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Abstract: Iron aluminides have been among the most studied intermetallics since the 1930s, when
their excellent oxidation resistance was first noticed. Their low cost of production, low density, high
strength-to-weight ratios, good wear resistance, ease of fabrication and resistance to high temperature
oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in
industrial applications. Furthermore, iron aluminides allow for the conservation of less accessible and
expensive elements such as nickel and molybdenum. These advantages have led to the consideration
of many applications, such as brake disks for windmills and trucks, filtration systems in refineries and
fossil power plants, transfer rolls for hot-rolled steel strips, and ethylene crackers and air deflectors
for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends
on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and
(iii) number (type) of defects on the thermo-mechanical properties. Additionally, environmental
degradation of the alloys, consisting of hydrogen embrittlement, anodic or cathodic dissolution,
localized corrosion and oxidation resistance, in different environments should be well known.
Recently, some progress in the development of new micro- and nano-mechanical testing methods in
addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to
resolve more clearly the effects of alloying elements, environmental items and crystal structure on
the deformation behavior of alloys. In this paper, we will review the extensive work which has been
done during the last decades to address each of the points mentioned above.

Keywords: aluminide intermetallics; alloy design; brittleness and ductility; corrosion; oxidation;
hydrogen embrittlement

1. Introduction

Transition metal (TM)—aluminide intermetallics including TiAl, NiAl, FeAl and Fe3Al have
unique properties, e.g., high melting points, enhanced oxidation resistance, relatively low density, and
can be used as soft magnetic materials [1–7]. Early TM-aluminides have fcc-based crystal structure in
contrast to the bcc-based crystal structure of late transition metal alloys. Due to the strongly attractive
chemical bonding between the bi-metallic species, they are ordered and have stoichiometry. However,
the energy of interatomic bonds differs from the early TM (TiAl, VAl) to the late TM alloys (CoAl,
NiAl and FeAl). The calculated heats of formation for aluminides with equiatomic composition are
plotted in Figure 1 [8]. The heat of formation is remarkable for the case of Ni aluminides in comparison
to the Ti aluminides [9]. However, in both cases Al atoms act as an electron donor. The middle TM
aluminides are shown to have much less charge transfer and the lowest degrees of ordering. In the case
of late TM alloys, charge transfer from Al to the TM and hybridization between Al sp and transition
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metal d-states are the driving force in bonding [8]. Therefore, the Fe-Al neighbors are energetically
favored and Al-Al neighbors are avoided.
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Aluminides were first aimed to be used at high temperatures instead of Ni-based superalloys. 
Hence, some of the thermo-mechanical properties of the aluminides have been reviewed and compared 
with the CMSX-4 Ni-based superalloys in Figure 2 [10–13]. The six major advantages of aluminides for 
high temperature structural applications over the Ni-based superalloys include: (i) higher melting 
temperatures where the melting temperatures define the upper limit of the service temperature and 
are indicators of the temperature range at which diffusion-controlled processes start to dominate; (ii) 
lower densities where the lower densities (especially in the case of γ-TiAl intermetallics) result in lower 
operating stresses that make it possible to fabricate smaller and lighter components which, in turn, 
result in better engine accelerations due to the lower mass of the rotating parts; (iii) better oxidation 
resistance because of the high aluminum content; (iv) lower ductile to brittle transition temperature 
(DBTT); (v) similar thermal expansion coefficients as the bcc steels and (vi) low costs of production, 
since they do not generally incorporate rare and strategic elements [10–13]. In contrast, the three 
negative features of the intermetallics at elevated temperatures are (i) low strength; (ii) limited creep 
resistance; and (iii) high thermal conductivity. At low to moderate temperatures, most of the 
intermetallics additionally suffer from poor ductility (Figure 2) and low fracture toughness [14,15]. 
These problems significantly impede the wide usage of intermetallics because the machining of alloys 
(at low temperature) becomes very difficult. 

Liu et al. [16] presented the ductile behavior of aluminides in dry oxygen, where the fracture 
strain is about 17.6% for Fe-36.5 at. % Al. In general, increasing the Al concentration decreases the 
density of materials and enhances the protective oxide layer at high temperatures [17,18]. However, 
the existence of high aluminum concentration has negative side effects [19,20]. The reaction of Al 
atoms with water results in the production of hydrogen atoms, which are responsible for the low 
ductility of Fe-Al based intermetallic alloys in moisture-containing atmospheres [21–24] (Figure 3). 
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Aluminides were first aimed to be used at high temperatures instead of Ni-based superalloys.
Hence, some of the thermo-mechanical properties of the aluminides have been reviewed and compared
with the CMSX-4 Ni-based superalloys in Figure 2 [10–13]. The six major advantages of aluminides for
high temperature structural applications over the Ni-based superalloys include: (i) higher melting
temperatures where the melting temperatures define the upper limit of the service temperature and
are indicators of the temperature range at which diffusion-controlled processes start to dominate;
(ii) lower densities where the lower densities (especially in the case of γ-TiAl intermetallics) result
in lower operating stresses that make it possible to fabricate smaller and lighter components which,
in turn, result in better engine accelerations due to the lower mass of the rotating parts; (iii) better
oxidation resistance because of the high aluminum content; (iv) lower ductile to brittle transition
temperature (DBTT); (v) similar thermal expansion coefficients as the bcc steels and (vi) low costs of
production, since they do not generally incorporate rare and strategic elements [10–13]. In contrast, the
three negative features of the intermetallics at elevated temperatures are (i) low strength; (ii) limited
creep resistance; and (iii) high thermal conductivity. At low to moderate temperatures, most of the
intermetallics additionally suffer from poor ductility (Figure 2) and low fracture toughness [14,15].
These problems significantly impede the wide usage of intermetallics because the machining of alloys
(at low temperature) becomes very difficult.

Liu et al. [16] presented the ductile behavior of aluminides in dry oxygen, where the fracture strain
is about 17.6% for Fe-36.5 at. % Al. In general, increasing the Al concentration decreases the density of
materials and enhances the protective oxide layer at high temperatures [17,18]. However, the existence
of high aluminum concentration has negative side effects [19,20]. The reaction of Al atoms with water
results in the production of hydrogen atoms, which are responsible for the low ductility of Fe-Al based
intermetallic alloys in moisture-containing atmospheres [21–24] (Figure 3).
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Figure 2. Mechanical properties of transition-metal aluminides [10–13]. (a) Equiatomic composition 
(e.g., 1 Fe:1 Al) and (b) three TM: 1 Al compositions. Melting temperature of CMSX-4 Ni-based  
super-alloy ≈ 1450 °C, Density ≈ 8.70 gr/cm3, Ductility ≈ 3%. 

The rate of a charge-transfer process such as that of hydrogen adsorption depends on the 
potential across the sample-solution (environment) interface, which can be electrochemically varied in 
a controlled manner and also by the engineering of the interface. A passive oxide film, for example, 
causes a drop in the electric current flow. Formation of protective oxide layers on surfaces by pre-
oxidizing the iron aluminides may influence the hydrogen adsorption and dissolution in the material 
and enhance ductility of samples. Furthermore, the thicknesses, crystal structure (if it is amorphous 
or crystalline), electronic or ionic conductivity, type (if it is n-type or p-type) and numbers of donors 
in the passive layer may vary based on the alloying elements. 

  

Figure 3. (a) Shows low ductility of Fe-Al aluminides; (b) Cleavage-like fracture surface of a Fe-26Al-0.5Cr 
intermetallic after doing tensile test in air. Data from the reference [23]. 

McKamey et al. [25] observed an approximate 8%–10% increase in ductility at room temperature 
with the addition of 6 at. % chromium. The reasons for the increased ductility after Cr addition are 
thought to be caused by: (i) the influence of Cr on the bulk properties of binary alloys, such as 
facilitating the dislocation cross-slipping, solid solution softening and an increment in cleavage 
strength, and/or (ii) the effect of Cr on the surface properties through the contribution of chromium 
oxide into the passive layers and the decrement of the kinetics of water reduction reactions, which 
leads to a reduction of hydrogen formation/adsorption [26–28]. However, the intrinsic complexities 
of the macro-scale experimental examination make it impossible for us to precisely explore the 
mechanisms of hydrogen embrittlement in the iron aluminides [29]. In contrast, with the aid of recent 
local in-situ micro-, nano-mechanical testing methods, we can reduce some sources of scatters such 
as material in-homogeneities during the measurements. Here we will discuss the abilities of in-situ 
nanoindentation measurements [24,29] and in-situ compression tests of micro-pillars [22] for 
evaluating the effects of hydrogen on various mechanical properties such as elastic modulus, 
dislocation nucleation and mobility. In this review paper, however, it is impossible to develop any of 
these topics in great detail. Nevertheless, we hope that each section contains enough information for 

Figure 2. Mechanical properties of transition-metal aluminides [10–13]. (a) Equiatomic composition
(e.g., 1 Fe:1 Al) and (b) three TM: 1 Al compositions. Melting temperature of CMSX-4 Ni-based
super-alloy « 1450 ˝C, Density « 8.70 gr/cm3, Ductility « 3%.

The rate of a charge-transfer process such as that of hydrogen adsorption depends on the
potential across the sample-solution (environment) interface, which can be electrochemically varied in
a controlled manner and also by the engineering of the interface. A passive oxide film, for example,
causes a drop in the electric current flow. Formation of protective oxide layers on surfaces by
pre-oxidizing the iron aluminides may influence the hydrogen adsorption and dissolution in the
material and enhance ductility of samples. Furthermore, the thicknesses, crystal structure (if it is
amorphous or crystalline), electronic or ionic conductivity, type (if it is n-type or p-type) and numbers
of donors in the passive layer may vary based on the alloying elements.
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McKamey et al. [25] observed an approximate 8%–10% increase in ductility at room temperature
with the addition of 6 at. % chromium. The reasons for the increased ductility after Cr addition
are thought to be caused by: (i) the influence of Cr on the bulk properties of binary alloys, such
as facilitating the dislocation cross-slipping, solid solution softening and an increment in cleavage
strength, and/or (ii) the effect of Cr on the surface properties through the contribution of chromium
oxide into the passive layers and the decrement of the kinetics of water reduction reactions, which
leads to a reduction of hydrogen formation/adsorption [26–28]. However, the intrinsic complexities
of the macro-scale experimental examination make it impossible for us to precisely explore the
mechanisms of hydrogen embrittlement in the iron aluminides [29]. In contrast, with the aid of
recent local in-situ micro-, nano-mechanical testing methods, we can reduce some sources of scatters
such as material in-homogeneities during the measurements. Here we will discuss the abilities
of in-situ nanoindentation measurements [24,29] and in-situ compression tests of micro-pillars [22]
for evaluating the effects of hydrogen on various mechanical properties such as elastic modulus,
dislocation nucleation and mobility. In this review paper, however, it is impossible to develop any of
these topics in great detail. Nevertheless, we hope that each section contains enough information for
the average reader to understand what has been achieved in that field, as well as satisfactory references
to provide further reading if necessary.
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2. Characteristics of Fe-Al Intermetallics

2.1. Phase Diagram

The phase diagrams for binary iron aluminides were studied using different techniques, e.g.,
dilatometric measurement [30], electrical resistivity and specific heat measurement [31], measurement
of elastic modulus and magnetic properties [32,33], X-ray diffraction methods [34]; and, more recently,
the phase diagram was intensively studied with TEM [35]. The first well-accepted binary Fe-Al phase
diagram was reported in 1982 [36]. The phase boundaries and transitional temperatures may differ
slightly from one reference to the other. The reason for this uncertainty is the anomaly in the physical
properties such as Young’s modulus, thermal expansion and electrical resistance. Some possible
explanations for the observed irregularities including other long-range ordered states, short-range
ordering, two-phase structure, material impurities such as carbide precipitation and quenched-in
vacancies are proposed [35,37–39]. The different phases and their lattice structure and lattice parameters
are listed in Table 1 [9,40–46].

Table 1. Different Fe-Al phases.

Phase Label in Figure 4 Pearson
Symbol

Space
Group

Prototype Lattice
Parameters (nm) Elastic Constants (eV/Å3)Liquid L

Al Al cF4 Fm3m Cu a0 = b0 = c0 =
0.40496 [43]

C11 = 0.6492,
C12 = 0.4619

C44 = 0.2684 [44]

f cc pγFeq γFe cF4 Fm3m Cu a0 = b0 = c0 =
0.36599 [40]

–

bcc pαFeq A2 ppmq˚

A2 p f mq˚˚ cI2 Im3m W a0 = b0 = c0 =
0.28665 [43]

C11 = 1.4357,
C12 = 0.8426

C44 = 0.73 [44]

Fe3 Al D03 cF16 Fm3m BiF3
a0 = b0 = c0 =

0.2895 [40],
0.5904/2 [44],
0.5792/2 [43]

[44] [45]

C11 = 0.945,
C12 = 0.892,
C44 = 0.788

1.067
0.822
0.815

FeAl B2ppmq cP8 Pm3m CsCl

a0 = b0 = c0 =
0.291 [41,43,46],

0.283 [9],
0.3031 [44]

[46] [9] [44]

C11 = 1.2
C12 = 0.75
C44 = 0.73

1.8
0.8

1.029

0.883
0.846
0.691

Fe5 Al8˚˚˚ ε pD82q cI52 I43m Cu5Zn8 n.a. [42] –

FeAl2 FeAl2 aP18 P1 FeAl2

a0 = 0.4872,
b0 = 0.6459,
c0 = 0.8794,
α = 91.76
β = 73.35,

γ = 96.89 [41]

–

Fe2 Al5 Fe2 Al5 oC? Cmcm –
a0 = 0.7652,
b0 = 0.6463,

c0 = 0.4229 [41]
–

Fe4 Al13 Fe4 Al13 mC102 C2{m – n.a. [41] –
* Paramagnetic; ** Ferromagnetic; *** Al-rich intermetallics such as FeAl2, Fe2Al5 and Fe4Al13 have lower
densities in comparison to FeAl and Fe3Al but are not good candidates for structural applications because of
their small homogeneity ranges, complex crystal structures and brittle behavior. Therefore, we will not focus on
them in this text.

Figure 4 [47] shows the extension of the solid solution of Al in Fe from 0 up to 45 at. % Al at high
temperatures. At low temperatures, this region is subdivided into three parts. The first part consists of
disordered alloys up to 18.75 at. % Al at room temperature. At about 25 at. % Al and temperatures
below 545 ˝C, the intermetallic phase Fe3Al is formed. The next upcoming phase at higher Al contents
is FeAl. Both Fe3Al (D03) and FeAl (B2) phases are ordered forms on the body-centered cubic (bcc)
lattice and are separated from the disordered A2 phase by first- or second-order transitions.
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The X-ray diffraction method was used for studying the distribution of iron and aluminum atoms in
the crystal lattice of FeAl (B2) and Fe3Al (D03) phases [33,48,49]. The lattice sites in a unit cell are classified
into three kinds, α, β and γ as shown in Figure 5a. The probability for each one of these lattice sites to
be occupied by an Al atom at room temperature has been plotted against the Al composition, as seen in
Figure 5b [48,49]. In the FeAl (B2) crystal lattice, in the stoichiometric composition, Al atoms occupy the
body center sublattices (β and γ) and the Fe atoms occupy the corner sites (α sublattice). In the Fe3Al
(D03) structures, however, the Fe atoms occupy both α and β sublattices, while the Al atoms occupy the γ
sublattice. In a D03 structure, each Fe atom on the α sublattice is surrounded by four Fe and four Al atoms
as nearest neighbors (NN), but the Fe atoms on the β sublattice and the Al atoms on the γ sublattice have
eight Fe atoms as NNs. This difference significantly influences the defect formation energies [50].

2.2. Point Defects in the Super Cells

The B2 structure has the ideal stoichiometry of 50 at. % Fe-50 at. % Al and the D03 super structure
has the ideal stoichiometry of 25 at. % Fe-75 at. % Al. However, the formation of lattice defects, e.g.,
vacancies and/or anti-sites, allows for the large range of deviations from the stoichiometric composition.
The type and concentration of the point defects are important issues in Fe-Al intermetallics because the
constitutional vacancies, or anti-sites, influence the thermo-mechanical, magnetic and electrical properties of
the intermetallics. Moreover, the point defects control diffusion-assisted processes, such as creep. The effect
of quenched-in thermal vacancies on solid solution strengthening, yield stress and hardness of alloys
was studied in detail in the literature we refer to [5,51–54]. It has been shown that vacancies could act
as obstacles to dislocation movement. Additionally, strong interactions between structural defect and
hydrogen could significantly influence the hydrogen concentration and penetration rates in iron aluminides
and cause severe mechanical degradation. Furthermore, the knowledge of point defect energetics is
essential for the proper estimation of the formation (excess) energy of extended one-dimensional (1D) or
two-dimensional (2D) defects, such as dislocations or grain boundaries, with local off-stoichiometry.
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Figure 5. (a) Atomic arrangement in a B2 or D03 super-lattice; (b) Occupation probabilities of the lattice
sites by Al in a Fe-Al system [48,49].
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Point defect structure in intermetallics has been studied extensively with the help of
various theoretical methods such as nearest-neighbor pair-wise interactions [55], embedded atom
potentials [56] and local-density-functional (LDF) models [57]. The estimated formation energies of
different defects in B2 and D03 super-lattices are presented in Table 2. In a B2 super-lattice, the low
formation energies of anti-sites at the Fe and Al sites (rFeAls and rAlFes) and also Fe mono-vacancy
(rVFes) cause high concentrations of these forms of defects. In fact, rVFes and rAlFesare dominant defect
types for Al-rich Fe-Al. For Fe-rich Fe-Al, on the other hand, the constitutional rFeAls sites are the main
defect type. However, the presence of rVAls is thermodynamically not favored due to its very high
energy of formation.

As it is shown in Table 2, six various forms of point defects could exist on the D03 sublattices; Fe
atoms on the γ sublattice (anti-site Fe atoms), Al atoms on the α or β sublattices (anti-site Al atoms) and
vacancies on the α, β or γ sublattices. In contrast to the B2 structures, the effective formation energies of
all different local defects including vacancies and anti-site atoms vary only slightly with composition in
the D03 structure. However, due to the lower vacancy formation energies in the rVFe-αs in comparison
with

“

VFe-β
‰

, the probability of the rVFe-αs is higher. Additionally, the calculated formation energy of
rVAls is not very high; therefore, formation of rVAls along with rVFe-αs is possible.

Along with studying the thermodynamically stable types of defects, the kinetics of defect
formation or annihilation are also essential. The A2 crystal structure has a much larger vacancy
formation enthalpy, which causes a much lower vacancy concentration compared to the ordered
structures (Figure 6a) [39]. The lowest enthalpy and, therefore, the highest concentration of thermal
vacancies can be found for the B2 crystal structure [39]. The D03 structure will have a lower thermal
vacancy concentration (in comparison with the B2 structure); it is what we would expect based on the
DFE calculations. Most of calculations did not consider the interaction of defects. In reality, however,
the vacancy concentrations of both B2 and D03 superlattices are well above the predicted values based
on the theoretical calculations. This is due to the interaction of different vacancies and sublattices,
which form defect clusters. The higher effective formation volume of the defects in the B2 phases
(1.4 Ω), in comparison with one atomic volume Ω, was observed in reference [58]. In the ordered B2
phase, the main defect types are changing from triple defects at low temperature to double vacancies
at higher temperature and Al content [58]. In aluminides with less than 35 at. % Al, the type of
defects at low temperatures are typically mono-vacancies. Figure 6b [59–62] shows the changes of the
equilibrium vacancy concentration (Cv) of samples with different Al contents at different temperatures
based on the experimental approaches. Obviously, the increase of either temperature or Al content
will increase Cv.

Table 2. The effective formation energies of all different local defects including vacancies and anti-site
atoms in eV.

Defects D03 B2

rVFe-αs 1.25 [63], 1.583 [44]
0.97 [57], 1.06, [64], 0.80 [65], 0.653 [66]”

VFe-β

ı

2.27 [63], 1.388 [44]

rVAls 1.4 [63], 2.221 [44] 4.00 [57], 3.46, [64] 2.80 [65], 1.493 [66]

rFeAls 0.430 [44] 1.03 [57], 0.78[65], 0.95 [66]

rAlFe-αs 0.047 [44]
0.95 [57], 0.76 [65], 1.03 [66]”

AlFe-β

ı

0.218 [44]
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Figure 6. (a) Vacancy formation enthalpy for Fe-Al alloys as a function of Al concentration and
according to the state of order of the materials [39]; (b) Vacancy concentration of Fe-Al alloys based on
the experimental approaches (i) [59]; (ii) [60]; (iii) [61]; (iv) [61]; and (v) [62].

The Cv in the materials can be evaluated as follows:

Cv “ exp

»

–´

´

E f
v ` pV f

v ´ TS f
v

¯

kBT

fi

fl (1)

Where p is the pressure, E f
v , V f

v and S f
v are the energy, volume and entropy of formation of a vacancy,

respectively. The migration enthalpy of the defects enhances with increasing Al content; at a constant
temperature, the migration of vacancies seems to be very slow, particularly for the high-Al-content
alloys. This is because in ordered alloys, unlike in pure metals in which self-diffusion occurs by
random vacancy motion, self-diffusion is not possible since it would disrupt the ordering. The possible
diffusion mechanisms in the B2 structures are single vacancy transport, triple defects mechanism and
the six-jump cycle. The six-jump vacancy model lets diffusion occur exclusively by nearest neighbor
vacancy jumps, though diffusion occurs mostly via nearest neighbor jumps into vacant sites. However,
both high migration enthalpy and low formation energy of vacancies dictate the existence of large
concentrations of thermal vacancies at high temperatures and the quenching of these thermal vacancies
is easy.

2.3. Dislocations in Fe-Al

Two slip directions were observed at low temperatures in a B2 super-lattice while the slip plane
remains {110}. The slip direction for NiAl and CoAl is <100> while the slip direction for FeAl and
Fe3Al is <111>. The difference between the active slip directions affects the ductility of intermetallics
significantly. NiAl and CoAl only have three independent slip systems, which is less than the minimum
number of slip systems needed for the plastic flow of material in the polycrystalline materials based
on the Von Mises criterion. Therefore, no ductility at room temperature is expected for these alloys.
Since the number of slip systems in the Fe-Al intermetallics is more than the required five independent
slip systems, iron aluminides are intrinsically ductile. The burgers vector of the B2 iron aluminides is
two times longer than that of a normal dislocation in the bcc structure. The super-lattice dislocation
splits into two super-partials, each with a a{2 x111y burgers vector (b), separated with an anti-phase
boundary (APB) [67]. In Fe3Al with D03 structure, a super lattice dislocation with a burgers vector
of x111y is known to be dissociated into four super-partial dislocations with b “ a{4 x111y, bound by
two types of anti-phase boundaries (APBs): the nearest-neighbor APB (NNAPB) and the next-nearest
neighbor APB (NNNAPB) [68]. As it is shown in Figure 7, uncoupled and paired super-partials glide
trailing the NNAPB and NNNAPB, respectively. After initiation of the fourth super partial, no APB
will be left behind. The surface tension of the NNAPB after initiation of a a{4 x111y may pull back
the super-partials during unloading and hence cause pseudo-elasticity. Yasudo et al. [69] found a
significant shape memory effect in D03 alloys with 23 at. % Al for a wide range of temperatures. At
this concentration of Al, the super-partials independently glided. The recovery ratio depends on the Al
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content and temperature. At 24.7 at. % Al, super-partials moved individually, dragging the NNAPB at
room temperature, while at 473 K four-fold dissociated super-dislocations were observed [67,69]. With
an Al concentration above 25 at. %, the APB energies increase as long as a homogeneous D03 structure
is present in the Fe-Al phase diagram [70]. At Fe-28.0 at. % Al, a paired super-partial a{2 x111y glide
and a NNNAPB is left behind [68,71]. Table 3 [72–74] summarizes the energy of NNAPB (γNNAPB)
and NNNAPB (γNNNAPB) of alloys with different Al content.

The preferred slip plane for both B2 and D03 is {110}. The frequent short distance double cross-slip
processes onto {112}-planes and back onto {110}-planes were observed as well [75,76]. It produces wide
slip bands in localized areas at temperatures below 350 K, while adjacent areas remain free of mobile
dislocations. The prominent screw character of dislocations was seen, as well as a great number of
dipoles in the deformed areas, which resulted from frequent cross-slip events.
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Figure 7. Schematic drawing of the initiation of partial dislocation and formation of anti-phase
boundaries in a D03 super-lattice. Al and Fe atoms are presented in red (bigger) and blue
spheres, respectively.

Table 3. The APB energies of D03 intermetallics at room temperature [72–74].

Alloy (at.%) γNN APB γNNN APB Ref.

Fe-26.3Al 77 ˘ 12 85 ˘ 16 [72]
Fe-26.9Al 68 ˘ 12 72 ˘ 13 [73]
Fe-27.8Al 76 ˘ 11 53 ˘ 11 [73]
Fe-28Al 73 ˘ 7 80 ˘ 7 [74]

Fe-28.3Al 79 ˘ 10 64 ˘ 10 [73]

2.4. Mechanical Properties at High Temperatures

The effect of Al content on the yield stress of binary alloys at three different temperatures is
presented in Figure 8a [37]. At low to moderate temperatures (T = 773 K), an outstanding enhancement
of the yield stress was observed for the D03 super structure with stoichiometric concentration.
Another remarkable mechanical property of iron aluminides is their anomalous increase in yield
strength with increasing temperature up to «900 K (Figure 8b [77]), which has been observed in
single- [78] and polycrystals [79]. There has been much debate about the origin of the observed
stress anomaly in the flow stress. It appears to be controlled by several different mechanisms. These
mechanisms include anti-phase boundary relaxation leading to dislocation drag, cross-slip of screw
dislocations, changing of slip directions from <111> to <001>, super-dislocation climb locking and
vacancy hardening [38,39,76,78–80]. Moreover, the Young’s modulus of the binary alloys has been
studied in detail in a wide range of temperatures (Figure 9) [80,81]. It has been shown that the



Crystals 2016, 6, 10 9 of 29

Young’s modulus of Fe-Al intermetallics with D03 super structure is minimum at room temperature.
The Young’s modulus increases with the enhancement of the Al content in each super lattice. It shows
the effect of aluminum on the strengthening of the interatomic bonds. Interestingly, the Young’s
modulus of aluminides with high Al content decreases significantly with the increase of temperature
(about 40%), while this decrease is less in the aluminides with less Al content (about 25%).
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2.5. Alloying Elements

To improve the mechanical, thermal or electrochemical properties of binary Fe-Al intermetallics,
one can add some different selected alloying elements to the binary alloys. Some metallic elements
such as Si, V, Cr, Mn, Co, Ni, Cu and Zn have large solid solubility [37,82,83] and others such as Zr,
Nb and Ta have restricted solid solubility in Fe-Al intermetallics [83,84]. It has been shown that the
β sublattice sites are preferred by Ti, W, V, Cr, Mo and Zr whereas Si atoms prefer the γ sublattice
in a Fe3Al super-structure [40,85]. The effect of different ternary alloying elements on the formation
energies (E f ), relative changes of lattice parameters and Young’s modulus were determined using
experimental approaches as well as computer simulations (see Table 4) [40,86–88].

The DO3 Ñ B2 phase transformation which happens at temperatures of about 550 ˝C may cause
detrimental effects on the mechanical properties [35]. To increase the transition temperature, we can
add different ternary alloys such as Nb, Ti, Mo and V. Cr has a very slight effect on temperature
transition while V, Mo, Ti and Nb enhance the transitional temperature for 34, 36, 57 and 62 K/at. %,
respectively. Furthermore, Stein et al. [35] evaluated the effect of two alloying elements on the transition
temperature. They found that the two elements may have additive influence at least in the range of
studied compositions.

The effects of different alloying elements, namely Cr, Mo, Ti and V, on the solid solution
strengthening at various temperatures are summarized in Figure 10 [37]. Increase of the yield stress
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relates to the temperature, type and amount of the solute atoms. While Cr does not significantly
influence the yield stress at high temperatures, V, Mo and Ti enhance the flow stress about 500%–600%
in comparison to the binary alloy at 800 ˝C.

Table 4. Effect of ternary alloying elements on the properties of Fe3Al intermetallics.

–

Formation Energy at
Different Sublattices

(meV/atom) [40]
Relative Changes of the Lattice
Parameter with Respect to the
Solute Content

Relative Changes of the Young’s
Modulus [40]

β α γ Theory
Exp.

T = 77 K
Exp.

T = 300 K

Ti ´242 ´191 ´194 0.05 [40], 0.03 [88], 0.05 [86] 0.02 0.16 0.17
W ´198 ´124 ´147 0.03 [40] 0.05 0.13 0.15
V ´229 ´182 ´188 ´0.03 [40], ´0.02 [88] 0.04 0.07 0.08
Cr ´185 ´175 ´156 ´0.05 [40], ´0.02 [88], 0.01 [86] 0.02 0.02 0.02
Si ´227 ´194 ´231 – 0.03 0.09 0.08
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Figure 10. The effect of various ternary alloying elements on the yield stress at (a) 600 ˝C; (b) 700 ˝C;
and (c) 800 ˝C [37].

Besides, the addition of low solubility alloying elements (e.g., Nb) may produce precipitates
(Fe2Nb). Niobium is one of the most effective alloying elements in increasing tensile strength at
elevated temperatures. Precipitates, which are available in equilibrium in many of the Fe-Al-X systems,
have a strong strengthening effect at high temperatures while they prevent grain coarsening but
frequently lead to a considerable embrittlement at low or even ambient temperatures [37].

The effects of metallic substitutional atoms, and interstitials, such as boron [89] and carbon [90–92],
on the mechanical and corrosion properties of Fe-Al alloys were also studied at different temperatures.
Carbon produces plate-like κ-carbide (Fe3AlCx) precipitates which are predominantly located along
dislocations and grain boundaries [35]. In the Ti-containing alloys, some isolated TiC precipitates were
detected as well [35]. Boron could also make dispersoids with solute atoms. Borides can be dispersed
in a Fe3Al matrix after conventional casting methods [93]. Additionally, the thermal stability of Ti,
Zr, Ta and Nb diboride precipitates in Fe3Al-based material was proved earlier [93]. Ti, Hf and Zr
diborides lead to significantly improved strengthening at elevated temperatures as well as higher creep
resistances (Figure 11a [89]) compared to corresponding binary alloys. Interestingly, the existence
of ZrB2 particles has been shown to enhance the strength at 600 ˝C and also the ductility at room
temperature [94]. Maybe the grain structure refinement is the reason for the higher ductility of alloys.

Furthermore, some alloying elements could make stress induce phase transition or form hydride
at low temperatures and in moist environments, which may lead to a cleavage-like fracture. The alloys
most sensitive to the phase transition in the hydrogen environments are the Ti, Zr, Hf in the IVb column
of the periodic table and the V, Nb and Ta in the Vb column of the periodic table. Figure 11b shows the
effect of various alloying elements on the brittle to ductile transition temperature (BDTT). It is obvious
that many alloying elements have a destructive influence on the ductility at low temperatures and
enhance the BDTT temperature.
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2.5.1. Influence of Solute Atoms on Mechanical Properties

Anthony and Fultz [97] proposed that the difference of the solute atomic radius compared to
the Fe atoms controls their efficiency on the enhancement of transition temperature. However, the
contribution of the alloying elements on the valence electron concentration may also play an important
role for the transition temperature [88]. In a similar way, according to the classical theories of solid
solution strengthening, the difference between solvent and solute atoms in atomic size (atomic size
factor) produces local stress fields. It interacts with those of the dislocations, impeding their motion
and causing an increase in the macro-hardness or flow stress. Additionally, the modulus misfit is due
to the changes of binding energy of atoms after the addition of solute atoms. According to the model
proposed by Fleischer [98,99] the magnitude of the solid solution strengthening can be expressed in
terms of misfit parameters (ε) based on the following equation [100].
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where εµ “ 1{µˆ ∆µ{∆ C and εα “ 1{aˆ ∆a{∆C are the modulus misfit parameter and atomic size
factor, respectively. However, it is shown that the solid solution strengthening in intermetallics is
more complicated compared with binary solutions [100]. For example, the sublattice that the solute
atoms prefer to sit on controls the amount of the local stress field. The other complications are the
contribution of alloying elements on the phase stability, grain size, energies of anti-phase boundaries
and formation/migration enthalpy of the vacancies in B2 or D03 structures. Hence, the precise
characterization of thermal stability and/or solid solution strengthening in intermetallics requires the
consideration of all the aforementioned factors.

2.5.2. Effect of Cr on the Mechanical Properties of Fe-Al Intermetallics

Cr is one of the most important alloying elements and its input on various thermo-mechanical and
electrochemical properties has already been studied extensively [23,25,101–104]. Palm experimentally
determined an isothermal section for the Fe-Al-Cr system at 1000 ˝C [82]. He did not find any
ternary intermetallic phases because the binary phases can dissolve considerable amounts of the third
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component and the substitution does not make any changes in the crystallographic structure. Table 4
summarizes the effect of Cr on lattice constants and Young’s modulus. It is shown that the measured
Young’s and shear modulus increase systematically with the increment of the Cr content in the alloys.
The results were interpreted within the framework of the universal features of metallic bonding as
a change in the interatomic potential, as proposed by Rose et al. [105,106]. The influence of Cr on
ordering kinetics and dislocation configurations is not very significant [107]. Furthermore, the effect
of Cr on the APBs is also still a matter of debate. While Kral et al. [74] found increased APB energy
with Cr addition, McKamey et al. [25] found that Cr addition reduces the APB energy. Morris et al. [75]
did not observe differences in the APB energies with Cr addition. Therefore, more experiments and
simulations are needed for a precise conclusion about the Cr effect on APB energies.

The effect of Cr content on the incipient plasticity and post-yielding behavior of Fe-26Al-xCr alloys
was studied with the aid of different local techniques such as nano-indentation as well as the punching
and bending test of micro-pillars [108–110]. Strengthening of the interatomic bonds increases the
dislocation line energy, and hence, enhances the energy needed for dislocation nucleation. Furthermore,
it has been observed that the addition of 5 at. % Cr increases the nano-hardness at very low depths of
indentation and also causes a higher flow stress (yield stress) at low strains in comparison to the binary
alloys. This is due to the very low number of available dislocation sources (e.g., Frank-Read sources) in
annealed materials [111] in addition to the higher energy needed for dislocation nucleation for Cr-rich
alloys [110]. In contrast, at higher strains or depths of indentation, the binary alloy has higher hardness
and flow stress (Figure 12). It shows that the amount of strain hardening in the ternary alloy is notably
less than that in the binary alloy. It presents the sessile character of dislocations in the binary alloys and
the lower ability of dislocations to cross-slip. Postmortem analysis of the nano-indents and punched
pillars also proves the effect of Cr on the enhancement of the dislocation mobility, while the height of
material pile-ups is decreased around the indents and the slip lines are wide spreading in the Cr-rich
alloys [108].Crystals 2016, 6, 10 13 of 28 
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The reduction of average values of material pile-ups after the addition of Cr (Figure 13) could
be due to the increase of the capability of the material to include the plastic deformation, i.e., how
far dislocations are capable of transferring the plasticity into the material. This can be explained by
considering the ease of dislocation cross-slipping in the Cr-rich samples. Additionally, very fine slip
steps in the binary alloy (Figure 13e) related to the activation of several crystallographic slip planes
were visible. In contrast, due to the localized slip on preferred glide planes, the glide steps of the
Cr-containing alloy are well resolved on a few crystallographic planes (Figure 13f).
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3. Environmental Degradation

3.1. Oxidation and Corrosion of Iron-Aluminides

In a binary alloy, one constituent may segregate to the surface while the surface energy is mostly
lower than the bulk-terminated alloy surface [112]. Experimental studies on clean, low-index Fe1´xAlx
surfaces show the segregation of Al atoms at the surface. The higher the Al content the more Al
exists at the surface. Higher temperatures enhance the Al segregation even more [113,114]. For a
stoichiometric Fe3Al with (110) normal orientation, for example, Al segregation at room temperature
was seen to be about 41 at. %, while at 427 ˝C (below the D03-B2 phase transition) the Al content is
about 94 at. % within the first layer [115]. It has been shown that the top three layers of atoms may be
strongly influenced by surface segregation phenomena and may have a complicated structure [116].
The deviation of the atomic concentration at the surface compared to the bulk material along with
the surface energies causes different electronic, chemical and physical properties at the top surface of
the samples.

3.1.1. Oxidation Resistance

The Fe-Al intermetallics are aimed to be used in hostile environments, and hence, studying the
environmental aspects on the chemical and mechanical properties of alloys is essential. In general,
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the oxide growth mechanism consists of two steps; (i) adsorption of oxygen on the metal surface
and (ii) formation of an oxide layer, if the coverage of the metallic surface with the oxide layer is
energetically favored and no kinetic barriers exist. Once a first oxide layer has formed, it grows
further in thickness. Within this second step a charge transfer through the oxide scale is crucial to
preserve charge neutrality and therefore further growth. In the studies of the oxidation behavior
of B2 aluminides, a parabolic oxide growth rate was observed at high temperatures [117]. It occurs
mostly by oxygen diffusing inward through the oxide, with oxide formation taking place at the
metal/oxide interface.

The chemical composition of the oxide layer strongly depends on the (i) oxidation rate; (ii) the
amount of the alloying elements at the surface; (iii) temperature; (iv) environment or oxidizing
media; and (v) the presence of kinetic barriers at the surface. Formation of aluminum oxide is
thermodynamically more favorable than iron oxide since oxygen has a higher affinity to Al compared
to Fe (the standard Gibbs energy of formation of α-Al2O3 is´1,582,260 J/mol which is almost 6.5 times
higher compared to FeO). However, the experimental results performed on binary polycrystals (with
15 and 40 at. % Al), oxidized at temperatures around 727 ˝C in synthetic air, show the existence of
a thin Fe2O3-containing outer layer followed by an inner, nearly pure Al2O3 layer. Additionally, a
complex oxide formation (e.g., AlFeO3 or FeAl2O4 = FeO. Al2O3) may happen at low segregation rates
of Al from the bulk or high oxidation rates. However, annealing the aluminides at about 1000 ˝C after
oxidation breaks up bonds between Fe and O and leads to the formation of pure Al oxide. In general, at
the very beginning of the oxidation process, the oxidation of Fe atoms may happen. After the formation
of homogeneous mixed Fe and Al oxides, the supply of oxygen to the metal-oxide interface allows
selective oxidation of Al and thereby the development of a continuous film of alumina. The formation
of a homogeneous Al2O3 layer further slows down oxide growth because electron tunneling remains
the only possibility for charge equalization. It may block the Fe oxide formation. Therefore, the
existence of a large amount of Al within the surface region in addition to low O2 pressures in the
oxidizing atmosphere causes the formation of pure alumina films. The alumina oxide layer can be
either metastable γ-, θ-Al2O3, or the slowest-growing, thermodynamically stable α-Al2O3, known as
corundum. The metastable phases may form at low temperatures (about 700 ˝C) and transform to
the α-Al2O3 at high temperatures or after some time. In short, the Fe2O3 content decreases with time,
temperature and Al concentration of the bulk alloy [118].

The α-Al2O3 maintains its desirable oxidation resistance over a wide range of temperatures and
in steam environments [119–123]. Increasing the Al concentration enhances the protectivity of the
oxide layer at high temperatures [17,18]. A bulk sample with about 14 and 19 at. % Al could maintain
its protectivity at temperatures above 800 and 900 ˝C, respectively [124]. Oxidation resistance of
aluminides can be improved by the additions of rare earth metals and transition metals such as Cr, Ti,
Nb [37], Y and Ce [125]. However, the addition of high concentrations of Mo or Zr may increase the
corrosion rate of iron aluminides (Figure 14) [37]. Additionally, at temperatures higher than 1000 ˝C,
Cr2O3 is unstable and its evaporation will increase the oxidation rate of alloys. The addition of small
amounts of reactive elements, e.g., Y, Ce, Hf to chromia- and alumina, improves the adhesion of the
oxide to the substrate. The presence of alloying elements may limit the outward diffusion of aluminum
ions in the oxide layer and, hence, the oxide grows by the inward diffusion of oxygen [126]. On the
other hand, alloying elements in the precipitated state may deteriorate the oxidation behavior in terms
of internal oxidation. The precipitate-matrix interfaces catalyze the formation of Al2O3 and act as
starting points for internal oxidation. They are fast paths for oxygen inward and aluminum outward
diffusion [124].
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3.1.2. Electrochemical Properties of Fe-Al Intermetallics

Resistance to aqueous corrosion at low (room) temperatures is essential for the applicability of
iron aluminides without compromising their structural integrity. Remarkable enrichment of Al within
the passive film [24,127] plays a beneficial role for the passivation of Fe-Al intermetallics. A Pourbaix
diagram of aluminum [128] provides information about the thermodynamic stability of different
species as a function of potential and pH (Figure 15). At room temperatures and in near-neutral
and Cl´-free solutions, aluminum provides a protective insoluble oxide/hydroxide film [129–131].
However, the range of passivity varies with temperature, presence of secondary phases and/or
precipitates (in bulk material and/or the oxide layer) and existence of substances in the solution that
can form soluble complexes or insoluble salts with aluminum [132,133].
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The contributions of alloying elements on the electrochemical properties of iron aluminides in
aqueous environments have rarely been studied. Electrochemical impedance spectroscopy (EIS) and
the Mott–Schottky (MS) methods were performed to characterize the passive film of binary and ternary
alloys with different Cr content in the near-neutral and Cl´-free solutions [101]. The existence of high
donor densities in the passive layers [101] causes semi-conductive behavior. In the sample with a
higher concentration of chromium, some part of the iron oxide in the passive layer was replaced by
Cr3+ Contribution of Cr ions (Cr3+ and Cr6+) to the increase of the effective capacitance and donor
density of the passive layers was seen based on the electrochemical measurements. The effect of Cr on
the polarization resistance was more obvious at high anodic potentials where the strong enrichment of
the passive layer with Cr3+ and Cr6+ could make a more protective p-type passive layer, instead of the
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n-type (Al3+-rich) layer, for example at lower potentials or in alloys without Cr [101]. Additionally,
it has been shown that the reduction of the flat-band potential after the addition of 5 at. % Cr may
reduce the sensitivity of alloys to the moist-induced hydrogen embrittlement [101].

Like other commercial Al-rich alloys, iron-aluminum intermetallics have poor resistance to
localized (pitting and crevice) corrosion in Cl´-containing solutions [101,134] (Figure 16 [101]).
The incorporation of Cr as a ternary alloying element into the passive film increases the range
of passivity and, consequently, the resistance of the alloys to pitting corrosion and decreases the
average density of the pits. However, the addition of 5 at. % Cr to the binary Fe3Al intermetallic
does not completely hinder the pitting and crevice corrosion of the alloys. Moreover, the beneficial
effect of Si and Ge on the passivating characteristics of Fe3Al intermetallics has been observed [135].
Zamanzade et al. [101] tried to characterize the form and density of (meta) stable pits for different
crystal orientations. It was shown that the pit facets have the {110} orientation. The grains with the {110}
orientation have slightly higher pit density in comparison with other orientations, but the difference
was not significant [101].
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Figure 16. (a) Polarization curves show the effect of Cr on the increase of passivation range in a
Cl´-containing solution; (b) SEM image shows the formation of micro-pits in the iron aluminides. Data
from reference [101].

According to the Pourbaix diagram, the corrosion rate increases as the pH moves away from the
near-neutral condition. In many acidic solutions, Al dissolves as Al3+ ions. In alkaline environments,
aluminum dissolves as AlO2

´. Moreover, like pure aluminum, dissolution of Al2O3 may happen due
to local alkalization induced by the hydrogen evolution reaction at high cathodic current densities.
Al (oxide) dissolution reaction under hydrogen evolution is described as follows [24]:

Al2O3 ` 3H2O` 2OH´ Ñ 2Al pOHq´4 (4)

Al` 4OH´ Ñ Al pOHq´4 ` 3e´ (5)

3.2. Hydrogen Embrittlement (HE)

Since Johnson [136] first reported on hydrogen embrittlement, various strong views on the
mechanisms of hydrogen embrittlement have been vigorously discussed and thoroughly reviewed in
the literature. It was shown that hydrogen embrittlement causes severe mechanical degradation of
various materials [137,138], especially in aluminides [25,139]. In iron-aluminides, the environmental
embrittlement was considered a major cause for the low ductility at ambient temperatures and in
air [16,25]. High reactivity of Al atoms with the moisture in air creates hydrogen, and it is the resulting
hydrogen atoms that are then responsible for the lowered ductility. At crack tips, this reaction results
in embrittlement due to the formation of the atomic hydrogen, which penetrates the material in front
of the crack tips.
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3.2.1. Mechanism of Hydrogen Ingress

The corrosion of aluminum (Equation (6)) originates the water reduction reaction (Equation (7))
in aqueous environments or moist atmospheres. The consequence of the electro-chemical reactions can
be written as follows:

Al Ñ 3e` Al3` (6)

3ˆ
“

H2O` Al ` e Ñ AlHads `OH´
‰

(7)

Next, hydrogen is adsorbed (Hads) at the metallic surface as atomic hydrogen. Then, a part of the
atomic hydrogen recombines chemically (Tafel reaction (Equation (8)) or electrochemically (Heyrovsky
mechanism (Equation (9)) to form molecular hydrogen, H2, which leaves the metallic surface [140].
The molecular hydrogen does not cause severe embrittlement, possibly as a result of its lower activity
in comparison to the atomic hydrogen.

AlHads ` AlHads Ñ 2Al ` H2 (8)

AlHads ` H2O` e´ Ñ Al ` H2 `OH´ (9)

A part of Hads will undergo an absorption (Habs) reaction inside the material ( Hads ô Habs ). The
passage of atomic hydrogen through the alloy/solution interface depends on the surface coverage (θ)
and also the number of available sites in the subsurface that the hydrogen can occupy. The consequence
is the accumulation of hydrogen under the interface, leading to a concentration C0. Density functional
theory’s local density approximation calculations [141], in addition to periodic density functional
theory calculations within the generalized gradient approximation [142], predicted that hydrogen sits at
tetrahedral sites in the bulk Fe-Al lattice, like its interstitial sites in bulk Fe [143]. The activation barrier
of some different alloys is presented in Table 5 [142,144,145]. Hydrogen diffusivity in iron-aluminides
is lower than in pure Fe (Table 5) [144,146,147]. Electrochemical permeation tests [148–150] found that
hydrogen diffusivity in Fe-Al alloys decreases with increasing Al content [146–149,151]. However,
new experimental diffusivity data for Fe-Al alloys reported by [149] vary significantly from the
older data, presumably due to experimental uncertainties, varying Al concentration, impurities and
microstructural differences [142]. Increasing the Cr content of iron [152] or iron aluminum [146]
decreases the diffusion coefficient and increases the solubility of hydrogen since the heat of absorption
decreases and d-vacancies increase with substitution of Fe with Cr [152].

Table 5. The activation barrier and diffusion coefficient of some different alloys.

Material Activation Barrier (eV) Diffusion Coefficient at Room Temperature (m2/s)

Fe – 10´8

Fe-18Al – 10´11 [146,148]
Fe-25Al 0.42 [144] 1.45 ˆ 10´13 [146]
Fe-37Al – 5.57 ˆ 10´10 [149]
Fe-40Al 0.22 [145] 4.4 ˆ 10´13 [147], 5.07 ˆ 10´10 [149]
Fe-43Al – 4.46 ˆ 10´10 [149]
Fe-46Al – 3.62 ˆ 10´10 [149]
Fe-50Al 0.26 [142] 2.257 ˆ 10´10 [149]

For the passivated materials, the transport of hydrogen through the passive layer is driven by the
electric potential gradient and the hydrogen concentration gradient [153] in contrast to the transport
of hydrogen in bulk materials, which is controlled mainly by the concentration gradients. The ionic
characteristic of hydrogen atoms (protons) in oxides [154] makes a strong columbic interaction between
hydrogen-oxygen ions. It may cause a very high concentration of hydrogen in the oxide in comparison
with bulk metal or the metal/oxide interface. For Fe, the ratio of hydrogen concentration in oxide
to bulk is measured to be approximately 106 [153]. Additionally, the necessity for the breaking of
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the columbic bond with the initial oxygen ion causes the mobility of hydrogen in an oxide to be
considerably lower than that in the metal phase.

The transport of hydrogen within the oxide must occur by the activated jumping of a proton
from one oxygen ion to another [142]. In the case of Fe, for example, the hydrogen diffusivity in the
iron oxide layer is much less than that in iron (around 10´14 m2/s) [153,155]. Based on the density
functional theory simulation [156], existence of an Al2O3 layer on the Fe-Al bulk material suppresses
the mobility of hydrogen atoms. Diffusion of the adsorbed hydrogen atoms from the outer part of
the solution/oxide layer into the α-Al2O3 layer is thermodynamically unfavorable, endothermic and
rate-controlling. In contrast, the H diffusion from the inner part of α-Al2O3 to the oxide/bulk interface,
as well as from the interface into the bulk of the Fe-Al, are thermodynamically spontaneous and
exothermic processes [156]. It should be mentioned here that the diffusion mechanism through the
passive layer and also the passive layer/bulk metal interface is still largely unknown and has, so
far, not been completely explored in published papers. Due to the existence of high donor densities
in the passive layers [101], the real thermodynamics and kinetics of hydrogen diffusion may be far
from the predicted values based on simulations or the measurements performed on aluminum-rich
coatings [157]. The semi-conductive properties of the oxide layer result in a rectification effect, which
is the easy movement of current carriers (i.e., electron and protons, H+) from the oxide/electrolyte
towards the metal/oxide interface. It eases the reaction of the absorbed H+ ions with the Al substrate at
defect sites, which follows with the oxidization of the Al and reduction of H+ [158]. Thus, an increase
in hydrogen diffusivity can be expected with an increase in the density of defects and distortion of the
long-range order of oxide film.

3.2.2. Hydrogen Interaction with Defects

Along with the conventional hydrogen solubility in the lattice matrix, hydrogen congregates in
lattice defects with large surface areas, such as grain boundaries, dislocations, and voids. Point defects
such as monovacancies, interstitial atoms and other impurity atoms can also act as hydrogen-trapping
defects [159]. The traps are divided into reversible and irreversible or low and high energies,
respectively. Table 6 [160–164] shows the strong binding energy of hydrogen at sites near the dislocation
core, vacancies and free surfaces.

Table 6. Binding energies of various traps in Fe and Al.

Host Material Type of Trap Binding Energy (eV) Reference (s)

α-Fe

Vacancy 0.63, 0.48 [160,161]
substitutional (Ti) 0.19 [160]
interstitional (C) 0.03 [160]
interstitional (N) >0.13 [160]
Grain boundary 0.10 [161]

Dislocation elastic stress field 0.21 [161]
Dislocation core 0.61 [161]

Free surface 0.73 [161]

bcc carbon steel Fe3C phase interface 0.11 [160]

Al
Vacancy 0.52, 0.53 [160–164]

Grain boundary 0.15 [160]
Al2O3-Al phase interface 0.7, 1.0–1.4 [160]

The total hydrogen content in a metal at a defined temperature (CH
T ) is the sum of the solute

hydrogen atoms (CH
L ) and the trapped atoms at different defects [143].

CH
T “ CH

L `
ÿ

j

kHnH
j NH

j (10)
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where kH is a constant, nH
j and NH

j are the fraction of trap sites filled with hydrogen and the total

number of trap sites per unit volume, respectively. For the dislocations NH
dis « πb´1ρ, where b and ρ

are the burgers vector and dislocation density, respectively. For the grain boundaries, the incomplete
information about the atomic arrangement may cause an error in the estimated hydrogen binding
energies. However, as a first estimation, we can assume the total number of trap sites per unit volume
as NH

gb « b´2Lgb, where Lgb is the length of grain boundaries per unit area of observation. Due to the
small volume fraction of the metal which is disturbed by the defect, quantification of the interactions
between defect and hydrogen may be very difficult. According to Hirth [143], the trapping effect is
measureable for a trap density of 1023 m´3 or more, and is negligible for smaller trap densities at
temperatures below 550 K. Dislocation trap densities can exceed this value at room temperature, while
recovery decreases the dislocation densities.

The existence of traps also influences the hydrogen diffusion coefficient in different ways.
Substitutionally dissolved impurities accelerate the hydrogen diffusion [160], which relates to reduced
vacancy formation energy in the excess volume of the boundary. In contrast, the hydrogen diffusion
does not rely on vacancies [160]. The mobility of hydrogen can be substantially reduced by its attractive
interactions with dislocations. On the other hand, for high purity single-phase single crystals the
diffusion paths are either bulk diffusion or pipe diffusion along dislocations [165]. It is possible that
the hydrogen does not enter the lattice by diffusion, but is transported into the lattice by gliding
dislocations that originate at the surface. The “Cottrell atmosphere”, formed around dislocations,
could simultaneously move with the dislocation during deformation and improve the transport of
hydrogen, if the velocity of the dislocations is less than a critical value [166–168]. The critical velocity
(vc) could be analytically calculated based on the following equation [167]:

vc “
σblDok

RT
exp

ˆ

´
Qk ` 2F˚k

RT

˙

(11)

where σ, l, R, T, Dok, Qk and 2F˚k are applied stress, dislocation length, gas constant, absolute
temperature, pre-exponential term for kink diffusion, activation energy for kink diffusion and
free energy of formation of a double-kink on a dislocation, respectively. The interaction between
hydrogen and dislocations in metals influences not only the hydrogen content and its mobility but
also the dislocation motion and plastic flow of material. Hydrogen may suppress the motion of
dislocation which reflects the endothermic detrapping necessary to separate the moving dislocations
from its hydrogen or, contrarily, the dislocation transport may ease with hydrogen, based on the
hydrogen-enhanced local plasticity mechanism.

3.2.3. Hydrogen Embrittlement of Fe-Al Intermetallics

Because of the technological importance of hydrogen embrittlement, many people have explored
the nature, causes and control of hydrogen-related degradation of aluminides. There are at least three
reasons for the high susceptibility of iron aluminides to hydrogen embrittlement: (i) high reactivity
of Al atoms with the moisture in air creates high fugacity of hydrogen atoms; (ii) existence of a high
concentration of point defects and especially vacancies (Figure 6b) enhances the solubility of hydrogen
in the intermetallics, and increases the influence of hydrogen on the mechanical properties; (iii) the iron
aluminides intrinsically have a limited amount of ductility (and very high slip planarity) in comparison
to bcc metals, and an additional reduction with hydrogen charging will decrease the ductility even
more. The effect of hydrogen on the ductility and crack initiation of iron aluminides was a subject
of many studies [169–172]. The polycrystalline Fe-36.5Al was shown to have ductility of just 2.2% in
air and 5.4% in vacuum while its ductility in dry oxygen could be as high as 17.6% [16] (Figure 17).
However, the fracture of Fe-Al polycrystalline materials seems to be dominated by the intergranular
crack growth mechanism in moist environments, while the cracks will grow transgranularly in the
Fe3Al structures. For single crystals of Fe-40Al tested in air, crack initiation occurred at the surface and
the fracture strain was less than 1%. Specimens tested in an O2 atmosphere had internally initiated
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cracks, possibly at flaws, and elongations of ~10% [169–172]. Wittmann et al. [165] studied the ductility
of Fe-40Al single-slip-oriented single crystals. They also observed improved ductility when tested in
vacuum versus air, but greater ductility in air (between 1.1%–5.9%) compared with previously reported
results for multiple slip-oriented specimens. The elongations and fracture strengths of Fe-40Al single
crystals are shown in Table 7 [165]. The scatter, shown in the results, is believed to be due to the small
thickness of the tensile specimens. However, the ductility appears to be less in air than in a vacuum.
Additionally, higher fracture strengths were seen in a vacuum. Wittmann et al. [165] did not observe
any differences in environmental embrittlement of specimens oriented in such a way that the strain
was predominately carried by screw dislocations or edge dislocations. On the contrary, results from
tensile tests of Fe3Al single crystals, oriented in a way that the main strain was produced either by
screw dislocations or by edge dislocations, have shown considerable ductility for the screw orientation
in both air and vacuum, whereas the edge-oriented specimens showed little ductility in air [171]. Saka
and Nishizaki [171] related this difference to the role of edge dislocations in transporting hydrogen
into the Fe3Al lattice. The crack in FeAl propagates mainly along the {100} plane in air [169,170].
In contrast, in a vacuum, fracture has been shown to occur along {111} for stoichiometric Fe-Al, and
{100} for Fe-40Al, and Fe-35Al [169,170]. Munroe and Baker [173] suggested a concept for HE of iron
aluminides. They proposed that the {100} cleavage that results from the interaction of two a{2 x111y
edge super-partials may produce a sessile x100y edge dislocation on {001}. This edge dislocation
can then act as a crack nucleus. Moreover, formation of the x100y edge dislocations may enhance
absorption of hydrogen rather than two super-partials [174].

At a constant temperature, and in the absence of any kind of phase transformation (see
Section 2.5), the energy of the newly formed surfaces (due to the crack growth) is an intrinsic
characteristic of the material. The hydrogen ingress into the materials can reduce the energy needed
for formation of new surfaces with decrement of the strength of interatomic bonds, as predicted by the
hydrogen-enhanced decohesion (HEDE) mechanism. On the other hand, the presence of hydrogen
affects the multiplication or movement of dislocations in agreement with the DEFect ACTing AgeNTS
(defactants), adsorption-induced dislocation emission (AIDE), hydrogen-enhanced local plasticity
(HELP), etc., theories [24].

However, the magnitude of the influence of hydrogen on each item depends on the alloy content,
defect concentrations, temperature, environment, etc. In order to clarify the most probable mechanism
of hydrogen embrittlement for each material in a defined environmental situation, it is important
to resolve the impact of hydrogen separately on each of the mentioned items, which is impossible
based on the conventional mechanical testing methods. Hence, the results of macro-mechanical
tests present, sometimes, complicated and controversial findings and/or interpretations. In contrast,
local techniques enable us to measure the influence of hydrogen on elastic properties, pop-in load
and hardness or flow stress, which scale with the strength of interatomic bonds, energy needed for
homogeneous dislocation nucleation and mobility of dislocations, respectively [22,24,29]. A very
slight reduction of Young’s modulus was measured experimentally due to hydrogen charging for
intermetallics with different Cr content (Figure 18a) [24]. A 3%–5% reduction of Young’s modulus
could not explain the high susceptibility of alloys to HE. Moreover, a strong reduction of the energy
needed for homogeneous dislocation nucleation (HDN) after hydrogen charging was seen in the binary
alloys (Figure 18b [24]). It is probably the main reason for the very high sensitivity of binary alloys to
hydrogen embrittlement. The addition of chromium decreases the susceptibility of binary alloys to
the HE because the dislocation core radius does not change significantly after hydrogen charging [24].
The increase of the hardness (Figure 18c,d) of alloys after hydrogen charging may be due to the increase
of the friction stress of dislocations. All this experimental evidence shows that adsorption of hydrogen
will ease dislocation nucleation while the dislocations are less glissile. Therefore, it is proposed that
the mechanism of dislocation shielding should be considered for analyzing the fracture characteristics
of iron aluminides in atmospheres containing hydrogen [24].
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4. Concluding Remarks

This review paper aims to improve the understanding of the factors that control the microstructure
and properties of iron aluminides. Some thermo-mechanical behaviors of iron aluminides were
studied and compared with super-alloys and stainless steels. Additionally, current applications of the
alloys were summarized. The influence of alloying elements on the phase transformation, mechanical
properties, corrosion and hydrogen embrittlement were studied. Moreover, the most important barriers
for the wide usage of iron aluminides were considered. They include (i) hydrogen embrittlement in the
moisture-containing atmospheres at room temperature; (ii) localized corrosion in the Cl´-containing
aqueous solutions; (iii) strong reduction of yield stress after a critical temperature; (iv) limited creep
resistance; and (v) high thermal conductivity. Finally, possible ways for overcoming these problems
were evaluated.
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