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Abstract

Cracks represent an imminent danger for painted surfaces that needs to be alerted before degenerating into more severe aging
effects, such as color loss. Automatic detection of cracks from painted surfaces’ images would be therefore extremely useful for
art conservators; however, classical image processing solutions are not effective to detect them, distinguish them from other lines
or surface characteristics. A possible solution to improve the quality of crack detection exploits Multi-Light Image Collections
(MLIC), that are often acquired in the Cultural Heritage domain thanks to the diffusion of the Reflectance Transformation
Imaging (RTI) technique, allowing a low cost and rich digitization of artworks’ surfaces. In this paper, we propose a pipeline
for the detection of crack on egg-tempera paintings from multi-light image acquisitions and that can be used as well on single
images. The method is based on single or multi-light edge detection and on a custom Convolutional Neural Network able to
classify image patches around edge points as crack or non-crack, trained on RTI data. The pipeline is able to classify regions
with cracks with good accuracy when applied on MLIC. Used on single images, it can give still reasonable results. The analysis
of the performances for different lighting directions also reveals optimal lighting directions.

CCS Concepts

e Computing methodologies — Supervised learning by classification; Cross-validation; e Applied computing — Fine arts;

1. Introduction

Cracks are damage that can affect Cultural Heritage objects on
many layers. For instance, as pointed out in [DRH15], cracks can
affect not only the pictorial layer of a painting but the varnish and
support layers as well. Cracks may occur due to several reasons:
the drying of the paint layer (since the evaporation of organic com-
ponents causes their shrinkage), external mechanical factors (vi-
brations, seism, impacts) and stress induced by aging or fluctua-
tions of humidity with the passing of time [PPR*15], where the
cracks burst as non-uniform contractions from the substrate layer
through the superficial layer [DHN™13]. Hence, cracks represent a
form of degradation both aging-dependent and aging-independent
and the detection of such degradation at any stage in the lifecy-
cle of artwork reveals meaningful clues for conservators. More-
over, in the case of paintings, the craquelure (which is the net-
work of connected cracks) might also be associated with a certain
school of painting and can be useful for recognizing the style of an
artist [Buc97, Buc99]. Cracks are multi-surface phenomena, since,
apart from paintings, they have been investigated in concrete sur-
faces as well [CD12, MP17]. In addition to this, cracks are often
used for structural health monitoring of cultural heritage buildings,
where commonly mechanical displacements lead to deep disconti-
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nuities in structural elements of the building such as ancient support
walls [LCC*16].

In this paper we propose a novel approach for crack detection
exploiting both MLIC typically acquired in the CH domain and
Convolutional Neural Networks.

The idea is to exploit available multi-light image data of aged
egg-tempera painting to develop a pipeline for crack detection in
similarly painted surfaces based on (multi-image) edge detection
and a custom CNN based classifier to select crack candidates and
label them in a supervised manner.

The contribution of the work is both the demonstration of a
practical pipeline that can be directly used on similar surfaces or
retrained for other surface feature detection, an analysis of the
improvements of the edge detection and classification approaches
with MLIC data.

The paper is structured as follow. In Section 2, we review the
related works. In section 3, we present the rationale of the method,
the dataset used and describes all the processing steps. Finally, Sec-
tion 4 presents the experimental results and section 5 concludes the

paper.
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2. Related Work

Automatic detection of cracks on digital images, especially in the
case of painted surfaces, is particularly difficult, as the geometric
and color features visually characterizing them are quite subtle and
difficult to discriminate from those related to drawing lines, noise,
and other aging effects.

The common pipeline for cracks classification in digital images
is therefore complex, and usually involves a step of pre-processing
consisting in morphological operators: white and black top-hat
transformations [DRH15], opening, closing, spurring and clean-
ing [CD12].

After the pre-processing step, the classification of cracks pro-
ceeds either with an unsupervised, supervised or semi-supervised
approach. In the unsupervised approach, usually, a combination
of edge detection and further heuristics are used to label cracks
[DHN*13].

With the purpose of restoring the Ghent Altarpiece, [RCP*11]
propose a crack detection workflow followed by crack inpainting.
For reducing the noise in the image, they initially apply anisotropic
diffusion filtering and proceed with crack detection based on a mul-
tiscale morphological approach by switching the structuring ele-
ment within the top-hat transform to different sizes. In addition,
they explore the distinct contrast provided by the color channels of
RGB and HSV color spaces either for identifying cracks with ex-
treme brightness values or for isolating the misidentified cracks.
Thus, they found that the green channel is enhancing the dark
cracks, while the blue channel enhances the bright cracks. Sim-
ilarly, they were able to distinguish between deceivingly crack-
resembling elements (brows) and dark cracks, by applying heuristic
on the saturation channel of the HSV image. As an extension of the
work in [RCP*11], in [CRG*13] two other methods are proposed
except the multiscale top-hat transform: the oriented elongated fil-
ters originally applied for blood vessels segmentation and the k-
SVD dictionary learning with hysteresis thresholding. In order to
validate these methods, a semi-automatic clustering is performed
with a k-means algorithm that receives as input a feature vector
composed of several joint color and shape properties of the crack
pixels and their neighborhood. The latter is particularly descriptive
of the bright borders that usually surrounds cracks. In [PPR*15],
built on top of [RCP*11] and [CRG*13], a semi-supervised ap-
proach is adopted for crack detection in multimodal images (vis-
ible, infrared and x-ray radiography). The rationale of their im-
proved method lies in using a Bayesian conditional tensor factoriza-
tion (BCTF), by estimating for each multimodal pixel the posterior
probability of pertaining to the “cracks” class.

Nonetheless, in the case of crack detection in paintings,
[DHN*13] suggest that a supervised approach is highly recom-
mended because there are elements within a painting (especially
thin and dark brushstrokes on a bright background or bright brush-
strokes on a dark background) that visually resemble the structure
of a crack, so the unsupervised algorithm outputs increased false
positives.

Among the supervised learning approaches applied in the im-
age processing domain, the most popular now is clearly the use
of Convolutional Neural Networks (CNN). CNN’s have been used

Figure 1: Artificially aged egg-tempera samples. Images are taken
from the original MLIC captures featuring 50 different light direc-
tions.

to solve the problem of automatic crack detection in concrete sur-
faces [CCB17]. In [PMK*16], CNNs are combined with 3D mod-
eling for spotting defects in tunnel infrastructures. In [OBH04], au-
thors improve a standard genetic algorithm by training a CNN, with
only a minor increase in cracks’ classification accuracy for general-
purpose tasks.

Another interesting option for better crack detection is the use
of Multi-Light imaging, aka Photometric Stereo or Reflectance
Transformation Imaging. This kind of image acquisition, consist-
ing in taking multiple photos from a single viewpoint with chang-
ing light direction is quite popular in the Cultural Heritage domain
as it can be obtained with low-cost setups and provides an effec-
tive visualization of surfaces [PDC*19]. Multi-Light image collec-
tions (MLIC) have been used for crack detection [MBW™14,K*15,
SHM 14, LTJ13, SCM™* 18], typically using few lights and specific
setups.

3. The proposed approach

To develop and validate crack detection algorithms based on Multi-
Light Image Collections (MLIC), we rely on a set of acquisitions
obtained from a European project on the analysis of artworks’ ag-
ing, Scan4Reco [DDT16]. In this project, mockups of wood pant-
ings have been realized using different pigments and coatings and
then artificially aged to characterize degradation effects. All the
items have been acquired at different aging steps with a free-form
RTI setup, with the acquisition and processing pipelines presented
in [CPM*16]. The calibration procedures applied results in a set
of 50 intensity-compensated images, with estimated light direc-
tion [GCD™*18].

Our idea is to exploit the multi-light images, captured at the
second aging step representing 36 painted squares with different
pigments and coatings, and presenting visible cracks that can have
been annotated by experts to develop and test a novel approach to
automatically identify regions with cracks on egg-tempera paint-
ings.

The proposed method is based on a processing pipeline able to
automatically identify crack regions in single and multi-light im-
ages. The pipeline is based on a (multi-light) edge detection and on
a Convolutional Neural Network-based labeling of image patches
around edges. The processing pipeline is summarized in Figure 2.

In the following subsections, we present the rationale of the dif-
ferent steps.
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Figure 2: The proposed crack detection pipeline: edges are ex-
tracted on single images or MLICs and single or multiple patches
around each edge location are classified with the same CNN-based
classifier. In the case of MLIC based crack detection, edge labels
corresponding to the different patches are combined by majority
voting.
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3.1. Edge detection and cracks

Figure 3 shows that the detection of the cracks identified in these
images by CH experts is quite hard. The top row show two images
of a MLIC of cracked egg tempera and the second edge maps ex-
tracting thresholding Sobel gradient magnitude estimation. Part of
the cracks are not visible in both images and consequently in the
edge maps. The complete detection of the cracks is possible look-
ing at the whole dataset and it is reasonably captured by multi-light
edge detection.

A few methods have been proposed to extract edges from
MLIC/RTI data. For example Brognara et al. [BCDG13] localize
edges as maximal variations of 3D normals computed from Poly-
nomial Texture Map fitting. Pan et al [Pan16] also use PTM coef-
ficients, but estimate edges using the idea of Di Zenzo [DZ86] for
multidimensional image edge detection, e.g. estimating the Jaco-
bian matrix and evaluating eigenvalues to determine gradient mag-
nitude and direction.

In our work we just applied the Jacobian approach on the set
of the intensity images of the MLIC collection to recover a gradi-
ent intensity, that is thresholded in a conservative way to recover a
superset of the edge points that are considered as candidate crack
locations. An example result of the procedure is represented in the
left image of the bottom row of Figure 3.

3.1.1. Ground truth crack annotation

The annotation of the ground truth crack position has been per-
formed as follows: experts were provided with selected images
of the MLIC where cracks were maximally visible and the edge
map provided by the multi-light edge detector. They had to draw
a polygonal area including the edges that should be classified as
a crack. The annotation resulted in binary maps corresponding to
each of the 36 MLIC used.

3.2. CNN-based edge classification

To automatically label detected edges as crack or non-crack, we
consider 31x31 patch around them and train a classifier based on a
Convolutional Neural Network (CNN). CNNs [GB10] are powerful
learning tools demonstrating superior performance on both visual
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Figure 3: Top row: two images of an egg tempera sample MLIC.
The visibility of the surface features changes with respect to the
light direction i.e. more visible on the high elevation and less visi-
ble on the low elevation. Middle row: the corresponding edge maps
estimated on the single images. Bottom row: MLIC based edge de-
tection (first column) and edge points annotated as cracks (second
column).

object recognition and image classification tasks [KSH12]. As the
number and the direction of the input lights are not necessarily the
same in different acquisitions, we designed a classifier predicting
the feature class (crack/non-crack) based on a single image patch.
After the training process, the classifier can then be used both to
classify features extracted on a single image, or to classify fea-
tures extracted on a multi-light acquisition using a voting approach:
given an edge point extracted on a multi-light image collection, we
apply the classifier to all the patches of the images centered in the
point and assign the most frequent label.
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3.2.1. Patch dataset creation and labelling

To train the classifier, we considered a subset of the ground truth
crack pixels (avoiding to take close pixels that would result in heav-
ily correlated patches) and, for each MLIC, an equal number of
positive(crack) and negative(noncrack) samples, Figure 4.

To evaluate the patch classification method and the full pipeline,
we divided the dataset, using 30 MLICs of painted squares and
the corresponding annotated patches as a training set, and the re-
maining 6 painted squares and the corresponding patches as a test
set, both for the classifier evaluation and the full crack detection
pipeline testing.

3.2.2. Network architecture

Figure 5 shows our CNN model. It contains six convolutional lay-
ers and three fully connected layers. The first two fully-connected
layers have 100 neurons each and the last one contains 2 neurons.
The input is a 31x31 grayscale patch, like those obtained with the
procedure described in Section 3.2.1). In the first layer, the input
patch is convolved with 32 filters of size 3x3, outputting 32 feature
maps of size 31x31 each. In the second layer, the same operation is
performed followed by 2x2 max-pooling and subsampling by a fac-
tor 2. In the third and fourth layers, the feature maps are convolved
with 64 3x3 filters and followed by 2x2 max-pooling and subsam-
pling, resulting in 64 7x7 feature maps. In the fifth and sixth layers,
input features are convolved with 128 3x3 filters and followed by
max-pooling. The output of the last fully connected layer is fed to
a 2-way softmax which produces a distribution over the 2 class la-
bels. All hidden layers are equipped with the Rectified Linear Unit
(ReL.U) activation function.

The model is trained on 54,810 training samples which con-
tain an equal number of positive and negative samples and vali-
dated on 6,087 samples. It is trained using Adam optimization al-
gorithm [KB14] with a batch size of 64 examples, a learning rate of
0.0003, a Gradient decay factor of 0.9 and squared gradient decay
factor of 0.99. We found that this combination of parameters was
important for the model to learn. Batch normalization and dropout
layers [SHK* 14], which can prevent overfitting, with a rate of 0.2
(20% dropout) are also used. It is trained on a GeForce RTX 2080
Ti machine with a single GPU.

In our tests, this architecture seemed better suited for the task
with respect to several other CNNs tested, like other deep networks
originally developed for crack detection in concrete [LLW18] or
LeNet5 [LBB*98] which has an architecture with a lower number
of convolutional layers and a lower number of filters. The network
we adopted is a reasonable tradeoff between complexity and train-
ability.

3.3. Full detection pipeline

Using the trained classifier, the idea of the method is to use the
proposed pipeline to automatically extract crack points as follows:
if the input is a single image, a Sobel edge detection is performed
using a conservative threshold, and then candidate points are clas-
sified. Finally, the map of positive points is post-processed by re-
moving isolated points. In the case of MLIC data, the edge map is

extracted with the Di Zenzo like multi-light edge detection, for all
the pixels we classify all the corresponding patch and obtain the
final label with majority voting. Finally, we post-process the map
removing isolated points.

4. Results

In our experiments, we both evaluated the performances of the
patch classification on the dataset created from the Scan4Reco
painted samples and evaluated the use of the detection pipeline to
automatically detect cracks.

4.1. Patch classification

To evaluate the quality of the edge classification, we evaluated the
classification accuracy on the annotated dataset patches extracted
from the six test squares. Table 1 shows the classification errors
for the patches of the different MLIC test data obtained with sin-
gle image classification and MLIC classification based on the same
CNN-based classifier and majority voting. The accuracy is not very
high, but the task is quite hard due to the differences in pigments
and coatings used in the different squares. The use of MLIC data
makes the classification more accurate as expected. If we look at
the results obtained with single images, however, we see that the
accuracy is not that bad, and depends on the light direction. If we
consider the variation in classification accuracy versus the elevation
of the light used, it is possible to see (Table 2) that using perpen-
dicular lights the automatic classification works better (this may be
counter-intuitive, as a typical way of inspecting surfaces changing
light direction is the use of raking lights.

Test square | Single Image | Voting
1 65.64 | 72.26

2 81.33 | 90.08

3 85.24 | 90.49

4 87.11 87.85

5 75.01 75.14

6 66.65 | 76.87

Avg. 76.83 | 82.12

Table 1: Classification accuracy for the dataset patches extracted
on the 6 test painted squares. We report average accuracy obtained
on single patch classification and the average accuracy on voting
based MLIC-based classification

4.2. Automatic crack detection

To automatically detect cracks from single light images it is, how-
ever, necessary also to rely on single image edge detection, that
is less able to recover all the correct candidate crack points to be
classified.

Figure 6 shows the cracks detected on six test squares. Results
seem good despite the quite hard visibility of the cracks and the
huge amount of clutter, removed during post-processing using sim-
ple morphological operator, area opening.

The results obtained on the multi-light data (middle row) appear

(© 2019 The Author(s)
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Figure 4: Examples of positive (red) and negative (blue) patches centered in edge points and used to train (and test) the classification of

candidate crack points.
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Figure 5: An illustration of the architecture of our CNN. Conv#: layers corresponding to convolution operations and max-pooling: max

pooling applied on the previous layer.

Accuracy (%) in elevation range

0-30 deg. | 30-60 deg. | 60-90 deg.

1 60.75 64.63 68.92

2 77.01 82.39 84.60

3 81.31 87.56 86.84

4 85.63 87.88 87.83

5 67.87 77.96 81.77

6 58.96 66.11 74.88
Avg. 71.92 77.75 80.81

Table 2: Average accuracy in single patch edge classification for
selected elevation ranges. Cracks are better recognized when the
illumination is from higher elevation angles.

better than those obtained on the single image example, that is,
however, rather good. This is due to the better quality of both the

© 2019 The Author(s)
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edge detection performed with the multi-light Di Zenzo approach
and the better classification accuracy obtained using CNN.

As can be seen in figure 7, in the case of prediction on single
images, the quality appears better on high elevations despite the
middle and low elevations are also providing satisfactory results.
If we see the crack map lines superimposed over the image(cyan
points), on the high elevations(right image), the cracks maps lines
are continuous. This continuity shows in most of the cases that
the classifier is able to classify the crack points correctly. Proba-
bly the increased illumination intensity and the subsequent inter-
reflections are more effective than raking light for the enhancement
of the crack details.

To demonstrate the crack detection on real paintings, we used
our method on a MLIC scan of a MLIC capture of real artwork,
e.g. the Icon St. Michele (17t - 18" century). It is an egg tempera
painting on wood support and includes some regions with cracks.
As can be shown in Figure 8, it is possible to see that the proposed
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Figure 6: Cracks detection on test painted squares. Top row: corresponding cracks detected on a single image after CNN classification
superimposed on images (cyan points). Middle row: corresponding cracks detected on MLIC after CNN classification, superimposed on
albedo image (green points). Third row: ground truth crack points superimposed on albedo image (green points).

method can extract reasonably well the cracks neglecting most of
the other image edges not corresponding to cracked painting.

5. Conclusion

The automatic identification of specific painting features like
cracks can be extremely useful for conservators to monitor the ag-
ing of the items, highlighting possibly critical regions of the sur-
face.

The use of machine learning tools coupled with multi-light imag-
ing is surely a good way to address the problem of automatic crack
detection, but it is not widely studied in the literature. We proposed
a specifically designed pipeline that can be used to detect cracks
(but also other critical features with specific training). Results are
encouraging, even if they could be certainly improved and tested
on more data with heterogeneous features.

One problem related to the use of machine learning for the au-
tomatic interpretation of CH data is the lack of large annotated
databases specifically designed to solve practical problems for anal-
ysis and conservation applications.

We plan therefore to collect novel datasets to evaluate the pro-
posed approach on larger collections of MLIC data.

Acknowledgments. This work was supported by the Scan4Reco
project (EU H2020 grant 665091), the DSURF (PRIN 2015)
project funded by the Italian Ministry of University and Research,
and the VIGECLAB project funded by Sardinian Regional Author-
ities.

References

[BCDG13] BROGNARA C., CORSINI M., DELLEPIANE M., GIA-
CHETTI A.: Edge detection on polynomial texture maps. In Interna-
tional Conference on Image Analysis and Processing (2013), Springer,
pp. 482-491. 3

[Buc97] BUCKLOW S. L.: A stylometric analysis of craquelure. Com-
puters and the Humanities 31, 6 (1997), 503-521. 1

[Buc99] BuUcCKLOW S.: The description and classification of craquelure.
Studies in conservation 44, 4 (1999), 233-244. 1

[CCB17] CHA Y.-J., CHOI W., BUYUKOZTURK O.: Deep learning-
based crack damage detection using convolutional neural networks.
Comput.-Aided Civ. Infrastruct. Eng. 32,5 (May 2017), 361-378. doi:
10.1111/mice.12263. 2

[CD12] CHOUDHARY G. K., DEY S.: Crack detection in concrete sur-
faces using image processing, fuzzy logic, and neural networks. In 2012
IEEE Fifth International Conference on Advanced Computational Intel-
ligence (ICACI) (Oct. 2012), pp. 404—-411. doi:10.1109/ICACI.
2012.6463195. 1,2

[CPM*16] CIORTAN 1., PINTUS R., MARCHIORO G., DAFFARA C.,
GIACHETTI A., GOBBETTI E.: A practical reflectance transformation
imaging pipeline for surface characterization in cultural heritage. In

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.


http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.1109/ICACI.2012.6463195
http://dx.doi.org/10.1109/ICACI.2012.6463195

T. Dulecha et al. / Crack detection in painted surfaces

Figure 7: Crack points detected on a single image at various elevation angles superimposed on the corresponding images. Left to right crack
detected from an image captured at elevation angles of 18, 44 and 66 respectively. As we can see, on the left image the lines which represent
a crack edge are disconnected. Whereas in the middle and mainly on the right one they are connected. This tells us that on the high elevation
almost all the crack points are detected precisely and on the low elevation not.

Figure 8: Crack points detected on real images. Left: example image chosen from the Multi-light image collection, one of the few where
cracks are visible. Middle: grayscale albedo. Right: corresponding cracks detected on MLIC after CNN classification, superimposed on the
grayscale albedo image (green points).

Proc. GCH (Goslar Germany, Germany, 2016), Eurographics Associa-
tion, pp. 127-136. doi:10.2312/gch.20161396. 2

[CRG*13] CORNELIS B., Ruzi¢ T., GEzELS E., DooMs A.,
PIZURICA A., PLATISA L., CORNELIS J., MARTENS M., DE MEY M.,
DAUBECHIES I.: Crack detection and inpainting for virtual restoration
of paintings: The case of the Ghent Altarpiece. Signal Processing 93, 3
(Mar. 2013), 605-619. doi1:10.1016/7j.sigpro.2012.07.022.
2

[DDT16] DiMITRIOU N., DROSOU A., TZOVARAS D.: Scandreco: to-

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

wards the digitized conservation of cultural heritage assets via spatiotem-
poral (4 d) reconstruction and 3 d printing. In Proceedings of the 14th
Eurographics Workshop on Graphics and Cultural Heritage (2016), Eu-
rographics Association, pp. 53-56. 2

[DHN*13] DESAIS. D., HORADI K. V., NAVANEET P., NIRIKSHA B.,
SIDDESHVAR V.: Detection and Removal of Cracks from Digitized
Paintings and Images by User Intervention. In 2013 2nd International
Conference on Advanced Computing, Networking and Security (Dec.
2013), pp. 51-55. doi:10.1109/ADCONS.2013.14. 1,2


http://dx.doi.org/10.2312/gch.20161396
http://dx.doi.org/10.1016/j.sigpro.2012.07.022
http://dx.doi.org/10.1109/ADCONS.2013.14

T. Dulecha et al. / Crack detection in painted surfaces

[DRH15] DEBORAH H., RICHARD N., HARDEBERG J. Y.: Hyperspec-
tral crack detection in paintings. In 2015 Colour and Visual Comput-
ing Symposium (CVCS) (Aug. 2015), pp. 1-6. doi:10.1109/CVCS.
2015.7274902. 1,2

[DZ86] Di1ZENZO S.: A note on the gradient of a multi-image. Computer
vision, graphics, and image processing 33, 1 (1986), 116-125. 3

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics (2010),
pp. 249-256. 3

[GCD*18] GIACHETTI A., CIORTAN I. M., DAFFARA C., MARCHIORO
G., PINTUS R., GOBBETTI E.: A novel framework for highlight re-
flectance transformation imaging. Computer Vision and Image Under-
standing 168 (2018), 118-131. 2

[K*15] KOTOULA E., ET AL.: Reflectance transformation imaging be-
yond the visible: ultraviolet reflected and ultraviolet induced visible flu-
orescence. In Proceedings of the 43rd Annual Conference on Computer
Applications and Quantitative Methods in Archaeology, Oxford (2015),
pp. 909-919. 2

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 4

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (2012), pp. 1097-1105. 3

[LBB*98] LECUN Y., BoTTOU L., BENGIO Y., HAFFNER P., ET AL.:
Gradient-based learning applied to document recognition. Proceedings
of the IEEE 86, 11 (1998), 2278-2324. 4

[LCC*16] LORENZONI F., CASARIN F., CALDON M., IsLaMI K.,
MODENA C.: Uncertainty quantification in structural health monitor-
ing: Applications on cultural heritage buildings. Mechanical Systems
and Signal Processing 66-67 (Jan. 2016), 268-281. doi:10.1016/
J.ymssp.2015.04.032. 1

[LLW18] L1Y., L1 H., WANG H.: Pixel-wise crack detection using deep
local pattern predictor for robot application. Sensors 18, 9 (2018), 3042.
4

[LTJ13] LANDSTROM A., THURLEY M. J., JONSSON H.:  Sub-
millimeter crack detection in casted steel using color photometric stereo.
In 2013 International Conference on Digital Image Computing: Tech-
niques and Applications (DICTA) (2013), IEEE, pp. 1-7. 2

[MBW*14] MANFREDI M., BEARMAN G., WILLIAMSON G., KRO-
NKRIGHT D., DOEHNE E., JACOBS M., MARENGO E.: A new quantita-
tive method for the non-invasive documentation of morphological dam-
age in paintings using rti surface normals. Sensors 14,7 (2014), 12271
12284. 2

[MP17] MOHAN A., POOBAL S.: Crack detection using image process-
ing: A critical review and analysis. Alexandria Engineering Journal
(Feb. 2017). doi:10.1016/3.ae3.2017.01.020. 1

[OBHO4] OULLETTE R., BROWNE M., HIRASAWA K.: Genetic algo-
rithm optimization of a convolutional neural network for autonomous
crack detection. In Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.0O4TH8753) (June 2004), vol. 1, pp. 516—
521 Vol.1. doi:10.1109/CEC.2004.1330900. 2

[Pan16] PAN R.: Detection of edges from polynomial texture maps. 3D
Research 7,1 (2016), 3. 3

[PDC*19] PINTUS R., DULACHE T., CIORTAN I., GOBBETTI E., GIA-
CHETTI A.: State-of-the-art in multi-light image collections for surface
visualization and analysis. Computer Graphics Forum 38, 3 (2019), 909—
934. 2

[PMK*16] PROTOPAPADAKIS E., MAKANTASIS K., KOPSIAFTIS G.,
DouLAMIS N., AMDITIS A.: Crack Identification Via User Feedback,
Convolutional Neural Networks and Laser Scanners for Tunnel Infras-
tructures. In VISIGRAPP (4: VISAPP) (2016), pp. 725-734. 2

[PPR*15] PizuricA A., PLATISA L., Ruzic T., CORNELIS B.,
DooMs A., MARTENS M., DUBOIS H., DEVOLDER B., MEY M. D.,
DAUBECHIES I.: Digital Image Processing of The Ghent Altarpiece:
Supporting the painting’s study and conservation treatment. /EEE Sig-
nal Processing Magazine 32,4 (July 2015), 112-122. doi:10.1109/
MSP.2015.2411753. 1,2

[RCP*11] Ruzi¢ T., CORNELIS B., PLATISA L., PIZURICA A.,
Doowms A., PHILIPS W., MARTENS M., MEY M. D., DAUBECHIES I.:
Virtual Restoration of the Ghent Altarpiece Using Crack Detection and
Inpainting. In Advanced Concepts for Intelligent Vision Systems (Aug.
2011), Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
pp. 417-428. doi:10.1007/978-3-642-23687-7_38.2

[SCM*18] Si1zYAKIN R., CORNELIS B., MEEUS L., MARTENS M.,
VORONIN V., PIZURICA A.: A deep learning approach to crack detec-
tion in panel paintings. In Image Processing for Art Investigation (IP4AI)
(2018), pp. 40-42. 2

[SHK*14] SRIVASTAVA N., HINTON G., KRIZHEVSKY A.,
SUTSKEVER 1., SALAKHUTDINOV R.: Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning
Research 15 (2014), 1929-1958. 4

[SHM14] Soukup D., HUBER-MORK R.: Convolutional neural net-
works for steel surface defect detection from photometric stereo im-
ages. In International Symposium on Visual Computing (2014), Springer,
pp. 668-677. 2

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.


http://dx.doi.org/10.1109/CVCS.2015.7274902
http://dx.doi.org/10.1109/CVCS.2015.7274902
http://dx.doi.org/10.1016/j.ymssp.2015.04.032
http://dx.doi.org/10.1016/j.ymssp.2015.04.032
http://dx.doi.org/10.1016/j.aej.2017.01.020
http://dx.doi.org/10.1109/CEC.2004.1330900
http://dx.doi.org/10.1109/MSP.2015.2411753
http://dx.doi.org/10.1109/MSP.2015.2411753
http://dx.doi.org/10.1007/978-3-642-23687-7_38

