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Abstract
This paper studies mathematical programming formulations for solving optimization prob-
lems with piecewise polynomial (PWP) constraints. We elaborate on suitable polynomial
bases as a means of efficiently representing PWPs in mathematical programs, comparing
and drawing connections between the monomial basis, the Bernstein basis, and B-splines.
The theory is presented for both continuous and semi-continuous PWPs. Using a disjunctive
formulation, we then exploit the characteristic of common polynomial basis functions to
significantly reduce the number of nonlinearities, and to suggest a bound-tightening tech-
nique for PWP constraints. We derive several extensions using Bernstein cuts, an expanded
Bernstein basis, and an expanded monomial basis, which upon a standard big-M reformula-
tion yield a set of new MINLP models. The formulations are compared by globally solving
six test sets of MINLPs and a realistic petroleum production optimization problem. The
proposed framework shows promising numerical performance and facilitates the solution of
PWP-constrained optimization problems using standard MINLP software.

Keywords Piecewise polynomials · Splines · Mixed integer programming · Nonlinear
programming · Disjunctions

1 Introduction

Modeling of optimization problems frequently involves representing functions that are
piecewise, discontinuous or nonsmooth. This includes inherently piecewise economical and
physical characteristics [5,24,29], construction of surrogatemodels by sampling of simulators
[15,32,58], and approximate or exact representation of nonconvex functions [2,10,37,39,47].
In this paper, we study the problem of efficiently representing and solving optimization prob-
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lems containing piecewise polynomial (PWP) constraints. Piecewise polynomials are used in
a wide range of disciplines, including efficiency curve modeling in electric-power unit com-
mitment [40], rigid motion systems [11], image processing and data compression [44,51],
probability density estimation [61], flow networks [5,15,25] and in optimal control [4,41].

We consider optimization problems where either or both of the objective function and a
subset of the constraints are piecewise polynomial functions. Each polynomial may be non-
convex, and the piecewise polynomial function itself lower semi-continuous. There exist few
targeted optimizationmethods for this class of optimization problems,while some approaches
that exploit special structures of nonsmooth optimization problems are applicable, subject to
certain modification methods: Womersley and Fletcher [62] developed a descent method for
solving composite nonsmooth problems consisting of a finite number of smooth functions.
Conn and Mongeau [8] constructed a method based on non-differentiable penalty functions
for solving discontinuous piecewise linear optimization problems, sketching an extension to
problems with PWP constraints. Scholtes [47] developed an active-set method for dealing
with nonlinear programs (NLPs) with underlying combinatorial structure in the constraints.
Li [30] used a conjugated gradient method for minimizing an unconstrained, strictly con-
vex, quadratic spline. None of these methods are currently available in standard optimization
software.

Fromabroader perspective, applicable solution approaches to PWPoptimization problems
includemethods based on general nonsmooth optimization, smoothing techniques andmixed
integer programming (MIP).Bundle-type and subgradientmethods [21], originally developed
for nonsmooth convex optimization, may be applied to optimization problems with general
nonsmooth structures such as PWPs through Clark’s generalized gradients [48]. These gener-
alized methods for nonsmooth optimization are known to have poor convergence properties
for nonconvex structures [47]. Smoothing techniques for nonsmooth functions encompass a
variety of techniques, seeking to ensure sufficient smoothness for gradient-based methods
[64]. Many of these methods are, however, designed for optimizing a nonsmooth function
on a convex set, e.g [7,38]. Meanwhile, smoothing techniques for discontinuities by means
of step-function approximations (e.g. [64]) are known to be prone to numerical instabili-
ties, particularly for increasing accuracies of the discontinuity [8,60]. Exploitation of MIP
for solving PWP optimization problems beyond complete approximative linearization [37]
and direct solution as a nonconvex mixed integer nonlinear programming (MINLP) problem
appears to be limited.

We adopt disjunctive representations of PWP constraints, drawing upon the extensive
work on disjunctive programming (DP) formulations and representation of piecewise linear
(PWL) functions [1,39,50,54]. Modeling piecewise functions as disjunctions enables appli-
cation of MIP techniques, or specialized branch-and-bound or branch-and-cut schemes with
a set condition for representing the piecewise constraints [2,28,39]. While adopting MIP
techniques and formulations for solving PWP-constrained optimization problems facilitates
exploitation of advancements in global optimization solvers [35,36,57], careful constraint
formulations are required to overcome the inherent problem complexity. To this end, poly-
nomial spline formulations [49] such as the B-spline is an attractive approach. Polynomial
splines are constructed from overlapping (piecewise) polynomials with local support, and
embodies a versatile set of techniques for modeling PWPs with favorable smoothness and
numerical properties. For decades, polynomial splines, which we simply refer to as splines in
this paper, have played an important role in function approximation and geometric modeling.
In particular, they have been popular as nonlinear basis functions in regression problems
[12,20], for example in kernel methods [22,63], and in finite element methods [23]. Yet, few
references [5,15] apply splines within mathematical programming beyond the optimization
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of spline design parameters [45,59], trajectory optimization [18,34,43], and optimization of
piecewise linear splines [33].

The availability of spline-compatible optimization algorithms and codes is limited. In a
recent work, [16] develop a spatial branch-and-bound (sBB) algorithm for global optimiza-
tion of spline-constrained problems. While the algorithm was shown to be highly efficient,
it has only support for a limited set of algebraic functions, is only available as a specialized
code and requires software for spline generation [17]. To address the comparably high mod-
eling and implementation effort required for using the specialized sBB algorithm of [14,16]
proposed an explicit constraint-formulation for continuous splines, yielding an ad-hocmixed-
integer quadratically constrained programming (MIQCP)model. In this paper, we build upon
and significantly extend [14,16] to construct a general-purpose framework for mathemati-
cal programming of piecewise polynomial constraints, subsuming spline constraints. The
framework is based on an epigraph formulation and we show how it accommodates lower
semi-continuous PWPs given in the monomial, Bernstein or B-spline basis. The extension to
lower semi-continuous PWPs has not been explicitly covered in previous works. However,
the epigraph formulation in [14] can be applied to lower semi-continuous PWPs written as
B-splines.

The main advancement of our work from previous works is our representation of PWPs as
a disjunction of polynomial pieces. This allows us to exploit the fact that all the polynomial
pieces can be written as a linear combination of a single multivariate polynomial basis. This
leads to formulations that are minimal in the number of nonlinear (non-convex) constraints.
Furthermore, we exploit properties of the polynomial bases and the grid structure for bound
tightening and derivation of Bernstein cuts. Exact reformulations of the DP models yield
MINLP formulations, which we benchmark and compare with existing solution methods.

The remainder of the paper is organized as follows. In Sects. 2 and 3, we present back-
ground theory of Bernstein polynomials, piecewise polynomials and polynomial splines. In
Sect. 4, we present DP formulations of PWPs which we in Sect. 5 reformulate to MINLP
models. In Sect. 6, we present computational results of the proposed formulations, compar-
ing the results with existing methods for optimizing PWP functions. Concluding remarks in
Sect. 7 ends the paper.

2 Background on polynomial bases

This section provides background material on polynomial functions to cover the theory
needed for developing an optimization framework for piecewise polynomial functions. The
theory is presented as a series of propositions that summarize some classical results for
polynomials; cf. [13,31,42]. For brevity, most propositions are given without rigorous proofs;
each proposition may, however, be proved by simple algebraic manipulations. To further
simplify the disposition, we have put some computational details in “Appendix A”.

Webegin by introducing themonomial andBernstein basis for polynomials in one variable.
Several propositions are provided that ultimately enable computation of lower and upper
bounds on any polynomial. These results are then extended to the multivariate case.
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2.1 Univariate polynomials and the Bernstein basis

Let Pp denote the vector space of polynomial functions in one real variable with degree less
than or equal to p ∈ N, i.e.

Pp = span{Mi }pi=0, Mi : R → R, Mi (x) = xi , 0 ≤ i ≤ p. (1)

The set {Mi }pi=0 is commonly referred to as the monomial basis or power basis of Pp . Any
polynomial f ∈ Pp can be written as

f (x) =
p∑

i=0

ai Mi (x) = aTM p(x), (2)

where the vector of coefficients a = [ai ]pi=0 ∈ R
p+1, and the vector of monomial basis

functions M p(x) = [Mi (x)]pi=0 ∈ R
p+1.

An alternative basis for Pp is the Bernstein basis

Bi,p =
(
p

i

)
xi (1 − x)p−i , 0 ≤ i ≤ p. (3)

Since span{Bi,p}pi=0 = Pp , any polynomial f ∈ Pp may be expressed in the Bernstein basis
as

f (x) =
p∑

i=0

ci Bi,p(x) = cTB p(x), (4)

where the vector of coefficients c = [ci ]pi=0 ∈ R
p+1, and the vector of Bernstein basis

functions B p(x) = [Bi,p(x)]pi=0 ∈ R
p+1.

Themonomial andBernstein basis are related via the linearmappingM p = QpB p , where
Qp ∈ R

(p+1)×(p+1) is the transformation matrix given in “Appendix A.1”. Consequently,
aTM p(x) = cTB p(x), given that c = QT

pa.
The Bernstein polynomials possess several useful properties that facilitate the study of

signs and bounds on polynomial functions. These properties, to be presented next, will later
be utilized to devise bounds on PWPs.

Lemma 1 (Convex combination property of Bernstein polynomials) The following holds true
for a set of degree p Bernstein polynomials {Bi,p}pi=0:

Bi,p(x) ≥ 0, ∀x ∈ [0, 1], i = 0, . . . , p
p∑

i=0

Bi,p(x) = 1, ∀x ∈ R
(5)

Proof The lemma is proved by applying Newton’s binomial identity to (3). ��
Proposition 1 (Bounds on Bernstein polynomials) Let f ∈ Pp be a polynomial expressed in
the Bernstein basis (4), and denote cL = min{ci }pi=0 and cU = max{ci }pi=0. Then, a valid
bound on f is cL ≤ f (x) ≤ cU ∀x ∈ [0, 1].
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Proof From Lemma 1 it follows that

cL =
p∑

i=0

cL Bi,p(x) ≤
p∑

i=0

ci Bi,p(x)

︸ ︷︷ ︸
f (x)

≤
p∑

i=0

cU Bi,p(x) = cU .

��
Observe that Proposition 1 holds for x ∈ [0, 1]. To obtain a bounding box on a general

domain [x L , xU ], we perform an affine change of variable.

Proposition 2 (Reparametrization of polynomial) Let f ∈ Pp be a polynomial f (x) =
aTM p(x), for x ∈ [x L , xU ]. Consider the affine change of variables x = (xU − x L)u + x L ,
with u ∈ [0, 1]. The polynomial f can be reparametrized from x to u via the linear mapping
M p(x) = RpM p(u), where Rp ∈ R

(p+1)×(p+1) is the reparametrization matrix given in
“Appendix A.2”.

Proof Cf. [42]. ��
By combining Propositions 1 and 2, we obtain a bound for polynomials on a general

domain x ∈ [x L , xU ].
Proposition 3 (Polynomial bounds on general intervals) Let a be the coefficients of a poly-
nomial f ∈ Pp in the monomial basis. Furthermore, let c = (RpQp)

Ta be the coefficients

obtained by first reparametrizing the monomial basis from x ∈ [x L , xU ] to u ∈ [0, 1], and
then transforming the monomial basis to the Bernstein basis in u. Then,

cL ≤ f (x) ≤ cU ∀x ∈ [x L , xU ], (6)

where cL = min{ci }pi=0 and cU = max{ci }pi=0.

Proof The result follows directly from Propositions 1 and 2. ��

2.2 Multivariate polynomials

A vector space of multivariate polynomials f : Rd → R in the variables x = (x1, . . . , xd) ∈
R
d , can be constructed by taking the tensor product of univariate polynomial bases. Specifi-

cally, we construct a multivariate polynomial basis as

Md
p(x) =

d⊗

j=1

M p(x j ), (7)

where M p(x j ) = [Mi (x j )]pi=0 is a vector of p + 1 monomial basis functions in the variable
x j .

In (7), Md
p is a vector of n = (p + 1)d polynomials of degree less than or equal to

dp in d variables: i.e. each multivariate basis function results from d products of univariate
polynomial basis functions of degree less than or equal to p. The basis spans a (tensor product)
vector space of multivariate polynomials, denoted P

d
p = span{Md

i,p}n−1
i=0 with dim(Pd

p) =
(p + 1)d . The exponential growth in the number of basis functions with the number of
variables d , is a phenomenon often referred to as the curse of dimensionality [20]. This
phenomenon limits most practical applications of tensor product bases to 5-6 variables.

123



Journal of Global Optimization

For notational brevity, we assume in the above construction that the polynomial basis
and degree are equal for all variables. These assumptions can be removed without loss of
generality as the multivariate basis may be constructed from any combination of univari-
ate polynomial bases of varying degrees. Subsequently, we consider also the multivariate
Bernstein basis for Pd

p , which we denote by Bd
p .

Using the multivariate polynomial basis, we may express any f ∈ P
d
p as

f (x) =
n−1∑

i=0

ai M
d
i,p(x) = aTMd

p(x). (8)

The important property of the bounding box in Proposition (1) naturally extends to the
multivariate case.

Proposition 4 (Multivariate polynomial bounds on the unit cube) Let f ∈ P
d
p be apolynomial

expressed in the multivariate Bernstein basis

f (x) = cTBd
p(x) = cT

d⊗

j=1

B p(x j ). (9)

Then, cL ≤ f (x) ≤ cU ∀x ∈ [0, 1]d , where cL = min{ci }n−1
i=0 and cU = max{ci }n−1

i=0 .

Proof For any 1 ≤ r ≤ d , let

B(d,−r)
p (x) =

d⊗

j=1, j 	=r

B p(x j ). (10)

Then, given n = md = (p + 1)d , it follows from Lemma 1 that

md−1∑

i=0

Bd
i,p(x) =

( p∑

i=0

Bi,p(xr )

)⎛

⎝
m(d−1)−1∑

i=0

B(d,−r)
i,p (x)

⎞

⎠

=
m(d−1)−1∑

i=0

B(d,−r)
i,p (x).

(11)

The above relation implies that

n−1∑

i=0

Bd
i,p(x) = 1. (12)

The identity in (12), combined with Lemma 1, ensures that for all x ∈ [0, 1]d

cL ≤ cL
n−1∑

i=0

Bd
i,p(x) ≤

n−1∑

i=0

ci B
d
i,p(x)

︸ ︷︷ ︸
f (x)

≤ cU
n−1∑

i=0

Bd
i,p(x) ≤ cU , (13)

which proves the proposition. ��
Proposition 4 provides bounds on a polynomial expressed in the multivariate Bernstein

basis for x constrained to the unit cube [0, 1]d . Analogous to the univariate case, we obtain
bounds for general domains by reparametrizing the basis.
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Proposition 5 (Multivariate polynomial bounds on general domains) Let f ∈ P
d
p be a poly-

nomial expressed in the multivariate monomial basis

f (x) = aT
d⊗

j=1

M p(x j ), (14)

for x ∈ [x L1 , xU1 ] × · · · × [x Ld , xUd ] = [xL , xU ]. For each variable x j , let Rp, j be the
reparametrization matrix that reparametrizes the monomial basis from x j ∈ [x Lj , xUj ] to
u j ∈ [0, 1], computed according to (33) in “Appendix A.2”. Furthermore, let Q p be the
transformation matrix computed as in (32) in “Appendix A.1”. Then, f may be mapped to
the multivariate Bernstein basis as follows:

f (u) = aT
d⊗

j=1

Rp, j Q pB p(u j ) = cT
d⊗

j=1

B p(u j ) (15)

where

cT = aT
d⊗

j=1

Rp, j Q p. (16)

Finally, we may apply Proposition 4 to obtain the bounds

cL ≤ f (x) ≤ cU ∀x ∈ [xL , xU ], (17)

where cL = min{ci }n−1
i=0 and cU = max{ci }n−1

i=0 .

Proof The result follows directly from Proposition 4. ��

3 Piecewise polynomial functions

In this section, we describe the piecewise polynomial functions (PWPs) to which we first give
a formal definition for the continuous case. We then depart from the continuity requirement
in order to consider the more general case of lower semi-continuous PWPs. The definitions
given below provide a framework for the development of the mathematical programming
formulations in Sects. 4 and 5. The definitions are not novel, but help us highlight well-
established connections between PWPs and splines; cf. [42,49].

Definition 1 (Continuous piecewise polynomial function) Let D ∈ R
d be a compact set. A

function f : D ⊂ R
d → R is a continuous piecewise polynomial if and only if there exists

a finite family of polytopes Π such that D = ⋃
P∈Π P and

f (x) = { fP (x), x ∈ P, ∀P ∈ Π , (18)

where fP : P ⊂ R
d → R and fP ∈ P

d
p for all P ∈ Π , and some degree p ∈ N0.

Note that the domain D does not need to be connected or convex. Continuity of f on D
is ensured since fP1(x) = fP2(x) if x ∈ P1 ∩ P2 for two adjacent polytopes P1, P2 ∈ Π .

In the above definition, the polynomial pieces { fP }P∈Π are constructed from some basis
that spans the spacePd

p . A special case occurs when d = 1 and p = 1, for which { fP }P∈Π are
linear functions in one variable, and f a continuous piecewise linear function. Furthermore,
for d > 1 and p = 1, f is a continuous piecewise multilinear function due to the tensor

123



Journal of Global Optimization

product construction of Pd
p . In general, the polynomial pieces are of degree less than or equal

to dp ∈ N0.

3.1 Polytopes on a rectilinear grid

Definition 1 of continuous PWPs does not prescribe the polytopes; they may for instance be
given as the convex hull of a finite number of points, or as a systemof linear inequalities. Some
formulations for piecewise linear functions require the polytopes to be simplices resulting
from a triangulation of D [55]. For most practical applications of PWPs, however, the poly-
topes are assumed to be n-orthotopes (hyperrectangles/boxes) arranged on an axis-aligned
rectilinear grid.1 In the rest of this paper, we will assume that the domain D is partitioned on
such a rectilinear grid, for which the polytopes in Π are characterized as follows.

For i ∈ {1, . . . , d}, letπ i = {π i
0, . . . , π

i
mi

} ∈ R denote a strictlymonotonically increasing
sequence of mi real numbers, e.g. π i

0 < π i
1 < · · · < π i

mi
. To index the polytopes we

introduce the set K := {(k1, . . . , kd) : ki ∈ {1, . . . ,mi },∀i = 1, . . . , d}. This lets us define
the rectilinear grid G := {Pk : k ∈ K }, consisting of |G| = m1 · · ·md boxes given by

Pk = {x ∈ R
d : π i

ki−1 ≤ xi ≤ π i
ki , ∀i ∈ {1, . . . , d}}. (19)

The grid G is in compliance with Definition 1, since it is a family n-orthotopes Pk , which
are bounded polytopes. Subsequently, we consider PWPs partitioned on a rectilinear grid and
write Π = G. We will also denote with Pd

p(G) the space of piecewise degree p polynomials
with a partition of the domain D given by the rectilinear grid G.

3.2 The epigraph of piecewise polynomials

A continuous PWP f : D ⊂ R
n → R may be modeled by its epigraph epi( f ) :=

{(x, z) ∈ D × R : f (x) ≤ z}. We assume that D is a bounded domain and that f partic-
ipates in a constraint of the form f (x) ≤ 0 or in an objective function to be minimized. That
is, the constraint f (x) ≤ 0 can be modeled as (x, z) ∈ epi( f ), z ≤ 0, and the objective f
can be modeled as the minimization of z subject to (x, z) ∈ epi( f ).

The epigraph of f can be expressed as the union of epigraphs of its pieces fP , i.e.

epi( f ) =
⋃

P∈Π

epi( fP ), (20)

where epi( fP ) := {(x, z) ∈ P × R : fP (x) ≤ z}. As illustrated by Fig. 1, the epigraph of a
piecewise function is in general a nonconvex set. Note that epi( fP ) is convex if and only if
fP is convex on P . Furthermore, f may be nonconvex, even if fP (and epi( fP )) is convex
for all P ∈ Π .

The theory developed in [26,27] shows that epi( f ) can be modeled as a MILP if and
only if f is piecewise linear and lower semi-continuous. Based on this theory, Vielma et al.
[55,56] derived new MILP models and presented a unifying framework for piecewise linear
functions. To follow on these works, we continue by extending Definition 1 to handle lower
semi-continuous piecewise polynomials.

1 To understand why a rectilinear grid is practical, consider a domain partitioned into a set of non-regular
polytopes (resembling a shattered window). Patching together higher order polynomials on these polytopes in
order to ensure continuity on all faces is non-trivial.
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(a) (b)

(c) (d)

Fig. 1 Continuous piecewise polynomials and their epigraph (colored grey). The five pieces of the piecewise
polynomial are linear in a, quadratic in b, cubic in c, and quartic in d

3.3 Extension to lower semi-continuous piecewise polynomials

Below we provide a definition of PWPs that are not necessarily continuous. This allows us
to analyze and integrate in the framework the subset of discontinuous PWPs that are lower
semi-continuous. The extended definition lets us tie our PWP framework to the B-spline
modeling framework, which facilitates construction of PWPs with predefined smoothness.

Before extendingDefinition 1 of PWPs, we consider the property of lower semi-continuity
with some simple examples. Formally, a function f is lower semi-continuous if for any
x0 ∈ D

lim inf
x→x0

f (x) ≥ f (x0). (21)

The importance of lower semi-continuity comes from the fact that the epigraph of a function
is closed if and only if it is lower semi-continuous. It is hence a requirement for the epigraph
model in Sect. 3.2. Since a continuous function is lower semi-continuous, the requirement
always holds for continuous PWPs. To illustrate this property, consider the two PWPs in Fig.
2. The PWP in Fig. 2a is lower semi-continuous at x = 2, but not at points x = 1 and x = 3.
Thus, it is not a lower semi-continuous PWP and its epigraph is not closed. On the other
hand, the PWP in Fig. 2b has one discontinuity (x = 2) at which it is lower semi-continuous,
and its epigraph is closed.
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(a) (b)

Fig. 2 Two discontinuous PWPs and their epigraph (colored grey). Both PWPs consist of five pieces defined
on the intervals [0, 1), [1, 2), [2, 3), [3, 4), and [4, 5]; the open ends are marked with white-filled circles. The
pieces are constant in a and linear in b

Toallowdiscontinuities, [55] employed a characterization of the domain using copolytopes
(sets defined by a finite set of strict and non-strict linear inequalities). Similarly, we use
copolytopes to define not necessarily continuous PWPs as follows.

Definition 2 (Piecewise polynomial function) Let D ∈ R
d be a compact set. A (not neces-

sarily continuous) function f : D ⊂ R
d → R is piecewise polynomial if and only if there

exists a finite family of copolytopes Π such that D = ⋃
P∈Π P and

f (x) = { fP (x), x ∈ P, ∀P ∈ Π , (22)

where fP : P ⊂ R
d → R and fP ∈ P

d
p for all P ∈ Π , and some degree p ∈ N0.

With aminor adjustment to the continuous case, wemay express the epigraph of a function
f defined according to Definition 2, as the union of epigraphs of its pieces fP . That is, we
model

epi( f ) =
⋃

P∈Π

epi( fP ), (23)

where we now use epi( fP ) := {
(x, z) ∈ P̄ × R : fP (x) ≤ z

}
in which P̄ is the closure of P

(note that since fP ∈ P
d
p we may evaluate it at the right boundary of P̄). Recall that epi( f )

is closed if and only if f is lower semi-continuous.
Similar to continuous PWPs, we consider a partition of the domain on a rectilinear grid

G. However, we now compose the grid of left half-closed boxes:

Pk = {x ∈ R
d : π i

ki−1 ≤ xi < π i
ki ,∀i ∈ {1, . . . , d}}. (24)

Note that Pk , being a left half-closed box, is a special type of copolytope.
A technicality arises with this partitioning in that the rightmost boundaries of D are open,

and hence D is open, which breaks compatibility with Definition 2. To close these boundaries
we must require that the rightmost boundaries of the rightmost boxes are closed; i.e. in (24)
we must replace π i

ki−1 ≤ xi < π i
ki
with π i

ki−1 ≤ xi ≤ π i
ki
if ki = mi . The addition of this

requirement on the partitioning ensures that the domain is closed and hence compatible with
Definition 2.
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3.4 Relation to splines

With piecewise linear functions one is often concerned with C0 continuity at intersections
x ∈ P1 ∩ P2, where P1, P2 ∈ Π . For PWPs in general, C1, C2, or higher-order continuity at
the intersections is an obtainable and often desired property. Definition 1 only guarantees C0
continuity, but does not exclude PWPs with higher order continuity.

Splines are PWPs constructed with continuity constraints. The most widely used frame-
work for polynomial splines is the B-spline, in which PWPs with a desired degree of
smoothness can be constructed by allowing basis functions to overlap. Consider the mul-
tivariate B-spline

f (x) = cT
d⊗

j=1

N p(x j ; t j ) = cTNd
p(x; T ), (25)

where N p(x j ; t j ) = [Ni,p(x j ; t j )]n j−1
i=0 is a vector of n j degree p B-spline basis functions

in the variable x j , c are coefficients, and t j is a non-decreasing sequence of reals called a
knot sequence. The B-spline basis functions in a variable x j , N p(x j ; t j ), are polynomials
with local support that are spliced together at the points specified by the knot sequence t j .

The multivariate B-spline basis is denoted Nd
p(x; T ), where T = {t j }dj=1 is the set

of knot sequences that parametrize the partition of the domain D. The vector space of B-
splines spanned by the above basis is denoted S

d
p(T ) = Sp(t1) × · · · × Sp(td), where

Sp(t j ) = span{Ni,p(x j ; t j )}n j−1
i=0 .

The B-spline basis can viewed as an extension of the Bernstein basis, generalizing the
description of a single polynomial on a continuous interval to piecewise polynomials over
a partitioned domain, specified by the knot sequence [13]. It shares the non-negativity and
partition-of-unity properties of the Bernstein basis, and is invariant to an affine change of
variables. The close relationship is made clear by the Proposition 6 in “Appendix B”, which
shows that Bernstein and B-spline bases are equivalent for a certain knot sequence.

Multivariate B-splines are defined on a rectilinear grid of left half-closed boxes aligned to
the variable axes, due to its construction by the Kronecker product. The partitioning is thus
the same as for the piecewise polynomials in Definition 2. The well-known equality Sdp(T ) =
P
d
p(G), where G is a rectilinear grid, implies that any spline can be accommodated by the

framework in Definition 2, given appropriate knot sequences T . This equality was first stated
for the univariate case in the Curry-Schoenberg theorem [9]. In Lemma 2, “Appendix B”,
we restate this relationship for the multivariate case using our notational framework. Since
most PWPs are built as splines, e.g. using cubic spline interpolation or smoothing splines,
this relationship holds a practical value and we will later use it to generate PWPs for the
numerical study.

4 Disjunctive formulations for piecewise polynomial functions

In this section, we use disjunctions as a means of representing PWP constraints. Consider
a piecewise polynomial f : D → R, defined as in Definition 1 with a rectangular domain
D = {x : xL ≤ x ≤ xU } = ⋃

P∈Π P ⊂ R
d . The epigraph of f , epi( f ) = {(x, z) ∈

D × R : f (x) ≤ z}, can be represented by the disjunction [27]:
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∨
P∈Π

⎡

⎣
YP

x ∈ P
fP (x) ≤ z

⎤

⎦ , �
P∈Π

YP , (DP-1)

where we have associated a boolean variable YP ∈ {True,False}with each polytope P ∈ Π .
Each disjunctive term is related to a polytope P , so that x ∈ P and z is restricted to the
epigraph epi( fP ) of a piece fP of f . The disjunction thus models epi( f ) as the union of
epigraphs in (20). The exclusive OR operator on the boolean variables ensures that exactly
one polytope P ∈ Π is selected.

DP-1 is also a valid model for lower semi-continuous PWPs according to Definition 2,
if we replace in each term the domain constraint with x ∈ P̄ , where P̄ = cl(P). In both
cases, DP-1 is a proper disjunction [1,53] in the sense that no single polytope covers the
entire feasible region. Observe that Definition 1 ensures continuity in the overlap between
the polytopes constituting the disjunction. In the derivations that follow we assume that f
is a continuous PWP, but remark that the resulting formulations are also valid for lower
semi-continuous PWPs subject to the mentioned domain-substitution.

The disjunction DP-1 contains a nonlinear, possibly nonconvex inequality for each term,
thereby severely impeding the scalability of the formulation and hence its practical appli-
cation. As a partial remedy, we may utilize that each polynomial fP can be expressed as
a linear combination of the basis functions spanning P

d
p , that is, fP ∈ P

d
p , for all P ∈ Π .

This salient characteristic allows us to exploit that the basis functions are independent of P ,
and hence can be extracted outside the disjunction as a common set of nonlinearities. The
reformulation simplifies DP-1 to

∨
P∈Π

⎡

⎣
YP

x ∈ P
aTPβ ≤ z

⎤

⎦ , �
P∈Π

YP , β = Md
p(x), (DP-2)

where the polynomial piece fP is expressed as a linear combination of the n = dim(Pd
p)

multivariate monomial basis functions β = Md
p . We stress that even though it is always

possible to substitute nonlinearities with new variables to obtain linear disjunctions as in
DP-2, the benefit comes solely from having common basis functions and hence reducing the
number of nonlinear constraints.

Generally, DP-2 requires n = dim(Pd
p) = (p + 1)d polynomial constraints to model a

PWP, invariant to the discretization of the domain. Consider a PWP defined on a rectilinear
grid of |Π | = md boxes, resulting from a discretization with m ≥ 1 intervals in each of
the d variables. DP-1 requires md polynomial constraints to model this PWP. Thus, when
m > p + 1, then md > (p + 1)d , and the formulation in DP-2 is likely preferable to DP-1.
To summarize the above argument: modeling the polynomial function space P

d
p via its n

basis functions, as opposed to modeling each of the |Π | polynomial pieces separately, will
generally result in fewer nonlinear constraints. Still, the exponential increase with d in the
number of nonlinear constraints puts a practical limit on formulations derived from either
DP-1 or DP-2.

Remark 1 PiecewiseMcCormick envelopes andother linear relaxations (e.g. [19]) for bilinear
terms fP (x) = x1x2, with (x1, x2) ∈ P , can be derived fromDP-1. Such relaxations of DP-1
render linear approximations, whereas DP-2 is an exact formulation.
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4.1 Bounds on polynomial constraints

The efficiency of numerical methods for solving DP-2 relies strongly on the ability to derive
strong upper bounds on the constraints fP = aTPβ ≤ z, for P ∈ Π . Suppose that aTPβ ∈
[mL

P ,mU
P ] and that zL ≤ z for any x ∈ D. We may then define MU

P := mU
P − zL so that, for

any x ∈ D,

aTPβ − z ≤ MU
P . (26)

To obtain a valid upper bound MU
P , we must determine the values of mU

P and zL . We
observe that any feasible solution must satisfy aTPβ ≤ z for some P ∈ Π . Thus, a valid
lower bound on z is z ≥ zL = min{mL

P }P∈Π , and we may rewrite the upper bound on the
polynomial constraint to

MU
P = mU

P − min{mL
P }P∈Π. (27)

It is then obvious that computing MU
P for each P ∈ Π requires a lower and upper bound on

all polynomials { fP }P∈Π .
Returning to DP-2, there is a subtlety due to the substitution of the nonlinearities that

impedes the derivation of tight bounds on the polynomials. The issue is that the bounds on
fP (x) = aTPβ ∈ [mL

P ,mU
P ] must be valid for all x ∈ [xL , xU ], not only for x ∈ P . This

poses numerical problems since the piecewise polynomials may become prohibitively large
on [xL , xU ], resulting in undesirably large bounds.

To solve this issue and obtain tighter bounds on the polynomials { fP }P∈Π , we utilize the
procedure in Proposition 5 to perform a reparametrization before computing the polynomial
bounds. Let u ∈ [0, 1] ∈ R

d and fP = aTPM
d
p(x) = cTP B

d
p(u), where the coefficients of the

reparametrized polynomial in Bernstein form are given as

cTP = aTP

d⊗

j=1

Rp, j Q p.

Using the multivariate Bernstein basis Bd
p(u) for 0 ≤ u ≤ 1 enables reformulation of DP-2

to the disjunction

∨
Pk∈Π

⎡

⎣
YP

xi = (π i
ki

− π i
ki−1)ui + π i

ki−1, ∀i ∈ {1, . . . , d}
cTPβ ≤ z

⎤

⎦

�
P∈Π

YP

β = Bd
p(u)

0 ≤ β ≤ 1

0 ≤ u ≤ 1

(DP-3)

In DP-3, the prescription of the polytopes in (19) is enforced using u. We have also bounded
the Bernstein basis functions to be in [0, 1], in accordance with Lemma 1.

Within each term P ∈ Π in DP-3, the variables x and u are linearly dependent. The
reformulation DP-3 enables computation of bounds on the reparametrized polynomials. In
particular, by invoking Proposition 4 we obtain cLP ≤ cTPβ ≤ cUP , where c

L
P = min{ci,P }n−1

i=0
and cUP = max{ci,P }n−1

i=0 . This allows us to set

MU
P = cUP − min{cLP }P∈Π, (28)
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and thereby obtain a valid upper bound cTPβ − z ≤ MU
P for all u ∈ [0, 1] and P ∈ Π .

While (28) provides an upper bound on cTPβ − z for P ∈ Π , it is global in the sense that
it involves all the polynomial pieces via the lower bound min{cLP }P∈Π on z. “Local” bounds
that concern only a single polynomial, can be obtained by introducing auxiliary variables
{zP }P∈Π and reformulating to

⎡

⎣
YP

xi = (π i
ki

− π i
ki−1)ui + π i

ki−1, ∀i ∈ {1, . . . , d}
cTPβ ≤ zP

⎤

⎦ ∨
[ ¬YP

zP = 0

]
, ∀Pk ∈ Π

�
P∈Π

YP

∑

P∈Π

zP ≤ z

β = Bd
p(u)

0 ≤ β ≤ 1

0 ≤ u ≤ 1
(DP-BASIC)

With DP-BASIC, it is sufficient to derive an upper bound MU
P so that cTPβ − zP ≤ MU

P .
A bound is readily obtained as

MU
P = cUP − min{0, cLP }. (29)

Remark 2 The special case of an equality constraint cTPβ = zP can be handled by writing
0 ≤ cTPβ − zP ≤ 0. Using the same arguments as above we obtain the bounds ML

P ≤
cTPβ − zP ≤ MU

P , where ML
P = cLP − max{0, cUP }.

4.2 Exploiting the rectilinear grid structure

In the preceding formulations, a disjunction of |Π | = ∏d
i=1 mi terms is used to enforce the

box constraints x ∈ Pk , where Pk is given as in (19). This seems unnecessary since the grid
structure can be modeled by d disjunctions of mi terms (for i = 1, . . . , d), as shown next.

We introduce a boolean variable Y i
j for each interval π

i
j−1 ≤ xi ≤ π i

j , for j = 1, . . . ,mi ,
and i = 1, . . . , d . Then, by adding the conditions

�
j=1,...,mi

Y i
j , ∀i ∈ {1, . . . , d}, (30)

we ensure that each variable xi is constrained to a single interval.With this modeling strategy,
we modify DP-BASIC to arrive at the following formulation.
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∨
j=1,...,mi

[
Y i
j

xi = (π i
j − π i

j−1)ui + π i
j−1

]
, ∀i ∈ {1, . . . , d}

[ ∧
i=1,...,d

Y i
ki

cTPβ ≤ zP

]
∨

[ ∨
i=1,...,d

¬Y i
ki

zP = 0

]
, ∀Pk ∈ Π

�
j=1,...,mi

Y i
j , ∀i ∈ {1, . . . , d}

∑

P∈Π

zP ≤ z

β = Bd
p(u)

0 ≤ β ≤ 1

0 ≤ u ≤ 1

(DP-GRID)

Above, the |Π | disjunctions for the polynomial pieces are conditioned on the expression
∧

i=1,...,d
Y i
ki
. This condition will be True only for polytope Pk , ensuring that the polynomial

pieces are exclusively selected. Otherwise, zP is set to zero.

4.3 Partition-of-unity cut

TheDP-GRID formulation canbe augmentedwith apartition-of-unity cut thatmay strengthen
its relaxation. The cut is given by the identity for Bernstein polynomials in (12), i.e. 1Tβ = 1,
where 1 is vector of n ones. Adding this cut to DP-GRID yields a formulation which we name
DP-CUT.

The partition-of-unity cut was introduced for B-splines in [14]. The same cut is applicable
here, as the Bernstein polynomials are a special case of B-splines (see Sect. 3.4).

4.4 Expanded Bernstein basis

The preceding formulations do not utilize the tensor product structure of themultivariate basis
Bd

p; cf. (9). In these formulations, the multivariate basis is formed by the tensor product of
all univariate bases, resulting in constraints with polynomials of degree dp. In the following
formulation, the multivariate basis is expanded to exploit the inherent structure due to the
tensor product. The expansion lets us add additional polyhedral cuts (as was done for the
multivariate basis in Sect. 4.3) and reduce the maximum degree of any polynomial in the set
of constraints to max{2, p} (for p ≥ 1). It was demonstrated in [14] that an expansion of
the tensor product can yield better mathematical programming formulations for multivariate
splines.

Specifically, each univariate Bernstein basis is assigned to the p + 1 auxiliary variables
ξ i = B p(ui ) for i ∈ {1, . . . , d}. To express the multivariate Bernstein basis, we introduce
additional auxiliary variables β i for i ∈ {1, . . . , d}, and the constraints β1 = ξ1 and β i+1 =
ξ i+1 ⊗ β i , ∀i ∈ {1, . . . , d − 1}. The multivariate basis is then represented by βd .

The expansion permits nonnegativity bounds and partition-of-unity cuts on the univariate
basis functions ξ i and the intermediate basis functions β i . For i ∈ {1, . . . , d}, we add the
constraints ξ i ≥ 0, 1Tξ i = 1, β i ≥ 0, and 1Tβ i = 1, where 0 and 1 are vectors of zeros and
ones of appropriate sizes.

123



Journal of Global Optimization

In addition, we include the upper bounds on the Bernstein polynomials given in “Appendix
A.3”. Denote with B̄ p the upper bounds on the Bernstein polynomials B p . We then include
the bounds ξ i ≤ B̄ p for i ∈ {1, . . . , d}.

The resulting formulation, with the expanded Bernstein basis and polyhedral cuts, is given
below.

∨
j=1,...,mi

[
Y i
j

xi = (π i
j − π i

j−1)ui + π i
j−1

]
, ∀i ∈ {1, . . . , d}

[ ∧
i=1,...,d

Y i
ki

cTPβd ≤ zP

]
∨

[ ∨
i=1,...,d

¬Y i
ki

zP = 0

]
, ∀Pk ∈ Π

�
j=1,...,mi

Y i
j , ∀i ∈ {1, . . . , d}

∑

P∈Π

zP ≤ z

ξ i = B p(ui ), ∀i ∈ {1, . . . , d}
0 ≤ ξ i ≤ B̄ p, 1Tξ i = 1, ∀i ∈ {1, . . . , d}
β1 = ξ1

β i+1 = ξ i+1 ⊗ β i , ∀i ∈ {1, . . . , d − 1}
0 ≤ β i , 1Tβ i = 1, ∀i ∈ {1, . . . , d}
0 ≤ u ≤ 1

(DP-EXP)

DP-EXP uses d(p + 1) + ∑d
i=1(p + 1)i auxiliary variables to represent the multivariate

polynomial basis. The univariate basis functions are expressed by d(p + 1) polynomial
constraints of degree p, while

∑d−1
i=1 (p + 1)i+1 bilinear constraints are used to form the

multivariate basis (not counting the p+1 constraints β1 = ξ1, which are linear). In addition,
2d linear partition-of-unity cuts are included.

4.5 Expandedmonomial basis

With DP-EXP themaximum degree of the polynomial constraints were reduced to max{2, p}
(for p ≥ 1). For general polynomial constraints, it is possible to achieve a maximum degree
of 2 by further expansion of the basis. We achieve this by utilizing the monomial basis ξ i in
variable ui , setting ξ i0 = 1 and ξ ij = ξ ij−1ui for j ∈ {1, . . . , p}. We compute the multivariate

basis βd as in DP-EXP, and form the polynomial pieces as fP = αT
Pβd = αT

PM
d
p(u), where

the coefficients are given as

αT
P = aTP

d⊗

j=1

Rp, j .

Bounds 0 ≤ ξ i ≤ 1 and 0 ≤ β i ≤ 1 for all i ∈ {1, . . . , d}, follow from the fact that
0 ≤ u ≤ 1.
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With the expanded monomial basis we obtain the following formulation.

∨
j=1,...,mi

[
Y i
j

xi = (π i
j − π i

j−1)ui + π i
j−1

]
, ∀i ∈ {1, . . . , d}

[ ∧
i=1,...,d

Y i
ki

αT
Pβd ≤ zP

]
∨

[ ∨
i=1,...,d

¬Y i
ki

zP = 0

]
, ∀Pk ∈ Π

�
j=1,...,mi

Y i
j , ∀i ∈ {1, . . . , d}

∑

P∈Π

zP ≤ z

ξ i0 = 1, ∀i ∈ {1, . . . , d}
ξ ij = ξ ij−1ui , ∀ j ∈ {1, . . . , p}, i ∈ {1, . . . , d}
0 ≤ ξ i ≤ 1, ∀i ∈ {1, . . . , d}
β1 = ξ1

β i+1 = ξ i+1 ⊗ β i , ∀i ∈ {1, . . . , d − 1}
0 ≤ β i ≤ 1, ∀i ∈ {1, . . . , d}
0 ≤ u ≤ 1

(DP-MON)

Remark 3 The partition-of-unity cuts that were added for the Bernstein basis in Sect. 4.3, can
be applied to the monomial basis via a transformation. Let Tp = Q−1

p so that B p = TpM p ,
where Qp is the transformation matrix in “Appendix A.1”. Inserting this mapping into the
cut constraints we obtain for the monovariable basis 1TTpξ

i = 1 for i ∈ {1, . . . , d}. It can be
shown that these cuts are redundant since 1TTpξ

i = ξ i0 = 1. Furthermore, it can be shown
that the transformed upper bounds are redundant as well; that is, ξ i ≤ 1 ≤ Qp B̄ p . We have
thus omitted these in DP-MON.

5 MINLP formulations for piecewise polynomial functions

Algorithmic approaches for mathematical programming problems with disjunctions either
reformulate the disjunction to enable mixed-integer programming, or seeks to exploit the
disjunctive constraints explicitly in a branch-and-bound or cutting-plane algorithm, possibly
through combinations thereof [3,52]. Linear [1] and convex nonlinear disjunctions [6]may be
reformulated either by its convex hull representations or by big-M reformulations. Pertaining
to the linear disjunction in DP-3, the convex hull formulation [1] is at least as tight as big-M
reformulations, though requiring more variables and constraints. Big-M formulations, on the
other hand, are known to be prone to the choice of the big-M parameters, and often yield
weaker relaxations. For large nonlinear, possibly nonconvex DP problems, it is important to
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keep the size of reformulation small, in which big-M reformulations may be advantageous
[53]. Consequently, we pursue big-M based MINLP reformulations of the DP models of
PWP constraints in Sect. 4. Utilizing the bounds derived in Sect. 4.1 upon an elementary
big-M reformulation of DP-BASIC yields the MINLP formulation

xi − (π i
ki

− π i
ki−1)ui − π i

ki−1 ≤ (π i
mi

− π i
ki−1)(1 − yP )

xi − (π i
ki

− π i
ki−1)ui − π i

ki−1 ≥ (π i
0 − π i

ki
)(1 − yP )

}
∀Pk ∈ Π,

i ∈ {1, . . . , d}
cTPβ − zP ≤ MU

P (1 − yP ), ∀P ∈ Π

zLP yP ≤ zP ≤ zUP yP , ∀P ∈ Π
∑

P∈Π

yP = 1

∑

P∈Π

zP ≤ z

β = Bd
p(u)

0 ≤ β ≤ 1

0 ≤ u ≤ 1

yP ∈ {0, 1}, ∀P ∈ Π

(MINLP-BASIC)

where MU
P = cUP − zLP , z

L
P = min{0, cLP }, zUP = max{0, cUP }, and a binary variable yP

replaces YP , for each P ∈ Π . MINLP-BASIC has n = dim(Pd
p) nonlinear constraints; all

other constraints are linear. The formulation has |Π | + d + n continuous auxiliary variables
{zP }P∈Π , u and β, and |Π | binary variables {yP }P∈Π .

5.1 Reformulation of DP-GRID, DP-EXP, and DP-MON

Analogous to the derivation of MINLP-BASIC, a MINLP reformulation of DP-GRID is
obtained by introducing a binary variable yij for each boolean variable Y i

j , and applying a
big-M reformulation. The last disjunction requires special treatment, since each term contains
a conjunction of clauses connected by the AND operator. This means that the term for Pk in
the disjunction should be True if and only if Y 1

k1
= · · · = Yd

kd
= True. A big-M reformulation

for a given Pk can then be formed as cTPβ−zP ≤ MU
P (d−∑d

i=1 y
i
ki

), leading to the following
MINLP formulation.
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xi − (π i
j − π i

j−1)ui − π i
j−1 ≤ (π i

mi
− π i

j−1)(1 − yij )

xi − (π i
j − π i

j−1)ui − π i
j−1 ≥ (π i

0 − π i
j )(1 − yij )

}
∀i ∈ {1, . . . , d},
j ∈ {1, . . . ,mi }

cTPβ − zP ≤ MU
P (d −

d∑

i=1

yiki ), ∀Pk ∈ Π

zLP y
i
ki ≤ zP ≤ zUP y

i
ki , ∀i ∈ {1, . . . , d}, Pk ∈ Π

mi∑

j=1

yij = 1, ∀i ∈ {1, . . . , d}
∑

P∈Π

zP ≤ z

β = Bd
p(u)

0 ≤ β ≤ 1

0 ≤ u ≤ 1

yij ∈ {0, 1}, ∀i ∈ {1, . . . , d}, j ∈ {1, . . . ,mi }
(MINLP-GRID)

We note that the MINLP-GRID has
∑d

i=1 mi binary variables for polytope selection, in
contrast to |Π | = ∏d

i=1 mi as for the MINLP-BASIC formulation.
In an analogous fashion, we derive MINLP reformulations of DP-CUT, DP-EXP, and

DP-MON, and denote them MINLP-CUT, MINLP-EXP, MINLP-MON, respectively. We
note here that MINLP-MON consists of linear and bilinear constraints only, and is hence a
MIQCP formulation.

5.2 Summary of formulations

The size of the formulations in terms of number of variables and constraints are summarized
in Table 1. To ease comparisons, we assume that m1 = · · · = md = M , so that |Π | = Md ,
and utilize the geometric series

gd(k) :=
d∑

i=1

ki = (kd − 1)k/(k − 1), for k 	= 1.

The three formulations MINLP-BASIC, MINLP-GRID, and MINLP-CUT have n =
dim(Pd

p) = (p + 1)d nonlinear equality constraints. These constraints model the Bern-

stein basis functions that span P
d
p , and are nonconvex since the Bernstein basis functions

are polynomials of degree dp. MINLP-EXP has d(p + 1) polynomial constraints of degree
p, and gd(p + 1) − (p + 1) bilinear constraints. Finally, MINLP-MON has 2d less nonlin-
ear constraints than MINLP-EXP, all being bilinear constraints. The reduction in nonlinear
constraints is due to some basis functions being constant (equal to one).

Comparing number of binary variables, MINLP-BASIC seems to be at a disadvantage
since Md ≥ dM for M > 1 and d ≥ 1. The one-dimensional case (d = 1) is an exception
since MINLP-BASIC then becomes equivalent to MINLP-GRID.
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Finally, we note that the MIQCP-CUT formulation from [14] scales poorly in the number
of nonlinear constraints due to the terms pdM and gd(M + p). It also has 2dp more binary
variables than the formulation based on MINLP-GRID.

6 Numerical study

To benchmark the performance of the proposed MINLP formulations, we conducted a three-
part numerical study. In the first part we minimized randomly generated cubic splines of
varying input dimensions. In the second part, we solved a set of optimization problems
involving five randomly generated PWP constraints of varying degrees. Finally, we solved a
realistic production optimization case with ten PWP constraints.

The five formulations MINLP-BASIC, MINLP-GRID, MINLP-CUT, MINLP-EXP, and
MINLP-MON, were solved using the global optimization solver BARON [46]. We compare
the computational performance of the proposed MINLP formulations with the MIQCP-CUT
formulation proposed in [14]. This formulation was also solved using BARON. We further
include the results from solving the test problems using the special-purpose spline solver
CENSO, which solves spline constrained problems as NLPs using a spatial branch-and-bound
algorithm [16].

All solvers were run with an absolute ε-convergence termination criteria of ε = 1 · 10−6.
Remaining settings were left at default values. The problems were solved on a computer
equipped with an Intel Core i7-8700K processor and 32 GB of RAM.

6.1 Minimization of randomly generated PWPs

Three sets of test problems were created by randomly generating cubic splines. The three
sets contain problems with a piecewise polynomial objective function in one, two, and three
variables, respectively. For themonovariable problems (random1d), the variable is discretized
into ten intervals, leading to ten polynomial pieces. The set of problems in two variables
(random2d) have an objective function defined on a 10 × 10 grid with 100 polynomial
pieces. Finally, the problems with three variables (random3d) have an objective function
defined on a 6 × 6 × 6 grid, for a total of 216 n-orthotopes. Thus, the hardest problems
(random3d) contain 216 polynomial pieces of degree dp = 3× 3 = 9. Properties of the sets
of test problems are summarized in Table 2.

The problems are in the epigraph form min
x,z

{
z : f (x) ≤ z, x ∈ D ⊂ R

d
}
, where f :

D → R is a piecewise polynomial function. Continuous cubic B-splines with equidistant
knots are constructed by randomlydrawing coefficients fromaGaussian distributionwith zero
mean and unity standard deviation, that is ci ∼ N (0, 1), ∀i = 0, . . . , n − 1. Figure 3 shows
one of the generated univariate cubic splines. Using the procedure described in “AppendixB”,
the B-spline is transformed into a piecewise polynomial f compatible with Definition 2.

Table 2 Test sets of piecewise
polynomial problems

Problem d p pd |Π | # instances

random1d 1 3 3 10 100

random2d 2 3 6 100 100

random3d 3 3 9 216 100
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Fig. 3 A cubic spline with randomly generated coefficients. The function has several local minima. The global
minimum for x ∈ [0, 10] lies close to x = 8

Table 3 Mean solve times in
seconds for randomly generated
cubic splines

Formulation/problem random1d random2d random3d

MINLP-BASIC 0.042 2.45 (*) 95.6

MINLP-GRID 0.042 3.75 104.9

MINLP-CUT 0.027 1.42 25.8

MINLP-EXP 0.021 0.98 11.2

MINLP-MON 0.028 2.57 (*) 2769.0

MIQCP-CUT 0.107 2.32 25.7

NLP 0.012 0.06 0.4

The lowest mean times among the MIP formulations are marked in bold
*Solver did not converge before the time limit of 3600s on some prob-
lems

Table 3 gives a summary of the full results, which are reported in “Appendix C”, Table
6. Comparing the mean solve times, we see that MINLP-EXP outperforms the other MIP
formulations, including the MIQCP-CUT formulation, on all three test sets. CENSO [16] had
the lowest solve time on all problems.

For the one-dimensional PWPs in random1d, the MINLP-BASIC and MINLP-GRID
formulations are equivalent and achieve similar results. For random2d and random3d,
MINLP-BASIC seems to perform slightly better than MINLP-GRID when comparing mean
solve times. However, for random3d theMINLP-BASIC formulation has a higher variation in
the solve times as seen from the standard deviation in Table 6, with some problems not being
solved within the time limit. From these results it is difficult to decide which is the better of
the two formulations. However, the improvements to MINLP-GRID made in MINLP-CUT
and MINLP-EXP, have a large effect on solve times, especially for the three-dimensional
PWPs in random3d.

We note that the monomial formulation MINLP-MON performs quite poorly on the ran-
dom3d test set. It thus seems that the Bernstein basis is beneficial for these problems.
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6.2 Optimization with randomly generated PWP constraints

We solved test problems of the following form:

min z0
s.t. f0(x) = z0

fi (x) ≤ z0, ∀i ∈ {1, . . . , 4}
x ∈ D = [0, 10]2

(31)

where { f0, f1, . . . , f4} are PWPs in two variables (x). Three sets of test problems were
generated, each with 20 problems consisting of either bi-linear, bi-quadratic, or bi-cubic
PWPs. The PWPs were randomly generated as described in Sect. 6.1, and constructed on a
10 × 10 grid, partitioning D.

A summary of the results is given in Table 4. A complete table of results is given in
“Appendix C”, Table 7. A boxplot of the solve times for bi-cubic PWPs is shown in Fig. 4.

Comparing the MIP formulations, MINLP-EXP has the overall best performance on the
bi-quadratic and bi-cubic problems in terms of mean solve time. On the most challenging

Table 4 Solve times in seconds
for problems constrained by
randomly generated PWPs

Formulation/problem Bi-linear Bi-quadratic Bi-cubic

MINLP-BASIC 112.0 195.6 357.5

MINLP-GRID 37.2 56.1 108.7

MINLP-CUT 35.6 52.5 94.3

MINLP-EXP 34.8 38.4 68.7

MINLP-MON 31.7 69.2 296.1

MIQCP-CUT 21.4 58.8 361.0

NLP 1.0 1.7 3.2

The lowest mean times among the MIP formulations are marked in bold

Fig. 4 A boxplot showing the results for problems with bi-cubic PWP constraints. Each box extends from the
first to third quartile, and shows the median in red. The whiskers extending from each box represent the lower
and upper value still within the lower and upper 1.5 interquartile range, respectively. Outlying values are not
shown
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set of bi-cubic problems, the MIQCP-CUT formulation performs worst on average, followed
by MINLP-BASIC and MINLP-MON. On the bi-linear problems, however, the MIQCP
formulations MIQCP-CUT and MINLP-MON performs best. The results demonstrate that
these formulations scale poorly with the degree p.

It is clear from the results that MINLP-BASIC is inferior to MINLP-GRID and the for-
mulations derived fromMINLP-GRID. This is to be expected based on the formulation sizes
in Table 1, which shows that the number of binary variables in MINLP-BASIC scales expo-
nentially with d . The developments made inMINLP-GRID,MINLP-CUT, andMINLP-EXP
improve solve times and reduce variability. For example, the addition of cuts inMINLP-CUT
and MINLP-EXP is clearly advantageous. We finally note that CENSO has the lowest solve
times on all problems.

6.3 Production optimization case

To test the formulations on a real large-scale problem we solved a production optimization
case adopted from [15]. The case involves eight subsea petroleum wells, each producing a
mix of oil, gas, and water. The fluid streams are routed to a topside processing facility via two
pipelines (often called risers). The objective is to maximize oil production by routing and
choking the well flows, satisfying constraints on momentum balances and variable bounds.

The production system was modeled by a directed acyclic graph G = (N , E), with nodes
N = Nw ∪ Nm ∪ N s and edges E = Ed ∪ E r. An illustration of the graph is given in Fig. 5.
Notice that eachwell node i ∈ Nw has two leaving discrete edges (i, j) ∈ Ed and (i, k) ∈ Ed

to the manifold nodes j, k ∈ Nm. By allowing zero or one of these edges to be active, we
model routing of fluid flows and shut-in of wells. The total flow entering a manifold node
i ∈ Nm is then led to a respective separator node j ∈ N s via a riser edge (i, j) ∈ E r.

The variables in the problem are the pressure pi at each node i ∈ N , the pressure dropΔpe
on each edge e ∈ E , the flow rateqe,c of phase c ∈ C on edge e ∈ E , and the binary variable ye
on the discrete edge e ∈ Ed. The variables ye are used tomodel on/off switching of the discrete
edges (ye = 1 means that the edge is on/open, while ye = 0 means that it is off/closed). In
addition, auxiliary variables qe,liq are introduced tomodel the liquid flow (oil +water) on each
riser edge e ∈ E r. For further details about the modeling approach we refer the reader to [15].

The problem includes ten nonlinearities which were modeled using B-splines. The eight
wells were modeled by well performance curves fi (pi ) for i ∈ Nw, represented by poly-
nomial basis functions on nine boxes. The pressure drop over the two risers were modeled
by B-splines ge(qe,liq, qe,gas, pi ) for e ∈ E r, composed of polynomial basis functions on 64

Fig. 5 Production system flow graph, with nodes represented by grey circles and edges by arrows. Discrete
(on/off) edges are dashed. The nonlinearities f1 and g(9,11), related to Node 1 and Edge (9, 11), are shown
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boxes. The splines were fitted to simulated data from a multiphase flow simulator calibrated
to real well test data. To give an example on problem size, for MINLP-BASIC the complete
problem has 216 binary variables, 200 related to the splines, and 16 related to flow routing.

The results for various PWP degrees (p = 1, 2, 3) are given in Table 5. Among the
MIP formulations, MINLP-EXP performed best. With this formulation, BARON solved the
problems with p = 1 and p = 2 within the practical time limit of 3600s. For p = 3,MINLP-
EXP gave the best solution, although it did not close the optimality gap. This confirms the
merits of MINLP-EXP observed in Tables 6 and 7 for increasing problem sizes.

We again observe that MIQCP-CUT and MINLP-MON performs well for p = 1, but
poorly for higher degrees. The NLP solution method employed by CENSO does not seem to
be affected much by the degree. In fact, it performs well for p = 2 and p = 3, which can
be attributed to the availability of continuous derivatives in NLP searches,2 and the weak
dependence of the linear relaxations on p.

7 Concluding remarks

This paper has presented a MIP modeling framework for solving mathematical programs
with continuous and semi-continuous PWP constraints. The numerical study indicates that
among the derived mixed-integer formulations, MINLP-EXP has the best overall perfor-
mance. Currently, it is the best-performing MIP formulation for PWP-constraints (solved by
BARON). Although the MIQCP-CUT formulation is outperformed by several of the MINLP
formulations, it has an advantage in that it is rather straightforward to implement when the
PWP is given as a B-spline. In this case, the MINLP formulations require an extra prepro-
cessing step to bring the spline to the PWP form in (18). With strong requirements on solve
speed the special-purpose spline-based solver CENSO is still the best option, but it comes at
the cost of using experimental software.

CENSO holds a great advantage in that it treats each PWP constraint as a single black-
box constraint when searching for feasible solutions. Although the MINLP formulations
herein allow the application of general-purpose global optimization solvers, the solution
efficiency is still hampered by these solvers’ lack of support for treating PWPs as black-box
functions. These solvers must satisfy all the constraints in the applied MINLP formulation
when searching for feasible solutions (see formulation sizes in Table 1).

There is a growing use of splines for modeling purposes, causing a demand for PWP
support in optimization solvers. To this end, the MINLP formulations presented in this
paper provide a basis for solving PWP constrained engineering and economic optimiza-
tion problems. Our strategy of modeling a PWP constraint via its epigraph provides a general
framework compatible with semi-continuous piecewise polynomials and B-splines, encom-
passing a broad set of spline modeling techniques. Furthermore, the formulations herein may
for many applications reduce the need for special-purpose solvers like CENSO.

Our study confirms that the main difficulties in solving PWP constrained problems lie in
the modeling of the polynomial basis Pd

p (requiring non-convex constraints) and the grid par-
titioning of the domain (requiring integer variables), which both contribute to the hardness of
these problems. Besides optimization software support for PWP constraints, elements from
related fields such as sum-of-squares programming, semidefinite relaxations and geometric
programming, may be explored in combination with the proposed framework to improve the

2 For PWPs in C2, CENSO may evaluate continuous first- and second-order derivatives to accelerate the
search.
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modeling ofPd
p(G).We also emphasize that the formulations presented are exact; approxima-

tions of these formulationsmay hence aid efforts toward reducing the computational demand.
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A Polynomials

This appendix provides some important transformations formanipulating polynomials. These
transformations can be found inmost textbooks treating polynomials and are reproduced here
without proofs; cf. [42].

A.1 Transformation between themonomial and Bernstein basis

There exist a linear mapping Qp ∈ R
(p+1)×(p+1) that transforms a p-th degree Bernstein

basis B p = {Bi,p}pi=0 to a p-th degreemonomial basisM p = {Mi }pi=0; that is,M p = QpB p .
The transformation matrix Qp is an upper triangular matrix given as:

Qp(i, j) =
{
0, i > j( j
i

)
/
(p
i

)
, i ≤ j

(32)

Conversely, the inverse mapping B p = Q−1
p M p transforms a monomial basis to a Bernstein

basis.

A.2 Reparametrization of themonomial basis

There exist a linear mapping Rp ∈ R
(p+1)×(p+1) that reparametrizes a monomial basis

M p(u) on u ∈ [0, 1], to amonomial basisM p(x) on x ∈ [a, b]; that is,M p(x) = RpM p(u).
Rp is a lower triangular matrix given as:

Rp(i, j) =
{
0, i < j(i
j

)
(b − a) j ai− j , i ≥ j

(33)

Conversely, the inverse mapping M p(u) = R−1
p M p(x) reparametrizes a monomial basis

from x to u.

A.3 Maximum of Bernstein polynomials

The Bernstein polynomial Bi,p of degree p has an upper bound

Bi,p ≤ B̄i,p :=
{
1, i = 0

i i p−p(p − i)p−i
(p
i

)
, i = 1, . . . , p.

(34)
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B B-splines

The following proposition shows that the Bernstein basis is equivalent to the B-spline basis
for a special knot sequence.

Proposition 6 (Equivalence of B-spline and Bernstein basis) The B-spline basis functions
{Ni,p(x; t)}pi=0 in the variable x ∈ [a, b) defined by the knot sequence

t = {a, . . . , a︸ ︷︷ ︸
p+1

, b, . . . , b︸ ︷︷ ︸
p+1

}, (35)

are equivalent to the Bernstein polynomials, i.e. for y ∈ [0, 1) we have that Ni,p(x; t) =
Ni,p((b − a)y + a; t) = Bi,p(y). For a = 0 and b = 1, Ni,p(x; t) = Bi,p(x).

Proof Cf. [42,49]. ��
In the following lemma, we utilize Proposition 6 to show the equivalence of B-splines and

PWPs defined as in Definition 2.

Lemma 2 (Equivalence of B-splines and PWPs)Given the space Pd
p(G) of piecewise degree

p polynomials on a bounded domain D partitioned on a rectilinear grid G of left half-closed
boxes specified in (24). Then S

d
p(T ) = P

d
p(G), if the knot sequences T = {t i }di=1 are given

as

t i = {π i
0, . . . , π

i
0︸ ︷︷ ︸

p+1

, . . . , π i
k, . . . , π

i
k︸ ︷︷ ︸

p+1

, . . . , π i
mi

, . . . , π i
mi︸ ︷︷ ︸

p+1

}, ∀i ∈ {1, . . . , d}. (36)

That is, the knot sequence t i for the B-spline basis in variable xi contains all partition points
with multiplicity p + 1.

Proof Consider the one-dimensional case first (d = 1). The specified knot sequence
parametrizes the B-spline to have p + 1 supported B-spline basis functions in each half-
open knot interval Pk = [π1

k , π1
k+1); the partition is thus equivalent to the partition of D by

the grid G. According to Proposition 6, these basis functions are equivalent to the Bernstein
basis, and hence spans the space Pp on Pk . For the general case of d > 1, we utilize the fact
the multivariate B-spline basis functions are constructed using the Kronecker product. D is
thus partitioned into left half-open boxes Pk = [π1

k1
, π1

k1+1)×· · ·× [πd
kd

, πd
kd+1), equivalent

to the partition given by G. Furthermore, the multivariate B-spline basis is equivalent to the
multivariate Bernstein basis since they both are constructed by the Kronecker product. It
follows that the multivariate B-spline basis spans the space Pd

p on Pk , and by equivalence of

the bases Sdp(T ) = P
d
p(G) on the domain D. ��

There are a couple of technicalities with Lemma 2 that deserve a comment. First, the
knot sequences in (36) are special since all knots have multiplicity p + 1. Any B-spline can
be transformed to an equivalent B-spline with such knot sequences using a knot insertion
method. The effect of raising the multiplicity of all knots to p + 1 is that the B-spline is
decomposed into a set of disjoint (non-overlapping) polynomial pieces, as illustrated by
Fig. 6. A virtue of knot insertion methods is that they do not geometrically alter the spline.

Second, in Lemma 2, the domain D is not required to be closed since the support of the
B-spline is restricted to a half-open domain. However, a compact domain may be considered
if the definition of the B-spline is extended to include support on the right boundary, and the
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Fig. 6 B-spline basis functions for p = 3, n = 8, and knot sequence t =
[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5]. Each basis function spans only a single
knot interval. In each knot interval, the cubic B-spline is a cubic polynomial expressed by four basis functions
that are equivalent to the Bernstein polynomials (on the unit interval)

rightmost boxes in G are closed as in (37). To close the domain of a (univariate) B-spline f
we simply define

f (tn+p) := lim
x→tn+p
x≤tn+p

f (x), (37)

and refer to the domain of f as D = cl(Do) = [t0, tn+p].
To complete the comparison of B-splines with our definition of PWPs, we note that a B-

spline is lower semi-continuous if no internal knot is repeated more than p times. B-splines,
for which the multiplicity of one or more internal knots are p+ 1, may be continuous, lower
semi-continuous, or discontinuous.

C Numerical results

The results from the numerical study in Sect. 6 are listed in Tables 5, 6 and 7.

Table 5 Results for production optimization problem (maximization problem)

Degree (p) Formulation Solver Solve time* z� Gap (%)

1 MINLP-CUT BARON 3600 126.20 3.36

MINLP-GRID BARON 3600 126.20 3.56

MINLP-CUT BARON 3600 126.20 5.09

MINLP-EXP BARON 373 126.20 0

MINLP-MON BARON 272 126.20 0

MIQCP-CUT BARON 143 125.24 0

NLP CENSO 184 126.20 0

2 MINLP-CUT BARON 3600 102.51 32.849

MINLP-GRID BARON 3600 116.93 23.460

MINLP-CUT BARON 3600 – –

MINLP-EXP BARON 1645 126.35 0
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Table 5 continued

Degree (p) Formulation Solver Solve time* z� Gap (%)

MINLP-MON BARON 3600 – –

MIQCP-CUT BARON 3600 124.80 8.16

NLP CENSO 604 126.35 0

3 MINLP-CUT BARON 3600 – –

MINLP-GRID BARON 3600 – –

MINLP-CUT BARON 3600 96.68 38.34

MINLP-EXP BARON 3600 105.25 24.45

MINLP-MON BARON 3600 – –

MIQCP-CUT BARON 3600 – –

NLP CENSO 343 126.36 0

*Solve time in seconds. Time limit was set to 3600s

Table 6 Solve times in seconds for randomly generated cubic splines

Problem Formulation Solver Tmed Tmean Tstd Tmin Tmax

random1d MINLP-BASIC BARON 0.050 0.042 0.027 0.001 0.100

MINLP-GRID BARON 0.050 0.042 0.028 0.001 0.110

MINLP-CUT BARON 0.030 0.027 0.020 0.001 0.080

MINLP-EXP BARON 0.020 0.021 0.014 0.001 0.060

MINLP-MON BARON 0.030 0.028 0.019 0.001 0.060

MIQCP-CUT BARON 0.110 0.107 0.059 0.001 0.250

NLP CENSO 0.013 0.012 0.007 0.001 0.031

random2d MINLP-BASIC BARON 1.225 2.453 2.723 0.060 12.49

MINLP-GRID BARON 1.585 3.745 4.355 0.430 17.08

MINLP-CUT BARON 0.900 1.415 1.253 0.260 6.810

MINLP-EXP BARON 0.700 0.980 0.729 0.320 4.170

MINLP-MON BARON 1.700 2.571 2.260 0.480 10.61

MIQCP-CUT BARON 1.620 2.317 2.078 0.200 11.30

NLP CENSO 0.058 0.063 0.036 0.001 0.195

random3d MINLP-BASIC BARON 32.4 95.6 359.3 0.9 *3600

MINLP-GRID BARON 50.0 104.9 219.3 5.4 2089

MINLP-CUT BARON 13.4 25.8 39.3 1.9 304.9

MINLP-EXP BARON 8.7 11.2 8.0 2.4 65.3

MINLP-MON BARON 3600 2769 1306 12.0 *3600

MIQCP-CUT BARON 15.9 25.7 24.8 2.7 140.9

NLP CENSO 0.35 0.36 0.19 0.04 0.92

*Solver did not converge before the time limit of 3600s on some problems
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Table 7 Solve times in seconds for problems constrained by randomly generated PWPs

Problem Formulation Solver Tmed Tmean Tstd Tmin Tmax

Bi-linear MINLP-BASIC BARON 80.7 112.0 105.9 6.0 359.9

MINLP-GRID BARON 33.9 37.2 20.1 4.3 73.3

MINLP-CUT BARON 37.0 35.6 16.0 4.7 60.0

MINLP-EXP BARON 34.7 34.8 16.2 4.0 57.5

MINLP-MON BARON 32.7 31.7 15.1 4.3 58.9

MIQCP-CUT BARON 20.5 21.4 9.2 1.6 36.9

NLP CENSO 1.0 1.0 0.3 0.6 1.7

Bi-quad MINLP-BASIC BARON 159.1 195.6 104.6 64.0 491.4

MINLP-GRID BARON 54.1 56.1 11.8 32.6 74.2

MINLP-CUT BARON 52.7 52.5 14.4 24.4 87.8

MINLP-EXP BARON 35.8 38.4 14.2 18.0 82.0

MINLP-MON BARON 65.2 69.2 17.6 39.6 95.6

MIQCP-CUT BARON 56.2 58.8 10.6 42.0 85.2

NLP CENSO 1.7 1.7 0.4 0.8 2.3

Bi-cubic MINLP-BASIC BARON 322.8 357.5 188.2 55.5 886.5

MINLP-GRID BARON 94.1 108.7 31.6 73.6 184.6

MINLP-CUT BARON 84.4 94.3 45.9 45.9 259.1

MINLP-EXP BARON 67.1 68.7 23.3 24.8 118.2

MINLP-MON BARON 294.1 296.1 126.0 115.3 652.0

MIQCP-CUT BARON 179.8 361.0 660.9 106.3 3193.4

NLP CENSO 3.2 3.2 1.1 1.3 6.0
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