazaher Kianpour, and Stewart Kowalski. “An Empirical

Study of Security Culture in Open Source Software Communities.” 2019

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM). IEEE, 2019, pp. 863-870. doi: 10.1145/3341161.3343520

Academic discipline: Sociology, Information system.

3. RP III [483]:

Wen, Shao-Fang. "Learning secure programming in open source software

communities: a socio-technical view." In Proceedings of the 6th International

Conference on Information and Education Technology, ACM 2018, pp. 25-32. doi:

10.1145/3178158.3178202.

Academic discipline: Sociology, Information system.

Figure 1.5: The relationship between the research questions and research papers

CHAPTER 1. INTRODUCTION

16

4. RP IV [482]:

Wen, Shao-Fang. "An Empirical Study on Security Knowledge Sharing and

Learning in Open Source Software Communities." Computers, 2018, volume 7,

issue 4. doi: 10.3390/computers7040049.

Academic discipline: Sociology, Information system.

5. RP V [489]:

Wen, Shao-Fang and Katt, Basel. “Towards a Context-Based Approach for

Software Security Learning.” Journal of Applied Security Research. 2019, volume

14, issue 3, pp. 288-307. doi: 10.1080/19361610.2019.1585704.

Academic discipline: Education, Information System

6. RP VI [486]:

Wen, Shao-Fang and Katt, Basel. “Managing Software Security Knowledge in

Context: An Ontology-Based Approach.” Information 2018, volume 10, issue 6.

doi: 10.3390/info10060216.

Academic discipline: Information System, Information Technology

7. RP VII [484]:

Wen, Shao-Fang and Katt, Basel. “Development of Ontology-Based Software

Security Learning System with Contextualized Learning Approaches.” Journal of

Advances in Information Technology. 2019, volume 10, no. 3, pp 81-90. doi:

10.12720/jait.10.3.81-90.

Academic discipline: Information Technology

8. RP VIII [487]:

Wen, Shao-Fang and Katt, Basel. “Preliminary Evaluation of an Ontology-Based

Contextualized Learning System for Software Security.” In Proceedings of the 23rd

International Conference on Evaluation and Assessment in Software Engineering.

ACM, 2019, pp.90-99. doi: 10.1145/3319008.3319017.

Academic discipline: Software Engineering, Education

9. RP IX [485]:

Wen, Shao-Fang and Katt, Basel. “Learning Software Security in Context: An

Evaluation in Open Source Software Development Environment.” In Proceedings

of the 14th International Conference on Availability, Reliability, and Security. ACM,

2019, pp 58-67. doi: 10.1145/3339252.3340336.

Academic discipline: Software Engineering, Information System

CHAPTER 1. INTRODUCTION

17

Figure 1.6: Contribution of research papers to academic disciplines

 Thesis Structure

This thesis is comprised of fifteen chapters that are divided into two parts. Part I of

the thesis presents an overview of the research work and Part II presents the included

research papers.

Part I: Introductory Chapters

Chapter 1: (present chapter) presents an overview of the thesis and consists of

sections on research context, problem description, motivation, research objectives,

research questions and the list of publications.

Chapter 2: presents a comprehensive and necessary scientific foundation and related

work of the research subject areas. The theoretical and practical underlying topics are

discussed. The topics include fundamentals of software security, ontology modeling

for secure software knowledge, context-based learning perspectives, the theory of the

socio-technical system and open source software development.

Chapter 3: presents the complete theorizing process and methodological aspects

underpinning the research. It describes the overall research design and explains how

theoretical and empirical work has been combined.

Chapter 4: presents an extended summary of the included papers published in peer-

reviewed internationally recognized conferences and journals. Each paper presented

followed an IMR format: Introduction, Methodology, and Result. Full research

papers are provided in Part II of this thesis.

Chapter 5: highlights and reflects upon the main contributions of this research.

Chapter 6: presents the conclusion of the research work, which includes limitations

of the research that are mentioned, followed by some future research opportunities.

CHAPTER 1. INTRODUCTION

18

Part II: Published Research Papers

Chapters 7-15 include the nine research papers that constitute the main part of this

thesis. The papers are presented in the same sequence as in Section 1.5.

19

Chapter 2

Scientific Background and
Related Work

This chapter is divided into six sections. Section 2.1 presents an overview of software

security, including basic concepts, terms, secure software development and

knowledge for software security. Section 2.2 discusses the teaching and learning of

software security, including the teaching approaches, conventional learning materials

and tool-based learning for software security. Context-based learning aspects are

introduced in Section 2.3 while ontology modeling is presented in Section 2.4. Section

2.5 is devoted to the theory of the socio-technical system, followed by an overview of

open source software development, including OSS security and learning in OSS

communities, presented in Section 2.6.

2.1 Fundamentals of Software Security

2.1.1 Concepts of Software Security

The field Software Security made its first formal appearance in books and academic

classes in 2001 [293]. Software Security is defined as the idea of engineering software

so that it continues to function correctly under malicious attack [294]. It is about

building secure software: designing software to be secure and making sure that

software is secure [293]. The objectives of software security are the preservation of

security properties, including confidentiality, integrity, and availability (CIA) [516];

and accountability if their preservation fails. Confidentiality, preventing

unauthorized disclosure, and integrity, preventing unauthorized alteration, require

mechanisms to firmly establish identities – authentication – and to allow only

authorized actions – e.g., access control. Preserving availability includes preventing

unauthorized destruction and ensuring adequate access or service. Accountability

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

20

includes the ability to later reestablish the acts that occurred and their related actors

and ensuring relevant actors are unable to deny an act occurred – non-repudiation.

Software Security is an emergent, system-wide property of a software system that

takes into account various aspects along software development lifecycle (SDLC),

including designing software to be secure, making sure that software is secure, and

educating software developers and architects, and subjecting all software artifacts to

thorough objective risk analyses and testing [294, 359, 378].

Security studies indicate that most software security problems arise from bugs and

flaws during the development process [173, 503]. For example, some of these defects

are caused by design and coding issues such as inadequate authentication, improper

neutralization of user input, or failure to protect data. This means that one cannot

presume to achieve a high level of security by simply introducing security-related

features into the software [294, 298]. Security features (as known as Application

Security [293]) such as sandboxing code (as the Java virtual machine does), password

encryption, and SSL (Secure Socket Layer) between the web server and a browser are

functions of an application to prevent malicious attacks. As Michael Howard, a

program manager on Microsoft Security Engineering Teams, says “Security features

!= Secure features” [210]. Security features are used to protected software and the

systems that software runs in a post facto way after development is complete.

Software security, on the other hand, is more than just security features, which aims

to avoid security errors in software by considering security aspects throughout the

whole SDLC. It is important to understand that there is no way to guarantee that

software is 100% secured. The main idea behind Software Security is to integrate the

more level of security possible in software to diminish the possibilities of an attack

[513].

2.1.2 Terminologies of Software Security

Terminology is the discipline concerned with the formation, description, and naming

of concepts in specialized fields of knowledge, which is a key component in the

general documentation process and knowledge formalization [419]. A lot of

terminologies used in software security has not been standardized [32]. This section

outlines the major terms in the domain of software security that were commonly

found in the literature.

Coding Error often refers to bugs in a software program, which causes it to operate

incorrectly [206]. These bugs made by the developers in the implementation stage of

SDLC that leads to represent the design decision incorrectly in the source code. There

are three basic categories of coding errors: (1) syntax errors, (2) runtime errors, and

(3) logical errors. In the first two cases when an error occurs, the computer displays

an 'Error Message', which describes the error, and its cause. Unfortunately, error

messages are often difficult to interpret and are sometimes misleading. In the final

case, the program will not show an error message, but it will not do what the

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

21

programmer wanted it to do. Coding errors can exist only in code, and may never be

executed.

Design Flaw is also a software problem, but a flaw is a problem at a deeper level.

Flaws are often much more subtle than simply an off-by-one error in an array

reference or the use of a dangerous system call. A flaw is instantiated in software code

but is presented at the design level. Design flaws can also be referred to as

architectural bad smells [157], design pattern defect [312] or architectural flaw [308].

A design flaw can affect the quality properties of the system and can be caused by an

incorrect implementation (or omission) of a design pattern or failure to apply design

principles properly [206].

Software Weakness is “a type of mistake in software that, in proper conditions, could

contribute to the introduction of vulnerabilities within that software. This term

applies to mistakes regardless of whether they occur in implementation, design, or

other phases of the SDLC” [104]. It refers to issues in software development that may

have a direct or indirect impact on software security. Coding errors and design flaws

are included in software weakness. For example, if a program routine does not

perform input validation, then it ‘might’ permit unintended or unauthorized

behavior. Therefore, a weakness identifies patterns or behaviors that could contribute

to unintended behavior. When the weakness can be used by an attacker against the

software or another user, then it is a vulnerability.

Software Vulnerability is “an occurrence of weakness (or multiple weaknesses)

within the software, in which the weakness can be used by a party to cause the

software to modify or access unintended data, interrupt proper execution, or perform

incorrect actions that were not specifically granted to the party who uses the

weakness” [103]. Charles P. Pfleeger [354] defines software vulnerability as “a

weakness in the security system, for example, in procedures, design, or

implementation that might be exploited to cause loss or harm". Software

vulnerabilities constitute a majority of security problems, which make software

systems open to exploitation and attacks. Some of the common software

vulnerabilities include buffer overflow, format string vulnerability, Cross-Site

Scripting, Cross-Site Request Forgery (CSRF) and SQL Injection, etc. These errors in

the software may make it vulnerable, and these errors can be found in different stages

such as requirement specification, design, or coding of a system [354].

Exploit is a piece of software, a chunk of data, or a sequence of commands that takes

advantage of vulnerabilities in an operating system, applications or any other

software code, including application plug-in or software libraries to cause

unintended or unanticipated behavior to occur on computer software [206]. Such

behavior frequently includes things like gaining control or computers, steal network

data, allowing privilege escalation, or denial-of-service (DoS) attack. While being

used as a verb, exploit refers to the act of successfully making such an attack. In some

cases, an exploit can be used as part of a multi-component attack. Instead of using a

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

22

malicious file, the exploit may instead drop another malware, which can include

backdoor Trojans and spyware.

Attack Pattern is a description of the common attributes and approaches employed

by adversaries to exploit known weaknesses in cyber-enabled capabilities [70]. Attack

patterns define the challenges that an adversary may face and how they go about

solving it. They derive from the concept of design patterns applied in a destructive

rather than constructive context and are generated from in-depth analysis of specific

real-world exploit examples. They also provide, either physically or in reference, the

common solution pattern for preventing the attack. Such a practice can be

termed defensive coding patterns.

Security Risk encompasses the probability of occurrence for uncertain events and

their potential for loss on software security [234, 458]. An important part of dealing

with risk is the method of risk management. Risk management has two distinct

flavors in software security. The term risk analysis to refer to the activity of

identifying and ranking risks at some particular stage in the software development

lifecycle [294]. Risk analysis is particularly popular when applied to architecture and

design-level artifacts. On the other hand, the term risk management to describe the

activity of performing a quantity of discrete risk analysis exercises, tracking risks

throughout development, and strategically mitigating risks.

Secure Coding or secure programming is a set of practices that applies security

considerations to develop computer software in a way that defenses against the

accidental introduction of security vulnerabilities [459]. In most cases, it implies a

programming style that bears security implications of code and implements a

defensive code that resists malicious exploits. Secure coding standards introduce

safeguards that reduce or eliminate the risk of leaving security vulnerabilities in code.

For applications to be designed and implemented with proper security requirements,

secure coding practices and a focus on security risks must be integrated into day-to-

day operations and the development processes.

2.1.3 Secure Software Development

To achieve software security, developers need to build assured software; “Software

that has been designed, developed, analyzed and tested using processes, tools, and

techniques that establish a level of confidence in its trustworthiness appropriate for

its intended use” [392]. To achieve this goal, developers must rethink the software

development process and address security in all the phases of the SDLC: definition of

the requirements, architecture and design, coding, testing, validation and

maintenance of the software [211, 296, 421, 459]. This is like applying the defense-in-

depth strategy to the various phases of the software development lifecycle making it

more security-aware [210]. The use of Secure Software Development Lifecycle

(SSDLC) is of utmost importance if the objective is not only the prevention of security

bugs but also higher-level problems, like architectural, component interaction and

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

23

broken access control over tiers. This way of developing secure applications has

already proven results from the industry taking into account both secure mechanisms

and design for security [149, 211]. Following are the five major activities of SSDLC in

general:

1. Security Requirement: Since the idea of secure development is to start at the very

beginning of the coding, security must be grounded in system requirements and

specify system functions in all possible circumstances of use, legitimate or malicious.

2. Security Architecture and Design: Considering security and privacy in the initial

design of new products and features permits the integration of security in a way that

minimizes disruptions to plans and schedules. Architecture risk analysis, which is

referred to as threat modeling, can be used to prevent and detect design flaws.

3. Secure Coding: To avoid coding issues that could lead to vulnerabilities and

leverages state-of-the-art development tools to assist in building more secure code.

Analyzing the source code (static analysis tools) before compile provides a scalable

method of security code review and helps ensure that secure coding policies are being

followed.

4. Security Verification and Testing: Executing run-time verification of software

applications to ensure that functionality works as designed. Apply appropriate

verification to software applications and make sure they produce proper functionality

as defined in the initial design.

5. Release and Operation: Preparing response plans and protocols to address new

threats that emerge over time. Certifying software before a release helps ensure

security and privacy requirements were met.

To address security activities explicitly in the software development process, many

SSDLC models or frameworks have been proposed to embed security practices along

SDLC. For example:

• Microsoft Security Development Lifecycle [211] — MS SDL— is one of the

first of its kind, the MS SDL was proposed by Microsoft in association with

the phases of a classic SDLC.

• NIST 800-64 [238] provides security considerations within the SDLC.

Standards were developed by the National Institute of Standards and

Technology to be observed by US federal agencies.

• OWASP Comprehensive, Lightweight Application Security Process [343] —

CLASP — is an activity-driven, role-based set of process components guided

by formalized best practices. CLASP is designed to help software

development teams build security into the early stages of existing and new-

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

24

start software development life cycles in a structured, repeatable, and

measurable way.

• Software Security Touchpoints [294]. Gary McGraw provided seven

software security touchpoints by codifying extensive industrial experience

with building secure products. McGraw uses the term touchpoint to refer to

software security best practices which can be incorporated into a secure

software lifecycle.

2.1.4 Knowledge for Software Security

Knowledge is more than simply a list of things we know or a collection of facts [62].

“Knowledge is information in context.”[62]. Knowledge is the accumulation of

information; information made actionable, knowing and understanding how to apply

gained information to perform tasks [9, 62, 512]. A checklist of secure coding practices

for web applications is information; the same information that developers understand

the whys and wherefores of it in a software project is knowledge. Similarly, a set of

results generated from the static analysis tool is information; to analyze the meaning

and take actions need knowledge. In software engineering, security knowledge is

multifaceted and can be applied in diverse ways [294]. It provides a foundation that

can be directly or dynamically applied through knowledge-intense practices along

the SSDLC [31]. Figure 2.1 depicts that software security knowledge plays a central

role in supporting all security activities along SSDLC. Designers, programmers, and

testers need to be aware of possible security errors, potential attacks and relevant

countermeasures that minimize the exposure to security problems [496].

Secure software knowledge falls naturally into three categories: the nature of attacks,

how to defend, and the computing system’s environment in which the conflict takes

place [370]. It is comprised of domain knowledge in software security and situated

Security knowledge and secure software development lifecycle

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

25

knowledge grounded in the developers’ unique software development environment.

In general, domain knowledge is the fundamental knowledge obtained through long

and deliberate learning [129]. It includes theoretical knowledge that the expert

acquires through formal education, training or certification [79]. Situated knowledge

is dynamic and organization dependent. This type of knowledge is hard to articulate,

and the developers acquire it through continued interactions with a specific operating

environment. For example, the security principle of least privilege recommends that

accounts should have the least amount of privilege required to perform the task. This

encompasses the security practices of user rights, and resource permission such as

CPU, memory, and network, which exist for specific programming languages (e.g. C,

C++, PHP, Java and so on), depending on the features of the software product.

For reasons of clarity and ease of application of security knowledge, Barnum and

McGraw [31] proposed a knowledge schema for software security. Figure 2.2 shows the

knowledge catalogs (the boxes) and their relationships. In their model, seven

knowledge catalogs (principles, guidelines, rules, vulnerabilities, exploits, attack

patterns, and historical risks) are grouped into three knowledge categories

(prescriptive knowledge, diagnostic knowledge, and historical knowledge). The

prescriptive knowledge category includes actions or procedures which offer advice

for what to do and what to avoid when building secure software, like security

principles, guidelines, and rules. Rather than prescriptive statements of practice,

diagnostic knowledge helps practitioners (including operations people) recognize

and deal with common problems that lead to security attacks. Attacks, exploits, and

vulnerabilities are therefore classified as diagnostic knowledge. Historical knowledge

helps the practitioner to understand the real problem based on extensive experience

with the same or a similar problem. This catalog represents detailed descriptions of

specific issues uncovered in real-world software development efforts and must

include a statement of impact on the business or mission proposition. Common

security problems like vulnerabilities and corresponding attacks can be detected and

dealt with using prior experience with these problems.

The software security knowledge schema proposed by Barnum and

McGraw [31]

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

26

Base on the security knowledge schema presented above, the main knowledge

resources for the catalogs (Attack, Vulnerability, Principle, Guideline, and Rule) are

presented below:

Attack Pattern. The Common Attack Pattern Enumeration and Classification

(CAPEC)17 system provides a publicly available catalog of common attack patterns

that helps users understand how adversaries exploit weaknesses in applications and

other cyber-enabled capabilities. provides a formal list of known attack patterns. In

their research paper, Sean and Amit [32] introduce the concept, generation, and usage

of attack patterns as a valuable knowledge tool in the design, development, and

deployment of secure software. McGraw teamed with Greg Hoglund for the book

Exploiting Software: How to Break Code [206], which offered a taxonomy and discussion

of security attack patterns.

Vulnerability. The CVE system provides a reference-method for publicly known

software-related vulnerabilities and exposures. CVE’s common identifiers make it

easier to share data across separate network security databases and tools and provide

a baseline for evaluating the coverage of an organization’s security tools. The

Common Weaknesses Enumeration (CWE) 18 is a category system for software

weaknesses and vulnerabilities. It is sustained by a community project with the goals

of understanding flaws in software and creating automated tools that can be used to

identify, fix, and prevent those flaws.

Principle. Some research groups proposed principles for secure software

development [173, 231, 389, 427, 460]. OWASP has provided a comprehensive list of

security design principles that programmers should adhere to [344].

Guideline. OWASP provides a general secure coding reference guide in a checklist

format that users can integrate into the development life cycle [342]. Software

Assurance Forum for Excellence in Code (SAFECode) 19 has developed a guide

outlining fundamental practices for secure software development [386]. Some secure

coding guidelines are provided by technology vendors, for example, Oracle

Corporation [338], Apple Inc. [22], and Mozilla [316].

Rule. The CERT Coordination Center (CERT/CC) 20 has released detailed coding rules

for several common programming languages (e.g., C, C++, and Java) [403]. Motor

17 https://capec.mitre.org/
18 https://cwe.mitre.org.
19 The Software Assurance Forum for Excellence in Code (SAFECode) is a non-profit organization

exclusively dedicated to increasing trust in information and communications technology products and

services through the advancement of effective software assurance method: https://safecode.org/
20 CERT/CC is a non-profit United States federally funded research and development center:

https://www.sei.cmu.edu/about/divisions/cert/

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

27

Industry Software Reliability Association (MISRA) 21 provides a set of software

development standards and rules in C/C++ [310], which enable best practices in code

safety, security, portability, and reliability in embedded systems.

In addition to these knowledge resources, several research groups focused on

building Common Body of Knowledge (CBK) to provide a comprehensive framework

of all relevant subjects that a security professional should be familiar with, including

skills, techniques and best practices. The United States Department of Homeland

Security has developed a common body of knowledge for software assurance

(SwACBK) [370]. The Cyber Security Body of Knowledge project (CyBoK) [356]

funded by the U.K. National Cyber Security Program aims to inform and underpin

education and professional training for the cybersecurity sector.

To formalize security knowledge, be following the design consideration of the

contextualized learning system, this thesis first considered which terms are critical in

explaining software security knowledge without overlapping between concepts they

represent, further, extracted corresponding knowledge from the available resources

to construct the security knowledge, as the kernel of the learning system. The

corresponding research work is described in RP V and RP VI.

2.2 Teaching and Learning Software Security

2.2.1 Approaches for Teaching Software Security

Education is an essential tool to help produce secure code in software engineering

[321]. To ensure all software engineering graduates have the knowledge necessary to

develop secure software systems, security experts and educators emphasize

education must infuse security principles and secure programming early and often in

the learning process [48, 209]. As such, a number of researchers are investigating

various methods for integrating security practices into the computer science and

information system management curriculum. Perrone et al. [353] and Taylor and

Azadegan [435] recommend a threaded approach intended to reach all students in

the computer science and information system curriculum. Security principles and

secure coding practices are interleaved into the curriculum, starting with the

foundation courses and re-enforced throughout the student’s course of study.

Similarly, Chung et al. [82] proposed to develop a secure software engineering-based

thread approach. In their proposal, students develop software with software-

engineering case studies, then they are demonstrated how the produced code can be

transformed to include security across the life cycle, resulting in secured code. Kara

Nance [320] presented projects in introductory classes that asked students to deal

with security problems such as file recovery and printer forensics. These require

21 MISRA is a collaboration between manufacturers, component suppliers and engineering consultancies

which seeks to promote best practice in developing safety- and security-related electronic systems and

other software-intensive application: https://www.misra.org.uk/

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

28

integrating security material into the class curriculum. Bishop et al. [46, 111] then

proposed the use of Secure Programming Clinic (SPC) to provide practical

educational training for students that extends and reinforces the theory they learn in

classes. In SPC, students send their code to the clinicians, usually manned by graduate

students, who review the code and then have one-to-one discussions with students

about the security implication of their code.

The above security integration teaching techniques have been recognized as

pedagogically effective, which have an advantage in that security concepts can be

transferred more easily across both core and elective curricula, as well as different

kinds of institutions [82, 435]. However, adopting this approach, institutions need

substantial time and funds to upgrade curriculum to include security topics (either in

the curriculum itself or in faculty time to develop new course materials or alter

existing ones), as well as to prepare a sufficient number of skilled resources, including

trained faculty, to support the program. We advocate to further explore the context-

based approach to complement the security integration approach, without causing

the severe expense of depth and breadth of a curriculum change for resource-limited

institutions. We contribute to this approach by concretely exploring a viable

implementation solution and evaluating its effectiveness.

2.2.2 Conventional Security Learning Materials

In the learning process, learning materials is one of the main factors to be considered

by the instructor because it can contribute to the acceptance of students of knowledge

presented. Learning material can consist of various forms and formats depending on

the teaching methods. When most institutions plan and develop security learning

materials, either textbooks, lectures or online courses, they commonly use

conventional approaches to guide the process. Such conventional learning materials

and approaches are commonly made up of two distinct methods: black-hat concepts

and white-hat concepts (offense/defense, construction/destruction) [294]. Figure 2.3

illustrates the two types of learning materials. The black hat/white hat concepts apply

the classic western “bad guy/good guy” concept to software security. A black-hat

refers to a hacker who tries to break into a system with malicious intent. Black-hat

actions include destructive activities such as attacks and exploits [294]. Using a black-

hat approach in software security implies thinking proactively about ways that a

system could be exploited. A white-hat refers to an individual who identifies a

vulnerability in a system and reports it to the system owners. White-hat actions

include constructive activities such as design, defense, and functionality [294]. Using

a white-hat approach in software development includes building defense into a

system, often using information from a black-hat history.

The conventional learning materials typically address particular security topics, and

the starting point of instructions consists of basic security concepts and theories,

which are taught in a logical order and structure. In addition, these learning materials

are often written in the form of a reference manual or a guide to a particular security

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

29

certification, which is more effective at training security experts. However, it is

difficult for developers to correlate what they are learning to their programming

experience, further, to link the security knowledge to real software scenarios. In this

approach, the interests and thoughts of developers and the knowledge they already

possess are not taken into account, which could lead to forced concept development

and misconceptions. An ideal learning process should therefore also be guided by the

motives, skills, and pre-knowledge of students. Since security learners have to

demonstrate the applicability of the knowledge through experience in order to

understand their practical use [294], the learning materials presented must provide

meaning for learners, allowing them to learn security principles closed to the real-

world situations that are of particular interest to them.

2.2.3 Tool-Based Support for Learning Software Security

Some efforts have been made to enhance software security education and learning

using tool-based learning approaches. In this section, various types of security

education tools from the literature are briefly introduced.

Atsuo Hazeyama et al. [195, 196] proposed an artifact-driven learning process for

software security as well as an online learning environment utilizing a body of

knowledge for security education. In the learning process, learners conduct secure

software development by inputting artifacts that were created in a traditional

software engineering course, such as requirements specification, use case diagram,

and test specification. The learning flow takes security into consideration after

considering the functional requirements of a system. The designed learning

environment provides functionalities for maintaining artifacts that are inputs for

(a)

(b)

Two types of conventional learning materials for software security: (a)

the black-hat approach, and (b) the white-hat approach

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

30

learning about software security and outputs from that learning, furthermore, giving

relationships between artifacts and the reference information. Learners proceed to

learn about software security by referring to the available information.

In addition to online programs, the Integrated Development Environment (IDE) plug-

in has been applied in teaching students or programmers about security awareness.

The University of North Carolina at Charlotte (UNCC) has designed and developed

an Educational Security in the Integrated Development Environment (ESIDE) plug-

in for Eclipse22 that delivers real-time secure programming instructional support as

students write code [492, 517], similar to the underline in a word processing spell

checker. The tool is designed to improve student awareness and understanding of

security vulnerabilities and to increase the utilization of secure programming

techniques in assignments. ESIDE aims to provide educational interventions for more

advanced students (a senior and masters-level web development course) [492], and

the tool only works on Eclipse IDE for Java and cannot support other platforms, for

example, the Android IDE.

Visualization is another approach in teaching software security courses, which

heavily uses images, diagrams or animations to communicate messages [401]. To

integrate visualization techniques in classroom instruction, Yuan [509] developed

three visualization and animation tools that demonstrate various information

security concepts. The information security concepts illustrated include packet sniffer

and related computer network concepts, the Kerberos authentication architecture,

and wireless network attacks, through the usage of Macromedia’s Flash software.

Bishop et al. [47] have developed a Concept Map 23 of secure programming to

visualize the relevant body of knowledge, which assists students in understanding

complex concepts, principles, and ideas and the important relationships between

them. Their concept maps are assessments designed to identify students’

misconceptions; the questions, scoring procedures, and interpretations are consistent

and in adherence with a predetermined standard. The results from the concept map

are primarily intended to improve pedagogy, though the results can be used to help

instructors make comparisons of teaching over time.

Furthermore, video games (game-based learning), such as CyberCIEGE [216] and

hACMEgane [324], are approaches taken to stem the declining interest and

enrollment in computing courses, where students explore relevant security aspect of

games in a learning context designed by the instructor. CyberCIEGE24 is a free tool

that can be downloaded from the Internet for that purpose. Students can build their

networking environment virtually and learn the possible threats that affect their

network based on their design. Through available security scenarios, students will

learn security through the consequences of their choice while they build their own

22 Eclipse is an integrated development environment used in computer programming. It contains a base

workspace and an extensible plug-in system for customizing the environment: https://www.eclipse.org
23 http://spc.cs.ucdavis.edu/index.php/conceptmap
24 https://my.nps.edu/web/c3o/cyberciege

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

31

network. In hACMEgame, games are organized as a series of levels where the player

must overcome a set of challenges in order to unlock access to the next level. Each

level focuses on a set of well-known security vulnerabilities.

The web-based security learning tool proposed in this thesis differentiates from the

previous works in two main aspects25:

(1) The tool is context-based, in which context-based learning is facilitated in the

learning process.

(2) The tool is ontology-based, in which the security knowledge is modeled with

contextual situations and incorporating theoretical knowledge to complement

the concrete description.

2.3 A Context-Based Learning Perspective

2.3.1 Context and Knowledge

The notion context stems from Latin contextus “connection, coherence”. Basically, it

refers to all the aspects that are relevant for an understanding of a certain piece of

text, be it written or spoken language (“discourse”). According to Oxford

Dictionaries26, context is defined as “The circumstances that form the setting for an

event, statement, or idea, and in terms of which it can be fully understood.” Dey [59]

defined context as, ‘‘context is a set of information used to characterize a situation of

an entity”. An entity is a person, place, or object that is considered relevant to the

interaction between a user and the environment. The concrete or ideal field of a sign-

meaning unit, which can support the specification of meanings at a given moment in

time, is generally referred to as context [452]. Context provides for two essential

processes: on the one hand, it supports the particularization of meanings by

restricting the cognitive process of meaning construction, and by eliminating

ambiguities or concurrent meanings that do not seem to be adequate at a given

moment; on the other hand, context also prevents this particularized meaning from

being isolated as it brings about coherence with a larger whole [452].

In the real world, context is a complex description of the knowledge shared on

physical, historical and other circumstances where actions or events happen.

According to Baskerville [12], knowledge is information combined with experience,

context interpretation, and reflection. It is a valorous kind of information that is ready

to be used in decisions and actions. Contextual information is a crucial component of

fully understanding knowledge [58, 219, 242]. Brézillon [58, 242] points out that

knowledge comes from a variety of contexts that cannot be accurately understood

without context. Nonaka and Konno [328] also noted that knowledge reflects a

25 The research work of the proposed learning system is published in RP VII, presented in Chapter 13.
26 https://en.oxforddictionaries.com/definition/context

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

32

particular instance, perspective, or intention in accordance with the characteristics of

a specific context, which is different from information. The context has the capacity

to provide a major meaning to knowledge, promoting a more effective

comprehension of a determined situation in the collaborative work [60]. All this

knowledge is not part of the actions to execute or the events that occur but will

constrain the execution of an action and event interpretation [57]. Without proper

contextual description, knowledge can be isolated from other relevant knowledge,

resulting in limited or distorted understanding [61, 169]. Infield observations of the

usage of an organizational knowledge management system that stores knowledge

about UNIX problems, Ackerman [3] found that users chose not to use the solution

provided by the system because they could not determine the appropriateness of the

solution without knowing the context in which the solution has been applied, such as

the size of the UNIX installation and the organizational setting. Addressing this

shortcoming requires knowledge built around real-world scenarios that actively

engage learners [91, 384].

2.3.2 Context-Based Teaching and Learning

In domain-specific theories of learning and teaching, the importance of context is also

underscored. In mathematics and chemistry education a contextual approach of

learning is already viable for a relatively long time now [45, 156, 174, 431]. Contextual

problems are generally seen as one of the core concepts in the scientific education

movement. Gravemeijer [174], for example, explains how context is viewed in realistic

mathematics education: “Contextual problems describe situations where a problem

is posed. More often this will be an everyday life situation, but not necessarily so; for

the more advanced students' mathematics itself will become a context ([174], p. 105).”

Apparently, context is seen here not merely as a synonym for a concrete external

situation, but it can assume the character of a mental framework as well. If the

learning content is explicitly connected to experiences outside the classroom – and

thereby situated or contextualized, the links between the learning environment,

especially learning tasks, and learner’s pre-knowledge will be built. When a pupil, for

example, appropriates the notion of an area in the context of a meaningful activity of

covering a table with paper, decorating the floor of a dollhouse with a footcloth, etc.,

this notion of the area will probably be linked up to other meaningful notions, as

surface, size, length, unit of measurement, etc. The context then ties different notions

and experiences together, as a result of which the notion of the area will be more than

just a formula.

Context can increase the information content of natural language utterances and

facilitate learning [57, 59]. Psychology and education researchers have demonstrated

that when knowledge is learned in a context similar to that in which the skills will

actually be needed, the application of the learning to the new context may be more

likely [117, 352]. Predmore [360] showed that learning about knowledge content

through real-world experience is important because “once [students] can see the real-

world relevance of what they’re learning, they become interested and motivated.”

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

33

The book How People Learn [90] also pointed out that motivation is critical for

learning, enabling knowledge transfer to occur. If students do not learn the material

well in the first place, they cannot possibly transfer it to new situations. As stated in

the book “Learners of all ages are more motivated when they can see the usefulness

of what they are learning and when they can use that information to do something

that has an impact on others” (page 49).

In context-based approaches, contexts are used as a starting point for the design of

innovative curricula, with the intention to tackle a couple of problems perceived in

conventional science education. Bennett, Lubben [38] offered a definition of a context-

based approach to science education: “Context-based approaches are approaches

adopted in science teaching where contexts and applications of science are used as

the starting point for the development of scientific ideas.” The authors reported that

context-based science courses motivate students and help them become more positive

about science by organizing learning experiences to take into consideration

representing real-world situations of the learning subject. When students are more

interested and motivated by the experiences they are having in their lessons, their

increased engagement may result in improved learning [38]. Besides the focus of this

approach on enhancing the interest and attitude towards science education, the use

of context also has the purpose to influence the improvement of learning outcomes

and an increased understanding of science by students [468].

In computing science education, there is also a broad agreement that teaching units

should start from a “real-world” context or phenomenon, aiming to create

connections to prior knowledge, increase the relevance of the material to students, or

show applications of the intended knowledge, thereby increasing motivation [120,

184]. These contrast with more traditional approaches that cover abstract ideas first,

before looking at practical applications. Likewise, in software engineering, studying

in one context and then abstracting the knowledge gained for use in a new context is

a common way of learning programming that has been observed extensively in both

new and experienced programmers [23, 243]. Digital news, newspaper reports, and

even crime and other dramas on TV and movies all provide examples of security

learning with context-based approaches. These include the Heartbleed vulnerability

in OpenSSL27, WannaCry ransomware attack28, eBay’s data breach29 , and Heartland

Payment System attack30. Learning about secure software knowledge, therefore, is not

just about knowledge, but about putting knowledge into context in order to apply

security practices effectively. Understanding the context in which software will be

deployed and used, the risks and threats of its misuse, and the systematic its

development, are increasingly recognized as critical to its success [315]. In order to

capture and use security knowledge appropriately, it is necessary to first specify

27 http://heartbleed.com/
28 https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
29 https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-

vulnerabilities-in-2017.html
30 https://www.bbc.com/news/technology-23448639

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

34

which context information is to be handled. Then, it must be represented in a format

that is understandable and acceptable to the individuals. Thus, a context for a

software security topic includes the circumstances in which its technical content

exists. Therefore, when talking about software security in a given context, the

knowledge would not only include the basic principles and processes of software

security but also consider how security knowledge is used in one or more particular

domains or application areas.

2.4 Ontology Modeling

2.4.1 Ontology

According to Gruber [180], an ontology is “an explicit and formal specification of a

conceptualization”, that is, a formal description of the relevant concepts and

relationships in an area of interest, simplifying and abstracting the view of the world

for some purpose [473]. An ontology is basically a graph whose nodes represent the

concepts or objects of a domain, and the edges indicate relationships between

concepts. Usually, this graph is structured around a hierarchical “backbone” similar

to the class/subclass relationship in object-oriented programming. Due to the

formalization, it can be represented and to some degree interpreted by machines, and

enables the formal analysis of the domain. This allows an automated or computer-

aided extraction and aggregation of knowledge from different sources and possibly

in different formats [180]. Figure 2.4 depicts an example of a security ontology

proposed by Fenz and Ekelhart [143], in which the top-level security concepts and

relationships are presented.

Ontologies are now central to many applications such as scientific knowledge portals,

information management, and integration systems, electronic commerce and web

services. The main areas, in which ontological modeling is applied, include

communication and knowledge sharing, logic inference and reasoning, and

knowledge base. By analyzing and extending several types of research [331, 446], we

Security ontology [143]

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

35

can identify and summarize the reasons for and benefits of developing and using

ontologies in knowledge modeling.

• Ontologies share a common understanding of structured information among

people or software agents.

• Ontologies make domain knowledge reusable.

• Ontologies enable the interoperability among models or specific domain

vocabularies.

• Ontologies allow and simplify the communication among humans,

computational systems, and between humans and systems.

• Ontologies have the expressive power for acquiring context from the diverse

and heterogeneous sources.

2.4.2 Existing Approach

There have been extensive research works in the area of security knowledge modeling

and ontology applications to software security. Some papers focus on using an

ontology to model security vulnerabilities. Guo and Wang [183] presented an

ontology-based approach to model security vulnerabilities listed in CVE. The authors

identified critical concepts of security vulnerabilities in the domain of software

security, which can be provided for machine-understandable CVE vulnerability

knowledge and reusable security vulnerabilities interoperability. Syed and Zhong

[432] proposed an ontology-based conceptual model for the formal knowledge

representation of the cybersecurity vulnerability domain and intelligence, which

integrated cybersecurity vulnerability concepts from several sources including CVE,

NVD 31 , CVSS 32 framework, and social media. Alqahtani et al. [14] proposed an

ontological representation, which established links with bi-directional traceability

between traditional software repositories (e.g., issue trackers, version control

systems, Q&A repositories) and security vulnerabilities databases (e.g., NVD)

Some researchers presented their ontology in supporting security requirements and

design processes in software development. Gyrard et al. [185] proposed STACK

ontology (Security Toolbox: Attacks & Countermeasures) that supported developers

in secure application design. Countermeasures in STACK included cryptographic

concepts (encryption algorithm, key management, digital signature, and hash

function), security tools, and security protocols. Kang and Liang [227] presented the

security ontology adopting the Model Driven Architecture (MDA) methodology.

Their proposed ontology could be used in security concepts modeling in each phase

of the development process (e.g., the requirement and design phases) with MDA. In

31 The National Vulnerability Database (NVD) is the U.S. government repository of standards-based

vulnerability management data represented. (https://nvd.nist.gov/)
32 The Common Vulnerability Scoring System (CVSS) is a free and open industry standard for

assessing the severity of computer system security vulnerabilities. (https://www.first.org/cvss/)

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

36

order to improve the application of security patterns to the security engineering

domain, Guan et al. [182] proposed an ontological approach facilitating security

knowledge mapping from security requirements to security patterns. Manzoor et al.

[282] developed an ontology, illustrating the relationships across various actors

involved in the Cloud ecosystem, to analyze different threats to/from Cloud-system

actors.

Finally, some efforts focused on building security ontology specifically in the context

of web application development. Salini and Kanmani [388] presented an ontology for

defining the security requirements of web applications. The included concepts are

assets, vulnerabilities, threats, and stakeholders. Their ontology aimed at reusing the

knowledge of security requirements in the development of different kinds of web

applications. Busch and Wirsing [65] presented a security ontology for secure web

applications (SecWAO), which aimed to support web developers to specify security

requirements or make design decisions in web application development. It

distinguished various concepts among methods, tools, mechanisms, assets,

vulnerabilities, and threats. Velasco et al. [455] presented an ontology-based

framework for string, presenting and reusing security requirements. Their

framework integrated security standards, methods of risk analysis, and the

requirements ontology.

A major feature, which is common for all the above studies, is that the ontologies

commonly focus on unifying security concepts and terminologies. Subsequently, they

either dedicate to a certain software domain or support part(s) software development

processes. The ontology proposed in this thesis differentiates from the previous

research work in the following aspects33:

(1) The ontology is context-based, which models security knowledge with a

diversity of software features and technologies of application contexts;

(2) The ontology describes security knowledge with a contextual situation, and

meanwhile, complement the contextualized knowledge with conceptual

descriptions.

2.5 Socio-Technical System Theory

2.5.1 Concept of socio-technical system

Socio (of people and society) and technical (of machines and technology) are

combined to give ‘sociotechnical’ (all one word) and/or ‘socio-technical’ (with a

hyphen). Socio-technical refers to the interrelatedness of ‘social’ and ‘technical’

aspects of an organization [471]. Socio-technical systems (STS) pertains to a theory

regarding the social aspects of people and society and technical aspects of

33 The research work of the proposed learning system is published in RP VI, presented in Chapter 12.

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

37

organizational structure and processes. One of the earliest and most important

statements on socio-technical systems and the workplace comes from the English

organizational theorists Eric Trist, Ken Bamforth, and Fred Emery at the Tavistock

Institute in London, who conducted a study with workers in Britain coal mining

industry, in World War II-era [277]. They tried to understand how the social and

technical aspects of coal mining worked together as the industry was changing. As a

new mining technology was being developed, the industry needed to adapt. The

Tavistock socio-technical approach involved recognizing the systems comprised of

both technical elements and social elements and that both could be developed in

parallel – with benefits both for productivity and quality and for the well-being of the

workers. This approach has turned out to be just as important for modern computer-

based systems as for the industrialized production systems of the past [493].

The STS in organizational development is an approach to complex organizational

work design that recognizes the interaction between people and technology in

workplaces. The term also refers to the interaction between society's complex

infrastructures and human behavior. In this sense, an STS can be recognized as an

open system [461], as a way of describing, analyzing and designing systems with joint

optimization in mind, particularly those that embody some degree of non-linearity

within themselves as well as the environment they reside in. For example, an airplane

includes two side-by-side systems with different needs: one technical (the airplane)

and one organizational (the pilot with the crew team). In the socio-technical system,

these sub-systems must collaborate closely – the pilot must understand the plane’s

controls, which must also be understandable among the crew. The STS is the airplane

plus the pilots and the whole crew team as a single system with human,

organizational and technical levels, saying a social system sitting upon a technical

base, as physical societies have architectures, that the social contextualizes the

technology even as it is created by it.

STS theory was initially developed to improve the quality of working life when

workers interact with the technology used by organizational processes. Any ICT or

information system is embedded into a social context which adapts to and helps to

reshape, social worlds through the course of their design, development, deployment

and uses. The strength of STS is that they integrate these different phenomena so that

they increase their performance reciprocally. Even more important, the integration of

technical and social systems helps them to develop and to constitute each other, for

example, the interaction among community members is supported by technical

infrastructure, and the members themselves can contribute to the development of the

infrastructure, as is typically demonstrated by open-source software communities.

The quality, structure and other characteristics of the developed software systems

also depend upon the education of software engineers, their work experience,

problem-solving strategies, organizational structure, social relations, and shared

mental models [108]. Prior ethnographic studies [114, 177, 441] suggest that technical

dependencies among software components create “social dependencies” among

software developers implementing these components. Therefore, the software

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

38

development process is not purely a technical task, but also a socio-technical system

embedded within organizational and cultural structures [188].

2.5.2 Applications of STS theories

The STS aspects provide a deeper analysis of the relationship between the methods,

techniques, tools, development environments and organizational structures [471].

More recently, there have been efforts to apply the socio-technical system concept to

solving problems from software engineering domains. For example, Lu and Jing [278]

present a socio-technical approach to support integrated socio-technical negotiation

activities in a collaborative software design process. They address the critical issues

of such collaborative negotiation activities, including modeling negotiation

arguments based on social and technical factors and analyze these arguments to

reconcile the conflicts for software design tasks. Ducheneaut [123] examines the

socialization of new members in an open-source community using socio-technical

analysis since these members interact with both people and material components of

a project. Ye et al. [507] propose a socio-technical platform to guide the design of

software that supports information seeking and communication during different

phases of programming.

In the 1990s, Stewart Kowalski proposed a model of socio-technical systems [250],

depicted in Figure 2.5. Through a holistic approach, he modeled the dynamics of

technology and social changes that determined the (in)security level of a socio-

technical security system. He has argued that every socio-technical system is affected

by four components (Culture, Structure, Method, and Machine) belonging to two

subsystems (Social and Technical). The “Culture” component refers to the collective

and distributed values in actions, while the “Structure” component refers to the

abstract authority system. The “Method” component refers to those methods applied

to produce work using the existing “Machine”. “Culture” and “Structure” belong to

the social subsystem, whereas “Method” and “Machine” belong to the technical

subsystem. The existing arrows in the model indicate patterns of interchange between

the system components. As the system needs to maintain a state of equilibrium, any

change happens to one of the system components due to an internal or external factor,

A model of Socio-Technical System [250]

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

39

the systems other components need to interchange accordingly to keep maintaining

the state of equilibrium of the whole system. The STS model has been applied to

evaluate threat modeling in the software supply chain [8], business process re-

engineering [4], a framework for securing e-Government services [228] an

information security maturity model [21]. The STS provides an appropriate and

legitimate way to perform system analysis through a systemic–holistic perspective

and helps us understand the intrinsic context in the open-source software

phenomenon.

2.6 Open Source Software Development

2.6.1 Concepts of open source software

The open source software is a radically revolutionary concept to develop software

[368], which began in the mid-90s. In the OSS approach, source code of the software

products is made freely made available with a license in which the copyright holder

provides the rights to study, change, and distribute the software to anyone and for

any purpose [168]. OSS is released under a license conforming to the Open Source

Definition (OSD)34 as articulated by the Open Source Initiative (OSI) [139]. There are

different kinds of licenses used in OSS such as Apache License, GNU General Public

License (GPL), FreeBSD license, and MIT license. The fundamental idea of OSS is to

enable the software to evolve freely by exploiting community participation, making

it possible for end-users to adapt the software to their personal needs and fix defects

[368]. OSS development model has produced a number of successful applications in

the area of operating systems (Linux), emailing and web services (Gmail, Apache),

databases (MySQL, PostgreSQL), etc.

2.6.2 OSS development model

The organization of OSS development is fundamentally different from that of

traditional project organizations of proprietary (“closed source”) software. In contrast

to the centralized governance, OSS is an extreme case of geographically distributed

software development, free of hierarchical control structures for the establishment of

standards, verification, and distribution of a particular software application to build

a particular application, so-called the Bazaar model [368]. The OSS development

project has a unique socio-technical structure depending on the nature of the system

and its member population. In general, the initial OSS developer maintains a lead role

and is responsible for the governance and the coordination process [506]. The project

leader, or the core team, usually partition the software development tasks into

manageable modules and has participants choose what to work on according to their

34 The Open Source Definition (OSD) is a document published by the Open Source Initiative, to

determine whether a software license can be labeled with the open-source certification mark.

https://opensource.org/osd

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

40

interests. These volunteer workers coordinate their activities through elaborate

infrastructure over the Internet, such as the mailing list (for communication between

all the interested parties – from users to developers) as well as Concurrent Versions

System (CVS)35 . ‘GitHb.com’ and ‘Sourceforge.net’ provide web-based portals for

most OSS projects.

OSS is characterized as intensely people-oriented [271] and a knowledge-intensive

software development process [465]. As open source software often relies on the

volunteer efforts of software developers, the survival and well-being of OSS projects

often depend on attracting contributions from the software community [98]. The OSS

development model allows developers to integrate with non-technical members to

form a broader, more transparent community [463]. It is also a model for the creation

of self-learning [464] and self-organizing communities [449]. In this context, users and

developers coexist in a community; working on the project based on personal needs

and benefits, and by so doing, they acquire knowledge associated with their

profession. The benefits include fun, reputation, learning, intellectual stimulation,

improving skills, self-marketing and peer recognition [11, 258, 375, 466]. Membership

in the community is fluid; current members can leave the community, and new

members can join at any time [406]. Consequently, individual ownership of products

is not apparent in OSS communities; instead, recognition of expertise is important.

Community members believe in shared risks, shared rewards, and shared ownership

[505]. This results in a strong culture and group behavior that have been developed

in connection with the community [159].

2.6.3 OSS Security

A long debate has been going on in the security research community, whether OSS

should be considered more or less secure than closed source software [73, 83, 368, 400,

413]. This debate has not led to any definitive conclusion so far [329]. Nevertheless, it

is worth noting that the number of vulnerabilities found in OSS has increased by

371% since 2014, according to the State of Open Source Security Report [420]. As

discussed earlier, one characteristic of OSS is the public availability of source code,

including potential criminals and attackers. Attackers are able to study source code

and exploit vulnerabilities that may be due to programming erros much more

quickly. In addition, open source applications are usually developed jointly by

volunteer contributions from groups and communities over the Internet. Attackers

might also be able to contribute parts of the code to the software this way. Since OSS

gives both attackers and defenders greater analytic power to do something about

software vulnerabilities, the OSS communities need to adopt robust security practices

that blend appropriate processes, methods and technologies.

35 Concurrent Versions System (CVS) is a repository to store the software code produced by the

developers

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

41

OSS development, being more distributed and less conventional, does not always go

through a security process [84]. In OSS, the requirements usually are not well defined

as proprietary software, which results in developers’ lack of thorough understanding

of system specifications and easily introduce more bugs in OSS [274]. Saleh M., et al

[13] empirically examined a variety of OSS systems used for mobile computing and

found that a majority of developers does not understand the real threats imposed by

those vulnerable functions [13] while there was much literature devoted to

addressing the problems of how to fix vulnerabilities in OSS development. These

vulnerabilities might be introduced due to developers’ non-awareness, bad

programming practices or lack of knowledge against security vulnerabilities [10].

Although security review methods have been widely adopted in OSS projects

including running code scanners [52, 97, 306], reviewers with the right security

expertise in the problem domain are not easy to come by [504], and the people looking

at the code may not be experts or understand the code fully, which could let more

security bugs go unnoticed [83]. With today’s increasing importance and complexity

of OSS, the lack of knowledge and skills relevant for OSS developers to secure

software development will result in more breaches that are serious in the future.

2.6.4 Learning in OSS Development

Learning in open source communities have been broadly studied in the literature.

Hemetsberger and Reinhardt [197, 198] examined how knowledge sharing and

learning processes develop at the interface of technology and communal structures

of an OSS community. They suggested that knowledge is shared and learned in OSS

communities through the establishment of processes and technologies that enable

virtual re-experience for the learners at various levels. They viewed learning in OSS

communities as experiential learning whereas learning is a process whereby learning

is created through the transformation of experiences as developed by Kolb [247]. Au

et al. [25] explored open-source debugging as a form of organizational learning,

which heavily relies on adaptive learning [445] to overcome the complexity of

software. Singh and Holt [416] provided insights on how the OSS community uses

the forums for learning and solving problems. They explored the motivations for

joining OSS communities, the learning that occurs in the communities, and the

challenges to learning. Hardi [190] had a case study using the Google Chrome project

to affirm that situated learning [263] is present among open source developers at an

earlier time of a project. Sowe et al. have introduced a knowledge-sharing model to

develop an understanding of the dynamics of collaboration and how knowledge is

distributed over OSS development teams [422, 423]. Chen, Xiaohong analyzed key

factors affecting knowledge sharing in OSS projects, which include participative

motivation, social network, and organizational culture [76, 77].

Many OSS proponents believe that the OSS community offers significant learning

opportunities from its best-practices [204, 257], which are different from the education

of the traditional model [71, 144]. Although rapidly growing the current number of

studies on learning in OSS communities, studies on the fields of software security are

CHAPTER 2. SCIENTIFIC BACKGROUND AND RELATED WORK

42

scarce. This thesis filled this research gap by empirically explore the factors that affect

learning about software security in OSS development, as well as the relationships

among them. The corresponding research work is presented in RP III and RP IV.

43

Chapter 3

Research Design and
Methodology

The main research methodology used in this thesis is the Design Science Research

(DSR) methodology, in conjunction with the Design Theorizing Framework provided

by Lee, Pries-Heje, and Baskerville [269]. This chapter is organized as follows. In

section 3.1, an overview of DSR is presented, followed by theorizing in DSR in section

3.2. Section 3.3 presents the DSR process model proposed by Peffers et al. [349]. In

section 3.4, the research design of this thesis is explained.

3.1 Design Science Research

The word design comes “from the Latin désigńare, which means to point the way”

([361]. p. 4). Design is "the use of scientific principles, technical information and

imagination in the definition of a structure, machine or system to perform pre-

specified functions with the maximum economy and efficiency" [472], which is “the

core of all professional training; the principal mark that distinguishes the professions

from the sciences” ([414], p. 67). DSR “addresses important unsolved problems in

unique or innovative ways or solve problems in more effective or efficient ways

([203], p. 81); it seeks to create innovative options that are filtered and excluded until

the design’s requirements are fulfilled [202]. Iivari [214] defines DSR as “a research

activity that invents or builds new, innovative artifacts for solving problems or

achieving improvements, i.e. DSR creates new means for achieving some general

goal, as its major research contributions. Such new and innovative artifacts create a

new reality, rather than explaining existing reality or helping to make sense of it

[existing reality]” (p. 4). The creation of innovative artifacts relies on existing kernel

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

44

theories that are applied, modified and extended through experience, creativity,

intuition and problem solving [286, 472].

The study objective of design science is the creation and use of artifacts that can

advance individual as well as organizational and societal flourishing. In design

science, artifacts represent general solutions to a class of problems [34]. The different

kinds of artifacts to be developed in design science have been stressed by March and

Smith [283] who identify four different types of artifacts. According to them, design

science research outputs comprise constructs, models, methods, and instantiations.

Constructs represent a vocabulary of a domain and provide the means to describe

problems that have been identified by the researcher. To bring structure to the

problems identified within this domain, models provide a basis to describe and

explore the relationship between different constructs of interest. To focus on those

issues being most relevant to address the problem, abstraction and simplification are

indispensable here. Using existent constructs such as algorithms define a sequence of

steps to be taken in order to perform a specific task. Finally, an instantiation

represents the realizations of an artifact that demonstrates the feasibility and

applicability of designed models and methods. Hevner and Chatterjee [202] extend

the understanding of the IT artifact and point out that, besides constructs, models,

methods, and instantiations, DSR also aims at developing another type of artifact:

better design theories.

The research in the field of software security is of an applied nature, which employs

the theories from natural sciences, social science, and computer sciences to solve the

problems at the intersection of information systems, information technology (IT) and

organizations. To cater the nature to the applied and interdisciplinary nature of

information systems research, DSR has gained acceptance in the research community.

DSR combines applied design with the generation of theoretical knowledge in the

pursuit of problem-solving. It tackles real problems that rarely have optimal

solutions, and instead defines and pursues goals that provide satisfactory solutions

[497]. DSR is an accepted and well-established methodology in the domain of

information system research [284, 349, 448] and provides “a set of synthetic and

analytical techniques and perspectives for performing researches in IS” [448]. Thus,

based on the research objectives and considering the practical tasks when designing

artifacts, DSR was adopted for the main research methodology as an overall research

design in this thesis-

3.2 Theorizing in DSR

The most basic purpose of DSR is to create a novel and useful artifact and an

accompanying descriptive design theory [203]. Walls et al. [472] and Markus et al.

[286] illustrate that theorizing represents a fundamental activity in design-oriented

research. Theorizing refers to the process of constructing a theory [479]. Theorizing

may be a form of disciplined imagination in which concurrent trial-and-error

thinking is iterated through imaginary experiments [479]. The main tenet of DSR is

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

45

that knowledge and understanding of a practical problem and its solution can be

acquired through the creation and use of an artifact. Because DSR solves real

problems that are implicitly motivated to solve a specific, it produces prescriptive

rather than descriptive theory, methods or prescriptions that answer ‘how can we

reach the goal’ ([472], p. 36). While theories of description tell us about the states of a

system, theories of prescription tell us how to transition from one system state to

another. Prescriptions have a goal state and constraints for when they are applicable.

Creating prescriptive theories is a formalization of general problem-solving.

Fischer and Gregor [147] propose the Idealized Model for Theory Development

(IM4TD), which suggests how scientific knowledge is created in DSR. The IM4TD

makes a fundamental distinction between the context of discovery (identifying and

capturing novelty) and the context of justification (validation as a scientific method).

The IM4TD identifies three forms of theorizing strategies―deduction, induction, and

abduction―that are used in both contexts. Deductive theorizing derives a conclusion

by generalizing the existing theory to specific instances [269]. For instance, (a)

premise: failure to incorporate user requirements leads to low user satisfaction, (b)

instance: a system has failed to incorporate user requirements, (c) conclusion: the

users of this system have low satisfaction. Falsification is the main mechanism of

deductive theorizing. This means that a “theory can only be shown to be wrong, but

never be proven to be right” ([269], p. 3). Theorists using a deductive approach

deduce hypotheses from general knowledge and attempt to falsify them in a variety

of settings; thus, a surviving theory is deemed to become more complete. As Fischer

and Gregor [147] put it, deductive theorizing refers to the process whereby a specific

conclusion can be logically deduced from one or more general theories or principles.

They note that deductive theorizing is always “firm”―meaning that, if the theory is

true, a logically deduced conclusion is necessarily true.

In contrast, inductive theorizing involves the formulation of a general proposition

based on a particular proposition. For instance, (a) instance: every system that failed

to incorporate user requirements has resulted in low user satisfaction, (b) conclusion:

failure to incorporate user requirements leads to low user satisfaction. In other words,

researchers make their observations based on sample instances of the population and

generalize these observations to all entities of that population [147]. This form of

theorizing develops general conclusions from particular cases; it builds theories from

specific instances [269]. Schilpp [394] defines induction as “inference from repeatedly

observed instances to as yet unobserved instances” (p. 211). Inductive theorizing is

recognized as a valid theorizing method by modern researchers [127, 265, 276].

Abductive theorizing is commonly referred to as inference to the best explanation. It

involves drawing a possible precondition from a specific consequence. For instance,

one might conclude that (b) failure to incorporate user requirements leads to low user

satisfaction from the specific instance that (a) a newly developed system did not lead

to high user satisfaction. Abduction is a creative process and plays a vital role in

introducing new ideas or hypotheses [147]. According to Charles S. Pierce and

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

46

Norman R. Hanson [189, 351], the abductive activity of creating a theory is based both

on real-world observations that are inductively observed as well as theoretical

viewpoints, premises, and conceptual patterns that are deductively inferred. Peirce

[350] argues that “abduction is, after all, nothing but guessing” (p. 137) in that its goal

is to derive a possible conclusion in terms of what can be possibly true as opposed to

declarative logic whose goal is to determine a proposition to be true or false.

While these deductive and inductive approaches are a useful theorizing tool for

theory development, theorizing for design often necessitates the adoption of a line of

theorizing that is essential for problem-solving, i.e., abductive theorizing. DSR is a

research methodology that generates both theory and real-world solutions to real-

world problems and is particularly effective when abductive logic is required to reach

acceptable solutions. Because it tackles real problems that rarely have optimal

solutions, the adoption of abductive theorizing for design theorizing enables the

search for a satisfying solution for a given design problem. This theorizing process

provides a good example of disciplined imagination involving intuitive and creative

thinking processes ([269] p.13). The theories produced are prescriptive, meaning that

they describe methods for achieving goals. Because of this prescriptive style, DSR

studies rely heavily on history and context to convey the situations to which their

findings are applicable and to indicate how generalizable they are.

3.2.1 Design Theorizing Framework

Theorizing in this thesis is influenced by the research framework outlined by Lee et

al. [269]. This theorizing framework provides a useful organizing mechanism to

structure discussion and terminologies for distinguishing between activities that

occur in the intervention occurring in abstraction and theorizing. In their framework,

there are four entities: abstract problems, abstract solutions, instance problems and

instance solutions (Figure 3.1). These four distinct quadrants fall into two theorizing

domains: the abstract domain and the instance domain. The abstract domain is

typically reserved for scientific discussion using concepts and theories, while the

instance domain describes the specific implementations and evaluations. The four

entities are connected by four theorizing activities, solution search, de-abstraction,

registration, and abstraction.

Figure 3.1: Design theorizing framework proposed by Lee et al. [269]

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

47

Solution search identifies solutions to a given problem. Solutions are in the form of

prescriptions, things we can do that affect the desired change expressed by the

problem. Solutions may be imaginary ideas, unimplemented designs, or material

constructs; and they are built from a combination of searching existing solutions,

prior experience, and creativity.

Registration checks whether a solution works, both for the original problem case and

similar problem cases. In the case of finding similar problems, registration includes

what might be called ‘problem search’. As with solution search, registration may be

done in thought experiments or through material constructs. A solution may be

registered to a very similar problem to the one it solved originally, or it may be

registered to broader or more abstract classes of problems. Whether it fails or

succeeds in registering, the theoretical body of knowledge is improved by attempts

to register solutions.

Abstraction attempts to make a theory more generalizable by taking a prescription and

discarding detailed information, leaving only universal elements behind. The

abstraction of design problems is a subjective process, in which the theorist uses their

expertise to judge which of the elements are generalizable or essential elements of the

problem and which are particulars of the instance problem. The abstraction of

problems generally leads to kernel theories, those that govern a component of the

design process at a high level. While not necessarily of practical use, these kernel

theories provide the base for less abstract theories and methods.

De-abstraction instantiates abstractions for a particularized setting to ensure that they

are valid in practice. This grounding may be done through creation, thought

experiments, or comparison with other designs. This de-abstraction involves adding

details pertaining to a specific context in which the solution will be applied, and all

the details of the instance solution become articulated [269]. Each application in a

different context demonstrates a method’s effectiveness and supports the theory’s

generalizability.

There is no universal starting point in the design theorizing framework. All four of

these activities may take place as human thought, it may be possible that these occur

not cyclically, or in the order implied by the arrows, but perhaps may arise

simultaneously ([269], p7). Intuitively, one might think that theorizing starts with the

acknowledgment of an instance problem, and proceeds in the following order;

identification of an abstract problem, development of an abstract solution,

particularizing an instance of this solution and registering it to the originating

instance problem (as represented in Figure 3.1). One can also start from the opposite

side – design an abstract solution for the problem unknown and search for an instance

where such an abstract solution can be applied to transform this instance into a better

one.

While this thesis employs most of this framework unmodified, several alterations

were made to better fit the nature of the theorizing process of the thesis. The revised

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

48

version of the design theorizing framework is depicted in Figure 3.2. First, while we

agree that ‘abstract’ and ‘instance’ are two distinct domains, we discard this binary-

categorization. Instead, the framework is amended as a four-quadrant scheme, in

which each quadrant represents a specific domain. We argue that problems may not

be specialized in the same solution domain during ‘solution search’ and ‘registration’

process, in the abstract or instance levels respectively. For example, researchers can

search a different, in some respect, domain, where the solution may work for the

problem. The second revision has based the recognition by Lee et al. that the arrows

in their diagram are likely out of order, and not serial ([269], p7). In the revised

framework, ‘abstraction’ and ‘de-abstraction’ are both reflected in the problems and

solutions domains to increase the flexibility of theorizing activities.

Figure 3.2: Design theorizing framework based on Lee et al. [269]

3.2.2 Theorizing in the thesis

In this research work, de-abstraction played a more significant role than an

abstraction. Abstract problems and their accompanying solutions can show

applicability across widely different settings. However, abstractions are difficult to

develop and may not apply well to highly specific cases. With de-abstraction, an

abstract problem is applied to identify an instance problem, and an abstract solution

is applied to develop an instant solution. Figure 3.3 depicts the theorizing process in

this thesis.

The thesis developed a design theory that proposes alternative learning approaches

to fostering effective learning of security knowledge. The research work begins with

the recognition of an abstract problem; that is, ineffective learning of security

knowledge in software development. In the work associated with this theorizing

framework, theorizing first moves to an instance domain when the problem is

specialized in a real-world setting, the OSS development environment. This de-

abstraction process goes on with a literature review, followed by contextual analysis

in OSS communities, which both can be viewed as the systematic exploration of the

instance problem space. By identifying limitations and opportunities in this specific

situation, this work examines the socio-technical factors of security learning and

makes suggestions for fostering a more effective security-learning environment. The

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

49

results in this theorizing step were organized in RP I, II, III and IV, and have shared

with research communities.

Figure 3.3: The theorizing process in the thesis (Adapted from Lee et al. [269])

After identifying problem domains, abstract and instance, the theorizing activity then

crosses in the abstract domain as a search for universals in software-security learning.

The result suggests a context-based learning approach for software security, with

three guiding strategies that explain how security-learning improvement generally

progressed in the pedagogical setting presented (published in RP V). This novel

learning approach is then instantiated with an ontological knowledge base, as well as

a contextualized learning system for software security. The results were published in

RP VI and VII. After the realization of the designed artifacts, the theorizing process

returned to the instance problem where it is registered against the learning system

with a two-stage evaluation: a university learning environment, and OSS

development settings. The former was published in RP VIII, while the latter

published in RP IX. Table 3.1 presents an overview of the theorizing activities in the

thesis and corresponding research papers.

3.3 DSR Process Model

According to Peffers et al. [349], for DSR, a methodology should incorporate three

major elements: conceptual principles to define what is meant by DS research,

practice rules, and a process for carrying out and presenting the research. (p. 49). The

principles behind conducting design science research are to create and evaluate IT

artifacts that may include models, constructs, methods and instantiations for solving

research problems [203]. For practices, a methodology element requires the

development of IT artifacts based on a research process that comes up with a solution

by using existing theories or literature of a defined problem [153, 202]. Procedures are

another important element of a methodology, which provides a generally accepted

process for doing design science research [349]. Further, these IT artifacts are

evaluated concerning their effectiveness and efficiency to improve performance in the

development and use of information systems in many domains [284].

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

50

For communication and to provide a comprehensible level of rigor in the design

description, we followed the Design Science Research Methodology Process Model

(DSRM process model, depicted in Figure 3.4) provided by Peffers et al. [349]. The

DSRM process model is a useful synthesized general model that is derived from other

models [176], which also provides a pragmatic and disciplined outline of the main

considerations for successfully conducting DSR. The model accomplishes two things:

it provides a road map for researchers who want to use design as a research

mechanism for information science research; it may help researchers by legitimizing

their research using understood and accepted processes [349]. This process model

used a consensus-building approach, which ensures that this model is based on

common process elements, discussed earlier in the literature related to design science

research [349].

Figure 3.4: DSRM process model proposed by Peffers et al. [349]

Table 3.1: Descriptions of theorizing activities in the thesis and corresponding

research papers.

From

domain

To

domain

Theorizing

activity

Description Research

Paper

Abstract

problem

Instance

problem

De-abstraction Explored contextual factors of

security learning in the OSS

development environment.

I, II, III, IV

Abstract

problem

Abstract

solution

Solution search Identified and proposed a 3-

strategies context-based learning

approach.

V

Abstract

solution

Instance

solution

De-abstraction Developed into an ontology-

based contextualized learning

system.

VI, VII

Instance

solution

Instance

problem

Registration Evaluated in both pedagogical

and OSS development

environments.

VIII, IX

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

51

DSRM process model distinguishes six activities and four different entry points to the

design-science research process. The first entry point is the traditional problem-

centered initiation, which is similar to qualitative and quantitative research

methodologies. The second is the objective-centered solution approach, which

enables researchers to approach the research endeavor by first setting objectives that

can be quantitative or qualitative with the main idea of establishing how the new

artifact is expected to support solutions to achieving the stated objectives. The third

entry point is design-centered, where initiation can be a result of an interesting design

or development problem. The fourth entry point is where the design starts with a

research client.

The activities of the DSRM process model are: (1) identify problems and motivation,

(2) define objectives of a solution, (3) design and development, (4) demonstration, (5)

evaluation, and (6) communication. While considering these activities, there is no

compulsion for researchers that they would always follow to a sequential order from

activity 1 through activity 6. Instead, they may start at almost any step and move

outward [349].

Activity 1 – Problem identification and motivation

In this activity, the specific research problem is identified, and the value of solutions

is justified. In order to capture the complexity of problems and provide effective

solutions, it suggests that the problem should be atomized conceptually [349].

Justifying the value of a solution provides two things. One, it motivates the researcher

and the audience of the research to pursue the solution and to accept the results. Two,

it helps to understand the reasoning associated with the researcher’s understanding

of the problem.

Activity 2 – Define the objectives for a solution.

Based on the evidence, reasoning, and inference, the process continues toward

defining the objectives of a solution to solve the research problem. The objectives in

this activity can be qualitative, in which description about the new artifact is expected

to support a solution of a given problem, or quantitative, in which terms of how a

desirable solution would be better than recently designed ones if there are any [349].

For this activity, knowledge of the current state and current solutions is required. The

result leads to knowledge of the theory in the given field of research.

Activity 3 – Design and development

The design and development activity creates an artifact that addresses the explicated

problem and fulfills the defined objective. A design research artifact can be any

designed object in which a research contribution is embedded in the design [349]. This

activity involves designing and developing an artifact that deals with the desired

functionality as well as its architecture and then creating the actual artifact. Design

and Development do not primarily aim to answer questions by producing

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

52

prescriptive or explanatory knowledge. Instead, its main purpose is to produce

prescriptive knowledge by creating an artifact, the “How-to” knowledge about the

design decision taken and their rationale [223, 349]. As Johannesson and Persons

comment on research strategies for Design and Development: “…it is not critical that

research methods are used for devising possible solutions, but that any approach for

generating solutions is admissible, as long as it works.” ([223], p. 125)

Activity 4 – Demonstration

The Demonstration activity involves the use of the artifact to solve one or more

instances of the problem by experimentation, case study, proof, simulation, or other

appropriate activity [349], thereby providing the feasibility of the artifact. A

demonstration shows that the artifact can solve some aspects of a problem in one

illustrative or real-lift case, which can be seen as a weak form of evaluation as well

[223]. A demonstration can also help communicate the idea behind the artifact to an

audience vividly and convincingly. The output of this activity is a demonstrated

artifact including information on analytic metrics of the artifact in one case. The

generated knowledge is both descriptive and explanatory; the former describes how

the artifact works in one situation, while the latter explains why the artifact works.

Activity 5 – Evaluation

The fifth activity of the process model is Evaluation, which determines how well the

artifact is able to solve the given research problem and to what extent it fulfills the

objectives. The evaluation activity aimed at rigorously providing essential feedback

to the building and development processes by demonstrating utility, quality, and

efficacy of the proposed framework [203, 515]. This activity compares the actual

observed results from the use of the artifact in the demonstration with the solution

objectives from activity 2. The result of the evaluation activity leads to disciplinary

knowledge, which is an evaluated artifact including the information on the usefulness

of the artifact. At the end of this activity, the researchers can decide whether to iterate

back to the design and development activity for the effectiveness of the artifact or to

continue to the last activity of this model [349].

Activity 6 – Communication

The objective of the Communication activity is to communicate the research problem

and its significance to researchers and other target audiences such as practicing

professionals [349]. In addition, the utility, novelty, and efficacy of a designed artifact

are also shared among research communities. It not only enables practitioners to take

advantage of the benefits offered by the given solution to a problem but also enables

researchers to build a cumulative knowledge base for further extension and

evaluation.

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

53

3.4 Research design in the thesis

This thesis followed Peffers et al.'s DSRM [349] to approach the development of the

contextualized learning application for software security as a series of five iterations,

with each iteration indicating a specific design cycle (see Figure 3.5). Hevner et al.

([203], p. 89) term this iteration the ‘generate/test’ cycle. The evaluation of our

artifacts, as for most DSR that deals with human–artifact interaction, took the form of

an experiment. In a DSR project, the research process frequently iterates between

development and evaluation phases rather than flowing in waterfall fashion from one

phase into the next [255].

After the identification of the research problem and motivation, given in sections 1.2

and 1.3 respectively, a five-iteration design activity was carried out, in which each

design cycle (DC) contained the following steps: objectives for a solution, design and

development, demonstration, and evaluation. Evaluations were done for each cycle,

rather than only once at the end of the design process. Each design-cycle not only

derives designed artifacts but also results in knowledge contribution through

communication, which involves professional and scholarly publications and

presentations [349].

DC 1: A Socio-technical framework for security learning in the context of OSS

development

Drawing on Figure 3.5, the first design cycle concerns establishing a socio-technical

framework of security learning in the context of OSS development. This design

activity started with analyzing the existing body of knowledge on OSS security

practices using the method of Systematic Literature Review (SLR). SLR study is a

defined and methodical way to summarize the empirical evidence concerning

treatment or technology, to identify missing areas in current research or to provide

background in order to justify new research. It provides a much stronger basis for

making claims about the research questions [230, 326]. Based on the identified and

relevant articles, the result of the SLR study gave an insight into the gaps in the

literature on socio-technical perspectives and knowledge management practices of

OSS security. This step of the DSR process was addressed with research question 1.1

and outlined in RP I.

After SLR, two empirical studies were conducted to investigate the real-world

problems and to identify prospectus, limitation, and uncertainty embedded in the

security practices and learning of security knowledge in OSS development

environments. The empirical study is a way to gain knowledge by the collection and

analysis of primary data based on direct observation and/or measurement methods

in the ‘problem domain’ [518]. The former refers to qualitative, and the latter refers to

quantitative research methods [29]. Qualitative research methods are used to explore

why or how a phenomenon occurs, to develop a theory, or describe the nature of an

individual’s experience, while quantitative methods address questions about

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

54

F
ig

u
re

 3
.5

:
It

er
at

io
n

s
o

f
D

S
R

 d
es

ig
n

 c
y

cl
es

.

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

55

causality, generalizability, or magnitude of effect [146]. To answer RQ 1.2, a

quantitative research approach was adopted, in which a questionnaire was prepared

to gather information from OSS participants on the social and cultural aspects related

to secure software development in OSS communities. The findings from the study

were summarized and reported in RP II.

Further, to answer RQ 1.3, in the second study, a Mixed-Method Research (MMR)

design was selected in order to broadly explore and understand the socio-technical

aspects of security learning in the context of OSS development, as well as the

interaction effect among the observed factors. MMR frequently referred to as the

‘third methodological orientation’ [436], draws on the strengths of both qualitative

and quantitative research. While there is no universal definition of mixed methods

research, Creswell and Plano Clark [95] outline its core characteristics: in a single

research study, both qualitative and quantitative strands of data are collected and

analyzed separately, and integrated – either concurrently or sequentially – to address

the research question. Onwuegbuzie and Combs [337] concur, writing, “mixed

analyses involve the use of at least one qualitative analysis and at least one

quantitative analysis – meaning that both analysis types are needed to conduct a

mixed analysis” (p. 414). Instead of approaching a research question using the binary

lens of quantitative or qualitative research, the mixed methods research approach has

the ability to advance the scholarly conversation by drawing on the strengths of both

methodologies.

In MMR, qualitative data is first collected and analyzed, and themes are used to drive

the development of a quantitative instrument to further explore the research problem

[95, 337, 436]. As a result of this design, two stages of analyses were conducted: an

exploratory stage and a confirmatory stage. The reason for employing an exploratory

study in the first stage was that important constructs relate to socio-technical aspects

of OSS development and their influence on security learning were unknown, and

relevant quantitative instruments were not available. In the first stage, data were

collected adopting a qualitative-ethnographic research method in the three selected

OSS projects. Ethnography focuses all the details of what members of culture do in

their daily actions since culture is enacted through these details [18, 407]. Specifically,

this study employs a socio-technical systems approach to systematically and

holistically take into account the social context as well as technological aspects of the

studying subjects. In fact, a socio-technical perspective can provide a stronger

framework than any other approach because of its integrative and holistic nature

[279]. With the identification of socio-technical challenges, the study then examined

the main factors that were once disproportionately considered in the learning of

security knowledge in OSS development. This study resulted in a conceptual socio-

technical framework, which describes the interrelationship among social aspects

(cultural and structural), and security knowledge sharing and learning behavior. This

conceptual framework accompanying seven hypotheses was validated through an

empirical examination, including the questionnaire design, data collection, and

statistic correlation and linear regression analysis from 324 valid questionnaires. The

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

56

findings from the exploratory stage were reported in research paper III, while the

results of the confirmatory stage were reported in RP IV.

DC 2: A context-based learning approach for software security

The primary objective of the second design cycle was to propose a novel method of

artifacts for structuring and presenting software security knowledge, answering

research question 2.1. To this end, a context-based learning approach was first

proposed, adopted from concepts of CBL and literature from psychology and

education. The artifact was further evaluated to prove the effectiveness in improving

learners’ learning outcomes on studying software security, answering research

question 2,2. A two-round experiment was conducted with 42 Bachelor students to

evaluate the effectiveness of the proposed learning approach versus conventional

learning materials. The method of experiments allows researchers to achieve high

internal validity by carefully controlling the conditions under which an experiment

is carried out [223]. Two types of the instrument were designed and built in the data

collection scheme, including (1) pre-tests and post-tests for measuring knowledge

gain, and (2) survey questionnaires for measuring learning satisfaction. After the

design and evaluating this iteration, this work was communicated to the research

community with RP V.

DC 3: A context-based ontology for managing contextualizing security knowledge

Taking the proposed learning approach into further design consideration, DC 3

focused on the artifact of the ontological knowledge model, addressing RQ 3. The

ontology is a key component to model the security knowledge and to support the

development of the learning system, so having a distinct design cycle to validating

this component was necessary. The objectives of DC 3 were three-fold, (1) to design

and construct an ontological knowledge base to manage contextualized knowledge,

(2) to validate the feasibility of ontology, and (3) to visualize the knowledge

representation as a pre-study for DC 4. In accordance with the strategies in the

proposed learning approach, the design of the ontology was composed of three

modeling activities: application context modeling, domain knowledge modeling, and

contextualized knowledge modeling. The ontology was constructed and

demonstrated in Protégé editor and validated through a three-phase evaluation

process: domain expert evaluation, competency question evaluation, and application-

based evaluation. The design, development, and evaluation of the ontology in this

design cycle were summarized in RP VI.

DC 4: An ontology-based contextualized learning system for software security

The objective of the fourth design cycle was to develop a contextualized learning

system for software security. This artifact was designed as a proof-of-concept to

security educators regarding an ontology-driven web application for context-based

learning, integrating the designed artifacts from DC 2 and DC 3. The former suggests

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

57

the representation of security knowledge and the embedded learning process; while

the latter acts as the kernel knowledge base. While the system architecture was

inherited from the DC 3, a major alteration was made in the knowledge layout to

facilitate context-based learning appropriately. To achieve this, the proposed learning

strategies were adopted in the user interface for structuring security knowledge. The

design and development activities of the artifact in this design cycle were

summarized in RP VII, which answered research question 4.1.

Furthermore, to address research question 4.2, the learning system was deployed in

the intranet of the university environment and evaluated through a controlled

experiment with 36 students. This evaluation activity compared the learning outcome

between two groups of students, the control group and the experimental group; the

former used the conventional learning materials, while the latter used the proposed

learning system to study the assigned topics. To measure dependent variables, two

types of instruments were used: (1) knowledge test sheets, for measuring knowledge-

gain, and (2) a survey questionnaire, for measuring learning satisfaction. The proof-

of-concept of the innovative artifact, including the experimental evaluation

methodology were summarized and reported in RP VIII.

DC 5: Validation in OSS development environments

A generic solution for real-life problems cannot be proven formally, but requires

testing via the implementation of the solution in one or more situations and

investigation whether it solves the intended problem or not [41]. To further answer

research question 4.3, in this design cycle, the proposed artifact was first refined to

improve the usability, including the appearance of the concept map and the dynamic

layout. Afterward, it was validated by OSS developers through the actual

deployment of the learning system on the internet. This would enable the artifact to

go from a proof-of-concept to a more generalized proof-of-use and proof-of-value

assessment [333]. The objectives of the fifth design cycle were two-fold: (1) to test and

validate the beta version of the learning system with software developers in OSS

development projects, and (2) to conclude the effectiveness of the proposed security

learning system and lessons-learned. For the demonstration, the ontology was

prepared with actual software scenarios that were manipulated from a homegrown

web application by the author, an e-Store application with PHP and Java

programming languages.

In this evaluation study, an online questionnaire was created to collect individual-

level perception data about his/her experience in using the learning system with both

quantitative and qualitative questions. The quantitative questions dealt with the

aspects of system features and the embedded learning approach, while the qualitative

questions asked participants to share their thought about the weakness and strength

on all aspects of the system. Through sending research invitation letters, a total of 21

developers on GitHub were recruited for the artifact assessment. After the evaluation

in the design cycle, this work was communicated to the research community by

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

58

publishing it in the RP IX. Table 3.2 is a mapping table, whereby the applied research

methods, DSR activities, and the published research papers are mapped against the

corresponding research questions.

CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY

59

T
ab

le
 3

.2
: M

ap
p

in
g

 t
ab

le
 f

o
r

re
se

ar
ch

 q
u

es
ti

o
n

s,
 a

p
p

li
ed

 m
et

h
o

d
s,

 D
S

R
 a

ct
iv

it
ie

s,
 a

n
d

 r
es

ea
rc

h
 p

ap
er

s

R
es

ea
rc

h

P
ap

er

I II

II
I,

 I
V

V

V
I

V
II

V
II

I

IX

D
S

R

A
ct

iv
it

y

D
C

 1

D
C

 2

D
C

 3

D
C

 4

T
h

eo
ri

zi
n

g

A
ct

iv
it

y

D
e -

 a
b

st
ra

ct
io

n

D
e -

 a
b

st
ra

ct
io

n

D
e -

 a
b

st
ra

ct
io

n

S
o

lu
ti

o
n

 s
ea

rc
h

S
o

lu
ti

o
n

 s
ea

rc
h

D
e-

ab
st

ra
ct

io
n

D
e-

ab
st

ra
ct

io
n

R
eg

is
tr

at
io

n

R
eg

is
tr

at
io

n

R
es

ea
rc

h
 M

et
h

o
d

C
as

e
S

tu
d

y

 ✓

E
x

p
er

im
en

t

✓

✓

S
u

rv
ey

 ✓

 ✓

 ✓

✓

S
L

R

✓

M
M

R

 ✓

Q
n

R

 ✓

✓

 ✓

 ✓

✓

Q
aR

 ✓

✓

 ✓

✓

 ✓

R
es

ea
rc

h

Q
u

es
ti

o
n

R
Q

 1
.1

R
Q

 1
.2

R
Q

 1
.3

R
Q

 2
.1

R
Q

 2
.2

R
Q

 3

R
Q

 4
.1

R
Q

 4
.2

R
Q

 4
.3

60

61

Chapter 4

Summary of Included
Publications

This chapter presents extended summaries of the included research papers published

in the peer-reviewed professional and academic international conferences and

journals in software security and security education. Each paper is presented

followed an IMR format: Introduction, Methodology, and Result. Full versions of the

research papers are given in Part II of this thesis.

4.1 (RP I) Software Security in Open Source Development: A

Systematic Literature Review

4.1.1 Introduction

Many security studies have been conducted by both researchers and practitioners on

the mechanisms of building security in OSS development. However, the number of

new vulnerabilities keeps increasing in today’s OSS systems. The essence of this

research was to identify areas for possible improvement or enhancement via

systematic evaluation of relevant and current security studies in the context of OSS

development as reported in the literature.

4.1.2 Methodology

In this paper, a Systematic Literature Review (SLR) was carried out to extract security

studies conducted in the context of OSS development from the year 2000 to 2016.

Through a four-stage selection execution process (depicted in Figure 4.1), a total of 42

papers were selected. The selected papers were classified and analyzed using the

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

62

OWASP Software Assurance Maturity Model (SAMM) and Socio-Technical Security

Framework.

Figure 4.1: Paper selection process of SLR

4.1.3 Result

Based on the results of the SLR, the following findings were concluded. First, the areas

of Construction and Verification (Secure Architecture, Code Review, and Security

Testing) are the most cited in security studies, while Governance and Deployment

received the least attention in the selected studies. Second, the discussion of technical

aspects has happened in 98% of the selected studies (41 out of 42), However, less than

50% of studies talked about the social sectors of OSS security. There is an obvious

dearth of research on the social-technical perspectives of OSS security. Third, there

are no OSS security studies addressing security issues from the educational and

knowledge management aspects. A closer look at the aspects of security knowledge

management and learning seems to be needed in OSS development. As the diversity

of OSS products and projects increases, there will no longer be a single technical

approach for achieving optimal software security in all OSS projects. This study

suggested that future researchers should explore approaches from socio-technical

aspects in helping OSS developers learn the necessary security knowledge to fulfill

the need of their work, further, to reinforce their behaviors towards OSS security.

4.2 (RP II) An Empirical Study of Security Culture in Open

Source Software Communities

4.2.1 Introduction

OSS communities, with their complex network of interactions between people and

people, people and processes as well as between people and things, represent unique

characteristics, technical and non-technical. This socio-technical perspective suggests

a deeper analysis of the relationship between culture, methods, tools, development

environment and organizational structure. The result of this type of analysis can be

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

63

used to improve process performance, disseminate best practice and generate

artifacts. As there is still a dearth of empirical research on the social study of OSS

security, mentioned in RP I, this study intended to complement the research by

empirically investigating the social and cultural aspects of OSS security. By exploring

the current security culture in OSS communities, this paper provides an in-depth

understanding of the influence of security on participants’ security behaviors and

organizational decision-making.

4.2.2 Methodology

This paper adopted a quantitative approach with a survey instrument to investigate

OSS security culture. It first established the research framework for security culture

with identified six dimensions: attitude, behavior, competency, subjective norms,

governance, and communication. The framework was then used as the theoretical

foundation to design a security culture questionnaire. Overall, 254 respondent

questionnaires were used for the statistical analysis.

4.2.3 Result

Figure 4.2 depicts an overview of the security culture scores. Attitude is the only

dimension that reaches a mean value at a degree of 4.00. The respondents

overwhelmingly reported a positive attitude toward software security. More

concerning, however, is the evidence that a significant minority of respondents were

unwilling or unable to put this positive attitude into practice. The behavior of OSS

participants is at a mild level of maturity, but still, on average, insecure. This study

also revealed a missed set of means in terms of security practice reinforcement and

demonstrates a clear knowledge gap that must be addressed by OSS communities.

Notably, this study revealed there were weak subjective norms and security

governance to support security culture, suggesting that limited development of trust

and supportiveness between peers, as well as an insufficient complement to security

expertise. Last, communication of security information is the least developed

dimension in security culture, as the mean is the lowest of all six dimensions.

Figure 4.2: The mean score of security culture dimensions

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

64

This study indicates that OSS communities still have some way to go in ensuring that

software security is high on the list of project priorities, gets participants’ attention,

and strengthens participants’ competency in promoting positive security best

practice. With respondents’ broadly positive attitude to security, OSS communities

clearly need to place more focus on providing members with information related to

security subjects, offering opportunities for learning and supporting self-

development of security knowledge. One is to provide dedicated communication

channels to ensure that participants have reached security information, the

codification knowledge when they need it, and importantly, are aware of where they

can locate it. With just a glance, participants understand they need to pay attention

and take any recommended action immediately. Through this structural mechanism,

the security knowledge gains valuable insights from the community, and further,

facilitating discussion and decision making and sharpening personalization

knowledge.

4.3 (RP III) Learning Secure Programming in Open Source

Software Communities: A Socio-Technical View

4.3.1 Introduction

Learning in OSS communities has been a major interest for researchers. Many OSS

studies have indicated that the OSS community offers significant learning

opportunities from its openness, transparency and collaboration phenomenon.

However, existing research on security learning in OSS development has paid only

modest attention to the task of integrating existing theory from relevant fields.

Besides, there is a lack of depth in current understanding regarding security learning

in OSS development. Therefore, there is a need for more integrative research in this

field. This paper is the part one of the two empirical studies on security knowledge

sharing and learning behavior in OSS communities, where the first paper explores the

socio-technical factors of the problem domain, and the second investigates how these

factors complement each other in shaping security knowledge sharing and learning

behaviors in OSS communities. This paper presents an initial insight into present

knowledge acquisition and learning about software security in OSS communities.

4.3.2 Methodology

This study utilized a qualitative/ethnographic approach to get an in-depth

understanding of the socio-technological realities of the research subjects: the three

OSS projects. The research findings were synthesized based on the socio-technical

system model (Culture, Structure, Method, and Machine) to examine the socio-

technical factors that are once disproportionately considered in learning about

security in OSS communities.

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

65

4.3.3 Result

First, in the Method aspect, this study observed that security learning in OSS

communities is two-fold: Self-directed learning and learning from the mistake. OSS

developers learn software security by means of available security information on

project websites. The code review process enablers for developers to reflect their code,

take corrective actions and build concrete experiences. In the Culture aspect, the

security culture backgrounds either at organizational or at the individual level have

impacts on the amount of security knowledge transferred within the community,

further, affecting participants’ learning processes. If an OSS project truly holds a value

that software security is important, then particular behaviors and actions can be

expected among the participants. From the analysis of the Structure aspect, it

observed that effective learning of software security results in coordinating necessary

security expertise in the project, which enables a high level of security knowledge

creation and the satisfaction of the learning process. A major problem found in this

study is a lack of sufficient as well as efficient knowledge sharing and learning

mechanisms for software security in OSS communities. The security knowledge is

scattered over the community websites (source code, documentation, wiki, forum,

conference pages, etc.), and the quantity of transferred knowledge is varied by

projects. Finding and learning knowledge about secure programming becomes a key

challenge that is highly dependent on the resources the community provides.

4.4 (RP IV) An Empirical Study on Security Knowledge

Sharing and Learning in Open Source Software Communities

4.4.1 Introduction

This paper is part two of the studies on security knowledge sharing and learning in

OSS communities. After the prior ethnographic study, we were interested in

obtaining a deeper understanding of how the observed socio-technical factors

complement each other in shaping security knowledge sharing and learning

behavior.

4.4.2 Methodology

Based on the literature review, and our understanding of causal links between social

and technical factors, we formed the hypotheses with a conceptual framework for

security knowledge sharing and learning in OSS communities. Figure 4.3 depicts the

conceptual and theoretical structure that includes four constructs, namely: security

culture, expertise coordination, security knowledge sharing, and software security

learning. We validated the hypotheses through conducting empirical examinations

including a questionnaire survey, survey data collection, index measurement,

validity, and reliability testing and linear correlation analysis among 324 valid

questionnaires.

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

66

Figure 4.3: The conceptual framework for security knowledge sharing and learning

in OSS communities

4.4.3 Result

With statistical analysis, all of the hypotheses were tested and approved (Table 4.1).

Based on the result, social factors (culture and structure aspects) have significant

impacts on the software-security learning behavior through the mediating variables

of knowledge sharing when considering security culture and expertise coordination.

Based on the results of the paper, we argued: (a) OSS communities should cultivate a

security culture to promote the value of software security to their products. With such

a phenomenon, OSS developers and users will be willing to share and talk about

software security, and there will provide more opportunities to draw lessons learned

from each other’s experiences that should be actively taken into account in projects.

(b) Having central security expertise responsible for security knowledge transfer,

such as, specific security web pages can be included in the project website or

repository, which will lead to security learning practices being established.

Table 4.1: Testing results of research hypotheses

Hypothesis. Result

H1. Security culture is positively associated with security knowledge sharing. Supported

H2. Expertise coordination is positively associated with security knowledge sharing. Supported

H2a: Coordinating organizational structure has a positive effect on security knowledge

sharing.

Partially supported

H2b: Infostructure has a positive effect on security knowledge sharing. Partially supported

H3. Security knowledge sharing is positively associated with software security

learning.

Supported

H3a: Codification knowledge sharing has a positive effect on software security

learning.

Supported

H3b: Personalization knowledge sharing has a positive effect on software security

learning.

Supported

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

67

4.5 (RP V) Towards a Context-Based Approach for Software

Security Learning

4.5.1 Introduction

Software security knowledge is multifaceted and can be applied in diverse ways.

Learning software security is a complex and difficult task because learners must not

only deal with a vast amount of knowledge about a variety of concepts and methods

but also have to demonstrate the applicability of the knowledge through experience

in order to understand their practical use. In traditional software security teaching,

little attention is given to what the security knowledge really means to learners, and

there is not much content addressing the connections between real-world situations

and security concepts. To facilitate effective learning about software security, this

paper proposed a context-based approach to structuring and presenting software

security knowledge.

4.5.2 Methodology

The proposed context-based approach includes three main strategies. In this

approach, teaching starts with an application context that has an orienting purpose.

The design of the application context aims to activate the learner’s prior knowledge

of software programming and anchors the learning about security knowledge. The

second strategy is to organize underlying security knowledge in a structured manner

that can stimulate learners’ mental models to support more efficient learning in the

specified context. The third is to guide learners to engage with concrete knowledge

before studying abstract knowledge. This strategy assists learners in discovering

meaningful concepts and relationships between practical functions and abstract

knowledge when working in this context. Furthermore, it helps them apply

knowledge in various other contexts.

The approach was evaluated through a controlled quasi-experiment with 42 Bachelor

students in the setting of a university learning environment. Two types of learning

materials were designed in a printed format as the experimental treatments: one used

a conventional approach, while the other type adopted the proposed context-based

approach to organizing software security knowledge.

4.5.3 Result

From the results of the experiment, there were positive findings to the adoption of the

context-based learning approach, in terms of two measurements: security knowledge

gain and learning satisfaction. According to the result, the proposed approach can be

regarded as a solution to problems faced in security teaching practices at school. This

study showed that it is effective in terms of promoting students’ achievement and

developing better attitudes towards software security. It was also concluded that

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

68

students receiving context-based instruction retained what they learned more in the

practical type questions. Thus, the context-based approach can be applied during

software security or computer security courses to make students more competent and

interested in security knowledge.

4.6 (RP VI) Managing Software Security Knowledge in

Context-An Ontology-Based Approach

4.6.1 Introduction

Security has become an important part of today’s software development projects.

However, due to the diversity of software development projects, software developers

not only require knowledge about the general security concepts but also need the

expertise to deal with variant technologies, frameworks, and libraries that are

involved in the software development process. Although much security information

is widely available in books, open literature or on the Internet, the content is

traditionally encapsulated in unstructured or semi-structured formats, and

commonly organized in a security-centric way. It is difficult for software engineers to

extract relevant pieces of knowledge and apply it to their application-specific

decision-making situations.

4.6.2 Methodology

This paper designed and implemented an ontological knowledge base for enabling

managing software security knowledge in the context of software applications. This

ontology organizes security knowledge around contextual software scenarios linking

to security knowledge, both practical and theoretical. The design of the ontology

consists of three parts: application context modeling, security domain modeling, and

security contextualization modeling. Figure 4.4 depicts the full view of the ontology-

based knowledge model, including the interrelationships of the components. The

application context model defines a complete representation of what context is in a

particular domain. The security domain model describes the theoretical knowledge,

which is of teaching subjections through a set of concepts: Security Attack, Security

Weakness, and Security Practice. The security contextualization model manages

security knowledge in the context of specific scenarios and brings together the

conceptual knowledge that is described in the security domain model.

This ontology differentiates from other ontology work in the following aspects:

(1) The ontology is context-based, which models security knowledge with a

diversity of software features and technologies;

(2) The ontology describes security knowledge with a contextual situation, and

meanwhile, complements the concrete knowledge with abstract description.

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

69

Figure 4.4: The ontology-based security knowledge model.

4.6.3 Result

This ontology was validated through a three-phase evaluation process. First, the

ontology structure, including concept definitions and relations, were reviewed and

analyzed by a security professional. Second, the ontology was evaluated with

competency questions against its initial requirements. Third, the ontology was

evaluated by being plugged into a web application to demonstrate the knowledge

presentation. The evaluation result showed that the proposed ontology is deemed

feasible in formalizing and managing contextualized knowledge in the security

domain. In the practical software development process, software engineers are

allowed to find solutions to exceptional situations by searching for similar contexts.

On the other hand, in the pedagogical environment, a course tutor, who is engaged

in the introduction of security vulnerabilities, can use the proposed ontology to

quickly identify a number of real-world examples of facing a specific security attack

or vulnerability, to improve the effectiveness of learning.

4.7 (RP VII) Development of Ontology-Based Software

Security Learning System with Contextualized Learning

Approaches

4.7.1 Introduction

Building secure applications is a complex and demanding task that developers often

face, especially because the domain is rather context-specific, and the real project

situation is necessary to apply the security concepts within the specific system. While

learning software security, developers interpret security knowledge they gain with a

range of strongly held personal programming experience. However, the traditional

learning materials give little attention to what a real-world situation really means to

developers, and there is not much content addressing the connection between

security concepts and learners’ prior knowledge. Consequently, the way that

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

70

developers process security information and their motivation for learning is not

touched by conventional methods. Since software engineers are not experts on

security in general, there is an ever-increasing need to help them learn security

knowledge in a fashion manner. This paper proposes a learning system in the domain

of software security, which aims to create conditions for more effective learning of

software security that can motivate learners and stimulate their interests.

4.7.2 Methodology

The design of the security learning system was inherited from the previous research

works, presented in Paper V and Paper VI: the former positions as a kernel

knowledge base for the learning system, while the latter guided the user interface

design of the knowledge presentation. This learning system facilitates the contextual

learning process by providing contextualized access to security knowledge through

real software application scenarios.

4.7.3 Result

A proof-of-concept prototype was developed based on the proposed learning

approach and the ontological knowledge base. The front-end was designed as a web-

based user interface with PHP and JavaScript libraries whereas the backend was

implemented in Java, and using Jena API for accessing the ontology. The learning

process begins with a selected contextualized scenario in the application context

familiar to learners and then gradually leads to an understanding of the abstract part

of security knowledge. To guide learners navigating through the contextualized

knowledge efficiently, the knowledge content outlined in a graphical Concept Map.

The corresponding security knowledge, contextualized and theoretical, was

displayed interactively while learners click the node of Concept Map. In such an

environment, learners discover meaningful relationships between the abstract

explanation and the practical demonstration in the context of real software

applications they are already familiar with; security concepts are internalized through

the process of discovering, reinforcing, and relating.

4.8 (RP VIII) Preliminary Evaluation of an Ontology-Based

Contextualized Learning System for Software Security

4.8.1 Introduction

This paper presents an initial investigation into the impact of the context-based

learning approach in software security using the proposed learning systems.

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

71

4.8.2 Methodology

An experiment in a university learning environment was conducted to evaluate the

effectiveness of the proposed learning system. This experiment employed pre-

test/post-test and questionnaires to measure students’ security knowledge gain and

their learning satisfaction respectively.

4.8.3 Result

The result of the experimental evaluation showed the usefulness and feasibility

because it shed some light on the potential benefits of context-based learning. First,

with the support of contextualized learning, the experimental group students yielded

significantly better performance than those in the control group in terms of security

knowledge gain. Second, according to the results of the questionnaire survey, the

students expressed higher learning satisfaction with the learning system using

contextualized security knowledge than conventional learning materials. In addition,

most students were very interested in the proposed learning system and all agreed

that this approach could ease the information load effectively.

4.9 (RP IX) Learning Software Security in Context: An

Evaluation in Open Source Software Development

Environment

4.9.1 Introduction

As part of an investigation into context-based learning in the domain of software

security, this study discovered and examined the impact of the developed

contextualized learning system in software development environments. This paper

presents an evaluation study with software developers in OSS projects.

4.9.2 Methodology

To evaluate the efficacy of the proposed security learning system, a questionnaire-

based survey was conducted to collect OSS developers’ perception of the system

features and the embedded learning approach. A total of 21 voluntary participants

from GitHub were recruited to participate in the system evaluation and completed

the survey questionnaire.

4.9.3 Result

The results of this evaluation study indicated that the proposed learning system has

the potential to be an effective learning tool that can motivate OSS developers to learn

about software security. First, the respondents overall evaluated the practicality of

CHAPTER 4. SUMMARY OF INCLUDED PUBLICATIONS

72

system features with a positive degree. They highly recommended the use of

software scenarios with graphical and contextualized security knowledge

presentation. Second, the results also revealed the learning approach kept developers

interested and engaged. Consequently, they overwhelmingly expressed their

satisfaction with the learning sessions. Based on the findings presented in the paper,

the context-based approach is deemed as a suitable approach to support developers’

security training and education in software projects.

73

Chapter 5

Summary of Contribution

The merits and benefits of conducting scientific research can be numerous for the

researcher, the community, practice, and ever-developing science. This thesis

contributes to the field of software development and security education. In particular,

it sheds light on the OSS learning context and context-based software security

learning. In this thesis, eleven research papers contribute to the domain knowledge

base, and nine of these papers are included in the thesis. Table 5.1 summarizes the

contributions of the thesis and the corresponding publications. Although the

contributions were presented individually, the impact of this thesis is also due to a

synergistic effect. To facilitate such an effect, Figure 5.1 presents the contributions in

an integrated manner that links the research questions, DSR activities, corresponding

artifacts, research papers, and Fenstermacher and Richardson’s learning ingredients

[142] (presented in section 1.3). The right-hand side of the figure addresses the

primary and secondary ingredients of each contribution, highlighting how the joint

set of papers addresses the problem, artifact design and development process, and

artifact evaluation. For each relationship, an arrow points from the primary focus of

the paper toward the secondary focus. In general, the primary focus is the study’s

aims and methods, while the secondary focus relates to the results of relevant studies

or suggestions for expanding security learning.

Overall, the included research papers address the full range of ingredients in the

framework. This chapter concisely describes the contributions in terms of their initial

goals and the research questions.

RQ 1: How do socio-technical aspects affect individuals’ learning of software

security in the context of open source software development?

This question is addressed in the problem identification of DSR activities, a systematic

literature review of security research in the context of OSS development, and

CHAPTER 5. SUMMARY OF CONTRIBUTION

74

empirical studies on security learning in selected OSS communities. The three

respective contributions (C1, C2, and C3) primarily focus on the ingredient of “social

surroundings supportive of teaching and learning.” Contribution 1 outlines the

investigation and identification of the strengths and weaknesses of security practices

for secure OSS development from the literature, encompassing both social and

technical aspects. This contribution, published in RP I, points toward the ingredient

of “opportunities to teach and learn” by providing software security researchers with

a firm basis for developing new security approaches, addressing research gaps from

both the socio-technical and knowledge management perspectives to open

opportunities for learners to engage. Contribution 2, addressed in RP II, offers an

empirical study on the social and cultural security aspects of OSS development. This

contribution recommends cultivating and maintaining an OSS development

community culture that values developers’ positive security attitudes and behaviors.

For this reason, C2 points toward the ingredient of “willingness and effort on the part

of the learner,” as it influences learners’ motivation to obtain security knowledge.

Contribution 3 provides an investigation of security knowledge acquisition and

learning in OSS communities. This contribution points toward the ingredient of

“high-quality teaching” since the knowledge gained from this research could be used

to improve processes, methods, tools, and security learning practices in OSS

communities. This contribution is summarized and reported in RPs III and IV.

RQ 2: How can context-based approaches be applied in software security to

motivate learners and improve learning outcomes?

This research question is addressed in the DC 2 of DSR activities, in which a novel

method for software security instructional design and teaching is proposed and

evaluated. The resultant contribution (C4) was published in RP IV. Contribution 4

concentrates on the ingredient of “high-quality teaching” by suggesting a novel

approach for addressing the context in software security teaching and learning.

Furthermore, it provides a practical demonstration of security learning material

construction using the proposed context-based approach. This contribution points

toward the ingredient of “willingness and effort on the part of the learner” in its focus

on how context-based learning motivates learners and stimulates their interest in

security learning.

RQ 3: How can one design an ontology that manages contextualized software

security knowledge?

This research question, tackling current weaknesses in the security knowledge

structure for effective learning, is investigated and answered in DC 3. The related

contribution (C5) is reported in RP V, which concentrates on the ingredient of “high-

quality teaching” by providing a concrete artifact for security knowledge modeling;

instructors can use this tool to effectively deliver software security knowledge.

Consequently, this contribution points toward the ingredient “opportunities to teach

and learn” in its focus on providing knowledge resources.

CHAPTER 5. SUMMARY OF CONTRIBUTION

75

RQ 4: How can one construct a learning system that facilitates context-based

learning of security knowledge in software development?

A critical contribution of this thesis (C6) is the construction of a learning artifact (in

DC 3)—a contextualized learning system—to provide more effective learning

opportunities for software developers. Thus, the ingredient that C6 centers on is

“opportunities to teach and learn”; it does so through designing and developing

technical solutions for facilitating contextual software security learning and thereby

encouraging more opportunities for security learning in software development. This

contribution points toward the ingredients of “high-quality teaching” and

“willingness and effort on the part of the learner” since the promising results offer

evidence of the importance of context-based approaches in both pedagogical and

software development environments.

CHAPTER 5. SUMMARY OF CONTRIBUTION

76

T
ab

le

5.
1

 S
u

m
m

ar
y

 o
f

th
e

co
n

tr
ib

u
ti

o
n

 a
n

d

re
se

ar
ch

 f
o
cu

s e
s

S
ec

o
n

d
ar

y

F
o

cu
s

O
p

p
o

rt
u

n
it

y
 t

o

te
ac

h
 a

n
d

 l
ea

rn

 W
il

li
n

g
n

es
s

an
d

 e
ff

o
rt

 b
y

th

e
le

ar
n

er

(C
on

ti
n

u
ed

)

P
ri

m
ar

y
 F

o
cu

s

S
o

ci
al

 s
u

rr
o

u
n

d

su
p

p
o

rt
iv

e
o

f
te

ac
h

in
g

 a
n

d

le
ar

n
in

g

S
o

ci
al

 s
u

rr
o

u
n

d

su
p

p
o

rt
iv

e
o

f
te

ac
h

in
g

 a
n

d

le
ar

n
in

g

R
es

ea
rc

h

p
ap

er

R
P

 I

R
P

 I
I

C
o

n
tr

ib
u

ti
o

n

O
ff

er
ed

 a
n

 o
v

er
v

ie
w

 o
f

th
e

se
cu

ri
ty

 s
tu

d
ie

s
re

se
ar

ch
 l

it
er

at
u

re
 r

el
at

ed
 t

o
 O

S
S

d

ev
el

o
p

m
en

t.

•
 W

it
h

 a

so
li

d
,

sy
st

em
at

ic

li
te

ra
tu

re
 r

ev
ie

w
,

th
is

 t
h

es
is

id

en
ti

fi
es

an

d

su
m

m
ar

iz
es

th

e
st

re
n

g
th

s
an

d
 w

ea
k

n
es

se
s

o
f

se
cu

ri
ty

 s
tu

d
ie

s
in

 t
h

e
li

te
ra

tu
re

 o
n

 O
S

S
d

ev
el

o
p

m
en

t
fr

o
m

so

ci
o

-t
ec

h
n

ic
al

 p
er

sp
ec

ti
v

es
.

•
 T

h
is

 s
y

st
em

at
ic

 r
ev

ie
w

 d
o

es
 n

o
t

co
n

si
st

 o
f

a
si

m
p

le
 r

ea
rr

an
g

em
en

t
o

f
re

le
v

an
t

d
at

a
th

at
 i

s
al

re
ad

y
 k

n
o

w
n

 o
r

th
at

 h
as

 b
ee

n
 p

u
b

li
sh

ed
. R

at
h

er
, i

t
w

as
 c

o
n

d
u

ct
ed

 a
cc

o
rd

in
g

 t
o

 a
 f

o
rm

al

an
d

 c
o

n
tr

o
ll

ed
 p

ro
ce

ss
.

T
h

u
s,

 o
th

er
 p

ro
fe

ss
io

n
al

s
ca

n
 f

o
ll

o
w

 t
h

e
sa

m
e

p
ro

to
co

l
an

d
 ju

d
g

e
th

e
ad

eq
u

ac
y

 o
f

th
e

re
su

lt
s.

•
 T

h
is

 r
es

ea
rc

h
 w

o
rk

 s
u

p
p

li
es

 r
es

ea
rc

h
er

s
an

d
 p

ra
ct

it
io

n
er

s
w

it
h

 a
 f

ir
m

 b
as

is
 f

o
r

d
ev

el
o

p
in

g

n
ew

 s
ec

u
ri

ty
 a

p
p

ro
ac

h
es

 f
o

r
se

cu
re

 O
S

S
 d

ev
el

o
p

m
en

t
an

d
 a

d
d

re
ss

in
g

 a
n

y
 o

f
th

e
id

en
ti

fi
ed

li

m
it

at
io

n
s.

O
ff

er
ed

 a
n

 e
m

p
ir

ic
al

 a
ss

es
sm

en
t

o
f

th
e

se
cu

ri
ty

 c
u

lt
u

re
 i

n
 O

S
S

 d
ev

el
o

p
m

en
t

en
v

ir
o

n
m

en
ts

.

•
 T

h
is

 r
es

ea
rc

h
 w

o
rk

 fi
ll

s
th

e
re

se
ar

ch
 g

ap
 b

y
 e

m
p

ir
ic

al
ly

 i
n

v
es

ti
g

at
in

g
 t

h
e

so
ci

al
 a

n
d

cu

lt
u

ra
l

as
p

ec
ts

o

f
O

S
S

se
cu

ri
ty

(a

)
to

id

en
ti

fy

w
ea

k
n

es
se

s
an

d

o
p

p
o

rt
u

n
it

ie
s

fo
r

im
p

ro
v

em
en

t
an

d
 (

b
)

to
 i

ll
u

st
ra

te
 p

ro
g

re
ss

 i
n

 t
h

e
se

cu
ri

ty
 c

u
lt

u
re

 o
f

O
S

S
p

ro
je

ct
s.

•
 I

t
p

ro
v

id
es

 p
ra

ct
ic

al
 i

n
si

g
h

t
re

g
ar

d
in

g
 h

o
w

 t
o

 e
v

al
u

at
e

cu
lt

u
re

 i
n

 s
o

ft
w

ar
e

p
ro

je
ct

s
b

y

o
p

er
at

io
n

al
iz

in
g

 a
 s

ec
u

ri
ty

 c
u

lt
u

re
 f

ra
m

ew
o

rk
 c

o
n

si
st

in
g

 o
f

an
 a

ss
es

sm
en

t
in

st
ru

m
en

t.

•
 B

y
 e

v
al

u
at

in
g

 f
ac

to
rs

 t
h

at
 w

o
u

ld
 i

n
fl

u
en

ce
 s

ec
u

ri
ty

 i
n

 a
 p

o
si

ti
v

e
w

ay
,

th
is

 r
es

ea
rc

h
 w

o
rk

o

ff
er

s
re

al
is

ti
c

an
d

 p
ra

ct
ic

al
 s

u
g

g
es

ti
o

n
s

fo
r

so
ft

w
ar

e
se

cu
ri

ty
 m

an
ag

er
s

w
o

rk
in

g
 i

n
 O

S
S

d
ev

el
o

p
m

en
t.

•
 T

h
is

 w
o

rk
 p

ro
v

id
es

 e
m

p
ir

ic
al

 d
at

a
an

d
 i

s
si

g
n

ifi
ca

n
t

re
g

ar
d

in
g

 n
o

t
o

n
ly

 O
S

S
p

ro
je

ct

m
an

ag
em

en
t

b
u

t
al

so

su
cc

es
sf

u
l

co
ll

ab
o

ra
ti

o
n

m

o
d

el
s

in

so
ft

w
ar

e
o

rg
an

iz
at

io
n

s
o

r
co

m
p

an
ie

s.

N
o

C
1

C
2

CHAPTER 5. SUMMARY OF CONTRIBUTION

77

T
ab

le
 5

.1
:

C
o

n
ti

n
u

ed
.

G

o
o

d
 t

ea
ch

in
g

 W

il
li

n
g

n
es

s
an

d
 e

ff
o

rt
 b

y

th
e

le
ar

n
er

(C
on

ti
n

u
ed

)

S
o

ci
al

su

rr
o

u
n

d

su
p

p
o

rt
iv

e
o

f
te

ac
h

in
g

 a
n

d

le
ar

n
in

g

G
o

o
d

 t
ea

ch
in

g

R
P

 I
II

an

d
 R

P

IV

R
P

 V

In
v

es
ti

g
at

ed
 k

n
o

w
le

d
g

e
ac

q
u

is
it

io
n

 a
n

d
 l

ea
rn

in
g

 a
b

o
u

t
so

ft
w

ar
e

se
cu

ri
ty

 i
n

 O
S

S
 d

ev
el

o
p

m
en

t.

•
 T

h
is

 t
h

o
ro

u
g

h
 i

n
v

es
ti

g
at

io
n

 i
n

v
o

lv
ed

 e
m

p
ir

ic
al

 e
x

am
in

at
io

n
s

o
f

O
SS

 p
ro

je
ct

s
o

v
er

 t
im

e.
 U

si
n

g

th
e

et
h

n
o

g
ra

p
h

ic
 m

et
h

o
d

,
th

is
 s

tu
d

y
 e

x
p

li
ca

te
d

 t
h

e
ra

ti
o

n
al

it
ie

s
o

f
p

ra
ct

ic
e

fr
o

m
 a

n
 i

n
si

d
er

’
s

p
o

in
t

o
f

v
ie

w
; t

h
er

ef
o

re
, t

h
e

em
er

g
en

t
le

ar
n

in
g

 p
at

te
rn

 w
as

 a
cc

u
ra

te
ly

 i
d

en
ti

fi
ed

.

•
 T

h
is

 r
es

ea
rc

h
 w

o
rk

 e
x

te
n

d
s

th
e

sp
ec

tr
u

m
 o

f
p

ri
o

r
re

se
ar

ch
 o

n
 t

h
e

ef
fe

ct
s

o
f

k
n

o
w

le
d

g
e

sh
ar

in
g

an

d
 le

ar
n

in
g

 in
 O

S
S

 d
ev

el
o

p
m

en
t

at
 t

h
e

in
d

iv
id

u
al

 a
n

d
 o

rg
an

iz
at

io
n

al
 le

v
el

s
b

y
 in

te
g

ra
ti

n
g

 s
o

ci
o

-
te

ch
n

ic
al

 a
sp

ec
ts

 o
f

se
cu

ri
ty

 l
ea

rn
in

g
 i

n
 O

S
S

co
m

m
u

n
it

ie
s.

•
 I

t
p

ro
v

id
es

 a
n

 i
n

-d
ep

th
 e

x
am

in
at

io
n

 o
f

h
o

w
 c

u
lt

u
ra

l a
n

d
 s

o
ci

al
 a

sp
ec

ts
 c

o
m

p
le

m
en

t
ea

ch
 o

t h
er

 i
n

in

fl
u

en
ci

n
g

 s
ec

u
ri

ty
 k

n
o

w
le

d
g

e
sh

ar
in

g
 a

n
d

 l
ea

rn
in

g
 i

n
 O

S
S

co
m

m
u

n
it

ie
s.

•
 T

h
is

 r
es

ea
rc

h
 c

o
n

tr
ib

u
te

s
to

 t
h

e
b

o
d

y
 o

f
k

n
o

w
le

d
g

e
in

 t
h

at
 i

t
is

 t
h

e
fi

rs
t

su
ch

 w
o

rk
 t

o
 i

n
v

es
ti

g
at

e
th

e
re

la
ti

o
n

sh
ip

 a
m

o
n

g
 t

h
e

se
cu

ri
ty

 c
u

lt
u

re
,

o
rg

an
iz

at
io

n
al

 s
tr

u
ct

u
re

,
an

d
 s

ec
u

ri
ty

 k
n

o
w

le
d

g
e

sh
ar

in
g

 a
n

d
 l

ea
rn

in
g

 i
n

 t
h

e
O

SS
 d

ev
el

o
p

m
en

t
co

n
te

x
t.

 T
h

is
 r

es
ea

rc
h

 c
o

n
fi

rm
ed

 t
h

at
 s

u
ch

 a

re
la

ti
o

n
sh

ip
 e

x
is

ts
 a

n
d

 i
d

en
ti

fi
ed

 k
ey

 f
ac

to
rs

 i
n

fl
u

en
ci

n
g

 t
h

at
 r

el
at

io
n

sh
ip

.

D
es

ig
n

ed
,

d
em

o
n

st
ra

te
d

,
an

d
 e

v
al

u
at

ed
 a

 c
o

n
te

xt
-b

as
ed

 a
p

p
ro

ac
h

 t
o

 f
o

st
e

r
so

ft
w

ar
e

se
cu

ri
ty

le

ar
n

in
g

.

•
 T

h
is

 r
es

ea
rc

h
 s

u
g

g
es

ts
 a

 n
ew

 a
p

p
ro

ac
h

 f
o

r
ad

d
re

ss
in

g
 c

o
n

te
x

tu
al

 a
sp

ec
ts

 i
n

 s
o

ft
w

ar
e

se
cu

ri
ty

te

ac
h

in
g

 a
n

d
 le

ar
n

in
g

. T
h

is
 n

ew
 a

p
p

ro
ac

h
 p

ro
p

o
se

s
th

at
 t

o
 e

n
co

u
ra

g
e

in
te

re
st

 in
 s

ec
u

ri
ty

 le
ar

n
in

g
,

ed
u

ca
to

rs
 s

h
o

u
ld

 p
u

t
k

n
o

w
le

d
g

e
in

 a
 c

o
n

te
xt

 r
el

at
ed

 t
o

 l
ea

rn
er

s.
 B

y
 a

d
o

p
ti

n
g

 t
h

is
 v

ie
w

,
th

is

re
se

ar
ch

 p
o

in
ts

 t
o

 a
 n

ew
 d

ir
ec

ti
o

n
 f

o
r

co
n

te
x

t-
b

as
ed

 l
ea

rn
in

g
 i

n
 s

ec
u

ri
ty

 e
d

u
ca

ti
o

n
.

•
 T

h
e

p
ro

p
o

se
d

 n
o

v
el

 l
ea

rn
in

g
 a

p
p

ro
ac

h
 f

ea
tu

re
s

th
re

e
co

n
cr

et
e

p
il

la
rs

: s
ta

rt
in

g
 w

it
h

 a
 m

ea
n

in
g

fu
l

sc
en

ar
io

,
st

im
u

la
ti

n
g

m

en
ta

l
m

o
d

el
s

fo
r

le
ar

n
in

g
,

an
d

m

o
v

in
g

fr

o
m

co

n
cr

et
e

to

ab
st

ra
ct

k

n
o

w
le

d
g

e.

•
 It

 d
es

cr
ib

es
 a

 p
ra

ct
ic

al
 d

em
o

n
st

ra
ti

o
n

 o
f

th
e

co
n

te
x

t-
b

as
ed

 l
ea

rn
in

g
 a

p
p

ro
ac

h
 t

o
 g

en
er

at
in

g
 a

n
d

p

re
se

n
ti

n
g

 c
o

n
te

n
t

k
n

o
w

le
d

g
e

w
it

h
 c

o
n

cr
et

e
le

ar
n

in
g

 m
at

er
ia

ls
;

th
at

 d
em

o
n

st
ra

ti
o

n
 p

ro
d

u
ce

d

so
u

n
d

er
 l

ea
rn

in
g

 o
u

tc
o

m
es

 t
h

an
 c

o
n

v
en

ti
o

n
al

 m
et

h
o

d
s.

•
 S

in
ce

 t
h

e
p

ro
p

o
se

d

co
n

te
xt

-b
as

ed

ap
p

ro
ac

h

en
h

an
ce

s
le

ar
n

in
g

an

d
 c

o
n

tr
ib

u
te

s
to

im

p
ro

v
ed

so

ft
w

ar
e

se
cu

ri
ty

 e
d

u
ca

ti
o

n
, t

h
e

re
su

lt
s

ca
n

 l
ik

el
y

 b
e

g
en

er
al

iz
ed

 t
o

 o
th

er
 c

o
m

p
u

te
r

se
cu

ri
ty

 t
o

p
ic

s
(e

.g
.,

n
et

w
o

rk
 s

ec
u

ri
ty

)
an

d
 o

rg
an

iz
at

io
n

al
 s

et
ti

n
g

s
(e

.g
.,

so
ft

w
ar

e
d

ev
el

o
p

m
en

t
o

rg
an

iz
at

io
n

s)
.

C
3

C
4

CHAPTER 5. SUMMARY OF CONTRIBUTION

78

T

ab
le

 5
.1

: C
o

n
ti

n
u

ed
.

O

p
p

o
rt

u
n

it
y

 t
o

te

ac
h

 a
n

d
 l

ea
rn

G

o
o

d
 t

ea
ch

in
g

G
o

o
d

te

ac
h

in
g

 O

p
p

o
rt

u
n

it
y

to

 t
ea

ch
 a

n
d

le

ar
n

R
P

 V
I

R
P

 V
II

,
R

P
 V

II
I,

an

d
 R

P

IX

D
es

ig
n

ed
,

d
em

o
n

st
ra

te
d

,
an

d

ev
al

u
at

ed

an

o
n

to
lo

g
y

to

im

p
ro

v
e

th
e

in
te

g
ra

ti
o

n

o
f

co
n

te
xt

u
al

iz
ed

 a
n

d
 t

h
eo

re
ti

ca
l

se
cu

ri
ty

 k
n

o
w

le
d

g
e.

•
 T

h
e

re
se

ar
ch

 w
o

rk
 p

ro
v

id
es

 a
 t

ec
h

n
ic

al
 s

o
lu

ti
o

n
 f

o
r

m
an

ag
in

g
 s

o
ft

w
ar

e
se

cu
ri

ty
 k

n
o

w
le

d
g

e
in

 a
 s

tr
u

ct
u

re
d

 m
an

n
er

 t
h

at
 a

ll
o

w
s

fo
r

fl
ex

ib
le

 k
n

o
w

le
d

g
e

ex
tr

ac
ti

o
n

 u
si

n
g

 e
it

h
er

 c
o

n
te

xt
u

al

in
fo

rm
at

io
n

 o
r

ab
st

ra
ct

 s
ec

u
ri

ty
 s

u
b

je
ct

s.

•
 T

h
e

o
n

to
lo

g
ic

al
 m

o
d

el
 u

n
if

ie
s

se
cu

ri
ty

 c
o

n
ce

p
ts

 a
n

d
 t

er
m

in
o

lo
g

y
;

it
 i

s
ad

ap
ta

b
le

 t
o

 t
h

e
v

ar
io

u
s

co
n

te
x

ts
 o

f
so

ft
w

ar
e

ap
p

li
ca

ti
o

n
s

an
d

 g
en

er
al

iz
ab

le
 t

o
 a

n
y

 c
o

m
p

u
te

r
se

cu
ri

ty
 t

o
p

ic
.

T
h

e
m

o
d

el
 c

an
 b

e
ap

p
li

ed
 i

n
 b

o
th

 p
ed

ag
o

g
ic

al
 a

n
d

 s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t

en
v

ir
o

n
m

en
ts

.

•
 T

h
e

d
ev

el
o

p
ed

 o
n

to
lo

g
y

 d
if

fe
re

n
ti

at
es

 i
ts

el
f

fr
o

m
 o

th
er

 r
es

ea
rc

h
 w

o
rk

s
si

n
c e

 i
t

m
o

d
el

s
se

cu
ri

ty
 k

n
o

w
le

d
g

e
w

it
h

 a
 d

iv
er

si
ty

 o
f

so
ft

w
ar

e
fe

at
u

re
s

an
d

 t
ec

h
n

o
lo

g
ie

s,
 e

n
su

ri
n

g
 t

h
at

k

n
o

w
le

d
g

e
u

se
rs

 u
n

d
er

st
an

d
 t

h
e

se
cu

ri
ty

-r
el

ev
an

t
as

p
ec

ts
 o

f
cr

it
ic

al
 s

o
ft

w
ar

e
fe

at
u

re
s.

D
es

ig
n

ed
,

d
em

o
n

st
ra

te
d

,
an

d

ev
al

u
at

ed

a
co

n
te

xt
u

al
iz

ed

le
ar

n
in

g

sy
st

em

fo
r

so
ft

w
ar

e
se

cu
ri

ty
 t

h
at

 e
n

co
u

ra
g

es
 l

ea
rn

er
s

to
 e

n
g

ag
e

in
 l

ea
rn

in
g

 t
as

k
s.

•
 T

h
e

re
se

ar
ch

 w
o

rk
 c

o
n

tr
ib

u
te

s
to

 t
h

e
p

ra
ct

ic
al

 d
em

o
n

st
ra

ti
o

n
 o

f
co

n
te

x
t-

b
as

ed
 l

ea
rn

in
g

 i
n

so

ft
w

ar
e

se
cu

ri
ty

 u
si

n
g

 t
ec

h
n

o
lo

g
y

-a
ss

is
te

d
 l

ea
rn

in
g

 e
n

v
ir

o
n

m
en

ts
,

w
h

ic
h

 i
n

te
g

ra
te

s
th

e
p

ro
p

o
se

d
 c

o
n

te
xt

-b
as

ed
 a

rt
if

ac
ts

 (
i.

e.
, t

h
e

le
ar

n
in

g
 a

p
p

ro
ac

h
 a

n
d

 t
h

e
o

n
to

lo
g

ic
al

 k
n

o
w

le
d

g
e

b
as

e)
.

•
 T

h
e

p
ro

p
o

se
d

le

ar
n

in
g

sy

st
em

o

ff
er

s
o

p
p

o
rt

u
n

it
ie

s
fo

r
le

ar
n

er
s

to

u
se

th

ei
r

p
ri

o
r

p
ro

g
ra

m
m

in
g

k

n
o

w
le

d
g

e
in

so

ft
w

ar
e

d
ev

el
o

p
m

en
t

to

u
n

d
er

st
an

d

p
ar

ti
cu

la
r

se
cu

ri
ty

el

em
en

ts
.

•
 T

h
is

 r
es

ea
rc

h
 w

o
rk

 i
n

cl
u

d
es

 a
 c

o
m

p
re

h
en

si
v

e
ev

al
u

at
io

n
 o

f
th

e
sy

st
em

’
s

e
ff

ec
ti

v
en

es
s

in

h
el

p
in

g

st
u

d
en

ts

ac
h

ie
v

e
ex

p
ec

te
d

le

ar
n

in
g

o

u
tc

o
m

es

an
d

le

ar
n

in
g

sa

ti
sf

ac
ti

o
n

.
T

h
is

ev

al
u

at
io

n
 r

el
ie

d
 o

n
 t

h
e

p
er

sp
ec

ti
v

es
 o

f
p

o
te

n
ti

al
 u

se
rs

,
in

cl
u

d
in

g
 s

tu
d

en
ts

 a
n

d
 s

o
ft

w
ar

e
d

ev
el

o
p

er
s.

•
 T

h
e

p
ro

m
is

in
g

 r
es

u
lt

s
o

f
th

e
ex

p
er

im
en

ts
 o

ff
er

 e
v

id
en

ce
 o

f
th

e
im

p
o

rt
an

ce
 o

f
a

co
n

te
x

t-
b

as
ed

 l
ea

rn
in

g
 a

p
p

ro
ac

h
 i

n
 b

o
th

 p
ed

ag
o

g
ic

al
 a

n
d

 s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t

en
v

ir
o

n
m

en
ts

.

•
 T

h
is

 r
es

ea
rc

h
 c

o
n

tr
ib

u
te

s
to

 d
es

ig
n

 s
ci

en
ce

 r
es

ea
rc

h
 a

n
d

 f
u

rt
h

er
 d

em
o

n
st

ra
te

s
th

e
v

al
id

it
y

o

f
co

n
te

x
tu

al
iz

ed
 l

ea
rn

in
g

 s
y

st
em

 d
ev

el
o

p
m

en
t

as
 a

 m
ea

n
s

o
f

cr
ea

ti
n

g
 u

se
fu

l
p

ra
ct

ic
al

k

n
o

w
le

d
g

e.

C
5

C
6

CHAPTER 5. SUMMARY OF CONTRIBUTION

79

F
ig

u
re

 5
.1

:
A

n
 i

n
te

g
ra

te
d

 v
ie

w
 o

f
co

n
tr

ib
u

ti
o

n
s

in
 t

h
e

th
es

is

80

81

Chapter 6

Conclusion

This chapter presents concluding arguments. The first two sections describe some

limitations of the research and directions in which this research could be extended.

The thesis then concludes with final remarks in the epilogue section.

6.1 Limitations of the Research

While this research has yielded some encouraging successes, identifying limitations

is also important. The first limitation concerned with the extent to which the findings

of a study can be generalized across different populations and contexts [68], that is,

the socio-technical inquiry about developer learning of software security in OSS

development (presented in RP II, III and IV). First, the number of subjects (OSS

projects and developers) that participated in the empirical studies was rather small

compared with today’s enormous OSS projects and field workers. Second, while this

research work focused on socio-technical aspects of security learning in OSS

communities, some contextual characteristics of OSS projects were not included in the

empirical studies while establishing the socio-technical research framework;

examples are the size and maturity level of a project. [250]. Larger and more mature

organizations may derive greater returns from knowledge sharing and learning

because of their more substantial resources, and such organizations may also be more

successful in reducing the learning curve [501]. Special attention should also be

geared toward finding the human factors, which affect independent variables such as

reputation, self-efficacy, and promotion. To provide useful results that can be

generalized (or applied in different contexts), researchers must describe their results

accurately and richly so that others can understand their relevance in a particular

context. To this end, there is a need for further research efforts to improve the

generalizability of this study to the entire OSS development phenomenon by

considering a larger number of responses covering a range of diverse OSS projects,

CHAPTER 6. CONCLUSION

82

and collecting more data for an analysis of potential differences based on unobserved

heterogeneity in OSS development. Furthermore, the research would need to be

repeated in other software development environments (e.g., proprietary software

development) to justify (or falsify) the hypotheses in the framework to expand

understanding toward security learning. The proposed socio-technical framework is

useful as a “sensitizing device” [241] for allowing the development of more generic,

social constructs that are useful in studying other social settings of software

development.

The second limitation concerns the completeness and representativeness of the

proposed context-based approach for security learning (presented in RP V). The

strategies and methods were identified and synthesized through the literature

review. The designed learning approach represents a subjective understanding of

context-based learning in the domain of software security. Since this work is

qualitative and based on the author’s interpretation, the results might have been

influenced by the author’s culture and experiences. Extensive practices and iterations

of review activities for the learning approach are therefore needed. Second, the

experiment was conducted with a short-term study lasting approximately 40 minutes

for each learning session, while the learning outcome was evaluated immediately

afterward. Questions about the extent and duration of knowledge retention remain

unanswered. To provide stronger shreds of evidence about the learning outcome,

learning performance should be measured over a lengthy period.

The third limitation stems from the evaluation of the contextualized learning system

(presented in RP VIII and RP IX). This artifact is a new and innovative product of this

research. Although the learning system was examined through a two-phase

evaluation process—a preliminary evaluation in the school setting (with bachelor

students) and the final evaluation with OSS developers—the promising results may

still be somewhat biased. First, the preliminary evaluation took place at a university.

Students enrolling in the “Software Security” course were invited to freely take part

in the experiment. It is by no means certain that those who chose to volunteer are

representative of the population as a whole. The number of samples (36) also limited

the generalizability of this study. Second, regarding the system evaluation in OSS

development environments, the study adopted a questionnaire survey approach,

with the findings based on self-reports from voluntary participants about their

experiences with and perceptions of the proposed learning system. The issue here is

whether the retrospective reporting of subjects accurately reflects reality. The results

may not necessarily reflect how these individuals would interact with the system, the

actual learning process, or the amount of time the individuals would spend engaging

with the system. Moreover, the number of survey respondents was relatively low

given the enormous number of OSS developers today. With that in mind, this work

should be replicated with other sample populations to include more participants from

diverse project settings. Further, more qualitative data collection techniques should

be employed, such as focus groups, case studies, and in-depth interviews, to improve

the accuracy of results and provide more evidence. For example, one can be more

CHAPTER 6. CONCLUSION

83

confident in the results of surveys from interviews, thereby providing a more

complete picture of the learning system.

6.2 Future Research Opportunities

Three key topics are introduced in this thesis: (a) contextual analysis of security

learning in software development, (b) the context-based learning approach, and (c)

the contextualized learning system. Several future research opportunities promise

interesting results and insights regarding these areas, whether separately or jointly.

These future opportunities are outlined below for each research area and the future

extension of the learning system.

6.2.1 Contextual analysis of security learning in software

development

This cross-disciplinary research on security learning in OSS development may serve

as a foundation for continued integrative research on software development and

follows the advice of Glass [165, 166]. The primary theoretical outcome of the research

work is a conceptual framework for security learning in software development that

allows users to view the real world in a certain way and that can contribute to

increased conceptual clarity in discussions regarding security learning. As learning

in software development is such a vital element of software development practice

[213], there is a need to understand more about how software organizations can

improve their capabilities for learning security knowledge. This thesis has offered

insight into related challenges, but further research is needed to broaden the empirical

foundation for analyzing and evaluating such improvement efforts. Further research

could uncover more about the socio-technical relationship’s role in supporting

security learning; for example, researchers could explore how the relationship is

mediated through practices such as group-based estimation and job rotation. Action

research [125, 145] could be another effective strategy to underpin such an in-depth

contextual investigation.

6.2.2 The Context-based learning approach

Context-based methods are still new and help to underpin software security

education, which has not yet been the subject of in-depth research. Prior research has

revealed that context-based science education helps students to more clearly see and

appreciate the links between the scientific topics they are studying and their everyday

lives; students’ interest in and enjoyment of their lessons generally increase when

they engage in context-based courses [365]. The innovation proposed in this thesis

seems promising—and not only for the domain. In general, security education would

benefit from research on context-based learning since it could represent a major

element of the educational approach. The context-based approach distinguished in

this thesis could be applied to study other educational fields, such as information

CHAPTER 6. CONCLUSION

84

security studies and computer security. This application could lead to the discovery

of more context-based learning and a broader description of the strategies involved

in context-based approaches. Furthermore, studies on learning processes and factors

potentially influencing learning processes are still needed to develop fine-grained

models of context-based security learning. Future research could also examine the

approach in combination with the proposed teaching strategies to pilot context-based

learning at various points of the security instruction process, for example, the design

of lectures and instructional materials. Evidence is lacking on how group work and

school innovations affect long-term learning behavior dimensions. To perfect the

approach, researchers could design specific strategies that are indicative of these

dimensions and implement them over an entire school year. A more context-based

curriculum that provides teachers with the necessary professional development will

be feasible in the near future.

6.2.3 The contextualized learning system

This research yielded a concrete artifact designed to increase context-based learning

of software security: the contextualized learning system. When this research is

completed, the learning artifact should be carefully adjusted to incorporate other use

cases for security learning so that knowledge users can acquire learning content

according to their needs. For example, learning content can be provided according to

the learner’s knowledge level (novice, intermediate, or expert) or learning

preferences. Furthermore, this research did not adopt socio-technical methods [8, 42,

250] to examine organizational cultural and structural effects while adopting this

artifact in software development because such methods are typically used to examine

the longer-term impact of new technologies on established learning practices. To fill

this information gap, researchers could deploy the learning system in OSS

development environments, providing the required security knowledge and

observing the influence in terms of the security culture and software quality. If this

new instrument is used, as intended, to support security learning in schools or

software development projects, then this socio-technical level should be evaluated

extensively. The above-described research possibilities could also support other

potential extensions of the contextualized security learning system (e.g., the usability

of user interfaces and the maintainability of security knowledge).

6.3 Epilogue

Software development is an ever-evolving field due to fast-paced product

requirements, rapidly changing technologies, knowledge management,

organizational structures and processes, and so on. The growing complexity of

software development contributes to increasing challenges for developers in attaining

the required security knowledge. To respond this challenge, this thesis offers a bird’s-

eye view of the state of the art of security learning in software development and

provides a glimpse of what may lie ahead in the evolution of security, which includes

CHAPTER 6. CONCLUSION

85

(a) elucidating a socio-technical approach for addressing real-world security learning

problems and (b) highlighting promising directions and constructive thought around

contemporary security education and learning themes.

First, this thesis highlights the complex relationship between technology factors and

social factors and points to the need to address the socio-technical security learning

gap between what organizations need to collaborate and what technology can

provide in the context of software development. To that end, a socio-technical

framework for security learning was developed based on a cross-disciplinary

literature review and individual empirical studies. As the diversity of software

systems and projects increases, there will no longer be a single approach (e.g.,

practices or tools) for achieving optimal security. On this aspect, organization should

improve the integration of the activities for the learning of software security. This

needs security expertise coordination and facilitation of security-knowledge transfer

within the organization. It also requires peers’ encouragement and support to

interact, so that a positive culture towards security can be cultivated. The socio-

technical conceptual framework provided in this thesis allows software organizations

to think holistically about their strategies so that they can undertake the challenges

through establishing a supportive security learning environment within the

organization, consequently, helping developers strengthen their security

competence. As this thesis argues, software developers face learning challenges of

such magnitude that software organizations must take responsibility for ensuring

that learning opportunities are continuously explored. Improving their capabilities to

engage in security learning may enable software organizations to participate more

mindfully in the so-called “Build Security In” initiative [294] and to thereby benefit

more significantly from “learning in context” [363].

Second, contextualized teaching and learning represents a solution to problems in

security education. This approach constitutes a step toward closing the increasing

knowledge gap between the knowledge learned and the knowledge required by re-

ordering the sequence of security knowledge to motivate learners. This thesis

suggests that if security knowledge is taught in real-world situations that learners can

connect to their real lives, learners will be able to recall the prior experience, resulting

in their learning interest being aroused. Contextualized learning approaches can be

powerful vehicles for shaping security learning in purposeful and interesting ways.

Security educators may be encouraged by the concrete outcomes of this research,

especially the finding that changing structures in security knowledge transfer

facilitates fluid learning transitions—helping learners to arrive at security concepts

when working in this context and to apply these concepts in various other settings.

This finding implies, however, that new teaching practices are necessary for security

education, which currently relies on conventional approaches.

Due to the complexity of software security, improving developers’ knowledge to

prepare them for this complexity is a challenging task. Considering the context is the

key to reducing the gap between what developers know and what they need to know

CHAPTER 6. CONCLUSION

86

about security. In this regard, educators and software communities must develop a

learning environment in which context-based learning can be applied. This research’s

results regarding this context-based technique are promising. In evaluations, students

cited the “learning journey” as a highly enjoyable and educational aspect of the

course. Likewise, this research has received much positive feedback from software

communities and industrial developers stating that they felt highly motivated to learn

security knowledge using the contextualized learning system. While these results are

positive, this research offers only an initial—albeit promising—a hint as to the

potential of context-based support in security education and training for developers.

In the future, we will keep promoting the context-based learning approach and the

contextualized learning system in schools and industries. The accumulated security

knowledge stored in this system can be utilized by learners from various disciplines

and applies to a broad spectrum of public audiences.

87

Part II

Published Research Papers

88

89

Chapters and Corresponding
Publications

This part of the thesis consists of the published research papers. The research papers

and corresponding chapters in this part of the thesis are as follows:

Chapter 7:

RP I: Wen, Shao-Fang. "Software security in open source development: A

systematic literature review." In 2017 21st Conference of Open Innovations

Association (FRUCT), IEEE, 2017, pp. 364-373. doi:

10.23919/FRUCT.2017.8250205.

Chapter 8:

RP II: Wen, Shao-Fang, Mazaher Kianpour, and Stewart Kowalski. “An

Empirical Study of Security Culture in Open Source Software Communities.”

2019 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM). IEEE, 2019, pp. 863-870. doi:

10.1145/3341161.3343520.

Chapter 9:

RP III: Wen, Shao-Fang. "Learning secure programming in open source

software communities: a socio-technical view." In Proceedings of the 6th

International Conference on Information and Education Technology, ACM

2018, pp. 25-32. doi: 10.1145/3178158.3178202.

90

Chapter 10:

RP IV: Wen, Shao-Fang. "An Empirical Study on Security Knowledge Sharing

and Learning in Open Source Software Communities." Computers, 2018,

volume 7, issue 4. doi: 10.3390/computers7040049.

Chapter 11:

RP V: Wen, Shao-Fang and Katt, Basel. “Towards a Context-Based Approach

for Software Security Learning.” Journal of Applied Security Research. 2019,

volume 14, issue 3, pp. 288-307. doi: 10.1080/19361610.2019.1585704.

Chapter 12:

RP VI: Wen, Shao-Fang and Katt, Basel. “Managing Software Security

Knowledge in Context: An Ontology-Based Approach.” Information 2018,

volume 10, issue 6. doi: 10.3390/info10060216.

Chapter 13:

RP VII: Wen, Shao-Fang and Katt, Basel. “Development of Ontology-Based

Software Security Learning System with Contextualized Learning

Approaches.” Journal of Advances in Information Technology. 2019, volume

10, no. 3, pp 81-90. doi: 10.12720/jait.10.3.81-90.

Chapter 14:

RP VIII: Wen, Shao-Fang and Katt, Basel. “Preliminary Evaluation of an

Ontology-Based Contextualized Learning System for Software Security.” In

Proceedings of the 23rd International Conference on Evaluation and

Assessment in Software Engineering. ACM, 2019, pp.90-99. doi:

10.1145/3319008.3319017.

Chapter 15:

RP IX: Wen, Shao-Fang and Katt, Basel. “Learning Software Security in

Context: An Evaluation in Open Source Software Development

Environment.” In Proceedings of the 14th International Conference on

Availability, Reliability, and Security. ACM, 2019, pp 58-67. doi:

10.1145/3339252.3340336.

91

Chapter 7

Software Security in Open
Source Development: A
Systematic Literature Review

Wen, Shao-Fang. "Software security in open source development: A systematic

literature review." 21st Conference of Open Innovations Association (FRUCT), IEEE, 2017,

pp. 364-373.

Abstract—Despite the security community’s emphasis on the importance of building

secure open source software (OSS), the number of new vulnerabilities found in OSS

is increasing. In addition, software security is about the people that develop and use

those applications and how their vulnerable behaviors can lead to exploitation. This

leads to a need for reiteration of software security studies for OSS developments to

understand the existing security practices and the security weakness among them. In

this paper, a systematic review method with a socio-technical analysis approach is

applied to identify, extract and analyze the security studies conducted in the context

of open source development. The findings include: (1) System verification is the most

cited security area in OSS research; (2) The socio-technical perspective has not gained

much attention in this research area; and (3) No research has been conducted focusing

on the aspects of security knowledge management in OSS development.

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

92

7.1 Introduction

It is indisputable that open source software (OSS) development has earned a key

position standing in today's software engineering. Due to the uniqueness of the OSS

model, the software security of OSS products has been widely discussed in security

communities. However, the number of new vulnerabilities keeps increasing in

today’s OSS systems. According to the National Vulnerability Database (NVD), over

11,500 new vulnerabilities in OSS have been uncovered since 2012 [49]. These

vulnerabilities open some of the most critical OSS projects to potential exploitation:

Heartbleed and Logjam (in OpenSSL); Quadrooter (in Android); Glibc Vulnerability

(in Linux servers and web frameworks); NetUSB (in Linux kernel), and many others

[272, 357]. With increasing importance and complexity of OSS, the ineffective security

practices to secure OSS development will result in more breaches that are serious in

the future.

On the other hand, open source software is developed collectively by the online

community of practices with a strong relationship between the technical and social

interactions in a knowledge-intensive process. There are unique characteristics of

OSS, such as community-based distributed development, volunteer workers, on-line

information exchange, and informal integration of new contributors. These

characteristics contribute to the high socio-technical complexity of OSS security,

influence the applicability of software security practices in OSS development, and

result in a need to manage the security practices and knowledge efficiently within the

OSS communities. Moreover, the trustworthiness of the open-source depends on

socio-technical aspects of the software security practices [106, 123, 302, 502], which

include the expertise of the developers in the communities to produce secure code,

quality of tools used in the development, the level of testing carried out before

releasing the product, and the collaborative practices followed throughout the

development cycle, etc. These aspects need a careful investigation from a socio-

technical perspective as well [250].

Many studies have been conducted by both researchers and practitioners on the

mechanisms of building security in OSS development. The overarching objective of

this research is to summarize what we know about these security studies and to offer

suggestions for research in OSS security. In this research, we carried out a systematic

review of the existing literature to identify and classify the software security practices

in securing the software products that are developed by the open-source

communities. In addition, to investigate the security studies that are conducted in two

aspects: socio-technical security and security knowledge management.

The rest of this paper is organized as follows. Section 7.2 describes the related work.

The classification frameworks used in this SLR research is explained in section 7.3.

The research method is explained in section 7.4. Section 7.5 describes each step in

selection execution. In section 7.6, we give an overview of the literature review results.

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

93

Section 7.7 provides a discussion based on the result. Section 7.8 states the limitation

of the study. Finally, we describe the conclusion in section 7.9.

7.2 Related work

In the open source research, there are few examples of the literature review. Hauge et

al. [192] seek to identify how organizations adopt OSS. They classified the literature

according to the ways of adopting OSS and evaluated the research on the adoption of

OSS in organizations. Stol and Babar [428] aim to gain insights into the state of the

practice of reporting empirical studies of OSS in order to identify the gaps to be filled

for improving the quality of evidence being provided for OSS. Feller et al. [138]

review 155 research papers to identify the kinds of open source project communities

that have been researched and the kinds of research questions that have been asked.

In an introduction to a special issue, Scacchi et al. [391] provide an overview of the

research on the development processes found in OSS projects. Crowston et al. [98]

also present a quantitative summary of the literature of OSS development selected for

the review and discuss findings of this literature categorized into issues pertaining to

inputs, processes, emergent states, and outputs. Von Krogh and von Hippel [467] give

an overview of some of the research on OSS and organize it into three categories:

motivations of contributors, innovation processes, and competitive dynamics.

7.3 Classification framework

7.3.1 Software security areas

To identify the security practices in OSS development, we adopt the OWASP

Software Assurance Maturity Model (SAMM) [72] as the guidance of the

classification. The foundation of the model is built upon the core business functions

of software development with security practices tied to each (see Figure 7.1). The

building blocks of the model are the three maturity levels defined for each of the

twelve security practices.

Figure 7.1: Software Assurance Maturity Model (Chandra [72])

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

94

7.3.2 Socio-technical perspectives

The software development process is not purely a technical task, but also a social

process embedded within organizational and cultural structures [188]. The socio-

technical perspective provides a deeper analysis of the relationship between the

methods, techniques, tools, development environment and organizational structure

[108, 109].

Our research is based on the Socio-Technical System (STS) and the Security-By-

Consensus model (SBC) developed by Kowalski [250]. The STS model is depicted in

Figure 7.2. This has two sub-systems include social aspects (culture and structures)

and technical aspects (methods and machines). The SBC model is applied to define

the detailed parts of the STS subsystem controls, illustrated in Figure 7.3.

Figure 7.2: Socio-technical system

(Kowalski [250], page 10)

Figure 7.3: SBC Model (Kowalski [250],

page 19)

7.4 Research Method

The design of this literate review is based on the original guidelines of systematic

literature review provided by Kitchenham [239, 240] while also being guided by other

systematic literature review articles in the area of open source software, such as

Crowston et al.[98] and Hauge et al. [192]. The steps of the review include the

definition of the research questions and the research protocol, conduct search for

studies, screening of papers, data extraction, and data synthesis.

7.4.1 Research questions

This SLR aims to understand and summarize the empirical proofs as regards software

security literature in the context of open source development. In addition, to

investigate the security studies that are conducted in two aspects: socio-technical

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

95

security and security knowledge management. To achieve this aim, the research

question addressed by our research is formulated as presented below:

RQ1: What research has been conducted on security practices and behaviors in the

context of OSS development?

RQ2: What research has been conducted on the socio-technical security aspects

associated with OSS development?

RQ3: What research has been conducted focusing on aspects of security knowledge

management in OSS development?

7.4.2 Search strategy

The search strategy is used to search for primary studies including search strings and

resources to be searched. The detailed description of the search strategies utilized in

this research as explained below:

A Search term

To avoid overlooking relevant studies, all searches will be conducted using the

combination of two categories of keywords in relation to “Open Source” (S1) and

“Security” (S2), defined as follows:

• S1 is a string made of keywords related open source, such as “open source”,

“free software”, “free/libre software”, “OSS”, “FOSS”, “FLOSS”.

• S2 is a string made up of keywords related to security, such as “security”,

“secure”, “insecure”, “vulnerability”, “virus”, “malware”, “exploits”, “threat”

and “hack”.

An example of a search done in the electronic data is described as follows:

“security” OR “secure” OR “insecure” OR “vulnerability”) AND (“open source” OR “open-

source” OR “free software” OR “free/libre software” OR “OSS” OR “FLOSS”

B Literature resources

Six primary electronic database resources were used to extract data for

synchronizations in this research.

• ACM Digital Library (https://dl.acm.org).

• IEEExplore (http://ieeexplore.ieee.org).

• Springerlink (http://link.springer.com).

• Science Direct (http://www.sciencedirect.com).

• Scopus (https://www.scopus.com).

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

96

• Google Scholar (http://scholar.google.com/)

C Study Selection Criteria

The main inclusion criterion for this study is to include the software security studies

that have been conducted in the context of open source development. The literature

published during 2000-2016 is taken into consideration for the inclusion in search

criteria. The detail inclusion criteria included are:

• Studies that describe security practices of OSS development.

• Studies that investigate security issues of OSS development.

• Studies that discuss the socio-technical characteristics of OSS security.

• Studies that discuss knowledge issues of OSS security.

Articles on the following criteria are excluded

• Papers that are not written in English.

• Studies that do not focus explicitly in OSS context, such as making use of OSS

repositories as the study reference.

• Studies that only address OSS security concepts, such as comparing open

source and proprietary (closed) software, and the use of OSS.

• Studies that focus on a specific open source platform or product.

7.5 Selection Execution

The search on the digital libraries initially identified 2942 papers. The selection

execution was composed of four filter stages as shown in Figure 7.4. In stage

2, we individually reviewed the papers from the previous stage based on their

titles and abstracts, and if necessary by skimming the full text and resulted in

167 papers. Next, in stage 3, to identify publications on security practices in

OSS development, we individually went through the output of the second

stage and evaluated the papers' topics by skimming the papers. Publications

on the discussion of software security in the open source were included, while

those do not focus explicitly on software security (only refer to software

security as a side topic) and OSS context (only make use of OSS project data as

the study reference) were rejected. Moreover, papers that focus on examining

specific platform without contributing to OSS development were also

excluded. Through stage 3, we discarded 74 of the 167 papers and selected 93

papers for further analysis.

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

97

Figure 7.4: The paper screening process of SLR

Then we classified the publications from stage 3 into three categories: OSS concept

where the authors discuss (debate) software security between open source and closed

source, OSS adoption where authors present the security concerns in the use of OSS

and OSS development. Of the 93 included papers, 27 were classified as open source

concept papers, 24 as open source adoption paper, and 42 as OSS development

papers. The OSS concept papers and OSS adoption papers may expand the

understanding of OSS security issues but they are not providing any practical study

to secure open source development. Hence, these papers were not included.

Accordingly, the final stage of the review included 42 papers.

7.6 Result

This section presents an overview of the selected studies.

7.6.1 Publications by year

Table 7.6 (in Section 7.11 Appendix) shows the results of the research sources that

have been found during SLR. Figure 7.5 illustrates the number of selected studies

from the years 2000-2016. There are no significant studies related to our research topic

in the year 2000 and 2001, and just a few papers were published between 2002 and

2005 (total of five papers in four years). This results from most studies of open source

security in this period focus on the general discussion, such as concepts of open

source security and debate on open vs. closed source security, etc. instead of security

practices in open source development. The highest number of publications happened

in the year 2014 (6 papers).

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

98

Figure 7.5: Number of publications versus the year

7.6.2 Publication venues and sources types

Table 7.1 presents the distribution of the studies’ publication sources. Of the 42

studies, 70% (29 of them) were published in conferences, 16% (7 of them) in journals,

14% (6 of them) are distributed in books, thesis, and research white papers.

Table 7.2 presents the top five publication venues of some of the selected studies and

the number of studies. Overall 34 publications venues are identified the cover

different areas of computer science, such as software engineering, information

system, and security, etc.; which means this study topic has received wide attention

in the research community. One observation that can be made is that the leading

publication venues are the type of conference proceedings, which are in the field of

software engineering. This demonstrates the importance of OSS security research in

software engineering and other related fields.

Table 7.1: Distribution of studies according to the publication venues

Type Frequency %

Conference Proceeds 29 70%

Journal 7 16%

Others (Book, Thesis, White paper) 6 14%

Table 7.2: Top five publication venues of identified articles

Source Acronym No.

International Conference on Open Source Systems OSS 3

International Symposium on Empirical Software Engineering

and Measurement
ESEM 3

International Symposium on Software Reliability Engineering ISSRE 3

ACM Conference on Computer and Communications Security ACM CCS 2

International Conference on Engineering and MIS ICEMIS 2

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

99

7.7 Discussion

This section describes and discusses the findings from the data extraction and analysis

activities. The findings are presented in a graphical view and are organized by

research question mentioned in section 7.4.1.

RQ1: What research has been conducted on security practices and behaviors in the context of

OSS development?

Table 7.3 shows the categorization of security areas and related publications that fit

the areas using OWASP SAMM presenting in section 7.3.1. Based on our review, the

focus on OSS development varies in different papers. Figure 7.6 shows that

‘Verification’ is the most cited category in our SLR study (47%). This is due to the fact

that open source development generally lacks formal system verification. The other

reason is that vulnerabilities introduced in the design or construction stage will

manifest themselves in code review or security testing if not detected earlier.

As shown in Figure 7.6, ‘Construction’ received the second-highest attention (29 %)

in which the sub-category of ‘Secure Architecture’ has significantly higher numbers

of studies (10 out of 14). The topics discussed in this area include the characteristics

of security bugs [274, 433], vulnerable code change in OSS, [52, 54, 55], secure system

design [87, 314, 383] and adoption of security tools [92, 225].

 ‘Deployment’ and ‘Governance’ are the two areas that receive the least attention in

the research, 14% and 10 %, respectively. This may be due to open source projects do

not typically have a corporate management staff to organize, lead, monitor, and

improve the software development processes, which explains how hard the project

management functions are in these two areas, such as strategic management, policy

management, training, and operational enhancement, etc.

Table 7.3: Security areas of the selected studies

Category Subcategory Publications

Governance

Strategy & Metrics [151, 253, 434, 504]

Policy & Compliance [504]

Education & Guidance n/a

Construction

Threat Assessment [73]

Security Requirement [110, 274, 433]

Secure Architecture [52, 54, 55, 87, 92, 225, 274, 314, 383, 433]

Verification

Design Review [141]

Code Review [1, 10, 13, 52, 53, 55, 126, 131, 299-301, 318]

Security Testing [92, 97, 179, 236, 306, 311, 355, 454, 470, 504]

Deployment

Vulnerability

Management
[15, 17, 366, 372, 469]

Environmental Hardening [30]

Operational Enhancement [16]

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

100

Figure 7.6: Frequency of studies in security areas

RQ2: What research has been conducted on the socio-technical security aspects associated with

OSS development?

Our second focus is to investigate the socio-technical perspectives of OSS security

revealed in these studies. Among the selected 42 studies, only two studies applied

socio-technical approaches to address software security in the context of open source

development [299, 372]: Study [299] proposed socio-technical metrics to describe the

code review collaboration; study [372] analyzed socio-technical aspects of software

problem management in OSS communities. Despite that, we performed a socio-

technical analysis on these papers to understand what social and technical elements

are highlighted in them, which was based on the socio-technical models mentioned

in section 7.3.2. The analysis result is presented in Table 7.4.

From Figure 7.7, we see that the discussion of technical aspects has happened in 98%

of the selected studies (41 out of 42). However, less than 50% of studies talked about

the social-sector of OSS security (cultural, structural, legal, managerial and

operational), and the average value is only 16%.

Looking at the information in more detailed, ‘Operational’ security has a higher

frequency of discussion (45%, 19 papers). This is because the technical methods in

software security are always accompanied by a certain process to have a successful

implementation, especially at the working level. Compared with the significant

portion of ‘Operational’ security, other social elements (cultural, structural, legal, and

administration) of OSS security have not been given enough attention. They are noted

in 7% (2 studies), 7% (2 studies), 2% (1 study) and 14% (7 studies) of selected studies,

respectively.

RQ3: What research has been conducted focusing on aspects of security knowledge

management in OSS development?

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

101

Table 7.4: Socio-technical aspects of the selected studies

Social-Technical Aspects Publications

Cultural

An incentive of OSS participants [504]

Developer reputation [53]

Testing culture [355]

Structural

Onion model vs. Source code maintenance [87]

Core-periphery structure vs. Code review outcome [53]

Distributed team vs. Developing a shared model in

bug fixing
[97]

Legal Governments policies [504]

Managerial

Software repository management (Malware

prevention)
[87]

Risk analysis [151]

Coordination and communication mechanisms

(Code review and security testing)
[53, 97, 306, 355]

Operational

Vulnerability handling behavior [15, 16, 97]

Secure design process [73]

Coding behaviors
[13, 52, 54, 274,

299, 301, 433]

System testing behaviors [355, 504]

Security practices and tools adoption [151, 225, 383]

Code review behaviors [53, 126]

Quality assurance process [306]

Technical

[1, 10, 13, 15-17, 30, 52-55, 73, 87, 92, 97, 110, 126, 131, 141, 151, 179, 225,

236, 274, 299-301, 306, 311, 314, 318, 355, 366, 372, 383, 433, 434, 454, 469,

470, 498, 504]

Figure 7.7: The coverage rate of socio-technical aspects

According to Table 7.3, there is no OSS security practice categorized in

‘Education/Guideline’ in which the security training and knowledge management are

major activities. However, some papers did address knowledge problems in relation

to OSS security, which is summarized in Table 7.5.

As we can see, the lack of security knowledge is the common problem that the

research usually deals with. Among these papers, only [1] and [236] (2 out of 6) have

proposed systematic solutions to tackle security knowledge issues, which aim to

minimize the human efforts in software verification.

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

102

Table 7.5: Knowledge problems addressed in the selected security studies

7.8 Limitation of the study

Even though this systematic literature review has been supported by a rigorous

review methodology, a well-defined study protocol, and a close-knit paper screening

process, it has some limitations.

7.8.1 Missing relevant publications

Our results depend on the used keywords and the limitations of the selected search

engines. This approach misses the papers that are not indexed by the search engine

and the papers that are not indexed with the keywords we used. We note that

keywords are both discipline and language-specific and are not standardized. In

order to limit the risk of incompleteness in keywords lists, we used alternative

spellings and synonyms to build the search terms. Furthermore, by basing the search

on a defined set of digital databases and the publication date, we excluded certain

types of publications, work published through other channels or outside the defined

timeframe. We can therefore not claim to have included all relevant publications.

However, we adopted six popular digital databases with the full-text search to reduce

the inherent limitations of search engines. We believe that our preliminary results

cover the most relevant published literature.

 Publication Knowledge problems

addressed in the study

Suggestions in the study

[1] Lack of security knowledge

in secure coding

Vulnerability prediction techniques can

provide great help to OSS projects to deal

with vulnerability flaws on a timely basis and

with sufficient effort.

[236] Lack of security knowledge

in secure coding

Proposed an exploitable automatic

verification system for secure open source

software

[13] Lack of security knowledge

in secure coding

The OSS project should emphasize secure

programming standards and reduce the use of

unsafe statements.

[383] Lack of knowledge in the

adoption of security tactics

The OSS project should identify more

practical security tactics and systematically

incorporate them into the development

process.

[52, 54] There are differences among

developers’ knowledge and

experience affect their

likelihood of authoring

vulnerable code change.

The OSS project should (a) create or adopt

secure coding guidelines, (b) create a

dedicated security review team, (c) ensure

detailed comments during the review to help

knowledge dissemination and (d) encourage

developers to make small, incremental

changes.

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

103

7.8.2 Bias in the selection of relevant studies

Another potential limitation of the study is that subjective decisions can occur during

the paper selection phases that cause bias in the selected execution. This is due to the

lack of a clear description of the context, objective, and results of the selected studies.

In order to mitigate this limitation, the selection process was carried out in an iterative

way and the data extraction was realized. The selection execution in each paper

screening stage was validated through an internal review process, which also helps

to reduce the bias in the selection of studies.

7.9 Conclusion

This paper presents the systematic literature review that was conducted to identify

open source studies with respect to the research practitioners for further work on

open source security.

A total of 42 papers were selected in the SLR that met our inclusion criteria. The

selected studies were analyzed and extracted data were classified into four main

categories namely Governance, Construction, Verification, and Deployment. The

result shows that security areas in Construction and Verification (Secure Architecture,

Code Review, and Security Testing) are followed by researchers with more interests

than other areas in Governance and Deployment.

Next, based on our research, the security studies in OSS development are mostly

technology-driven. The socio-technical perspective has not gained much attention in

this research area (2 out of 42 papers). According to the result of socio-technical

analysis on the selected papers, the discussions between technical and social aspects

seem quite unbalanced, either (Coverage rate: 98% versus 16% on average). The socio-

technical perspective has as the main target to blend both the technical and the social

systems in an organization. This can be viewed as a necessary condition within a

security management framework as both aspects are of equal importance [152].

Technical security practice considering different social aspects (e.g., culture and

structure) of open source development will assure the effectiveness and efficiency of

the implementation of the tool.

Furthermore, the result of this SLR study also shows the gap that there is a lack of

knowledge management aspects of open source security. Several researchers did

mention the knowledge problems in securing OSS development, however, we cannot

identify any study tackle this security issue from knowledge management

perspectives.

Based on the finding of this research, we have come to the conclusion that the existing

software security practices have limitations in supporting secure open source

development. Secure architecture, code review, and security testing do help secure

OSS products. However, as there is less research on socio-technical security aspects

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

104

and no discussion of security knowledge management in the context of OSS

development, these practices, and software security knowledge cannot be effectively

spread within the open source community. Since OSS participants are not experts on

security in general and the domain knowledge of software security is vast and

extensive, it is suggested that future research should explore socio-technical

approaches in helping OSS developers learn the necessary security knowledge to

fulfill the need of their work, further, to reinforce their behaviors towards OSS

security.

The contribution of this work is to supply researchers with a summary of existing

information about software security in open source development in a thorough

manner, so as to provide a context in which to operate. It can also provide other

researchers with a firm basis on which to develop new security approaches for open

source development and address any of the identified limitations.

7.10 Acknowledgment

The author would like to thank Professor Dr. Stewart Kowalski and Professor Dr.

Rune Hjelsvold of Faculty of Information Technology and Electrical Engineering at

Norwegian University of Science and Technology, who have made comments and

suggestions in this paper.

7.11 Appendix

Table 7.6: List of Selected Papers

Author Year Title ID

Abunadi, I. &

Alenezi, M.

2015 Towards cross-project vulnerability prediction in open source

web applications

[1]

Alenezi, M. & Yasir,

J.

2016 Open source web application security: A static analysis

approach

[10]

Alnaeli, S. M., et al. 2016 On the Evolution of Mobile Computing Software Systems and

C/C++ Vulnerable Code

[13]

Altinkemer, K. et al. 2008 Vulnerabilities and Patches of Open Source Software: An

Empirical Study

[15]

Anbalagan, P. &

Mladen V.

2010 Towards a Bayesian approach in modeling the disclosure of

unique security faults in open source projects

[17]

Anbalagan, P. and

Mladen V.

2008 Towards a Unifying Approach in Understanding Security

Problems

[16]

Banday, M. T. 2011 Ensuring Authentication and Integrity of Open Source

Software using Digital Signature

[30]

Bosu, A. 2014 Characteristics of the vulnerable code changes identified

through peer code review

[52]

Bosu, A. & Jeffrey

C. C.

2014 Impact of Developer Reputation on Code Review Outcomes

in OSS Projects: An Empirical Investigation

[53]

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

105

Bosu, A. et al. 2014 Identifying the characteristics of vulnerable code changes: An

empirical study

[54]

Bosu, A. et al. 2014 When are OSS developers more likely to introduce vulnerable

code changes? A case study

[55]

Chehrazi G. et al. 2016 The impact of security by design on the success of open source

software

[73]

Colomina, I. et al. 2013 A study on practices against malware in free software projects [87]

Cowan, C. 2003 Software Security for Open-Source Systems [92]

Crowston, K. &

Barbara S.

2008 Bug fixing practices within free/libre open source software

development teams

[97]

Damiani, E. et al. 2009 OSS security certification [110]

Edwards, N. &

Liqun C.

2012 A Historical Examination of Open Source Releases and Their

Vulnerabilities

[126]

Erturk, E. 2012 A Case Study in Open Source Software Security and Privacy [131]

Feng, Q. et al. 2016 Towards an architecture-centric approach to security analysis [141]

HP Fortify’s

Security Research

Group

2008 How Are Open Source Development Communities

Embracing Security Best Practices

[151]

Groven, A. K. et al 2010 Security measurements within the framework of quality

assessment models for free/libre open source software

[179]

Jordan, T. B. et al. 2014 Designing Interventions to Persuade Software Developers to

Adopt Security Tools

[225]

Kim, B. et al 2015 Design of exploitable automatic verification system for secure

open source software

[236]

Krishnamurthy, S.

& Arvind K. T.

2006 Bounty Programs in Free/Libre/Open Source Software [253]

Li, Z. et al. 2006 Have things changed now?: An empirical study of bug

characteristics in modern open source software

[274]

Meneely, A. et al. 2014 An Empirical Investigation of Socio-technical Code Review

Metrics and Security Vulnerabilities

[299]

Meneely, A. &

Laurie W.

2009 Secure open source collaboration: An empirical study of

Linus' law

[300]

Meneely, A. and

Laurie W.

2010 Strengthening the empirical analysis of the relationship

between Linus' Law and software security

[301]

Martin, M. et al. 2005 Quality practices and problems in free software projects [306]

Mockus, A. et al. 2002 Two case studies of open source software development:

Apache and Mozilla

[311]

Mourad, A. et al. 2006 Security Hardening of Open Source Software [314]

Nagy, C. & Spiros

M.

2009 Static security analysis based on input-related software faults [318]

Pham, R. et al. 2013 Creating a Shared Understanding of Testing Culture on a

Social Coding Site
[355]

Ransbotham, S. 2010 An Empirical Analysis of Exploitation Attempts based on

Vulnerabilities in Open Source Software

[367]

Ripoche, G. & Les

G.

2003 Scalable automatic extraction of process models for

understanding FOSS bug repair

[372]

Ryoo, J. et al. 2016 The Use of Security Tactics in Open Source Software Projects [383]

CHAPTER 7. SOFTWARE SECURITY IN OPEN SOURCE DEVELOPMENT: A SYSTEMATIC

LITERATURE REVIEW

106

Tan, L. et al. 2014 Bug characteristics in open source software [433]

Tawileh, A. et al. 2006 Modeling the economics of free and open source software

security

[434]

Vangaveeti, A. 2015 An Assessment of Security Problems in Open Source Software [454]

Vouk, M. & Laurie

W.

2013 Using software reliability models for security assessment -

Verification of assumptions

[469]

Walden, J. et al 2009 Security of open source web applications [470]

Xiong, M. et al. 2004 Perspectives on the Security of Open Source Software [504]

107

Chapter 8

An Empirical Study of Security
Culture in Open Source
Software Communities

Wen, Shao-Fang, Mazaher Kianpour, and Stewart Kowalski. “An Empirical Study of

Security Culture in Open Source Software Communities.” 2019 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

IEEE, 2019, pp. 863-870.

Author Contributions— Initial conceptualization and framework of the research

were developed by Shao-Fang Wen. The research design and methodology were

reviewed by Stewart Kowalski. The manuscript was largely written by Shao-Fang

Wen. Final paper review and editing were performed by Mazaher Kianpour.

Abstract—Open source software (OSS) is a core part of virtually all software

applications today. Due to the rapidly growing impact of OSS on society and the

economy, the security aspect has attracted researchers’ attention to investigate this

distinctive phenomenon. Traditionally, research on OSS security has often focused on

technical aspects of software development. We argue that these aspects are important,

however, technical security practice considering different social aspects of OSS

development will assure the effectiveness and efficiency of the implementation of the

tool. To mitigate this research gap, in this empirical study, we explore the current

security culture in the OSS development phenomenon using a survey instrument

with six evaluation dimensions: attitude, behavior, competency, subjective norms,

governance, and communication. By exploring the current security culture in OSS

communities, we can start to understand the influence of security on participants’

security behaviors and decision-making, so that we can make realistic and practical

suggestions. In this paper, we present the measurements of security culture adopted

in the study and discuss corresponding security issues that need to be addressed in

OSS communities.

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

108

8.1 Introduction

Open source software (OSS) is based on the principle that software programs should

be shared freely among users, giving them the possibility of introducing

implementations and modifications [168, 212]. OSS is released under license in

compliance with the Open Source Definition as articulated by the Open Source

Initiative (also known as the OSI). To create and sustain OSS, numerous technical and

non-technical individuals interact with collaborating peers in online communities of

practice [138, 140, 391]. The activities that these communities perform are usually

called OSS projects. This development culture includes hundreds of thousands of

distributed programmers voluntarily producing, sharing, and supporting their

software with no monetary compensation for their efforts. Because of the low-cost

software solutions, and the openness and real collaboration of the software

development process, OSS has become an increasingly popular choice instead of

closed source (proprietary) software: About 80% of companies run their operations

on OSS [330], and 96% of applications utilize OSS as software components [50].

Due to the rapidly growing impact of OSS on society and the economy, the security

aspect has attracted researchers’ attention to investigate this distinctive phenomenon.

As a result, numerous security practices for secure OSS development have been

provided [481]. However, OSS vulnerabilities are being found at an increasing pace,

nearly doubling from 2017 [420]. From a literature review of OSS security research

using a socio-technical analysis, Wen [481] found that only 16% of papers talked about

the social sectors of OSS security (cultural, structural, legal, managerial, and

operational), and he concluded that existing software security practices have

limitations in supporting secure OSS development. Because OSS in the socio-technical

context is broader than the technical definition [390], technical security practices that

consider different social aspects of OSS development will assure the effectiveness and

efficiency of the implementation of the tool [481]. This can be viewed as a necessary

condition within a security management framework, as the two aspects are equally

important [152].

There is still a dearth of empirical research on the social study of OSS security. Thus,

this study intended to complement the research by empirically investigating the

social and cultural aspects of OSS security. As Zeitlyn [514] pointed out, we need to

better understand the culture of the OSS movement and the corresponding social

norms that regulate people’s behavior. Culture has strongly influenced the formation

of many security means in an organization, such as security policy, information

ethics, security training, and privacy issues [395, 396]. Security culture can also

support all organizational activities in such a way that security becomes a natural

aspect of the daily activities of every individual [74]. By exploring the current security

culture in OSS communities, we can start to understand the influence of security on

participants’ security behaviors and decision-making. Then we can evaluate what

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

109

changes would influence security in a positive way so that we can make realistic and

practical suggestions.

The paper is organized as follows. After the introduction, in section 8.2, we present a

review of the literature on OSS communities and security culture. In section 8.3, we

present our research framework for this study. Section 8.4 describes the research

methodology. We present the results of this study in section 8.5. In section 8.6, we

discuss the results. We present the limitations of this study and the conclusion in

sections 8.7 and 8.8, respectively.

8.2 Literature Review

8.2.1 OSS Communities

OSS is predominantly characterized by clan control, which is based on common

values and beliefs [340], or clan- and self-governance [462], based on self-monitoring

[237, 339]. In the OSS community, individuals interact with collaborating peers to

solve a particular software problem and exchange ideas [123]. They work in

geographically distinct locations of the world, and rarely or never meet face-to-face

[280]. In OSS communities, social and technical interaction primarily occurs in a

networked mediated computing environment populated with web browsers, a

mailing list, a discussion forum, instant messaging programs, and other software

development tools, such as version control systems, compilers, and bug tracking

systems [390]. In this context, cooperation among members of OSS communities is

maintained through an elaborate infrastructure that almost exclusively uses web

technologies [212]. A strong culture and group behavior have been developed in

connection with the community, enabled by the Internet [159].

The structure of OSS communities is fundamentally different from that of traditional

project organizations of proprietary (“closed source”) software development.

Traditional software development projects tend to coordinate software development

work through the organizational hierarchy and centralized planning [101], or they

implement security control mechanisms, including behavior- or output-based control

[335]. Unlike traditional organizations, OSS communities do not have a formal

organizational structure, and projects in these communities are not dictated by formal

plans, schedules, and deliverables [399, 406]. The organizational challenges faced by

OSS development are considerable because the project must deal not only with the

software engineering problems faced by a development team but also with the

complexity of coordinating the efforts of a geographically distributed base of

volunteers working on the software [322]. Moreover, proprietary software projects

pay experts to come up with high-quality solutions, which is not necessarily true of

open source projects, which rely on the motivation and personal interests of

individual developers [447].

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

110

An OSS community has a unique structure depending on the nature of the system

and its member population. In general, the initial OSS developer maintains a lead role

and is responsible for the governance and coordination process [506]. The project

leader, or the core team, usually partition the software development tasks into

manageable modules and has participants choose what to work on according to their

interests. The OSS development model allows developers to integrate with non-

technical members to form a broader, more transparent community [463]. In this

context, users and developers coexist in a community where the software grows and

expands based on personal needs and benefits [178]. These benefits include fun,

reputation, learning, enjoyment, and peer recognition [466]. Membership in the

community is fluid; current members can leave the community, and new members

can join at any time [406]. Consequently, individual ownership of products is not

apparent in OSS communities; instead, recognition of expertise is important.

Community members believe in shared risks, shared rewards, and shared ownership

[505].

8.2.2 Security Culture

Security culture is the set of values, shared by everyone in an organization, which

determines how people are expected to think about and approach security, and is

essential to an effective personnel and people security regime [395]. Many researchers

have defined security culture and identified its importance in organizations. Dhillon

[118] defined security culture as “the whole of human attributes, such as behaviors,

attitudes, and values which may contribute to the protection of all kinds of

information within a certain organization.” Schlienger and Teufel [396] defined

security culture as “all socio-cultural measures that support technical activity

methods, so that information security becomes a natural aspect in the daily activity

of every employee.” Martins and Eloff [288] defined security culture as the

perceptions, attitudes, and assumptions that are accepted and encouraged by

employees in an organization in relation to information security. Ngo et al. [325]

suggested that security culture is the accepted behavior and actions of employees and

the organization as a whole, as well as how things are done in relation to information

security. In short, security culture is the way our minds are programmed to create

different patterns of thinking, feeling, and actions for providing the security process

[7].

Security culture covers social, cultural, and ethical measures to improve the security-

relevant behavior of organizational members, and is considered a subculture of

organizational culture [2]. This culture is recognized in the security community and

scientific literature as one of the most important foundations of organizational

security. Security culture is based on the interaction of people with information assets,

and the security behavior they exhibit within the context of the organizational culture

in the organization [105]. Security culture involves identifying the security-related

ideas, beliefs, and values of the group, which shape and guide security-related

behaviors [364]. The importance of creating a security culture within organizational

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

111

settings arises from the fact that the human dimension in information security is

always considered the weakest link [289, 396, 451]. The results of numerous surveys

suggest that people’s attitudes and lack of awareness of security issues are among the

most significant contributors to security incidents [154]. If appropriate security

culture is neglected, individuals will not develop habitually secure behavior or take

the initiative to make better decisions when problems arise. Therefore, the creation of

a security culture is necessary for the effective management of information security.

8.3 Research Framework

In this section, we elaborate characteristics of a security culture that can be adopted

in the context of OSS development. Based on a systematic review and a synthesis of

relevant publications on security culture and information gathered from numerous

pilot studies, we identified six dimensions of security culture: attitude, behavior,

competency, subjective norms, governance, and communication.

8.3.1 Attitude

Attitude is an important factor that influences humans’ emotions (how you feel or

what you believe) and behavior [64]. Specifically, attitude can also refer to the degree

to which a person has favorable or unfavorable feelings about an object [499]. The

object can be an event, person, thing, place, idea, or activity. Other commonly used

descriptions include behavior that is liked or disliked, desirable or undesirable, good

or bad or behavior that is viewed positively or negatively [6]. Chia [80] asserted that

in good security culture, individuals of the organization not only feel responsible but

also have a sense of ownership about security. Unless they believe that security is

important, people are unlikely to work securely, irrespective of how much they know

about security requirements. Attitudes give a strong indication of individuals’

disposition to act. For this study, attitude can be seen as OSS participants’ feelings

and emotions about the various activities that pertain to software security. Aspects

include participants’ belief (value) about security, responsibility for software security

in the community, and positive thinking and perception of security requirements.

8.3.2 Behavior

The notion of behavior is based on what individuals do and relate to actual or

intended activities [254]. According to Cox, Connolly, and Currall [93], human

behavior is crucial in ensuring an efficient environment for information security.

Essentially, security behavior is performed by individuals who are governed by

instructions and requirements when using computer resources, but the way people

think, believe, and subsequently, appreciate the organization of security affect how

they behave [191]. Thus, security behavior can be seen as a function that frames the

way that organizational actors collectively construct the meaning of different

experiences of security tasks. The importance of participants’ behavior in software

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

112

security management cannot be ignored. In the context of software development,

security behavior includes the use of security technologies, adoption of secure coding

practices, and compliance with organizations’ security policies. Subsequently, risk-

taking is another important component of security behavior, when the people

involved in the design and/or operation of a system fail to perceive some set of

conditions that might arise and cause the security of the system to be compromised

[119]. People adjust their risk-taking behavior toward their “comfortable” level of risk

(i.e., their “secure” level of risk).

8.3.3 Competency

Competency is defined as the underlying human characteristic that distinctly affects

superior job performance in real-life and context-specific situations [28]. This

characteristic is the collection of underlying knowledge and skills, which potentially

enables some individuals to meet demands more effectively than others [69].

Competency, therefore, provides the potential capability to be skilled in relation to a

specific goal or job task. To improve job performance and satisfaction, competency

has been widely used to match employees to jobs by matching the competencies of a

person to the job requirements [244], which causes individuals to feel that their

behavior will not have any bad consequences. In the domain of software security,

competency can be defined as software engineers’ knowledge level and skills in

protecting their software from a wide range of threats to software security, and with

the ability to apply knowledge and skills productively (effectiveness). Having

adequate competency regarding software security is a prerequisite to performing any

software development task securely. Therefore, security competency may be

regarded as an important factor to cultivate in security culture as the first line of

defense in information security effectiveness.

8.3.4 Subjective Norms

A subjective norm is a person’s belief about what people think about him or her

should be done [135]. We recognize the term, subjective norms, as describing

“directed normative relationships between participants in the context of an

organization” [415]. Norms are a powerful means of regulating interactions among

autonomous agents [26]. What is perceived as normal behavior in social settings has

a strong influence on what is considered acceptable behavior in an organization, and

what is not [456], independent of what the rules or formal policies dictate. Individuals

are influenced by both—messages about expectations and the observed behavior of

others [409]. For security culture, subjective norms represent a combination of

perceived expectations of relevant individuals or groups along with intentions to

comply with security-related tasks. It regards what is right and wrong regarding

information security, involvement in organizational communication processes, and

awareness of security policies. If the group considers information security an

important and serious problem, then it is more likely that the individuals within that

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

113

group will value and follow the security policies. Conversely, if risk-taking is

accepted within the group, then it is likely that greater risks will be taken. Failing to

meet this expectation may incur a sanction against the offender. For example,

members in OSS projects are often expected to follow a coding convention. Failure to

adhere to this obligation may result in the code being rejected by the community. The

level of intention toward a secure action is higher if the person has a positive attitude

about and a subjective norm for the behavior [135].

8.3.5 Governance

Governance refers to the processes involved in developing and enforcing policies and

norms for a given community or organization with the aim of structuring some set of

activities [246]. Security governance is the means by which one controls and directs

an organization’s approach to security [246]. Security governance provides a

framework in which the decisions made about security actions are aligned with the

organization’s overall business strategy and culture [107]. Thus, security governance

is about decision making per se, which is concerned with setting directions,

establishing standards and policies, and prioritizing investment and implementation.

Effective security governance must provide mechanisms that enable managers to

allocate expertise and responsibilities accordingly [480]. It requires roles and

responsivities of security tasks, defined policies, implementation, and oversight

mechanisms. In growing and maintaining an OSS project, people, such as the core

contributors/maintainers, leaders, and community managers, must develop

guidelines for writing and documenting code, implementing rules about licensing

and distribution, determining methods for evaluating contributions to the project,

and providing venues for like-minded users to communicate and build working,

trust-based relationships (e.g., Slack channels and discussion forums) [410].

8.3.6 Communication

Communication, in simple terms, can be considered an interactive process of sending

and receiving messages among individuals, groups, and organizations, including

some form of feedback [248]. DeVito [116] defined communication as an act:

“Communication refers to the act, by one or more persons, of sending and receiving

messages that are distorted by noise, occur within a context, have some effect, and

provide some opportunity for feedback.” Clear, open, effective communication can

create a sense of transparency in the organization, which builds trust between levels

of employees. As Adams and Sasse [20] pointed out, insufficient communication with

individuals in the organization “causes them to construct their own model of possible

security threats and the importance of security and these are often wildly inaccurate.”

It is imperative that security has an internal voice in the form of broadcasting

channels, ensuring policies, procedures, and relevant breaking news items are

universally and regularly communicated. In the present study, communication refers

to the methods OSS participants use to communicate security information within a

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

114

community, information transferring facilities, codification, and personalization

information. Developers and users of an OSS project do not all necessarily work on

the project in proximity. They require an electronic means of communication. Internet

resources have the advantage of providing the community with an information

infrastructure for sharing codification materials of software development in the form

of hypertext, video, and software artifact content indexes or directories.

Personalization communication has the inherent flexibility of transmitting tacit

knowledge, and allowing for discussions and sharing interpretations that may lead

to the development of new knowledge [51].

8.4 Research Methodology

This research adopted a quantitative approach to investigate the security culture in

OSS communities. Quantitative research methods such as conducting surveys and

the validation of research frameworks and questionnaires have been greatly applied

in the information security discipline [398, 417]. Organizations can use survey

instruments to study information security behavior in general [40]. The use of an OSS

participant survey was deemed appropriate in this study, as the survey enables clear,

direct, and objective answers to the questions presented to the respondents. For the

purpose of this study, a self-administered web-based survey was used to collect

individual-level perception data from participants in OSS projects.

8.4.1 Instruments

The survey instrument used in this study was the outcome of an iterative process of

checking and refinement. We developed a questionnaire based on the six dimensions

defined in section 8.3. The primary measurement items and the corresponding

questions are summarized in Table 8.1. Some survey questions were inspired by

existing studies, while others were created specifically to suit the research context of

this study. Each item in the questionnaire was measured on a five-point Likert scale

ranging from strongly disagree (1) to strongly agree (5).

8.4.2 Data Collection

Samples for the empirical study were randomly collected from participants in OSS

development projects, available on GitHub. GitHub is an online database of OSS

projects. Users and potential contributors can access information about projects, and

download current versions of the software being developed. As in June 2018, GitHub

reported more than 30 million users [164] and 57 million repositories [163], making it

the largest host of source code in the world.

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

115

Table 8.1: Security culture dimensions and corresponding survey questions.

Dimension Items Question

Attitude Value • I believe software security is an important factor in
achieving project success.

Responsibility • Software security is important to my work in
software development.

Positivity • The requirements for software security do not
interfere with my ability to get the job done.

Behavior Acts • I make the software components behave in a secure
manner despite unexpected inputs or user actions.

Compliance • I adhere to the security principle and secure coding
practices.

Risk-Taking • When I do my work, I assume that the software might
be misused to reveal bugs that could be exploited
maliciously.

Competency Knowledge • I know the principles and best practices for secure
software development.

Skills • I can quickly identify specific coding errors or
security vulnerabilities while examining the code
base.

Effectiveness • I can apply methods or techniques adaptive to my
project to prevent exploits against vulnerabilities.

Subjective Norms Trust • I believe the community can govern the security of
software products.

Supportiveness • Members of the community help each other solve
security issues.

Expectation • I am encouraged to work securely by members of the
community.

Governance Expertise • There is a security team (or at least one member) who
deals with software security for the project.

Policy • The project has a general policy for software security
management (vulnerability reporting, security
testing, etc.).

Implementation • The project has implemented secure coding practices
(coding style, library, API, etc.).

Communication Infrastructure • There are dedicated communication channels
(mailing list, forum, etc.) related to security subjects
in the community.

Codification • It is easy for me to find specific security information
in the community.

Personalization • I know where to go for advice related to a software
security issue in the community.

The anonymous questionnaires were sent via e-mail to a list of OSS participants at the

beginning of December 2017, and the data collection period lasted four months. Of

the 321 questionnaires returned, 67 were excluded, because the respondents did not

participate in an OSS community. In total, 254 respondent questionnaires were used

for the final analysis.

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

116

8.5 Data Analysis

8.5.1 Respondent Demographics

Table 8.2 describes the general demographic information of the 254 respondents, in

terms of gender, age, educational background. Nearly 90% of respondents were male,

while there were only 9 female respondents. A large body of participants, that is 80%,

was between 20 and 40 years old, and with a bachelor’s degree (72.4%). Figure 8.1

shows the top 10 fields that the respondents’ majors or anticipated majors. In the

survey questionnaire, respondents were allowed to indicate more than one field if

applicable. As the figure indicates, about 65% of respondents have been educated in

the academic disciplines of computer and information sciences. In terms of

characteristics of OSS communities, the largest group of seniority in the community

was 47.6% of the total, with between 3 and 5 years of experience, and the 254

respondents were from various product profiles and horizons (Table 8.3).

Table 8.2: General demographic characteristics

Item Category Frequency %

Gender Male 228 89.8%

Female 17 6.7%

Prefer not to say 9 3.5%

Age < 20 9 3.5%

20–30 114 44.9%

31–40 91 35.8%

41–50 31 12.2%

> 50 3 1.2%

Prefer not to say 6 2.4%

Education High school degree or equivalent (e.g. GED) 3 1.2%

 Associate degree (e.g. AA, AS) 12 4.7%

 Bachelor’s degree (e.g. BA, BS) 184 72.4%

 Master’s degree (e.g. MA, MS, MEd) 53 20.9%

 Professional degree (e.g. MD, DDS, DVM) 2 0.8%

 Doctorate (e.g. PhD, EdD) 3 1.2%

Figure 8.1: Top 10 fields that the respondents’ majors or anticipated majors

5.12%

6.30%

6.69%

8.27%

8.27%

11.42%

13.39%

16.54%

22.05%

64.57%

Visual and performing arts (art, music, etc.)

Education

Health-related fields (nursing, medical, etc.)

Liberal/general studies

Physical sciences (physics, chemistry, etc.)

Mathematics

Communication (speech, media,etc.)

Business (accounting, marketing, etc.)

Engineering

Computer and information sciences

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

117

Table 8.3: OSS Characteristics of the respondents

Item Category Frequency %

Seniority in the

community

< 6 months 4 1.6%

6 months to 1 year 34 13.4%

2–3 years 95 37.4%

3–5 years 121 47.6%

> 5 years 98 38.6%

Product Category Browser, Content management 30 11.8%

Database, File system 29 11.4%

Security, Anti-virus, Encryption 24 9.4%

Development framework 23 9.1%

Education, knowledge management 19 7.5%

Communication 19 7.5%

Gaming, Entertainment 16 6.3%

Healthcare 16 6.3%

AI, Machine learning 13 5.1%

Enterprise 12 4.7%

Operating system 12 4.7%

Word processing, Text editor 7 2.8%

Retail & E-Commerce 7 2.8%

Geospatial, Astronomy 5 2.0%

Social media 4 1.6%

Others 18 7.1%

8.5.2 An Overview of the Security Culture Scores

The mean scores of the security culture dimensions are plotted as a radar chart with

six axes (Figure 8.2). As depicted in the chart, Attitude is the only dimension that

reaches a mean value at the degree of 4.00. The respondents overwhelmingly reported

a positive attitude toward software security. More concerning, however, is the

evidence that a significant minority of respondents were unwilling or unable to put

this positive attitude into practice. The mean value of participant-reported behavior

is 3.90, showing that the behavior of OSS participants is at a mild level of maturity,

but still, on average, insecure. The mean score for Competency is 3.72, indicating that,

on average, the respondent communities faced moderate to serious in equipping

relevant security knowledge and skills. The Subjective Norms aspects were not well

developed, as the mean score was 3.74. Notably, this study revealed there was very

weak security governance to support security culture (mean = 3.37), suggesting that

an insufficient complement to security expertise, as well as limited establishment and

implementation of security policies. Last, Communication of security information in

the OSS communities studied was, on average, very weak (mean = 3.28).

Communication is the least developed dimension in security culture, as the mean is

the lowest of all six dimensions.

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

118

8.5.3 Attitude

The results (Table 8.4) show that the vast majority of respondents (90%) held the value

that security was an important factor in achieving project success. This could be a

result of high-profile vulnerabilities and security incidents of OSS in recent years,

which have generated a lot of adverse publicity for OSS development. Despite

acknowledging the value of security for the project, only 56% of respondents agreed

that software security was important to their work in the community, and a quarter

of the survey population held a neutral position while answering this question. In

addition, the mean score was statistically significantly low (3.67) in this dimension.

OSS participants were still skeptical about the obligation to “build security in,” as

part of their jobs or roles. They had an inadequate understanding of how individual

actions contribute to the security of the software system as a whole. In addition, we

found that a third of respondents (disagree and neutral) felt security might interfere

with their ability to get the job done. The result indicated that OSS participants

viewed security as something that was necessary to their projects, but at times, also

expressed their perception of the conflict between the security requirements and how

they were used to writing code. Thus, the respondents shifted responsibility for

software security to the community or public.

Table 8.4: Descriptive analysis of the Attitude dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree Strongly Agree

Value 2(1%) 8(3%) 16(6%) 76(30%) 152(60%) 4.45

Responsibility 11(4%) 25(10%) 76(30%) 67(26%) 75(30%) 3.67

Positivity 12(5%) 22(9%) 54(20%) 65(26%) 101(40%) 3.87

Figure 8.2: The mean score of security culture dimensions

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

119

8.5.4 Behavior

We found that most respondents agreed about secure coding behavior. As the results

reveal in Table 8.5, 70% of respondents agreed with the following statement about

security acts: “I make the software components behave in a secure manner despite

unexpected inputs or user actions.” Similarly, nearly three out of four (74%) reported

that they complied with secure coding policies in their work. However, in the two

questions, the proportion of neutral responses was relatively high (20% and 17%,

respectively). In addition, a minority group (nearly 10%) actively disagreed with the

two statements about secure acts and compliance. The two groups of people (neutral

and disagree) totaled nearly one-third of the survey population, which presents

notable issues for OSS security. Most OSS participants might primarily focus on their

immediate goals that usually involve functional requirements and performance,

instead of security. In addition, the further result showed 38% of respondents

performed risky behavior at a certain level in secure software development. They

were likely to skip policies or bypass them to make their job easier, unaware of the

potential damage, thinking that attackers would not be interested in their

applications, or that their company was not big enough to be a target for attacks.

Table 8.5: Descriptive analysis of the Behavior dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree Strongly Agree

Acts 5(2%) 19(7%) 51(20%) 94(37%) 85(33%) 3.93

Compliance 4(2%) 18(7%) 44(17%) 96(38%) 92(36%) 4.00

Risk-Taking 6(2%) 25(10%) 66(26%) 80(31%) 77(30%) 3.78

8.5.5 Competency

Worryingly, fewer than two-thirds of respondents, that is, 66% (in Table 8.6), said

they had knowledge about general principles and best practices for secure software

development, and only 65% said they had relevant skills for identifying specific

security errors in code repositories. In addition, more than one-third of respondents

(34%) did not agree with the following statement: “I can apply methods or techniques

that adapt to my project to prevent exploits against vulnerabilities.” The issues of OSS

participants’ lack of security competency mostly resulted from the fact that they come

from various academic disciplines (as shown in Figure 8.1), and might not have

formal college-level security training. Thus, a lot of confusion remained in

participants’ minds about what was secure code and what the project wanted. This

confusion forced them to take risks based only on their personal experience, without

fully considering the project’s requirements and priorities.

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

120

Table 8.6: Descriptive analysis of the Competency dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree

Strongly

Agree

Knowledge 9(4%) 23(9%) 55(22%) 102(40%) 65(26%) 3.75

Skills 7(3%) 28(11%) 54(21%) 103(41%) 62(24%) 3.73

Effectiveness 12(5%) 26(10%) 48(19%) 110(43%) 58(23%) 3.69

8.5.6 Subjective Norms

The degree to which OSS participants trusted their community in the governance of

software security was relatively high in the dimension of Subjective Norms. Nearly

80% of respondents conveyed their trust of their communities’ security governance

(Table 8.7). This result implies that OSS projects relied on the communities’

management and control, and are conducted to a great degree to ensure the security

protocols are carried out. However, only 65% agreed with the statement, “Members

help each other solve security issues.” Normative support for security tasks was not

clearly perceived among OSS participants. In line with this, it perhaps is not

surprising that only 51% thought that they received encouragement and expectation

from their peers to work securely in OSS communities, while more than 20% did not

agree that they had been influenced by other members regarding secure software

development. The OSS participants did not perceive strong norms in their

communities, something that could promote and reward behavior that serves the

security quality of their software products.

Table 8.7: Descriptive analysis of the Subjective Norms dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree

Strongly

Agree

Trust 8(3%) 19(7%) 28(11%) 95(37%) 104(41%) 4.06

Supportiveness 15(6%) 23(9%) 51(20%) 84(33%) 81(32%) 3.76

Expectation 24(9%) 31(12%) 69(27%) 76(30%) 54(21%) 3.41

8.5.7 Governance

Regarding the complement of security expertise in OSS communities, less than half

of the survey population (46%, Table 8.8) clearly reported that there were security

teams (or at least one person) dealing with software security in their communities,

implying that a considerable portion of participant communities (54%) did not

possess sufficient expertise to fully address complex security risks. OSS projects do

not usually have the monetary resources in software security that companies

producing proprietary software have. The people hosting the project have to do it in

their spare time, making the level and motivation of security conduct questionable.

This situation could also result in fewer security policies and a low implementation

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

121

rate for secure practices in OSS development. In this study, security governance in

OSS communities was either weak or problematic, as only half of the respondents

(51%) agreed with the statements about the situations in the two measurement items,

policies, and implementation.

Table 8.8: Descriptive analysis of the Governance dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree

Strongly

Agree

Expertise 21(8%) 35(14%) 83(33%) 68(27%) 47(19%) 3.33

Policies 25(10%) 44(17%) 56(22%) 71(28%) 58(23%) 3.37

Implementation 21(8%) 47(19%) 57(22%) 65(26%) 64(25%) 3.41

8.5.8 Communication

Only 41% of respondents reported that dedicated communication channels related to

security subjects existed in the community (Table 8.9). We found that only 35% of

participants agreed with the statement, “It is easy for me to find specific security

information in the community,” and nearly 40% disagreed. OSS projects normally

publish their own coding guidelines, a set of conventions (sometimes arbitrary) about

how to write code for that project. However, OSS projects rarely address the security

requirements in documentation to help drive the team to understand the prioritized

security needs of the entire project. Thus, newcomers might feel that comprehending

security requirements from exploring the website is hopeless; thus, they prefer to start

with programming. In contrast to striving for codified security information,

respondents felt at ease in asking for guidance or recommendations using available

communication channels in their communities. Nearly 70% of respondents said they

knew where to go for advice about security for their personal needs.

Table 8.9: Descriptive analysis of the Communication dimension

Item

Frequency (Percentage)

Mean

Strongly

Disagree Disagree Neutral Agree

Strongly

Agree

Infrastructure 34(13%) 65(26%) 51(20%) 57(22%) 47(19%) 3.07

Codification 27(11%) 69(27%) 68(27%) 54(21%) 36(14%) 3.01

Personalization 17(7%) 28(11%) 34(13%) 96(38%) 79(31%) 3.76

8.6 Discussion

We identified that a key inhibitor of OSS culture is the “it’s not my responsibility”

attitude. The survey data in Table 8.4 showed that there was a strong reliance on

participants’ mindset on other methods (members, processes, and technology) to take

care of software security. The lack of responsibility could occur when security is not

considered part of a developer’s everyday duties, or when developers expect security

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

122

is handled elsewhere, such as by the core team or other community members. Given

the openness and freedom of OSS, it is not surprising that OSS developers ease their

workload by passing the responsibility for software security to others when possible.

As long as developers are not held responsible for security tasks related to their code,

they would rather spend their time on aspects for which they will be held responsible.

Developers want to write more secure code, but this might not be a priority for their

work. They focus on contributing software code with the perception to become good

application developers, but not necessarily security experts. Getting code out quickly,

albeit with vulnerabilities that they discover and fix later, maybe a better fit with their

personal goals. As the analysis results are shown for the measurement of Positivity

(Table 8.4), it is not that OSS developers do not want to develop secure products, but

they are more interested in delivering new functionality to increase the features of

their software products. Furthermore, in the aspect of risk-taking, depicted in Table

8.5, OSS participants might think that hackers are not interested in their applications,

or that they are not famous enough to be a target for attacks. Thus, they see no

perceived risk, and security efforts lack value. This perhaps indicates that OSS

communities still have some way to go in ensuring that software security is high on

the list of project priorities, and gets participants’ attention in promoting positive

security best practice.

In addition to the lack of incentives to focus on strengthening security, our study

revealed a missed set of means in terms of security practice reinforcement and

demonstrates a clear knowledge gap that must be addressed by OSS communities.

The data analysis in Table 8.6 indicated that two-thirds of respondents evaluated

themselves as equipped with security competency, but the other one third did not.

Still, OSS developers today are, most likely, unaware of the many ways they can

introduce security problems into their code, and do not have the wherewithal to fix

them when they are found. In view of the gap in the skills and knowledge necessary

for secure OSS development, the lack of appropriate security competencies is clear.

OSS developers or other participants do not traditionally receive formal education or

training about software security [483]. Programmers make security errors because

they are unaware that their code will be attacked, and have no knowledge of methods

by which their code can be secured. Knowledge is not the motive for human

information security behavior; however, the lack of knowledge is a barrier to

developing the desired behavior [233]. We believe a closer look at security training

also seems to be needed.

To effectively deal with security problems, OSS participants need greater awareness

of specific errors in the context of their own development. Thus, security knowledge

transfer within the OSS community is required to help them know about the threat to

their own products, so they are motivated to respond. They also need to know what

it means to write secure code, and how to find and correct the errors that cause

security flaws. Improving participants’ competence in security can improve their

confidence when a user is placed in the adverse condition of using the software [408].

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

123

It also makes the participants feel that their behavior will not have any bad

consequences. With respondents’ broadly positive attitude to security, OSS

communities clearly need to place more focus on providing members with

information related to security subjects, offering opportunities for learning and

supporting self-development of security knowledge.

However, based on the analysis of subjective norms in Table 8.7, weak subjective

norms support security culture in OSS communities. Only half of the respondents

thought that they were encouraged by community members in terms of secure

software development. Thus, OSS communities should enforce adherence to the

mutual norm of security aspects, making cooperation between developers a goal, as

well as part of the success of the project. Research indicated that in teams where

security was part of the organizational culture and support for security tasks was

available, individuals were more motivated to focus on security [303, 418]. This could

be because they are confident in performing their security tasks, especially when they

feel support from peers. This behavior could result in a snowball effect and lead to

motivating more community members to recognize the importance of considering

security as their peers do.

Developers do not like to feel exploited. If they believe that the other members of the

project will not contribute equally, the norm of reciprocity is violated [37]. In the

context of OSS development, peers’ positive encouragement or expectation of secure

coding behavior could increase developers’ bonds with their teams, for example, with

the feeling that they see the value of the community, and thus, perform the expected

behavior for the team. As a result, rather than performing security tasks purely to

follow an order or commission, the participants internalized such work, accepted it,

and experienced a willingness to act. This internalization of security has a statistically

significant positive effect on persistence and performance [382]. We believe that OSS

communities will greatly benefit from a security culture where an individual takes

more responsibility for the security of the collective he or she is a part of and is

assured help if he or she encounters security crimes.

This study also exposes a problem that there was very weak security governance to

support security culture. OSS communities differ from common enterprises in their

coordination and organizational structure. The work is done on a voluntary basis,

and there are fewer guidelines regarding time and intensity of work. Software

security should not only be the domain of the core developers. On the one hand, those

responsible for core development tasks must understand the importance of the scope

of software function protection. On the other hand, participants must be informed of

the general process and methods to provide protection during the entire software

development cycle. In this regard, OSS communities can utilize a security team or

experts to define security requirements and best practices, help perform code reviews,

and provides the necessary security knowledge for the software development staff.

The team acts as the known point of escalation for security issues encountered by

developers if local champions cannot resolve them. It is also responsible for

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

124

sympathetically setting standards or practices, as developer members will have a

working knowledge of how security practices are best implemented.

To design functional and effective security governance, OSS projects must not only

be responsible for security expertise coordination but have the ability to execute

corresponding security policies. Security policies or guidelines have to be readily

accessible or available to participants to ensure that they will not be ignored.

Therefore, OSS communities must have the ability to convey the criticality of

maintaining security to the whole project team. However, as this study reveals,

Communication gains the lowest score among the six dimensions of security culture

in OSS communities. To overcome the communication problems, OSS communities

need to provide a communication strategy to ensure that participants have reached

security information, the codification knowledge when they need it, and importantly,

are aware of where they can locate it. For example, specific security web pages can be

included in the project website or repository, serving as an information

clearinghouse. With just a glance, participants understand they need to pay attention

and take any recommended action immediately. Through this structural mechanism,

the security knowledge gains valuable insights from the community, and further,

facilitating discussion and decision making and sharpening personalization

knowledge.

8.7 Limitations

Several limitations of this study should be noted. First, the survey relied heavily on

self-reported data from participants about their perceptions and activities in secure

OSS development. Respondents may have wanted to portray an ideal image of their

security attitude, behavior, or knowledge within the workplace, rather than reality.

Although participants were not required to name their project and were given

assurances of anonymity, respondents may still have reticent in reporting their actual

behaviors. Second, the samples were chosen opportunistically from GitHub

repositories, and the number of responses obtained from the survey was small

compared with the enormous number of OSS projects and field workers today. Thus,

there is a need for further research efforts focused on accumulating more evidence

that is empirical, and data to break through the limitations. These efforts should

improve the generalizability of this study to the entire OSS development

phenomenon, by considering a larger number of responses covering a range of

diverse OSS projects.

8.8 Conclusion

In this paper, we present a security cultural analysis in the context of OSS

development. Measurements of security culture and the corresponding issues that

must be addressed in OSS communities were defined and discussed. OSS is a core

part of virtually all software applications today. The number of OSS projects has

CHAPTER 8. AN EMPIRICAL STUDY OF SECURITY CULTURE IN OPEN SOURCE SOFTWARE

COMMUNITIES

125

increased significantly over the last 5 years [420]. It is easier than it has ever been to

create a new OSS project, as well as use other projects from other members of the

community. The barrier to entry has decreased so that a large number of enthusiastic

amateur developers build a variety of apps and share their code in their spare time.

This diversity of OSS projects is fantastic, but there is a shortage of developers

entering the profession with software security expertise. With the increasing speed of

development and sharing, convincing developers of the importance of security is

challenging. Previously, OSS projects were focused on functionality and speed to

market as their main goals. However, under pressure from a rising number of

malicious threats and with tighter privacy protection laws coming into force, OSS

communities have had to rethink their priorities. As the diversity of OSS products

and projects increases, there will no longer be a single approach (e.g., practice, tool,

heroic effort, or checklist) for achieving an optimal security culture suited to all

communities. We believe that every technology developer has a responsibility to

implement and participate in such a process. This is fundamental to achieving a

security culture in a software organization. Furthermore, OSS communities should

establish rules and norms, roles, and methods, that is, to cultivate and maintain a

culture that values positive security attitudes and behaviors.

126

127

Chapter 9

Learning Secure Programming
in Open Source Software
Communities: A Socio-
Technical View

Wen, Shao-Fang. "Learning secure programming in open source software

communities: a socio-technical view." Proceedings of the 6th International Conference on

Information and Education Technology, ACM 2018, pp. 25-32.

Abstract—In open source software (OSS) communities, volunteers collaborate and

integrate expertise to develop the software online via the Internet in a decentralized,

highly interactive and knowledge-intensive process. The development of qualified

and secured software products relies mainly on the ability of OSS participants to

acquire, refine and use new aspects of secure programming knowledge. Many OSS

proponents believe that open source innovation offers significant learning

opportunities from its best practices. However, studies that specifically explore the

learning of software security in the context of open source development are scarce.

This paper aims to empirically assess present knowledge sharing and learning about

secure programming knowledge in the context of OSS communities utilized a socio-

technical approach on OSS projects based on an ethnographic observation. Our

motivation is not only to evaluate the knowledge sharing and learning mechanisms

and the extent to which they may be viable and successful but also to gain insight into

the security culture and project factors that affect learning processes of secure

programming in OSS communities.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

128

9.1 Introduction

Open source software (OSS) is based on the principle that computer programs should

be shared freely among users, giving them the possibility of introducing

improvements and modifications. OSS is at the core of today’s IT infrastructure and

information systems: about 80% of companies run their operations on OSS [330] and

96% of applications utilize OSS as the software components [50]. OSS security has

been the focus of the security community and practitioners over the past decades.

Many studies have been conducted by both researchers and practitioners on the

mechanisms of building security in OSS development [481]. However, the number of

new vulnerabilities keeps increasing in today’s OSS systems. The Blackduck 2017

Open Source Security and Risk Analysis report has announced that 3623 new OSS

vulnerabilities occurred in 2016 – almost 10 per day on average and a 10% increase

from 2015 [50]. According to the 2017 NIST36 report, about 67% of vulnerabilities are

due to programming errors; the rest are due to configuration or design problems

[256]. In particular, a strong majority has been found to be classic errors that are fairly

well known, like buffer overflows, cross-site scripting and injection flaws. With

today’s increasing importance and complexity of OSS, the ineffective learning of

knowledge and skills relevant to secure programming practices in OSS development

will result in more breaches that are serious in the future.

Learning secure programming is a difficult and challenging task since the domain is

quite contexted specific, and the real project situation is necessary to apply the

security concepts within the specific system. In the context of OSS, the development

of qualified and secured software products relies mainly on the ability of developers

to acquire, refine and use new aspects of secure programming knowledge in their

communities. Many OSS proponents believe that the OSS community offers

significant learning opportunities from its best-practices [204, 257], which are

different from the education of the traditional model [71, 144]. However, studies that

specifically explore the learning of secure programming in OSS communities are

scarce.

On the other hand, OSS is developed collectively by the online community of

practices with a strong relationship between the technical and social interactions in a

knowledge-intensive process [198, 245]. As Scacchi [390] points out, the meaning of

open source in the socio-technical context is broader than its technical definition and

includes communities of practice, social culture, technical practices, processes, and

organizational structures. This can be viewed as a necessary condition within a

learning framework as both aspects are of equal importance [29]. Technical learning

mechanisms considering different social aspects (e.g., organizational culture and

structure) of OSS development will assure the effectiveness and efficiency of the

learning process.

36 The National Institute of Standards and Technology (NIST) is a physical sciences laboratory, and a

non-regulatory agency of the United States Department of Commerce (https://www.nist.gov/).

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

129

Given the background, this study was designed to empirically assess present

knowledge acquisition and learning about secure programming in OSS communities

utilized a socio-technical approach on OSS projects based on an ethnographic

observation. In contrast to earlier researchers, which have focused on generic learning

in OSS communities, our study aimed to observe OSS participants’ perception of

learning about secure programming knowledge. Our motivation for this study is not

only to evaluate the knowledge sharing and learning mechanisms and the extent to

which they may be viable and successful but also to gain insight into the security

culture and project factors that affect learning processes of secure programming in

OSS communities. The rest of this paper is structured as follows. Section 9.2 describes

the literature review, including learning in open source communities and the views

on socio-technical aspects. The research method is explained in Section 9.3. In section

9.4, we present the result of data analysis. Section 9.5 provides a discussion based on

the result. Section 9.6 states the limitation of this study. Finally, we describe the

conclusion in section 9.7.

9.2 Literature Review

9.2.1 Learning in Open Source Communities

In open source software (OSS) communities, volunteers collaborate and integrate

expertise to develop applications and solve particular programming problems via the

Internet in a decentralized, highly interactive and knowledge-intensive process [198,

245]. Larger numbers of technical and non-technical users get participation in

activities that are essential for the OSS development process, as well as the

maintenance and diffusion of the software [138, 140, 391]. The activities that these

communities perform are usually called OSS projects, in which the software source

code is freely available on repositories on the internet. A OSS community has been

considered as a virtual (online) community of practice (CoP) [197, 309, 423] which

aims to establish a structure where tacit and explicit knowledge is shared and

exchanged among various members within a given domain to create a collective

value useful to everyone [264, 491]. Developers work on projects that interest them

and by so doing, they acquire knowledge associated with their profession. OSS

communities offer 24 hours, 7 days a week, 365 days support with up to date content

and learning materials, and all of this provided by volunteers at no charge. Therefore,

an open source community is more than about software development, but also

provides a rich field to explore the process of software knowledge creation,

accumulation, and dissemination [423].

Learning in open source communities have been broadly studied in the literature.

Hemetsberger and Reinhardt [197, 198] examined how knowledge sharing and

learning processes develop at the interface of technology and communal structures

of an OSS community. They suggested that knowledge is shared and learned in OSS

communities through the establishment of processes and technologies that enable

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

130

virtual re-experience for the learners at various levels. They viewed learning in OSS

communities as experiential learning whereas learning is a process whereby learning

is created through the transformation of experiences as developed by Kolb [247]. Au

et al. [25] explored open-source debugging as a form of organizational learning,

which heavily relies on adaptive learning [445] to overcome the complexity of

software. Singh and Holt [416] provided insights on how the OSS community uses

the forums for learning and solving problems. They explored the motivations for

joining OSS communities, the learning that occurs in the communities, and the

challenges to learning. Hardi [190] had a case study using the Google Chrome project

to affirm that situated learning [263] is present among open source developers at an

earlier time of a project. Although rapidly growing the current number of studies on

learning in OSS communities, the study on the fields of software security is still

limited.

9.2.2 The Views on Socio-Technical Aspects

Software systems are not purely technical objects. They are designed, constructed and

used by people. Therefore, software systems are components in socio-technical

systems, which include technological as well as social structures. The socio-technical

aspects provide a deeper analysis of the relationship between the methods,

techniques, tools, development environments and organizational structures [20, 21].

There is more and more literature containing applications of the socio-technical

systems of software engineering. For example, Lu and Jing [278] present a socio-

technical approach to support integrated socio-technical negotiation activities in a

collaborative software design process. They address the critical issues of such

collaborative negotiation activities, including modeling negotiation arguments based

on social and technical factors and analyze these arguments to reconcile the conflicts

for software design tasks. Ducheneaut [123] examines the socialization of new

members in an open source community using socio-technical analysis since these

members interact with both people and material components of a project. Ye et al.

[507] propose a socio-technical platform to guide the design of software that supports

information seeking and communication during different phases of programming.

Our research is based on the theory of Socio-Technical System (STS) developed by

Kowalski [250]. The STS model is depicted in Figure 9.1. This model has two sub-

systems include social aspects (culture and structures) and technical aspects (methods

and machines). STS model has been applied to evaluate threat modeling in the

software supply chain [8], business process re-engineering [4], a framework for

securing e-Government services [228] an information security maturity model [21].

The STS provides an appropriate and legitimate way to perform system analysis

through a systemic–holistic perspective and helps us understand the intrinsic context

in open source phenomenon.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

131

Figure 9.1: Socio-technical system [250]

9.3 Methodology

The research methodology used for this empirical study on OSS communities can be

characterized as qualitative research inspired by ethnography. An ethnographic

approach typically includes fieldwork done in natural settings, the study of the larger

picture to provide a complete context of the activity, an objective perspective with

rich descriptions of people, environments, and interactions, and an aim toward

understanding activities from the informants’ perspective. In empirical software

engineering, ethnography provides an in-depth understanding of the socio-technical

realities surrounding everyday software development practice [407] and highlights

the significance of socio-technical issues in the design of software-intensive systems

[36]. The knowledge gained can be used to improve processes, methods, and tools as

well as to advance the observed security practices.

9.3.1 Case Selection

To get a broader understanding of the phenomena of interests, we set up the

following criteria for the case selection: 1) the selected projects should be community

driven; 2) the selected projects should be as diverse as possible; 3) the projects use a

wide range of communication tools within the communities. Table 9.1 gives an

overview of the selected OSS projects. Having the selected sample cases that cover

the range of the diversity of OSS communities is important to refine the phenomena

being studied and improve the outcomes of this research endeavor.

Table 9.1: Overview of the selected projects

Project Age Software Category Programming

Language

A 3 Collaborative Text Editor JavaScript

B 8 Content Management System PHP

C 5 Multimedia playback engine C/C++

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

132

9.4 Data Collection

In terms of data collection, two methods used with qualitative data collection were

adopted: observation and interviews.

9.4.1 Observation

The author of this paper participated in the selected projects as an observer to gain a

close and intension familiar with the project members and understand the details and

processes of the projects. The main idea of this approach is to observe developers

performing the activities that they usually do in their daily jobs. To be more specific,

observation consists of writing notes about developers’ activities, events, interactions,

tool usage, and any other phenomena. The digital objects (including source code

repository, project documentation, mailing list, code review records, bug reports, and

forum) were screened to collect any information related to secure programming.

Information collected during the observation was recorded without distracting

participants of communities. Observation is an important method to be used in this

research because it allowed us to collect information about what learning tools the

OSS participants used and how they used them. Moreover, it was a source of valuable

insights to assist in a comprehensive understanding of the nature of the case data.

9.4.2 Semi-Structure Interviews

As we wanted to get input from the OSS participants, while still allowing for them to

think freely to some extent, we chose to use a semi-structured interview as described

by May [290]. Individual interviews were conducted with 13 participants in the

selected three projects during the observation period. Participants with short (less

than one year), medium (between 1 to 3 years) or long (more than 3 years) experience

in the open source development were interviewed. Most of the interviewees did not

want to disclose their identity and project name, thus, we did not represent their

names in the finding. Due to the geographical distribution of the interviewees, all

interviews were carried out via online communication software (Skype and Google

Hangout). We had to accommodate all the interviewees’ constraints in the setting of

interviews. ¨

All interviews were recorded and lasted approximately one hour. The questions were

used to understand their experiences in OSS development and examine their

perception of learning processes about secure programming in their OSS

communities. In order to facilitate elaboration, certain possible follow up questions

were prepared beforehand. As we suspected that the subjects would be unwilling to

consider themselves behaving insecurely, we also asked about what other members

would do. This also has the benefit of covering more subjects.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

133

9.5 Data Analysis

9.5.1 Brief of Case Observations

A. Project A

Project A is an online text editor that allows real-time, collaborative text editing

started in mid of 2014. The project website provides basic documentation about what

the software does, how to install the software and how to contribute to the project.

Security-related information (e.g., coding style, security contact window, etc.) has not

yet been published. During the study, it was found that one of the core developers

was responsible for security tasks, who solely outlined the security strategy, and had

implemented a major portion of security requirements, such as privilege

management, user certification, and output control. The source code is routinely

refactored in a well-structured format and detailed comments are given in-program

segments, which are also embedded critical security designs.

Google Group is used as a discussion forum in the community. No discussion threads

about software security were observed until the time we studied. There were four

bug reports related to the cross-site scripting vulnerabilities, which were labeled as

‘security’ or ‘XSS’ along with developers’ discussions and the final code commits. The

project held a weekly virtual meeting (Google hangout) to discuss project strategies

and roadmaps, and the security issues were brought up during the discussion

intermittently Most of the time the attendees were the core developers. The virtual

meetings were not recorded, and no documentation was made after meetings.

Facebook and Twitter are used to announce new features and release updates.

B. Project B

Project B has been established for 8 years, which aims to provide a web content

management system for building robust, flexible websites. Their approach to security

is primarily focused on writing quality code, with the objective being to making

security a priority. For the purpose, in 2012, they formalized a security team with six

official members to coordinate the security tasks of the project. The security team

published various documentation to educate the community on security best

practices and their development process, including secure coding practices, security

risk assessment and peer review to help ensure the products are high quality and

secure. In their secure coding practices, for example, they introduce how to sanitize

text to avoid improper neutralization input during web page generation (cross-site

scripting) and how to use the provided database function to access the database to

guard against SQL injection attacks, etc. The security issue is taken seriously in the

project. To protect the security of their services, all security issues about the product

must be reported directly to a specific email address using PGP encryption. Emails

sent to this address are forwarded to the security team's private mailing list. After

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

134

evaluating the potential impact and correcting the vulnerability, the security team

discloses the security issue with a security advisory.

The project has a set of communication channels to cover different participants and

community needs, including mailing lists, IRC chatting, discussion forum, blog,

social media (Facebook and Twitter), and yearly face-to-face meetings. To efficient

spread security information, a dedicated mailing list is set up for secure

communication among users and developers, and a separate channel on IRC for

security. The blog is an important medium to share security information with the

community, which contains numerous technical documents and papers about the

project that are given by the developers, users, and sponsors. The face-to-face

meetings are 2 days of events that follow a conference format. The lectures given at

conferences were all recorded and provided in conference pages.

C. Project C

Project C is a multimedia playback engine across browsers and media types, which is

a community-driven free software effort focused on delivering a high-performance

and reliable music player. The project web pages contain answers to frequently asked

questions (FAQ) about the software, such as how to build and install software from

source and what steam types that the software supports, etc. A wiki website is set up

mainly for introducing the development works, including IDE (Integrated Developer

Environment) setup, coding guidelines, language bindings, and APIs (Application

Programming Interfaces). Since their application may handle data from variable

sources that might be possibly untrusted, software security is considered highly

critical by the project team. To support security tasks, the project has recruited

external security auditors who are responsible for reviewing source code to discover

potential security weaknesses, bugs, and violations of programming conventions.

Once a bug with potential exploitation is found during the auditing process, the

auditing team will coordinate the code owner to handle the bug. The bug fix

information will then be posted to the security announcement page, and copies will

be sent to the project announce mailing list. The auditing team also acts as a

committed reviewer who is committed to the overall quality and correctness of the

pull request (submitted code) in GitHub. The most common vulnerability found in

the project software is ‘Buffer overflow (stack-based and heap-based)’, which allows

remote attackers to execute arbitrary code via a crafted media file.

Regarding other communication mechanisms within the community, the links of all

possible channels are clearly organized in one web page. The mailing list is the main

discussion channel within the community. Several mailing lists have been set up for

different types of audiences and purposes (e.g. development topics, users topics,

announcements, etc.). The project also establishes a question and answer (Q&A) web

platform using Stack Overflow, which is mainly for new contributors and software

users. For live chatting, they are using Slack for the teams’ instant communication

tool. There have no questions about software security been asked or discussed in

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

135

Q&A or in Slack. The virtual meeting is hosted every two weeks using Bluejeans

where the status update of code review is on the routine agenda. Many video-based

learning materials were made by the community member and placed on the YouTube

project channel.

9.5.2 Arenas for Learning

Opportunities for learning secure programming are not only dependent on the

initiative of the learner and the response of other community participants, but also on

the arenas where learners meet, communicate and act together. Since OSS

communities are all hosted on the internet, their project websites play the central

arena that affords learning opportunities.

A. Exploring Project Knowledgebase

In our study, all three communities use a mixed-method to host their project data: the

project website and GitHub. GitHub facilitates social coding by providing a web

interface to the code repository (“Git”) and management tools for collaboration. The

project website provides more flexibility in communication within the community,

such as Blogs, forums, conference pages, etc.

Documentation provides OSS participants with a shortcut for obtaining an overview

of the system or for understanding the code that provides a particular feature. At the

very least, it includes instructions on how to get started and details of where to find

more information. In our observation, documentation about security knowledge

scattered over the community websites. In project B, documentation covers a wide

range of security perspectives of the project needs (secure coding practice, risk

assessment, etc.) while projects A and C provide only information for software

installation and development guidance. One participant from Project B noted that the

documentation “had me backing up and restarting several security concepts in web

applications, [since] my programming experience is limited to the desktop

environment.”

Both Project B and C provided video-based learning materials for participants

(recorded from a conference or homemade video) on the project website or YouTube

respectively. Watching video is viewed stand-alone from other forms of training

requiring no interaction from the learners. With the explosion of video-sharing

services such as YouTube, the amount of recorded audiovisual information has

grown exponentially in open source communities. Respondents gave opinions about

learning software security from watching the videos:

 “It [Video] allows me to attend the lecture on a flexible schedule and move at my own pace.”

It is noteworthy that some technical talks with security topics in the conference are

recorded and provided on YouTube, however, few respondents claimed that they

reached the video and learned about secure programming from it.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

136

“…It costs me much time to watch the conference video full of contents”

“It is good there is transcription. I can search [keyword] on it.”

Reading release notices (security advisories) can be an opportunity for exploring

security knowledge. A security advisory is a way for open source communities to

communicate security information to the public. Usually, it involves updating to a

new release of the code that fixes the security problem. From reading the security

advisory, learners can learn not only security enhancements or changes that are

related to security vulnerabilities but guidance and mitigations that may be

applicable for publicly disclosed vulnerabilities. In Project B, the security-related

issues are kept secret until the advisory is ready to be released, at which point it is

publicized widely so that all developers and users can address it quickly. A

respondent indicated:

“Because it was short, to the point, and very accountable”

B. Reading Source Code

The source code is seen as the actual documentation while the other kinds of

documentation are informally produced to support situated discussion. Reading

source code is a key activity in OSS maintenance. Developers can profitably apply

experiences and reading systems from text databases. Most interview respondents

agree that studying the source code of the project expands the horizons of software

security. The respondents stated that:

“For me, reading source code is about learning new strategies for solving security problems.”

“If you check the PHP code of the Symfony framework, for example, you will know about

dependency injection, events, the model/view/controller pattern, and so on.”

It is found that only code authors have intentions to highlight what they have done about

security in their code via medialization or enough commenting, code reader hardly learn

software security from it. Wide gulf in knowledge and experience between security

experts and beginners can be a barrier to learn software security efficiently from

source code. Some respondents expressed the difficulties in learning security from

source code. Some comments are collected:

“It would take 1 to 2 years [for new contributors] to capture the coding patterns and

algorisms…to understand the meanings behind the code.”

“When I was a junior developer I used to lament the lack of comments in code created by team

members. Now that I am a lot more experienced, many comments tend to clutter up the code

and reduce the comprehensibility.”

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

137

 “If you're a first-time web developer and check on GitHub repository saying something like

"CSRF vulnerability", it can often be hard to tell what exactly that is, what impact it has on

your application, and how to fix it..”

From project management perspectives, since the new code is merged into the main

codebase irregularly, to keep the source code in a good level of readability is a

challenge to OSS maintenance. One respondent of Project A commented:

“We have to spend extra time doing codebase refactoring and commenting, to make the code

cleaner, simpler and readable.”

C. Following mailing list and forum

Mailing lists and forums are common places for community communications to

discuss requirements of the software or development issues, and they are also the

main places to provide support to users. These asynchronous communication

technologies are not only valuable for knowledge creation purposes, but also in order

to make community members think before they act and respond. The respondents

commented about the mailing list and forum (Project B & C):

“Many of my problems are solved by just browsing through other people's questions.”

“…more than questions and answers. The messages contain the path leading to answers to the

question.”

“Though if you look at mailing lists the project has an extensive discussion about the security

architecture whenever somebody has a problem or wishes to change something.”

Some respondents expressed they felt a bit frustrated with the gap between the

community expertise and their own. They either hesitate to ask questions or cannot

catch up the pace of discussions.

“Once you have enough knowledge, it can help.”

Furthermore, threaded discussions could be a barrier to secure programming

learning, especially for the mailing list, as indicated by respondents:

“If you subscribe to a very active list, you could easily pile up several hundred emails in a

day.”

“A lot of irrelevant information to sift through.”

In Projects B, although a mailing list is set up specifically for ‘security’, it is mainly for

vulnerability reporting. Such a mailing list cannot be subscribed by participants, and

can only be accessed by the dedicated members.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

138

D. Engaging in code review

Although in OSS development, a programmer may write a complete program

independently from other programmers, the software component that will be still

examined by other software engineers. Pull requests (PRs) and coding review

represents a form of learning processes in which knowledge is created collectively in

a distributed work process. It might shortly address the role of PRs as being a

workflow mechanism for a developer to notify team members that a feature or fix,

developed on a separate branch, is ready. This lets everybody involved know that he

(or she) can review the code, providing a forum discussing the implementation of the

proposed feature. Questions, answers, and discussions about the issues are

communicated back and forth between the community and the members. The

respondents had the following comments about code review (pull requests):

 “I learned [about security] in this project after constantly getting feedbacks on my pull

requests regarding how this kind of code can go wrong.”

“It [code review] is an effective learning process for me – a chance to see what mistakes I made

and the bad habits that I had usually.”

9.6 Discussion

We summarize and classify the research findings based on the STS model presented

in section 9.2.2. Figure 9.2 gives an overview representation of the socio-technical

model in this study. In the following sections, we give a detailed discussion of each

part.

Figure 9.2: A socio-technical analysis of findings

9.6.2 Self-Directed Learning

Our study found that learning processes of secure programming for OSS developers

are centered on reactive and self-directed learning experiences. OSS learners may

want to learn according to what provokes their curiosity instead, and that may mean

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

139

starting from the middle and proceeding to pick out material in order of interests or

the level of competency instead of what is being defined by a typical structure. The

learning journeys they experience are usually unstructured and non-linear. The

openness and transparency of OSS projects provide an interesting setting for

participants to exercise self-directed learning. In OSS development, participants

usually first try to solve their problems themselves by the mean of available materials

and if required by exploring the web: browsing documentation (guideline, wiki, FAQ,

etc.), studying the source code and engaging in discussion threads. These internet

resources have the advantage to provide the community with an information

infrastructure for publishing and sharing a description of software development in

the form of hypertext, video, and software artifact content indexes or directories.

9.6.3 Learning from Mistakes

OSS developers care more about making the software work eventually rather than

trying to make it work the very first time. When contributing to the projects, they

mostly focus on their immediate goals that usually involve functional requirements

and system performances. Daniela et al. [336] point out that software vulnerabilities

are blind spots in developers’ heuristics in their daily coding activities. They have not

considered the importance of a given function might have to the overall security of

their application until they made mistakes and understand the consequence of the

flaw. The learning ability from mistakes becomes essential in this context.

The processes of pull requests and code review, for example, are important enablers

for developers to reflect their code, take corrective actions and build concrete

experiences, most importantly, learn from the mistakes. As noted by one respondent:

“We cannot write code properly, so we need someone to pair with us to smooth our failures.”

Subsequently, not only members are opened about their mistakes, they share their

experience as learning opportunities for others. This is also helpful for those who have

not yet suffered through the same mistakes on the road. Researchers have also

indicated that engagement with mistakes fosters the secondary benefits of deep

discussion of thought processes and exploratory active learning [404]. When the

correct answer is made to the mistakes, though, and people appreciate that the answer

is correct as well as why that answer is correct, they are able to integrate that

information into memory and improve performance [19].

9.6.4 Non-Unified Security Knowledge Sharing Mechanisms

A major problem we found is a lack of sufficient as well as efficient knowledge

sharing mechanisms for secure programming in OSS communities. Like our study,

the security knowledge is scattered over the community websites (source code,

documentation, wiki, forum, conference pages, etc.), and the quantity of transferred

knowledge is varied by projects. Finding and learning knowledge about secure

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

140

programming becomes a key challenge that is highly dependent on the resources the

community provides. For example, to keep all the code in the repository is in a

consistent style, OSS projects normally publish their own coding guideline, a set of

conventions (sometimes arbitrary) about how to write code for that project. However,

they rarely to address the security requirements in documentation to help drive the

team to understand the prioritized security needs of the entire project. Some security

talks embedded in the recorded video (conference or learning materials) without

proper indication (resource location, topic indexing) also creates a barrier for

participants to learn about secure programming. Newcomers feel that

comprehending systems from exploring the website is hopeless, so they as well prefer

to start with programming. They lose the learning opportunity about the security

requirements of the project and being aware of the possible mistakes they may make

in their code.

9.6.5 The Need for Security Expertise Coordination

People join the OSS community at a different age, with different backgrounds,

different capacities and resources, and with different objectives. The issue of security

expertise levels among OSS development members is critical, especially when

considering a variety of domains of expertise ranging from strategic goal and

problem-solving expertise to trained motor skills and operational expertise. Another

problem is that secure programming is still not a well-known discipline in OSS

communities, so there remains a lot of confusion as to what is secured code and what

the project wants.

In our study, we observe that effective learning firstly results in coordinating

necessary security expertise in the project, which enables a high level of security

knowledge creation and the satisfaction of the learning process. In this study,

expertise coordination is manifested through the two following strategies:

coordinating organizational structure and security infostructure. Every member

involves in OSS development should be concerned with software security, but it is

inefficient to demand each participant taking care of all security aspects. The

coordinating organizational structure serves as subject matter experts to ensure that

security-related issues receive necessary attention in the community. OSS

communities can utilize security experts to define security requirements and best

practices, help perform code reviews, and provides the necessary education for the

software development staff [209]. Through this structural mechanism, security

knowledge is able to gain valuable insights from the organization to facilitate strategic

decision making [229].

The term infostructure is commonly used to describe the infrastructure of information

that is used in multiple disciplines. As indicated by Tilton [439], and infostructure is

the layout of information in a manner such that it can be navigated – it is what’s

created any time an amount of information is organized in a useful fashion. In the

knowledge sharing process, infostructure serves as a role to provide rules, which

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

141

govern the exchange between the actors on the network providing a set of cognitive

resources (metaphors, common language) whereby people make sense of events on

the network [345].

The role of expertise coordination is to provide access to the experience and

knowledge, which help the learners reach their potentials. Software security

knowledge can be abstracted, explicitly represented, codified, and accessed. In OSS

development, security expertise coordination not only facilitates a common

understanding of security requirements but also specializes in the context of the

project development. It helps participants identify the location of the security

information, and the most important for knowledge work, knowing where an answer

to a problem.

9.6.6 Security Culture is the Key

Security culture reflects the belief and values of people that make up the organization.

It is about actively practicing good security habits and making security-minded

decisions [105, 288]. In short, security culture is the way our minds are programmed

that will create different patterns of thinking, feeling, and actions for providing the

security process [7]. It also includes all socio-cultural measures that support technical

security methods in order for making security a natural aspect of organizational

members’ daily activities [397].

Culture shapes what a group defines as relevant knowledge, and this will directly

affect which knowledge a unit focuses on [112]. Similarly, security culture decides

how much security knowledge is disseminated within the community and what

knowledge learners can learn. If an OSS project truly holds a value that software

security is important, then particular behaviors and actions can be expected. Like our

study, the three projects, with different software domains and project stages,

unfolding different security culture: Project A is at the young age and rapid

production of function-based requirements was their strategy; Project B helps educate

the community on writing secure code, and Project C focuses on proactive security

auditing. The security culture backgrounds either at organizational or at the

individual level have impacts on the amount of security knowledge transferred

within the community, further, affecting participants’ learning processes.

9.7 Limitation

The study has some limitations. The observation was conducted in three OSS projects.

It is reasonable to think that observation in several projects, covering more software

types, could have given a more balanced result in the form of highlighting both

hindrances and support for secure programming learning. Data collection and a

major part of the analysis were conducted by the first author. More participation by

different observers could have broadened the view of observations in the OSS

communities.

CHAPTER 9. LEARNING SECURE PROGRAMMING IN OPEN SOURCE SOFTWARE COMMUNITIES: A

SOCIO-TECHNICAL VIEW

142

9.8 Conclusion

This empirical study focuses on exploring learning about secure programming in

open source software communities. Open source software has become a critical

component and a key competency of the information and communication technology

(ICT) ecosystems. While the number of found vulnerabilities in OSS is increasing, it

is noteworthy that knowledge sharing and learning about secure programming in

OSS communities have not gained much attention, and it is necessary to examine why

knowledge-sharing mechanisms have not been effective despite efforts by OSS

projects.

This study first addressed the learning opportunities for secure programming in OSS

communities while investigating how mechanisms for sharing security knowledge

have been implemented. Specifically, this study applied a socio-technical systems

perspective, which systematically and holistically took into account the social context

as well as technological aspects. Based on the socio-technical framework and context,

we then examined the main factors that were once disproportionately considered in

the learning process of secure programming in the context of OSS development and

made suggestions for promoting a more effective as a central role for building robust

software products.

In the context of distributed development, like OSS projects, learning is always to a

great deal an individual exercise. People join the OSS community at a different age,

with different backgrounds, different capacities and resources, and with different

objectives. The fields they came from are from any discipline that might lack formal,

college-level software security training, they do not see an economic incentive for

squeezing security thinking into their works and producing secure code. It is

suggested that OSS communities have to establish rules and norms, roles and

facilities, i.e., to offer opportunities for learning and self-development of secure

programming knowledge for newcomers as well on the horizontal level between the

experienced (but ever-learning) community members.

9.9 Acknowledgment

The author would like to thank Professor Dr. Stewart Kowalski and Professor Dr.

Rune Hjelsvold of Faculty of Information Technology and Electrical Engineering at

Norwegian University of Science and Technology, who have made comments and

suggestions in this paper.

143

Chapter 10

An Empirical Study on
Security Knowledge Sharing
and Learning in Open Source
Software Communities

Wen, Shao-Fang. "An Empirical Study on Security Knowledge Sharing and Learning

in Open Source Software Communities." Computers, 2018, volume 7, issue 4.

Abstract— Open source software (OSS) security has been the focus of the security

community and practitioners over the past decades. However, the number of new

vulnerabilities keeps increasing in today’s OSS systems. With today’s increasingly

important and complex OSS, lacking software security knowledge to handle security

vulnerabilities in OSS development will result in more breaches that are serious in

the future. Learning software security is a difficult and challenging task since the

domain is quite a context-specific and the real project situation is necessary to apply

the security concepts within the specific system. Many OSS proponents believe that

the OSS community offers significant learning opportunities from its best practices.

However, studies that specifically explore security knowledge sharing and learning

in OSS communities are scarce. This research is intended to fill this gap by empirically

investigating factors that affect knowledge sharing and learning about software

security and the relationship among them. A conceptual model is proposed that helps

to conceptualize the linkage between socio-technical practices and software security

learning processes in OSS communities. A questionnaire and statistical analytical

techniques were employed to test hypothesized relationships in the model to gain a

better understanding of this research topic.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

144

10.1 Introduction

Open source software (OSS) is based on the principle that computer programs should

be shared freely among users, giving them the possibility of introducing

improvements and modifications. OSS is at the core of today’s information

technology (IT) infrastructure and information systems; about 80% of companies run

their operations on OSS [330] and 96% of applications utilize OSS as the software

components [50]. OSS is developed collectively by an online community of practices

(CoPs) with a strong relationship between the social and technical interactions in a

decentralized and knowledge-intensive process [198, 245]. Groups of volunteers

participate in communities that are essential for OSS project development. They

collaborate and integrate expertise to solve particular programming problems, as well

as to deliver and maintain the software that is produced by the OSS community [138,

140, 391].

OSS security has been the focus of the security community and practitioners over

recent decades. Many studies have been conducted by both researchers and

practitioners on the mechanisms of building security in OSS development [481].

However, the number of new vulnerabilities keeps increasing in today’s OSS systems.

The Blackduck 2017 Open Source Security and Risk Analysis report announced that

3623 new OSS vulnerabilities occurred in 2016—almost 10 per day on average and a

10% increase from 2015 [50]. These vulnerabilities open some of the most critical OSS

projects to potential exploitation such as Heartbleed and Logjam (in OpenSSL);

Quadrooter (in Android); Glibc Vulnerability (in Linux servers and web frameworks);

NetUSB (in Linux kernel), and many others [272, 357]. With today’s increasingly

important and complex OSS, lacking software security knowledge to handle security

vulnerabilities in OSS development will result in breaches that are more serious in

the future.

Building secure applications is a complex and demanding task that developers often

face. Knowledge of software security is more than simply having a checklist or

reminders of things [31]. It is about understanding the potential security risks that are

induced by the software, and how to manage them [294]. Comparing with proprietary

software development in enterprises, which usually involves formal training and

practices about secure software development, OSS development relies mainly on the

ability of participants themselves to acquire, refine, and use new aspects of security

knowledge to fulfill the needs of their work in the community. Much of an OSS

community’s security knowledge lies within its documents, discussions, decisions,

processes, and the awareness by members of other members’ expertise. Both finding

and learning the security requirements and practices of the project become key

challenges that are highly dependent on the knowledge resources the community

provides. Many OSS proponents believe that the OSS community offers significant

learning opportunities from its best-practices [204, 257], which are different from the

education of traditional models [71, 144]. However, studies that specifically explore

security knowledge sharing and learning in OSS communities are scarce.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

145

As there is still a dearth of empirical research into security knowledge learning in the

context of OSS development, this study intends to fill this gap by empirically

investigating factors that affect knowledge sharing and learning about software

security and the relationships among them. The purpose is twofold. Firstly, we are

interested in obtaining a deeper understanding of how factors complement each other

in shaping security knowledge sharing and learning behavior. Secondly, we suggest

a conceptual framework that includes both social (security culture) and technical

(security expertise coordination) constructs to investigate how OSS communities can

shape this behavior. We attempt to fulfill this purpose by utilizing a questionnaire

survey and statistical analytical techniques on OSS project participants. The data

analysis result is the main contribution of the paper. This is presented as a preliminary

research model, which includes a set of socio-technical constructs that could

potentially describe security knowledge sharing mechanisms and learning processes

in OSS communities.

The rest of this paper is structured as follows. Section 10.2 describes the theoretical

background of the research. The conceptual framework defining the constructs and

hypothesized relationships are depicted in Section 10.3. The research method is

explained in Section 10.4. In Section 10.5, we present the result of data analysis.

Section 10.6 provides a discussion based on the result. We describe the conclusion

and limitation of this study in Sections 10.7 and 10.8 respectively.

10.2 Theoretical Background

10.2.1 Knowledge Sharing

Christensen [207] defines knowledge sharing as a process that exploits existing

knowledge by identifying, transferring, and applying it to solve tasks better, faster,

and cheaper. It is ‘the process of transferring knowledge from a person to another in

an organization’ [347]. Knowledge sharing is a deliberate act that makes knowledge

reusable by other people through knowledge transfer [267]. It is about “how people

share and use what they know” [249] and requires the active engagement of

individuals in a process of interaction and learning [374]. As Nonaka [327] points out,

knowledge is created and expanded through social interaction between people and

their creative activities [327]. Through knowledge sharing, individuals could

exchange tacit or explicit knowledge, hence, together create new knowledge [450].

Terminologies such as ‘knowledge distribution’ and ‘knowledge transfer’ are also

used for referring to knowledge sharing and bring paronomasia; e.g., Haas and

Hansen [186], Christensen [207], Cabrera et al. [66], Wasko and Faraj [475], and

Inkpen and Tsang [215]. Although these definitions and discussions of knowledge

sharing vary from different perspectives, they do deliver a similar core concept,

which is using existing knowledge within the organization to solve problems,

generating new learning, and empowering the organization for innovation.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

146

10.2.2 Knowledge Sharing and Learning in OSS Communities

The purpose of the OSS community is essentially knowledge sharing and

collaboration [268]. An OSS community has been considered as a social leaning CoP

[197, 309, 423], which aims to establish a structure where tacit and explicit knowledge

is shared and exchanged among various members within a given domain to create a

collective value useful to everyone [264, 491]. Developers build the software by

relying on extensive peer production and through the skillful use of the software and

communication tools available on the Internet [260]. They share and acquire

knowledge associated with their profession. Furthermore, OSS communities have

been a source of learning for participants since their creation [416], which offer 24 h,

7 days a week, 365 days support with up to date content and learning materials, and

all of this provided by volunteers at no charge. Therefore, an open source community

is more than about software development, but also provides a rich field to explore the

process of software knowledge creation, accumulation, and dissemination [423].

Knowledge sharing and learning in open source communities have been broadly

studied in the literature. Sowe et al. have introduced a knowledge-sharing model to

develop an understanding of the dynamics of collaboration and how knowledge

sharing is distributed over OSS development teams [422, 424]. Chen, Xiaogang et al.

adopted the perspective of the transactive memory system (TMS) to empirically

examine the possible team cognitive mechanisms that facilitate knowledge sharing in

OSS communities [75]. Their study showed that communication quality positively

influences the knowledge sharing and technical performance of the team. Iskoujina

and Roberts investigated the factors that motivate participants to share their

knowledge in OSS communities and concluded that the quality of management

influences the extent to which the motivations of members actually result in

knowledge sharing [217]. Chen, Xiaohong analyzed key factors affecting knowledge

sharing in OSS projects, which include participative motivation, social network, and

organizational culture [76, 77].

Au et al. explored open-source debugging as a form of organizational learning [25],

which heavily relies on adaptive learning [445] to overcome the complexity of

software. Singh and Holt provided insights on how the OSS community uses the

forums for learning and solving problems. They explored the motivations for joining

OSS communities [416], the learning that occurs in the communities, and the

challenges to learning. Hardi had a case study using the Google Chrome project [190]

to affirm that situated learning [263] is present among open source developers at an

earlier time of a project. Hemetsberger and Reinhardt examined how knowledge

sharing and learning processes develop at the interface of technology and communal

structures of an OSS community [197, 198]. They suggested that knowledge is shared

and learned in OSS communities through the establishment of processes and

technologies that enable virtual re-experience for the learners at various levels. They

viewed learning in OSS communities as experiential learning whereas learning is a

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

147

process whereby learning is created through the transformation of experiences as

developed by Kolb [247].

10.3 Conceptual Framework

The conceptual framework is developed based on the author’s prior ethnographic

study on three OSS communities [483]. The study applied a socio-technical systems

perspective [250], which systematically and holistically took into account the social

context as well as technological aspects. The observation result was analyzed and

categorized with social (culture and organization structure) and technical (method

and machine) aspects. Figure 10.1 depicts the conceptual and theoretical structure

that includes four constructs, namely: security culture, expertise coordination,

security knowledge sharing, and software security learning. The background of the

conceptual framework is described below.

Figure 10.1: The conceptual framework.

10.3.2 Security Culture and Security Knowledge Sharing

Security culture is recognized in the security community and scientific literature as

one of the most important foundations of organizational security. In short, security

culture is the way our minds are programmed to create different patterns of thinking,

feeling, and actions for providing the security process [7]. Security culture is based on

the interaction of people with information assets and the security behavior they

exhibit within the context of the organizational culture in the organization [105].

Security culture involves identifying security-related ideas, beliefs, and values of the

group, which shape and guide security-related behaviors [364]. Martins and Eloff

define information security culture as the perceptions, attitudes, and assumptions

that are accepted and encouraged by employees in an organization in relation to

information security [288]. Ngo et al. suggest that security culture is the accepted

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

148

behavior and actions of employees and the organization as a whole, as well as how

things are done in relation to information security [325]. Therefore, the four main

aspects of security culture formed in this study are:

Belief: An acceptance or a firmly held opinion that security is of value to the

community.

Attitude: A feeling or emotion toward various activities that pertain to the security of

the software product produced by the community.

Behavior: Actual or intended activities and risk-taking actions in secure software

developments.

Subjective norms: A combination of perceived expectations from relevant individuals

or groups along with intentions to comply with security-related expectations.

Organizational culture has been shown to influence the success of knowledge

management practices [112, 124, 132, 150]. Culture shapes what a group defines as

relevant knowledge, and this directly affects the knowledge a unit focuses on [112].

In the context of information security, security culture decides how much security

knowledge is disseminated within the community and what knowledge learners can

learn. The security culture backgrounds either at organizational or individual levels

impact on the amount of security knowledge transferred within the community,

further affecting the participants’ learning processes. Thus, the research hypothesis is

as follows:

Hypothesis H1. Security culture is positively associated with security knowledge sharing.

10.3.3 Expertise Coordination and Security Knowledge Sharing

Expertise coordination is the process of knowledge integration and the outcome of

exchanging and combining knowledge through interactions among team members

[371]. Expertise coordination is believed to serve as an important component of

software development. According to the findings of empirical studies in the

literature, expertise coordination strongly influences project performance, team

effectiveness, and team efficiency in software development projects [134, 222, 252,

440]. This has a bearing on both the physical and virtual development teams [99, 133,

200]. For complex non-routine intellectual tasks, expertise coordination (the

management of knowledge and skill of dependencies) is necessary so that the

software team can recognize where expertise is located, needed, and accessed [134].

A great challenge of security expertise coordination is to combine explicit and tacit

knowledge in all management and security expert decisions, and to get knowledge

moved from individuals within the whole organization between different actors, and

from tacit domain to explicit domain and also vice versa [21]. In this study, expertise

coordination is manifested through the two following strategies: coordinating

organizational structure and security infostructure.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

149

A. Coordinating Organizational Structure

The organizational structure supports the assignment of both technical and human

resources to the tasks that must be done and provide mechanisms for their

coordination [81]. It also establishes and enables strategic- and operational decision-

making, monitoring of performance, and operating mechanisms that transfer

directives on what is expected of organizational members and how the directives

should be followed [81]. The organizational challenges faced by OSS projects are

significant because the project must deal not only with problems faced by any

software development process but also with the complexity of coordinating efforts of

a geographically distributed base of volunteers working on the software [322]. OSS

projects usually utilize security experts to define security requirements and best

practices, help perform code reviews, and provides the necessary education for the

software development staff [209]. The coordinating organizational structure serves as

a subject matter expert to ensure that security-related issues receive necessary

attention in the community. Through this structural mechanism, security knowledge

is able to gain valuable insights from the organization to facilitate strategic decision

making [229].

B. Security Infostructure

The term infostructure is commonly used to describe the infrastructure of information

that is used in multiple disciplines. As indicated by Tilton, an infostructure is the

layout of information in a manner such that it can be navigated—it is what is created

any time an amount of information is organized in a useful fashion [439]. In the

knowledge sharing process, infostructure serves as a role to provide rules, which

govern the exchange between the actors on the network providing a set of cognitive

resources (metaphors, common language) whereby people make sense of events on

the network [345]. In the context of OSS development, developers contribute from

around the world, meet face-to-face infrequently if at all, and coordinate their activity

primarily by means of digital channels on the internet [98, 368]. A proper

infostructure can help learners identify the location of the security information,

knowing where an answer to a problem is located, and acquiring as much knowledge

as possible [358].

Based on the above discussion, the research hypotheses are given as follows:

Hypothesis H2. Expertise coordination is positively associated with security knowledge

sharing.

H2a: Coordinating organizational structure has a positive effect on security knowledge

sharing.

H2b: Infostructure has a positive effect on security knowledge sharing.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

150

10.3.4 Security Knowledge Sharing and Software Security Learning

Learning may be the most strategically valuable dynamic capability [437]. Learning

is the process by which knowledge comes into being and is enhanced over time, and

is therefore intimately associated with knowledge sharing process [297]. Learning

experts argue that online knowledge sharing can be regarded as an important form

of collective learning [377]. In OSS projects, the fundamental functionality for security

knowledge sharing is to capture security experts’ knowledge in the project repository

that other project participants can access and learn about software security.

Knowledge sharing can be facilitated by the project-based organization by using

codification or personalization mechanisms [51].

A. Codification Security Knowledge Sharing

The codification knowledge sharing mechanism captures individual or group-held

knowledge and makes it the wider property of the organization [51], which facilitates

a setting for participants to exercise self-directed learning. The basic functionality for

this knowledge sharing mechanism is to capture security experts’ knowledge in the

project repository that other project participants can access and learn about software

security, which provides a setting for participants to exercise self-directed learning.

Moreover, the internet resources have the advantage to provide the community with

an information infrastructure for sharing codification materials of software

development in the form of hypertext, video, and software artifact content indexes or

directories. These codification materials (documentation, wiki, release notices,

security advisories, source code, etc.) provides the participants with a shortcut for

obtaining an overview of the system or for understanding the code that provides a

particular feature. At the very least, it includes instructions on how to get started and

details of where to find more information.

B. Personalization Security Knowledge Sharing

Personalization knowledge sharing provides communications in another form, as it

is concerned with the use of people as a mechanism for sharing knowledge [24].

Personalization as a knowledge-sharing mechanism has the inherent flexibility of

transmitting tacit knowledge, and allowing for discussions and sharing

interpretations that may lead to the development of new knowledge [51]. OSS

communities adopt various forms of technologies, such as mailing lists, forums, and

Internet Relay Chat (IRC) to support knowledge sharing via personalization

mechanisms. These technologies provide useful means of storage and acquisition for

the communities’ experiential knowledge, given that individuals have a general

preference for obtaining information from other people, rather than from documents

[334]. Although in OSS development, a programmer may write a complete program

independently from other programmers, the software code will be still examined by

other software engineers. The coding review also represents a form of personalization

knowledge sharing mechanism in which knowledge is created collectively in a

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

151

distributed work process. The peer-review process emphasizes the importance of

collecting learning and shared dialogue [423]. During code review, questions,

answers, and discussion about the coding issues are communicated back and forth

between the community and the members. Developers have the opportunity to reflect

their code, take corrective actions and build concrete experiences in the code review

process.

Based on the above discussion, the following hypotheses were made:

Hypothesis H3. Security knowledge sharing is positively associated with software security

learning.

H3a: Codification knowledge sharing has a positive effect on software security learning.

H3b: Personalization knowledge sharing has a positive effect on software security learning.

10.4 Methodology

This research adopted a quantitative approach to a survey research method to

investigate the relationships among security culture, expertise coordination, security

knowledge sharing, and software security learning. A self-administered Web-based

survey was used to collect individual-level perception data from participants in OSS

projects. The use of an OSS participant survey was deemed appropriate to test the

hypotheses outlined in the previous section.

10.4.1 Instruments

The survey instrument used in this study was the outcome of an iterative process of

checking and refinement. The constructs and items used to operationalize the

research were developed following the generally accepted guidelines of reliability

and validity or multiple-item measures [332]. After synthesizing the results of the

literature review, a questionnaire was developed based on the structure of the

research framework. Some survey questions were inspired by existing studies, while

others were created specifically to suit the research context of our study. For the

measurement instrument of key variables, each item was measured on a five-point

Likert scale (Cf. Appendix). The primary references for the constructs and items used

in this study are summarized in Table 10.1.

10.4.2 Data Collection

Samples for the empirical study were randomly collected from participants in OSS

development projects, available on GitHub. GitHub is an online database of open

source software projects. Users and potential contributors can access information

about the projects and download current versions of the software being developed.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

152

As of April 2017, GitHub reports having almost 20 million users and 57 million

repositories [163], making it the largest host of source code in the world [172]. The

anonymous questionnaires were sent via e-mail to a list of OSS participants at the

beginning of August 2017. The data collection period lasted 3 months and 402

questionnaires were completed. Among them, 324 were valid; and another 78

respondents were discarded due to the reason that they did not participate in any

open source community. Table 10.2 shows demographic information about the

sample, which includes gender, age, and seniority in the community and product

categories of the projects.

10.4.3 Reliability and Validity Analysis

Validating constructs is important before any further analysis is conducted. To this

end, reliability and validity tests were carried out following the sequence and

approach that was taken by Straub [429]. Table 10.3 outlines the results of the

reliability and validity tests performed on the survey items. Convergent validity, the

degree to which multiple attempts to measure the same concept are in agreement,

was evaluated by examining the factor loading within each construct, composite

reliability, and variance extracted [4, 187]. We used confirmatory factor analysis

(CFA) with AMOS to examine the convergent validity of each construct. The factor

loadings range from 0.493 to 0.872, and these are greater than the recommended level

of 0.35, which is based on 250 samples and a 0.05 significance level [187]. All

composite reliabilities and variance-extracted measures of constructs exceed the

recommended level of 0.8 and 0.5 each. The reliability of a scale (factor or construct)

is to examine its internal consistency by calculating Cronbach’s alpha. This method

indicates the extent to which items within a scale are homogenous or correlated [27].

Table 10.1: Measurement instrument for key variables in the questionnaire.

Construct Item Reference

Security culture

Belief Security value, cognition

[105]
Attitude Risk-taking, responsibility

Behavior Secure coding, compliance

Subjective Norms Peer influence, expectation

Expertise

coordination

Coordinating structure Security expert, assistance

[67]
Security Infostructure

security website,

navigation, taxonomy

Security

knowledge

sharing

Codification knowledge

sharing

Documentation,

multimedia,
[5]

Personalization knowledge

sharing
Experience, collaboration

Software

security learning

Self-directed learning Exploration, search

[158] Collective learning Feedback, problem-solving

Learning satisfaction Enjoyment, simplicity

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

153

It is also reflective of the consistency between different items on a scale, in measuring

the same attribute. The resulting alpha values ranged from 0.827 to 0.907, which were

above the acceptable threshold (0.70) suggested by Nunnally [332]. From the analyses

mentioned above, it was found that the survey items on each construct met the

requirements for reliability and validity.

Table 10.2: Demographic characteristics of the respondents (n = 324).

Item Category Frequency Percentage

Gender

Male 289 89.2%

Female 23 7.1%

Prefer not to say 12 3.7%

Age

<20 13 4.0%

20–30 147 45.4%

31–40 116 35.8%

41–50 35 10.8%

>50 7 2.2%

Prefer not to say 6 1.9%

Seniority in the

community

<3 months 13 4.0%

3–6 months 17 5.2%

7 months–1 year 47 14.5%

2–3 years 89 27.5%

>3 years 158 48.8%

Product Category

Healthcare, Health Tech 12 3.7%

Science, Geospatial, Astronomy 9 2.8%

Retail & E-Commerce 7 2.2%

Big Data, AI, BI, Machine Learning 22 6.8%

Enterprise Software 11 3.4%

Mobile Apps 19 5.9%

Gaming, Entertainment, Media 13 4.0%

Financial Services 15 4.6%

Development Framework 35 10.8%

Internet, email, browser, content

management
43 13.3%

Database, file system 30 9.3%

Security, firewall, anti-virus, encryption 27 8.3%

Operating system 21 6.5%

Education, knowledge management,

eLearning
19 5.9%

Internet of things 28 8.6%

Others 13 4.0%

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

154

Table 10.3: The convergent validity and reliability test results.

Construct Item

Convergent

Validity

(Factor

Loading 1)

Reliability

(Cronbach’s

α)

Security culture

Belief
Security value 0.727

0.873

Cognition 0.651

Attitude
Risk-taking 0.736

Responsibility 0.814

Behavior
Secure coding 0.801

Compliance 0.735

Subjective norms
Peer influence 0.781

Expectation 0.665

Expertise

coordination

Coordinating

structure

Security expert 0.674

0.827

Assistance 0.523

Security infostructure

Security

website
0.818

Navigation 0.798

Security knowledge

sharing

Codification

knowledge sharing

Documentation 0.746

0.907
Multimedia 0.812

Personalization

knowledge sharing

Experience 0.728

Collaboration 0.727

Software security

learning

Self-directed learning
Exploration 0.831

0.883

Search 0.736

Collective learning

Feedback 0.753

Problem-

solving
0.851

Learning satisfaction
Enjoyment 0.493

Simplicity 0.627

1 Factor loadings are from confirmatory factor analysis.

10.5 Analysis and Result

Statistic software SPSS 24.0 for Windows was used to analyze the data. Pearson’s

correlation analysis and multiple regression analysis were to analyze security culture,

expertise coordination, security knowledge sharing, and software security learning.

10.5.1 Relationship between Security Culture and Security

Knowledge Sharing

This study adopted Pearson’s correlation analysis to determine the correlation

between security culture and security knowledge sharing. Table 10.4 shows that the

correlation coefficient between security culture and security knowledge sharing is

0.671, a highly positive correlation. The correlation coefficients of each of the security

culture factors—belief, attitude, behavior, and subjective norms are 0.591, 0.628, 0.427,

and 0.584 respectively. Regarding the correlation among all security culture factors,

the results show a strong correlation among them that reaches a significant level (p <

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

155

0.01). Thus, security culture has a significant positive correlation with security

knowledge sharing. Hence, hypothesis H1 is proven.

10.5.2 Relationship between expertise coordination and security

knowledge sharing

Table 10.5 indicates that expertise coordination has a significant positive correlation

with security knowledge sharing in which Pearson correlation is 0.400 and p < 0.01.

The correlation coefficients of expertise coordination factors-coordinating

organizational structure and infostructure are 0.628 and 0.584 respectively. The

results showed a strong correlation among all expertise coordination factors that

reached a significant level (p < 0.01). Consequently, the research result favored

hypothesis H2, the stronger coordinating organizational structure and security

infostructure, the higher the security knowledge sharing degree. Hence, H2a and H2b

are also proven valid.

Since expertise coordination has a significant correlation with security knowledge

sharing, this study used multiple-regression analysis to understand the linear

relationship between a group of forecast variables and a valid variable. The multiple-

regression analysis used in this research is shown in Table 10.6. As indicated in the

table, B value, Beta, and t-value have positive values. The prediction equation is based

on the unstandardized coefficients, as follows: y1 = 2.418 + 0.151x3 + 0.217x4 (where x3

is coordinating organizational structure and x4 is security infostructure). All variables

show a positive relationship. Looking at the p-value for each variable, the predictor

variables of coordinating organizational structure and security infostructure not

statistically significant because of both of their p-value greater than 0.05. In this model,

the two factors do not provide a significant impact on security knowledge sharing.

Thus, given the above relationship, hypotheses H2a and H2b are partially supported.

Table 10.4: The correlation analysis for security culture and security knowledge

sharing.

 Security Knowledge Sharing

Security culture
Pearson correlation 0.671 **

Sig. (2-tailed) 0.000

Belief
Pearson correlation 0.591 **

Sig. (2-tailed) 0.000

Attitude
Pearson correlation 0.628 **

Sig. (2-tailed) 0.000

Behavior
Pearson correlation 0.427 **

Sig. (2-tailed) 0.000

Subjective norms
Pearson correlation 0.584 **

Sig. (2-tailed) 0.000

 ** Correlation is significant at the 0.01 level (2-tailed).

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

156

Table 10.5: The correlation analysis for expertise coordination and security

knowledge sharing.

 Security Knowledge

Sharing

Expertise coordination
Pearson correlation 0.400 **

Sig. (2-tailed) 0.000

Coordinating organizational

structure

Pearson correlation 0.376 **

Sig. (2-tailed) 0.000

Security infostructure
Pearson correlation 0.370 **

Sig. (2-tailed) 0.000

 ** Correlation is significant at the 0.01 level (2-tailed).

Table 10.6: The multiple-regression analysis for expertise coordination on security

knowledge sharing.

Model 1
Unstandardized

Coefficients
Standardized Coefficients

Collinearity

Statistics

 B Std. Error Beta t Sig. Tolerance VIF

(Constant) 2.418 0.217 9.878 000

Coordinating

organizational

structure

0.151 0.085 0.128 1.768 0.078 0.414
2.4

16

Security

infostructure
0.217 0.086 0.217 2.514 0.013 0.446

2.2

44

 Dependent Variable: Security knowledge sharing.

10.5.3 Relationship between Security Knowledge Sharing and

Learning Software Security

Table 10.7 indicates that security knowledge sharing has a significant positive

correlation with software security learning in which the Pearson correlation is 0.578

and p < 0.01. The correlation coefficients of security knowledge sharing factors–

codification knowledge sharing and personalization knowledge sharing are 0.491 and

0.455 respectively. The results showed a strong correlation among all security

knowledge sharing factors that reached a significant level (p < 0.01). Thus, security

knowledge sharing had a significant positive correlation with software security

learning. Consequently, the research result favored hypothesis H2: the stronger the

codification and personalization knowledge sharing about software security, the

higher the security learning level. Hence, H3a and H3b are also proven valid.

Tables 10.8 shows the result of the multiple regression analysis. As indicated in the

table, B value, Beta, and t-value have positive values. The prediction equation is based

on the unstandardized coefficients, as follows: y2 = 0.652 + 0.362x5 + 0.216x6 (where x5

is security knowledge sharing and x6 is software security learning). All variables show

a positive relationship. Looking at the p-value for each variable, we can see that the

predictor variables of codification knowledge sharing and personalization

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

157

knowledge sharing are significant because both of their p-value is smaller than 0.05.

This indicates that the regression model fits the data or there is a significant

relationship between predictor variables (Codification knowledge sharing and

Personalization knowledge sharing) and dependent variables (Software security

learning). It also appears multicollinearity is not a concern because the VIF scores are

both less than three. It shows a positive sign which indicates a positive linear

relationship and the result is statistically significant. Thus, given the above

relationship, hypotheses H3a and H3b are proven valid.

Table 10.7: The correlation analysis for security knowledge sharing and software

security learning.

 Software Security

Learning

Security knowledge sharing
Pearson correlation 0.578 **

Sig. (2-tailed) 0.000

Codification knowledge sharing
Pearson correlation 0.491 **

Sig. (2-tailed) 0.000

Personalization knowledge sharing
Pearson correlation 0.455 **

Sig. (2-tailed) 0.000

 ** Correlation is significant at the 0.01 level (2-tailed).

Table 10.8: The multiple-regression analysis for security knowledge sharing on

software security learning.

Model 2
Unstandardized

Coefficients
Standardized Coefficients

Collinearity

Statistics

 B
Std.

Error
Beta t Sig.

Toleranc

e
VIF

(Constant) 0.652 0.257 2.539 0.012

Codification

knowledge sharing
0.362 0.056 0.361 6.46 0.000 0.823

1.21

5

Personalization

knowledge sharing
0.216 0.069 0.196 3.139 0.002 0.661

1.51

4

 Dependent Variable: Software security learning.

10.6 Discussion

In this study, the research hypotheses are proposed with a conceptual framework,

which was validated through conducting empirical examinations including survey

question design, questionnaire data collection, validity and reliability testing, and

correlation and linear regression analysis among 22 items in 324 valid questionnaires.

The testing results of the research hypotheses are summarized in Table 10.9.

According to the result of the Pearson’s correlation analysis (Table 10.4), there is a

significant positive relation between security culture and security knowledge sharing.

This means that if an OSS project truly holds the value that software security is

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

158

important, then particular security knowledge sharing behaviors and actions can be

expected. The more perceived normative support for security culture in their

community means that participants are more likely to perform exemplary secure

behaviors and avoid risk. As the security culture would certainly influence the

operation activities of security knowledge sharing and further impact on the

effectiveness of software security learning, the community should regard security

culture as an important factor for supporting and guiding security practices.

Regarding the relation between expertise coordination and security knowledge

sharing, this study finds that security expertise coordination is associated with the

degree of security knowledge sharing. According to Pearson’s correlation analysis

(Table 10.5), there is a significant positive relation between security expertise

coordination and security knowledge sharing. Moreover, when the factors of

expertise coordination are more significant, they meaningfully affect security

knowledge sharing, as evidenced by the significant variance explained by the

regression analysis (Table 10.6). This implies that if the factors of expertise

coordination—coordinating organizational structure and security infostructure are

more efficient and effective—they can significantly enhance security knowledge

sharing. Although the two factors do not have a significant correlation with security

knowledge sharing in the regression model, they still have positive coefficients.

Achieving a successful software system requires tight coordination among the

various efforts involved in the software development cycle [252]. If OSS communities

can provide an internal security consulting organization with dedicated responsible

people for security activities, and place the security information in a structured and

collected manner, it will lead to a knowledge-sharing arrangement actually being

established.

Table 10.9: Testing results of research hypotheses.

Hypothesis. Result

H1. Security culture is positively associated with security knowledge sharing. Supported

H2. Expertise coordination is positively associated with security knowledge

sharing.

Supported

H2a: Coordinating organizational structure has a positive effect on security

knowledge sharing.

Partially

supported

H2b: Infostructure has a positive effect on security knowledge sharing. Partially

supported

H3. Security knowledge sharing is positively associated with software security

learning.

Supported

H3a: Codification knowledge sharing has a positive effect on software security

learning.

Supported

H3b: Personalization knowledge sharing has a positive effect on software security

learning.

Supported

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

159

On the other hand, our regression model also provides strong support for a significant

contribution of security knowledge sharing to the software security learning process.

The result of the Pearson’s correlation analysis (Table 10.7) shows a significant

positive relation between security knowledge sharing and software security learning.

Moreover, as evidenced by the significant variance explained by the regression

analysis (Table 10.8), while codification and personalization knowledge sharing is

more significant, software security learning is significantly and positively affected. In

the context of OSS communities, codification can be a good mechanism to store large

amounts of security knowledge on the project website and to create an organizational

memory for all participants. The method of personalization knowledge sharing

reflects security experts’ experience (via the forum, mailing list, code review, etc.)

which collectively produces knowledge that can be spread further to the individuals

or the whole team. The two knowledge-sharing mechanisms create a digital pipeline

or an intelligent link for knowledge building that appears to support the software

security learning process. As the community provides opportunities for its members

to share security knowledge or experiences with others, which increases the amount

of knowledge sharing, it should stimulate software security learning.

10.7 Conclusions

This empirical study focuses on investigating the organizational practices and

behaviors that affect knowledge sharing and learning about software security in OSS

communities, and the relationships among them. OSS has become a critical

component and a key competency of information and communication technology

(ICT) ecosystems. While the number of found vulnerabilities in OSS is increasing, it

is noteworthy that effective learning about security knowledge in the context of OSS

development has not gained much attention. Thus, it is necessary to examine how the

security knowledge is transferred and acquired by OSS participants.

As Scacchi points out, the meaning of open source in the socio-technical context is

broader than its technical definition and includes communities of programming

practice, organizational culture and structure, and technical practices [390]. This can

be viewed as a necessary condition within a learning framework as both social and

technical aspects are of equal importance. This research proposes a model that helps

conceptualize the linkage between such socio-technical practices and the software

security learning process in OSS communities. We gathered empirical evidence from

324 questionnaires and quantitatively analyzed data to test the hypothesized

relationships in the model.

The statistical analysis shows that both security culture and the coordination of

expertise can positively influence and contribute to security knowledge sharing at a

certain level in OSS communities. Security culture provides a strong indication of a

participant’s disposition to act. It is important because unless the community believes

that security is valuable to the software product, participants are unlikely to work

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

160

securely and exchange their experiences in the field of software security. Indeed,

every member involves in OSS development should be concerned with software

security, but it is inefficient to demand each participant taking care of all security

aspects. Hence, in order to enhance security knowledge sharing, a community should

cultivate a culture that engages dialogue and interest among participants in order to

promote the value of software security to their products and raise awareness. If OSS

communities can nurture a security culture, it will be easy for them to create an

environment where developers and users are willing to share and talk about software

security, providing the opportunity to draw lessons from each other’s experiences.

On the other hand, as OSS and its communities continue to grow in size and

complexity, security expertise coordination within the community plays a larger role

in security governance. While security information is provided with an adequate

coordinating structure and infostructure support in the community, the

implementation of security knowledge sharing throughout the community can be

instilled in its culture. This study also concludes that the learning process (self-

directed and collective learning) of software security and learning satisfaction is

definitely influenced by security knowledge sharing. It indicates that the successful

sharing of security knowledge in the OSS community, either through codification or

personalization mechanisms, will enable software security learning to flow through

an entire community.

People join the OSS community at different ages and have different backgrounds,

capacities, and resources, as well as different objectives. They come from many

disciplines that might lack formal, college-level software security training, and

therefore do not see any economic incentive for squeezing security thinking into their

work to produce secure codes. On the other hand, learning software security is a

difficult and challenging task as the domain is rather context-specific, and the real

project situation is necessary to apply the security concepts within the specific system.

It is suggested that OSS communities must establish beliefs and norms, as well as

roles and knowledge facilities for secure software developments; i.e., to offer

environments and opportunities for security knowledge sharing and the

development of software security knowledge for participants as well on the

horizontal level between the experienced (but ever-learning) community members.

Ultimately, the contributions of this research supply researchers with a conceptual

framework for software security knowledge sharing and learning in the OSS

community in a thorough manner, providing a context in which to operate. The study

also provides other researchers with a firm basis to develop new security learning

approaches for OSS communities, addressing many of the identified limitations.

10.8 Limitations

Several limitations of this research should be noted. Despite a rigorous examination

of the trustworthiness of the collected data, this study might have some method bias.

CHAPTER 10. AN EMPIRICAL STUDY ON SECURITY KNOWLEDGE SHARING AND LEARNING IN

OPEN SOURCE SOFTWARE COMMUNITIES

161

First, the samples were chosen opportunistically from GitHub projects, and the

number of responses obtained from the survey was rather small compared with

today’s enormous OSS projects and field workers. Second, even though there are

other known human factors that facilitate security knowledge sharing behaviors in

organizations as Safa and Von Solms suggested, this study did not consider factors

such as motivation or intention in OSS communities [385]. Thus, there is a need for

further research efforts focused on accumulating more evidence that is empirical and

data to break through the limitations. These efforts should improve the

generalizability of this study to the entire OSS development phenomenon by

considering a larger number of responses covering a range of diverse OSS projects. In

addition, special attention should be geared toward finding the human factors, which

affect independent variables such as reputation, self-efficacy, and promotion.

162

163

Chapter 11

Towards a Context-Based
Approach for Software
Security Learning

Wen, Shao-Fang and Katt, Basel. “Towards a Context-Based Approach for Software

Security Learning.” Journal of Applied Security Research. 2019, volume 14, issue 3, pp.

288-307.

Author Contributions— Initial conceptualization and framework of the research

were developed by Shao-Fang Wen. The research methodology and experimental

design and were reviewed by Basel Katt. The manuscript was largely written by Shao-

Fang Wen.

Abstract— Learning software security is one of the most challenging tasks in the

information technology sector due to the vast amount of security knowledge and the

difficulties in understanding its practical applications. Conventional teaching

approaches give little attention to how to improve the effectiveness of learning in the

domain of software security. Context-based learning has been proven to be a sound

pedagogical methodology; however, it is still unclear how to synthesize the

prescription in the domain of software security. In this paper, a context-based

approach to software security learning is proposed for structuring and presenting

security knowledge. To evaluate the proposed approach, a quasi-experiment was

designed and executed in the setting of a university learning environment. The

experiment results indicate that the proposed context-based learning approach not

only yields significant knowledge gains compared to the conventional approach. but

also gains better learning satisfaction of students

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

164

11.1 Introduction

Information technology is one of the world’s fastest-growing industries. In fact, the

rate at which software and software products are evolving is many times greater than

the rate at which software security is evolving. According to CVE vulnerability data

[102], the number of software vulnerabilities disclosed in 2017 grew by 128%

compared to the number in 2016, reaching an all-time high of 14,714. In an age of

cybercrime, some of the most widespread software-based crimes include stealing

information via hacking, carrying out virus attacks to take down computer systems

and implanting spyware with the intent to watch a person or his or her computer

activities. Due to the increasing importance and complexity of computer systems,

insufficient knowledge and skills related to software security will result in more

serious breaches in the future.

Software security knowledge is multifaceted and can be applied in diverse ways

[294]. Learning software security is a complex and difficult task because learners must

not only deal with a vast amount of knowledge about a variety of concepts and

methods but also have to demonstrate the applicability of the knowledge through

experience in order to understand their practical use. Conventional security learning

materials are usually subject-oriented, which is useful for rote memorization of a

specific subject or for information recall later. However, such an approach makes it

difficult for learners to understand the rationale of the topics and correlate those

topics with real software cases. Learners often feel that security knowledge is so

extensive and software security is so difficult to achieve that they simply cast it aside

[23].

In traditional software security teaching, little attention is given to what the

security knowledge really means to learners, and there is not much content

addressing the connections between real-world situations and security

concepts. According to Jonassen and Land [224], “...learners must be

introduced to the context of the problem and its relevance, and this must be

done in a way which challenges and engages them. Context and the particulars

of that context can provide a powerful motivation for learning”[352]. If learners do

not learn the knowledge well in the first place, they cannot possibly transfer it to new

situations [90]. We argue that, in order to regulate learning about software security

effectively, security knowledge should be contextualized and embedded in a

meaningful scenario that makes sense to the students to enhance their understanding

and make the concepts more relatable.

The introduction of context in security education attempts to bridge the gap between

abstract concepts and everyday life, in order to show students or security learners the

relevance of science for their own lives and interests and to improve their motivation

for learning about security content. The concept of learning in context has been

widely addressed in education and psychology literature over the years, and the

effectiveness of context-based learning has been demonstrated in the setting of

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

165

interactive school classrooms. However, it is still unclear how this concept can be

synthesized and applied in the domain of software security. To mitigate this research

gap, we proposed a context-based approach to structure security knowledge and

facilitate software security learning in a way that can motivate learners. We

conducted experiments to evaluate the effectiveness of this approach in the setting of

a university learning environment. This paper presents the rationale of the proposed

approach and the findings of our experimental studies.

11.2 Conventional Security Learning Materials

In conventional security learning materials, the knowledge content is commonly

organized topically, focusing on security aspects. One approach may first introduce

attack patterns or security vulnerabilities (the black-hat side), such as Cross-Site

Scripting (XSS) and SQL injection (SQLi), while another might start with secure

design practices or coding standards (the white-hat side), such as input validation

and output encoding. The security-centric materials are often written in the form of a

reference manual or a guide to a particular security certification. Learners usually

finish reading such materials with little understanding of the context in which the

security knowledge should be applied. This relates to what is known as the knowing-

doing gap; that is, knowing better but not doing better.

On the other hand, security learning materials usually emphasize concepts first rather

than facts or context to transmit knowledge. Consequently, learners may struggle to

finish reading them due to a learning style mismatch. Several studies [136, 291, 292]

have shown that the majority of engineering students are sensor-type learners, who

like facts, data, and observable phenomena as opposed to theoretical abstractions.

Since many security tasks require awareness of one’s surrounds, attentiveness to

detail, experimental thoroughness, and practicality, the learning material presented

must provide meaning and motivation for learners, allowing them to learn security

principles and processes through a real-world situation that is of particular interest

to them.

11.3 General Concepts of Context-Based Knowledge for

Learning

According to Oxford Dictionaries37, context is defined as “The circumstances that

form the setting for an event, statement, or idea, and in terms of which it can be fully

understood.” Meanwhile, Dey [117] defined context as “a set of information used to

characterize the situation of an entity.” Nonaka and Konno [328] noted that

knowledge reflects a particular stance, perspective, or intention in accordance with

the characteristics of a specific context, which is different from information.

Knowledge comes from a variety of contexts, and it cannot be accurately understood

37 https://en.oxforddictionaries.com/definition/context

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

166

without context [58, 242]. Without proper contextual information, knowledge can be

isolated from other relevant knowledge, resulting in limited or distorted

understanding [61, 169]. Since context can provide guidance regarding when, where,

and why a piece of knowledge is used, it is crucial to consider the context to enhance

the applicability of the knowledge.

Context can increase the information content of natural language utterances and

facilitate learning [57, 59]. Psychology and education researchers have demonstrated

that when knowledge is learned in a context similar to that in which the skills will

actually be needed, the application of the learning to the new context may be more

likely [117, 122, 352]. Predmore [360] showed that learning about knowledge content

through real-world experience is important because “once [students] can see the real-

world relevance of what they’re learning, they become interested and motivated.”

The book How People Learn [90] also pointed out that motivation is critical for

learning, enabling knowledge transfer to occur. If students do not learn the material

well in the first place, they cannot possibly transfer it to new situations. As stated in

the book “Learners of all ages are more motivated when they can see the usefulness

of what they are learning and when they can use that information to do something

that has an impact on others” [90] (page 49).

Bennett and Lubben [38] offered a definition of a context-based approach to science

education: “Context-based approaches are approaches adopted in science teaching

where contexts and applications of science are used as the starting point for the

development of scientific ideas.” The authors reported that context-based science

courses motivate students and help them become more positive about science by

representing real-world situations of the learning subject. When students are more

interested and motivated by the experiences they are having in their lessons, their

increased engagement may result in improved learning [38]. In computer science

education, there is also a broad agreement that teaching units should start from a

“real-world” context or phenomenon, aiming to create connections to prior

knowledge, increase the relevance of the material to students, or show applications

of the intended knowledge, thereby increasing motivation [120, 184]. These contrast

with more traditional approaches that cover abstract ideas first, before looking at

practical applications.

Likewise, in software engineering, studying in one context and then abstracting the

knowledge gained for use in a new context is a common way of learning

programming that has been observed extensively in both new and experienced

programmers [23, 243]. In order to capture and use security knowledge appropriately,

it is necessary to first specify which context information is to be handled. Then, it

must be represented in a format that is understandable and acceptable to the

individuals. Thus, a context for a software security topic includes the circumstances

in which its technical content exists. Therefore, when talking about software security

in a given context, the knowledge would not only include the basic principles and

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

167

processes of software security but also consider how security knowledge is used in

one or more particular domains or application areas.

11.4 The Proposed Context-Based Approach

To facilitate contextual learning about software security, we proposed a context-

based approach to structuring and presenting software security knowledge using

three strategies: (1) Using a meaningful application scenario; (2) Simulating learners’

mental models for security learning, and (3) Moving from concrete to abstract security

knowledge. Figure 11.1 shows the conceptual view of the proposed context-based

learning approach with three strategies.

Figure 11.1: A conceptual representation of the proposed learning approach for

software security

11.4.2 Starting with a Meaningful Scenario

Contextualized learning often takes the form of real-world examples of problems that

are meaningful to the learners personally [373]. To begin the process of learning, a

meaningful situation for learners must first be established. In our approach, we set

the application context as the starting point for learning security concepts on a need-

to-know basis. Figure 11.2 presents the main components of the application context,

which include application paradigms, application functionalities, and application

scenarios. The application paradigm is a combination of security-independent data

that characterize software applications; for example, the domain area that the

application belongs to or the technologies that the application uses. The software

functionality represents any aspect of software applications that can perform for users

or other systems in a particular paradigm, such as dynamically generating HTML in

web applications and cleartext transmission of sensitive information in network

applications. Under a given application paradigm and functionality, a series of

scenarios are identified, each of which deals with one specific scenario in the context.

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

168

Figure 11.2: Components of the application context

A scenario is made up of practical demonstrations of the pre-described application

functionality and the code fragments behind it that bridge the corresponding security

knowledge. In this manner, a scenario constitutes a form of an anchoring event [85],

which provides an experiential practice in software development from which learners

can relate to new information about the security. Research has shown that using

anchoring events in learning promotes memory recall and the subsequent transfer of

information to a new setting [85], which helps to render abstract ideas more

concretely and thus provides a cognitive mooring around which newly learned ideas

can be linked with learners’ prior understandings [86]. When learners see applications

and software function with the code they are already familiar with, (i.e., the anchor

event), the consequence of exploiting vulnerabilities hits close to them and becomes

more real, further motivating them to learn.

11.4.3 Stimulating Mental Models for Learning

In order to help learners create a strong and lasting bond that makes navigating the

security knowledge efficient, we developed a knowledge structure to guide them in

approaching personal mental models in the software security domain. Mental models

combine a schema or a knowledge structure with a process for manipulating the

information in the memory [304], while knowledge structure interrelates a collection

of facts or concepts about a particular topic. Craik [94] suggested that the human mind

builds and constructs “small-scale models” to anticipate events. Such mental models

allow learners to gain insight regarding their world by building a work scheme [160],

which makes it easier for them to access the information needed to understand the

knowledge domain, make predictions, and decide upon action to take [379]. This can

result in successful learning by engaging students, fostering their concentration, and

assisting them in organizing systemic information [402].

To design a security knowledge structure (schema) that is easier to store in the

learners’ memory, we simplified the schema and reduce the content load of the

knowledge structure. We identified the critical security concepts that are most widely

used throughout the security domain and concentrated learning approaches on them.

Ultimately, three security concepts were incorporated into the knowledge structure:

security attack, security weakness, and security practice. Table 11.1 provides the

definitions of the three security concepts. Generally, our intention was to guide

learners in answering three questions while dealing with each scenario:

• What are the possible attacks?

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

169

• Why does it encounter attacks?

• How can these attacks be prevented?

Table 11.1: The definition of security concepts and the corresponding focus

questions

Security concept Definition

Security Attack It represents actions taken against the software case with the

intention of doing harm.

Security Weakness It represents bugs, flaws, vulnerabilities, and other errors in

the software case.

Security Practice It represents methods or mechanisms to mitigate security

weaknesses to prevent security attacks.

Figure 11.3 illustrates the relationships between the concepts embedded in the

proposed knowledge structure in the domain of software security. The knowledge

structure provides the basis for the development of mental models in learning

software security knowledge. As learners answer the what–why–how questions for

each scenario, the relationships between the security concepts are emerging in their

midst, and thus, their mental model expands.

Figure 11.3: The relationship among security concepts of the knowledge structure

11.4.4 Moving from Concrete to Abstract Security Knowledge

Security Knowledge can be categorized as concrete or abstract facts, events,

applications, conceptual descriptions, and principles. To help learners gain a more

flexible understanding of the study concept in a range of situations with varying

levels of abstraction, we organize security knowledge by blending abstract and

concrete perspectives; presenting it with a sequence from concrete to abstract. In our

study, abstract knowledge refers to the conceptual security domain knowledge while

concrete knowledge relates to the contextualized scenario-specific security

knowledge. Research has shown that presenting knowledge in both concrete and

abstract terms are far more powerful than presenting either one in isolation [348].

Lave and Wenger [264] also argued that abstract and generalized knowledge gains its

power through the expert’s ability to apply it in specific situations.

The used concrete-to-abstract approach in knowledge presentation differs from the

traditional, where the concepts are of foremost importance and are usually explained

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

170

first before concrete examples and applications are discussed. Figure 11.4 depicts the

learning paths that are constructed by the proposed context-based approach. In such

a concrete-to-abstract knowledge presentation, learners discover meaningful

relationships between practical functions and abstract knowledge in the context of

real applications. The value of concrete representations has been frequently noted in

education. Concrete materials can support abstract reasoning because they can be

explicitly designed to promote true inferences from perceptual representations to

abstract principles [35]. A method known as concreteness fading [170] has the

advantage of initially presenting concepts in a concrete fashion and then, over time,

augmenting that initial presentation with progressively more abstract representations

of the concepts. Abstract understanding is most effectively achieved through

experience with perceptually rich, concrete representations [171], while concrete

materials make concepts real and therefore easily internalized [226]. As long as the

concrete knowledge and the underlying abstract explanation are understood by

learners, learning transfers from one context to another will be more effective.

Figure 11.4: The constructed learning path based on the context-based approach

11.5 Study Method

To evaluate the proposed approach, a quasi-experiment with non-equivalent groups

was designed and executed in the setting of a university learning environment. Our

hypothesis in this study was:

Hypothesis: The context-based approach to supporting students’ software security learning

yields better knowledge gain and learning satisfaction than the conventional learning

approach.

Two rounds of experiments with learning subjects related to Web Security were

conducted with Bachelor students; each round lasted for about 70 minutes. According

to the hypothesis, the variables in this experiment were defined as followings:

• Independent variables: The learning approaches (i.e., conventional vs.

contextualized).

• Dependent variable: The security knowledge gain and learning satisfaction

were measures providing insight into the effectiveness of the two approaches.

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

171

In this section, the sources of data, the tools used for data collection, the participants,

and the experimental procedure are briefly outlined.

11.5.1 Participants

The participants were 42 Bachelor students from the fifth semester (third year), who

were taking the “Software Security” course. The students were from two main study

programs: Bachelor in IT Operations Information Security and Bachelor in

Programming.

11.5.2 Treatments

In this study, we designed two types of learning materials in a printed format as the

experimental treatments, which were named type I and type II. The type I material

used a conventional approach while type II adopted the proposed context-based

approach to organizing software security knowledge. Regarding the learning subject,

we used two common software vulnerabilities in web applications: SQLi and XSS.

The materials were constructed using resources on the internet (e.g., OWASP and

CWE) combined with the authors’ teaching experience in the domain of software

security. In the type I material, information was presented in the order of abstract to

concrete. Conceptual knowledge about the vulnerability subject was described first,

followed by examples with code fragments. Mitigations for the vulnerabilities were

explained in the last section.

For the construction of the type II learning materials, we first set up the learning

environment in a web application paradigm—an e-Store—using the LAMP38 web

service stack. For this specified context, the author developed a preliminary set of

functionalities to operate a web-based e-Store application, including a login module,

data input/output features, data processing, database access, and payment functions.

Three critical application scenarios were created for each of the learning subjects

within the scope of the e-Store functionalities. In the learning materials, functional

features with the corresponding code fragments for each scenario were described and

demonstrated in the beginning, followed by the security knowledge, which was

organized based on the predefined knowledge structure (i.e., security attack, security

weakness, and then security practice). Knowledge content for each security concept

was presented in the order of concrete to abstract. All content demonstrating concrete

knowledge was manipulated using the built application, including coding

vulnerabilities, exploits, and code fixes.

Figure 11.5 shows the simplified view of the two types of learning materials in the

subject of SQLi vulnerability. In terms of the type II material, three scenarios were

38 LAMP is an open source web service stack that uses Linux as the operating system, Apache as the

web server, MySQL as the relational database management system, and PHP as the object-oriented

scripting language.

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

172

introduced under an abstract functionality, “Accessing database using user-supplied

data,” which formed as the anchoring event for subsequently studying relevant

security knowledge.

(a) Type I material

(b) Type II material

Figure 11.5: The simplified view of two learning materials for SQLi vulnerability

11.5.3 Data Collection

To collect data and measure the dependent variables, two types of instruments were

used: pre- and post-tests and survey questionnaires. Pre and post-test sheets were

developed to measure the learning gain (post-test/pre-test), in which items were

created covering two types of security knowledge: theoretical and practical. The

theoretical items focused on recalling and understanding conceptual security

knowledge. The practical items required students to identify possible attacks in a

given software context, mark coding errors in code fragments, and apply knowledge

to different situations. The pre- and post-tests were similar except for the formulation

of some questions, their order, and the answer options. Four test sheets (pre- and

post-test for two rounds) were generated to assess the students’ level of knowledge

before and after the learning sessions. In each test sheet, there were 10 questions (6

theoretical and 4 practical), and the value for each question was five points.

We designed a survey questionnaire to collect students’ perceptions of the two

learning materials. Students were asked six questions for each type of learning

material, which we used to measure the learning satisfaction factors, including

interest creation, content fulfillment, learning efficiency, experience correlation,

positive attitude, and personal satisfaction (Table 11.2). In this questionnaire, all

respondents were required to choose the answer that reflected their own views and

stance on the statements that were administered in accordance with a 5-point Likert

scale, ranging from “strongly disagree” to “strongly agree.”

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

173

Table 11.2: Questionnaire items for measuring learning satisfaction

Factor Question

Interest Creation I feel that the material is interesting when I get into it.

Content Fulfillment The material provides knowledge content that fits my needs

precisely.

Learning Efficiency The material helps me learn secure programming efficiently.

Experience Correlation I could relate what I learned from the material to what I have

already known or experienced before.

Positive Attitude The material helps me foster a positive attitude towards learning

about secure programming.

Personal Satisfaction I find that at times studying the material gives me a feeling of

personal satisfaction.

11.5.4 Experimental Procedure

The students were divided into two groups (group A and group B) after being seated

in the classroom. They were first introduced to the main objectives of the experiment

and informed of the procedure. Both rounds of experiments were performed with a

similar experimental procedure. Table 11.3 shows the learning subject arrangement

and the dispatch rule of learning materials in each round/group. In the first round,

students were given test sheets (pre- and post-test) and learning materials for the

subject of SQLi. Students in group A studied type I learning the material, while group

B studied type II material. In round 2, the learning subject was changed to XSS, and

we switched the type of learning material treated in the two groups. With the two-

round experiment design, all students were able to experience both learning materials

and thus the differences between the two. The major experiment steps in each round

were as follows:

Step 1: Pre-test (15 minutes)

Step 2: Learning session (40 minutes)

Step 3: Post-test (15 minutes)

There was a 10-minute break between the two rounds. At the end of the second round,

students completed the learning satisfaction questionnaire. This ended the

experimental procedure.

Table 11.3: Learning materials dispatching rules

Treatment

Round 1 (SQLi) Round 2 (XSS)

Group A Type I Type II

Group B Type II Type I

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

174

11.6 Findings

In this section, we present the findings of the experiment, including an evaluation of

the students’ knowledge gain and learning satisfaction.

11.6.1 Knowledge Gain

The students’ knowledge gain in the different types of materials was determined

using a comparative means analysis. Table 11.4 presents the means analysis of the

students’ performance on the pre- and post-tests in each round of the experiment,

including the mean scores and standard deviations. The results of the statistical

analysis show that there was a positive knowledge gain (i.e., post-test to pre-test

score) for both groups in both rounds. However, the group using type II materials

had higher achievement levels than the group using type I materials, as shown in

Figure 11.6.

To determine whether there was a significant difference between the pre-test

performances of group A and group B, an independent sample t-test was used. Table

11.5 shows the t-test analysis for the pre-test means scores in the first round. The

significance level (0.628) of Levine’s test for equal variance was greater than 0.05,

indicating “Equal variance assumed.” Levine’s test resulted in a “Sig. (2-tailed)” value

of 0.137, which was above 0.05. Therefore, the null hypothesis of the independent

sample t-test was rejected (p > 0.05), which implies that there were no significant

differences between the two groups in terms of pre-test scores (i.e., the initial security

knowledge) so that the significance of the knowledge gain can be concluded).

Table 11.6 shows the independent sample t-test results in the first round for the post-

test mean scores. Moreover, the difference between the post-test mean scores of the

two groups is significant (2-tailed sig. = 0.02, p < 0.05). This indicates that our

treatments resulted in a significant difference in security knowledge gain in the two

groups of students.

Table 11.4: Comparative means analysis of students’ performance on the pre- and

post-tests

 Group A Group B

Round N Mean SD N Mean SD

1 Pre-test 20 26.75 5.20 22 24.32 5.19

Post-test 20 29.50 6.90 22 33.86 4.86

2 Pre-test 20 21.75 8.78 22 20.00 9.26

Post-test 20 26.25 6.90 22 30.91 8.54

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

175

Figure 11.6: Knowledge gain for the two groups in each round of experiments

Table 11.5: Independent sample t-test results for pre-test scores (1st round)

Levine's Test t-test

F Sig.

t df

Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

Pre-Test Equal variances

assumed

0.238 0.628 1.516 40 0.137 2.432 1.604

Equal variances not

assumed

 1.516 39.601 0.138 2.432 1.605

Table 11.6: Independent sample t-test results for the post-test scores (1st round)

Levine’s Test t-test

F Sig.

t df

Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

Post-Test Equal variances

assumed

2.415 0.128 -2.413 40 0.020 -4.414 1.829

Equal variances not

assumed

 -2.374 33.793 0.023 -4.414 1.859

We performed the same statistical analysis for the pre- and post-test scores in round

2 (Table 11.7). As can be seen in Table 11.7, there was also no significant difference in

the pre-test scores in the two groups (2-tailed Sig. = 0.534, p > 0.05). The post-test 2-

tailed Sig. was 0.032, thus achieving significant and indicating that the post-test score

would also be affected by treatments in round 2.

Table 11.7: Independent sample t-test for pre- and post-test score (2nd round)

Levene's Test t-test

F Sig.

t df

Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

Pre-Test Equal variances assumed 0.012 0.913 0.627 40 0.534 1.750 2.791

Equal variances not

assumed

 0.629 39.921 0.533 1.750 2.784

Post-Test Equal variances assumed 0.063 0.802 2.220 40 0.032 5.341 2.406

Equal variances not

assumed

 2.243 39.431 0.031 5.341 2.381

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

176

11.6.2 Learning Satisfaction

The learning satisfaction for the two learning materials is represented as a radar chart

with six axes (Figure 11.7). As depicted in the chart, the type II material had overall

higher learning satisfaction mean scores than the type I materials in terms of the six

satisfaction factors. Regarding the data series of the type II materials, the score of the

six satisfaction factors were all above 4. Almost all of the responses regarding the type

II were at least 3, and responses of 1 and 2 were rare. Of these, the mean scores of

“Interest Creation” and “Experience Correlation” were the highest (4.33 and 4.29,

respectively). In contrast, the scores of the two factors in the type I materials had the

lowest mean scores (i.e., 2.81 and 2.83, respectively). The mean scores of the four other

satisfaction factors evaluated for the type I materials were all approximately the same

(3).

Figure 11.7: Radar diagram for learning satisfaction scores

11.6.3 Additional Findings

In this study, we were also interested in how the students performed with theoretical

and practical questions when they were presented with type II learning materials.

According to Table 11.8, students performed better in the pre-test on theoretical

questions than on practical ones in terms of hit rate (overall hit rate: 54.70% vs.

33.13%). After the type II materials were presented there was a knowledge gain in

either the theoretical or practical questions. The average hit rates of both categories in

the post-test reached the same level. In the first round, they fell to between 65% and

70%, while they were between 70% and 75% in the second round. Regarding the

growth ratio of the mean scores from the pre-test to the post-test, it is clear that the

students had better achievement with practical questions (110.29%) than with

theoretical questions (28.74%).

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

177

11.7 Discussion

The objective of this study was to evaluate a context-based approach to improving

learning about software security. A two-round pre-test/post-test experiment was

used to measure the students’ security knowledge gain, and a questionnaire was used

to evaluate their learning satisfaction. The results of the pre-test/post-test experiment

indicate an increase in the students’ level of security knowledge for both the

conventional and context-based approaches. According to the statistical t-test

analysis, there was no significant difference between the two groups in terms of initial

security knowledge; however, students using treatments with the context-based

approach had significantly better knowledge gain than those using treatments with

the conventional approach. The evaluation of the students’ satisfaction with the two

learning approaches supports our hypothesis, as the respondents showed higher

learning satisfaction with the context-based knowledge approach than with

conventional approaches.

As highlighted by the learning satisfaction analysis, a majority of students using

conventional materials were unable to make connections between what they were

learning about security and what they had been doing in programming. We argue

that the way they process information and their motivation for learning is not

supported by the conventional methods. Research has indicated that learning is most

efficient when it is linked with the experience and prior knowledge that students

bring to a given learning situation [90, 266]; however, novice learners do not always

make connections between new information and prior knowledge or everyday

experiences in ways that are productive for learning [259]. In the context of software

security learning, learners interpret the security knowledge they gain through a range

of strongly held personal programming experiences. They often do not associate

vulnerabilities with programs similar to what they were writing previously.

Therefore, establishing the relevance of learning materials before going into the

details could provide a concrete foundation for the learning process.

Table 11.8: Comparative means of students’ performance on the pre- and post-

tests

 Pre-test Post-test Growth

Ratio Round N Mean Hit Rate N Mean Hit Rate

1 Theoretical 6 16.82 56.06% 6 20.00 66.67% 18.92%

Practical 4 7.50 37.50% 4 13.86 69.32% 84.85%

2 Theoretical 6 16.00 53.33% 6 22.25 74.17% 39.06%

Practical 4
5.75 28.75%

 4
14.00 70.00% 143.48%

Sum Theoretical 12 32.82 54.70% 12 42.25 70.42% 28.74%

 Practical 8
13.25 33.13%

 8
27.86 69.66% 110.29%

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

178

Our approach attempts to place security learning in the context of real application

scenarios, which serve as anchoring events and elicit the learners’ memories and draw

attention to software events and conditions. The results of our experiment show that

this type of design keeps learners interested, motivated, and engaged in the learning

experience. Since the given context is connected and relevant to their prior knowledge

and life experiences in software development, security learning can then be related to

a similar programming topic that they want to learn about or a problem to be solved.

According to the results of the learning satisfaction survey, most students were very

interested in studying type II materials and agreed that the materials could be

correlated with their experiences. We believe this implies a direct effect on higher

overall learning satisfaction, which motivates students to learn. The benefits of the

contextualized approach can also be explained by the effective mechanism of intrinsic

motivation, where a learner is drawn to engage in a task because it is perceived as

interesting, enjoyable, and/or useful [89, 115, 251].

In this study, we investigated how the contextualized approach affects students’

learning performance in terms of answering theoretical and practical questions. The

results show that type II materials can effectively support both abstract and concrete

learning, and moreover, they provide a greater influence in terms of dealing with

practical problems. Hence, a blend of concrete and abstract knowledge presentation

can help learners gain a more flexible understanding of the study concept in a range

of situations with varying levels of abstraction. Research has shown that presenting

knowledge in both concrete and abstract terms are far more powerful than presenting

either one in isolation [348]. Deductive reasoning is facilitated when the domain is

familiar and concrete rather than abstract [476]. Our approach begins with the

presentation of concrete information in a context familiar to students, which

gradually leads to an abstract understanding. As long as the concrete knowledge and

the underlying abstract explanation are understood by learners for a specific

situation, learning transfers from one software context to another will be more

effective.

11.8 Conclusion

In this paper, a context-based approach to presenting security knowledge is proposed

for software security learning. This approach is composed of three main strategies.

The first is to establish an application context to create a meaningful situation for

learners, which is described by application domains, application functionalities, and

scenarios. The design of the application context aims to activate the learner’s prior

knowledge of software programming and anchors the learning about security

knowledge. The second strategy is to organize underlying security knowledge in a

structured manner that can stimulate learners’ mental models to support more

efficient learning in the specified context. The third is to guide learners to engage with

concrete knowledge before studying abstract knowledge. This strategy assists

learners in discovering meaningful concepts and relationships between practical

CHAPTER 11. TOWARDS A CONTEXT-BASED APPROACH FOR SOFTWARE SECURITY LEARNING

179

functions and abstract knowledge when working in this context. Furthermore, it

helps them apply knowledge in various other contexts.

The approach was evaluated through a controlled quasi-experiment with 42 Bachelor

students. There were positive findings in terms of security knowledge gain and

learning satisfaction when students studied learning materials that were constructed

using the context-based approach. According to the results, the proposed approach

provides a sounder basis for software security learning than conventional methods.

It is recommended that curriculum developers of software security courses should

use the context-based approach as one of the teaching strategies to improve students’

performance in security knowledge learning. In the future, we plan to promote this

approach for teaching secure programming and to use it to build a web-based

learning application. We believe that such an online learning environment would

allow more learners’ to benefit from the learning approach.

180

181

Chapter 12

Managing Software Security
Knowledge in Context: An
Ontology-Based Approach

Wen, Shao-Fang and Katt, Basel. “Managing Software Security Knowledge in

Context: An Ontology-Based Approach.” Information, 2018, volume 10, issue 6.

Author Contributions— Initial conceptualization and framework of the research

were developed by Shao-Fang Wen. The research methodology and experimental

design and were reviewed by Basel Katt. The manuscript was largely written by Shao-

Fang Wen. Final paper review and editing were performed by Basel Katt.

Abstract— The knowledge of software security is highly complex. To secure software

development, software developers require not only knowledge about the general

security concepts but also about the context for which software is being developed.

With traditional security-centric knowledge formats, it is difficult for developers or

knowledge users to retrieve their required security information based on the

requirements of software products and their used technologies. In order to effectively

regulate the operation of security knowledge and be an essential part of practical

software development practices, we argue that security knowledge must specify

contextual characteristics needed to be handled, and represent the security

knowledge in a format that is understandable and acceptable to the individuals. This

paper introduces a novel ontology approach for modeling security knowledge with a

context-based approach, by which security knowledge can be retrieved taking the

context of the software application in hand into consideration.

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

182

12.1 Introduction

The knowledge of software security is highly complex since it is quite context-specific

and can be applied in diverse ways [294]. Software developers not only require

knowledge about the general security concepts but also need the expertise to deal

with variant technologies, frameworks, and libraries that are involved with software

development projects [381]. The complex security knowledge usually surpasses the

capacity of software developers to solve security problems by themselves [199]. For

example, the security principle of least privilege recommends that accounts should

have the least amount of privilege required to perform the task. This encompasses

security practices of user rights, and resource permission such as CPU, memory, and

network, which exist with different programming languages (e.g., C, C++, PHP, Java

and so on), depending on the features of software products. However, much of the

required security knowledge is traditionally encapsulated in unstructured or semi-

structured formats [78] and commonly organized in a security-centric structure, as

either back-hat or white-hat security. With such topical security knowledge formats,

it is difficult for developers or knowledge users to retrieve the required security

information based on the requirements of software products and the used

development technologies.

Therefore, in order to effectively operate security knowledge and be an indispensable

part of practical software development practices, we argue that security knowledge

must first incorporate additional contextual features, that is, to contextualize security

knowledge with certain characteristics of software applications, and then represent it

in a format that is understandable and acceptable to the individuals. Ontology has

been regarded as a good knowledge management approach in the domain of

information security to methodically classifying various security concepts, such as

security attacks and vulnerabilities as well as related security prevention mechanisms

[143, 443]. The knowledge representation of ontology not only integrates knowledge

resources at both abstraction and semantic levels, but can also be adopted by

knowledge sharing services such as advanced knowledge search, knowledge

visualization, and therefore, supporting the learning process of software security.

This paper is part of ongoing research on developing a contextual learning

environment for software security, in which an ontology is used as the kernel

knowledge repository in managing contextualized security knowledge. The objective

of this research work is to support software developers and knowledge users to define

and use security knowledge appropriately, adapting to their working context. The

ontology we designed integrates application context, security domain knowledge,

and contextualized knowledge, allowing contextual inquiry through software

scenarios that users would be interested in or familiar with. In this paper, we present

our security ontology with the design concepts and the evaluation process.

The rest of this paper is organized as follows. Section 12.2 introduces background

knowledge about the context and knowledge. In Section 12.3, we describe the design

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

183

of our ontology. Section 12.4 presents the evaluation process of the ontology, followed

by a discussion in Section 12.5. We discuss related work in section 12.6. Lastly, Section

12.7 presents the conclusion and our future works.

12.2 Context and Knowledge Management

According to Brézillon [59], ‘‘context is a set of information used to characterize a

situation in which human and computational agents interact”. He also points out

that, knowledge comes from a variety of context and it cannot be accurately

understood without context [58, 61]. The context has the capacity to provide a major

meaning to knowledge, promoting a more effective comprehension of a determined

situation in the collaborative work [60]. Context is a crucial component of a full

understanding of knowledge [58, 219, 242]. Without appropriate contextual

description, knowledge could be isolated from other relevant knowledge, resulting

in limited or distorted understanding [61, 169]. Since context can provide rich

information about why, where and a piece of knowledge is applied, it is very

necessary to consider the context during the use of knowledge to improve the

applicability of knowledge [46].

Knowledge management has been defined as “the capability by which communities

capture the knowledge that is critical to their success, constantly improve it, and make

it available in the most effective manner to those who need it” [44]. Context has been

considered as a critical concept in knowledge management, where the relevant

architectures should include the design of knowledge elements as well as the design

of the overall contextual characteristics of the knowledge and the relationships among

them[376]. In this situation, knowledge artifacts need to be equipped with context-

based features so that they can distribute information effectively within the

application domain and relates to other specific knowledge more evenly across the

organization[100].

12.3 Design of the Ontology

The basic design concept of our ontology is to build linkages with contextual software

scenarios (according to the application context), and the corresponding

contextualized security knowledge, in which the critical security concepts are drawn

from the security domain model as common vocabularies. (See Figure 12.1).

Figure 12.1: Three models span the modeling of contextualized security knowledge

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

184

12.3.2 Application Context Modeling

The context model defined a complete representation of what context is in a particular

domain. In our ontology, the context for software security knowledge is supported

by the creation of scenarios in different application contexts. Contextual scenarios

refer to different manifestations within a context [130]. The scenario presents a

snapshot of possible features and corresponding code fragments in the specific

functionality. For example, regarding the application functionality of “Generating

HTML pages” in the web application context there includes a set of scenarios, such

as generating static or dynamic pages, and using external data from HTTP requests

or data stores. We choose a scenario-based approach because scenarios can be easily

adapted to the situation of the represented applications and can be easily integrated

with the conceptual security knowledge. It also draws on situated security

knowledge, that is, understandings particular to the application context in which they

generate. Figure 12.2 represents the application context model used in the ontology.

In the context modeling, in addition to scenarios, we focus on characteristics that are

highly relevant for retrieval within a software application, concerning three

perspectives:

• The functional area (and the corresponding functionalities) that the

application is associated with.

• The application category that scenario/functionality belongs to.

• The platforms that the scenario functionality is used.

Figure 12.2: Application Context Model

Application category: It is a set of characteristics to categorize software applications, in

which two sub-classes are included: Paradigms (e.g., web, mobile, and desktop

applications, etc.) and Domains (e.g., banking, health, and logistics applications, etc.).

Platform type: This superclass specifies programming languages, technologies, and

architectures that are used to create the software application. Technology can be

provided by a certain programming language. For example, Silverlight is the

technology that has been implemented in C# language, while J2EE is the subset of

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

185

Java technologies. Architectures refer to the fundamental system structure to operate

the application, such as the MySQL database management system and an Android

operating system.

Functional area: It is a group of application functionalities, which represents an aspect

of software applications that can be performed by users or other systems in a

particular application category. For example, “Outputting HTML” is a functional area

in the web applications paradigm, in which “Generating HTML dynamically using

user-supplied data” is one of the functionalities. A functionality is supported and run

on some combinations of platform types.

12.3.3 Security Domain Modeling

The security domain model describes the knowledge, which is of teaching subjections

through a set of concepts. Figure 12.3 illustrates the security concepts and their

relationships in the security domain model. In this model, we aim to define the

security knowledge schema that is easier to be formed as metal models of learners

whiling learning about software security. For this purpose, the schema should be

simplified and remain focused on the objective of reducing the content load. In

general, our intention is to guide users in answering three questions while dealing

with software scenarios:

(1) What are the possible attacks?

(2) Why does the software encounter attacks?

(3) How can these attacks be prevented or mitigated?

Figure 12.3: Security domain Model

In accordance with such design considerations, we identified three security concepts

that are most widely used throughout the security domain and need to be

concentrated learning on. Ultimately, three classes were incorporated into the

security conceptualization model: Security Attack, Security Weakness, and Security

Practice. The definitions of the three security concepts are given in the following:

• Security Attack: It represents actions taken against the software application

with the intention of doing harm. Examples are SQL injection, Cross-Site

Scripting (XSS), etc. Security attacks exploit security weakness existed in

software applications.

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

186

• Security Practice: It represents methods, procedures or techniques to prevent

security weakness. Examples are “Input validation” and “Output encoding”

in preventing XSS.

• Security Weakness: It represents bug, flaws, vulnerabilities and other errors that

exist in the software applications. Examples are “Improper to neutralize input

during HTML generation” and “Fail to perform a bound check while copying

data into memory stack”.

From a security conceptualization point of view, we only want to indicate which

principles or abstract ideas are needed, not their practical implementation. Therefore,

we describe security knowledge in this model at a level of abstraction. The instances

of these classes specify only the fundamental characteristics of the security concepts,

not specific software application aspects. The major advantage of such design is to

enhance the comprehension of the conceptual security knowledge among various

security contexts. Furthermore, we adopt an abstract class Security Domain as a

superclass for all security concepts. In the security conceptualization model, we apply

segmentation of interests so that only generic descriptions remain as attributes in the

class Security Domain. Additionally, we create a Category class, in which security

concepts can be allowed grouping in categories.

12.3.4 Security Contextualization Modeling

To help users gain a more flexible understanding of the study concept in a range of

situations with varying levels of abstraction, we organize security knowledge by

blending abstract and concrete perspectives. The term contextualization is used here

to describe the process of drawing specific connections between security domain

knowledge being taught and an application context in which the abstract knowledge

can be relevantly applied or illustrated. In this study, abstract knowledge refers to the

conceptual security domain knowledge, while concrete knowledge relates to the

contextualized scenario-specific security knowledge. Research has shown that

presenting knowledge in both concrete and abstract terms are far more powerful than

presenting either one in isolation [348].

To this extent, the security contextualization modeling manages security knowledge

in the context of specific scenarios and brings together the conceptual knowledge that

is described in the security conceptualization model. The including security concepts

are aligned with those defined in the security conceptualization model, which are

Security Attack, Security Weakness, and Security Practice. In order to clearly state the

purposes and distinguish them from the security conceptualization model, we used

different classes, namely Concrete Security Attack, Concrete Security Weakness, and

Concrete Security Practice. Figure 12.4 illustrates the security contextualization

modeling. The abstract class Contextualized Knowledge is used from which these three

classes inherit common attributes such as tags or external resources. Once the

conceptualization knowledge model is defined, each security concept can be

connected to the corresponding classes in the security conceptualization model.

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

187

Figure 12.5 depicts the full view of the ontology-based knowledge model, including

the interrelationships of the components

Figure 12.4: Security contextualization model

Figure 12.5: The ontology-based security knowledge model

12.4 Evaluation of the Ontology

To validate the effectiveness of the ontology, we conducted several evaluation phases.

The overall evaluation process that we undertook is shown in Figure 12.6.

Figure 12.6: The ontology evaluation process

First, in order to evaluate the proposed ontology with a real-world case, we chose a

Web Application paradigm with Flat PHP technology as the application context of

this pilot study. Functionalities, scenarios and security knowledge items (attacks,

weaknesses, and practices) were collected under the defined context. The ontology

(concepts and relationships) were implemented used the Protégé tool [20] with

Ontology Web Language (OWL, https://www.w3.org/OWL). Figure 12.7 depicts the

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

188

ontology design in Protégé editor whereas Figure 12.8 presents the maintenance of

object properties and data properties for contextualized knowledge (Security Attack).

Figure 12.7: Ontology design in Protégé editor

Figure 12.8: The objective property and data property of concrete knowledge

(Security Attack)

The domain expert evaluation was carried out by an internal security professional

within NTNU who provided the competencies using a computer/cybersecurity, and

ontology building method and analysis. The ontology structure, including concept

definitions and relations, were reviewed and analyzed. A few weaknesses were

identified:

(1) Difficulty to model software technologies and architectures in application

context model,

(2) No category classes to group knowledge items in the security domain model,

and,

(3) No vulnerability concepts in the security domain model.

We considered comments (1) and (2), and have issued change requests of the ontology

design, in which a Category class was created in the security domain model, whereas

the class of Platform type was split into two sub-concepts, namely Technology and

Architecture. In the domain model, we did not differentiate between terms Security

Weakness and Vulnerability, as Security Weakness is naturally a more general class that

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

189

could cover different security errors, such as design flaw and coding errors.

Therefore, the idea in (3), which suggested incorporating concepts of vulnerability,

was shelved.

After taking the review comments and mitigate the identified weakness, the ontology

was evaluated with competency questions against its initial requirements. Therefore,

two exemplary questions were developed:

Q1: What are the available software scenarios given in the functionality “Generating output

in web pages using user-supplied data”, PHP language and MySQL database?

Q2: What are the relevant contextualized knowledge items of the first scenario from the result

of the question (a)?

To answer the above competency questions, we used SPARQL protocol [21] to extract

information from the RDF graph. Two corresponding SPARQL statements were

prepared and executed in Protégé editor. Figure 12.9 demonstrates querying

scenarios using the given functionality and platform types (programming language

and architecture), from which Q1 can be answered. For the answer of Q2, Figure 12.10

shows the query result that returns the instances of contextualized security

knowledge of a specific scenario, and the short names of related security domain

knowledge.

Figure 12.9: An example of SPARQL (to query Scenarios)

Figure 12.10: An example of SPARQL (to query security knowledge)

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

190

After the domain expert’s review with a competency-question examination, we took

a further application-based evaluation approach [56, 205] by plugging the ontology

into an application for further evaluation. For this purpose, we developed a web-

based application prototype based on our proposed ontology. The objective of this

application is to present scenario-based security knowledge that is both concrete and

abstract, according to the contextual information that the user provides. The front-

end was designed as a web-based user interface with HTML and JavaScript

languages. The backend was implemented with Java, and the ontology repository

was accessed with Jena API (https://jena.apache.org), which is a Java framework

using for building semantic web applications. Jena has the advantage that it provides

wild-ranging Java libraries to help developers handle OWL, and SPARQL conformed

with W3C recommendations. Figure 12.11 presents the user interface of the context

menu, in which the learner selects relevant criteria based on the desired knowledge

(or prior programming experience) to scope the functionalities and corresponding

scenarios.

Figure 12.11: The user interface for context selection

In presenting the security knowledge, the web page is mainly composed of four

framesets: the security knowledge structure, the scenario description, the

contextualized knowledge, and conceptual knowledge. Figure 12.12 shows a

snapshot of the knowledge presentation. The scenario here is used as a starting point

to browse security knowledge, which is made up of practical demonstrations of the

pre-described application functionality and the code fragments that were extracted

from the class Scenario and Instruction. To present practical security knowledge for

the scenario, which is contextualized knowledge, we extracted information from

classes under the Contextualized Knowledge superclass, which includes perceptually

detailed and rich materials from ontology, such as security attacks with different

exploits, coding mistakes, and the corresponding secure coding practices. In addition

to the practical knowledge, users can also capture abstract explanation as well, that is

conceptual knowledge from Security Domain classes.

12.5 Discussion

Ontology technologies have become the core component of today’s applications such

as electronic commerce, knowledge portals, information integration and sharing, and

web services [180, 331, 446, 474]. Our ontology approached the role of ontologies in

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

191

managing contextualized knowledge in the domain of software security. With the

context-based design approach, a dynamic situational application scenario can be

integrated

together with the conceptual security domain knowledge. The advantage of this

ontology model is twofold. First, it separates concrete and abstract security

knowledge in two models, which simplified knowledge maintenance and retrieval.

Second, it shares a common understanding of security concepts between security

domain and contextualization models to enable semantic interoperability.

In addition to the application scenario demonstrated in the previous section, this

ontology can be also used in various settings. For example, in the pedagogical

environment, a course tutor, who is engaged in the introduction of security

vulnerabilities, can use the proposed ontology to quickly identify a number of real-

world examples of facing a specific security attack or vulnerability, to improve the

effectiveness of learning. In the practical software development process, software

engineers are allowed to find solutions to exceptional situations by searching for

similar contexts. For example, a PHP web application designer can refer to another

security setup by looking for a similar domain and software technologies. The

presence of detailed information on the relation between classes can enable

answering the various questions related to security tasks. Furthermore, since our

ontology is developed using the OWL standard in the Protégé tool, it enables the

possibility to be used by an automated tool to provide advanced services such as more

accurate security requirements and design suggestions.

Figure 12.12: The user interface for security knowledge presentation

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

192

Yet, the software security domain is complex and dynamic. New threats and

countermeasures are continuously evolving. Although the approach described here

provides technologies to store and present security knowledge, security experts or

practitioners’ involvement is crucial to fill the security ontologies with the necessary

information and then to apply them in security education and the practical software

development process.

12.6 Related Work

There have been extensive research works in the area of security knowledge modeling

and ontology applications to software security. Some papers focus on using an

ontology to model security vulnerabilities. Guo and Wang [183] presented an

ontology-based approach to model security vulnerabilities listed in CVE (Common

Vulnerability and Exposure, https://cve.mitre.org/). The authors identified critical

concepts of security vulnerabilities in the domain of software security, which can be

provided for machine-understandable CVE vulnerability knowledge and reusable

security vulnerabilities interoperability. Syed and Zhong proposed an ontology-

based conceptual model for the formal knowledge representation of the cybersecurity

vulnerability domain and intelligence, which integrated cybersecurity vulnerability

concepts from several sources including CVE, NVD (National Vulnerability

Database, https://nvd.nist.gov/), CVSS (Common Vulnerability Scoring System,

https://www.first.org/cvss/) framework, and social media. Alqahtani et al. [14]

proposed an ontological representation, which establishes links with bi-directional

traceability between traditional software repositories (e.g., issue trackers, version

control systems, Q&A repositories) and security vulnerabilities databases (e.g., NVD)

Some researchers presented their ontology in supporting security requirements and

design processes in software development. Gyrard et al. [185] proposed STACK

ontology (Security Toolbox: Attacks & Countermeasures) that supported developers

in secure application design. Countermeasures in STACK included cryptographic

concepts (encryption algorithm, key management, digital signature, and hash

function), security tools, and security protocols. Kang and Liang [227] presented the

security ontology adopting the Model Driven Architecture (MDA) methodology.

Their proposed ontology could be used in security concepts modeling in each phase

of the development process (e.g., the requirement and design phases) with MDA. In

order to improve the application of security patterns to the security engineering

domain, Guan et al. [182] proposed an ontological approach facilitating security

knowledge mapping from security requirements to security patterns. Manzoor et al.

[282] developed an ontology, illustrating the relationships across various actors

involved in the Cloud ecosystem, to analyze different threats to/from Cloud-system

actors.

Finally, some efforts focused on building security ontology specifically in the context

of web application development. Salini and Kanmani [388] presented an ontology for

defining the security requirements of web applications. The included concepts are

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

193

assets, vulnerabilities, threats, and stakeholders. Their ontology aimed at reusing the

knowledge of security requirements in the development of different kinds of web

applications. Buch and Wirsing [65] presented a security ontology for secure web

applications (SecWAO), which aimed to support web developers to specify security

requirements or make design decisions in web application development. It

distinguished various concepts among methods, tools, mechanisms, assets,

vulnerabilities, and threats. Velasco et al. [455] presented an ontology-based

framework for string, presenting and reusing security requirements. Their

framework integrated security standards, methods of risk analysis, and the

requirements ontology.

A major feature, which is common for all the above studies, is that the ontology is

security driven, focusing on unifying security concepts and terminology.

Subsequently, they either dedicate to a certain software domain or support part(s)

software development processes. Our ontology approach differentiates from the

previous research work in the following aspects:

(1) Our ontology is context-based, which models security knowledge with a diversity

of software features and technologies;

(2) Our ontology describes security knowledge with a contextual situation, and

meanwhile, complements the concrete knowledge with abstract description.

12.7 Conclusion and Future Work

This paper presents a novel approach for modeling software-security knowledge

with a context-based approach, in which the security knowledge can be retrieved

taking the context of the software application into consideration. The design of our

ontology ensures that users understand the security-relevant aspects of critical

software features. In addition, software developers are able to identify the possible

attacks and security errors efficiently that are associated with the functionalities of

their software products, based on the domain of the application, the programming

language or technologies they used, In this paper, we have presented the core

concepts of the ontology, as well as an evaluation with an application scenario. Our

proposal is deemed useful for security researchers who wish to formalize and manage

contextualized knowledge in their domain, systems, and methods.

In future work, we expect to expand the ontology continuously, enriching the

knowledge content by including more software scenarios with a broad application

context, while also providing contextual details in branches of security domain

knowledge and enriching the abstract explanations. We also plan to have further

evaluation of the modeling approach with educators and security experts in the

domain of information security. We believe that such a context-based approach in

ontology modeling can benefit border security domains, such as network security and

cryptography. Furthermore, we intend to enhance and complete a learning system

CHAPTER 12. MANAGING SOFTWARE SECURITY KNOWLEDGE IN CONTEXT: AN ONTOLOGY-

BASED APPROACH

194

for software security based on this ontology. The ultimate goal of our research is to

create conditions for more effective learning about software security, which can

motivate learners and stimulate their interest.

195

Chapter 13

Development of Ontology-
Based Software Security
Learning System with
Contextualized Learning
Approach

Wen, Shao-Fang and Katt, Basel. “Development of Ontology-Based Software Security

Learning System with Contextualized Learning Approaches.” Journal of Advances in

Information Technology. 2019, volume 10, no. 3, pp 81-90

Author Contributions— Initial conceptualization the research and the prototyped

system were developed by Shao-Fang Wen. The research methodology and system

evaluation design and were reviewed by Basel Katt.

Abstract— Learning software security is one of the most challenging tasks in the

information technology sector due to the vast amount of security knowledge and the

difficulties in understanding the practical applications. The traditional teaching and

learning materials, which are usually organized topically and security-centric, have

fewer linkages with learners’ experience and prior knowledge. Learners often do not

associate vulnerabilities or coding practices with programs similar to what they were

writing in their previous time. Consequently, their motivation for learning is not

touched by conventional methods. In this paper, we present a software-security

learning system based on ontologies that facilitates the contextual learning process by

providing contextualized access to security knowledge via real software application

scenarios, in which learners can explore and relate the security knowledge to the

context they are already familiar with.

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

196

13.1 Introduction

Software security has been a subject of a plethora of studies for at least 40 years, and

a steady stream of innovations has improved software engineers’ ability to secure

software development and to protect applications. Improving software security

requires many different approaches. One way is to give software engineers or learners

the knowledge and skills to resist attacks and handle errors appropriately [46]. To

emphasize security, a relatively large number of best practices and vulnerability

information have been published by security committees in publications or on the

internet. To this extent, the huge amount of information has resulted in a form of

information overload for learners. Moreover, the domain of software security is quite

context-specific and can be applied in diverse ways [294]. As a result, learning

software security becomes a complex and difficult task because learners must not

only deal with a vast amount of knowledge about a variety of concepts and methods

but also need to demonstrate the applicability of the knowledge through experience

in order to understand their practical use.

In traditional software security teaching, little attention is given to what a real-world

situation really means to learners, and there is not much content addressing the

connection between the security concepts and learner’ prior knowledge. In

conventional security learning materials, the knowledge content is commonly

security-centric and organized topically, which distinguishes two fundamental

segments: the white-hat approach, where the main emphasis on security principles

and anti-attack mechanisms, and the black-hat, which teaches how to break software

and how malicious hackers write exploits. These learning materials are often

described in the form of a reference manual or a guide to particular security subjects.

The topical knowledge organization is useful for rote memorization of a specific

security subject or for information reference later; however, it is difficult for learners

to understand the rationale of the topics, and correlate those topics with real software

scenarios. Learners usually finish reading such materials with little understanding of

the context in which the security knowledge should be applied, or with the feeling

that the security domain is so extensive and software, security is so difficult to achieve

that they simply cast it aside.

We argue that the way learners process security information and their motivation for

learning are not touched by conventional methods. Research indicates that learning

is most efficient when it is linked with experience and prior knowledge that students

bring to a given learning situation [90, 266]. However, novice learners do not always

make connections between new information and prior knowledge or everyday

experiences in ways that are productive for learning [259]. In the context of software

security learning, learners interpret security knowledge they gain with a range of

strongly held personal programming experience. They often do not associate

vulnerabilities with programs similar to what they were writing in their previous

time. As the suggestion given in the research of engineering education [137],

establishing the relevance of learning materials before going into the details can

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

197

provide the concrete experience that starts the learning process. In order to regulate

learning about software security effectively, security knowledge should be

contextualized in a meaningful scenario where they can learn security principles and

processes with a real-world situation.

Our primary objective is to create conditions for more effective learning for software

security that can motivate learners and stimulate their interests. This paper is part of

an investigation into contextualized learning in the domain of software security. We

propose a learning system, which facilitates the contextual learning process by

providing contextualized access to security knowledge through real software

application scenarios. This learning system is a place where learners can explore and

relate the security knowledge to the context they are already familiar with. To

develop this kind of learning system, the security knowledge should be modeled and

managed in a manner where the knowledge can be retrieved taking the context of the

application in hand into consideration. Ontologies make it possible to give this kind

of purpose since it facilitates the capture and construction of domain knowledge and

enables the representation of skeletal knowledge to facilitate the integration of

knowledge bases irrespective of the heterogeneity of knowledge sources [181]. This

paper presents the proposed design approach of the contextualized learning system

and the developed proof-of-concept prototype.

The rest of this paper is organized as follows: In section 13.2, we introduce the

theoretical background of this study. Section 13.3 reviews the related work on

ontology approaches in the software security domain. In section 13.4, we describe the

design approach of the contextualized learning system. Section 13.5 presents the

detailed design of the underlying ontology of the learning system. Section 13.6

describes the developed prototype using the proposed approach. Lastly, the

conclusion and future works are presented in section13.7.

13.2 Theoretical Background

The theoretical background of this research is drawn from the field of context-based

knowledge and contextualized learning. According to Anind K. Dey [117], context is

‘‘A set of information used to characterize a situation of an entity”. Nonaka [328]

indicates that knowledge reflects a particular stance, perspective, or intention in

accordance with the characteristics of a specific context, which is different from

information. According to Brézillon [58, 61], knowledge comes from a variety of

context and it cannot be accurately understood without context. Without proper

contextual information, knowledge can be isolated from other relevant knowledge

resulting in limited or distorted understanding [169]. Researchers of psychology and

education indicate when knowledge is learned in a context similar to that in which

the skills will actually be needed, the application of learning to the new context may

be more likely [117, 122, 352]. Predmore [360] shows that learning about knowledge

content within real-world experience is important because “once [students] can see

the real-world relevance of what they’re learning, they become interested and

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

198

motivated”. Since context can give guidance about when, where and why a piece of

knowledge is used, considering the context in knowledge use is very necessary to

enhance the applicability of knowledge [46].

Contextualized Teaching and learning builds upon a similar concept of putting

learning activities into perspective to achieve the best teaching and learning

outcomes. Researchers Berns and Erickson define contextualized learning as a

practice that endeavors to link theoretical constructs that are taught during learning,

to a practical, real-world context. The underlying theme behind contextual learning

activities is simple. It recognizes that by embedding instructions in contexts that adult

learners are familiar with, learners more readily understand and assimilate those

instructions. Contextualized instruction in general, starts with presenting a context

from which the concepts are developed on a need-to-know basis. This requires

teachers to teach in a more constructivist way, i.e. to position the concepts of the

learning subject in contexts recognizable to students and to stimulate the active

learning of the students [346]. The contextualization of the learning on demand can

not only be seen from the point of view of an actual problem or learning situation but

also in a longer-lasting process of learning activities that are integrated [425].

In computer science education, there is also a broad agreement that teaching units

should start from a “real-world” context or phenomenon, aiming to create

connections to prior knowledge, to increase the relevance of the material to students

or to show application situations of the intended knowledge, thereby increasing

motivation [120, 184]. These contrast with more traditional approaches that cover

abstract ideas first, before looking at practical applications. Likewise, in software

engineering, studying from a context and then abstracting the knowledge gained to

be able to use it in a new context is a common way of learning programming that has

been observed extensively in both new and experienced programmers [23, 243]. In

order to capture and use security knowledge appropriately, it is necessary to first

specify which context information is to be handled, and then represent this in a format

that is understandable and acceptable to the individuals. Thus, a context for a

software security topic includes the circumstances in which its technical content

exists. Therefore, to talk about software security in context is to say that knowledge

would not only include the basic principles and processes of software security but

would consider how security knowledge is used in one or more particular domains

or application areas.

13.3 Related Work

In this section, we describe research works related to this study from the viewpoint

of knowledge modeling support for software security based on ontology. According

to Gruber [180], an ontology is “an explicit and formal specification of a

conceptualization”, that is, a formal description of the relevant concepts and

relationships in an area of interest, simplifying and abstracting the view of the world

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

199

for some purpose [473]. There have been a number of papers published in the area of

ontology modeling and applying semantic technologies to software security. Some

efforts focused on building security ontology to model the security requirements.

Salini and Kanmani [388] present an ontology of security requirements for web

applications, including concepts of assets, vulnerabilities, threats, and stakeholders.

Their work aims at enabling the reuse of knowledge about security requirements in

the development of different web applications. Buch and Wirsing [65] present the

SecWAO ontology with a focus on a secure web application, which aims to support

web developers when specifying security requirements or making design decisions.

It distinguishes concepts (classes) between methods, notations, tools, categories,

assets, security properties, vulnerabilities, and threats.

Some research works to present their ontology to support security design and risk

assessment. Gyrard et al. [185] present the STACK ontology (Security Toolbox:

Attacks & Countermeasures) to aid developers in the design of secure applications.

STACK defines security concepts such as attacks, countermeasures, security

properties, and their relationships. Countermeasures can be cryptographic concepts

(encryption algorithm, key management, digital signature, and hash function),

security tools, or security protocols. Kang and Liang [227] present a security ontology

with the Model Driven Architecture (MDA) approach for the use in the software

development process. The proposed ontology shows that the proposed security

ontology can be used in modeling and designing security issues and concepts in each

phase of the development process with MDA. Marques and Ralha [287] propose an

ontology, which is related to the risk management aspect of web-based system

development. The model is mainly employed in the design phase of the system

development.

Finally, there are some papers focusing on using an ontology to model vulnerabilities

and security attacks. Guo and Wang [183] present an ontology-based approach to

model security vulnerabilities listed in Common Vulnerabilities and Exposures

(CVE). The authors captured important concepts for describing vulnerabilities in the

context of software security, providing machine-understandable CVE vulnerability

knowledge and reusable security vulnerabilities interoperability. Khairkar et al. [232]

present an ontology to detect attacks on web systems. The authors use semantic web

concepts and ontologies to analyze security logs to identify potential security issues.

This work aims to extract semantic relationships between attacks and intrusions in an

Intrusion Detection System (IDS). Razzaq et al. [369] propose an ontology of attacks

and an ontology of communication protocols, which provide a construct to improve

the detection capability of application-level attacks in web application security. The

authors employ the use of semantics in application layer security contrary to tradition

signature-based approaches.

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

200

13.4 Design Approach

To facilitate contextualized learning about software security and create engaging

learning experiences for learners, we proposed a contextualized approach for

software-security learning with three strategies: (1) Starting with a meaningful

scenario; (2) Stimulating learners’ mental model for software security learning; and

(3) Moving from concrete to abstract security knowledge. Figure 13.1 depicts an

abstract representation of our design approach to the learning system for software

security. Learners will engage in the learning process by taking advantage of relevant

knowledge content. We describe in detail these strategies in the following sections.

Figure 13.1: The design approach of the learning system

13.4.2 Starting with a Meaningful Scenario

Contextualized learning often takes the form of real-world examples of problems that

are meaningful to the learners personally [373]. Creating the relevance of the learning

knowledge before going into the details could provide a stronger foundation for the

learning process. Therefore, to begin the process of learning, a meaningful situation

for learners must first be established. In our study, the learning situations are created

through the use of contextual scenarios in the application context, which utilize some

form of anchoring situation events [85] to engage learners with security concepts that

are addressed in the software problem or situation. Contextual scenarios refer to

different manifestations within a context [130]. We choose a scenario-based approach

because scenarios can be easily adapted to the situation of the represented

applications and can be easily integrated with the conceptual security knowledge.

An anchoring event (i.e., the scenario in our study), enabling learners to visualize how

the knowledge substance relates to their prior experience [85], could be revisited

repeatedly during the learning sessions. For instance, regarding the application

functionality of “Generating HTML pages” in the web application context there

includes a set of scenarios, such as generating static or dynamic pages, and using

external data from HTTP requests or data stores. Those scenarios can serve as

anchoring events to evoke the learners’ memories of programming and draw

attention to software events and conditions. Research has shown that using anchoring

events in learning promotes memory recall and the subsequent transfer of

information to a new setting [85], meanwhile, helps render abstract ideas more

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

201

concretely and thus provides a cognitive mooring around which newly learned ideas

can be linked with learners’ prior understandings [86]. The use of anchor evens in our

study aims to echo learners’ real-world experiences to context-based security

knowledge to help learners apply their emerging understandings about software

security to the real software cases, thus helping them see value in their learning

sessions.

13.4.3 Stimulating Mental Models for Learning

Contextual learning is a learning approach that ties brain actions in creating patterns

that have meaning [113]. In order to help learners make sense of complex security

knowledge and create a strong and lasting bond among security concepts while they

are engaged through various anchoring events, our strategy is to elicit learners’

mental models for the navigation of security knowledge. Kenneth Craik [94]

suggested that the human mind builds and constructs “small-scale models” to

anticipate events. Such mental models allow learners to gain insight regarding their

world by building a work scheme [160], which makes it easier for them to access the

information needed to understand the knowledge domain, make predictions, and

decide upon action to take [379]. This can result in successful learning by engaging

students, fostering their concentration, and assisting them in organizing systemic

information [402].

Mental models combine a schema or a knowledge structure with a process for

manipulating the information in the memory [304], where the knowledge structure

interrelates a collection of facts or concepts about a particular topic [494]. In order to

be useful explanatorily, a mental model has to have a similar relation-structure to the

reality it models. Then the constructed mental model can be used to answer questions

or solve problems [235]. Generally, our intention was to guide learners in answering

three questions while dealing with each anchoring event:

• What are the possible attacks?

• Why does it encounter attacks?

• How can these attacks be prevented?

The knowledge structure serves as the basis for both knowledge retention and

retrieval, as well as transfer. Once learners answer what–why–how questions, the

relationships between the security concepts are revealed in their midst, and thus, their

representation of mental models expands.

13.4.4 Moving from Concrete to Abstract Knowledge

To help learners gain a more flexible understanding of the study concept in a range

of situations with varying levels of abstraction, we organize security knowledge by

blending abstract and concrete perspectives; presenting it with a sequence from

concrete to abstract. In our study, abstract knowledge refers to the conceptual security

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

202

domain knowledge while concrete knowledge relates to the contextualized scenario-

specific security knowledge. Research has shown that presenting knowledge in both

concrete and abstract terms are far more powerful than presenting either one in

isolation [348]. Lave and Wenger [264] also argued that abstract and generalized

knowledge gains its power through the expert’s ability to apply it in specific

situations. The used concrete-to-abstract approach in knowledge presentation differs

from the traditional, where the concepts are of foremost importance and are usually

explained first before concrete examples and applications are discussed.

Consequently, learners may struggle to finish reading them due to a learning style

mismatch. Several studies [136, 291, 292] have shown that the majority of engineering

students are sensor-type learners, who like facts, data, and observable phenomena as

opposed to theoretical abstractions. Deductive reasoning is facilitated when the

domain is familiar and concrete rather than abstract [476].

In such a concrete-to-abstract knowledge presentation, learners discover meaningful

relationships between practical functions and abstract knowledge in the context of

real applications. The value of concrete representations has been frequently noted in

education. Concrete materials can support abstract reasoning because they can be

explicitly designed to promote true inferences from perceptual representations to

abstract principles [35]. A method known as concreteness fading [170] has the

advantage of initially presenting concepts in a concrete fashion and then, over time,

augmenting that initial presentation with progressively more abstract representations

of the concepts. Abstract understanding is most effectively achieved through

experience with perceptually rich, concrete representations [171], while concrete

materials make concepts real and therefore easily internalized [226]. As long as the

concrete knowledge and the underlying abstract explanation are understood by

learners, learning transfers from one context to another will be more effective.

13.5 Underlying Ontology-Based Knowledge Model

One of the central ideas embedded within the learning system is to develop a kernel

ontology-based security knowledge model. With this model, the learning application

can handle contextualized security knowledge with multiple scenarios in different

application-specific contexts and integrates security concepts of security domain

knowledge.

13.5.1 Application Context Modeling

The context model represents a definition of what context is in a specific domain. In

our ontology, the context for software security knowledge is supported by the

creation of scenarios in different application contexts. The scenario presents a

snapshot of possible features and corresponding code fragments in the specific

functionality that is included in the Instruction class. It also draws on situated security

knowledge, that is, understandings particular to the application context in which they

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

203

generate. Figure 13.2 represents the application context model used in the ontology.

In the context modeling, in addition to scenarios, we focus on characteristics that are

highly relevant for retrieval within a software application, concerning three

perspectives:

• The application category that scenario/functionality belongs to,

• The platforms that the scenario functionality used, and

• The functional area (and the corresponding functionalities) that the

application associated with.

Application category: It is a set of characteristics to categorize software

applications, which include two sub-classes: paradigms (e.g., web, mobile, and

desktop applications, etc.) and the domains (e.g., banking, health, and logistics

applications, etc.).

Figure 13.2: Application context model

Platform type: This superclass specifies programming languages, technologies, and

architectures that are used to create the software application. Technology can be

provided by a certain programming language. For example, Silverlight is the

technology that has been implemented in C# language, while J2EE is the subset of

Java technologies. Architectures refer to the fundamental system structure to operate

the application, such as the MySQL database management system and the Android

operating system.

Functional area: It is a group of application functionalities, which represents an aspect

of software applications that can be performed by users or other systems in a

particular application category. For example, outputting HTML is a functional area

in the web-application paradigm, in which generating HTML dynamically using

user-supplied data is one of the functionalities. A functionality is supported and run

on some combinations of platform types.

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

204

13.5.2 Security Domain Modeling

The security domain model describes the knowledge that is an object of teaching

through a set of concepts (topics to be taught). In this model, we aim to design a

security knowledge structure (schema) that is easier to store in the learners’ memory

for learning. For the purpose, the schema should be simplified and kept to the point

for reducing the content load. We, therefore, identified three security concepts that

are most widely used throughout the security domain and need to be concentrated

learning on. Ultimately, three classes were incorporated into the security domain

model: Security Attack, Security Weakness, and Security Practice. The definitions of the

three security concepts are given in the following

Security Attack: It represents actions taken against the software application with the

intention of doing harm. Examples are SQL injection, Cross-Site Scripting, etc.

Security attacks exploit security weakness existed in software applications.

Security Practice: It represents methods, procedures or techniques to prevent security

weakness.

Security Weakness: It represents bug, flaws, vulnerabilities and other errors that exist

in the software applications.

From a security conceptualization point of view, we only want to indicate which

principles or abstract ideas are needed, not their practical implementation. Therefore,

we describe security knowledge in this model at a level of abstraction. The instances

of these classes specify only the fundamental characteristics of the security concepts,

not specific software application aspects. The main advantage of this design is to

share a common understanding of the conceptual security knowledge among

different security contexts. Furthermore, we adopt an abstract class Security Domain

as a superclass for all security concepts. In the security domain model, we apply

separation of concerns so that only very general descriptions remain as attributes in

the class Security Domain. Additionally, for convenience, we allow grouping domain

knowledge in categories, which themselves can belong to security concepts. Figure

13.3 illustrates the security concepts and their relationships in the security domain

model.

Figure 13.3: Security domain model

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

205

13.5.3 Security Contextualization Modeling

 Figure 13.4 illustrates the security contextualization modeling. The term

contextualization is used here to describe the process of drawing specific connections

between security domain knowledge being taught and an application context in

which the conceptual knowledge can be relevantly applied or illustrated. To this

extent, the security contextualization modeling manages security knowledge in the

context of specific scenarios and brings together the conceptual knowledge that is

described in the security domain model. The including security concepts are aligned

with those defined in the security domain model, which are Security Attack, Security

Weakness, and Security Practice. However, in order to clearly state the purposes and

distinguish them from the security domain model, we use different classes, namely

Concrete Security Attack, Concrete Security Weakness, and Concrete Security Practice. The

abstract class Contextualized Knowledge is used from which these three classes inherit

common attributes such as tags or external resources. Once the conceptualization

knowledge model is defined, each security concept is able to be connected to the

corresponding classes in the security domain model. Figure 13.5 shows the completed

ontology-based knowledge model including the interrelationships of the

components.

Figure 13.5: The ontology-based security knowledge model

Figure 13.4: Security contextualization model

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

206

13.6 The Developed Prototype

We have developed a proof-of-concept prototype to demonstrate the proposed design

approach. The high-level system architecture diagram is presented in Figure 13.6. The

front-end was designed as a web-based user interface with PHP and JavaScript

languages and through it, learners can access the knowledge content. The backend

was implemented in Java and access to the ontology repository was provided through

the Jena API 39 , a Java framework for building semantic web applications. Jena

provides extensive Java libraries for helping developers develop code that handles

RDF, OWL, and SPARQL in line with published W3C recommendations40.

Figure 13.6: High-level system architecture diagram

13.6.2 Construction of the Ontology

To construct the ontology, we used Protégé and OWL Editor because of its simplicity

and popularity [444]. When searching the ontology, we use SPARQL protocol to

extract information from the RDF graph. Figure 13.7 depicts the ontology design in

Protégé editor. An example of SPARQL and the executed result is presented in Figure

13.88. The objective of this query is to return the instances of contextualized security

knowledge of a specific scenario, and the short names of related security domain

knowledge.

Figure 13.7: Ontology design in Protégé editor

39 https://jena.apache.org/
40 https://www.w3.org/2001/sw/

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

207

13.6.3 The Process of Learning

The user interface of the prototyped system is presented in Figure 13.9, in which a

scenario of HTML output under the web application paradigm is demonstrated. In

this prototype, the learning process begins with the concrete in a context familiar to

learners and then gradually leads to an understanding of the abstract. Figure 13.10

depicts the learning process that is constructed by the proposed learning system. First

of all, a meaningful situation for learners must first be established. The access to

learning content in the learning application mainly happens scenario-oriented. We

use the scenario as the starting point for learning security concepts on a need-to-know

basis while presenting the modeled security knowledge. Based on the desired

knowledge the learner selects relevant criteria from the application-context menu to

scope the learning scenario. The instructional part of the scenario is made up of

practical demonstrations of the pre-described application functionality and the code

fragments behind it that bridge the corresponding security knowledge. As described

previously, the selected scenario served as an anchoring event that can be view

throughout the learning session to anchor learning in the learners’ personal

experience.

To guide learners navigating through the contextualized knowledge efficiently, it is

necessary to illustrate the relationship between the security concepts. On the one

hand, it must be transparent for learners about, which causes and effects relevant to

the learning content he (or she) is studying. On the other hand, this is essential for

learners in order to integrate the semantical impact of the knowledge structure into

the mental models for efficient learning. For the purpose, we outline the learning

contents in a graphical Concept Map, which is shown in the left corner of the system

appearance. Concept Map is a visual representation of different concepts and their

relationships. Concept mapping help in organizing learners’ knowledge by

integrating information into a progressively more complex conceptual framework.

With the use of concept mapping, the learning arena can be virtualized in a learner’s

mind [405]. From the visual description, learners extract propositions and create a

Figure 13.8: An example of SPARQL and the executed result

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

208

mental model from the graph. Meanwhile, the extracted mental model will be

inherently influenced by connecting to their prior experience.

The design of our ontology is able to provide the basis for the development of the

concept map of the relationship between these concepts. While a node is clicked on

the concept map, the relevant knowledge content is displayed in the right half of the

appearance, where the upper part is the contextualized knowledge and the lower part

is an abstract explanation, following the concrete-to-abstract presentation strategy. By

concrete representations, we include perceptually detailed and rich materials, such as

demonstrating security attacks with different exploits, identifying mistakes in the

source code, and showing the secure coding practices to fix the mistakes. Figure 13.11

shows a system appearance of viewing the security weakness of the scenario. With

scenario-description presenting aside, learners can easily recall features of the context

(e.g. code fragment) without interrupting the learning process. After experiencing the

Figure 13.9: The user interface of the developed prototype

Figure 13.10: The constructed learning process of the learning system

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

209

facts, learners then move on to conceptual knowledge, where the abstract explanation

is presented. Therefore, dynamic, e.g., situational application scenario is integrated

together with the conceptual security domain knowledge. Figure 13.12 presents

another scenario in the paradigm of “General implementation” and the language of

C/C++. This demonstrated scenario introduces security knowledge related to the

functionality of “Performing memory buffer operations using user-supplied data”.

13.7 Conclusion and Future Work

This paper presents an ontology-based learning system for software security learning

with a contextualized learning approach, which contains three strategies. The first is

to establish meaningful scenarios to create a meaningful situation for learners. The

design of the application context aims to activate the learner’s prior knowledge of

software programming and anchors the learning about security knowledge. The

second strategy is to organize underlying security knowledge in a structured manner

that can stimulate learners’ mental models to support more efficient learning in the

specified context. The third is to guide learners to engage with concrete knowledge

before studying abstract knowledge. This strategy assists learners in discovering

meaningful concepts and relationships between practical functions and abstract

knowledge when working in this context.

Our research attempts to place security learning in the context of real application

scenarios. The benefits of this contextualized approach can also be explained by the

effective mechanism of intrinsic motivation, where a learner is drawn to engage in a

task because it is perceived as interesting, enjoyable, and/or useful [89, 115, 251]. Since

the given context is connected and relevant to their prior knowledge and life

experiences in software development, security learning can then be related to a

similar programming topic that they want to learn about or a problem to be solved.

We strongly believe this implies a direct effect of the contextualized learning

approach on higher overall learning satisfaction, which motivates students to learn.

Our future work includes improving the usability of the user interface and enriching

the knowledge content with a variety of application scenarios. We plan as well as

learning experiments with bachelor students, in order to validate our proposal.

CHAPTER 13. DEVELOPMENT OF ONTOLOGY-BASED SOFTWARE SECURITY LEARNING SYSTEM

WITH CONTEXTUALIZED LEARNING APPROACH

210

Figure 13.11: The screenshot of viewing security weakness of the scenario

Figure 13.12: A scenario for memory buffer operations in C/C++

211

Chapter 14

Preliminary Evaluation of an
Ontology-Based
Contextualized Learning
System for Software Security

Wen, Shao-Fang and Katt, Basel. “Preliminary Evaluation of an Ontology-Based

Contextualized Learning System for Software Security.” In Proceedings of the 23rd

International Conference on Evaluation and Assessment in Software Engineering. ACM,

2019.

Author Contributions— Initial conceptualization and framework of the research

were developed by Shao-Fang Wen. The research methodology and experimental

design and were reviewed by Basel Katt.

Abstract—Learning software security is a big challenging task due to the vast amount

of security knowledge and the difficulties in understanding the practical applications.

The traditional teaching and learning materials, which are usually organized topically

and security-centric, have fewer linkages with learners’ experience and prior

knowledge that they bring to the learning sessions. Learners often do not associate

vulnerabilities or coding practices with programs similar to what they were writing

in their previous time. Consequently, their motivation for learning is not touched by

conventional methods. The aim of this paper is the presentation of an ontology-based

learning system for software security with contextualized learning approaches, and

of the results of an initial evaluation using a controlled quasi-experiment in a

university learning environment. The experiment results show that the prototyped

system with the proposed learning approach not only yields significant knowledge

gain compared to the conventional learning approach but also gains better learning

satisfaction of students.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

212

14.1 Introduction

Software security has been a subject of a plethora of studies for at least 40 years, and

a steady stream of innovations has improved software engineers’ ability to secure

software development and to protect applications. Improving software security

requires many different approaches, such as adopting a secure software development

process and security technologies. One way is to give software engineers or learners

the knowledge and skills to resist attacks and handle errors appropriately [46]. To

emphasize security, a relatively large number of best practices and vulnerability

information have been published by security committees in publications or on the

internet [313, 412, 481]. To this extent, the huge amount of information has resulted

in a form of information overload for learners. Moreover, the domain of software

security is quite context-specific and can be applied in diverse ways [294]. For

example, the security principle of least privilege recommends that accounts should

have the least amount of privilege required to perform the task. This encompasses the

security practices of user rights, and resource permission such as CPU, memory, and

network, which exist for specific programming languages (e.g. C, C++, PHP, Java and

so on), depending on the features of the software product. As a result, learning

software security becomes a complex and difficult task because learners must not

only deal with a vast amount of knowledge about a variety of concepts and methods

but also need to demonstrate the applicability of the knowledge through experience

in order to understand their practical use.

In conventional security learning materials, the knowledge content is commonly

security-centric and organized topically, which distinguishes two fundamental

segments: the white-hat approach, where the main emphasis on security principles

and anti-attack mechanisms, and the black-hat, which teaches how to break software

and how malicious hackers write exploits. These learning materials are often

described in the form of a reference manual or a guide to particular security subjects.

The topical knowledge organization is useful for rote memorization of a specific

security subject or for information reference later [500]; however, it is difficult for

learners to understand the rationale of the topics, and correlate those topics with real

software scenarios. Learners usually finish reading such materials with little

understanding of the context in which the security knowledge should be applied, or

with the feeling that the security domain is so extensive and software, security is so

difficult to achieve that they simply cast it aside.

Our primary objective is to create conditions for more effective learning for software

security that can motivate learners and stimulate their interest. This paper is part of

an investigation into contextualized learning in the domain of software security,

supported by empirical evaluation. We propose a learning system, which facilitates

the contextual learning process by providing contextualized access to security

knowledge through software application scenarios. This learning system is a place

where learners can explore and relate the security knowledge to the context they are

already familiar with. To develop this kind of learning system, the security

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

213

knowledge should be modeled and managed in a manner where the software security

knowledge can be retrieved taking the context of the application in hand into

consideration. Ontologies make it possible to give this kind of purpose since it

facilitates the capture and construction of domain knowledge and enables the

representation of skeletal knowledge to facilitate the integration of knowledge bases

irrespective of the heterogeneity of knowledge sources [181]. In the paper, an

ontology-based web application prototype is presented, which was evaluated by a

preliminary experiment in the setting of a university environment. This paper
also presents experimental design and results.

The rest of this paper is organized as follows: In section 14.2, we introduce the

theoretical background of this study. Section 14.3 describes our design approach for

software security learning. Section 14.4 presents the detailed design of an underlying

ontology of the learning system. Section 14.5 describes the developed prototype while

section 14.6 summarizes the experimental evaluation of the prototype. Lastly, the

discussion and conclusion are presented in section 14.7.

14.2 Background

The theoretical background of this research is drawn from the field of context-based

knowledge and contextualized learning. Nonaka [328] indicates that knowledge

reflects a particular instance, perspective, or intention in accordance with the

characteristics of a specific context, which is different from information. According to

Brézillon [58, 61], knowledge comes from a variety of context and it cannot be

accurately understood without context. Without proper contextual information,

knowledge can be isolated from other relevant knowledge resulting in limited or

distorted understanding [169]. Researchers of psychology and education indicate

when knowledge is learned in a context similar to that in which the skills will actually

be needed, the application of learning to the new context may be more likely [117,

122, 352]. Predmore [360] shows that learning about knowledge content within real-

world experience is important because “once [students] can see the real-world

relevance of what they’re learning, they become interested and motivated”. Since

context can give guidance about when, where and why a piece of knowledge is used,

considering the context in knowledge use is very necessary to enhance the

applicability of knowledge [46].

Contextualized Teaching and Learning builds upon a similar concept of putting

learning activities into perspective to achieve the best teaching and learning

outcomes. Researchers Berns and Erickson [39] define contextualized learning as a

practice that endeavors to link theoretical constructs that are taught during learning,

to a practical, real-world context. Contextualized instruction in general, starts with

presenting a context from which the concepts are developed on a need-to-know basis.

This requires teachers to teach in a more constructivist way, i.e. to position the

concepts of the learning subject in contexts recognizable to students and to stimulate

the active learning of the students [346]. The contextualization of the learning on

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

214

demand can not only be seen from the point of view of an actual problem or learning

situation but also in a longer-lasting process of learning activities that are integrated

[425].

In computer science education, there is also a broad agreement that teaching units

should start from a “real-world” context or phenomenon, aiming to create

connections to prior knowledge, to increase the relevance of the material to students

or to show application situations of the intended knowledge, thereby increasing

motivation [120, 184]. These contrast with more traditional approaches that cover

abstract ideas first, before looking at practical applications. Likewise, in software

engineering, studying from a context and then abstracting the knowledge gained to

be able to use it in a new context is a common way of learning programming that has

been observed extensively in both new and experienced programmers [23, 243]. In

order to capture and use security knowledge appropriately, it is necessary to first

specify which context information is to be handled, and then represent this in a format

that is understandable and acceptable to the individuals. Thus, a context for a

software security topic includes the circumstances in which its technical content

exists. Therefore, to talk about software security in context is to say that knowledge

would not only include the basic principles and processes of software security but

would consider how security knowledge is used in one or more particular domains

or application areas.

14.3 Design Approach

To facilitate contextualized learning about software security and create engaging

learning experiences for learners, we proposed a contextualized approach for

software security learning with three strategies: (1) Starting with a meaningful

scenario; (2) Stimulating learners’ mental model for software security learning; and

(3) Moving from concrete to abstract security knowledge. Figure 14.1 depicts an

abstract representation of our design approach to the learning system for software

security. The details of the strategies were described in the following sections.

Figure 14.1: The design approach of the learning system

14.3.2 Starting with a Meaningful Scenario

Contextualized learning often takes the form of real-world examples of problems that

are meaningful to the learners personally [373]. To begin the process of learning, a

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

215

meaningful situation for learners must first be established. In our study, the learning

situations are created through the use of contextual scenarios in the application

context, which utilize some form of anchoring situation events [85] to engage learners

with security concepts that are addressed in the software problem or situation.

Contextual scenarios refer to different manifestations within a context [130]. We

choose a scenario-based approach because scenarios can be easily adapted to the

situation of the represented applications and can be easily integrated with the

conceptual security knowledge. For instance, regarding the application functionality

of “Generating HTML pages” in the web application context, it includes a set of

scenarios, such as generating static or dynamic pages and using external data from

HTTP requests or data stores. Those scenarios can serve as anchoring events to evoke

the learners’ memories of programming and draw attention to software events and

conditions. The use of anchor evens in our study aims to echo learners’ real-world

experiences to context-based security knowledge to help learners apply their

emerging understandings about software security to the real software cases, thus

helping them see value in their learning sessions.

14.3.3 Stimulating Mental Models for Learning

Contextual learning is a learning approach that ties brain actions in creating patterns

that have meaning [113]. In order to help learners make sense of complex security

knowledge and create a strong and lasting bond among security concepts while they

are engaged through various anchoring events, our strategy is to elicit learners’

mental models for the navigation of security knowledge. Such mental models allow

learners to gain insight regarding their world by building a work scheme [160], which

makes it easier for them to access the information needed to understand the

knowledge domain, make predictions, and decide upon action to take [379].

Generally, our intention was to guide learners in answering What-Why-How

questions while dealing with each anchoring event:

• What are the possible attacks?

• Why does it encounter attacks?

• How can these attacks be prevented?

Once learners answer what–why–how questions, the relationships between the

security concepts are revealed in their midst, and thus, their representation of mental

models expands.

14.3.4 Moving from Concrete to Abstract

To help learners gain a more flexible understanding of the study concept in a range

of situations with varying levels of abstraction, we organize security knowledge by

blending abstract and concrete perspectives; presenting it with a sequence from

concrete to abstract. In our study, abstract knowledge refers to the conceptual security

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

216

domain knowledge while concrete knowledge relates to the contextualized scenario-

specific security knowledge. The used concrete-to-abstract approach in knowledge

presentation differs from the traditional, where the concepts are of foremost

importance and are usually explained first before concrete examples and applications

are discussed. Several studies [136, 291, 292] have shown that the majority of

engineering students are sensor-type learners, who like facts, data, and observable

phenomena as opposed to theoretical abstractions. As long as the concrete knowledge

and the underlying abstract explanation are understood by learners, learning

transfers from one context to another will be more effective.

14.4 The Underlying Ontology-Based Knowledge Model

The kernel security knowledge repository was based on ontology modeling

technologies. With this model, the learning application can handle contextualized

security knowledge with multiple scenarios in different application-specific contexts

and integrates security concepts of security domain knowledge. Figure 14.2 shows an

overview of the ontology-based knowledge model including the interrelationships of

the components.

Figure 14.2: The ontology-based security knowledge model

14.4.2 Application Context Model

The context model represents a definition of what context is in a specific domain. In

our ontology, the context for software security knowledge is supported by the

creation of scenarios in different application contexts. The scenario presents a

snapshot of possible features and corresponding code fragments in the specific

functionality that is included in the Instruction class. It also draws on situated security

knowledge, that is, understandings particular to the application context in which they

generate. In context modeling, in addition to scenarios, we focus on

characteristics that are highly relevant for retrieval within a software

application.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

217

• Application category: It is a set of characteristics to categorize software

applications, which include two sub-classes: paradigms (e.g., web, mobile,

and desktop applications, etc.) and the domains (e.g., banking, health, and

logistics applications, etc.).

• Platform type: This superclass specifies programming languages, technologies,

and architectures that are used to create the software application. Technology

can be provided by a certain programming language. For example, Silverlight

is the technology that has been implemented in C# language, while J2EE is the

subset of Java technologies. Architectures refer to the fundamental system

structure to operate the application, such as the MySQL database

management system and an Android operating system.

• Functional area: It is a group of application functionalities, which represents an

aspect of software applications that can be performed by users or other

systems in a particular application category. For example, outputting HTML

is a functional area in the web applications paradigm, in which generating

HTML dynamically using user-supplied data is one of the functionalities. A

functionality is supported and run on some combinations of platform types.

14.4.3 Security Domain Model

The security domain model describes the knowledge that is an object of teaching

through a set of concepts (topics to be taught). We identify three security concepts

that are most widely used throughout the security domain. Ultimately, three classes

were incorporated into the security domain model: Security Attack, Security Weakness,

and Security Practice.

• Security Attack: It represents actions taken against the software application

with the intention of doing harm. Examples are SQL injection, Cross-Site

Scripting (XSS), etc. Security attacks exploit security weakness existed in

software applications.

• Security Practice: It represents methods, procedures or techniques to prevent

security weakness. Examples are input validation and output encoding in

preventing XSS.

• Security Weakness: It represents bug, flaws, vulnerabilities and other errors that

exist in the software applications. Examples are improper to neutralize input

during HTML generation and fail to perform a bound check while copying

data into memory stack.

14.4.4 Security Contextualization Model

Security contextualization modeling manages security knowledge in the context of

specific scenarios and brings together the conceptual knowledge that is described in

the security domain model. The including security concepts are aligned with those

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

218

defined in the security domain model, which are Security Attack, Security Weakness,

and Security Practice. However, in order to clearly state the purposes and distinguish

them from the security domain model, we use different classes, namely Concrete

Security Attack, Concrete Security Weakness, and Concrete Security Practice. The abstract

class Contextualized Knowledge is used from which these three classes inherit common

attributes such as tags or external resources. Once the domain knowledge model is

defined, each security concept in the contextualized model is able to be connected to

the corresponding classes in the security domain model.

14.5 The Developed Prototype

We have developed a proof-of-concept prototype to demonstrate the proposed

approach. The high-level system architecture diagram is presented in Figure 14.3. The

front-end was designed as a web-based user interface with PHP and JavaScript

languages and through it, learners can access the knowledge content. The backend

was implemented in Java and access to the ontology repository was provided through

the Jena API 41 , a Java framework for building semantic web applications. Jena

provides extensive Java libraries for helping developers develop code that handles

RDF, OWL, and SPARQL in line with published W3C recommendations42.

Figure 14.3: High-level system architecture diagram

In the prototype, we set up the learning environment in a web application paradigm,

using a pure PHP technology and MySQL as the architectural database. To prepare

for learning materials based on this specified context, the author developed a

preliminary set of functionalities to operate a real web-based application, including a

login module, data input/output features, data processing, and database access. Three

critical application scenarios were created for each function within the scope of the

application context. The user interface of the prototyped system is presented in Figure

14.4.

 In the learning application, the learning process begins with the concrete in a context

familiar to learners and then gradually leads to an understanding of the abstract. First

of all, a meaningful situation for learners must first be established. The access to

learning content in the learning application mainly happens scenario-oriented. We

use the scenario as the starting point for learning security concepts on a need-to-know

basis while presenting the modeled security knowledge. Based on the desired

knowledge the learner selects relevant criteria from the application-context menu to

41 https://jena.apache.org/
42 https://www.w3.org/2001/sw/

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

219

scope the learning scenario. The instructional part of the scenario is made up of

practical demonstrations of the pre-described application functionality and the code

fragments behind it that bridge the corresponding security knowledge.

To guide learners navigating through the contextualized knowledge efficiently, it is

necessary to illustrate the relationship between the security concepts. On the one

hand, it must be transparent for learners about, which causes and effects relevant to

the learning content he (or she) is studying. On the other hand, this is essential for

learners in order to integrate the semantical impact of the knowledge structure into

the mental models for efficient learning. For the purpose, we outline the learning

contents in a graphical Concept Map, which shows in the left-corner part of the

screen. Concept Map is a visual representation of different concepts and their

relationships. With the use of concept mapping, the learning arena can be virtualized

in a learner’s mind [405]. From the visual description, the reader extracts propositions

and creates a mental model from the graph. Meanwhile, the extracted mental model

will be inherently influenced by connecting to prior experience.

The design of our ontology is able to provide the basis for the development of the

concept map of the relationship between these concepts. While a node is clicked on

the concept map, the relevant knowledge content is displayed in the right half of the

screen, where the upper part is the contextualized knowledge and the lower part is

an abstract explanation, following the concrete-to-abstract presentation strategy. By

concrete representations, we include perceptually detailed and rich materials, such as

demonstrating security attacks with different exploits, identifying mistakes in the

source code, and showing the secure coding practices to fix the mistakes. As described

previously, the selected scenario served as an anchoring event that can be view

Figure 14.4: The user interface of the developed prototype

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

220

throughout the learning session to anchor learning in the learners’ personal

experience. With such a scenario presentation, learners can easily recall features of

the context (e.g. code fragment) without interrupting the learning process. After

experiencing the facts, learners then move on to abstract knowledge, where the

conceptual explanation is presented. Therefore, dynamic, e.g., situational application

scenario is integrated together with the security domain knowledge.

14.6 Prototype Evaluation

In this section, we describe the evaluation of the proposed approach as well as the

developed prototype. A pre- and post-test based experiment was designed and

executed in the context of the Bachelor course Software Security in Norwegian

University of Science and Technology. The research design is presented in Table 14.1.

The participants were 36 Bachelor students from two main study programs, IT

operations in information security, and Programming.

Table 14.1: Experiment Design

Group Number of participants Treatment

Experiment 18 X1

Control 18 X2

Remark:

X1: Learning system (Software tool)

X2: Learning material (Hard-copy document)

The participants were randomly assigned to either control or experimental

groups. The students in the experimental groups were treated the proposed

learning system (X1) while the control group adopted a conventional learning

approach, which was a hard-copy document (X2). The learning subject was

focused on a common security attack in web applications: Cross-Site Scripting.

According to OWASP’s Top 10 Application Security Risks – 2017 [341], it is

the third most risky web applications’ vulnerability and the most widespread.

To construct the learning material for the control group, the authors extracted

information from textbooks and resources on the internet, combing with the

authors’ teaching experience in the domain of software security. The

knowledge content was organized in the order of abstract-to-concrete where

the conceptual description of the vulnerability subject was described in the

first place, followed by examples with code fragments of exploits. Mitigations

for the vulnerabilities were explained in the last section. Figure 14.5 shows a

simplified view of the learning material X2 for the control group.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

221

Figure 14.5: A sample of the learning materials for the control group

14.7 Data Collection

 To collect data and measure the dependent variables, two types of instruments were

used: knowledge test sheets and the survey questionnaires. Knowledge test sheets,

differentiated by pre-test (T1) and post-test (T2), were developed to measure the

knowledge gain (i.e., T2 to T1), in which items were created across two types of

security knowledge—theoretical and practical. Theoretical items focused on recalling

and understanding of conceptual security knowledge. Practical items require

students to identify possible attacks in a given software context, marking coding

errors in code fragments, applying knowledge to different situations. The pre- and

post-tests were similar except for the formulation of some questions, their order, and

the answer options. In each test sheet, there were 12 questions and the value for each

question was five points.

We designed two survey questionnaires (S1 and S2) to collect students’ perceptions of

the two learning approaches. Questionnaire S1 was developed to measure the

learning satisfaction of students in the experimental group. Two major sections with

five questions for each were designed in S1, which are “System operation” and

“Learning attitude”. In this questionnaire, all respondents were required to choose

the answer that reflects their own views and stance on the statements that are

administered in accordance with the 5-point Likert scale, ranging from “strongly

disagree” to “strongly agree”. Questionnaire S2 was created to collect all students’

perceptions of the two approaches (i.e., X1 vs. X2) in order to understand their learning

preferences. In this questionnaire, students were asked to indicate their preferred

learning approach that best fits the statement of each question.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

222

14.8 Experimental Procedure

The detailed experimental procedure is presented in Table 14.2. The students were

randomly assigned into two groups (experimental and control group) while they

entered the classroom. They were first introduced to the main objectives of the

experiment and informed of the procedure. After completing the pre-test sheets,

students went through and studied the learning materials using the treatments

assigned to them. At the end of the learning session, all students took the post-test

exam where students of the experiment group filled out questionnaire S1 additionally.

In the last 30 minutes, students were asked to experience the learning approaches that

were different from the previous one they practiced, and completed questionnaire S2

afterward. This ended the experimental procedure.

Table 14.2: The experimental procedure

Step Activity Duration

(minutes)

Treatment

Experimental

group

Control

Group

1 Pre-test 15 T1 T1

2 Learning session 60 X1 X2

3 Post-test 15 T2 T2

4 Survey I 5 S1 --

5 Experiencing 25 X2 X1

6 Survey II 5 S2 S2

Remark:

T1: Test sheet (Pre-test)

T2: Test sheet (Post-test)

X1: Learning system

X2: Learning material

S1: Questionnaire I

S2: Questionnaire II

14.9 Experimental Analysis

14.9.1 Knowledge Gain Analysis

The students' knowledge gain on the different type of treatment were determined

using the compare means analysis. Table 14.3 reveals the mean analysis of students’

performance on the pre- and post-test, including the mean scores and standard

deviation. The results of the statistical analysis show that there was a positive

knowledge gain (i.e. post-test to pre-test score) for both groups. However, the

experimental group had higher achievement levels than the control group, as shown

in Figure 14.6. The average knowledge gain in the control group was 10.28 whereas

it was 16.11 in the experiment group.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

223

Table 14.3: Compared means analysis of students’ performance on the pre- and

post-test

 N Mean Std. Deviation

Control

Group

Pre-Test 18 30.00 11.757

Post-Test 18 40.28 9.922

Experimental

Group

Pre-Test 18 30.83 11.789

Post-Test 18 46.94 7.503

Figure 14.6: Knowledge gain for the control and experiment groups

To determine whether there was a significant difference between the pre-test

performances of the experimental and control groups, an independent sample t-test

was used. Table 14.4 shows the t-test analysis for pre-test results. The significant level

(0.519) of Levine’s test for equal variance was greater than 0.05, indicating “Equal

variance assumed”. Following the value indicated in Levine’s test, we got “Sig. (2-

tailed)” value of 0.833, which is above 0.05. Therefore, the null hypothesis of the

independent sample t-test was rejected (p > 0.05). This implies that there was no

significant difference between the two groups in terms of pre-test scores (i.e., the

initial security knowledge).

Table 14.4: Independent sample t-test for pre-test score

Levene's Test t-test for Equality of Means

F Sig.

t df

Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

Pre-Test Equal variances

assumed

0.425 0.519 -

0.212

34 0.833 -0.833 3.924

Equal variances

not assumed

 -

0.212

34 0.833 -0.833 3.924

We also performed an independent sample t-test for the post-test mean scores. As can

be seen in Table 14.5, the difference between the post-test mean score of the two

groups was significant (2-tailed Sig. = 0.029, p < 0.05). This indicated that the

experimental treatments have resulted in a significant difference in security

knowledge gain between the two groups of students.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

224

Table 14.5: Independent sample t-test for the post-test score

Levene's Test t-test for Equality of Means

F Sig.

t df

Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

Post-Test Equal variances

assumed

0.142 0.709 -2.274 34 0.029 -6.667 2.932

Equal variances

not assumed

 -2.274 31.651 0.030 -6.667 2.932

Then in order to see whether the treatment given to the experimental group had

caused a statistical difference in students’ performances; a paired sample t-test was

performed as well. Table 14.6 shows that there was a significant average difference

between pre-test and post-test scores (t17 = 7.734, p < 0.05) in the experiment group.

Therefore, the significance of the knowledge gain in the experimental group can be

concluded.

Table 14.6: Paired sample t-test of pre- and post-test for the experimental group

Paired Differences

t df Sig. (2-tailed) Mean

Std.

Deviation

Std. Error

Mean

Experiment Group Post-test - Pre-test 16.111 8.838 2.083 7.734 17 0.000

14.9.2 Questionnaire Analysis

Table 14.7 presents the evaluation of students’ learning satisfaction

(questionnaire S1) in the experimental group. As shown in the table, the

satisfaction degree achieved 4.07 in terms of system operation and 4.09

regarding the learning attitude.

Table 14.8 summarizes the result of students’ learning preferences evaluation

(questionnaire S2) for the two learning approaches. It indicates that among the

36 students, 77.78% of students agreed that the learning system organized

security knowledge that fit their learning preferences. Meanwhile, 88.89% of

students considered the contextualized learning system can promote their

learning interest much more than the conventional materials. The most

important, all students thought that the proposed learning system could ease

information overload on learning security subjects.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

225

Table 14.7: The evaluation of student’ learning satisfaction in the experimental

group

Category Question Mean

System

Operation

• I agree that the applied learning technique in the system is novel and it

can assist my learning.

4.11

• I am very clear about the learning procedure embedded in the system. 4.00

• The system organizes security knowledge in a structured and collected

manner.

4.21

• The knowledge content provided by the system is easy to understand. 4.00

• I think that the system is useful for learning security knowledge. 4.05

Average 4.07

Learning

Attitude

• The system helps me deepen the memorized impression of the learning

subject.

4.11

• The system helps me relate security knowledge to what I knew or

experienced before.

4.16

• The system reduces the difficulty of learning secure programming. 4.11

• I find that at times studying the learning materials gives me a feeling of

personal satisfaction.

4.05

• The system helps me foster a positive attitude toward learning security

knowledge.

4.00

Average 4.09

Table 14.8: The evaluation of student’ learning preferences

Question

Proposed

Learning

System (%)

Conventional

Material (%)

• The approach organizes security knowledge in a way that fits my

learning preference.

77.78 22.22

• The approach can promote my learning interest much more. 88.89 11.11

• The approach eases information overload on learning security

subjects.

100 0

• The approach can make my security knowledge progress more. 72.22 27.78

• The approach can benefit most people in learning software security. 83.33 16.67

14.10 Discussion and conclusion

In this study, an ontology-based contextualized design approach of the software-

security learning system is proposed with three strategies. The first is to establish

meaning scenarios to create a meaningful situation for learners. The design of the

application context aims to activate the learner’s prior knowledge of software

programming and anchors the learning about security knowledge. The second

strategy is to organize underlying security knowledge in a structured manner that

can stimulate learners’ mental models to support more efficient learning in the

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

226

specified context. The third is to guide learners to engage with concrete knowledge

before studying abstract knowledge. This strategy assists learners in discovering

meaningful concepts and relationships between practical functions and abstract

knowledge when working in this context.

The developed prototype was evaluated by a controlled experiment with 36 bachelor

students. We used pre-test/post-test to measure students’ security knowledge gain,

and questionnaires to evaluate their learning satisfaction. The result of the pre-

test/post-test experiment indicates an increase in students’ level of security

knowledge for both learning approaches; the experimental group yielded more

knowledge gain on average than the control group. According to the statistical t-test

analysis result, there is no significant difference between the two participating groups

of students in terms of initial security knowledge (Table 14.4). However, there

resulted in a statistical difference in security knowledge gain between the two groups

of students after applying the treatments (Table 14.5). Additionally, the average

difference between pre-test and post-test scores for the experiment group is also

proved significant (Table 14.6). This concludes that students using the proposed

learning system yielded significantly better knowledge gain than those using

conventional learning materials.

On the other hand, the evaluation of students’ satisfaction with the two learning

approaches shows a positive result, as the respondents expressed their higher

learning satisfaction with the learning system using contextualized security

knowledge than conventional learning materials. The survey results also show that

most students were very interested in the proposed learning system and all agreed

that this approach could ease the information load effectively. Our approach attempts

to place security learning in the context of real application scenarios. The benefits of

this contextualized approach can also be explained by the effective mechanism of

intrinsic motivation, where a learner is drawn to engage in a task because it is

perceived as interesting, enjoyable, and/or useful [89, 115, 251]. Since the given

context is connected and relevant to their prior knowledge and life experiences in

software development, security learning can then be related to a similar

programming topic that they want to learn about or a problem to be solved. We

believe this implies a direct effect of the contextualized learning approach on higher

overall learning satisfaction, which motivates students to learn.

Although the present approach seems to be effective, there are some limitations in

generalizing the findings of this study. First, the findings were from an experiment in

a real classroom setting of a Software Security course at a university; therefore, it

could be difficult to generalize the finding to other learning environments or courses.

Second, it was based on a relatively small group of subjects (36 students). There is a

need to expand the number of participants. Third, since this study evaluated the

outcomes immediately after a short-term learning session (1 hour), it is not certain

what the knowledge retention is and for how long it will be retained. It is suggested

to evaluate the effectiveness of the learning system over a long-term period.

CHAPTER 14. PRELIMINARY EVALUATION OF AN ONTOLOGY-BASED CONTEXTUALIZED

LEARNING SYSTEM FOR SOFTWARE SECURITY

227

In conclusion, our proposed approach to establishing a contextualized learning

system does provide a sounder basis for software security learning than conventional

methods. Consequently, our study produced promising results, which may be of

value for educational practice. It is recommended that curriculum developers of

software security materials should use the context-based approach as one of the

teaching strategies to improve students’ performance in security knowledge. As part

of our future work, we plan to improve the usability of the user interface and to enrich

the knowledge content with a variety of application scenarios; meanwhile, extensive

experiments can be conducted to further evaluate the effectiveness and benefits of

this approach, including long-term evaluation. In addition, it would be interesting to

investigate the learning performance of learners with different learning

environments, such as software-project team training and self-directed learnin

228

229

Chapter 15

Learning Software Security in
Context: An Evaluation in
Open Source Software
Development Environment

Wen, Shao-Fang and Katt, Basel. “Learning Software Security in Context: An

Evaluation in Open Source Software Development Environment.” In Proceedings of the

14th International Conference on Availability, Reliability, and Security. ACM, 2019.

Author Contributions— Initial conceptualization and framework of the research

were developed by Shao-Fang Wen. The research methodology and evaluation

design and were reviewed by Basel Katt.

Abstract— Learning software security has become a complex and difficult task today

than it was even a decade ago. With the increased complexity of computer systems,

it is hard for software developers to master the expertise required to deal with the

variety of security concepts, methods, and technologies that are required in software

projects. Although a large number of security learning materials are widely available

in books or open literature, they are difficult for learners to understand the rationale

of security topics and correlate the concepts with real software scenarios. To tackle

this learning issue, our research is focused on forging a contextualized learning

environment where learners can relate the learned security knowledge to the context

that they are familiar with. In this paper, we present our evaluation study of the

learning system in the open source software development environment. The results

demonstrate that contextualized learning can help OSS developers identify their

necessary security knowledge, improve learning efficiency and make security

knowledge more meaningful for their software development tasks.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

230

15.1 Introduction

Security has become an important part of today’s software development projects.

Improving software security requires that software engineers acquire relevant

knowledge and skills to secure software development such that they can resist attacks

and handle security errors appropriately [46]. However, learning software security

has become a complex and difficult task today than it was even a decade ago [459].

Nowadays, with the increased complexity of computer systems and a variety of

applications, the intricacy of software development projects have been grown

consistently. Each software product and process is different in terms of goals and

contexts. It is hard for software developers to master the expertise required to cope

with the variety of security concepts, methods, and technologies that are required in

software projects. Developers are often exposed to this diversity, which makes the

software discipline inherently experimental [33, 275].

On the other hand, security knowledge can be both dynamic and situation-specific

[294], and the complexity of knowledge usually exceeds the capacity of individuals

to solve problems by themselves. Learners must not only cope with a variety of

security attacks and countermeasures but also have to demonstrate the applicability

of the knowledge countermeasures through experience in order to understand their

practical use. Although much security information is widely available in the form of

checklists, standards, and best practices in books, open literature or on the Internet

[313, 412, 481], it remains difficult for software engineers to correlate relevant pieces

of security knowledge to apply to their application-specific situations. There remains

a lot of confusion in learners’ minds as to the rationale of security topics. We argue

that the traditional approach, which usually organizes knowledge content topically,

with security-centric, is not suitable to motivate learners and stimulate their interest.

Developers or security learners often feel that the security knowledge is such

extensive and software security is so difficult to achieve, that they simply cast it aside.

Keeping in view of the aforementioned facts, our position is that security knowledge

should be contextualized and placed in a meaningful situation that makes sense to

the learners to enhance their understanding and make the concepts more relatable.

As Gary McGraw points out, the domain of software security is rather context-

specific, and the real project situation is necessary to apply the security concepts

within the specific system [294]. Researchers have also indicated that studying from

a context and then abstracting the knowledge gained to be able to use it in a new

context is a common way of learning programming that has been observed

extensively in both new and experienced programmers [23, 243]. In computer science

education, there is also a broad agreement that teaching units should start from a

“real-world” context or phenomenon, aiming to create connections to prior

knowledge, to increase the relevance of the material to students or to show

application situations of the intended knowledge, thereby increasing motivation [120,

184].

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

231

To this end, our research is focused on forging a software security learning

environment where learners can explore security knowledge and relate it to the

context that they are familiar with. We have proposed a learning system for software

security with a context-based learning approach, which adaptively places security

knowledge in the appropriate context of software development. We have previously

carried out two evaluations for the proposed learning approach and the learning tool

in a university learning environment [488, 489]. The experiments showed that both

the context-based learning approach and the developed tool not only yielded

significant knowledge gain compared to the conventional approach but also gains

better learning satisfaction of students. As part of an investigation into contextualized

learning in the domain of software security, we are also interested to discover and

examine the impact of the learning approach in real software-project environments.

In this paper, we present our evaluation study in the open source software (OSS)

development environment. Our results demonstrate that contextualized learning can

help OSS developers identify their necessary security information, improve learning

efficiency and make security knowledge more meaningful for their software

development tasks.

The paper is organized as follows. After the introduction, we introduce the theoretical

background of this study in section 15.2. Section 15.3 describes the proposed

contextualized learning system. In section 4, we describe the method of the evaluation

study. Section 15.5 presents the result of the evaluation. In section 15.6, we discuss

the results. Lastly, the conclusion is presented in section 15.7.

15.2 Contextualized Learning

Contextualized Teaching and Learning builds upon a similar concept of putting

learning activities into perspective to achieve the best teaching and learning

outcomes. Researchers Berns and Erickson define contextualized learning as a

practice that endeavors to link theoretical constructs that are taught during learning,

to practical, real-world context [39]. The underlying theme behind contextual learning

activities is simple. It recognizes that by embedding instructions in contexts that adult

learners are familiar with, learners more readily understand and assimilate those

instructions. Naidu [319] also points out that learning is most effective when learners

work on realistic problems with guidance. The contextualized experience helped

them develop a deeper understanding that positioned them to better comprehend the

abstract idea, and see how it manifested in actual contexts [161].

Contextualized instructions, in general, starts with presenting a context from which

the concepts are developed on a need-to-know basis [38]. This requires teachers to

teach in a more constructivist way, i.e. to position the concepts of the learning subject

in contexts recognizable to students and to stimulate the active learning of the

students [346]. The contextualization of the learning on demand can not only be seen

from the point of view of an actual problem or learning situation but also in a longer-

lasting process of learning activities that are integrated [425]. Therefore, a context for

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

232

a software security topic includes the circumstances in which its technical content

exists. To talk about software security in context is to say that knowledge would not

only include the basic principles and processes of software security but would

consider how security knowledge is used in one or more particular domains or

application areas.

The concept of learning in context has been widely addressed in education and

psychology literature over the years, and the effectiveness of contextualized learning

has been demonstrated in the setting of interactive school classrooms. However, it is

still unclear how this concept can be synthesized and applied in the domain of

software security. Our study aims to mitigate this research gap by delivering a tool-

based contextualized learning approach to facilitate software security learning in a

way that can motivate learners.

15.3 Contextualized Learning System for Software Security

15.3.1 Concepts

The basic concept of the contextualized learning system is to facilitate the contextual

learning process by providing contextualized access to security knowledge through

real software application scenarios. To develop this kind of learning system, we first

proposed a context-based learning approach to regulate the contextualized learning

process about software security. Following the proposal of the learning approach, we

designed the kernel ontology-based knowledge repository and the system user

interfaces. Figure 1 depicts the design consideration of the contextualized learning

system. We introduce our proposed learning approach for software security and the

underlying ontological security knowledge model in the below sections.

Figure 15.1: The design concept of the proposed security learning system

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

233

15.3.2 Context-Based Learning Approach

To facilitate contextualized learning about software security and create engaging

learning experiences for learners, we proposed a contextualized approach for

software security learning with three strategies.

A. Starting with a Meaningful Scenario

Contextualized learning often takes the form of real-world examples of problems that

are meaningful to the learners personally [373]. Creating the relevance of the learning

knowledge before going into the details could provide a stronger foundation for the

learning process. Therefore, to begin the process of learning, a meaningful situation

for learners must first be established. In our study, the learning situations are created

through the use of contextual software scenarios, which refer to different

manifestations within an application context. We choose a scenario-based approach

because scenarios can be easily adapted to the situation of the represented

applications and can be easily integrated with the contextualized security knowledge.

In essence, this scenario-based strategy draws on situated knowledge - that is,

understandings particular to the software problems or situations in which they are

generated. At the same time, scenarios, inherently possess the dramatic potential to

optimize learning processes and outcomes.

B. Stimulating Mental Models for Learning

Contextual learning is a learning approach that ties brain actions in creating patterns

that have meaning [113]. In order to help learners make sense of complex security

knowledge and create a strong and lasting bond among security concepts while they

are engaged through various anchoring events, our strategy is to elicit learners’

mental models for the navigation of security knowledge. Such mental models allow

learners to gain insight regarding their world by building a work scheme, which

makes it easier for them to access the information needed to understand the

knowledge domain, make predictions, and decide upon action to take [379]. In order

to be useful explanatorily, a mental model has to have a similar relation-structure to

the reality it models. Then the constructed mental model can be used to answer

questions or solve problems [235]. Generally, our intention was to guide learners in

answering three questions while dealing with each software scenario:

a. What are the possible attacks?

b. Why does it encounter attacks?

c. How can these attacks be prevented?

The knowledge structure serves as the basis for both knowledge retention and

retrieval, as well as transfer. Once learners answer what–why–how questions, the

relationships between the security concepts are revealed in their midst, and thus, their

representation of mental models expands.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

234

C. Moving from Concrete to Abstract

To help learners gain a more flexible understanding of the study concept in a range

of situations with varying levels of abstraction, we organize security knowledge by

blending abstract and concrete perspectives; presenting it with a sequence from

concrete to abstract. The used concrete-to-abstract approach in knowledge

presentation differs from the traditional, where the concepts are of foremost

importance and are usually explained first before concrete examples and applications

are discussed. In such a concrete-to-abstract knowledge presentation, learners

discover meaningful relationships between practical functions and abstract

knowledge in the context of real applications. Psychologists and educators have

indicated that abstract understanding is most effectively achieved through experience

with perceptually rich, concrete representations [171], while concrete materials make

concepts real and therefore easily internalized [226]. As long as the concrete

knowledge and the underlying abstract explanation are understood by learners,

learning transfers from one context to another will be more effective.

15.3.3 The Underlying Ontology

The role of the ontology in this learning system is to provide a vocabulary for

representing knowledge about the software security domain and for providing

linkages with specific situations in the application context. Ontologies facilitate the

capture and construction of domain knowledge and enable the representation of

skeletal knowledge to facilitate the integration of knowledge bases irrespective of the

heterogeneity of knowledge sources [181]. Figure 15.2 shows the ontology-based

knowledge model, which consists of three sub-models: the application context model,

the security domain model, and the security contextualization model. With this

model, the learning system can handle contextualized security knowledge with

multiple scenarios in different application-specific contexts and integrates security

concepts of security domain knowledge.

Figure 15.2: An overview of the ontology-based security knowledge model

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

235

A. Application Context Model

The context model represents a definition of what context is in a specific domain. In

our ontology, the context for software security knowledge is supported by the

creation of scenarios in different application contexts. The scenario presents a

snapshot of possible features and corresponding code fragments in the specific

functionality that is included in the Instruction class. It also draws on situated security

knowledge, that is, understandings particular to the application context in which they

generate. In addition to scenarios, we focus on characteristics that are highly relevant

for retrieval within a software application, concerning three perspectives:

a. The application category that scenario/functionality belongs to,

b. The platforms that the scenario functionality used, and

c. The functional area (and the corresponding functionalities) that the

application associated with.

B. Security Domain Model

The security domain model describes the knowledge that is an object of teaching

through a set of concepts (topics to be taught). To design a security knowledge

structure (schema) that is easier to store in the learners’ memory for learning, the

schema should be simplified and kept to the point for reducing the content load.

Therefore, we identify three security concepts that are most widely used throughout

the security domain. Ultimately, three classes were incorporated into the security

domain model: Security Attack, Security Weakness, and Security Practice. From a

security domain point of view, we only want to indicate which principles or abstract

ideas are needed, not their practical implementation. Therefore, we describe security

knowledge in this model at a level of abstraction. The instances of these classes specify

only the fundamental characteristics of the security concepts, not specific software

application aspects. The main advantage of this design is to share a common

understanding of the conceptual security knowledge among different security

contexts.

C. Security Contextualization Model

The term contextualization is used here to describe the process of drawing specific

connections between security domain knowledge being taught and an application

context in which the domain knowledge can be relevantly applied or illustrated. To

this extent, the security contextualization modeling manages security knowledge in

the context of specific scenarios and brings together the conceptual knowledge that is

described in the security domain model. The including security concepts are aligned

with those defined in the security domain model, which are Security Attack, Security

Weakness, and Security Practice. However, in order to clearly state the purposes and

distinguish them from the security domain model, we use different classes, namely

Concrete Security Attack, Concrete Security Weakness, and Concrete Security Practice. The

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

236

abstract class Contextualized Knowledge is used from which these three classes inherit

common attributes such as tags or external resources. Once the domain knowledge

model is defined, each security concept in the contextualized model is able to be

connected to the corresponding classes in the security domain model.

15.4 Implementation

15.4.1 System Architecture

The general architecture of the system is presented in Figure 15.3. The front-end of

the system was designed as a web-based user interface with HTML and JavaScript

libraries: JQuery43 and GoJS44. The backend was implemented in Virtuoso45 and using

Jena 46 API for accessing to the ontology repository. Virtuoso is a cross-platform

hybrid data server that combines SQL, XML, Resource Description Framework

(RDF), and free-text data management with the functionality of a web application

server in a single system.

Figure 15.3: System architecture diagram

To construct the ontology, we used Protégé Editor and Web Ontology Language

(OWL)47because of its simplicity and popularity [444]. When searching the ontology,

we use SPARQL 48 protocol to extract information from the RDF. We installed a

Virtuoso server and uploaded the ontology (i.e., OWL files) into the server as Linked

Data using the quad store upload feature of Virtuoso. That is, the OWL files are stored

in the form of Linked Data to deploy on the Web via the ontology query language

(i.e., SPARQL). Jena is a Java framework for building semantic web applications,

which provides extensive Java libraries for helping developers develop code that

handles RDF, OWL, and SPARQL in line with published W3C recommendations49.

43 https://jquery.com/
44 https://gojs.net/latest/index.html
45 https://virtuoso.openlinksw.com/
46 https://jena.apache.org/
47 https://www.w3.org/OWL/
48 https://jena.apache.org/tutorials/sparql.html
49 https://www.w3.org/2001/sw/

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

237

15.4.2 System Features

The system features are shown in Figure 15.4(a) and (b), in which two different

scenarios are demonstrated: “Accessing database using user input” (a) and

“Performing operations on a memory buffer.” (b) The prior scenario belongs to the

paradigm of Web Application with PHP programming language while the latter is

under General Implementation with C/C++ language.

Figure 15.5 illustrates how learners are guided by the learning process of the system.

The learning process begins with a selected contextualized scenario in the application

context familiar to learners and then gradually leads to an understanding of the

abstract part of security knowledge. First, the learner defines criteria from the

application-context menu to scope the learning session based on his (or her) desired

knowledge. The instructional part of the scenario is made up of practical

demonstrations of the pre-described application functionality and the code fragments

behind it.

To guide learners navigating through the contextualized knowledge efficiently, we

outline the knowledge contents in a graphical Concept Map, developed using GoJS.

Concept Map is a visual representation of different concepts and their relationships.

The contextualized concept map demonstrates how security knowledge can be made

more relevant to the linkage of real-world items by demonstrating their relationships.

With the use of concept mapping, the learning arena becomes transparent and can be

virtualized in a learner’s mind [405]. This transformation is essential for learners in

order to integrate the semantical impact of the knowledge structure into the mental

models for efficient learning.

While a node is clicked on the concept map, the knowledge content correspondent to

this concept is displayed in the right half of the screen, where the upper part is the

contextualized knowledge and the lower part is the abstract explanation, following

the concrete-to-abstract presentation strategy. By concrete representations, we

include perceptually detailed and rich materials, such as demonstrating security

attacks with different exploits, identifying mistakes in the source code, and showing

the secure coding practices to fix the mistakes. With the scenario instruction

displaying aside, learners can easily recall the demonstrations of the software

functions without interrupting the learning process. After experiencing the facts,

learners then move on to the section of abstract knowledge, where the corresponding

conceptual knowledge is presented. In such an environment, learners discover

meaningful relationships between the abstract explanation and the practical

demonstration in the context of real software applications; security concepts are

internalized through the process of discovering, reinforcing, and relating.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

238

(a)

(b)

Figure 15.4: Snapshots of the contextualized learning system

Figure 15.5: The embedded learning process in the system

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

239

15.5 Study Method

To evaluate the efficacy of the proposed security learning system, a questionnaire-

based survey was conducted to collect OSS developers’ perception of the proposed

learning approach and system features.

15.5.1 Study Setup

In preparation for the study, we identified two common software vulnerabilities in

web applications: SQL Injection (SQLi) and Cross-Site Scripting (XSS) as the learning

subjects. SQLi and XSS were among the OWASP’s Top 10 [341] most critical web

application vulnerabilities in the past decade. For preparing the ontology of the

system, we first set up the learning environment in a web application paradigm, an

e-Store. For this specified context, the author developed two sets of functionalities to

operate a web-based e-Store application using two different programming languages:

PHP and Java, including a login module, data input/output features, data processing,

database access, and payment functions. Three scenarios were manipulated under

critical functionalities to demonstrate the two vulnerabilities within the scope of the

e-Store system, including the corresponding vulnerable code fragments, exploits, and

mitigations. With the readiness of the real software scenarios, we then constructed all

learning materials and filled the ontology via Protégé application.

15.5.2 Data Collection

This study was designed to examine the potential of adopting the idea of a context-

based learning system for software security for OSS developers. For the purpose, the

use of a survey is deemed appropriate in this study, as the survey enables clear, direct,

and objective answers to the questions presented to the respondents [40]. In this

study, a self-administered web-based questionnaire was used to collect individual-

level perception data from participants in OSS projects. The purpose of the

questionnaire was to validate the learning system by eliciting respondents’

perceptions and opinions of the learning approach and system features that support

software-security learning in OSS projects. The survey instruments, which consisted

of four sections, were created and hosted using Google Forms. Section 1 addressed

demographics information of participants. In section 2, respondents were asked to

rate the system features (Table 15.1), ranging from “very impractical” to “very

practical”, administered in accordance with the 5-point Likert scale. Section 3 dealt

with the learning approaches embedded in the system. Respondents were required

to choose the answer that reflects their own views and stance on the statements which

were ranged from “strongly disagree” to “Strongly agree”, with a 5-point Likert scale

(Table 15.2). In the last section, participants were allowed to share their thoughts or

suggestions on all aspects of the learning system.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

240

Table 15.1: Evaluation items for system features

Evaluation Item Question

Software Scenario • The system introduces security subjects using common software

functions.

Concept Map • The system uses a graphical concept map to outline the

knowledge content.

Security Concepts • The system forms the main theme of security learning using three

concepts: Security Attack, Security Weakness, and Security

Practice.

Contextualized

Knowledge

• The system demonstrates practical security knowledge in

connection with the scenario.

Concrete-to-Abstract • The system guides learners studying concrete/practical security

knowledge first, then the abstraction/theory.

Table 15.2: Evaluation items for the learning approach

Evaluation Item Question

Effectiveness • This system can effectively assist learners in obtaining software

security knowledge.

Difficulty reduction • The learning approach reduces the difficulty of learning

software security.

Experience correlation • The approach helps me relate security knowledge to what I

knew or experienced before.

Interest Promotion • The approach promotes my interest in learning software

security.

Learning Preference • The system guides learners studying concrete/practical security

knowledge first, then the abstraction/theory.

15.5.3 Participants

For the setup of this study, we recruited OSS developers on GitHub by sending out a

research invitation between January 2019 and February 2019. All data collected

through the survey was non-identifiable. The email invitation included an

introduction to the research and links to the learning system and to the survey site.

The only participation requirement of participants was the experience of web

application development. A total of 21 voluntary participants accepted the invitation

and completed the questionnaire after trying out the system. GitHub is an online

database of OSS projects. As of June 2018, GitHub reported more than 30 million users

[164] and 57 million repositories [163], making it the largest host of source code in the

world.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

241

15.6 Result

15.6.1 Respondent Demographics

Table 15.3 describes the general demographic information of the 21 respondents, in

terms of gender, age and seniority in OSS development. 90% of respondents were

male, while there were only 2 female respondents. A large body of participants, that

is 85%, was between 20 and 40 years old and over 70% of respondents had over 3

years of experience in OSS development. As shown in Figure 15.6, Java, Python, and

PHP are the top 3 programming languages that most respondents are familiar with

in this study.

Table 15.3: Demographic analysis of the respondents (n= 21)

Item Category Frequency Percentage

Gender Male 19 90.48%

Female 2 9.52%

Age <20 1 4.8%

20–30 12 57.1%

31–40 6 28.6%

41–50 2 9.5%

Seniority in OSS

development

6 months to 1 year 1 4.8%

1 to 3 years 5 23.8%

3 to 5 years 9 42.9%

More than 5 years 6 28.6%

Figure 15.6: The distribution of programming languages that the respondents are

familiar with

15.6.2 Satisfaction Analysis for System Features

The mean scores of the system features are plotted as a radar chart with five axes

(Figure 15.7) according to each evaluation item. As can be seen from the chart, the

mean scores of the system features ranged from 4.00 (for Contextualized knowledge)

to 4.67 (for Concept map). The highest rating category made by the respondents was

“Concept map”. Most of the respondents expressed that the design of the Concept

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

242

map was attractive and thought it was useful to guide the learning process. They

commented:

 “I like the color-design concept. Neat and simple. Easy to follow.”

 “Have a node graph that helps me a lot to see stuff, not in paragraph form, but to capture the

cause and effect.”

 “The sense of connecting security problems and solutions is really good.”

Respondents also recognized the use of real software scenarios in introducing

security knowledge. One respondent stated:

“When I learn [software] security, I have a very fuzzy view, to begin with, and then I kind of

work at it read about it, and wait for the lightbulb to go on. I think [to start with] cases help

me turn those lightbulbs on immediately.”

In addition, most also appreciated the arrangement of contextualized and abstract

security knowledge in the system. Some of the comments were indicated below:

“[…] clear and concise. Straight to the point, easy to understand”

“That way the sample code and the description are put together helps me learn the [security]

concepts.”

15.6.3 Satisfaction Analysis for the Learning Approach

We carried out reliability tests using IBM SPSS software by calculating Cronbach’s

alpha to examine the internal consistency of the five evaluation items within the

category of “Learning approach”, and determine the scale in questions is

unidimensional (Figure 15.8). The derived alpha value was 0.834, which was above

the acceptable threshold (0.70) suggested by Nunnally [332]. Thus, the survey items

on the instrument are deemed highly reliable and appropriate for such research.

Figure 15.7: Radar chart showing the mean score of system features

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

243

Figure 15.8: SPSS reliability test of evaluation items within the category of “Learning

approach”

To understand respondents’ perceptions regarding the learning approaches

embedded in the system, we carried out a descriptive statistical analysis for the five

survey items. Table 15.4 shows the analysis result, including the frequency of the

valid values, means, and standard deviation. The result shows that mean scores for

the five survey items all reached 4, indicating a high overall satisfaction for the

learning approach expressed by the respondents. To obtain a closer view of the

respondents’ perception with our proposal, we depicted the proportion of responses

of each survey item in Figure 15.9. From the perspective of simplicity learning, the

vast majority of respondents (91%) expressed their agreement that the learning

approach can reduce the difficulty of learning software security. In line with this, 85%

of respondents agreed that the leaning approach creates conditions for effective

leering about software security. In addition, over 80% of respondents thought that the

learning approach fits their learning preference and promote their interest in learning

software security. They expressed their thoughts about the advantages of the

proposed learning approach. For example:

“I highly recommend your method. Teaching practice first. Developers can derive an

understanding of the theory easier from the practice instead of doing it the other way round.”

“Software security needs to be practical; it needs to be related to something, to be given the

contrast to something. So it becomes really interesting when I reach your ideas. But where

there is so much theory it’s also a bit hard to understand.”

Last, 71% of respondents agreed that the learning approach helped them relate

security knowledge to their prior experience. One respondent supporting the

statement commented:

“When I relate the cases to the practical things that I do in my project, the security concepts

become more applicable and easier to understand.”

However, we found that the survey item, Experience correlation, got the least

satisfaction (Mean = 4.05) in the category. Seven respondents, that is one-third, did

not hold a positive agreement with the statement, and the neutral responses were

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

244

relatively high (six respondents). Probing into this issue, we identified respondents’

comments related to this survey item. They reported that their specialties were not

within the knowledge scope that the system currently provided. For example, a

respondent who was familiar with Python stated:

” I’ve used Python for many years. I expect this [programming language] will be

included in your code examples.”

15.7 Discussion

The results of this study indicate that our proposed learning system has the potential

to be an effective learning tool that can motivate OSS developers to learn about

software security. First, the respondents overall evaluated the practicality of system

features with a positive degree. They highly recommended the use of software

scenarios with graphical and contextualized security knowledge presentation. With

a clear and visualized layout, they could sort out the desired knowledge quickly.

Second, the results also indicated the learning approach kept developers interested

and engaged. They overwhelmingly expressed their satisfaction with the learning

sessions. Such benefits of the contextualized approach can be explained by the

effective mechanism of intrinsic motivation, where a learner is drawn to engage in a

task because it is perceived as interesting, enjoyable, and/or useful [89, 115, 251].

Table 15.4: Descriptive analysis of the proposed learning approach

Item

Frequency

Mean

Std.

Deviation

Strongly

Disagree Disagree Neutral Agree

Strongly

Agree

Difficulty reduction 0 0 3 11 7 4.19 0.700

Effectiveness 0 0 2 14 5 4.14 0.573

Learning preference 0 0 4 10 7 4.14 0.973

Interest promotion 0 0 4 8 9 4.24 0.949

Experience

correlation
0 1 5 7 8 4.05 0.928

Figure 15.9: Stacked bar chart: responses to questions of the proposed learning

approach based on 5-point Likert scale

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

245

Based on the findings presented in the study, we deem contextualized learning a

suitable approach to support developers’ security training and education in software

projects. In OSS, development, and maintenance of qualified and secured software

products rely mainly on the ability of participants to acquire, refine and use new

aspects of secure programming knowledge in their projects [483]. With proper

contextual guidance, developers can identify their necessary security information,

improve learning efficiency and make security knowledge more meaningful for their

software development tasks. The contextualized approach helped the developers to

see how the various security concepts were inter-related in their works and gave them

the personalized perspective that they valued. Therefore, their learning experience

can be related to a similar programming topic that they want to learn about or a

problem to be solved in their projects. In addition, when developers encounter the

security problems within the context they are already familiar with, the consequences

of exploiting the code’s vulnerabilities will be understood with a strong and personal

effect, which becomes more real and less theoretical.

From this study, we also draw some lessons for further improvements to this learning

system. First, we need to create more contextual scenarios and equip corresponding

security knowledge in the system to expand the knowledge scope. The learning

sessions can then be cast in the contexts, which are more closed to learners’ working

environments. Additionally, the respondents also indicated that they could not grasp

the abstract explanation of security concepts because of the heavy embedded textual

descriptions. The abstraction knowledge we built was extracted from the resources

on the internet (e.g. OWASP and CWE). It is suggested that we decompose the vast

information into smaller knowledge objects to further ease learners’ loading. With the

defined relationships in the ontology, these new instances can also be illustrated in

the concept map to support knowledge navigation. For example, the security practice

of “Input validation” can be broken down into flat text validation, rich text validation,

and file upload validation, etc. We are proactively working on this improvement in

preparing for longer-term studies.

15.8 Conclusion

In this study, a web-based learning system was conceptualized and developed to

support contextualized learning about software security. We have presented the

design rationale, including the embedded learning strategies and underlying

ontological knowledge repository. Our approach attempts to place security learning

in the context of software projects that can draw developers’ attention to similar

software events and conditions. We aim to help learners organize security knowledge

by connecting concepts to real software scenarios, to motivate learners and stimulate

their interest. The contextualization of security knowledge makes it possible to

support developers to reflect on their learning to bridge ideas from a familiar concrete

context so they can recognize their own personal relationship to these concepts.

CHAPTER 15. LEARNING SOFTWARE SECURITY IN CONTEXT: AN EVALUATION IN OPEN

SOURCE SOFTWARE DEVELOPMENT ENVIRONMENT

246

The proposed learning system was evaluated through an online survey with 21

developers in OSS projects. Overall, the analysis of the survey data yielded positive

and promising results, in which OSS participants overwhelmingly expressed their

satisfaction with our proposal, in perspectives of system features and the embedded

learning approach. They enjoyed the experience, found the subject matter interesting

and found the presentation helpful. This finding demonstrates that our approach is

not only possible but also practical to be adopted by software development projects.

We are encouraged by the results of the context-based approach and believe it

provides a formula for increasing the attitude and understanding of security subjects

for developers without sacrificing rigor or quality of learning. We believe this implies

a direct effect of the contextualized learning approach on higher overall learning

satisfaction, which motivates developers to learn.

Several limitations of this study should be noted. First, this evaluation was based on

self-reported data from voluntary participants about their experience and perceptions

of the proposed learning system. It is not certain their actual behavior on the system,

the span of time they practice the system, and for how long the knowledge will be

retained. Moreover, the number of respondents obtained from the survey was

relatively small compared with the enormous number of OSS projects and field

workers today. We intend to invite more OSS participants from various domains

joining future sessions, meanwhile, to conduct in-depth interviews to collect more

detailed information about their thoughts and learning behaviors.

247

Bibliography

[1] Abunadi, I. and M. Alenezi (2015), "Towards cross project vulnerability prediction in
open source web applications". in Proceedings of the The International Conference on
Engineering & MIS 2015. ACM.

[2] Acar, Y., S. Fahl, and M.L. Mazurek (2016), "You are not your developer, either: A
research agenda for usable security and privacy research beyond end users". in 2016
IEEE Cybersecurity Development (SecDev). IEEE.

[3] Ackerman, M.S. (1996), "Definitional and contextual issues in organizational and
group memories". Information Technology & People, volume 9, issue 1, pages 10-24.

[4] Agarwal, R. and J. Prasad (1999), "Are individual differences germane to the
acceptance of new information technologies?". Decision sciences, volume 30, issue 2,
pages 361-391.

[5] Ajith Kumar, J. and L. Ganesh (2009), "Research on knowledge transfer in
organizations: a morphology". Journal of knowledge management, volume 13, issue
4, pages 161-174.

[6] Ajzen, I., M.J.J.o.p. Fishbein, and S. Psychology (1973), "Attitudinal and normative
variables as predictors of specific behavior". volume 27, issue 1, pages 41.

[7] Al Sabbagh, B. and S. Kowalski (2012), "Developing social metrics for security
modeling the security culture of it workers individuals (case study)". in
Communications, Computers and Applications (MIC-CCA), 2012 Mosharaka
International Conference on. IEEE.

[8] Al Sabbagh, B. and S. Kowalski (2013), "A socio-technical framework for threat
modeling a software supply chain". in The 2013 Dewald Roode Workshop on
Information Systems Security Research, October 4-5, 2013, Niagara Falls, New York,
USA. International Federation for Information Processing.

[9] Alavi, M. and D. Leidner (1999), "Knowledge management systems: issues,
challenges, and benefits". Communications of the Association for Information
systems, volume 1, issue 1, pages 7.

[10] Alenezi, M. and Y. Javed (2016), "Open source web application security: A static
analysis approach". in Engineering & MIS (ICEMIS), International Conference on.
IEEE.

[11] Alexander Hars, S.O. (2002), "Working for free? Motivations for participating in open-
source projects". International Journal of Electronic Commerce, volume 6, issue 3,
pages 25-39.

[12] Alhababi, H.H. (2017), "Technological Pedagogical Content Knowledge (Tpack)
Effectiveness on English Teachers And Students in Saudi Arabia".

BIBLIOGRAPHY

248

[13] Alnaeli, S.M., et al. (2016), "On the evolution of mobile computing software systems
and C/C++ vulnerable code: Empirical investigation". in Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), IEEE Annual. IEEE.

[14] Alqahtani, S.S., E.E. Eghan, and J. Rilling (2016), "Tracing known security
vulnerabilities in software repositories–A Semantic Web enabled modeling
approach". Science of Computer Programming, volume 121, issue, pages 153-175.

[15] Altinkemer, K., J. Rees, and S. Sridhar (2008), "Vulnerabilities and patches of open
source software: an empirical study". Journal of Information System Security, volume
4, issue 2, pages 3-25.

[16] Anbalagan, P. and M. Vouk (2009), "Towards a unifying approach in understanding
security problems". in ISSRE'09. 20th International Symposium on Software
Reliability Engineering. IEEE.

[17] Anbalagan, P. and M. Vouk (2010), "Towards a bayesian approach in modeling the
disclosure of unique security faults in open source projects". in IEEE 21st International
Symposium on Software Reliability Engineering (ISSRE). IEEE.

[18] Anderson, R. (1997), "Work Ethnography and System Design. The Encyclopedia of
MicroComputers 20, A. Kent and JG Williams". Marcel Dekker.

[19] Anderson, R.C., R.W. Kulhavy, and T. Andre (1972), "Conditions under which
feedback facilitates learning from programmed lessons". Journal of Educational
Psychology, volume 63, issue 3, pages 186.

[20] Anne, A. and M.A.J.C.A. Sasse (1999), "Users are not the enemy". volume 42, issue 12,
pages 40-46.

[21] Anttila, J., et al. (2007), "Fulfilling the needs for information security awareness and
learning in information society". in The 6th annual security conference, Las Vegas.

[22] Apple Inc., "Introduction to Secure Coding Guide"; Available from:
https://developer.apple.com/library/archive/documentation/Security/Conceptual/Sec
ureCodingGuide/Introduction.html. (Accessed on November 2, 2019)

[23] Apvrille, A. and M. Pourzandi (2005), "Secure software development by example".
IEEE Security & Privacy, volume 3, issue 4, pages 10-17.

[24] Argote, L. (2012), "Organizational learning: Creating, retaining and transferring
knowledge". volume: Springer Science & Business Media.

[25] Au, Y.A., et al. (2009), "Virtual organizational learning in open source software
development projects". Information & Management, volume 46, issue 1, pages 9-15.

[26] Avery, D., et al. (2016), "Externalization of software behavior by the mining of norms".
in Proceedings of the 13th International Conference on Mining Software Repositories.
ACM.

[27] Badri, M.A., D. Davis, and D. Davis (1995), "A study of measuring the critical factors
of quality management". International Journal of Quality & Reliability Management,
volume 12, issue 2, pages 36-53.

[28] Bakanauskienė, I. and J. Martinkienė (2011), "Determining managerial competencies
of management professionals". Management of Organizations: Systematic Research
volume, issue 60, pages 29-43.

[29] Bam, K. (1992), "Research methods for business and management".

[30] Banday, M.T. (2011), "Ensuring Authentication and Integrity of Open Source Software
using Digital Signature". International Journal of Computer Application volume 3,
issue 2, pages 11-14.

[31] Barnum, S. and G. McGraw (2005), "Knowledge for software security". IEEE Security
& Privacy, volume 3, issue 2, pages 74-78.

BIBLIOGRAPHY

249

[32] Barnum, S. and A. Sethi (2007), "Attack patterns as a knowledge resource for building
secure software". in OMG Software Assurance Workshop: Cigital.

[33] Basili, V.R. and H.D. Rombach (1991), "Support for comprehensive reuse". Software
engineering journal, volume 6, issue 5, pages 303-316.

[34] Baskerville, R., J. Pries-Heje, and J. Venable (2009), "Soft design science methodology".
in Proceedings of the 4th international conference on design science research in
information systems and technology. ACM.

[35] Bassok, M.J.C.D.i.P.S. (1996), "Using content to interpret structure: Effects on
analogical transfer". volume 5, issue 2, pages 54-58.

[36] Baxter, G. and I. Sommerville (2011), "Socio-technical systems: From design methods
to systems engineering". Interacting with computers, volume 23, issue 1, pages 4-17.

[37] Benbya, H. and N. Belbaly (2010), "Understanding developers’ motives in open source
projects: a multi-theoretical framework". volume, issue, pages.

[38] Bennett, J., F. Lubben, and S. Hogarth (2007), "Bringing science to life: A synthesis of
the research evidence on the effects of context‐based and STS approaches to science
teaching". Science education, volume 91, issue 3, pages 347-370.

[39] Berns, R.G. and P.M. Erickson (2001), "Contextual Teaching and Learning: Preparing
Students for the New Economy. ". National Dissemination Center for Career and
Technical Education.

[40] Berry, L.M. and J.P. Houston (1993), "Psychology at work: An introduction to
industrial and organizational psychology". Brown & Benchmark/Wm. C. Brown Publ.

[41] Bider, I., P. Johannesson, and E. Perjons (2013), "Design science research as movement
between individual and generic situation-problem–solution spaces", in Designing
Organizational Systems, Springer. pages 35-61.

[42] Bider, I. and S. Kowalski (2014), "A framework for synchronizing human behavior,
processes and support systems using a socio-technical approach", in Enterprise,
Business-Process and Information Systems Modeling, Springer. pages 109-123.

[43] Biggs, J.B. (2011), "Teaching for quality learning at university: What the student does".
McGraw-hill education (UK).

[44] Birkenkrahe, M. (2002), "How large multi-nationals manage their knowledge".
Business Review, volume 4, issue 2, pages 2-12.

[45] Bishop, A.J. (1988), "Mathematics education in its cultural context". Educational
studies in mathematics, volume 19, issue 2, pages 179-191.

[46] Bishop, M. (2010), "A Clinic for" Secure" Programming". IEEE Security & Privacy,
volume 8, issue 2, pages 54-56.

[47] Bishop, M., et al. (2017), "Evaluating secure programming knowledge". in IFIP World
Conference on Information Security Education. Springer.

[48] Bishop, M. and D.A. Frincke (2005), "Teaching secure programming". IEEE Security
and Privacy, volume 3, issue 5, pages 54-56.

[49] Black Duck Software, "Security in the age of open source ",
https://www.slideshare.net/blackducksoftware/september-13-2016-security-in-the-
age-of-open-source. (Accessed on Nov. 18, 2017)

[50] BlackDuck Software, "2017 Open Source Security and Risk Analysis", Web:
https://www.blackducksoftware.com/open-source-security-risk-analysis-2017.
(Accessed on Sep. 13, 2018)

[51] Boh, W.F. (2007), "Mechanisms for sharing knowledge in project-based
organizations". Information and organization, volume 17, issue 1, pages 27-58.

BIBLIOGRAPHY

250

[52] Bosu, A. (2014), "Characteristics of the vulnerable code changes identified through
peer code review". in Companion Proceedings of the 36th International Conference
on Software Engineering. ACM.

[53] Bosu, A. and J.C. Carver (2014), "Impact of developer reputation on code review
outcomes in OSS projects: an empirical investigation". in Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM.

[54] Bosu, A., et al. (2014), "Identifying the characteristics of vulnerable code changes: An
empirical study". in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM.

[55] Bosu, A., et al. (2014), "When are OSS developers more likely to introduce vulnerable
code changes? A case study". in IFIP International Conference on Open Source
Systems. Springer.

[56] Brank, J., M. Grobelnik, and D. Mladenic (2005), "A survey of ontology evaluation
techniques". in Proceedings of the conference on data mining and data warehouses
(SiKDD 2005). Citeseer Ljubljana, Slovenia.

[57] Brézillon, P. (1999), "Context in problem solving: A survey". The Knowledge
Engineering Review, volume 14, issue 1, pages 47-80.

[58] Brézillon, P. (2002), "Modeling and using context: Past, present and future". in
Rapport de recherche interne LIP6. Paris.

[59] Brézillon, P. (2003), "Making context explicit in communicating objects".
Communicating with Smart Objects: Developing Technology for Usable Pervasive
Computing Systems, Kogan Page, London.

[60] Brézillon, P. and R. Araujo (2005), "Reinforcing shared context to improve
collaboration". Revue des Sciences et Technologies de l'Information-Série RIA: Revue
d'Intelligence Artificielle, volume 19, issue 3, pages 537-556.

[61] Brézillon, P. and J.-C. Pomerol (1999), "Contextual knowledge sharing and
cooperation in intelligent assistant systems". Le Travail Humain, volume 62, issue 3,
pages 223-246.

[62] Brooking, A. (1999), "Corporate memory: Strategies for knowledge management".
volume: Cengage Learning EMEA.

[63] Brooks Jr, F.P. (1995), "The Mythical Man-Month: Essays on Software Engineering".
Pearson Education India.

[64] Bulgurcu, B., H. Cavusoglu, and I.J.M.q. Benbasat (2010), "Information security policy
compliance: an empirical study of rationality-based beliefs and information security
awareness". volume 34, issue 3, pages 523-548.

[65] Busch, M. and M. Wirsing (2015), "An Ontology for Secure Web Applications". Int. J.
Software and Informatics, volume 9, issue 2, pages 233-258.

[66] Cabrera, A., W.C. Collins, and J.F. Salgado (2006), "Determinants of individual
engagement in knowledge sharing". The International Journal of Human Resource
Management, volume 17, issue 2, pages 245-264.

[67] Caldwell, B.S. (2008), "Knowledge sharing and expertise coordination of event
response in organizations". Applied ergonomics, volume 39, issue 4, pages 427-438.

[68] Campbell, D.T. (1957), "Factors relevant to the validity of experiments in social
settings". Psychological bulletin, volume 54, issue 4, pages 297.

[69] Campion, M.A., et al. (2011), "Doing competencies well: Best practices in competency
modeling". volume 64, issue 1, pages 225-262.

BIBLIOGRAPHY

251

[70] CAPEC, "CAPEC Glossary - Attack Pattern"; Available from:
https://capec.mitre.org/about/glossary.html. (Accessed on Jun. 3, 2019)

[71] Cerone, A. and S.K. Sowe (2010), "Using free/libre open source software projects as e-
learning tools". in Electronic Communications of the EASST.

[72] Chandra, P., "The Software Assurance Maturity Model-A guide to building security
into software development"; Available from: https://www.opensamm.org/. (Accessed
on Octorber 13, 2019)

[73] Chehrazi, G., I. Heimbach, and O. Hinz (2016), "The impact of security by design on
the success of open source software". in Research Papers. ECIS 2016 Proceedings,
Paper 179.

[74] Chen, C.C., et al. (2008), "A cross-cultural investigation of situational information
security awareness programs". volume 16, issue 4, pages 360-376.

[75] Chen, X., et al. (2013), "Knowledge sharing in open source software project teams: A
transactive memory system perspective". International Journal of Information
Management, volume 33, issue 3, pages 553-563.

[76] Chen, X., et al. (2016), "Mechanisms of knowledge sharing in open source software
projects: a comparison of Chinese and Western practice". International Journal of
Technology Intelligence and Planning, volume 11, issue 2, pages 117-139.

[77] Chen, X., et al. (2017), "Managing knowledge sharing in distributed innovation from
the perspective of developers: empirical study of open source software projects in
China". Technology Analysis & Strategic Management, volume 29, issue 1, pages 1-
22.

[78] Cheng, C.K. and F.J. Kurfess (2003), "A Context-Based Knowledge Management
Framework for Software Development". CONQUEST.

[79] Chi, M.T. (2006), "Two approaches to the study of experts’ characteristics", The
Cambridge handbook of expertise and expert performance. pages 21-30.

[80] Chia, P., S. Maynard, and A. Ruighaver (2002), "Understanding organizational
security culture". in Proceedings of PACIS. Japan.

[81] Child, J. (1984), "Organization: A guide to problems and practice". Sage.

[82] Chung, S. and B. Endicott-Popovsky (2010), "Software reengineering based security
teaching". in Proceedings of the 7th Annual International Conference on International
Conference on Cybernetics and Information Technologies, Systems and Applications
(CITSA 2010). Orlando, FL.

[83] Clarke, R., D. Dorwin, and R. Nash (2009), "Is open source software more secure?". in
Homeland Security/Cyber Security.

[84] Clarke, R., D. Dorwin, and R. Nash (2009), "Is open source software more secure?".
Homeland Security/Cyber Security, volume, issue, pages.

[85] Cognition Technology Group at Vanderbilt (1992), "Anchored instruction in science
and mathematics: Theoretical basis, developmental projects, and initial research
findings". Philosophy of science, cognitive psychology, pages 244-273.

[86] Cognition Technology Group at Vanderbilt (1992), "The Jasper series as an example
of anchored instruction: Theory, program description, and assessment data".
Educational Psychologist, volume 27, issue 3, pages 291-315.

[87] Colomina, I., J. Arnedo-Moreno, and R. Clarisó (2013), "A study on practices against
malware in free software projects". in 2013 27th International Conference on
Advanced Information Networking and Applications Workshops. IEEE.

[88] Cooper, S. and S. Cunningham (2010), "Teaching computer science in context". Acm
Inroads, volume 1, issue 1, pages 5-8.

BIBLIOGRAPHY

252

[89] Cordova, D.I. and M.R. Lepper (1996), "Intrinsic motivation and the process of
learning: Beneficial effects of contextualization, personalization, and choice". Journal
of educational psychology, volume 88, issue 4, pages 715.

[90] Council, N.R. (2000), "How people learn: Brain, mind, experience, and school:
Expanded edition". volume: National Academies Press.

[91] Council, N.R. (2003), "Evaluating and improving undergraduate teaching: In".
Science, Technology, Engineering, and Mathematics, volume, issue, pages.

[92] Cowan, C. (2003), "Software security for open-source systems". IEEE Security &
Privacy, volume 99, issue 1, pages 38-45.

[93] Cox, A., S. Connolly, and J.J.V. Currall (2001), "Raising information security
awareness in the academic setting". volume 31, issue 2, pages 11-16.

[94] Craik, K.J.W. (1967), "The nature of explanation". volume 445. CUP Archive.

[95] Creswell, J.W. and V.L.P. Clark (2017), "Designing and conducting mixed methods
research". Sage publications.

[96] Criu, R. and A. Marian (2014), "The influence of students’ perception of pedagogical
content knowledge on self-efficacy in self-regulating learning ". Procedia-Social and
Behavioral Sciences, volume 142, issue, pages 673-678.

[97] Crowston, K. and B. Scozzi (2008), "Bug fixing practices within free/libre open source
software development teams". Journal of Database Management volume 19, issue 2,
pages 1-30.

[98] Crowston, K., et al. (2012), "Free/Libre open-source software development: What we
know and what we do not know". ACM Computing Surveys (CSUR), volume 44, issue
2, pages 7.

[99] Cummings, J.N., J.A. Espinosa, and C.K. Pickering (2009), "Crossing spatial and
temporal boundaries in globally distributed projects: A relational model of
coordination delay". Information Systems Research, volume 20, issue 3, pages 420-
439.

[100] Curtis, B., H. Krasner, and N. Iscoe (1988), "A field study of the software design
process for large systems". Communications of the ACM, volume 31, issue 11, pages
1268-1287.

[101] Cusumano, M.A. and R.W. Selby (1998), "Microsoft secrets: how the world's most
powerful software company creates technology, shapes markets, and manages
people". volume: Simon and Schuster.

[102] CVE, "Browse Vulnerabilities By Date"; Available from:
https://www.cvedetails.com/browse-by-date.php. (Accessed on May 3, 2019)

[103] CWE, "CWE Glossary-Vulnerability"; Available from:
https://cwe.mitre.org/documents/glossary/index.html#Vulnerability. (Accessed on
Jun. 3, 2019)

[104] CWE, "CWE Glossary-Weakness"; Available from:
https://cwe.mitre.org/documents/glossary/index.html#Weakness. (Accessed on June
3, 2019)

[105] Da Veiga, A. and J.H. Eloff (2010), "A framework and assessment instrument for
information security culture". Computers & Security, volume 29, issue 2, pages 196-
207.

[106] Dabbish, L., et al. (2012), "Social coding in GitHub: transparency and collaboration in
an open software repository". in Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work. ACM.

BIBLIOGRAPHY

253

[107] Dallas, S. and M. Bell (2004), "The need for IT governance: Now more than ever".
Gartner Inc.

[108] Damaševičius, R. (2007), "Analysis of software design artifacts for socio-technical
aspects". INFOCOMP Journal of Computer Science, volume 6, issue 4, pages 7-16.

[109] Damaševičius, R. (2009), "On the human, organizational, and technical aspects of
software development and analysis", in Information Systems Development, Springer.
pages 11-19.

[110] Damiani, E., C.A. Ardagna, and N. El Ioini (2009), "OSS security certification", in Open
Source Systems Security Certification, Springer. pages 1-36.

[111] Dark, M., et al. (2015), "Teach the hands, train the mind... a secure programming
clinic".

[112] David, W. and L. Fahey (2000), "Diagnosing cultural barriers to knowledge
management". The Academy of management executive, volume 14, issue 4, pages 113-
127.

[113] Davtyan, R. (2014), "Contextual learning". in ASEE 2014 Zo. 1 Conf.

[114] De Souza, C., et al. (2004), "From technical dependencies to social dependencies". in
Workshop on Social Networks for Design and Analysis: Using Network Information
in CSCW.

[115] Dean, R.J. and L. Dagostino (2007), "Motivational factors affecting advanced literacy
learning of community college students". Community College Journal of Research
Practice, volume 31, issue 2, pages 149-161.

[116] DeVito, J.A. (2002), "Human communication". Boston: Allyn & Bacon.

[117] Dey, A.K. (2001), "Understanding and using context". Personal ubiquitous computing,
volume 5, issue 1, pages 4-7.

[118] Dhillon, G. (1997), "Managing information system security". Macmillan International
Higher Education.

[119] Dhillon, G. (2001), "Challenges in managing information security in the new
millennium", in Information security management: Global challenges in the new
millennium, IGI Global. pages 1-8.

[120] Diethelm, I., P. Hubwieser, and R. Klaus (2012), "Students, teachers and phenomena:
educational reconstruction for computer science education". in Proceedings of the
12th Koli Calling International Conference on Computing Education Research. ACM.

[121] DiPietro, M., et al. (2010), "Best practices in teaching K-12 online: Lessons learned from
Michigan Virtual School teachers". Journal of interactive online learning, volume 9,
issue 3, pages 10.

[122] Dolmans, D.H., et al. (2005), "Problem‐based learning: Future challenges for
educational practice and research". Medical education, volume 39, issue 7, pages 732-
741.

[123] Ducheneaut, N. (2005), "Socialization in an open source software community: A socio-
technical analysis". Computer Supported Cooperative Work (CSCW), volume 14,
issue 4, pages 323-368.

[124] Duhon, H.J. and J. Elias (2007), "Why It's Difficult To Learn Lessons: Insights from
Decision Theory and Cognitive Science". in SPE Annual Technical Conference and
Exhibition. Society of Petroleum Engineers.

[125] Easterbrook, S., et al. (2008), "Selecting empirical methods for software engineering
research", in Guide to advanced empirical software engineering, Springer. pages 285-
311.

BIBLIOGRAPHY

254

[126] Edwards, N. and L. Chen (2012), "An historical examination of open source releases
and their vulnerabilities". in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM.

[127] Eisenhardt, K.M. and M.E. Graebner (2007), "Theory building from cases:
Opportunities and challenges". Academy of management journal, volume 50, issue 1,
pages 25-32.

[128] Emery, F.E. (1959), "Characteristics of socio-technical systems: A critical review of
theories and facts about the effects of technological change on the internal structure
of work organisations; with special reference to the effects of higher mechanisation
and automation". volume: Tavistock Institute of Human Relations.

[129] Ericsson, K.A. and A.C. Lehmann (1996), "Expert and exceptional performance:
Evidence of maximal adaptation to task constraints". Annual review of psychology,
volume 47, issue 1, pages 273-305.

[130] Errington, E.P.J.I.J.o.L. (2009), "Being there: closing the gap between learners sand
contextual knowledge using near-world scenarios". volume 16, issue, pages 585-594.

[131] Erturk, E. (2012), "A case study in open source software security and privacy: Android
adware". in World Congress on Internet Security (WorldCIS-2012). IEEE.

[132] Eskerod, P. and H.J.g. Skriver (2007), "Organizational culture restraining in-house
knowledge transfer between project managers--a case study". Project Management
Institute.

[133] Espinosa, J.A., et al. (2007), "Team knowledge and coordination in geographically
distributed software development". Journal of management information systems,
volume 24, issue 1, pages 135-169.

[134] Faraj, S. and L. Sproull (2000), "Coordinating expertise in software development
teams". Management science, volume 46, issue 12, pages 1554-1568.

[135] Farrior, M. (2005), "Breakthrough strategies for engaging the public: Emerging trends
in communications and social science". Biodiversity Project. February

[136] Felder, R.M. and L.K.J.E.e. Silverman (1988), "Learning and teaching styles in
engineering education". volume 78, issue 7, pages 674-681.

[137] Felder, R.M., et al. (2000), "The future of engineering education II. Teaching methods
that work". volume 34, issue 1, pages 26-39.

[138] Feller, J., et al. (2006), "Developing open source software: a community-based analysis
of research", in Social Inclusion: Societal and Organizational Implications for
Information Systems, Springer. pages 261-278.

[139] Feller, J. and B. Fitzgerald (2000), "A framework analysis of the open source software
development paradigm". in Proceedings of the twenty first international conference
on Information systems. Association for Information Systems.

[140] Feller, J. and B. Fitzgerald (2002), "Understanding open source software
development". Addison-Wesley London.

[141] Feng, Q., et al. (2016), "Towards an architecture-centric approach to security analysis".
in 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE.

[142] Fenstermacher, G.D. and V. Richardson (2005), "On making determinations of quality
in teaching". Teachers college record, volume 107, issue 1, pages 186-213.

[143] Fenz, S. and A. Ekelhart (2009), "Formalizing information security knowledge". in
Proceedings of the 4th international Symposium on information, Computer, and
Communications Security. ACM.

BIBLIOGRAPHY

255

[144] Fernandes, S., et al. (2013), "Integrating formal and informal learning through a
FLOSS-based innovative approach". in International Conference on Collaboration and
Technology. Springer.

[145] Ferrario, M.A., et al. (2014), "Software engineering for'social good': integrating action
research, participatory design, and agile development". in Companion Proceedings of
the 36th International Conference on Software Engineering. ACM.

[146] Fetters, M.D., L.A. Curry, and J.W. Creswell (2013), "Achieving integration in mixed
methods designs—principles and practices". Health services research, volume 48,
issue 6pt2, pages 2134-2156.

[147] Fischer, C. and S. Gregor (2011), "Forms of reasoning in the design science research
process". in International Conference on Design Science Research in Information
Systems. Springer.

[148] Fong Boh, W., S.A. Slaughter, and J.A. Espinosa (2007), "Learning from experience in
software development: A multilevel analysis". Management science, volume 53, issue
8, pages 1315-1331.

[149] Fonseca, J. and M. Vieira (2013), "A survey on secure software development
lifecycles", in Software Development Techniques for Constructive Information
Systems Design, IGI Global. pages 57-73.

[150] Ford, D.P. and Y.E. Chan (2003), "Knowledge sharing in a multi-cultural setting: a case
study". Knowledge Management Research & Practice, volume 1, issue 1, pages 11-27.

[151] Fortify's Security Research Group (2008), "Open Source Security Study: How Are
Open Source development communities embracing Security Best practices?".

[152] Fox, W.M. (1995), "Sociotechnical system principles and guidelines: past and present".
The Journal of Applied Behavioral Science, volume 31, issue 1, pages 91-105.

[153] Fulcher, A. and P. Hills (1996), "Towards a strategic framework for design research".
Journal of Engeering Design, volume 7, issue 2, pages 183-193.

[154] Furnell, S.J.C. and Security (2007), "From the Editor-in-Chief: IFIP workshop-
Information security culture". volume 26, issue 1, pages 35.

[155] Futcher, L. and R. von Solms (2008), "Guidelines for secure software development". in
Proceedings of the 2008 annual research conference of the South African Institute of
Computer Scientists and Information Technologists on IT research in developing
countries: riding the wave of technology.

[156] Gabel, D. (1999), "Improving teaching and learning through chemistry education
research: A look to the future". Journal of Chemical education, volume 76, issue 4,
pages 548.

[157] Garcia, J., et al. (2009), "Toward a catalogue of architectural bad smells". in
International Conference on the Quality of Software Architectures. Springer.

[158] Garrison, D.R. (1997), "Self-directed learning: Toward a comprehensive model". Adult
education quarterly, volume 48, issue 1, pages 18-33.

[159] Gasser, L., et al. (2003), "Understanding continuous design in F/OSS projects". in In
16th. Intern. Conf. Software & Systems Engineering and their Applications. Citeseer.

[160] Gentner, D. and A.L. Stevens (2014), "Mental models". volume: Psychology Press.

[161] Giamellaro, M.J.I.J.o.S.E. (2014), "Primary contextualization of science learning
through immersion in content-rich settings". volume 36, issue 17, pages 2848-2871.

[162] Gilbert, J.K. (2006), "On the nature of “context” in chemical education". International
journal of science education, volume 28, issue 9, pages 957-976.

BIBLIOGRAPHY

256

[163] GitHub, "Celebrating nine years of GitHub with an anniversary sale"; Available from:
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-
sale. (Accessed on March 3, 2019)

[164] GitHub, "Github user search"; Available from:
https://github.com/search?q=type:user&type=Users. (Accessed on March 3, 2019)

[165] Glass, R., V. Ramesh, and I. Vessey (2004), "An analysis of research in computing
disciplines".

[166] Glass, R.L. (2001), "Frequently forgotten fundamental facts about software
engineering". IEEE software, volume, issue 3, pages 112,110-111.

[167] Glass, R.L., I. Vessey, and V. Ramesh (2002), "Research in software engineering: an
analysis of the literature". Information and Software technology, volume 44, issue 8,
pages 491-506.

[168] Godfrey, M.W. and Q. Tu (2000), "Evolution in open source software: A case study".
in Software Maintenance, 2000. Proceedings. International Conference on. IEEE.

[169] Goldkuhl, G. and E. Braf (2001), "Contextual knowledge analysis-understanding
knowledge and its relations to action and communication". in Second European
Conference on Knowledge Management Proceedings.

[170] Goldstone, R.L. and Y. Sakamoto (2003), "The transfer of abstract principles governing
complex adaptive systems". Cognitive psychology, volume 46, issue 4, pages 414-466.

[171] Goldstone, R.L. and J.Y. Son (2005), "The transfer of scientific principles using concrete
and idealized simulations". The Journal of the Learning Sciences, volume 14, issue 1,
pages 69-110.

[172] Gousios, G., et al. (2014), "Lean GHTorrent: GitHub data on demand". in Proceedings
of the 11th working conference on mining software repositories. ACM.

[173] Graff, M. and K.R. Van Wyk (2003), "Secure coding: principles and practices". O'Reilly
Media, Inc.

[174] Gravemeijer, K.P. (1994), "Developing realistic Mathematics Education ".

[175] Green, M. and M. Smith (2016), "Developers are not the enemy!: The need for usable
security apis". IEEE Security & Privacy, volume 14, issue 5, pages 40-46.

[176] Gregor, S. and A.R. Hevner (2013), "Positioning and presenting design science
research for maximum impact", MIS quarterly. pages 337-355.

[177] Grinter, R.E. (2003), "Recomposition: Coordinating a web of software dependencies".
Computer Supported Cooperative Work (CSCW), volume 12, issue 3, pages 297-327.

[178] Grodzinsky, F.S., et al. (2003), "Ethical issues in open source software". volume 1, issue
4, pages 193-205.

[179] Groven, A.-K., et al. (2010), "Security measurements within the framework of quality
assessment models for free/libre open source software". in Proceedings of the 4th
European conference on Software Architecture. ACM.

[180] Gruber, T.R. (1993), "A translation approach to portable ontology specifications".
Knowledge acquisition, volume 5, issue 2, pages 199-220.

[181] Gruber, T.R. (1995), "Toward principles for the design of ontologies used for
knowledge sharing?". International journal of human-computer studies, volume 43,
issue 5, pages 907-928.

[182] Guan, H., H. Yang, and J. Wang (2016), "An ontology-based approach to security
pattern selection". International Journal of Automation and Computing, volume 13,
issue 2, pages 168-182.

BIBLIOGRAPHY

257

[183] Guo, M. and J.A. Wang (2009), "An ontology-based approach to model common
vulnerabilities and exposures in information security". in ASEE Southest Section
Conference.

[184] Guzdial, M. (2010), "Does contextualized computing education help?". ACM Inroads,
volume 1, issue 4, pages 4-6.

[185] Gyrard, A., C. Bonnet, and K. Boudaoud (2013), "The stac (security toolbox: attacks &
countermeasures) ontology". in Proceedings of the 22nd International Conference on
World Wide Web. ACM.

[186] Haas, M.R. and M.T. Hansen (2007), "Different knowledge, different benefits: Toward
a productivity perspective on knowledge sharing in organizations". Strategic
Management Journal, volume 28, issue 11, pages 1133-1153.

[187] Hair, J.F., et al. (1998), "Multivariate data analysis". volume 5. Prentice hall Upper
Saddle River, NJ.

[188] Hales, D. and C. Douce (2002), "Modelling Software Organisations". in Proc. of PPIG.

[189] Hanson, N.R. (1958), "The logic of discovery". The Journal of Philosophy, volume 55,
issue 25, pages 1073-1089.

[190] Hardi, J. (2010), "Situated Learning among Open Source Software Developers: The
Case of Google Chrome Project".

[191] Harnesk, D., J.J.I.M. Lindström, and C. Security (2011), "Shaping security behaviour
through discipline and agility: Implications for information security management".
volume 19, issue 4, pages 262-276.

[192] Hauge, Ø., C. Ayala, and R. Conradi (2010), "Adoption of open source software in
software-intensive organizations–A systematic literature review". Information and
Software Technology, volume 52, issue 11, pages 1133-1154.

[193] Hayes, J.R. (2013), "The complete problem solver". volume: Routledge.

[194] Hazeyama, A. (2012), "Survey on body of knowledge regarding software security". in
Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed
Computing (SNPD), 2012 13th ACIS International Conference on. IEEE.

[195] Hazeyama, A. and H. Shimizu (2011), "A learning environment for software security
education". in 2011 Fifth International Conference on Secure Software Integration and
Reliability Improvement-Companion. IEEE.

[196] Hazeyama, A. and H. Shimizu (2012), "Development of a Software Security Learning
Environment". in 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE.

[197] Hemetsberger, A. and C. Reinhardt (2004), "Sharing and creating knowledge in open-
source communities: the case of KDE". in Paper for Fifth European Conference on
Organizational Knowledge, Learning, and Capabilities, Innsbruck.

[198] Hemetsberger, A. and C. Reinhardt (2006), "Learning and knowledge-building in
open-source communities: A social-experiential approach". Management learning,
volume 37, issue 2, pages 187-214.

[199] Henninger, S. (1997), "Case-based knowledge management tools for software
development". Automated Software Engineering, volume 4, issue 3, pages 319-340.

[200] Herbsleb, J.D. (2007), "Global software engineering: The future of socio-technical
coordination". in 2007 Future of Software Engineering. IEEE Computer Society.

[201] Herrmann, T. (2003), "Learning and teaching in socio-technical environments", in
Informatics and the Digital Society, Springer. pages 59-71.

[202] Hevner, A. and S. Chatterjee (2010), "Design research in information systems: theory
and practice". volume 22. Springer Science & Business Media.

BIBLIOGRAPHY

258

[203] Hevner, A.R., et al. (2004), "Design science in information systems research". MIS
quarterly, volume 28, issue 1, pages 75-105.

[204] Hippel, E.v. and G.v. Krogh (2003), "Open source software and the “private-
collective” innovation model: Issues for organization science". Organization science,
volume 14, issue 2, pages 209-223.

[205] Hlomani, H. and D.J.S.W.J. Stacey (2014), "Approaches, methods, metrics, measures,
and subjectivity in ontology evaluation: A survey". volume 1, issue 5, pages 1-11.

[206] Hoglund, G. and G. McGraw (2004), "Exploiting software: How to break code".
Pearson Education India.

[207] Holdt Christensen, P. (2007), "Knowledge sharing: moving away from the obsession
with best practices". Journal of knowledge management, volume 11, issue 1, pages 36-
47.

[208] Hoq, K.M.G. (2014), "Information overload: Causes, consequences and remedies-A
study". Philosophy and progress, pages 49-68.

[209] Howard, M. (2004), "Building more secure software with improved development
processes". IEEE Security & Privacy, volume 2, issue 6, pages 63-65.

[210] Howard, M. and D. LeBlanc (2003), "Writing secure code". Pearson Education.

[211] Howard, M. and S. Lipner (2006), "The security development lifecycle". volume 8.
Microsoft Press Redmond.

[212] Humes, L.L. (2007), "Communities of Practice for Open Source Software", in
Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives, IGI Global. pages 610-623.

[213] Humphrey, W.S. (1995), "A discipline for software engineering". volume: Addison-
Wesley Longman Publishing Co., Inc.

[214] Iivari, J. (2007), "A paradigmatic analysis of information systems as a design science".
Scandinavian journal of information systems, volume 19, issue 2, pages 5.

[215] Inkpen, A.C. and E.W. Tsang (2005), "Social capital, networks, and knowledge
transfer". Academy of management review, volume 30, issue 1, pages 146-165.

[216] Irvine, C.E., M.F. Thompson, and K. Allen (2005), "CyberCIEGE: gaming for
information assurance". IEEE Security & Privacy, volume 3, issue 3, pages 61-64.

[217] Iskoujina, Z. and J. Roberts (2015), "Knowledge sharing in open source software
communities: motivations and management". Journal of Knowledge Management,
volume 19, issue 4, pages 791-813.

[218] Jaatun, M.G., et al. (2011), "A Lightweight Approach to Secure Software Engineering",
A Multidisciplinary Introduction to Information Security. pages 183.

[219] Jafari, M., et al. (2008), "Exploring the contextual dimensions of organization from
knowledge management perspective". VINE, volume 38, issue 1, pages 53-71.

[220] Jarzombek, J. and K.M. Goertzel (2006), "Security in the Software Lifecycle".
CrossTalk: The Journal of Defense Software Engineering, volume, issue, pages.

[221] Jenkins III, C.C., T. Kitchel, and B. Hains (2010), "Defining agricultural education
instructional quality". Journal of Agricultural Education, volume 51, issue 3, pages 53-
63.

[222] Jiang, J.J., G. Klein, and H.-G. Chen (2006), "The effects of user partnering and user
non-support on project performance". Journal of the Association for Information
Systems, volume 7, issue 1, pages 6.

[223] Johannesson, P. and E. Perjons (2014), "An introduction to design science". Springer.

BIBLIOGRAPHY

259

[224] Jonassen, D. and S. Land (2012), "Theoretical foundations of learning environments".
Routledge.

[225] Jordan, T.B., et al. (2014), "Designing Interventions to Persuade Software Developers
to Adopt Security Tools". in Proceedings of the 2014 ACM Workshop on Security
Information Workers. ACM.

[226] Kamina, P. and N.N. Iyer (2009), "From concrete to abstract: Teaching for transfer of
learning when using manipulatives". in Proceedings of the Northeastern Educational
Research Association (NERA) 2009.6.

[227] Kang, W. and Y. Liang (2013), "A Security Ontology with MDA for Software
Development". in Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2013 International Conference on. IEEE.

[228] Karokola, G., L. Yngström, and S. Kowalski (2012), "Secure e-government services: A
comparative analysis of e-government maturity models for the developing regions–
The need for security services". International Journal of Electronic Government
Research (IJEGR), volume 8, issue 1, pages 1-25.

[229] Kayworth, T. and D. Whitten (2012), "Effective information security requires a balance
of social and technology factors".

[230] Keele, S. (2007), "Guidelines for performing systematic literature reviews in software
engineering", Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

[231] Kern, C., A. Kesavan, and N. Daswani (2007), "Foundations of security: what every
programmer needs to know". volume: Springer.

[232] Khairkar, A.D., D.D. Kshirsagar, and S. Kumar (2013), "Ontology for detection of web
attacks". in Communication Systems and Network Technologies (CSNT), 2013
International Conference on. IEEE.

[233] Khan, B., et al. (2011), "Effectiveness of information security awareness methods based
on psychological theories". volume 5, issue 26, pages 10862-10868.

[234] Khan, M.U.A. and M. Zulkernine (2008), "Quantifying security in secure software
development phases". in 2008 32nd Annual IEEE International Computer Software
and Applications Conference. IEEE.

[235] Kieras, D.E. and S.J.C.s. Bovair (1984), "The role of a mental model in learning to
operate a device". volume 8, issue 3, pages 255-273.

[236] Kim, B., et al. (2015), "Design of Exploitable Automatic Verification System for Secure
Open Source Software", in Advances in Computer Science and Ubiquitous
Computing, Springer. pages 275-281.

[237] Kirsch, L.J.J.O.S. (1996), "The management of complex tasks in organizations:
Controlling the systems development process". volume 7, issue 1, pages 1-21.

[238] Kissel, R.L., et al. (2008), "Security considerations in the system development life
cycle". pages.

[239] Kitchenham, B. (2004), "Procedures for performing systematic reviews". Keele, UK,
Keele University, volume 33, issue 2004, pages 1-26.

[240] Kitchenham, B. (2007), "Guidelines for performing systematic literature reviews in
software engineering". Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

[241] Klein, H.K. and M.D. Myers (1999), "A set of principles for conducting and evaluating
interpretive field studies in information systems". MIS quarterly, volume 23, issue 1,
pages 67-94.

[242] Klemke, R. (2000), "Context Framework - an Open Approach to Enhance
Organisational Memory Systems with Context Modelling Techniques". in

BIBLIOGRAPHY

260

Proceedings of the Third International Conference on Practical Aspects of Knowledge
Management (PAKM2000), 30-31 October 2000. Basel, Switzerland.

[243] Ko, A.J. and B.A. Myers (2008), "Debugging reinvented: asking and answering why
and why not questions about program behavior". in Proceedings of the 30th
international conference on Software engineering. ACM.

[244] Koeppen, K., et al. (2008), "Current issues in competence modeling and assessment".
volume 216, issue 2, pages 61-73.

[245] Kogut, B. and A. Metiu (2001), "Open‐source software development and distributed
innovation". Oxford review of economic policy, volume 17, issue 2, pages 248-264.

[246] Koh, K., et al. (2005), "Security Governance: Its Impact on Security Culture". in AISM.

[247] Kolb, D. (1984), "Experiential learning as the science of learning and development".
Englewood Cliffs, NJ: Prentice Hall.

[248] Koskosas, I. (2011), "Web Banking: A Security Management and Communications
Approach". International Journal of Computer Science & Engineering Technology
volume 2, issue 7, pages 146-154.

[249] Koulopoulos, T.M. and C. Frappaolo (1999), "Smart things to know about knowledge
management". Capstone US.

[250] Kowalski, S. (1994), "IT insecurity: a multi-discipline inquiry". Department of
Computer and System Sciences, University of Stockholm and Royal Institute of
Technology, Sweden. .

[251] Kozeracki, C.A. (2005), "Preparing faculty to meet the needs of developmental
students". New directions for community colleges, volume 129: Responding to
thechallenges of developmental education, issue, pages 39-49.

[252] Kraut, R.E. and L.A. Streeter (1995), "Coordination in software development".
Communications of the ACM, volume 38, issue 3, pages 69-82.

[253] Krishnamurthy, S. and A.K. Tripathi (2006), "Bounty programs in free/libre/open
source software". in BITZER Jurgen, The Economics of Open Source Software
Development, Lavoisier, Paris.

[254] Kruger, H.A., W.D.J.c. Kearney, and security (2008), "Consensus ranking–An ICT
security awareness case study". volume 27, issue 7-8, pages 254-259.

[255] Kuechler, W., V.K. Vaishnavi, and S. Petter (2007), "The aggregate general design cycle
as a perspective on the evolution of computing communities of interest", in Design
Science Research Methods and Patterns, Auerbach Publications. pages 43-51.

[256] Kuhn, D.R., M. Raunak, and R. Kacker (2017), "An Analysis of Vulnerability Trends,
2008-2016". in IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE.

[257] Lakhani, K.R. and E. Von Hippel (2003), "How open source software works:“free”
user-to-user assistance". Research policy, volume 32, issue 6, pages 923-943.

[258] Lakhani, K.R. and R.G. Wolf (2003), "Why hackers do what they do: Understanding
motivation and effort in free/open source software projects".

[259] Land, S.M. (2000), "Cognitive requirements for learning with open-ended learning
environments". Educational Technology Research and Development, volume 48,
issue 3, pages 61-78.

[260] Lanzara, G.F. and M. Morner (2003), "The knowledge ecology of open-source software
projects". in 19th EGOS Colloquium, Copenhagen.

[261] Larabel, M., "The Linux Kernel Has Grown By 225k Lines of Code So Far This Year
From 3.3k Developers"; Available from:

BIBLIOGRAPHY

261

https://www.phoronix.com/scan.php?page=news_item&px=Linux-September-2018-
Stats. (Accessed on November 2, 2019)

[262] Lavallée, M. and P.N. Robillard (2015), "Why good developers write bad code: An
observational case study of the impacts of organizational factors on software quality".
in Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press.

[263] Lave, J. (1991), "Situating learning in communities of practice". Perspectives on
socially shared cognition, volume 2, issue, pages 63-82.

[264] Lave, J. and E. Wenger (1991), "Situated learning: Legitimate peripheral participation".
volume: Cambridge university press.

[265] Lavrac, N. and S. Dzeroski (1994), "Inductive Logic Programming". in WLP. Springer.

[266] Leach, J., P.J.S. Scott, and Education (2003), "Individual and sociocultural views of
learning in science education". volume 12, issue 1, pages 91-113.

[267] Lee, C.K. and S. Al-Hawamdeh (2002), "Factors impacting knowledge sharing".
Journal of Information & Knowledge Management, volume 1, issue 01, pages 49-56.

[268] Lee Endres, M., et al. (2007), "Tacit knowledge sharing, self-efficacy theory, and
application to the Open Source community". Journal of knowledge management,
volume 11, issue 3, pages 92-103.

[269] Lee, J.S., J. Pries-Heje, and R. Baskerville (2011), "Theorizing in design science
research". in International conference on design science research in information
systems. Springer.

[270] Lee, Y.-J. and S. Chue (2013), "The value of fidelity of implementation criteria to
evaluate school-based science curriculum innovations". International Journal of
Science Education, volume 35, issue 15, pages 2508-2537.

[271] Lethbridge, T.C., S.E. Sim, and J. Singer (2005), "Studying software engineers: Data
collection techniques for software field studies". Empirical software engineering,
volume 10, issue 3, pages 311-341.

[272] Levy, J., "Top Open Source Security Vulnerabilities", WhiteSource Blog. ; Available
from: https://www.whitesourcesoftware.com/whitesource-blog/open-source-
security-vulnerability/. (Accessed on Feb. 22, 2017)

[273] Lewis, J. (2018), "Economic Impact of Cybercrime, No Slowing Down". volume:
McAfee.

[274] Li, Z., et al. (2006), "Have things changed now?: an empirical study of bug
characteristics in modern open source software". in Proceedings of the 1st workshop
on Architectural and system support for improving software dependability. ACM.

[275] Lindvall, M. and I. Rus (2000), "Process diversity in software development". IEEE
software, volume 17, issue 4, pages 14-18.

[276] Locke, E.A. (2007), "The case for inductive theory building". Journal of Management,
volume 33, issue 6, pages 867-890.

[277] Long, S. (2013), "Socioanalytic methods: discovering the hidden in organisations and
social systems". Karnac Books.

[278] Lu, S.C. and N. Jing (2009), "A socio-technical negotiation approach for collaborative
design in software engineering". International Journal of Collaborative Engineering,
volume 1, issue 1-2, pages 185-209.

[279] MacKenzie, D. and J. Wajcman (1999), "The social shaping of technology". volume:
Open university press.

BIBLIOGRAPHY

262

[280] Madey, G., V. Freeh, and R. Tynan (2002), "The open source software development
phenomenon: An analysis based on social network theory". in AMCIS 2002
Proceedings.

[281] Mahler, J. (1997), "Influences of organizational culture on learning in public agencies".
Journal of Public Administration Research and Theory, volume 7, issue 4, pages 519-
540.

[282] Manzoor, S., et al. (2018), "Threat Modeling the Cloud: An Ontology Based
Approach". in International Workshop on Information and Operational Technology
Security Systems. Springer.

[283] March, S.T. and G.F. Smith (1995), "Design and natural science research on
information technology". Decision support systems, volume 15, issue 4, pages 251-
266.

[284] March, S.T. and V.C. Storey (2008), "Design science in the information systems
discipline: an introduction to the special issue on design science research". MIS
quarterly, volume 32, issue 4, pages 725-730.

[285] Marks, D.B. (2016), "Theory to practice: Quality instruction in online learning
environments". in Society for Information Technology & Teacher Education
International Conference. Association for the Advancement of Computing in
Education (AACE).

[286] Markus, M.L., A. Majchrzak, and L. Gasser (2002), "A design theory for systems that
support emergent knowledge processes". MIS quarterly, pages 179-212.

[287] Marques, M. and C.G. Ralha (2014), "An ontological approach to mitigate risk in web
applications". in Proceedings of SBSeg 2014.

[288] Martins, A. and J. Elofe (2002), "Information security culture", in Security in the
information society, Springer. pages 203-214.

[289] Martins, N., A. Da Veiga, and J.H.J.S.A.B.R. Eloff (2007), "Information security culture-
validation of an assessment instrument". volume 11, issue 1, pages 147-166.

[290] May, T. (2011), "Social research". volume: Buckingham: Open University Press.

[291] McCaulley, M.H. (1976), "Psychological Types in Engineering: Implications for
Teaching". Engineering Education, volume 66, issue 7, pages 729-736.

[292] McCaulley, M.H., et al. (1983), "Applications of Psychological type in engineering-
education ". volume 73, issue 5, pages 394-400.

[293] McGraw, G. (2004), "Software security". IEEE Security & Privacy, volume 2, issue 2,
pages 80-83.

[294] McGraw, G. (2006), "Software security: building security in". volume 1. MA,USA:
Addison-Wesley Professional.

[295] McGraw, G. (2013), "Cyber war is inevitable (unless we build security in)". Journal of
Strategic Studies, volume 36, issue 1, pages 109-119.

[296] McGraw, G., B. Chess, and S. Migues (2009), "Building security in maturity model".
Fortify & Cigital.

[297] Mckeen, J.D., M.H. Zack, and S. Singh (2006), "Knowledge management and
organizational performance: An exploratory survey". in System Sciences, 2006.
HICSS'06. Proceedings of the 39th Annual Hawaii International Conference on. IEEE.

[298] Mead, N.R., et al. (2004), "Software security engineering: a guide for project
managers". volume: Addison-Wesley Professional.

[299] Meneely, A., et al. (2014), "An empirical investigation of socio-technical code review
metrics and security vulnerabilities". in Proceedings of the 6th International
Workshop on Social Software Engineering. ACM.

BIBLIOGRAPHY

263

[300] Meneely, A. and L. Williams (2009), "Secure open source collaboration: an empirical
study of linus' law". in Proceedings of the 16th ACM conference on Computer and
communications security. ACM.

[301] Meneely, A. and L. Williams (2010), "Strengthening the empirical analysis of the
relationship between Linus' Law and software security". in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM.

[302] Meneely, A. and L. Williams (2011), "Socio-technical developer networks: Should we
trust our measurements?". in Proceedings of the 33rd International Conference on
Software Engineering. ACM.

[303] Merhi, M.I. and V. Midha (2012), "The impact of training and social norms on
information security compliance: A pilot study".

[304] Merrill, M.D. (2000), "Knowledge objects and mental models". in Proceedings
International Workshop on Advanced Learning Technologies (IWALT 2000)
Palmerston North, New Zealand: IEEE.

[305] Meyer, D.K. and J.C. Turner (2006), "Re-conceptualizing emotion and motivation to
learn ". Educational Psychology Review, volume 18, issue 4, pages 377-390.

[306] Michlmayr, M., F. Hunt, and D. Probert (2005), "Quality practices and problems in
free software projects". in Proceedings of the First International Conference on Open
Source Systems.

[307] Millar, R. (1998), "Beyond 2000: Science education for the future". in London: Nuffield
Foundation.

[308] Mirakhorli, M., "Common architecture weakness enumeration "; Available from:
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html. (Accessed
on May. 3, 2019)

[309] Mirbel, I. (2009), "OFLOSSC, an Ontology for Supporting Open Source Development
Communities", ICEIS. pages 47-52.

[310] MISRA, "Guidelines for the use of the C language in critical systems"; Available from:
http://caxapa.ru/thumbs/468328/misra-c-2004.pdf. (Accessed on November 2, 2019)

[311] Mockus, A., R.T. Fielding, and J.D. Herbsleb (2002), "Two case studies of open source
software development: Apache and Mozilla". ACM Transactions on Software
Engineering and Methodology (TOSEM), volume 11, issue 3, pages 309-346.

[312] Moha, N., et al. (2005), "A taxonomy and a first study of design pattern defects". in
STEP 2005.

[313] Mohammed, N.M., et al. (2017), "Exploring software security approaches in software
development lifecycle: A systematic mapping study". volume 50, issue, pages 107-115.

[314] Mourad, A., M.-A. Laverdière, and M. Debbabi (2006), "Security hardening of open
source software". in Conference on Privacy, Security and Trust.

[315] Mouratidis, H. and P. Giorgini (2007), "Integrating Security and Software
Engineering". in Idea Group Inc, Hershey, PA, USA.

[316] Mozilla, "WebAppSec/Secure Coding Guidelines"; Available from:
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines. (Accessed on
November 2, 2019)

[317] Murayama, K., et al. (2016), "When enough is not enough: Information overload and
metacognitive decisions to stop studying information". Journal of Experimental
Psychology: Learning, Memory, and Cognition, volume 42, issue 6, pages 914.

BIBLIOGRAPHY

264

[318] Nagy, C. and S. Mancoridis (2009), "Static security analysis based on input-related
software faults". in CSMR'09. 13th European Conference on Software Maintenance
and Reengineering. IEEE.

[319] Naidu, S. (2008), "Situated learning designs for professional development:
Fundamental principles and case studies". in Fifth Pan-Commonwealth Forum on
Open Learning.

[320] Nance, K. (2009), "Teach Them When They Aren't Looking: Introducing Security in
CS1". IEEE Security & Privacy, volume 7, issue 5, pages 53-55.

[321] Nance, K., B. Hay, and M. Bishop (2012), "Secure Coding Education: Are We Making
Progress?".

[322] Nelson, M., R. Sen, and C. Subramaniam (2006), "Understanding open source
software: A research classification framework". Communications of the Association
for Information Systems, volume 17, issue 1, pages 12.

[323] Nentwig, P. and D. Waddington (2006), "Making it relevant: Context based learning
of science". Waxmann Verlag.

[324] Nerbråten, Ø. and L. Røstad (2009), "Hacmegame: A tool for teaching software
security". in 2009 International Conference on Availability, Reliability and Security.
IEEE.

[325] Ngo, L., W. Zhou, and M. Warren (2005), "Understanding Transition towards
Information Security Culture Change". in AISM.

[326] Niazi, M. (2015), "Do systematic literature reviews outperform informal literature
reviews in the software engineering domain? An initial case study". Arabian Journal
for Science and Engineering, volume 40, issue 3, pages 845-855.

[327] Nonaka, I. (2008), "The knowledge-creating company". volume: Harvard Business
Review Press.

[328] Nonaka, I. and N. Konno (1998), "The concept of" ba": Building a foundation for
knowledge creation". California management review, volume 40, issue 3, pages 40-54.

[329] Nordberg, P. (2019), "Challenges In Security Audits In Open Source Systems". pages.

[330] NorthBridge, B., "2016 Future of Open Source Survey"; Available from:
http://www.northbridge.com/2016-future-open-source-survey-results. (Accessed on
Nov. 23, 2017)

[331] Noy, N.F. and D.L. McGuinness (2001), "Ontology development 101: A guide to
creating your first ontology".

[332] Numally, J.C. (1978), "Psychometric theory". NY: McGraw-Hill.

[333] Nunamaker Jr, J.F. and R.O. Briggs (2011), "Toward a broader vision for information
systems". ACM Transactions on Management Information Systems (TMIS), volume 2,
issue 4, pages 20.

[334] O'Reilly, C.A. (1982), "Variations in decision makers' use of information sources: The
impact of quality and accessibility of information". Academy of Management journal,
volume 25, issue 4, pages 756-771.

[335] Olchi, W.G.J.A.o.M.J. (1978), "The transmission of control through organizational
hierarchy". volume 21, issue 2, pages 173-192.

[336] Oliveira, D., et al. (2014), "It's the psychology stupid: how heuristics explain software
vulnerabilities and how priming can illuminate developer's blind spots". in
Proceedings of the 30th Annual Computer Security Applications Conference. ACM.

[337] Onwuegbuzie, A.J. and J.P. Combs (2010), "Emergent data analysis techniques in
mixed methods research: A synthesis". Handbook of mixed methods in social and
behavioral research.

BIBLIOGRAPHY

265

[338] Oracle Corporation, "Secure Coding Guidelines for Developers"; Available from:
https://docs.oracle.com/cd/E53394_01/html/E54753/scode-1.html. (Accessed on
November 2, 2019)

[339] Ouchi, W.G. (1979), "A conceptual framework for the design of organizational control
mechanisms", in Readings in accounting for management control, Springer. pages 63-
82.

[340] Ouchi, W.G. (1980), "Markets, bureaucracies, and clans", Administrative science
quarterly. pages 129-141.

[341] OWASP, "OWASP Top 10 Application Security Risks - 2017"; Available from:
https://www.owasp.org/index.php/Top_10-2017_Top_10. (Accessed on Dec. 16, 2018)

[342] OWASP, "Secure Coding Practices - Quick Reference Guide "; Available from:
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-
_Quick_Reference_Guide. (Accessed on March 3, 2019)

[343] OWASP, "Comprehensive, Lightweight Application Security Process"; Available
from: http://www.owasp.org,. (Accessed on October 3, 2019)

[344] OWASP, "Secure Design Principles"; Available from:
https://github.com/OWASP/DevGuide/blob/master/02-Design/01-
Principles%20of%20Security%20Engineering.md. (Accessed on November 2, 2019)

[345] Pan, S.L. and H. Scarbrough (1999), "Knowledge management in practice: An
exploratory case study". Technology Analysis & Strategic Management, volume 11,
issue 3, pages 359-374.

[346] Parchmann, I., et al. (2006), "“Chemie im Kontext”: A symbiotic implementation of a
context‐based teaching and learning approach". volume 28, issue 9, pages 1041-1062.

[347] Park, H.S. and B.-C. Im (2003), "A Study on the Knowledge Sharing Behavior of Local
Public Servants in Korea: Structural Equation Analysis". in 한국행정학회 Conference
자료.

[348] Pashler, H., et al. (2007), "Organizing Instruction and Study to Improve Student
Learning. ". in National Center for Education Research. Washington, DC: Institute of
Education Sciences, U.S. Department of Education.

[349] Peffers, K., et al. (2007), "A design science research methodology for information
systems research". Journal of management information systems, volume 24, issue 3,
pages 45-77.

[350] Peirce, C.S. (1901), "On the logic of drawing history from ancient documents,
especially from testimonies". The Essential Peirce, 1893-1913, volume 2, issue, pages
75-114.

[351] Peirce, C.S. (1974), "Collected papers of charles sanders peirce". volume 2. Harvard
University Press.

[352] Perin, D. (2011), "Facilitating student learning through contextualization: A review of
evidence". Community College Review, volume 39, issue 3, pages 268-295.

[353] Perrone, L.F., M. Aburdene, and X. Meng (2005), "Approaches to undergraduate
instruction in computer security". in Proceedings of the American Society for
Engineering Education Annual Conference and Exhibition, ASEE.

[354] Pfleeger, C.P. and S.L. Pfleeger (2002), "Security in computing". volume: Prentice Hall
Professional Technical Reference.

[355] Pham, R., et al. (2013), "Creating a shared understanding of testing culture on a social
coding site". in 35th International Conference onSoftware Engineering (ICSE). IEEE.

BIBLIOGRAPHY

266

[356] Piessens, F., "Cyber Security Body of Knowledge"; Available from:
https://www.cybok.org/media/downloads/cybok_version_1.0.pdf. (Accessed on
November 2, 2019)

[357] Pittenger, M. (2016), "Know your open source code". Network Security, volume 2016,
issue 5, pages 11-15.

[358] Pohl, J. (2004), "Intelligent Software Systems for the New Infostructure".

[359] Potter, B. and G. McGraw (2004), "Software security testing". IEEE Security & Privacy,
volume 2, issue 5, pages 81-85.

[360] Predmore, S.R. (2005), "Putting it into Context". Techniques: Connecting education
and careers, volume 80, issue 1, pages 22-25.

[361] Purao, S. (2002), "Design research in the technology of information systems: Truth or
dare", GSU Department of CIS Working Paper. pages 45-77.

[362] Race, P. (2007), "The lecturer's toolkit: A practical guide to assessment, learning and
teaching". Routledge, Abingdon.

[363] Rainbird, H., A. Fuller, and A. Munro (2004), "Workplace learning in context".
Psychology Press.

[364] Ramachandran, S., S.V. Rao, and T. Goles (2008), "Information security cultures of four
professions: a comparative study". in Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual. IEEE.

[365] Ramsden, J.M. (1992), "If It's Enjoyable, Is It Science?". School Science Review, volume
73, issue 265, pages 65-71.

[366] Ransbotham, S. (2010), "An Empirical Analysis of Exploitation Attempts Based on
Vulnerabilities in Open Source Software". in Proceedings of the 9th Workshop on
Economics of Information Security, Cambridge, MA, June 2010.

[367] Ransbotham, S. (2010), "An Empirical Analysis of Exploitation Attempts Based on
Vulnerabilities in Open Source Software". in WEIS.

[368] Raymond, E. (1999), "The cathedral and the bazaar". Knowledge, Technology &
Policy, volume 12, issue 3, pages 23-49.

[369] Razzaq, A., et al. (2014), "Ontology for attack detection: An intelligent approach to
web application security", computers & security. pages 124-146.

[370] Redwine Jr, S.T. (2007), "Software assurance: A curriculum guide to the common body
of knowledge to produce, acquire, and sustain secure software". Homeland Security.

[371] Reich, B.H., A. Gemino, and C. Sauer (2008), "Modeling the knowledge perspective of
IT projects". PMI Research Conference, Warsaw, Poland.

[372] Ripoche, G. and L. Gasser (2003), "Scalable automatic extraction of process models for
understanding F/OSS bug repair". in Proceedings of ICSSEA’03.

[373] Rivet, A.E. and J. Krajcik (2008), "Contextualizing instruction: Leveraging students'
prior knowledge and experiences to foster understanding of middle school science".
Journal of Research in Science Teaching: The Official Journal of the National
Association for Research in Science Teaching, volume 45, issue 1, pages 79-100.

[374] Roberts, J. (2000), "From know-how to show-how? Questioning the role of information
and communication technologies in knowledge transfer". Technology Analysis &
Strategic Management, volume 12, issue 4, pages 429-443.

[375] Roberts, J.A., I.-H. Hann, and S.A. Slaughter (2006), "Understanding the motivations,
participation, and performance of open source software developers: A longitudinal
study of the Apache projects". Management science, volume 52, issue 7, pages 984-
999.

BIBLIOGRAPHY

267

[376] Rosa, M.G., M.R. Borges, and F.M. Santoro (2003), "A conceptual framework for
analyzing the use of context in groupware", in Groupware: Design, Implementation,
and Use, Springer. pages 300-313.

[377] Rosenberg, M.J. (2005), "Beyond e-learning: Approaches and technologies to enhance
organizational knowledge, learning, and performance". volume: John Wiley & Sons.

[378] Ross, R., J.C. OREN, and M. McEvilley (2014), "Systems Security Engineering". NIST
Special Publication.

[379] Rouse, W.B. and N.M. Morris (1986), "On looking into the black box: Prospects and
limits in the search for mental models". Psychological bulletin, volume 100, issue 3,
pages 349.

[380] Ruiz, R. (2019), "A Study of the UK Undergraduate Computer Science Curriculum: A
Vision of Cybersecurity". in 2019 IEEE 12th International Conference on Global
Security, Safety and Sustainability (ICGS3). IEEE.

[381] Rus, I. and M. Lindvall (2002), "Knowledge management in software engineering".
IEEE software, volume 19, issue 3, pages 26.

[382] Ryan, R.M. and E.L.J.A.p. Deci (2000), "Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being". volume 55, issue 1, pages
68.

[383] Ryoo, J., et al. (2016), "The use of security tactics in open source software projects".
IEEE Transactions on Reliability, volume 65, issue 3, pages 1195-1204.

[384] Ryoo, J., A. Techatassanasoontorn, and D. Lee (2009), "Security education using
second life". IEEE Security & Privacy, volume 7, issue 2, pages 71-74.

[385] Safa, N.S. and R. Von Solms (2016), "An information security knowledge sharing
model in organizations". Computers in Human Behavior, volume 57, issue, pages 442-
451.

[386] SAFECode, "Fundamental practices for secure software development"; Available
from: https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_
Development_March_2018.pdf. (Accessed on Mar. 3, 2019)

[387] Saito, M., et al. (2015), "A case-based management system for secure software
development using software security knowledge". Procedia computer science,
volume 60, issue, pages 1092-1100.

[388] Salini, P. and S. Kanmani (2013), "Ontology-based representation of reusable security
requirements for developing secure web applications". International Journal of
Internet Technology and Secured Transactions, volume 5, issue 1, pages 63-83.

[389] Saltzer, J.H. and M.D. Schroeder (1975), "The protection of information in computer
systems". Proceedings of the IEEE, volume 63, issue 9, pages 1278-1308.

[390] Scacchi, W. (2002), "Understanding the requirements for developing open source
software systems". in IEE Proceedings--Software. IET.

[391] Scacchi, W., et al. (2006), "Understanding free/open source software development
processes". Software Process: Improvement and Practice, volume 11, issue 2, pages
95-105.

[392] Schaeffer, R. (2010), "National information assurance (ia) glossary". CNSS Secretariat,
NSA, Ft. Meade.

[393] Schein, E.H. (1990), "Organizational culture". volume 45. American Psychological
Association.

[394] Schilpp, P.A. (1974), "The Philosophy of Karl Popper". volume 2. Open Court LaSalle,
IL.

BIBLIOGRAPHY

268

[395] Schlienger, T. and S. Teufel (2002), "Information security culture", in Security in the
Information Society, Springer. pages 191-201.

[396] Schlienger, T. and S. Teufel (2003), "Analyzing information security culture: increased
trust by an appropriate information security culture". in 14th International Workshop
on Database and Expert Systems Applications, 2003. Proceedings.: IEEE.

[397] Schlienger, T. and S. Teufel (2003), "Analyzing information security culture: increased
trust by an appropriate information security culture". in Database and Expert Systems
Applications, 2003. Proceedings. 14th International Workshop on. IEEE.

[398] Schlienger, T. and S. Teufel (2005), "Tool supported management of information
security culture". in IFIP International Information Security Conference. Springer.

[399] Schmidt, D.C. and A. Porter (2001), "Leveraging open-source communities to improve
the quality & performance of open-source software". in Proceedings of the 1st
Workshop on Open Source Software Engineering. Citeseer.

[400] Schryen, G. and R. Kadura (2009), "Open source vs. closed source software: towards
measuring security". in Proceedings of the 2009 ACM symposium on Applied
Computing.

[401] Schweitzer, D. and W. Brown (2009), "Using visualization to teach security". Journal
of Computing Sciences in Colleges, volume 24, issue 5, pages 143-150.

[402] Seel, N.M., S. Al-Diban, and P. Blumschein (2000), "Mental models & instructional
planning", in Integrated and holistic perspectives on learning, instruction and
technology, Springer. pages 129-158.

[403] SEI-CERT, "SEI CERT C secure coding standard"; Available from:
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.
(Accessed on Mar. 5, 2019)

[404] Seifert, C.M. and E.L. Hutchins (1988), "Learning from error". American Society for
Engineering Education Washington DC

[405] Shambaugh, N. (1995), "The cognitive potentials of visual constructions". Journal of
Visual Literacy, volume 15, issue 1, pages 7-24.

[406] Sharma, S., V. Sugumaran, and B.J.I.S.J. Rajagopalan (2002), "A framework for creating
hybrid‐open source software communities". volume 12, issue 1, pages 7-25.

[407] Sharp, H., Y. Dittrich, and C.R. de Souza (2016), "The role of ethnographic studies in
empirical software engineering". IEEE Transactions on Software Engineering, volume
42, issue 8, pages 786-804.

[408] Shaw, R.S., et al. (2009), "The impact of information richness on information security
awareness training effectiveness". volume 52, issue 1, pages 92-100.

[409] Sheeran, P. and S.J.J.o.A.S.P. Orbell (1999), "Augmenting the theory of planned
behavior: roles for anticipated regret and descriptive norms 1". volume 29, issue 10,
pages 2107-2142.

[410] Sholler, D., "Community Call – Governance strategies for open source research
software projects"; Available from: https://www.r-bloggers.com/community-call-
governance-strategies-for-open-source-research-software-projects/. (Accessed on
March 3, 2019)

[411] Shrivastav, H. and S.R. Hiltz (2013), "Information overload in technology-based
education: A meta-analysis".

[412] Shuaibu, B.M., et al. (2015), "Systematic review of web application security
development model". volume 43, issue 2, pages 259-276.

BIBLIOGRAPHY

269

[413] Silic, M. and A. Back (2016), "The influence of risk factors in decision-making process
for open source software adoption". International Journal of Information Technology
& Decision Making, volume 15, issue 01, pages 151-185.

[414] Simon, H.A. (1988), "The science of design: creating the artificial", Design Issues. pages
67-82.

[415] Singh, M.P.J.A.T.o.I.S. and Technology (2013), "Norms as a basis for governing
sociotechnical systems". volume 5, issue 1, pages 21.

[416] Singh, V. and L. Holt (2013), "Learning and best practices for learning in open-source
software communities". Computers & Education, volume 63, issue, pages 98-108.

[417] Siponen, M., et al. (2014), "Employees’ adherence to information security policies: An
exploratory field study". volume 51, issue 2, pages 217-224.

[418] Siponen, M.T.J.I.M. and C. Security (2000), "A conceptual foundation for
organizational information security awareness". volume 8, issue 1, pages 31-41.

[419] Skuce, D. and I. Meyer (1990), "Concept analysis and terminology: a knowledge-based
approach to documentation". in Proceedings of the 13th conference on Computational
linguistics-Volume 1. Association for Computational Linguistics.

[420] Snyk, "The state of open source security - 2019"; Available from:
https://snyk.io/opensourcesecurity-2019/. (Accessed on Novemver 2, 2019)

[421] Sodiya, A.S., S.A. Onashoga, and O. Ajayĩ (2006), "Towards Building Secure Software
Systems". Issues in Informing Science & Information Technology, volume 3.

[422] Sowe, S.K., R. Ghosh, and L. Soete (2009), "Annals of Knowledge Sharing in
Distributed Software Development Environments: Experience from Open Source
Software Projects". in Software Engineering (Workshops).

[423] Sowe, S.K., A. Karoulis, and I. Stamelos (2006), "A constructivist view of knowledge
management in open source virtual communities", in Managing learning in virtual
settings: the role of context, IGI Global. pages 290-308.

[424] Sowe, S.K., I. Stamelos, and L. Angelis (2008), "Understanding knowledge sharing
activities in free/open source software projects: An empirical study". Journal of
Systems and Software, volume 81, issue 3, pages 431-446.

[425] Specht, M. (2008), "Designing contextualized learning", in Handbook on information
technologies for education and training, Springer. pages 101-111.

[426] Stack Overflow, "Developer Survey Results 2018"; Available from:
https://insights.stackoverflow.com/survey/2018. (Accessed on May 2, 2019)

[427] Stallings, W., et al. (2012), "Computer security: principles and practice". volume:
Pearson Education Upper Saddle River, NJ, USA.

[428] Stol, K.-J. and M.A. Babar (2009), "Reporting empirical research in open source
software: the state of practice". in IFIP International Conference on Open Source
Systems. Springer.

[429] Straub, D.W. (1989), "Validating instruments in MIS research". MIS quarterly, volume,
issue, pages 147-169.

[430] Sundqvist, J. (2018), "Reasons for lacking web security: An investigation into the
knowledge of web developers".

[431] Swan, J.A. and T.G. Spiro (1995), "Context in chemistry: Integrating environmental
chemistry with the chemistry curriculum". ACS Publications.

[432] Syed, R. and H. Zhong (2018), "Cybersecurity Vulnerability Management: An
Ontology-Based Conceptual Model".

BIBLIOGRAPHY

270

[433] Tan, L., et al. (2014), "Bug characteristics in open source software". Empirical Software
Engineering, volume 19, issue 6, pages 1665-1705.

[434] Tawileh, A., J. Hilton, and S. Mcintosh (2006), "Modelling the Economics of Free and
Open Source Software Security". in ISSE 2006 - Securing Electronic Business Processes:
Highlights of the Information Security Solutions Europe Conference. Springer.

[435] Taylor, B. and S. Azadegan (2006), "Threading secure coding principles and risk
analysis into the undergraduate computer science and information systems
curriculum". in Proceedings of the 3rd annual conference on Information security
curriculum development. ACM.

[436] Teddlie, C. and A. Tashakkori (2009), "Foundations of mixed methods research:
Integrating quantitative and qualitative approaches in the social and behavioral
sciences". volume: Sage.

[437] Teece, D.J., G. Pisano, and A. Shuen (1997), "Dynamic capabilities and strategic
management". Strategic management journal, pages 509-533.

[438] Thomas, T.W., et al. (2018), "Security during application development: An application
security expert perspective". in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems.

[439] Tilton, J., "What is an Infostructure"; Available from:
http://library.creatifica.com/information-architecture/infostructure-coining-the-
term.pdf. (Accessed on Jul, 2, 2018)

[440] Tiwana, A. and E. McLean (2002), "Knowledge integration and individual expertise
development in e-business project teams: prom the pod to the peas". in Proceedings
of the 2002 ACM SIGCPR conference on Computer personnel research. ACM.

[441] Trainer, E., et al. (2005), "Bridging the gap between technical and social dependencies
with ariadne". in Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange. ACM.

[442] Trist, E.L. and K.W. Bamforth (1951), "Some social and psychological consequences of
the longwall method of coal-getting: An examination of the psychological situation
and defences of a work group in relation to the social structure and technological
content of the work system". Human relations, volume 4, issue 1, pages 3-38.

[443] Tsoumas, B. and D. Gritzalis (2006), "Towards an ontology-based security
management". in Advanced Information Networking and Applications, 2006. AINA
2006. 20th International Conference on. IEEE.

[444] Tudorache, T., et al. (2013), "WebProtégé: A collaborative ontology editor and
knowledge acquisition tool for the web". Semantic web, volume 4, issue 1, pages 89-
99.

[445] Tyre, M.J. and E. Von Hippel (1997), "The situated nature of adaptive learning in
organizations". Organization science, volume 8, issue 1, pages 71-83.

[446] Uschold, M. and M. Gruninger (1996), "Ontologies: Principles, methods and
applications". The knowledge engineering review, volume 11, issue 2, pages 93-136.

[447] Vadalasetty, S.R. (2003), "Security concerns in using open source software for
enterprise requirements". SANS Institute.

[448] Vaishnavi, V. and W. Kuechler (2004), "Design science research in information
systems". January, volume 20, issue, pages 2004.

[449] Valverde, S., et al. (2006), "Self-organization patterns in wasp and open source
communities". IEEE Intelligent Systems, volume 21, issue 2, pages 36-40.

[450] Van den Hooff, B., et al. (2003), "Knowledge sharing in knowledge communities". in
Communities and technologies. Springer.

BIBLIOGRAPHY

271

[451] Van Niekerk, J. and R. Von Solms (2005), "A holistic framework for the fostering of an
information security sub-culture in organizations". in Issa.

[452] Van Oers, B. (1998), "From context to contextualizing". Learning and instruction,
volume 8, issue 6, pages 473-488.

[453] van Oorschot, P.C. (2019), "Software security and systematizing knowledge". IEEE
Security & Privacy, volume 17, issue 3, pages 4-6.

[454] Vangaveeti, A. (2015), "An Assessment of Security Problems in Open Source
Software".

[455] Velasco, J.L., et al. (2009), "Modelling reusable security requirements based on an
ontology framework". volume 41, issue 2, pages 119.

[456] Venkatesh, V. and S.A. Brown (2001), "A longitudinal investigation of personal
computers in homes: adoption determinants and emerging challenges". MIS
quarterly.

[457] Veracode, "State of Software Security"; Available from:
https://www.veracode.com/state-of-software-security-report/. (Accessed on May 3,
2019)

[458] Verdon, D. and G. McGraw (2004), "Risk analysis in software design". IEEE Security
& Privacy, volume 2, issue 4, pages 79-84.

[459] Viega, J. and G. McGraw (2011), "Building Secure Software: How to Avoid Security
Problems the Right Way ". Addison-Wesley Professional.

[460] Viega, J. and G. McGraw (2011), "Building Secure Software: How to Avoid Security
Problems the Right Way (paperback)(Addison-Wesley Professional Computing
Series)". volume: Addison-Wesley Professional.

[461] Von Bertalanffy, L. (1950), "The theory of open systems in physics and biology".
Science, volume 111, issue 2872, pages 23-29.

[462] Von Krogh, G., et al. (2012), "Carrots and rainbows: Motivation and social practice in
open source software development". MIS quarterly, volume 36, issue 2, pages 649-676.

[463] Von KROGh, G. and S. Spaeth (2007), "The open source software phenomenon:
Characteristics that promote research". The Journal of Strategic Information Systems,
volume 16, issue 3, pages 236-253.

[464] von Krogh, G., S. Spaeth, and S. Haefliger (2005), "Knowledge reuse in open source
software: An exploratory study of 15 open source projects". in Proceedings of the 38th
Annual Hawaii International Conference on System Sciences. IEEE.

[465] Von Krogh, G., S. Spaeth, and K.R. Lakhani (2003), "Community, joining, and
specialization in open source software innovation: a case study". Research Policy,
volume 32, issue 7, pages 1217-1241.

[466] Von Krogh, G. and E. Von Hippel (2003), "Special issue on open source software
development", Elsevier. pages.

[467] Von Krogh, G. and E. Von Hippel (2006), "The promise of research on open source
software". Management science, volume 52, issue 7, pages 975-983.

[468] Vos, R. (2014), "The use of context in science education".

[469] Vouk, M. and L. Williams (2013), "Using software reliability models for security
assessment—Verification of assumptions". in 2013 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE.

[470] Walden, J., et al. (2009), "Security of open source web applications". in Proceedings of
the 2009 3rd international Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society.

BIBLIOGRAPHY

272

[471] Walker, G.H., et al. (2008), "A review of sociotechnical systems theory: a classic
concept for new command and control paradigms". Theoretical issues in ergonomics
science, volume 9, issue 6, pages 479-499.

[472] Walls, J.G., G.R. Widmeyer, and O.A. El Sawy (1992), "Building an information system
design theory for vigilant EIS". Information systems research, volume 3, issue 1, pages
36-59.

[473] Wand, Y., V.C. Storey, and R. Weber (1999), "An ontological analysis of the
relationship construct in conceptual modeling". ACM Transactions on Database
Systems (TODS), volume 24, issue 4, pages 494-528.

[474] Wang, X., et al. (2004), "Semantic space: An infrastructure for smart spaces". IEEE
Pervasive computing, volume 3, issue 3, pages 32-39.

[475] Wasko, M.M. and S. Faraj (2005), "Why should I share? Examining social capital and
knowledge contribution in electronic networks of practice". MIS quarterly, volume,
issue, pages 35-57.

[476] Wason, P.C. and D. Shapiro (1971), "Natural and contrived experience in a reasoning
problem". The Quarterly Journal of Experimental Psychology, volume 23, issue 1,
pages 63-71.

[477] Watkins, C., et al. (2002), "Effective learning", Institute of Education, University of
London. pages.

[478] Webster, J. and R.T. Watson (2002), "Analyzing the past to prepare for the future:
Writing a literature review". MIS quarterly, pages xiii-xxiii.

[479] Weick, K.E. (1989), "Theory construction as disciplined imagination". Academy of
management review, volume 14, issue 4, pages 516-531.

[480] Weill, P. and R. Woodham (2002), "Don't just lead, govern: Implementing effective IT
governance".

[481] Wen, S.-F. (2017), "Software Security in Open Source Development: A Systematic
Literature Review". in Proceedings of the 21st Conference of Open Innovations
Association (FRUCT). IEEE.

[482] Wen, S.-F. (2018), "An Empirical Study on Security Knowledge Sharing and Learning
in Open Source Software Communities". Computers volume 7, issue 4, pages 49.

[483] Wen, S.-F. (2018), "Learning secure programming in open source software
communities: a socio-technical view". in Proceedings of the 6th International
Conference on Information and Education Technology. ACM.

[484] Wen, S.-F. and B. Katt (2019), "Development of Ontology-Based Software Security
Learning System with Contextualized Learning Approaches". Journal of Advances in
Information Technology volume 10, issue 3, pages 1-10.

[485] Wen, S.-F. and B. Katt (2019), "Learning Software Security in Context: An Evaluation
in Open Source Software Development Environment", Proceedings of the 14th
International Conference on Availability, Reliability and Security, ACM. pages 1-10.

[486] Wen, S.-F. and B. Katt (2019), "Managing Software Security Knowledge in Context:
An Ontology Based Approach". Information, volume 10, issue 6, pages 216.

[487] Wen, S.-F. and B. Katt (2019), "Preliminary Evaluation of an Ontology-Based
Contextualized Learning System for Software Security", Proceedings of the
Evaluation and Assessment on Software Engineering, ACM. pages 90-99.

[488] Wen, S.-F. and B. Katt (2019), "Preliminary Evaluation of an Ontology-Based
Contextualized Learning System for Software Security". in Proceedings of the 23rd
International Conference on Evaluation and Assessment in Software Engineering,
EASE 2019, April 14-17, 2019. Copenhagen, Denmark.

BIBLIOGRAPHY

273

[489] Wen, S.-F. and B. Katt (2019), "Towards a Context-Based Approach for Software
Security Learning". Journal of Applied Security Research, volume 15, issue 2, pages 1-
20.

[490] Wen, S.-F., K. Mazaher, and K. Stewart (2019), "An Empirical Study of Security
Culture in Open Source Software Communities". in 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE.

[491] Wenger, E. (2000), "Communities of practice and social learning systems".
Organization, volume 7, issue 2, pages 225-246.

[492] Whitney, M., et al. (2015), "Embedding secure coding instruction into the IDE: A field
study in an advanced CS course". in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. ACM.

[493] Whitworth, B. (2009), "Socio-technical Design and Social Networking Systems,
chapter The Social Requirements of Technical Systems", IGI Global.

[494] Wikia, "Psychology Wiki"; Available from:
http://psychology.wikia.com/wiki/Knowledge_structure. (Accessed on Nov. 13, 2018)

[495] Williams, J. and D. Wichers (2017), "The ten most critical web application security
risks". OWASP Foundation.

[496] Williams, K.A., et al. (2014), "Teaching secure coding for beginning programmers".
Journal of Computing Sciences in Colleges, volume 29, issue 5, pages 91-99.

[497] Winter, R. (2008), "Design science research in Europe". European Journal of
Information Systems, volume 17, issue 5, pages 470-475.

[498] Witschey, J. (2013), "Secure development tool adoption in open-source". in
Proceedings of the 2013 companion publication for conference on Systems,
programming, & applications: software for humanity. ACM.

[499] Woon, I.M. and A.J.I.J.o.H.-C.S. Kankanhalli (2007), "Investigation of IS professionals’
intention to practise secure development of applications". volume 65, issue 1, pages
29-41.

[500] Workman, M., D.C. Phelps, and J.N. Gathegi (2012), "Information security for
managers". Jones & Bartlett Publishers.

[501] Wu, L.-W. and J.-R. Lin (2013), "Knowledge sharing and knowledge effectiveness:
learning orientation and co-production in the contingency model of tacit knowledge".
Journal of Business & Industrial Marketing, volume 28, issue 8, pages 672-686.

[502] Xiao, S., J. Witschey, and E. Murphy-Hill (2014), "Social influences on secure
development tool adoption: why security tools spread". in Proceedings of the 17th
ACM conference on Computer supported cooperative work & social computing.
ACM.

[503] Xie, J., H.R. Lipford, and B. Chu (2011), "Why do programmers make security errors?".
in Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium on. IEEE.

[504] Xiong, M., et al. (2004), "Perspectives on the Security of Open Source Software".

[505] Yamauchi, Y., et al. (2000), "Collaboration with Lean Media: how open-source
software succeeds". in Proceedings of the 2000 ACM conference on Computer
supported cooperative work. ACM.

[506] Ye, Y. and K. Kishida (2003), "Toward an understanding of the motivation Open
Source Software developers". in Proceedings of the 25th international conference on
software engineering. IEEE Computer Society.

[507] Ye, Y., Y. Yamamoto, and K. Nakakoji (2007), "A socio-technical framework for
supporting programmers". in Proceedings of the the 6th joint meeting of the European

BIBLIOGRAPHY

274

software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM.

[508] Young, A., "Too Much Information: Ineffective Intelligence Collection", Harvard
Internaton Review; Available from: https://hir.harvard.edu/too-much-information/.
(Accessed on Oct. 13, 2019)

[509] Yuan, X., et al. (2010), "Visualization tools for teaching computer security". ACM
Transactions on Computing Education (TOCE), volume 9, issue 4, pages 20.

[510] Yuan, X., et al. (2016), "Secure software engineering education: Knowledge area,
curriculum and resources". Journal of Cybersecurity Education, Research and
Practice, volume 2016, issue 1, pages 3.

[511] Yue, C. (2016), "Teaching computer science with cybersecurity education built-in". in
2016 {USENIX} Workshop on Advances in Security Education ({ASE} 16).

[512] Zack, M.H. (1999), "Managing codified knowledge". Sloan management review,
volume 40, issue 4, pages 45-58.

[513] Zadeh, J. and D. DeVolder (2007), "Software development and related security issues".
in Proceedings 2007 IEEE SoutheastCon. IEEE.

[514] Zeitlyn, D.J.R.p. (2003), "Gift economies in the development of open source software:
anthropological reflections". volume 32, issue 7, pages 1287-1291.

[515] Zelkowitz, M.V. and D.R. Wallace (1998), "Experimental models for validating
technology". Computer, volume 31, issue 5, pages 23-31.

[516] Zevin, S. (2009), "Standards for security categorization of federal information and
information systems". volume: DIANE Publishing.

[517] Zhu, J., H.R. Lipford, and B. Chu (2013), "Interactive support for secure programming
education". in Proceeding of the 44th ACM technical symposium on Computer science
education. ACM.

[518] Zikmund, W.G., et al. (2013), "Business research methods". Cengage Learning.

Doctoral theses at NTNU, 2020:151

Doctoral theses at N
TN

U, 2020:151

Shao-Fang Wen

Shao-Fang W
en A Multi-Discipline Approach for

Enhancing Developer Learning in
Software Security

ISBN 978-82-326-4650-0 (printed version)
ISBN 978-82-326-4651-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

	154371 Shao-Fang Wen_Innmat
	154371 Shao-Fang Wen_Innmat

