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Abstract

The overall aim of this thesis was to investigate a transversely forced, round
air-jet, with focus on the coherent vortex structures formed in the near-field
of the jet. Increased knowledge about the interaction between the acoustic
field and the simple, round jet is relevant for industrial flow scenarios such as
thermo-acoustic oscillations in gas turbine combustors. A series of experiments
were conducted placing the jet at different positions in a standing-wave pressure
field while performing stereoscopic particle image velocimetry.

It is known from previous studies that at the pressure anti-node position, where
only axial velocity fluctuations are present, the shear-layer of the jet rolls up
into axisymmetric vortex rings. At the pressure node position on the other
hand, where only transverse velocity fluctuations are present, the shear-layer
rolls up into vortex structures that are in anti-phase on either side of the jet
centerline in the direction of the pressure wave.

The results in this thesis suggest that it is the velocity fluctuations at the
nozzle exit, either axial, transverse or a combination of both, that drive the
formation of the vortex structures in the jet. These structures start to form
when the velocity at the nozzle exit turns positive in the cycle; either out of
the nozzle in axial direction, or away from the jet centerline for the transverse
direction. Vortices formed by transverse fluctuations are found to pinch off one
half of the forcing period later, when the jet turns away from the vortex. For
positions close to the pressure anti-node, the presence of moderate amplitudes
of transverse velocity fluctuations causes the vortex rings to tilt. For the
positions between the pressure anti-node and the pressure node where both



velocity fluctuations are present with comparable amplitudes, the jet forms
complex vortex structures that can be fundamentally different on either side
of the jet. Here the phase between the velocity fluctuations seems to play an
important role; either one vortex is formed in the shear-layer if the axial and
transverse fluctuations are approximately in phase, or the velocity fluctuations
form separate structures at different times in the cycle if the phase difference is
sufficiently large.
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AN,RMS/Ue = 0.25, started at tũ0 . . . . . . . . . . . . . . . . 142

5.3 Total and vortex circulation on the left and right side of the jet
as a function of time, for y/λ

4 = 0.5, f = 450 Hz, Ue = 13.1 m/s,
u′

AN,RMS/Ue = 0.25, started at tṽ0− and tṽ0+ on the left and right
hand side, respectively . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Total and vortex circulation on the left and right side of the jet as
a function of time for varying forcing frequencies and amplitudes
at the pressure node for Ue = 6.8 m/s . . . . . . . . . . . . . . 145

5.5 Total and vortex circulation on the left and right side of the
jet as a function of time for varying forcing amplitudes at the
pressure node for f = 450 Hz, Ue = 13.1 m/s . . . . . . . . . . 147

5.6 Time-series of phase averaged vorticity contours for f = 450 Hz,
Ue = 13.1 m/s, u′

AN,RMS/Ue = 0.25, toghether with contours of
Du/Dt = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Material acceleration, Du/Dt, and contours of Du/Dt = 0,
of two Hill’s vortex rings with common symmetry axes and
separation distance 4a, 3a and 2.5a between the ring centers . . 151

5.8 Pressure along the centerline for different times in the forcing
cycle for y/λ

4 = 0, f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25152

xix



List of figures

5.9 Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet
as a function of time, for y/λ

4 = 0, f = 450 Hz, Ue = 13.1 m/s,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.10 Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as
a function of time, for y/λ

4 = 0.25, f = 450 Hz, Ue = 13.1 m/s,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.11 Time-series of phase averaged vorticity contours, for f = 655 Hz,
Ue = 13.1 m/s, y/λ

4 = 0.25, u′
AN,RMS/Ue = 0.25, toghether with

contours of Du/Dt = 0 . . . . . . . . . . . . . . . . . . . . . . . 156

5.12 Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as
a function of time, for y/λ

4 = 0.25, f = 655 Hz, Ue = 18.9 m/s,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.13 Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as
a function of time, for y/λ

4 = 0.5, f = 450 Hz, Ue = 13.1 m/s,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.14 Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet
as a function of time, for y/λ

4 = 1, f = 450 Hz, Ue = 13.1 m/s,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.15 Pressure evolution in the shear-layer on the left and right hand
side of the jet, for f = 450 Hz, Ue = 13.1 m/s, y/λ

4 = 0,
u′

AN,RMS/Ue = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.16 Pressure evolution in the shear-layer on the left and right hand
side of the jet, for f = 450 Hz, Ue = 13.1 m/s, u′

AN,RMS/Ue =
0.25 for jet positions y/λ

4 = 0, y/λ
4 = 0.25 and y/λ

4 = 0.5 . . . . 162

xx



List of figures

5.17 Pressure evolution in the left and right hand side shear-layer for
f = 450 Hz, Ue = 13.1 m/s, u′

AN,RMS/Ue = 0.25 for jet positions
y/λ

4 = 0.75 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.1 Kelvin-Helmholtz instability . . . . . . . . . . . . . . . . . . . . 186

B.1 Time-series of phase averaged vorticity contours for y/λ
4 = 0.25,

f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25 . . . . . . . . . 192

B.2 Time-series of phase averaged vorticity contours for y/λ
4 = 1,

f = 450 Hz, Ue = 6.8 m/s . . . . . . . . . . . . . . . . . . . . . 193

B.3 Time-series of phase averaged vorticity contours for y/λ
4 = 1,

f = 450 Hz, Ue = 13.1 m/s . . . . . . . . . . . . . . . . . . . . 194

B.4 Time-series of phase averaged vorticity contours for y/λ
4 = 1,

f = 450 Hz, Ue = 18.9 m/s . . . . . . . . . . . . . . . . . . . . 195

B.5 Total and vortex circulation on the left and right hand side
of the jet as a function of time at the pressure anti-node for
u′

AN,RMS/Ue = 0.25, using the original method by Gharib et al.
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Chapter 1

Theoretical background and
previous work

1.1 Introduction

The topic of this thesis is an investigation of a transversely forced jet, where
pressure waves act perpendicular to the jet’s mean flow, and in particular
modification of the base flow and the coherent structures formed in the near-
field of the jet. There is a great amount of literature on longitudinally forced
jets, where the pressure waves are parallel to the jet flow, and the jet response
is known for a wide range of forcing configurations. Recently there has been
an increasing research activity also on transverse forcing, driven by the gas
turbine community and challenges related to thermo-acoustic oscillations. Most
of these studies tend to mimic modern industry designs, with complex flow
and geometries. The jet used in the experiments in this study was as simple
as possible; the flow was incompressible with a uniform inlet velocity without
swirl, combustion or heat transfer.

This chapter presents the theory and literature related to transverse acoustic
forcing of jets. The research combines fluid mechanics and acoustics, both
important to understand the phenomena observed in this study. In section
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1.2 the theory of the classical self-preserving, axisymmetric jet is presented,
including instability theory. Also pulsed jets, a result of periodic, axisymmetric
forcing of jets are covered, together with vortex rings, which is an important
type of vortex structures that commonly appear in pulsed jets. In section
1.3, jet manipulation and asymmetric forcing is presented, with focus on what
impact it has on the coherent structures in the jet flow. Section 1.4 covers
transverse acoustic instabilities mostly associated with gas turbine combustion
flows which motivates the thesis topic. Section 1.5 summarizes state-of-the-art
and knowledge gaps, while section 1.6 presents the objectives of this study.

1.2 Axisymmetric jets

A jet is a canonical flow where fluid of a constant velocity enters an ambient
fluid through an orifice or a nozzle, creating a shear-layer between the jet fluid
and its surroundings. The experiments in this study consider an incompressible,
axisymmetric air jet discharging into a very long rectangular box. The box
width ensures the jet is "free" in the near-field and developing regions, but not
in the far field.

The jet flow can be described in cylindrical coordinates x, r, θ by the turbulent
boundary layer approximation of the mean continuity and momentum equations
for axisymmetric, stationary non-swirling flows (Pope, 2001):

∂ūx

∂x
+ 1
r

∂(rūr)
∂r

= 0, (1.1)

ūx
∂ūx

∂x
+ ūr

∂ūx

∂r
= ν

r

∂

∂r

(
r
∂ūx

∂r
− 1
r

∂

∂r

(
ru′

xu
′
r

))
. (1.2)

Here ūx, ūr and ūθ are the time averaged velocity components describing the
flow field, x is the symmetry axis of the jet, i.e. x is the dominant flow direction
and ν is the kinematic viscosity of the fluid, which for air is ν = 1.5 · 10−5 m2/s.
It is assumed that all gradients except in the r direction can be neglected and
that the flow is quiescent or uniform as r → ∞.
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The steady, incompressible jet can be characterized by a single, non-dimensional
group, the Reynolds number. This is defined as

ReD = UeD

ν
. (1.3)

Here, Ue is the mean velocity at the exit plane and D is the exit diameter of
the nozzle.

Downstream of the nozzle exit the jet keeps an almost constant speed before it
slows down as a consequence of entrainment of the slower ambient fluid into
the jet. For a jet with a so-called top-hat profile, where the velocity of the
nozzle exit cross-section is uniform, the potential core can be approximately
defined as the part of the jet having a time averaged velocity larger than a
certain threshold. In this study 95 % of Ue is used as threshold:

ūx,potential core > 0.95 · Ue. (1.4)

The potential core length is defined as the distance from the nozzle exit along
the centerline to where the potential core stops.

Downstream of the potential core, the time averaged velocity profile develops
to a nearly Gaussian shape, and the jet becomes self-similar (Pope, 2001). This
means that the time averaged axial velocity profiles for different axial positions
collapse when the velocity and radial component are normalized by the local
centerline velocity and a measure of the local jet width, respectively. Figure
1.1a shows the axial variation for the dimensional profile of a round jet, and
figure 1.1b shows how the profiles collapse when they are normalized. The
radial component is here normalized by the jet half width, r1/2, defined by
ūx(x, r1/2(x)) = 1

2 ūx(x, r = 0). Even though the volume flow of the jet increases
downstream due to entrainment, the momentum of the jet’s cross-section must
be conserved if there are no external forces acting on it. By neglecting viscosity,
equation (1.1) and (1.2) can be combined to obtain the conservative momentum
equation:

∂

∂x
(rū2

x) + ∂

∂r

(
rūxūr + ru′

xu
′
r

)
= 0. (1.5)
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(a) (b) (c)

Figure 1.1: Time averaged axial velocity profiles for different axial positions of
a round jet in (a) dimensional and (b) non-dimensional form. (c) shows the jet
centerline velocity at the exit divided by the axially varying centerline velocity
against axial position. Adapted from Pope (2001).

By integrating with respect to r, the following is obtained:

d
dx

ˆ ∞

0
rū2

xdr = −
[
rūxūr + ru′

xu
′
r

]∞
0

= 0. (1.6)

By comparing this with the expression for momentum flow rate,

Ṁ(x) ≡
ˆ ∞

0
2πrρū2

xdr = 2πρ
ˆ ∞

0
rū2

xdr, (1.7)

where ρ is the density of the fluid, it is clear that the jet’s momentum is
conserved. From this it can be shown that the centerline velocity decreases
inversely with x in the self-similar region, as also the experimental data in
figure 1.1c shows. The centerline velocity, Uc(x), can therefore be expressed as

Uc(x)
Ue

= B

(x− x0)/D, (1.8)

where x0 is the virtual origin obtained by extrapolating the measurements in
figure 1.1c to the horizontal axis, and B is a constant. Further, the jet spreads
linearly so a constant spreading angle θS can be expressed as:

r1/2(x) = θS(x− x0). (1.9)
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Self-similarity occurs for x/D > 20 for the mean velocity profile, while the
fluctuating components develop slower, and is not completely self-similar before
x/D > 50 for the axial and x/D > 70 for the radial components (White, 2006).
Also Reynolds stresses and dissipation are shown to be self-similar (Pope, 2001).
All these self-similar quantities of the jet are independent of ReD, so that
different axisymmetric jet flows with same inlet conditions, all collapse in the
self-similar region.

1.2.1 Jet instabilities

In this study the focus is on the near-field of the jet, defined as the first
diameters downstream of the nozzle. In this region the jet develops from the
initial top-hat velocity profile towards the self-similar Gaussian shape, and here
the shear-layer of the jet plays an important role. By performing a stability
analysis, it can be shown that this shear-layer is unconditionally unstable
(see appendix A). This means that if an oscillation appears in the shear-layer,
the amplitude will grow with time (White, 2006). The instabilities are not
self-excited, but are dependent on an external disturbance source. The jet
is therefore said to be globally stable, but convectively unstable (Schmid &
Henningson, 2012). The instabilities in the shear-layer of a round jet is a type
of Kelvin–Helmholtz instability, named after Lord Kelvin (Thomson, 1871) and
von Helmholtz (1868).

Batchelor & Gill (1962) investigated the temporal stability of an axisymmetric
jet. They found that in the limit of short instability waves in the shear-layer
of the jet, the phase velocity was going towards half of the jet velocity, which
is the average of the jet and the ambient velocity. They also found that the
growth rate of the instability increased progressively with Strouhal number, a
non-dimensional frequency defined as

StD = fD

Ue
, (1.10)

where f is the frequency of the instability waves.
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(a) (b)

Figure 1.2: (a) Spark photograph of a fog jet with ReD = 1.05 · 104 and (b)
Schlieren photograph of a jet with ReD = 1.06 · 105, seeded with CO. Adapted
from Crow & Champagne (1971).

Crow & Champagne (1971) investigated axisymmetric jets experimentally, and
found that instabilities were present in the near-field of unforced, turbulent
jets. The instabilities consisted of axisymmetric, coherent vortical structures
they referred to as a train of axisymmetric puffs. These are visualized in the
spark and Schlieren photographs in figure 1.2. In the experiments the formation
of the puffs was found to be non-periodic, but they formed on average at a
frequency corresponding to StD ≈ 0.30. The authors also showed that the
frequency of the puffs could be locked by weak forcing from a sinusoidal signal
produced by a loudspeaker placed upstream of the nozzle exit. An example of
the forced jet flow is shown in figure 1.3. The forcing amplitude was measured
as longitudinal oscillations of the flow at the nozzle exit, and was typically
u′

RMS/Ue = 2 %, where u′
RMS is the root-mean-square sinusoidal fluctuation of

the axial velocity component. For the weakly forced jets, an optimal Strouhal
number of StD = 0.3 was found. Forcing at this frequency gave the highest
amplitude of the velocity fluctuations at the end of the potential core, x/D ≈ 4,
for a given forcing amplitude. This was not in accordance with the temporal
stability analysis by Batchelor & Gill, who predicted that the amplitude should
increase with increasing Strouhal number. Crow & Champagne suggested that
the saturation of the instability amplitude is a non-linear phenomenon, and
that "The mode having a Strouhal number of 0.30 is preferred in the sense
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Figure 1.3: Schlieren photograph of a jet with ReD = 1.06 · 105 seeded with
CO, under influence of 2 % forcing at StD = 0.60. Adapted from Crow &
Champagne (1971).

that it can attain the highest possible amplitude under the combined effects of
linear amplification and non-linear saturation". Later, studies have shown that
the preferred mode of an axisymmetric jet lies in the range StD = 0.24 − 0.64
(Gutmark & Ho, 1983). The corresponding preferred-mode frequency is termed
f0.

Crow & Champagne developed a spatial linear stability theory believing that
this would better fit the experiments than the temporal theory by Batchelor
& Gill. However, this was far off the experimental data of the phase velocity
of the instability waves for different wavelengths, while the temporal theory
matched the measurements quite well. Also for predicting the amplification
rate the temporal instability theory was closest, but here the deviation was
larger with the prediction 47 % higher for StD = 0.30. Michalke (1971) later
showed that the reason for the divergence between the spatial theory and the
experimental data was the assumption of an infinitesimally thin shear-layer
of the jet. By taking into account a finite shear-layer thickness, Michalke’s
spatial instability theory matched the data by Crow & Champagne. Raman
et al. (1994) showed that for low-amplitude axisymmetric forcing of a round
turbulent jet, linear stability theory was only able to predict the development
of the fundamental jet instability very close to the nozzle exit, while an energy
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Figure 1.4: Illustration of hydrodynamic azimuthal modes in a round jet.
Adapted from O’Connor et al. (2015).

integral theory developed by Mankbadi & Liu (1981) was matching quite well
in the whole measurement domain, up to x/D = 6.

By Fourier series expansion in the azimuthal direction the disturbances in
the shear-layer of the jet can be decomposed into the following hydrodynamic
instability modes:

û′(x, r, θ, f) =
∞∑

mh=−∞
cmh

(x, r, f)eimhθ (1.11)

where the Fourier coefficients are given by

cmh
(x, r, f) = 1

2π

ˆ 2π

0
eimhθû′(x, r, θ, f)dθ (1.12)

and mh is the hydrodynamic azimuthal mode number. mh = 0 is the axisym-
metric mode, while mh ̸= 0 are helical modes. The sign denotes the direction
of the helical disturbance, and its absolute value denotes the spatial frequency.
Figure 1.4 illustrates the three modes mh = 0, 1 and -1. According to the
stability analysis by Michalke & Hermann (1982), both the axisymmetric and
helical modes exist in round jets. mh = 0 and mh ± 1 are the modes with the
largest growth rates near the exit of a non-swirling jet, and these modes have
comparable maximum growth rates for a jet with a top-hat profile. However,
experiments by e.g. Crow & Champagne (1971), figure 1.2, show that it is the
axial mh = 0 mode that is visible in the near-field of the jet. Measurements
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by Raman et al. (1994) showed that the axisymmetric mode dominated in the
near-field of an unforced jet, while after the potential core (x/D ≈ 6), the
helical modes mh = ±1 dominated and mh = 0 disappeared. The higher order
modes, |mh| > 1, were found to be significantly smaller for all axial positions
measured, up to x/D = 8.

For a forced jet, the shear-layer rolls up into vortex structures for a certain finite
level of disturbance amplitude (Brown & Roshko, 1974). For an axisymmetric
jet forced in a similar way as by Crow & Champagne (1971), the mh = 0 mode
of the jet will be excited and locked to the forcing frequency. By increasing the
forcing, the vortical structures in the shear-layer grow and can eventually form
into vortex rings. These flow structures are of great importance in the field of
forced jets, and will be presented in the next section.

1.2.2 Vortex rings

Vortex rings are fundamental fluid structures important in jet dynamics. An
extensive amount of literature deal with vortex rings and their formation, and
reviews of this subject can be found in Shariff & Leonard (1992) and Lim &
Nickels (1995). To study vortex rings in isolation and experimentally, starting
jets are often used. Then the fluid is pushed impulsively through a nozzle or
orifice, and the shear-layer of the jet rolls up to a vortex ring. Lim & Nickels
(1995) defines the vortex ring as a bounded region of vorticity in a fluid where
the vortex lines form closed loops. The vortex ring gets this vorticity from the
vorticity flux provided by the jet shear-layer (Didden, 1979).

Vortex rings can be described mathematically by the vorticity equation:

Dω⃗

Dt
= ω⃗∇u + ν∇2ω⃗. (1.13)

Here
Dω⃗

Dt
= dω⃗

dt
+ u∇ω⃗ (1.14)
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is the substantial derivative, u = (ux, ur, uθ) is the velocity vector and

ω⃗ = (ωx, ωr, ωθ) = ∇ × u (1.15)

is the vorticity vector. By assuming the vortex ring is axisymmetric, inviscid
and without swirl (uθ = 0), the equation simplifies to

D(ωθ/r)
Dt

= 0. (1.16)

In this case, only the azimuthal vorticity component is non-zero. For an inviscid
vortex ring with or without a convective velocity, the shape remains constant in
time. In a frame-of-reference following the vortex ring we have a steady-state
solution, and equation (1.16) reduces to

u∇(ωθ/r) = 0. (1.17)

The solution of this equation is on the form

ωθ

r
= F (ψ), (1.18)

where ψ(x, r) is the stream function defined as

ux = 1
r

∂ψ

∂r
ur = −1

r

∂ψ

∂x
, (1.19)

and F is some arbitrary function. The azimuthal vorticity can be expressed by
the stream function:

ωθ = ∂ur

∂x
− ∂ux

∂r
= −1

r

(
∂2ψ

∂x2 + ∂2ψ

∂r2 − 1
r

∂ψ

∂r

)
. (1.20)

Inserting this into equation (1.18) we get(
∂2ψ

∂x2 + ∂2ψ

∂r2 − 1
r

∂ψ

∂r

)
= −r2F (ψ). (1.21)

A famous solution of this equation is the Hill’s spherical vortex (Hill, 1894),
where the vorticity is bounded by a sphere of radius a and the center is at the
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Figure 1.5: Velocity field (left) and stream lines (right) of a Hill’s vortex.

origin:

ψ =

−3
4

Ur2

a2
(
a2 − x2 − r2) , x2 + r2 ≤ a2.

1
2Ur

2
(
1 − a3

(x2+r2)3/2

)
, x2 + r2 > a2.

(1.22)

Here U is the velocity of a uniform axial flow. The velocity field and streamlines
of Hill’s vortex are shown in figure 1.5. Hill’s solution of equation (1.21) can
be extended by a parameter representing the mean core radius of the vortex
ring, resulting in a family of vortex rings known as the Norbury-Frankel family
(Fraenkel, 1972; Norbury, 1972).

For an inviscid vortex ring, the circulation is an invariant. The circulation is
defined as the line integral of velocity along a closed circuit C:

Γ =
˛

C
u · dl =

ˆ
S
ω⃗ · dS. (1.23)

Here, S is the surface bounded by C. To find the circulation of an axisymmetric
vortex ring, the circuit C can be chosen to be in a plane defined by θ = constant
and to encircle the vorticity through the origin and to one side of the axis of
symmetry in that plane. The circuit C needs to move with the vortex ring.
Circulation is only an invariant in the inviscid case. For the viscous vortex ring,
the vorticity will diffuse in time and the circulation of the vortex ring then
decreases.

An analytical model for vortex ring formation is the slug model (Didden, 1979).
This model predicts the circulation of a vortex ring produced when a cylindrical
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slug of fluid is pushed through the nozzle by a piston. The model gives the
following expression for the vorticity flux:

dΓslug
dt

=
ˆ
ωθuxdr =

ˆ (
∂ur

∂x
− ∂ux

∂r

)
uxdr ≈

ˆ (
−∂ux

∂r

)
uxdr ≈ 1

2u
2
p(t).
(1.24)

Here, the boundary layer assumptions are invoked, and it is assumed that the
velocity external to the boundary layer at the inside of the nozzle at the exit
plane equals the piston velocity, up. If up is known, the circulation as a function
of time can be found by integration:

Γslug ≈
ˆ t

0

1
2u

2
p(τ)dτ. (1.25)

From the slug model an estimate of the axial convection velocity of the vortex
ring can be obtained (Mohseni & Gharib, 1998):

uv,c = 1
2 ūp(t). (1.26)

Here ūp(t) = 1
t

´ t
0 up(τ)dτ is the running average of the piston velocity. In

practice, the vortex ring velocity has shown to be higher than this estimate.

For a jet acoustically forced by a sinusoidal signal, we can approximate the
"piston velocity" to be

up = Ue(1 +A sin(ωt)) (1.27)

where A = (
√

2/2)u′
RMS/Ue is the normalized amplitude of the axial velocity

fluctuations in the jet due to the acoustic forcing, and ω = 2πf is the angular
frequency of the forcing (not to be confused with the vorticity vector ω⃗).
By inserting this into equation (1.24) and integrating, we get the following
expression for the vortex ring circulation:

Γslug ≈
ˆ t

0

1
2u

2
p(τ)dτ = 1

2U
2
e

ˆ t

0
(1 +A sin(ωτ))2dτ

=1
2Ue

((
1 + A2

2

)
t− 2A

ω
(1 − cos(ωt)) − A2

4ω sin(4πft)
)
.

(1.28)
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Figure 1.6: Nondimensional circulation Γ∗ versus time according to the slug
model in equation (1.30) for a jet with Strouhal number St = 0.3.

This equation can be written in nondimensional form by dividing with UeD,
and using the nondimensional versions of circulation (Γ∗ = Γ/(UeD)), time
(t∗ = t/T = ωt/(2π)) and frequency (St = ωD

2πUe
):

Γ∗
slug ≈ 1

2 · St

((
1 + A2

2

)
t∗ − A

π

(
1 − cos(2πt∗) − A

8 sin(4πt∗)
))

. (1.29)

In the experiments in this study, the axial fluctuations never exceed A ≈ 0.35,
causing the amplitude of the high-frequent term A

8 sin(4πt∗) never to exceed
5% of the term cos(2πt∗). The circulation can therefore be approximated to:

Γ∗
slug ≈ 1

2 · St

((
1 + A2

2

)
t∗ − A

π
(1 − cos(2πt∗))

)
. (1.30)

This equation is shown in figure 1.6 for the three different forcing amplitudes
A ≈ (

√
2/2)u′

AN,RMS/Ue that are most frequently used in this study.

1.2.3 Optimal vortex rings

Gharib et al. (1998) found a universal time scale for vortex ring formation.
Their study showed that for a starting jet there is a limiting value of the stroke
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(a)

(b)

Figure 1.7: (a) Flow-visualization of vortex rings for increasing maximum stroke
ratios; LP /D = 2 (upper jet), LP /D = 3.8 (middle jet) and LP /D = 8 (lower
jet). (b) Total and vortex circulation for LP /D = 8. Adapted from Gharib
et al. (1998).

ratio, defined as
LP /D = ūp(t)t/D, (1.31)

where the vortex ring reaches a maximum possible circulation. Here, LP is
the piston stroke or length of ejected fluid. As shown in figure 1.7a, the size
of the vortex ring increases from the upper ring (LP /D = 2) to the middle
ring (LP /D = 3.8), while the growth does not continue as the stroke length
is increased further for the lower ring (LP /D = 8). The lower vortex ring is
however followed by a tail of fluid with vorticity that does not enter the ring,
whereas this tail is not apparent for the other cases. By measuring the total
circulation of the starting jet together with the circulation of the vortex ring
as a function of time, as seen in figure 1.7b, Gharib et al. showed that the
circulation level of the ring corresponds to the circulation produced by the
piston at (LP /D) ≈ 4, as long as the maximum stroke length of the piston is
(LP /D) > 4. Gharib et al. called this limit the formation number, and the
process where the vorticity from the jet is no longer able to entrain the ring was
termed vortex ring pinch-off. If (LP /D) < (LP /D)lim ≈ 4, all the circulation
from the starting jet entrain the vortex ring. For stroke ratios larger than the
formation number, the ring pinches off at (LP /D)lim ≈ 4, and the rest of the
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circulation is seen as a tail of vorticity behind the vortex ring. The authors
further showed that the formation number found experimentally matches the
theoretically predicted time, where the energy of the Norbury-Fraenkel vortex
rings, described in the previous section, exceed the energy of the shear-layer
predicted by the slug model. Shusser & Gharib (2000) and Mohseni et al. (2001)
later proposed that pinch-off is initiated when the axial velocity of the vortex
ring exceeds the axial velocity of the trailing jet. It is also shown that the
formation number corresponds to an optimal vortex ring in terms of maximum
impulse, circulation and volume per piston work (Linden & Turner, 2001).

Lawson & Dawson (2013) found that a trailing pressure maximum forms behind
the turbulent vortex ring in a synthetic jet. These maxima were identified by
locating where contours of ∂p/∂x = 0 were crossing the jet centerline. The
trailing pressure maximum plays an important role in the pinch-off mechanism
of the ring as the adverse pressure gradient upstream of this point stops the
vorticity flux from the jet to enter the ring structure. A Lagrangian Coherent
Structure (LCS) analysis carried out in their study supports this explanation. A
repelling LCS is found behind the vortex ring. The fluid is not able to pass this
LCS, and therefore it divides the ring from the rest of the shear-layer. It was
found that the formation of the trailing pressure maximum and the repelling
LCS coincided with the pinch-off time estimated using the circulation method
by Gharib et al. (1998). Later, Schlueter-Kuck & Dabiri (2016) used a similar
method to estimate the pinch-off time of vortex rings, but instead of looking at
the pressure at the symmetry line they used the pressure in the shear-layers.
Figure 1.8 shows the shear-layer pressure in a x− t diagram. The vortex ring
core is identified as a blue diagonal line of low pressure marked as (i), while the
trailing pressure maximum follows later in time as a red line of high pressure
marked as (ii). After the trailing pressure maximum, a secondary vortex forms.
Due to a higher velocity, this vortex catches up and merges with the first vortex.
The result of this is that the trailing pressure maximum of the second vortex,
marked as (iv), becomes the trailing pressure maximum of the combined vortex
as the first pressure maximum disappears. Therefore it is (iv) that is associated
with vortex pinch-off, and by following this area of high pressure back to the
vertical axis, x/D = 0, the pinch-off time is found.
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Figure 1.8: Pressure in the shear-layer of a jet under the formation of a vortex
ring. Adapted from Schlueter-Kuck & Dabiri (2016).

1.2.4 Pulsed jets

If a jet that initially has a constant exit velocity is longitudinally and periodically
forced, e.g. by a pressure wave upstream of the jet nozzle, its exit velocity will
turn into a periodic velocity program. For sufficient forcing amplitude, this
results in a pulsed jet where the velocity oscillation excites instabilities in the
shear-layer and vortical structures are formed. As the amplitude is increased,
these structures grow and can eventually form vortex rings. The result is a
periodic train of vortex rings convecting downstream in the jet. Külsheimer &
Büchner (2002) found that for a swirling jet with a sinusoidal velocity program,
the limit amplitude for this transition to happen decreases hyperbolically with
the jet’s Strouhal number.

Aydemir et al. (2012) found that for a pulsed jet with a sinusoidal velocity
program equal to equation (1.27), the separation distance between consecutive
rings increases with both amplitude and forcing period. Increasing the forcing
amplitude also changes the initial roll-up location, causing vortices to form
closer to the jet exit. They also found that the same formation number as found
by Gharib et al. (1998) is valid for pulsed jets, but only when a time scale of
one third of the forcing period, T/3, is used for calculating the stroke ratio over
one forcing period. t = T/3 is the time in the forcing cycle when the vortex
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ring velocity exceeds the velocity of the jet shear-layer, and the effective forcing
period can therefore be seen as one third of the sinusoidal velocity period. From
this Aydemir et al. found that for a longitudinal, sinusoidal forcing system, the
average piston velocity ūp is given by

ūp = Ue

(
1 + 9A

4π

)
, (1.32)

where A is defined in equation (1.27). Asadi et al. (2018) performed numerical
simulations on a pulsed jet with constant flow of duration Ts/T = 0.25 − 0.75
of the forcing period, and no flow between the pulses. They found an empirical
relation for the axial center position of the vortex rings generated by the jet:

xv/D = 0.27
( 1
StD

)1+1.31Re−0.2
D t

Ts
. (1.33)

Here, Ue in StD and ReD is the jet exit velocity averaged over the forcing
period T .

Pulsed jets have also been investigated in relation to gas turbine combustion.
Balachandran et al. (2005) showed that for a lean premixed turbulent bluff-
body-stabilized flame, upstream longitudinal forcing affected the heat release,
which became nonlinear after the inlet velocity amplitudes exceeded a certain
limit. It was found that this limit coincided with the appearance of vortex
roll-up in the shear-layer.

1.3 Jet manipulation and asymmetric forcing

So far, we have looked at the undisturbed development of jets or jets that are
axisymmetrically forced along the flow direction. This results in large-scale
axisymmetric structures. In this section we consider the non-axisymmetric
response of jets. We present different methods to manipulate the jet or control
the development of the jet flow downstream, mostly by applying some kind of
radial forcing close to the nozzle exit of the jet. The motivation of this has
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mainly been to increase the mixing of the jet with the ambient fluid, which can
be beneficial in industrial applications (Matta et al., 1996).

By combining longitudinal and helical forcing of a jet, the so-called bifurcating
and blooming jets can be achieved (Reynolds et al., 2003). For both cases
the longitudinal forcing causes the shear-layer to roll up into vortex rings, but
helical forcing breaks the axisymmetry of the jet and offsets the rings relative
to each other. An example of a helical forcing system is when the jet nozzle
moves in a circular motion in the nozzle exit plane, causing the jet origin to
oscillate.

For bifurcating jets, the frequency of the axial forcing needs to be twice the
helical forcing frequency, fa/fh = 2. Then all the rings will be formed at two
positions 180° apart in the nozzle orbit, and every second ring will be formed at
the same point. For an axisymmetric train of vortex rings, the sum of induced
velocity on one ring from the rest is in the direction of the mean flow and
causes no rotation or radial motion. For a staggered system of vortex rings,
however, the induced velocity rotates the rings. When looking at the symmetry
plane of the staggered system of a bifurcating jet flowing upwards, the left and
right offset rings will rotate counterclockwise and clockwise, respectively. This
again causes the rings to move away from the jet centerline. The result is a
jet that splits in two. An example of the bifurcating jet is shown in figure 1.9.
The spreading angle in the bifurcation plane increases dramatically compared
to the plane normal to the the bifurcation plane, and also compared to an
axisymmetric, forced jet. The spreading angle increases with the amplitude
of both the axial and helical forcing. Also by increasing StD, but keeping
fa/fh = 2, the spreading angle increases to a certain point. StD determines
the distance between the vortex rings, and when the vortex rings are getting
closer, the induced velocity from the neighboring rings increases, and so does
the spreading angle. Parekh et al. (1988) reported spreading angles up to 70°
for StD ≈ 0.65 of the axial forcing. For even higher StD, however, the rings get
entangled because they get too close to each other, and bifurcation does not
occur.
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(a) (b)

Figure 1.9: Bifurcating jets: (a) adapted from Parekh et al. (1987) and (b)
bifurcation plane (left) and normal to the bifurcation plane (right) adapted
from Parekh et al. (1988).

Figure 1.10: Blooming jet from the side (left) and from above (right). Adapted
from Reynolds et al. (2003).
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Figure 1.11: Helically forced jet, ReD = 100 000, StD = 0.27. Adapted from
Parekh et al. (1988).

For a blooming jet to form, the axial forcing needs to be a non-integer multiple
of the helical forcing frequency (Reynolds et al., 2003). Then the vortex rings
form at random points on the nozzle orbit. The mechanisms are otherwise
the same as for a bifurcating jet, and the result is a jet where the vortices
spread in all directions, as seen in the example in figure 1.10. Also for the
blooming jet the spreading angle increases dramatically, but in contrast to the
bifurcating jet, this spreading is equal in all directions and the time averaged
flow is axisymmetric.

Parekh et al. (1988) used an apparatus for combined longitudinal and helical
forcing to achieve a bifurcating jet. A system of four external drivers each
connected to wave guides focusing the acoustic signal radially at the jet exit
and separated azimuthally by 90°, was used for helical forcing. In addition,
a speaker used for longitudinal forcing was placed upstream of the nozzle. A
sinusoidal signal with the same frequency was sent to all the drivers. For the
helical forcing, the phase difference between two neighboring driver signals was
90°, while the amplitude was the same for all of them. By applying only the
helical forcing, a system of staggered vortices, as seen in figure 1.11, formed
in the near-field of the jet. Parekh et al. (1988) suggested that the vortex
structures in this jet was tilted rings, alternatively a single vortex line creating
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a spiral structure. This vortex pattern was not achieved when applying a
mechanical, helical forcing system to oscillate the jet nozzle.

Instead of speakers, Yang et al. (2016) used two pulsating minijets to manipulate
the structure of the main jet. The minijets were pointing radially at the exit of
a considerably larger jet, separated by an azimuthal angle of 60°. They found
that when the frequency of the unsteady minijets was f/f0 = 0.5, where f0

is the preferred-mode frequency of the main jet, jet flapping was observed in
the symmetry plane defined by the nozzle centerline and the line between the
minijets. This caused a large increase in the decay rate of the mean velocity
at the jet centerline, and the spreading angle in the symmetry plane. These
phenomena are also reported by other researchers; Perumal & Zhou (2018)
used the same setup and settings but with only one minijet, while Freund
& Moin (2000) conducted DNS on a round jet excited by two anti-phased
slot jets on either side of the main jet close to the exit. In the latter study,
both f/f0 = 0.5 and f/f0 = 1 resulted in a flapping jet column. The highest
decay rate and spreading was found for f/f0 = 0.5. Yang et al. (2016) gave a
detailed explanation for the flapping. The minijets seem to lock the roll-up of
the shear-layer into vortex rings to the preferred-mode frequency, and because
f/f0 = 0.5, the pulse from the minijets hit every second ring and pushes
them away from the minijet. The result is a train of vortex rings where the
axisymmetry is broken in a similar way as for the bifurcating jet. Also here
the induced velocity of the other rings rotates each vortex ring to an inclined
position. The development of the vortex structures in the jet is showed in the
flow visualization and sketch in figure 1.12. The vortices A and B are rotating
counterclockwise and clockwise, respectively. This, eventually, causes the lower
part of vortex ring B to merge with the lower part of the upstream vortex ring
A, and similarly the upper part of vortex ring B merges with the upper part of
the downstream vortex ring A. This results in a staggered vortex pattern in
the symmetry plane, similar to what Parekh et al. (1988) achieved with helical
forcing. The induced velocity moves the area where the center of vortex A is
upwards and B downwards, and the jet gets a flapping motion.

Kusek et al. (1990) used a forcing system consisting of 12 speakers placed
around the exit of a round jet to force the jet at the lip of the nozzle with a
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Figure 1.12: (a) Photographs and (b) sketch of vortex structures in a jet
manipulated by pulsating minijets. Adapted from Yang et al. (2016).
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sinusoidal signal. They compared the response of the jet for two different forcing
conditions. When the speakers where in phase, axisymmetric vortex structures
were formed periodically. For the other forcing condition, the speaker signals
formed a standing wave resulting in two amplitude maxima or anti-nodes in
anti-phase on opposite sides of the jet, and at these points strong vortex roll-ups
were seen. The vortices appeared in anti-phase and formed a staggered vortex
system in the jet. Kibens (1980) used a similar forcing system consisting of an
acoustic excitation chamber surrounding the nozzle exit. He axisymmetrically
forced a round air jet at frequency f0. This organized the large-scale structures
in the shear-layer into a sequence of three successive vortex-pairing stages at
fixed streamwise locations, producing the subharmonic frequencies f0/2, f0/4
and f0/8. Corke & Kusek (1993) investigated the frequency response of a jet
with f0 = 2040 Hz, subjected to the same helical forcing as introduced by Kusek
et al. (1990). A weak forcing at fh = 1250 Hz excited a helical mode, but did
not interact with the natural instability modes of the jet. However, adding
an axisymmetric forcing with frequency fa = 2500 Hz to the helical forcing
resulted in an amplification of the subharmonic helical mode 1

2fh. Bechert
& Pfizenmaier (1975) used a similar setup to show that it was possible to
manipulate the strength of the harmonic or the subharmonic by adding a signal
of respectively double or half the frequency of the original forcing signal. By
changing the phase between the two signals, these frequencies could either be
amplified or canceled.

Urbin & Métais (1997) performed a Large Eddy Simulation (LES) of a round
jet with a top-hat profile, where periodic perturbations of different types at
StD = 0.35 was imposed to the axial velocity at the nozzle. Axisymmetric
perturbations resulted in vortex rings, while helical perturbations resulted in
helical vortex structures in the near-field of the jet. A third kind of forcing was
also applied, where the perturbation amplitude was varying sinusoidally with
time. The signal was the same on half of the jet, and in anti-phase compared
to the other half. This type of forcing resulted in a periodic response of the
jet consisting of vortex structures as seen in figure 1.13. The vortex structures
have similarities with the vortex rings formed in axisymmetric forced jets, but
with the ring only rolling up in the area with positive perturbation. This
results in hairpin like vortices appearing in anti-phase on either side of the
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Figure 1.13: Pressure iso-surface of a jet subjected to sinusoidal forcing in
anti-phase on either side of the nozzle exit. Adapted from Urbin & Métais
(1997).

jet, and twice per forcing period in total. The hairpin vortices are tilted with
the legs pointing downstream and partly connecting to the next downstream
vortex. The spreading rate of the jet is reported to increase nearly 25 % in the
symmetry plane compared to the unforced jet, while normal to the symmetry
plane no significant change in the spreading rate was found. Danaila & Boersma
(2000) obtained a jet with the same type of vortex structures when performing a
Direct Numerical Simulation (DNS) on a jet subjected to a similar perturbation.
However, the Strouhal number was StD = 0.55, and the axial perturbation
velocity at the nozzle exit, u′, was a sum of counter-rotating helical modes,
u′ ∼ r(sin (2πft− θ) + sin (2πftθ)), resulting in a standing wave. Danaila
& Boersma called this a flapping mode due to the response of the jet. The
simulation also showed that the jet was bifurcating as it was splitting into two
branches with the vortex structures forming on the same side included in the
same branch. Interestingly, when performing a simulation with a forcing more
similar to that Parekh et al. (1988) was using, consisting of the flapping mode
forcing with StD = 0.275 plus an axial forcing at StD = 0.55, the jet was not
found to bifurcate. The mean field was described as Ψ-shaped instead of the
Y-shape of a bifurcating jet. Also da Silva & Métais (2002) did LES on a jet
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applying different types of forcing. Using the forcing method by Urbin & Métais
(1997) the jet was found to bifurcate under certain conditions. StD = 0.38
resulted in bifurcation only for low Reynolds numbers, while for StD = 0.19 the
bifurcation was present up to ReD = 25 000. For the combined axial and helical
forcing used by Parekh et al. (1988), the jet was bifurcating for all Reynolds
numbers investigated, up to ReD = 50 000. This type of forcing also resulted
in the largest spreading rate.

Several studies have investigated the effect of modifying the shape of the nozzle.
Kibens & Wlezien (1985) and Wlezien & Kibens (1986) used nozzles with
inclined and stepped trailing edges. For axial forcing, an inclined edge caused
the vortex rings to tilt, while for a stepped edge, vortex structures developed
independently at each step. Both types of nozzles increased the spreading
rate in the symmetry plane compared to standard round nozzles. Longmire &
Duong (1996) showed that the stepped nozzles caused the jet to bifurcate, and
that the vortex structures consisted of tilted, closed vortex rings. A sawtooth
shaped nozzle also resulted in a bifurcating jet with large-scale vortex structures
formed as helical loops. Tabs placed inside of the nozzle close to the exit have
also been used to modify the large-scale vortex structures of the jet (Bradbury
& Khadem, 1975; Reeder & Samimy, 1996; Zaman et al., 1994). Each tab
caused a counter-rotating vortex pair to form in the streamwise direction, and
by placing two tabs on opposite sides of the nozzle a bifurcating jet was formed.
Suzuki et al. (2004) performed measurements on a jet where 18 miniature
electromagnetic flap actuators where placed with equal distance around the
inside of the nozzle close to the exit. By controlling these flaps, the jet could
be manipulated in a similar way as the forcing system by Kusek et al. (1990)
and in the simulations by Urbin & Métais (1997). By controlling the flaps
to generate an axisymmetric forcing, the mh = 0 mode of the jet was excited
and vortex rings where periodically formed, while helical forcing excited the
mh = ±1 mode creating continuous helical structures. By controlling the flaps
with a square-wave signal that was in anti-phase on half of the nozzle compared
to the other half, alternately inclined vortex rings at twice the forcing frequency
formed and caused the jet to bifurcate.
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Many studies describe vortex rings formed in axially forced and starting jets
with oval or elliptic shaped nozzles (Adhikari, 2009; Domenichini, 2011; Hussain
& Husain, 1989; O’Farrell & Dabiri, 2014). These rings form initially with
similar shape as the nozzle, but while moving downstream the rings deform
since the self-induced velocity of a vortex ring is inversely proportional to the
local radius of curvature (Arms & Hama, 1965). This causes the parts of the
vortex ring in the plane of the minor axis to move slower than the rest of the
ring, and therefore the parts of the ring in the plane of the major axis bend
inward and toward each other. At this point the ring is shaped similar to
the seam of a tennis ball (Hussain & Husain, 1989). Further, the part of the
vortex ring that initially had the highest velocity now slows down making the
upstream part of the ring move outwards and catch up with the rest of the ring.
The result is again a vortex ring with a shape similar to the nozzle, but now
the minor and major axes have switched. For high aspect ratio nozzles, even
bifurcation has been observed. This can happen if opposite sides of the vortex
ring touch and the ring split into two circular rings.

The vortex structures vary around an elliptic vortex ring. Figure 1.14 shows
the vortex structures in the major and minor axis plane of a ring formed from a
starting jet with and elliptic nozzle, at a time when the ring has the tennis ball
seam shape. The vortices in the major axis plane has moved slightly inwards
and has a tail of vorticity from the trailing shear-layer. The vortices in the
minor axis plane, however, has moved considerably outwards at the same time
as the shear-layer has curved around, and are connected on the top of, the slower
moving ring. Both Adhikari (2009) and O’Farrell & Dabiri (2014) observed that
for sufficiently long stroke ratios, this curved shear-layer separated and formed
what from the vorticity field seemed to be an independent vortex structure
downstream of the vortex core. However, a LCS analysis by O’Farrell & Dabiri
(2014) showed that this structure remained within the LCS ridge defining the
downstream boundary of the vortex ring, and therefore suggesting that this
vortex and the vortex ring was still one connected structure.
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(a) (b)

Figure 1.14: Vorticity field of a jet, going from left to right, from an elliptic
nozzle. a) shows the cross-section along the major axis and b) along the minor
axis. Adapted from O’Farrell & Dabiri (2014).

1.4 Transverse acoustic instabilities

The response of jets to transverse forcing is fundamentally important to the
practical problem of thermo-acoustic instabilities in gas turbine combustion. In
annular combustors undergoing thermo-acoustic oscillations, multiple jet flames
are stabilized in an azimuthal acoustic field. This is equivalent to a single jet
flame subjected to transverse forcing. Simulations have shown that both axial,
standing and spinning modes can occur in annular combustion systems (se e.g.
Bethke et al. (2005); Pankiewitz & Sattelmayer (2002); Wolf et al. (2012a,b);
Worth & Dawson (2013a,b)). In fact, acoustic measurements have revealed
that the acoustic modes are continuously switching between standing waves,
and clockwise and counterclockwise traveling waves (Noiray & Schuermans,
2013). In combustion chambers found in modern gas turbines and jet engines,
acoustic forcing can appear from self-excited thermo-acoustic instabilities and
has the form of pressure waves acting transversely on the fuel jets entering the
combustion chamber. For the thermo-acoustic instabilities to be self-excited,
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net energy must be added to the instabilities by heat:
ˆ

V

ˆ
t
p′(x, t)q̇′(x, t)dtdV > 0. (1.34)

This is the Rayleigh criterion, and is satisfied if the phase in absolute value
between the fluctuations in heat release rate q̇′(x, t) and pressure instabilities
p′(x, t) is less than 90°. V is the volume of the system.

Self-excited transverse instabilities are also a well-known problem in rocket
engines. Rogers (1956) and Elias (1959) investigated the phenomenon of screech
in rectangular combustors. This is characterized by a intense sound with a
constant, high frequency that causes the flame zone to shorten, the heat-transfer
rate to grow and to highly increase the probability for failure of the combustion
chamber. It was shown that the frequencies of these screeches correspond to the
modes of transverse oscillation in the burner. The Spark-schlieren photograph in
figure 1.15 show that the transverse velocity fluctuations across the combustion
chamber form vortices alternately on either side of the fuel inlet. Even though
the photograph does not revile the three-dimensional structures of the flow,
this pattern has similarities to what was reported in many studies described in
section 1.3.

Also can combustors have shown self-excited transverse modes (Schwing et al.,
2012; Schwing & Sattelmayer, 2013; Schwing et al., 2011). Schwing et al.
(2011) investigated fully premixed swirl-stabilized flames and showed that the
dominating first mode was rotating. They found that it was the acoustic
velocity, and not the pressure, that contributed to the Rayleigh criterion and
therefore the self-excited instabilities. The reason for this contribution was that
the velocity periodically moved the flame in transverse direction.

The main reason for the interest in transverse, thermo-acoustic instabilities from
the gas turbine community is, however, due to the operating limitations this
phenomenon introduces to modern, low-emission combustors for both power
generation and aeroengines. Self-excited thermo-acoustic instabilities are more
likely to appear in lean, premixed combustors because of the absence of a
secondary air intake that tend to damp the pressure oscillations (O’Connor
et al., 2015). Experiments and simulations has been conducted on several types
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Figure 1.15: Spark-schlieren photograph of screeching combustion in a rectan-
gular combustion chamber. Adapted from Rogers (1956).

of combustors, and an full overview of these studies can be found in the review
paper by O’Connor et al. (2015). As the instabilities in these combustors
are shown to appear as pressure waves transverse to the fuel flow entering
the combustion chamber, this phenomenon can be investigated by applying
transverse acoustic forcing in a controlled way on relevant flows. Several
experimental studies on transverse forcing have been conducted in high aspect
ratio, rectangular enclosures surrounding the jet, where speakers have been
mounted on tubes on each short-sided wall. The acoustic waves travel in the
direction of the largest dimension of the enclosure, and the frequency and phase
of the speakers can be adjusted to obtain plane standing waves with varying
acoustic modes. This design was first introduced by O’Connor & Lieuwen
(2011). O’Connor et al. (2013) showed that the flame behavior when standing
waves are present is fundamentally similar for an annular combustor as for
the unwrapped model. To date, the fundamental response to a round jet at
different locations in an acoustic field has yet to be investigated. This is the
most general base flow and can reveal the fundamental flow response.
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Before the relevant literature of transverse acoustic forcing of jets is presented,
an introduction of linear acoustics follows.

1.4.1 Acoustic theory

A one-dimensional sound field in x-direction can be described by the following
linearized fundamental equations (Kuttruff, 2007):

∂p′

∂x
= −ρ∂u

′

∂t
, (1.35)

ρ
∂u′

∂x
= − 1

c2
∂p

∂t
. (1.36)

Here, p′ is the acoustic pressure, u′ is the acoustic velocity in x-direction of the
fluid the sound waves are traveling in, ρ is the density of the fluid and c is the
speed of sound. By partially differentiating equation (1.35) with respect to x
and (1.36) with respect to t, and combine them, we obtain the one-dimensional
wave equation:

∂2p′

∂x2 = 1
c2
∂2p′

∂t2
. (1.37)

This equation is satisfied by any function of the pressure with existing second
derivatives on the form p′ = p′(x± ct) (Kuttruff, 2007). The general solution is
therefore

p′(x, t) = g(x− ct) + h(x+ ct). (1.38)

Here, g(x−ct) represents a sound wave moving with the speed c in the positive x
direction and h(x+ct) a sound wave moving with the same speed in the negative
x direction. To satisfy equation (1.35) and (1.36), the fluid velocity needs to
have a similar distribution as the pressure in equation (1.38); u′ = u′(x± ct).
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With this in mind, the following expression for the acoustic velocity of a sound
wave traveling in the positive x direction can be derived from equation (1.35):

u′ = 1
ρc
p′. (1.39)

The ratio between the sound pressure and the acoustic velocity is called the
characteristic impedance, Z0:

Z0 = p′

u′ = ±ρc. (1.40)

For a wave traveling in the negative x direction, the ratio equals p′

u′ = −Z0.

For the special case where the two waves g(x, t) and h(x, t) in equation (1.38)
are sinusoidal with frequency f and amplitudes A and B, respectively, we have:

g(x, t) = Aei 2πf
c

(x−ct), (1.41)

h(x, t) = Bei 2πf
c

(x+ct). (1.42)

By defining the wave number k = 2πf
c and the angular frequency ω = 2πf we

get

p′(x, t) = Aei(kx−ωt) +Bei(kx+ωt). (1.43)

The acoustic velocity is found by dividing equation (1.43) by ±Z0:

u′(x, t) = A

ρc
ei(kx−ωt) − B

ρc
ei(kx+ωt). (1.44)

By using Eulers formula, eix = cosx+ i sin x, we can find the real part of the
pressure:
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ℜ{p′(x, t))} =ℜ{Aei(kx−ωt) +Bei(kx+ωt)}

=ℜ{A(cos(kx) + i sin(kx))(cos(ωt) − i sin(ωt))

+B(cos(kx) + i sin(kx))(cos(ωt) + i sin(ωt))}

=(A+B) cos(kx) cos(ωt) + (A−B) sin(kx) sin(ωt),

(1.45)

and similarly with the velocity:

ℜ{u′(x, t)} =ℜ
{
A

ρc
ei(kx−ωt) − B

ρc
ei(kx+ωt)

}
=ℜ

{
A

ρc
(cos(kx) + i sin(kx))(cos(ωt) − i sin(ωt))

− B

ρc
(cos(kx) + i sin(kx))(cos(ωt) + i sin(ωt))

}
=A−B

ρc
cos(kx) cos(ωt) + A+B

ρc
sin(kx) sin(ωt).

(1.46)

From these expressions we see that a standing wave is obtained by setting
A = B:

ℜ{p′(x, t)} = 2A cos(kx) cos(ωt),

ℜ{u′(x, t)} = 2A
ρc

sin(kx) sin(ωt).
(1.47)

From now on, if nothing else is specified, we will refer to the real part of
pressure and velocity as just pressure and velocity, as this is what is measured
in experiments by e.g. a microphone. In a sinusoidal standing wave, the
acoustic velocity is 90° out of phase with the pressure in both space and time.
An anti-node is the position in a standing wave where the fluctuations has a
maximum, while a node is where there are no fluctuations. A pressure anti-node
is therefore a velocity node, and a pressure node is a velocity anti-node. In
between these two positions, both pressure and velocity fluctuations are present,
but the amplitude of the fluctuations decreases from the anti-node to the node.
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The time instant when the pressure waves has a maximum amplitude, the
velocity is zero for all x, and the other way around; when the pressure is zero,
the velocity has its maximum amplitude.

By setting either A = 0 or B = 0 in equations (1.45) and (1.46), we get a
traveling wave moving in the negative or positive x direction, respectively. This
wave differs from the standing wave in that sense that both pressure and velocity
fluctuations are present independent of position. A traveling wave has therefore
similar properties as the positions between the pressure anti-node and pressure
node in a standing wave. The difference, however, is that while the pressure
and velocity fluctuations are 90° out of phase in a standing wave, they are in
phase for a wave traveling in the positive direction and in anti-phase for a wave
traveling in the negative direction.

For the general case where we neither have a purely standing wave or a purely
traveling wave, a mixed mode occurs and the spin ratio can be defined using
the constants A and B from equation (1.45) and (1.46) (Evesque et al., 2003):

SR = |A| − |B|
|A| + |B|

. (1.48)

The spin ratio has its name from annular combustors, where the traveling wave
in the azimuthal direction in an annulus is said to be spinning. The spin ratio
varies from SR = −1 for a wave traveling in negative direction to SR = 1 for a
wave traveling in positive direction, and is zero for a standing wave.

A sound wave contains energy. The energy density is the energy content of
a sound wave per unit volume, and can be divided into kinetic and potential
energy (Kuttruff, 2007):

w = wkin + wpot = ρ
u′2

2 + p′2

2ρc2 . (1.49)

By inserting equation (1.39) for u′ we see that for a harmonic wave the kinetic
energy equals the potential energy. Another important acoustic quantity is the
sound intensity or energy flux density, I. This is the energy flow transported
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Figure 1.16: Normalized pressure, acoustic velocity and energy flux density in
a standing wave.

by the acoustic wave traveling through the fluid, and is given by

I(x, t) = p′(x, t)u′(x, t). (1.50)

As for the energy density, the kinetic part equals the potential part of the
energy flux density for a harmonic wave. Figure 1.16 shows the energy flux
density together with the pressure and acoustic velocity for a one-dimensional
standing wave with length λ = c/f . The pressure anti-node is here defined to
be positioned at x = 0, and the pressure node is therefore at x = λ/4. The
energy flux density is zero at the pressure anti-node and node, and has its
maximum at x/λ

4 = 0.5.

In this thesis, acoustics in a rectangular box is of interest since the transverse
forcing is conducted by placing the jet in a rectangular enclosure where an
acoustic standing wave is established. This occurs when there is resonance. For
a closed rectangular box, the resonance frequency or eigenfrequency is given by
(Kuttruff, 2007):

f = c

2

√√√√( l

Lx

)2
+
(
m

Ly

)2

+
(
n

Lz

)2
. (1.51)
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Figure 1.17: Standing waves for even acoustic mode numbers in y direction.

Lx, Ly and Lz are the three box dimensions and l, m and n are non-negative
integers. The numbers l, m and n define the acoustic modes of the box and
physically they are the number of acoustic nodal planes perpendicular to the
axes x, y and z, respectively. The number of wavelengths corresponds to half
the mode number in that dimension. For a closed box with pressure waves in
the y-direction and constant pressure along x and z, we have l = n = 0 and
equation (1.51) simplifies to

f = c

2
m

Ly
. (1.52)

The walls perpendicular to the pressure waves are acoustic anti-nodes. At even
mode numbers, the pressure is identical at the two walls, while at odd mode
numbers the pressure at the two walls has opposite signs and are in anti-phase.
Figure 1.17 shows the theoretical pressure distribution for the acoustic mode
numbers used in the jet enclosure in this study. The enclosure will be described
in chapter 3 and is shown in figure 2.2 and 2.3a.

For an open box, with one wall missing, the pressure can be approximated as
constant and equal to atmospheric at this plane, and therefore it is a nodea.

aThis is only valid if the characteristic length of the cross-section of the open end is small
compared to the length of the box normal to this plane. If not, an end correction like δ in
equation (1.55), needs to be applied.
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Symmetry gives that this corresponds to having a closed box with twice the
length perpendicular to the missing wall plane, or alternatively a mode number
equal to 0.5 in this dimension. For a box similar to the one in equation (1.52),
but with one wall missing in the x plane, we get:

f = c

2

√√√√( 1
2Lx

)2
+
(
m

Ly

)2

. (1.53)

Another part of the setup of a transverse forcing facility, where the acoustics
play a crucial role, is the nozzle setup. This can for a typical round jet be
approximated as a pipe with one open and one close end. For a round pipe with
small diameter, the one-dimensional acoustics is described by equation (1.45)
and (1.46). By using the same symmetry argument as for equation (1.53), we
get the following resonance frequency for a pipe of length L:

f = c

4L. (1.54)

This means that resonance will occur if the pipe length is a quarter of the
length of the acoustic wave. Unless the diameter of the pipe is small compared
to L, an end correction needs to be added to L making the effective pipe length
L+ δ. This is due to the fact that the inertia of the flow makes the acoustic
flow continue a distance δ outside the open end of the pipe. For small wave
numbers k, the end correction for an unflanged thin-walled open pipe with
inner diameter Dp is given by Rienstra & Hirschberg (2017):

δ = 0.61Dp

2 . (1.55)

So far, we have been considering acoustics where the velocity field only consists
of the fluctuating acoustic velocity. In the experiments in this study, however,
the acoustics in the jet apparatus is affected by a mean flow. For acoustics in a
pipe with mean velocity U , the wave will propagate with a velocity c± U , and

36



1.4 Transverse acoustic instabilities

we get the following expressions for the acoustic pressure and velocity:

p′(x, t) = Aei(k1x−ωt) +Bei(k2x+ωt), (1.56)

u′(x, t) = A

ρc
ei(k1x−ωt) − B

ρc
ei(k2x+ωt). (1.57)

Here, k1 = 2πf
c+U and k2 = 2πf

c−U .

Normally, the pipe in the nozzle setup has one or more area changes. For a pipe
where the cross-sectional area has a discontinuity from A1 to A2, the pressure
at each side of the area change still needs to be equal, p′

1 = p′
2 (Kuttruff, 2007).

The area change causes part of the wave traveling in the pipe with area A1 to
be reflected, and the total pressure here is the sum of the incident wave p′

i and
the reflected wave Rp′

i: p′
1 = p′

i +Rpi. If the pipe has an open end, represented
by another area change from A2 to A3 where A3 >> A2, it can be shown that
the impedance from right before the first area change to right after the second
area change is given by

Z

Z0
= A1
A2

· A2 + iA3 tan(kL2)
iA2 tan(kL2) +A3

, (1.58)

where L2 is the length between the two area changes. By also assuming that
this section of the pipe is acoustically compact (kL2 << 1), we get

Z

Z0
= ikL2

A1
A2
. (1.59)

The acoustic impedance of the nozzle and the upstream pipe shown in figure
2.1a can be approximated by equation (1.59), by setting A1 to the area of the
35 mm pipe, A2 to the exit area of the nozzle and L2 to an estimate of the
length of the small-area part of the nozzle.

As the jet apparatus, shown in figure 2.1a, also has a plenum, an alternative
approach is to model the nozzle setup as a Helmholtz resonator. A Helmholtz
resonator is a pipe shaped as a bottle, with a body and a neck with an open end
(Rienstra & Hirschberg, 2017). If the bottle is short compared to the acoustic
wavelength, the body of the bottle acts as an acoustic spring while the neck acts
as an acoustic mass. The main purpose of a Helmholtz resonator is to damp
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pressure oscillations, and a pressure fluctuation p′ outside the resonator neck
from an external source will move the air in the body. For a certain angular
frequency ω of the pressure oscillations, the mass-spring system will resonate,
and the energy in the pressure wave will effectively dissipate into heat. The
resonance frequency of a Helmholtz resonator with a bottle volume V , a neck
cross-sectional area An and a neck length Ln is given by

ω0 = Anc
2

(Ln + 2δ)V . (1.60)

This expression is valid if the cross-sectional area of the bottle is much larger
than the area of the neck so that the acoustic velocities in the bottle are small.
It is also assumed that the neck is acoustically compact, i.e. kLn << 1, and
that there are no friction losses in the resonator. The term 2δ is added to the
neck length as end corrections to both sides of the neck. By introducing a mean
flow through the Helmholtz resonator resulting in a mean exit velocity Ue, we
get the following expression for the amplitude of the velocity fluctuations u′ in
the resonator neck:

ρcû′

p̂′ = − Ue/c+ iω1ω/ω
2
0

1 − (ω/ω0)2 + iUeω1ω/(cω2
0) , (1.61)

where ω1 = c/(Ln + 2δ), and the hat denotes the Fourier transform of the
fluctuating value. It is assumed that the pressure in the jet is equal to p′,
which is valid for low Mach numbers, Ue/c << 1, and low Strouhal numbers,
ω(An/π)1/2/U ∼ fDn/Ue << 1. Also, higher order terms are neglected which
is valid for small perturbations, |û′|/Ue << 1. The amplitude and phase of
equation (1.61) is given in figure 1.18 for zero mean flow together with the
velocities used in this study. An ideal Helmholtz resonator without mean flow
has a discontinuity at ω = ω0 as the amplitude goes to infinity and the phase
jumps 180°. The mean flow introduces a damping factor even though we have
assumed no friction losses, and the phase jump is smeared out. This is due to
loss of acoustic kinetic energy because of increased vorticity shedding at the
exit of the resonator neck for increasing velocity.
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Figure 1.18: Amplitude and phase of the acoustic velocity in the neck of a
Helmholtz resonator for different mean flows.

1.4.2 Transverse acoustic forcing of jets

For transverse forcing of a jet, the forcing acts perpendicular to the jet’s flow
direction. This can be conducted in different ways. For transverse acoustic
forcing, the perturbation is a sound wave that is either traveling or standing.
A traveling wave in y direction can be decomposed into the following sum
(O’Connor et al., 2015):

eiky =
∞∑

mh=−∞
Ĉmh

(kr)eimhθ =
∞∑

mh=−∞
imhJmh

(kr)eimhθ. (1.62)

Here Jmh
is the Bessel function of the first kind and mh is the hydrodynamic,

azimuthal mode number illustrated in figure 1.4. This shows that a traveling
wave can be expressed as an infinite sum of helical disturbances where Ĉmh

(kr)
denotes the strength of mode mh. Similar expressions can be derived for
symmetric forcing 1

2(eiky + e−iky) corresponding to a pressure anti-node in
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a standing wave, and asymmetric forcing 1
2i(eiky + e−iky) corresponding to a

pressure node. We are interested in the solution in the region close to the
jet. By assuming the nozzle is much smaller than the acoustic wavelength, i.e.
kD ≪ 1, the higher order terms in a Taylor expansion of the Bessel function can
be neglected. We then get the following expressions for the modal amplitude
strength:

Traveling wave:
Ĉmh

= imh(kr)mh

2mhmh! . (1.63)

Symmetric forcing (pressure anti-node):

Ĉmh
=


imh (kr)mh

2mh mh! , mh = 0, 2...

0, mh = 1, 3...
(1.64)

Asymmetric forcing (pressure node):

Ĉmh
=

0, mh = 0, 2...
imh−1(kr)mh

2mh mh! , mh = 1, 3...
(1.65)

By inspecting these expressions and remembering that kr is small, it is clear
that Ĉmh

decreases quickly for increasing mh for all of the forcing conditions.
Also, it shows that symmetric and asymmetric forcing does not excite odd and
even modes, respectively, at all. Figure 1.19, adapted from O’Connor et al.
(2015), compares the forcing amplitudes from equation (1.64) and (1.65) with
velocity fluctuation amplitudes from experiments on a swirling annular jet by
O’Connor & Lieuwen (2012b) whose mathematical expressions are given in
equation (1.11). In general, the forcing strength of the hydrodynamic modes
coincides with the jet response of the same modes. The exception is mh = 2
and especially mh = −2 for symmetric forcing, where the jet in the experiments
has a higher response than expected. This is probably due to the fact that
these modes are close to the preferred mode of the swirling jet used in these
experiments (O’Connor et al., 2015).

40



1.4 Transverse acoustic instabilities

Figure 1.19: Modal amplitudes Ĉmh
from (a) equation (1.64) (symmetric

forcing) and (b) equation (1.65) (asymmetric forcing) compared to results from
transversely forced cold-flow experiments on a swirling jet by O’Connor &
Lieuwen (2012b) for 1200 Hz (c) symmetric forcing and (d) asymmetric forcing.
Adapted from O’Connor et al. (2015).
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A limited number of experiments have been conducted on transverse acoustic
forcing of round air jets. Matta et al. (1996) investigated the effect of a turbulent
round air jet entering a rectangular enclosure where two loudspeakers placed
on opposite walls created a standing wave perpendicular to the flow with a
pressure node at the jet centerline. The jet was found to be flapping back
and forth in the direction of the waves, and the vortices were rolling up in the
shear-layer on either side of the jet in anti-phase. This vortex shedding was not
found in the shear-layers perpendicular to the wave direction, resulting in an
elliptic jet shape of the time averaged cross-section in the near-field. Compared
to the unforced case, the forcing increased the spreading rate and decreased the
potential core length of the jet. This was most effective at StD ≈ 0.5. More
studies are found on complex jet flows placed in the pressure node. O’Connor
et al. (2013) reported that an annular nozzle with swirling inflow had similar
response as the round jet, with a swaying jet flow and a staggered vortex pattern.
From this, O’Connor and Lieuwen suggested that the shear-layer had rolled
up into helical structures. These helical structures have also been observed in
LES of a similar annular jet with swirl positioned at the pressure node (Huang
et al., 2006; Huang & Yang, 2005). For reacting flows this has shown to result
in a region of higher heat release, rotating around the jet shear-layer with the
forcing frequency, i.e. with the helical disturbance. Also in non-forced swirling
flows, the presence of helical structures is documented (Ruith et al., 2003).

A different response is shown for a jet with a pressure anti-node at the centerline,
where a periodic and axisymmetric roll-up of the shear-layer has been reported.
In experiments on annular jets, both with swirling inflow (O’Connor & Lieuwen,
2011; Saurabh & Paschereit, 2013) and without (Baillot & Lespinasse, 2014), the
response of the jets were similar to the longitudinally forced, pulsating jets from
chapter 1.2.4, where vortex rings formed because of axisymmetric, streamwise
velocity fluctuations at the nozzle exit. Similar velocity fluctuations are also
present in the pressure anti-node case despite the fact that this is the position
in the transverse pressure wave where there is no acoustic velocity. LES’s of
self-excited, annular combustors have also reported axial fluctuations of the fuel
entering the combustion chamber (Staffelbach et al., 2009; Wolf et al., 2009).
This is due to the pressure field inducing velocity oscillations upstream of the
nozzle exit and is known as injector coupling in the rocket community (Davis &
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Chehroudi, 2003; Hutt & Rocker, 1995). It can be explained by the theory in
section 1.4.1 by approximating the nozzle setup either as a pipe with changing
cross-section area or a Helmholtz resonator. Saurabh & Paschereit (2013)
suggested that these axisymmetric, vortical structures convecting downstream
drive heat-release oscillations for reacting jets.

Lespinasse et al. (2013) considered a rod-stabilized, laminar flame placed in five
different positions in the transverse standing wave. The flow response at the
pressure anti-node and node were reported to have the same response as the
experiments by O’Connor & Lieuwen (2012b). For the other positions between
the node and the anti-node, the jet showed asymmetric behavior. The vortices
on the side towards the pressure anti-node were visually larger than the vortices
on the side towards the node. In addition, the position of the flame centerline
was greatly inclined to the side towards the pressure node for the intermediate
jet position (figure 1.20). It was suggested that these asymmetries result from
the product of the pressure field and the transverse gradient of the pressure
field. This product is referred to as the potential energy density gradient, eac.
Since the transverse pressure gradient is proportional to the acoustic velocity,
eac is proportional to the energy flux density I given in equation (1.50). As seen
in figure 1.16, this is zero at the pressure anti-node and node, and exhibits a
maximum in the middle between these two points. This maximum corresponds
to where Lespinasse et al.reported the asymmetry of the vortices to be most
significant.

Studies have also been conducted on jets subjected to axial forcing simultane-
ously as transverse forcing at the pressure node in a standing wave. This causes
the jet to experience transverse and axial velocity fluctuations at the same time,
which is also the case for all the positions in a standing wave except at the
pressure node and anti-node. For the combined forcing on an annular flame
with swirl, the helical mode associated with the pressure node is present, but
the effect of axial forcing is superimposed onto this (Hauser et al., 2010). For a
flame subjected to transverse forcing, the flame was found to move periodically
in transverse direction, while for axial forcing the flame had a similar movement
in the axial direction. For the simultaneous forcing, the flame movement was
close to a superposition of the two independent motions, but with amplitudes in
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Figure 1.20: Flame centerline colored by the phase in the forcing cycle. (a)
Pressure anti-node, (b) in the middle of the pressure anti-node and node, and
(c) pressure node. Adapted from Lespinasse et al. (2013).

both directions slightly larger for the combined case. This resulted in a almost
circular movement of the flame.

Suzuki et al. (2007) investigated a methane jet with and without combustion,
both forced by a single loudspeaker sending a traveling wave normal to the jet
flow. For some range of Reynolds and Strouhal numbers the jet was found to
meander, and sometimes even bifurcate, in the plane defined by the jet and
acoustic wave directions. Bifurcation was also shown in a similar setup for both
plane and round microjets (Kozlov et al., 2008, 2009, 2011). Saurabh et al. (2014)
investigated the effect of traveling waves on swirling flames. They reported
that the flame response was similar to that of a swirling flame positioned in
the pressure anti-node of a standing wave field. In an acoustic simulation of a
similar setup, the traveling wave was however reported to give a mixed response
between the node and anti-node cases (Blimbaum et al., 2012).

The jet response when subjected to transverse forcing varies due to differ-
ent mechanisms. The transverse acoustic forcing can affect the jet directly
through the transverse velocity fluctuations, but as explained it can also go
via longitudinal acoustics causing axial velocity fluctuations at the nozzle exit
(O’Connor & Lieuwen, 2012a). Alternatively, both the axial and transverse
velocity fluctuations can excite different hydrodynamic instability modes of the
jet that form vortical structures in the jet flow. These again induce velocities
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that affect the flame behavior. The pressure anti-node and pressure node for
example, excites symmetric and asymmetric modes, respectively. This in turn
results in symmetric and asymmetric flames if combustion is present (O’Connor
& Lieuwen, 2012b; Worth & Dawson, 2013b).

The velocity fluctuations in the jet is a combination of velocities from these
different mechanisms. The amplitudes of the velocities directly from the acoustic
waves, that can be both transverse and axial, are dependent on transverse
position and has the longest wavelengths. The velocities induced by the vortices,
on the other hand, have shorter wavelengths and are convecting downstream.
In the near-field of the jet both of these velocities are present, while further
downstream the vortex structures disappear and causes the acoustic velocities
to dominate. Also the axial part of the induced velocities decreases in strength
as the flow moves downstream and away from the nozzle (O’Connor & Lieuwen,
2012a). For the pressure node case the combination of velocity fluctuations
results in an interesting interference pattern in the RMS plots of the near-
field of the jet; at some positions there is cancellation of the different velocity
fluctuations, while at other positions they are amplified. In the study by
O’Connor & Lieuwen (2012a) this pattern is visible in the jet’s velocity and
vorticity fluctuation fields, for flow both with and without combustion. In figure
1.21 an example of this phenomenon for the transverse velocity component is
shown. Also Emerson et al. (2013) reported this type of pattern for a similar
setup. To show that this pattern is a result of interference between the different
velocity fluctuations, O’Connor & Lieuwen (2012a) developed a simple model
for the transverse velocity field which showed to match quite well with the
experimental data:

va = Aae
−i(ωt+ϕva,vv ) (1.66)

vv = Ave
−iω(t−x/uv,c)e−αx. (1.67)

Here, va is the acoustic velocity, vv is the vortex induced velocity, Aa and Av

are the initial amplitudes of each velocity fluctuation, α is the decay rate, uv,c

is the axial convection speed of the vortices and ϕva,vv is the phase between
the velocity fluctuations.
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(a) (b)

Figure 1.21: Normalized amplitude of transverse velocity fluctuations at the
forcing frequency for (a) nonreacting and (b) reacting flow for an annular
jet with exit velocity Ue = 10 m/s subjected to a pressure node with forcing
frequency 400 Hz. Adapted from O’Connor & Lieuwen (2012a).

A variety of different jet responses can be explained purely by acoustics. Blim-
baum et al. (2012) studied the acoustic response of an annular nozzle in a
rectangular box using a finite element acoustic model. At the pressure anti-
node the velocity across the jet centerline was reported to be symmetric, with
zero transverse velocity but with axial velocity fluctuations. In the case of
the nozzle at the pressure node, the flow exhibited large transverse velocity
fluctuations that resulted in a three-dimensional flow response. In this case,
pressure fluctuations with 180° phase shift between the opposite sides of the
jet centerline were driving axial velocity fluctuations with the same phase shift.
These fluctuations were smaller in amplitude compared to the pressure anti-node
case. This was explained by the fact that the pressure fluctuations are zero at
the nozzle center line, and an acoustically compact nozzle experiences small
pressure fluctuations also at the edges. But also if the axial velocity fluctuations
at the nozzle outlet are too large to be negligible, they are of opposite directions
on each side of the nozzle. For that reason, the fluctuations cancel each other
and decay progressively as they propagate upstream in the nozzle. Therefore,
the nozzle impedance has no influence on the response in the pressure node
case. This is in contrast to all other positions in the standing wave, and also for
the traveling wave. For these cases the system is referred to as pressure-coupled,
and the nozzle response due to the pressure fluctuations are dependent on
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the nozzle impedance. The pressure and velocity at the nozzle exit are then
related by the net translated impedance, Ztr. For a nozzle with an acoustically
compact length h, h ≪ α, and boundary condition Z0 at the lower end of the
nozzle, x = −h, Ztr can be derived by dividing equation (1.43) by (1.44) and
expressing A and B by Z0 :

Ztr

ρc
= p̂(x, ω)
û(x, ω) = −


(
−Z0

ρc − 1
)
e−ik(x+h) +

(
− Z

ρc + 1
)
eik(x+h)(

Z0
ρc + 1

)
e−ik(x+h) +

(
−Z0

ρc + 1
)
eik(x+h)

 . (1.68)

For the pressure node case, the pressure at the exit of the nozzle is independent
of Ztr and therefore also the nozzle impedance, and is also close to the one-
dimensional acoustic solution. For the other cases, the pressure is only close to
the one-dimensional solution for the anechoic boundary condition, Ztr(x = 0) =
1, but change with Ztr as it gets affected by the presence of the nozzle. For
Ztr(x = 0) = 0.01, described as pressure release condition, standing pressure
waves upstream of the nozzle will try to change the nozzle exit to a pressure
node, as it acts as an open end of a pipe as described in section 1.4.1.

1.5 Summary of the literature

Transverse acoustic forcing has been shown to result in different vortex structures
in the shear-layer of a jet. The jet’s position in the wave is significant here.
Even though several aspects of the vortex structures of these jets have been
documented, three-dimensional measurements of these jets have not been
reported in the literature.

The pressure anti-node has the same effect on the jet as longitudinal forcing,
where the shear-layer rolls up into periodic, axisymmetric vortex structures
controlled by the forcing frequency. At a certain finite level of forcing amplitude,
coherent vortex rings form in the near-field. This axisymmetric response has
been observed in many types of jets, from simple, round jets of constant density,
to swirling annular jets with combustion.
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For a jet positioned at the pressure node, measurements in the plane parallel
to the acoustic waves have revealed that the jet undergoes a flapping motion,
and the shear-layer rolls up in anti-phase about the jet centerline resulting in
a staggered arrangement of vortices. For a jet at a pressure node, the vortex
structures are affected by the inlet conditions. For swirling inflow it has been
suggested in several studies that the shear-layer rolls up into continuous, helical
structures, and this has some support for the specific conditions from three-
dimensional LES (Huang et al., 2006; Huang & Yang, 2005). For non-swirling
inflow, Matta et al. (1996) found that the vortex shedding was only present in
the plane parallel, and not normal, to the acoustic waves. This eliminates the
possibility for the vortex structures in the jet to be a continuous helix. The
description of the jet shape fits however well with what was reported from the
simulations by Urbin & Métais (1997) and Danaila & Boersma (2000) of a jet
forced by a flapping mode, and the three-dimensional vortex structure of the jet
in a pressure node is therefore likely to have a shape similar to what is shown in
figure 1.13. This similarity is also expected from the fact that equation (1.65)
shows that the pressure node of a transverse wave can be approximated as a
sum of the mh ± 1 modes, which is equivalent to a flapping mode.

Fewer studies have investigated the flow response of traveling waves and of
jets positioned in between the pressure anti-node and node of a standing wave.
Here, the presence of both pressure fluctuations and pressure gradients result
in acoustic velocities in the transverse and axial directions simultaneously, and
the response has been reported to be a combination of those of a pressure
anti-node and a pressure node (Saurabh et al., 2014). A different behavior at
the intermediate position in a standing wave, that has not been seen in either
the pressure anti-node or the pressure node case, was reported by Lespinasse
et al. (2013). Here, the vortex structures on the jet shear-layer towards the
pressure anti-node was larger than on the other side, and the jet was leaning
towards the pressure node. This resulted in an asymmetric mean flow-field. It
was suggested that this was caused by the product of the pressure fluctuations
and the pressure gradient fluctuations, that is non-zero in a traveling wave, and
everywhere in a standing wave except at the pressure anti-node and pressure
node positions.
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1.6 Objectives

This chapter has summarized the state-of-the-art in forced jets, vortex formation
and active control of jets. It shows there are significant areas that are unexplored,
and in particular the large-scale structures of a jet within a transverse acoustic
field appears to be unknown. There have been studies that consider the structure
of jets and flames in a transverse acoustic field (Lespinasse et al., 2013; O’Connor
& Lieuwen, 2012b), but the complex conditions of these studies (i.e. combustion,
swirl at inlet, annular jet) limit the understanding of the flow interaction with
the acoustic field. Understanding this for a simple, non-reacting flow such as a
round jet, offers insight that can be applied to industrial flow scenarios that are
significantly more complex such as thermo-acoustic oscillations in gas turbine
combustors that in the simplest sense, are an array of jets around an annulus
discharged into a transverse acoustic field. In this regard, the single round jet
can help elucidate the fundamental flow response observed in more complex
configurations. This thesis will investigate the following research questions:

• How are the mean properties of the jet (deflection of the flow, poten-
tial core, shear-layers and jet centerline) affected by transverse acoustic
forcing?

• What is the nature of the vortex structures in the jet and how they are
formed? What is the role of pressure fluctuations, pressure gradient fluc-
tuations and their interaction, in the vortex formation and the asymmetry
of the jet?

• How is the pinch-off process for the vortex structures in the near-field
affected by jet position? Can the pinch-off time of the vortex structures
in a transversely forced jet be determined using the same methods as
developed for vortex rings?
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Chapter 2

Experimental methods

This chapter describes the experimental setup as well as the measurement
and analysis techniques used. In section 2.1 and 2.2 the apparatus, as well as
the measurements used to characterize the acoustic field, is described. Veloc-
ity measurements were performed, using both constant temperature hot-wire
anemometry at the nozzle exit and stereo particle image velocimetry in the
transverse-streamwise plane in the near-field of the jet. These techniques are
described in section 2.3 and 2.4, respectively. Finally, section 2.5 presents the
post-processing methods used to analyze the data.

2.1 Experimental setup

Figure 2.1a shows a sketch of the jet apparatus used in this study. The flow
enters horizontally from two 12 mm inner diameter rubber tubes below the 300
mm long plenum chamber with inner diameter of 94 mm. There are two speaker
holders, 61 mm long pipes with inner diameter of 25 mm, on opposite sides of the
plenum that has been used in previous studies for longitudinal forcing (Aydemir
et al., 2012; Lawson & Dawson, 2013). These holders are sealed with rubber
gaskets and metal plates from outside and not used is this study, but might
have an impact on the acoustic properties of the nozzle setup. At the beginning
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of the constant area part of the plenum there is a 40 mm long honeycomb
section of hexagonal cells with cross-sections of 3 mm, for flow conditioning.
Downstream of the plenum chamber, the flow goes through a pipe of length
400 mm with an inner diameter of 35 mm. This pipe has two microphone
holders 200 mm apart with 8 mm diameter round holes perpendicular into the
side of the pipe which enable to place microphones flush with the inner wall
of the pipe. These holes were sealed during measurements with modeling clay
to prevent losses, either completely or around the microphones when pressure
measurements were performed. At the end of the pipe, the jet nozzle comprised
of a 61.5 mm long converging nozzle with a fifth order profile and a knife-edged
exit of diameter 10 mm. Figure 2.1b shows a detailed sketch of this nozzle.
Previous works (Aydemir et al., 2012; Lawson & Dawson, 2013) demonstrated
that the jet exhibits an approximately top-hat velocity profile at the nozzle exit.
The air was supplied from a 5.5 bar pressure supply, and a mass flow controller
(Alicat MCR-500SLPM-D, ±1.9% − 3.9% (89.1 − 32.0 SLPM) flow uncertainty)
was used to control the flow rate.

The jet was discharged into a long rectangular enclosure shown in the sketch
of the experimental setup in figure 2.2, and in the photograph in figure 2.3a.
The nozzle exit protruded 13 mm above the base. The enclosure was made
of 15 mm thick, clear lexan walls for optical access and with two speakers
mounted on adjustable side walls to create approximately one-dimensional
acoustic standing waves along the enclosure. The speakers were fitted to 35
mm inner diameter resonance tubes. The speaker tube lengths could be altered
to deliver significantly higher power compared to without the tubes. The tubes
were terminated on the speaker end, and their lengths plus the end-correction
in equation (1.55) were matched to the quarter wavelength of the speaker signal
according to equation (1.54) to obtain resonance. Tubes with lengths depending
on the forcing frequency were therefore used and mounted on the side walls
with its center 60 mm above the enclosure base. As shown in figure 2.3b, an
extra pair of speakers could be added 125 mm above the first pair to increase
the range of obtainable pressure amplitudes in the enclosure when necessary.
The enclosure was 590 mm high and 220 mm deep, and had an open top. The
speaker side walls were movable to be able to adjust the box length to match
the acoustic wavelength, and also adjust the jet position within the standing
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Figure 2.1: Sketch of (a) nozzle setup and (b) nozzle. Dimensions are given in
mm.
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wave. For all the measurements in this thesis the distance between the speaker
walls was kept constant at 1600 mm. The dimensions in the enclosure will be
referred to as streamwise (vertical), transverse (normal to speaker walls and
in the direction of the sound waves) and spanwise, which correspond to the
coordinates x, y and z, respectively.

To measure the box modes the enclosure had five microphone holders with 7.5
mm diameter round holes, shown in figure 2.4. These were located 60 mm
above the base of the enclosure at transverse positions −600,−400,−200, 0 and
200 mm relative to the center of the nozzle. The microphones where either
placed with the sensor flush with the wall (figure 2.4a), or in the side holes
(figure 2.4b) when the microphones were used during PIV measurements to
prevent the microphones from being covered by the olive oil seeding.

Monacor KU-516 (75W, 16Ω) horn drivers were used for acoustic forcing. Each
of them was driven by a separate channel on a two-channel Skytec PRO1000
power amplifier. An Aim-TTi TGA1244 40 MHz signal generator delivered a sine
wave signal with prescribed amplitude and frequency to the amplifier channels.
Brüel and Kjær Free-field 1/4 inch microphones (model 4939, frequency range
4 Hz-100 kHz) were used for the pressure measurements. Each pressure sensor
and its preamplifier (Brüel and Kjær model 2670, frequency range 15 - 200 000
Hz) were calibrated by the manufacturer and had a sensitivity of ≈ 4 mV/Pa
(-48dB re 1V/Pa, 95 % confidence level uncertainty of 0.3 dB). The microphone
signals were recorded by a National Instruments 24 bit compactDAQ NI-9234
data acquisition unit, while the loudspeaker signals were recorded by a National
Instruments 16 bit compactDAQ NI-9215.

By recording the pressure for the same forcing and enclosure settings for the
two microphone positions, an amplitude conversion factor of 2.72 (pressure at
position shown in figure 2.4a divided by pressure at position shown in figure
2.4b) was obtained. The phase difference between the measurements was below
1°, and was therefore not corrected for.

The response of the speakers was changing over time and did also vary slightly
from speaker to speaker. The procedure for changing the forcing amplitude was
therefore to place a microphone in the middle of the two speaker walls, and
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Figure 2.2: Sketch of experimental setup including nozzle setup (1), jet enclosure
(2) with adjustable walls (3) and speakers for acoustic forcing (4). The Stereo-
PIV equipment is also shown, including cameras (5), laser (6), mirrors for
guiding laser beam (7) and sheet forming optics (8). The laser path is shown
in green.
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(a)

(b) (c)

Figure 2.3: Photographs of the experimental setup. (a) The jet enclosure with
one speaker on each side and hot-wire placed at the nozzle exit. (b) Setup with
two speakers on each side of the enclosure. (c) Stereo-PIV setup.
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2.2 Two-microphone technique

(a) (b)

Figure 2.4: Photographs of microphone holder with (a) microphone at position
1 and (b) microphone at position 2.

then to force from one side at the time while adjusting the input voltage on
this speaker so both sides gave the same forcing amplitude and phase, while at
the same time the two sides gave the wanted amplitude combined. This needed
some iterations, since the two sides combined did not give exactly twice the
amplitude as one side at the time.

2.2 Two-microphone technique

In this study we wanted information about the acoustic field in the jet enclosure
during the measurements to have control over the forcing conditions of the jet.
Also the pressure waves in the jet apparatus were of interest. The pressure
was therefore measured at different positions in the jet enclosure and in the
pipe upstream of the nozzle using microphones. From these data the two-
microphone technique by Seybert & Ross (1977) was used to find an estimate
of the acoustic properties in these geometries by assuming one-dimensional,
plane-wave propagation and that the complex pressure distribution was on the
form of equation (1.43):

p′(x, t) = Aei(k1x−ωt) +Bei(k2x+ωt).
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The technique requires measured time-series of the pressure from at least two
positions, x1 and x2, in the tube. The measured values are the real part of the
pressure, and can be expressed as

p′
1(t) = ℜ{p′(x1, t)} = ℜ{Aei(k1x1−ωt) +Bei(k2x1+ωt)}

= 1
2A

[
ei(k1x1−ωt) + e−i(k2x1−ωt)

]
+ 1

2B
[
ei(k2x1+ωt) + e−i(k2x1+ωt)

]
,

(2.1)

p′
2(t) = ℜ{p′(x2, t)} = ℜ{Aei(k1x2−ωt) +Bei(k2x2+ωt)}

= 1
2A

[
ei(k1x2−ωt) + e−i(k2x2−ωt)

]
+ 1

2B
[
ei(k2x2+ωt) + e−i(k2x2+ωt)

]
.

(2.2)

The Fourier transforms of p′
1(t) and p′

2(t) at the angular frequency ω are given
by

p̂′
1(ω) = F(p′

1(t)) = 1
2conj(A)e−ik1x1 + 1

2Be
ik2x1 , (2.3)

p̂′
2(ω) = F(p′

1(t)) = 1
2conj(A)e−ik1x2 + 1

2Be
ik2x2 , (2.4)

where conj(A) is the complex conjugate of A. This is a system of two equations
with two unknowns, A and B, and has the analytical solution

conj(A) = 2 p̂′
1e

−ik2x1 − p̂′
2e

−ik2x2

e−i(k1+k2)x1 − e−i(k1+k2)x2
, (2.5)

B = 2 p̂′
1e

ik1x1 − p̂′
2e

ik1x2

ei(k1+k2)x1 − ei(k1+k2)x2
. (2.6)
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If the pressure is measured at n > 2 positions, we have an overdetermined
system of equations of the form



p̂′
1(ω)

p̂′
2(ω)
...

p̂′
n(ω)


=
[

1
2conj(A) 1

2B

] e−k1x1 e−k1x2 . . . e−k1xn

ek1x1 ek1x2 . . . ek1xn

 . (2.7)

This was solved using the least squares method.

2.3 Constant temperature hot-wire anemometry

To characterize the velocity amplitudes and the mean profiles at the jet exit,
velocity measurements were carried out using constant temperature hot-wire
anemometry. This is an intrusive velocity measurement technique consisting
of an electrically heated wire placed in a flow field, and the heat transfer to
the flow is measured. For a constant temperature hot-wire, the heat lost to
the flow is balanced by the electric power E2

w/Rw added to the wire, where
Ew is the voltage over the wire and Rw is the electrical resistance in the wire.
The resistance of a specific wire is constant when the wire temperature is fixed.
King’s law suggests a relation between the voltage and the flow velocity u

(Anthoine, 2009):

E2
w = A+Bun. (2.8)

where A and B are calibration constants and n has typically a value of n ≈ 0.45.
Alternatively, polynomial curve fitting can be used:

u = kw0 + kw1 · Ew + kw2 · E2
w + kw3 · E3

w + kw4 · E4
w. (2.9)

59



Experimental methods

For the work presented in this thesis the polynomial curve fit was chosen since
it is known to be more accurate than King’s law, partly because n in equation
(2.8) has a weak velocity dependence. To ensure that the measurements are not
restricted by the voltage limits of the data acquisition unit, an offset and gain
can be applied to the hot-wire signals. A gain will also lower the uncertainty
from the unit. When an offset Eoffset and a gain G is applied, the acquired
signal Ea needs to be converted by the following formula (Jørgensen, 2005):

Ew = Ea

G
− Eoffset. (2.10)

Varying fluid temperature during measurements will affect the results since
the heat convection is dependent on the difference between the wire and
fluid temperature. To adjust for this, the fluid temperature was measured
together with the hot-wire signal, and a temperature correction on the hot-wire
anemometry signal E was performed (Jørgensen, 2005):

Ew,corr =
(
Tw − T0
Tw − Ta

)0.5
Ew. (2.11)

Here Tw is the wire temperature, T0 is the fluid temperature measured prior to
calibration, and Ta is the fluid temperature acquired during the measurements.

A Dantec Dynamics StreamLine Pro constant temperature anemometry system
was used with a straight, single-wire probe (type 55P11) with a sensor made of
platinum-plated tungsten with diameter 5 µm, length 1.25 mm, and frequency
response of 400 kHz. The probe was mounted with the wire oriented in the
spanwise direction to a 4 mm diameter and 200 mm long probe support centered
over the exit of the nozzle in the spanwise direction. This was again mounted to
a 10 mm diameter metal rod that was suspended vertically over the nozzle on a
traversing system situated approximately 1 meter downstream of the nozzle exit.
This enabled the wire to be traversed in the transverse direction. The hot-wire
measurements were performed with an offset of 1.297 V and a gain of 4, and
the hot-wire and temperature probe signals were recorded with a frequency of 5
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Figure 2.5: Example of hot-wire calibration.

kHz over 10 seconds for every measurement point using a National Instruments
16 bit compactDAQ NI-9215 data acquisition unit.

To calibrate the hot-wire probe, the velocity in the center of the nozzle exit
was measured with different mass flow rates set on the mass flow controller. To
account for the nozzle not having a perfectly top-hat profile, the mean velocity
calculated from the volume flow was multiplied by a correction factor. This
correction factor, depending on the volume flow in the nozzle, was found by
comparing the volume flow set at the mass flow controller with the volume flow
achieved from integrating the velocity profile measured with the hot-wire probe.
An example of a calibration curve achieved is shown in figure 2.5.

2.4 Stereo particle image velocimetry

2.4.1 Background

The velocity in the near-field of the jet was measured using the non-intrusive
Particle Image Velocimetry (PIV) technique. This method does not measure
the fluid velocity directly, but the correlation between displacements of particles
added to the fluid that are expected to follow the flow. A sheet or a volume
of the seeded flow is illuminated by a light source, and time-series of the Mie
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scattering of the particles are then captured by one or several cameras. In
this study a double-pulsed laser with two heads was used as the light source.
By synchronizing the cameras and the laser, the flow is illuminated once
per exposure of the camera, and the particle position in two particle images
separated by a time δt are correlated to obtain a velocity field. Either double
frames or time-series of single frames are used. For the double frame method,
the two laser heads are sending pulses with a separation time δt appearing in
two consecutive camera exposures. These two particle images are making up
one frame pair resulting in one vector field, and the frame pairs are recorded
with a frequency fR that can be chosen with the only restriction 1/fR > 2δt.
When using time-series of single frames, only one of the laser heads are used,
and single frames are recorded with frequency fR. Then frame 1 and 2, 2 and
3 and so on are combined to frame pairs each giving one vector field. With
this method the separation time is fixed to δt = 1/fR. To the left of figure
2.6, two example particle images that make up a frame pair are illustrated.
Each particle image is divided into so-called interrogation windows. Two of the
belonging interrogation windows are enlarged in the figure. The idea behind the
cross-correlating function is to correlate the pixel intensities in the interrogation
window in frame 1 at time t, I1(xi, yj), with that in frame 2 at time t + δt,
I2(xi, yj), using the discrete cross-correlation function (Raffel et al., 2007):

RI1I2(dx, dy) =
K∑

i=−K

L∑
j=−L

I1(xi, yj)I2(xi + dx, yj + dy). (2.12)

Here, i denotes the pixels in x direction and j in y direction, going from −K
to K and −L to L, respectively, in the current interrogation windows. The
cross-correlation RI1I2(dx, dy) is the sum of products of the intensity values at
time t shifted a distance (dx, dy), and the intensity values at time t+ δt. The
result is a measure of how well the two frames match when shifted the distance
(dx, dy). This can be done for a range of shifts in x and y direction, and the
resulting RI1I2 are then plotted in a correlation map, also shown in figure 2.6.
If the particles inside the interrogation window have similar velocities they will
have moved the same distance in time δt, and a peak for this displacement will
appear in the correlation map. The particle velocity is then found by simply
dividing the displacement with δt. In practice the correlation map does not
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Figure 2.6: Illustration of the principle of cross-correlation. Adapted from
LaVision (2017).

necessarily give such a distinct peak as in this example. This can be due to
noise, the fact that the particles do not have exactly the same velocity or that
there are not enough particles in the interrogation window.

The edges of frame 1 that are not overlapping with frame 2 when shifted, are
not taken into account. Therefore, the strength of the correlation peak will
decrease with the size of the particle shift since the number of possible particle
matches decreases. A much used limit is that the particle shift should not
exceed one fourth of the interrogation window side length. A way to get around
this limit is to shift the interrogation windows relative to each other with the
expected particle displacement. This expected displacement can be achieved
from a previous processing pass where a bigger window size satisfying the one
fourth rule is used. The final interrogation window size should still be large
enough to achieve a sufficient amount of particle matches. When the number
of particle matches goes below 4, the accuracy decreases drastically (Raffel
et al., 2007). The interrogation windows can also be deformed according to
the gradients in the previous pass. The procedure of shifting and deforming
the interrogation windows before repeating with a smaller window size can be
repeated several times. It is also possible to let the neighboring interrogation
windows overlap to achieve a higher vector density without making the windows
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smaller. This improves the quality of gradients calculated from the velocity
field. However, it will not increase the resolution in terms of capturing finer
structures, since each vector is calculated over the same area size as if the
interrogation windows were not overlapping.

Standard two-dimensional, two-component PIV requires one camera and results
in a velocity field including the two velocity components in-plane of the laser
sheet. This enable calculating 4 of the 9 components in the three-dimensional
velocity gradient tensor. Stereoscopic PIV (SPIV) results in a two-dimensional
velocity field in the plane of the laser sheet including all three velocity compo-
nents. This requires two cameras with different viewing angles not normal to
the laser sheet, and the sheet must have a certain thickness. By combining the
images from the two cameras from the same time instant it is possible to find
the out-of-plane position of the particle in the laser sheet. The difference in the
correlation maps from the two cameras are then a result of the out-of-plane
motion of the particles. SPIV measurements enable calculating 6 of the 9
components in the three-dimensional velocity gradient tensor, only missing
the out-of-plane gradients since only one velocity vector in this direction is
achieved.

To know the relation between the displacement of the particles in terms of
pixels in the image and physical coordinates, a calibration is required. This
is carried out by placing a calibration target, a plate with a known pattern,
in focus of the cameras in the same plane as the laser sheet will be. The
result of the calibration is a mapping function that converts the displacement
from image to object space. In this study a third order polynomial calibration
function has been used. For SPIV, two or more calibration images with the
calibration plate displaced a known distance in the out-of-plane direction are
required. Alternatively, as in this study, a multi-level calibration plate with
patterns in different out-of-plate positions can be used (Raffel et al., 2007).
The result is a projection coefficient converting the image from the angeled
camera into a image as if the camera was pointing normal to the image plane.
The process of placing the calibration plate exactly in the plane of the laser
sheet is associated with an uncertainty, and a method to correct for this is
camera self-calibration (Raffel et al., 2007). Particle images from the different
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cameras are first dewarped using the projection coefficient from the original
calibration. The images taken at the same time, but with different camera
angles, are then correlated. Since these images are supposed to be identical, the
result is a displacement field due to the misalignment between the calibration
plate and the laser sheet. The original calibration function is therefore adjusted
to minimize the displacements in this field.

Prior to processing the particle images into vector fields, it is often advantageous
to perform image preprocessing. On the PIV measurements presented in this
thesis two types of filters are used. A subtracting sliding background filter
is a high-pass filter that removes low-frequency variations in the background.
A filter kernel size must be specified, and should be larger than the size of
the particle images (Raffel et al., 2007). Another preprocessing filter used is
the particle intensity normalization filter, also called the min/max filter. By
applying this, the contrast in the particle image is normalized while also the
spatial variation of the contrast throughout the image is adjusted. Also for this
case the filter size should be larger than the size of the particle images.

2.4.2 SPIV measurements

In this study, high-speed SPIV was performed in the transverse-streamwise
plane along the centerline of the jet. A sketch of the setup is shown in figure
2.2, and a photograph in figure 2.3c. The measurement plane was illuminated
from a position downstream of the jet using a Litron LDY303HE-PIV dual
cavity laser, and the beam was formed to an approximately 1 mm thick sheet
by first converging it through a set of round lenses, and then expanding it again
through a cylinder lens.

The jet flow was seeded with oil droplets generated using a Laskin nozzle
submerged into a reservoir of olive oil. The amount of oil particles created by
the seeder depends on the volume flow through the Laskin nozzle. To enable
the seeding density to be adjusted independently of the total volume flow to
the nozzle, the tube coming from the mass flow controller was split through
a T-joint. Both of the tubes downstream of the T-joint went through a ball
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valve before one of the tubes went into the seeder and the other bypassed it.
Then the two tubes were recombined before the tube again was split through a
T-joint and connected to the two inlets of the jet apparatus shown in figure
2.1a. When running the experiments without conducting PIV measurements,
the valve upstream of the seeder was closed and the bypass valve was fully
opened. Before each PIV measurement run, the valves where adjusted during
a test run until the desired seeding density was achieved. Then the box was
seeded by having the jet running with the enclosure covered for a period of 6,
5 and 4 minutes for the jet mean exit velocities Ue = 6.8, 13.1 and 18.9 m/s,
respectively, that are the three jet velocities investigated in this study. The
measurements were taken after the enclosure had been open for 10 seconds.
Also measurements with zero mean flow were conducted. Then the enclosure
was seeded for 5 minutes using the same mass flow controller and valve settings
as for the 13.1 m/s case. Then both valves were closed completely, and a rest
time of 30 seconds was used before the recording started.

Two Photron SA1.1 cameras fitted with Scheimpflug adapters and 180 mm
lenses with aperature set to f/3.5 were used to capture the Mie scattering
from the particles. The cameras were oriented with their lenses approximately
±15° relative to the measurement plane normal, and parallel to the transverse-
azimuthal plane. The Scheimpflug adapters make an angle between the camera
and the lens to enable the whole camera image to be in focus (Adrian & West-
erweel, 2011). The cameras recorded a field of view spanning 4.8D downstream
from the nozzle exit and 2.5D in the radial direction centered at the nozzle
centerline. These images were recorded with a camera resolution of 1024×512
pixels (streamwise times transverse).

A Lavision two-level calibration plate model 106-10 with 10 mm dot distance,
2.2 mm dot size and 2 mm level separation was used for calibration. The average
deviation between the third order polynomial calibration mapping function
and the marks were less than 0.15 pixels. Figure 2.7a shows an example of a
calibration image used, and figure 2.7b an example of a Mie scattering image.

For the Ue = 6.8 m/s, Ue = 13.1 m/s and Ue = 18.9 m/s cases, a double frame
method was used and the paired particle images were separated by δt = 25µs,
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2.4 Stereo particle image velocimetry
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Figure 2.7: Example of (a) calibration image, (b) Mie scattering image and (c)
velocity field, for the case f = 450 Hz, Ue = 13.1 m/s, u′

RMS/Ue = 0.25 m/s,
y/λ

4 = 0.
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18µs and 12µs, respectively. Three different forcing frequencies, f = 250 Hz,
f = 450 Hz and f = 655 Hz, were used in the measurements. The image pairs
were recorded at a rate of fR = 5.0 kHz, fR = 5.4 kHz and fR = 5.24 kHz for
these cases, respectively, which gave 20, 12 and 8 time-steps per forcing cycle.
A total of 200 forcing cycles were recorded per experimental run for each jet
location. For the zero mean flow cases, a single frame method was used since
the particles were moving very slowly and therefore the separation time between
the paired images needed to be as large as possible. This gave δt = (1/5400 Hz)
≈ 185 µs. 240 images were saved, resulting in 120 vector fields and 10 forcing
cycles.

Figure 2.8 shows the timing diagram for the simultaneous double frame PIV,
pressure measurements and acoustic forcing, where the PIV recording rate is 12
times the sinusoidal speaker signal period. tl = 4 µs is the laser delay time. The
system was controlled by a LabVIEW 14.0 (National Instruments Corporation)
program developed for the purpose, except for the cameras that were used with
Photron FASTCAM Viewer 3.

The particle images were processed in DaVis 8.4.0 (LaVision GmbH). First a self-
calibration algorithm, correcting for the misalignment between the laser sheet
and the calibration plate, was used. The particle images were then preprocessed
using a subtracting sliding background scheme with a 8 pixel filter length and
a particle intensity normalization filter with a filter length of 6 pixels. Finally,
the velocity vectors were calculated using a multi-pass, stereo cross-correlation
scheme. Interrogation windows of decreasing size were used, starting at 64x64
pixels and 75 % overlap and ending at 24x24 pixels and 50 % window overlap
with in total four passes. All the passes used a circular Gaussian weighting
function. Then the total area evaluated are of twice the width and height, but
the Gaussian function is scaled so the sum of all weighted pixels is equivalent
to the window size specified (LaVision, 2017). The interrogation window pairs
were shifted and deformed based on the previous passes. For the two first
passes a standard correlation function was used, while a correlation function
normalized by the standard deviation of the second interrogation window was
used for the two last passes. The normalization prevents varying background
intensities and signal densities from biasing the correlation function (LaVision,
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2.4 Stereo particle image velocimetry
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Figure 2.8: Synchronization scheme of two-frame PIV, pressure measurements
and acoustic forcing. Only a part of the forcing period is shown for clarity.
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2017). The resulting velocity field vector spacing was ∆x = ∆y = 0.028D.
Figure 2.7 (c) shows an example of a velocity field obtained from the PIV
measurements with every second vector shown.

2.5 Data post processing methods

2.5.1 Decomposition of flow field

From the time-resolved pressure and velocity data obtained, a variety of other
quantities are derived. A transient flow field can be decomposed in different
ways. Reynolds decomposition divides a quantity into a mean and a fluctuating
part, where the latter per definition average to zero. For the velocity this yields:

u(x, t) = ū(x) + u′(x, t) (2.13)

The Root-Mean-Square (RMS) of the fluctuating part is a measure of the
unsteadiness of the flow:

u′
RMS(x) =

√√√√ 1
n

n∑
i=1

((u′(x, t))2) =

√√√√ 1
n

n∑
i=1

((u(x, t) − ū(x))2) (2.14)

The periodic, acoustic forcing introduces a periodic component in the flow field.
For the measurements obtained while this forcing was present, the data was
decomposed into time averaged, periodic and fluctuating components following
the triple decomposition by Hussain & Reynolds (1970):

u(x, t) = ū(x) + ũ′(x, t) + u′′(x, t). (2.15)

The phase averaged velocity for a given phase angle φ = 2πt
T in the periodic

signal is defined as ũ(x, φ) = ū(x) + ũ′(x, φ). The turbulent fluctuations, u′′,
average to zero in the phase averaged fields. This part is small in the near-
field of the jet where the measurements are taken, as the jet is not turbulent
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2.5 Data post processing methods

here. By phase averaging the data, the effect of the forcing is isolated and the
development of the flow throughout the forcing period can be investigated.

2.5.2 Vorticity fields and vortex detection

To study the vortex structures of the jet, the vorticity defined in equation (1.15)
was calculated. The out-of-plane vorticity component is given by

ωθ = ∂v

∂x
− ∂u

∂y
. (2.16)

The vorticity fields were normalized by the jet exit velocity and diameter:
ω∗

θ = ωθD/Ue. Spatial differentiation of the velocity fields was performed using
a second order-accurate, least squares scheme:

∂u/∂x|i = (2ui+2 + ui+1 − ui−1 − 2ui−2)/10∆x. (2.17)

Here, i is the index of the velocity vector in x direction and ∆x the vector
separation distance in x direction. This scheme is designed to reduce the
random errors or measurement uncertainty, and is therefore suitable for PIV
(Raffel et al., 2007).

Identifying a vortex in a flow field can be a complicated task, and no complete
method is objectively agreed upon. A common way to detect vortices is the
λ2 criterion developed by Jeong & Hussain (1995). This method determines
the existence of a local pressure minimum due to vortical motion, and defines a
vortex core as a connected region were two of the eigenvalues of the symmetric
tensor S2 + Q2 are negative. S = 1

2(A + AT ) and Q = 1
2(A − AT ) are

the symmetric and antisymmetric parts of the velocity gradient tensor A,
respectively, which is given by:

A = ∇u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 . (2.18)
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Six of these components are achieved from the PIV measurements, while the
out-of-plane velocity gradients are unknown. ∂w

∂z can however be found from
continuity, giving ∂w

∂z = −∂u
∂x − ∂v

∂y . The last two components are approximated
to zero as the jet can be assumed to be symmetric around z = 0, where the
PIV measurements are conducted. The derivatives were found using second
order central differences. The binary λ2 field was calculated and used to track
the vortex structures in the jet as they moved downstream. The λ2 fields from
the different time steps were compared, and if the vortex defined by the λ2

criterion overlapped with a vortex from the previous time step, it was defined
to be the same vortex. Any separation or pairing of the vortex structures were
also tracked. For the vortices tracked, the centroid coordinates and circulation
were calculated. The definition by Saffman (1992) was used to find the vortex
centroid coordinates:

xv =
˜

S 2πxrωθdrdx˜
S 2πrωθdrdx

, rv =
˜

S 2πxrωθdrdx˜
S 2πxωθdrdx

. (2.19)

Here, S is the vortex core surface found by using the λ2 criterion.

2.5.3 Circulation of jet shear-layer and vortex structures

Both the circulation of the jet shear-layers and the circulation of the vortices
were calculated using the last formulation in equation (1.23), i.e. by integrating
the vorticity within a surface S bounded by the closed circuit C. The circulation
was normalized with jet mean exit velocity and nozzle diameter, Γ∗ = Γ/(UeD).
For the vortex circulation, the circuit C was defined using a contour of constant
vorticity. For a starting jet like in the experiments by Gharib et al. (1998),
the total circulation was found by integrating the vorticity in the whole field
of view at the current time step. Then, the vortex circulation was calculated
when the vortex ring had separated from the shear-layer, and an iso-contour of
rather low vorticity value was used when calculating the vortex ring circulation
( |ω∗

θ | = |ωθ · D/Ue| ≈ 0.34 was used for the case shown in figure 1.7b). The
method by Gharib et al. is not directly applicable in this study. Firstly, since we
are not investigating a starting jet, but a jet with periodic forcing, circulation
from several forcing cycles are always apparent in the field of view. The total
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2.5 Data post processing methods

circulation should represent the circulation ejected by the jet from a chosen
starting point in the cycle, but by integrating the whole field of view also
circulation from previous cycles are included. Secondly, the method often
fails to calculate the vortex circulation for the more complicated flow fields
investigated in this study. For some cases the vortex structures break down
before the circulation has reached a steady value. For other cases iso-contours
as high as |ω∗

θ | = 4 encircles vortex structures from more than one forcing cycle,
and a very high threshold is needed to be able to distinguish between these
structures. In addition, since the jet is not symmetric for most of the cases in
this study the left and right hand side need to be handled separately.

A method to calculate the total circulation and the circulation of the vortex
structures was developed, that gave satisfactory results for most of the cases
in this study, but not all. The circulation on the left and right hand side were
calculated by excluding the positive or negative vorticity, respectively. When
calculating the vortex circulation, each individual vortex structure was tracked
from a chosen starting point in the cycle, and the circulation was calculated
by integrating the vorticity over the area defined by the iso-contour |ω∗

θ | = 1
encircling all the vortex cores tracked. However, only the vorticity between
the two horizontal lines defined to be D/2 upstream of the most upstream and
D/2 downstream of the most downstream vortex core from the current forcing
cycle at each time step was taken into account. This was done to prevent
vortex structures from previous or later forcing cycles that were connected to
the vortices of interest by the |ω∗

θ | = 1 iso-contours, to be included. The total
circulation was calculated by integrating the whole area upstream of the same
downstream boundary as used for the vortex circulation.

When plotting the total circulation and the circulation of the vortex structures,
the pinch-off time was then set to be the time when the total circulation had
reached the maximum value of the vortex circulation.
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2.5.4 Pressure fields

To estimate the pinch-off time by following the methods by Lawson & Dawson
(2013) and Schlueter-Kuck & Dabiri (2016) as described in section 1.2.3, the
pressure gradient field and pressure field, respectively, are needed. From the
complete velocity gradient tensor, the pressure gradient in the flow field can be
calculated. The incompressible momentum equations give an expression for the
pressure gradient:

∇p = −ρ
(
Du
Dt

− ν∇2u
)
. (2.20)

The viscous term can generally be neglected (De Kat & Van Oudheusden, 2012).
This gives

∇p ≈ ρ
Du
Dt

. (2.21)

As for the λ2 criterion calculations described in the previous section, ∂u
∂z and

∂v
∂z can be neglected. This results in the following expressions for the in-plane
components of the pressure gradient, that can be calculated from the PIV
measurements:

∂p

∂x
≈ −Du

Dt
= −

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂y
+ w

∂u

∂z

)
≈ −

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
,

(2.22)

∂p

∂r
≈ −Dv

Dt
= −

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
≈ −

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
.

(2.23)

The derivatives were found by first order differentiation of the phase averaged
data in time, and second order least-squares differentiation in space, given in
equation (2.17). The pressure gradient field was filtered using a 9 × 9 point
averaging filter, and the pressure field calculated by integrating the pressure
gradient field from a common reference point to each point in the flow field.
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Chapter 3

Characterization of the
experimental setup

In this chapter the experimental setup described in the previous chapter is
characterized. In section 3.1 the acoustic properties of the enclosure and
the jet apparatus is presented. The flow properties of both the unforced
and axisymmetrically forced jet is described in section 3.2. In addition, time
averaged and RMS flow fields of the jet when subjected to different positions
in a standing acoustic wave for varying frequencies and forcing amplitudes are
presented, together with the behavior of the jet centerline for these forcing
conditions. Finally, a summary of the findings follows in section 3.3.

3.1 Acoustic characterization

A consistent coordinate system is used for presenting the results, where the
transverse dimension of the jet enclosure spans from y = −0.5Ly to y = 0.5Ly

and the spanwise dimension from z = −0.5Lz to z = 0.5Lz, and therefore
y = 0, z = 0 denotes the middle of the enclosure. We have limited this study to
include only even mode numbers for the acoustic forcing in y direction with the
result that the plane y = 0 is always a pressure anti-node. x = 0 is defined to
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Figure 3.1: Amplitude of pressure fluctuations at y = 0 as a function of forcing
frequency.

be at the nozzle exit plane, while r = 0 is at the nozzle centerline and follows
the nozzle.

Figure 3.1 shows the response of the pressure in the enclosure at y = 0 when
performing a frequency sweep. The sinusoidal speaker signals were varied over
a range of frequencies while keeping the amplitude constant, and for each
frequency the amplitude of the Fast Fourier Transform (FFT) centered at the
speaker signal frequency was calculated. The frequency sweeps were performed
with one speaker on each side of the enclosure, and without any resonance
tubes attached to ensure that the signal where the frequencies were matching
with the resonance frequencies of the tubes were not amplified compared to the
other signals. In that way the pure response of the enclosure is obtained. The
figure shows that the frequency spectrum of the enclosure has three peaks, at
f = 256 Hz, f = 453 Hz and f = 661 Hz, corresponding to the 2nd, 4th and
6th transverse mode of the enclosure, respectively.

The two-microphone technique described in section 2.2 was used to investigate
the excited modes of the enclosure. After comparing the wave shapes and spin
ratios of the frequencies close to the three peaks from the frequency sweep
in real-time in LabVIEW, it was decided to carry on doing experiments with
the forcing frequencies f = 250 Hz, f = 450 Hz and f = 655 Hz. At these
frequencies the amplitude of the pressure node was small relative to the anti-
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Figure 3.2: Pressure distribution in transverse direction y in the enclosure over
its length Ly.

node, and the spin ratio defined in equation (1.48) was close to zero. The
pressure distribution for these frequencies are shown in solid lines in figure
3.2 together with the measured pressure from the microphones marked by the
symbol ×.

Figure 3.3 shows phase averaged acoustic velocity at the pressure node, and
phase averaged acoustic pressure at the anti-node for forcing frequency f = 450
Hz, as a function of time. T is the period of the forcing cycle, T = 1/f . The
acoustic velocity was calculated from the PIV measurements taken when the
nozzle was positioned at the pressure node with zero mean flow, by averaging
the transverse velocity of the upper half of the field of view. In this area the
flow was seen not to be affected by the nozzle. The pressure was measured by a
microphone placed in the enclosure wall, at the same x position as the speaker
centers. The phase difference between the pressure and the velocity is 80.6°, a
deviation of 9.4° or 0.058 ms from the theoretical value of 90° from equation
(1.47). This is probably due to a time delay somewhere in the system. The start
of the phase averaged forcing cycle, t/T = 0, is defined to be when the phase
averaged acoustic pressure in the enclosure at the pressure anti-node is zero and
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Figure 3.3: Phase averaged acoustic velocity at the pressure node and pressure
at the anti-node in the enclosure, for f = 450 Hz. The velocity data are from
PIV measurements with zero jet mean flow, see table 3.1.

rising, i.e. when p̃′(y/λ
4 = 0, t/T = 0) = 0 and ∂p̃′(y/λ

4 = 0, t/T = 0)/∂t > 0.
The dashed, vertical lines mark tṽ0− and tṽ0+ , which is defined to be when the
transverse velocity changes direction to the left (ṽ′ = 0 and ∂ṽ′/∂t < 0) and to
the right (ṽ′ = 0 and ∂ṽ′/∂t > 0), respectively. These definitions will be useful
in chapter 4 and 5 when analyzing the jet development throughout the forcing
cycle, and will then be measured at the center of the nozzle exit, x = 0, r = 0.

The acoustic response of the nozzle setup by longitudinal forcing was charac-
terized by Aydemir et al. (2012) by performing a frequency sweep from f = 0
to 300 Hz. This showed resonance peaks at around f = 40 Hz, f = 150 Hz
and f = 260 Hz. In this study the acoustic response was further characterized
by placing the nozzle at y = 0, and performing hot-wire measurements at the
nozzle exit together with pressure measurements for varying mass flows, forcing
frequencies and forcing amplitudes. The pressure was recorded both in the
enclosure at y = 0, and in the 35 mm diameter pipe upstream of the nozzle at
x = −160 mm and x = −360 mm. The two-microphone technique gave the
pressure distribution in the pipe, and from equation (1.56), (1.57) and (1.59),
axial velocity fluctuations at the nozzle exit were obtained by approximating
the nozzle as an abrupt area change from the 35 mm diameter pipe, to a 10
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3.1 Acoustic characterization

mm diameter pipe with L2 = 30 mm length. In equation (1.59), 2δ from
equation (1.55) was added to L2 to account for end effects. Figure 3.4 shows
that both the amplitude of the velocity fluctuations and its phase relative to the
enclosure pressure using this approach is in good agreement with the hot-wire
measurements, even though the two-microphone technique over-predicts the
amplitudes for the second and third peak. This could be because the method
assumes that the length of the converging part of the nozzle is acoustically
compact (kL2 << 1), which might not be valid for the highest frequencies.
Figure 3.5 plots the amplitude and phase of the velocity fluctuation at the
nozzle exit from hot-wire measurements for different nozzle exit velocities Ue.
The amplitude is affected strongly by Ue. The largest effect is seen at f = 250
Hz, where the relative amplitude |û′|/Ue is decreased with a factor 6 and the
absolute amplitude |û′| is halved from Ue = 6.8 to 18.9 m/s. Also the peaks
at f = 450 Hz and f = 655 Hz decrease with higher Ue, but here the absolute
fluctuations are increasing slightly with Ue. The frequency of the amplitude
peaks coincides with the peaks in figure 3.1, but the relative magnitude between
them are changed. The peak at the lowest frequency, f ≈ 256 Hz, that has the
lowest pressure amplitude in figure 3.1, is the largest in the velocity amplitude
plot for all Ue. This is most probably due to the resonance frequency of the
enclosure at f = 250 Hz being close to one of the resonance frequencies of the
nozzle setup, f = 260 Hz, and therefore a lower pressure fluctuation is needed
to create the same velocity fluctuation for this frequency.

Ue has a less pronounced effect on the phase, plotted in the the lower part
of figure 3.5. Around f = 260 Hz, where the nozzle setup has a resonance
frequency, the phase has a transition point for all Ue where it increases rapidly
with frequency. Around f = 260 Hz, where the nozzle setup has a resonance
frequency, the phase increases rapidly with frequency for all Ue, resulting in a
phase shift of almost 180° from below to above the resonance frequency. This
phase shift is more abrupt for lower Ue. For f & 300 Hz the phase stays fairly
constant at 250° − 280° except for two regions of lower phase angle around
f = 500 − 550 Hz and f = 620 − 650 Hz. In the regions of constant phase
angle, the value is slightly lower for higher Ue. For the three chosen frequencies
f = 250 Hz, f = 450 Hz and f = 655 Hz, the phase angle is φ ≈ 150°, 270°
and 240°, respectively. This phase is relative to the enclosure pressure, which is
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Figure 3.4: Amplitude and phase of velocity fluctuations at nozzle exit as
function of forcing frequency for Ue = 13.1 m/s, from pressure and hot-wire
measurements. The phase of the velocity is given relative to the phase of the
enclosure pressure. The frequencies f = 250 Hz, f = 450 Hz and f = 655 Hz
are marked in black, dotted lines.

90° out the phase of the transverse acoustic velocity in the enclosure, v′. The
phase difference between u′ and v′ is therefore varying with forcing frequency,
but stays approximately constant for different Ue.

The phase plots in figure 3.5 have similarities to the shape of the phase plots
for the ideal Helmholtz resonator with mean flow given in figure 1.18. Also
the effect of increasing the mean flow is similar to a Helmholtz resonator, with
the amplitude of the velocity fluctuations being damped and the phase shift
around the resonance frequency being smeared out and less pronounced. By
using equation (1.61) with resonance frequency ω0 = 2π · 260 Hz, neck length
l = 3 cm with end correction 2δ from equation (1.55), and the external pressure
fluctuations p̂′(ω) taken from figure 3.1, we see from figure 3.6 that the nozzle
setup can be well modeled as a Helmholtz resonator, even though the magnitude
of the velocity fluctuations is under-predicted by the model. Also the phase
deviates strongly around f = 520 Hz and f = 630 Hz. This could be because
the nozzle setup has higher order modes outside the range of the frequency
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Figure 3.5: Amplitude and phase of velocity fluctuations at nozzle exit as
function of forcing frequency for Ue = 6.8 m/s, Ue = 13.1 m/s and Ue = 18.9
m/s, from hot-wire measurements. The phase of the velocity is given relative
to the phase of the enclosure pressure. The frequencies f = 250 Hz, f = 450
Hz and f = 655 Hz are marked in black, dotted lines.

sweep conducted by Aydemir et al. (2012), restricting the validity of the model
when assuming a single resonance frequency at f = 260 Hz.

3.2 Flow characterization

Figure 3.7 shows that the forced flow response from hot-wire measurements
at the nozzle exit for the jet positioned at y = 0, exhibits a nearly linear
relationship between the RMS of the fluctuating part of the centerline axial
exit velocity and the RMS of the pressure. Figure 3.8 shows the corresponding
response of the phase averaged axial exit velocity over the forcing period. The
figure shows an approximately sinusoidal behavior for low forcing amplitudes,
while for the higher fluctuations the first part of the forcing cycle with high
velocity becomes shorter than the part of low velocity. The horizontal axis
starts at tũ0 , which is defined to be when the fluctuating part of the phase
averaged axial velocity at the jet exit is changing sign from negative to positive
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Figure 3.6: Amplitude and phase of velocity fluctuations at the exit of an
ideal Helmholtz resonator as a function of forcing frequency, for Ue = 6.8 m/s,
Ue = 13.1 m/s and Ue = 18.9 m/s. The phase of the velocity is given relative
to the phase of the ambient pressure.
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Figure 3.7: Axial velocity RMS as a function of pressure RMS, for f = 260 Hz,
Uc = 10 m/s.

(ũ′(x = 0, r = 0) = 0, ∂ũ′(x = 0, r = 0)/∂t > 0). tũ0 depends on the phase
of the axial velocity fluctuations relative to the enclosure pressure, and varies
therefore with frequency as shown in the lower part of figure 3.5.

Figure 3.9 plots u′
c,RMS/p

′
RMS obtained from hot-wire measurements as a func-

tion of Ue for f = 260 Hz together with the analytical solution for a Helmholtz
resonator from equation (1.61). For high velocities, theory and measurements
agree quite well, while deviations occur for velocities lower than Ue ≈ 10 m/s.
Here u′

RMS/Ue exceeds 40 %, and the assumption in the derivation of equation
(1.61) of small perturbations in order to neglect higher order terms is clearly
not valid. For the analytical solution we see that u′

RMS ∼ 1/Ue for f = 260
Hz, and also for f = 250 Hz for velocities higher than Ue ≈ 10 m/s. This
is in agreement with equation (1.61) which gives u′

c,RMS/p
′
RMS ≈ 1/ρUe for

ω ≈ ω0 = 2π · 260 Hz and ω1/ω0 >> Ue/c. The latter is satisfied in our case
since ω1/ω0 ≈ 36. f = 450 Hz and f = 655 Hz, however, are deviating too
much from the resonance frequency ω0. For these frequencies u′

c,RMS/p
′
RMS

is almost independent of Ue in the velocity range we are investigating in this
study.

Table 3.1 shows the experimental conditions for the PIV measurements con-
ducted in this study. For the cases when the jet is moved transversely and
subjected to different positions in the acoustic wave, the nozzle position rela-
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Figure 3.8: Response of the phase averaged axial exit velocity over the forcing
period, for f = 260 Hz, Uc = 10 m/s.
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Figure 3.9: u′
c,RMS/p

′
RMS as a function of Ue for hot-wire measurements together

with the solution for an ideal Helmholtz resonator, equation (1.61).
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tive to the acoustic wave is given as its centerline y coordinate normalized by
the distance between the pressure anti-node and the the pressure node, λ/4.
The position of the nozzle is therefore given as a number between 0 and 1,
where y = 0 denotes the pressure anti-node and y/λ

4 = 1 denotes the pressure
node. For these cases the Strouhal number were kept approximately constant
while varying the forcing frequency. This was done to scale the vortex ring
separation distance to be the same for the pressure anti-node position cases.
For longitudinally forced, pulsed jets, described in section 1.2.4, the forcing
amplitude is normally measured as the axial fluctuations of velocity relative to
the mean velocity. In this study it was chosen to use the same measure for the
pressure anti-node position, which has many similarities to longitudinal forcing.
This is however not a feasible measure of the forcing when the jet is moved
towards the pressure node and the axial velocity fluctuations goes towards
zero. It was therefore chosen to measure the forcing amplitude as RMS of the
axial velocity fluctuations the jet would experience if it was positioned in the
pressure anti-node of the same standing wave. This is denoted u′

AN,RMS/Ue. In
practice this was done by calibrating the jet forcing amplitude u′

RMS/Ue when
positioned at the pressure anti-node against the pressure fluctuations in the
enclosure at the same position for the different combinations of jet velocities
Ue and forcing frequencies. Then, for the other jet positions, the speaker signal
was tuned to set the pressure fluctuations at the anti-node to what, according
to the calibration, was needed to obtain the wanted u′

AN,RMS/Ue when the jet
was placed at the pressure anti-node.

Figure 3.10 shows that the exit velocity profile for the unforced jet for different
velocities approximates a top hat profile, even though the PIV measurements
cannot fully resolve the high gradients at the shear-layer of the jet. This is in
agreement with previous work on the same nozzle (Aydemir et al., 2012; Lawson
& Dawson, 2013). The velocity profiles were integrated over the circular nozzle
exit, to obtain the time averaged volume flow of the jet. When comparing this
with the volume flow set by the mass flow controller, the deviation was less
than 3%.

The mean axial velocity field of the unforced jet is shown in figure 3.11 for
different Ue. The boundary of the potential core is plotted in black and is
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Figure 3.10: Unforced jet exit profiles for different velocities, from PIV mea-
surements.
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Figure 3.11: Temporal mean of axial velocity component of the unforced jet
normalized by the exit velocities Ue, for Ue = 6.8 m/s, Ue = 13.1 m/s and
Ue = 18.9 m/s. The potential core boundary is plotted in solid, black lines and
r/D = 0 is marked with dashed, black lines.
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defined as the area where the velocity is greater than 95 % of the centerline exit
velocity, Uc. The jet exhibits approximately the same symmetric shape for all
Ue, even though the potential core is slightly longer for Ue = 18.9 m/s. Figure
3.12 shows the RMS fields of the axial and transverse velocity components of
the unforced jet for the same cases, and also these fields are symmetric. For all
Ue, both u′

RMS and v′
RMS stays close to zero for about one diameter downstream

of the nozzle exit, but this distance is slightly decreasing for higher velocities.
The shear-layers, that further downstream can be identified as areas of high
RMS values around r = ±0.5, become thinner for higher Ue. The effect of ReD

on the potential core length is also seen in these plots by the extended quiescent
region along r = 0. In addition, the RMS values in the shear-layer relative to
Ue decreases slightly with increased velocity.

For the remaining part of this chapter some initial investigation of the jet when
subjected to different positions in the standing acoustic wave, from the pressure
anti-node at y/λ

4 = 0 to the pressure node at y/λ
4 = 1, is presented. Figure 3.13

shows the mean fields of the axial velocity components of the forced jet. Each
column shows different jet positions, while each row shows different forcing
frequencies and exit velocities while the Strouhal number is kept constant
for all cases. For forcing frequency f = 250 Hz, which corresponds to the
2nd transverse mode in the jet enclosure, the velocity field does not change
particularly for the different jet positions and the jet stays close to axisymmetric.
The potential core boundary plotted in black, however, indicates that the core
length increases as the jet moves towards the node. For f = 450 Hz and
f = 655 Hz, the jet position has a larger impact on the velocity field. The jet
is axisymmetric at y/λ

4 = 0 and y/λ
4 = 1, but this symmetry is clearly broken

at the other positions and is most pronounced at y/λ
4 = 0.5. The asymmetry

is shown by the potential core bending towards the pressure anti-node, and
further downstream by the bending of the high velocity region of the jet towards
the node. For f = 655 Hz the potential core length, as for the f = 250 Hz
case, increases from y/λ

4 = 0 to y/λ
4 = 1, but this is not seen for f = 450 Hz.

Compared to the unforced jet, the potential core is shorter for all forced jet
cases. For all frequencies it is also clear that the shear-layer thickness increases
in the near-field as the jet is moved from y/λ

4 = 0 to y/λ
4 = 1, but this is also

more pronounced for the higher forcing frequencies.
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Figure 3.12: RMS of axial and transverse velocity components of the unforced
jet normalized by the exit velocities Ue, for Ue = 6.8 m/s, Ue = 13.1 m/s and
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Figure 3.14: RMS of axial velocity component normalized by Ue for varying
jet positions, forcing frequencies and exit velocities. Above the RMS fields the
theoretical pressure wave in the enclosure is sketched.
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Figure 3.14 and 3.15 show RMS fields for the different jet positionsa. The RMS
fields for the jet positioned at y/λ

4 = 0 has a similar shape as the unforced
jet, with high RMS magnitudes at the shear-layer. For the forced jet, however,
these high magnitude regions appear already at the nozzle exit for the axial
component and shortly after the exit for the transverse component, and the
magnitude then stays fairly constant in the shear-layers throughout the whole
field of view. By moving the jet away from the pressure anti-node for f = 250
Hz, the RMS magnitude drops for both components. For the other two forcing
frequences, f = 450 Hz and f = 655 Hz, u′

RMS decreases quickly downstream
for the positions away from the pressure anti-node, and at y/λ

4 = 0.75 and
y/λ

4 = 1 it is close to zero already one diameter downstream of the nozzle exit.
For v′

RMS the high magnitude regions are still more or less coherent through
the whole field of view for y/λ

4 = 0.25, while for y/λ
4 = 0.5, and especially

for y/λ
4 = 0.75 and y/λ

4 = 1, the v′
RMS field consist of separated spots of high

RMS magnitude, with areas of low RMS magnitude in between. A similar
pattern was reported by O’Connor & Lieuwen (2012a) for both nonreacting
and reacting flow experiments on an annular jet positioned in the pressure node
(see figure 1.21). The pattern is a result of interference between the transverse
velocity fluctuations directly from the acoustic waves, and velocity fluctuations
induced by the vortices. The RMS fields for f = 450 Hz and f = 655 Hz are
asymmetric for the jet positions in between the anti-node and the node, as
was also seen for the time averaged velocity fields. At these jet positions the
shear-layer seems to bend to the right towards the end of the field of view.

To investigate the velocity fluctuations close to the nozzle exit in detail, profiles
of the RMS of the phase averaged velocity for the different jet positions are
plotted in figure 3.16. In this regard, the choice of axial position of the RMS
profiles is significant. This is shown in figure 3.17, where an example of RMS
of axial and transverse fluctuations are plotted against axial position along
r = 0. While the RMS of axial fluctuations are nearly constant for the first
2-3 diameters downstream of the nozzle exit, the RMS of transverse velocity
fluctuations has an oscillating development downstream. The position of the

aIn some of the fields on the lower row (f = 655 Hz), ripples of size in the order of 0.1D
are visible. This is most probably a processing issue due to the low temporal resolution of 8
frames per forcing period for this frequency.
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nents as a function of axial position at r = 0 for f = 450 Hz, Ue = 13.1 m/s
and y/λ

4 = 1.

maxima change with Strouhal number, but not significantly with jet position.
For St ≈ 0.3 the first maximum is located at x/D ≈ 0.6, and is where the
RMS profiles presented here are taken. The RMS profiles in figure 3.16 show
axisymmetry for y/λ

4 = 0 and y/λ
4 = 1. All the RMS profiles have a local

maximum at the shear-layer and a local minimum close to the centerline of the
jet. For the two highest frequencies at the jet positions y/λ

4 = 0.25, y/λ
4 = 0.5

and y/λ
4 = 0.75, the RMS values for both the axial and transverse velocity

components are larger on the half of the jet facing the pressure node compared
to the half facing the anti-node. For these cases the position of the local
minimum is also shifted towards the anti-node. This is in contrast to f = 250
Hz, where the differences in RMS values for the two sides are much smaller, and
y/λ

4 = 0.75 is the only position where the RMS profiles are clearly asymmetric.
For this case the RMS values are slightly larger at the left hand side compared
to the right hand side, and the local minimum is shifted slightly towards the
node.

There are several similarities between the RMS profiles for y/λ
4 = 0 and

y/λ
4 = 1 for the two highest forcing frequencies in figure 3.16. For both of the

jet positions the RMS profiles are symmetric, and at the shear-layers the axial
and transverse velocity components are of the same order of magnitude. The
main difference lays in the value at the nozzle centerline. While ṽ′

RMS(r/D = 0)
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Figure 3.18: Velocity RMS at jet centerline at x/D = 0.6 as a function of jet
position, for u′

AN,RMS/Ue = 0.25.

is approximately zero and ũ′
RMS(r/D = 0) clearly non-zero at y/λ

4 = 0, the
opposite is true at y/λ

4 = 1. In figure 3.18, ũ′
RMS and ṽ′

RMS at r/D = 0 are
plotted as function of jet position for the different forcing frequencies. ũ′

RMS
decreases from its maximum at y/λ

4 = 0 towards zero at y/λ
4 = 1. Except for

f = 250 Hz, ṽ′
RMS behaves the opposite way by going from approximately zero

at y/λ
4 = 0 to a maximum at y/λ

4 = 1. This behavior of ũ′
RMS and ṽ′

RMS is
expected as ũ′

RMS scale linearly with the pressure fluctuations (as shown in
figure 3.7), while ṽ′

RMS scale with the acoustic velocity in the enclosure, that
again scale with the pressure gradientb. For f = 250 Hz, however, the value of
ṽ′

RMS stays approximately zero at r/D = 0 for all jet positions. This can be
explained by the acoustic properties of the nozzle setup, which in section 3.1 was
shown to be similar to a Helmholtz resonator. The nozzle setup has a resonance
frequency at 260 Hz, which is much closer to f = 250 Hz than f = 450 Hz and
f = 655 Hz. This also means that the amplitude of the pressure fluctuations in
the jet enclosure needed to achieve the same axial velocity fluctuations at the
nozzle exit at y/λ

4 = 0 is varying with orders of magnitudes between the forcing
frequencies, as seen by comparing figure 3.1 and 3.5. The transverse velocity
fluctuations on the other hand is not a property of the nozzle setup, but is
directly related to the pressure fluctuation in the enclosure. Since the amplitude
of the pressure fluctuations is much smaller in the enclosure for f = 250 Hz

bThe acoustic velocity can be seen to scale with the pressure gradient from equation (1.47).
For a standing wave with p′

RMS ∼ cos(ky) and v′
RMS ∼ sin(ky), we have ∂p′

RMS/∂y ∼ sin(ky),
and therefore v′

RMS ∼ ∂p′
RMS/∂y.
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∆ũ′

RMS/Ue
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Figure 3.19: Difference in velocity RMS between the left and the right hand side
shear-layer at x/D = 0.6 as a function of jet position, for u′

AN,RMS/Ue = 0.25.

compared to the other frequencies for a given u′
AN,RMS/Ue, also the transverse

velocity fluctuations are much smaller.

To analyze the asymmetry in the RMS profiles in figure 3.16, the RMS values
on the two sides of the jet are compared in figure 3.19 by plotting the absolute
value of the difference between the maximum RMS value on each side of r = 0.
For f = 250 Hz the peak in asymmetry is at jet position y/λ

4 = 0.75, and the
difference in v′

RMS at this position is the only value that exceeds 5 % of the
exit velocity Ue. For the two higher frequencies the peak in RMS difference
is found at y/λ

4 = 0.25 for u′
RMS, and at y/λ

4 = 0.5 for v′
RMS. The shapes of

∆u′
RMS and ∆v′

RMS are similar for f = 450 Hz and f = 655 Hz, but while the
peak in RMS difference is about twice as high in value for u′

RMS compared to
v′

RMS for f = 450 Hz, these peaks have similar values for f = 655 Hz.

Lespinasse et al. (2013) introduced the flow intensity or the energy flux density
as a measure of the asymmetry of the jet. This acoustic quantity is defined in
equation (1.50), and the plot in figure 1.16 shows that it is zero at y/λ

4 = 0
and y/λ

4 = 1 and has a maximum at y/λ
4 = 0.5. Since the energy flux

density is the product of the pressure fluctuations and the transverse velocity
fluctuations, the product ũ′

RMS · ṽ′
RMS should scale with the energy flux density,

since ũ′
RMS ∼ p̃′

RMS. Figure 3.20 shows that for the two highest frequencies,
ũ′

RMS · ṽ′
RMS at r = 0 has a similar shape as the energy flux density and that it

can be a good measure of the asymmetry of the jet RMS profiles. For f = 250
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Figure 3.20: ũ′
RMS · ṽ′

RMS at jet centerline at x/D = 0.6 as a function of jet
position, for u′

AN,RMS/Ue = 0.25.

Hz, however, the shape of ũ′
RMS · ṽ′

RMS does not agree with the theoretical shape
of the energy flux density shown in figure 1.16. Any dependency between the
asymmetry of the RMS profiles and ũ′

RMS · ṽ′
RMS for this frequency is hard to

deduce since both are small and does not change particularly with jet position.

Figure 3.21-3.23 shows the jet centerline for different jet positions, forcing
frequencies and jet exit velocities. The jet centerline is defined at every axial
position as the position in transverse direction where the two-dimensional
volume flow is equal on both sides:

ˆ rc

−∞
ũdr =

ˆ ∞

rc

ũdr (3.1)

In the figures, the centerline of the phase averaged data is colored by the phase
in the forcing cycle. The thick, black line shows the time averaged position of the
centerline. For the lowest frequency, independent of jet position, the centerline
is barely moving away from r/D = 0 over the forcing cycle. For the higher
frequencies, however, the centerline has transverse fluctuations of significant
amplitude for all jet positions except at y/λ

4 = 0. At y/λ
4 = 0.25, y/λ

4 = 0.5
and y/λ

4 = 0.75, the jet is bending first towards the pressure anti-node and
then towards the node further downstream, the same behavior as was seen from
the velocity and RMS fields. This is similar to what Lespinasse et al. (2013)
observed, although they did not see the initial bending away from the pressure
node. At y/λ

4 = 1, the time averaged centerline is again close to r = 0, while
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Figure 3.21: Radial position of the jet centerline for f = 250 Hz and Ue = 6.8
m/s. Phase averaged centerlines are colored by phase in the forcing cycle, and
the thick, black lines show the time averaged position of the centerline. Above
the centerlines, the theoretical pressure wave in the enclosure is sketched.
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Figure 3.22: Radial position of the jet centerline for f = 450 Hz and Ue = 13.1
m/s. Phase averaged centerlines are colored by phase in the forcing cycle, and
the thick, black lines show the time averaged position of the centerline. Above
the centerlines, the theoretical pressure wave in the enclosure is sketched.
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Figure 3.23: Radial position of the jet centerline for f = 655 Hz and Ue = 18.9
m/s. Phase averaged centerlines are colored by phase in the forcing cycle, and
the thick, black lines show the time averaged position of the centerline. Above
the centerlines, the theoretical pressure wave in the enclosure is sketched.
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the centerlines for the different phases in the forcing period are fluctuating
about this line. An interesting observation at this jet position is that there is
a point downstream, x/D ≈ 1.7 for both f = 450 Hz and f = 655 Hz, where
all the phase centerlines are intersecting and the amplitude of the transverse
movement tend to zero. This intersection point corresponds quite well to the
distance the vortex structures travel in one forcing cycle; by approximating the
vortices to follow the velocity estimated by the slug model in equation (1.26), i.e.
the axial convection velocity of the vortex structures is half of the jet velocity,
uv,c = 0.5 · Ue, we get x/D = 0.5 · Ue

fD = 0.5
St = 1.46 for Ue = 13.1 m/s, f = 450

Hz, and x/D = 0.5
St = 1.44 for Ue = 18.9 m/s, f = 655 Hz. A simple model of

the transverse movement of the vortex structures can be obtained by looking
at a fluid element with a constant axial velocity uv,c moving in the transverse
direction due to the pressure gradient force alone. From Newton’s second law
of motion we obtain:

dv = ∇p
ρ
dt. (3.2)

By assuming that the pressure gradient force is acting on a fluid element from
the moment it leaves the nozzle exit, we get the transverse velocity of this
element at (x, t) by integrating from τ = t− x

uv,c
to τ = t:

v(t) =
ˆ t

t− x
uv,c

∇p
ρ
dτ =

ˆ t

t− x
uv,c

2Ak
ρ

sin (ky) cos (ωτ) dτ

= 2A
ρc

sin (ky)
(

sin (ωt) − sin
(
ωt− ω

uv,c
x

))
. (3.3)

Here we obtain ∇p by differentiating the expression for p given in equation
(1.47), but with x substituted by y since the pressure waves are acting in the
transverse direction. By again integrating with respect to time, we get the
transverse position of the fluid element:
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r/D =
ˆ t

t− x
uv,c

2A
ρc

sin (ky)
(

sin (ωτ) − sin
(
ωτ − ω

uv,c
x

))
dτ

= 2A
ωρc

sin (ky)
(

2 cos
(
ωt− ω

uv,c
x

)
− cos (ωt) − cos

(
ωt− 2ω

uv,c
x

))
.

(3.4)

This equation satisfies the condition r = 0 at

x/D = n
uv,c

fD
, (3.5)

where n is an integer. The result of the transverse position of this fluid element
is plotted in figure 3.24 for the case uv,c = 0.5 ·Ue, Ue = 18.9 m/s, f = 655 Hz in
the same way as for the experimental results. For the jet position y/λ

4 = 1, there
is good agreement between the shape of the theoretical and experimental results
one forcing period downstream, with the largest transverse displacements at
one half of the forcing period downstream and all the centerlines intersecting at
r/D = 0 one period downstream. The amplitude of the transverse movements,
however, differs significantly between the theoretical and experimental data.
Also for the second period downstream, traces of the same shape is visible for
the experimental data. At y/λ

4 = 0.75 the phase centerlines are also intersecting
after one forcing period downstream for the experimental data (and even two
periods for f = 655 Hz), but here the time averaged line does not follow the
r/D = 0 line. For the two jet positions y/λ

4 = 0.25 and y/λ
4 = 0.5 there is no

point downstream where all the centerlines intersect, and both the mean and
phase averaged centerlines are different from the theoretical solution. It is also
worth mentioning that the amplitude of the oscillations at half the forcing cycle
downstream seem to increase from y/λ

4 = 0 to y/λ
4 = 1 for the experimental

cases. This is in agreement with the theoretical case, where the amplitude is
proportional to sin(ky) = sin(y/λ) and is therefore zero at y/λ

4 = 0 and largest
at y/λ

4 = 1.

According to equation (3.5), the axial position where the phase averaged
centerlines cross is proportional to the jet velocity. The measured centerline
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Figure 3.24: Theoretical radial position of the jet centerline for f = 655 Hz and
Ue = 18.9 m/s. Phase averaged centerlines are colored by phase in the forcing
cycle.

104



3.2 Flow characterization

-0.4-0.2 0   0.2 0.4 
0

1

2

3

4

-0.4-0.2 0   0.2 0.4 
0

1

2

3

4

-0.4-0.2 0   0.2 0.4 
0

1

2

3

4

0

45

90

135

180

225

270

315

360

Figure 3.25: Theoretical radial position of the jet centerline for f = 655 Hz and
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4 = 1 for different exit velocities. Phase averaged centerlines are colored by
phase in the forcing cycle, and the thick, black lines show the time averaged
position of the centerline.
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Characterization of the experimental setup

Table 3.2: Axial intersection points of the phase averaged jet centerlines at
y/λ

4 = 1
f = 250 Hz, f = 450 Hz, f = 655 Hz,

Period
Ue = 6.8 m/s Ue = 13.1 m/s Ue = 18.9 m/s

Measured Theoretical Measured Theoretical Measured Theoretical
1 0.48 0.52 1.1 1.0 1.6 1.4
2 1.1 1.0 2.1 2.0 - 2.9
3 1.9 1.6 3.0 3.0 - 4.3
4 2.7 2.1 - 4.0 - 5.8

for forcing frequency f = 655 Hz and jet position y/λ
4 = 1 match reasonably

well in shape with the theoretical solution. Figure 3.25 shows the experimental
results of this case for varying jet exit velocities. The highest velocity has the
same conditions as the y/λ

4 = 1 case in figure 3.23, and the shape and centerline
crossings are also similar (x/D ≈ 1.6 in figure 3.25 compared to x/D ≈ 1.7 in
figure 3.23). For the lower velocities the shape is preserved for a longer time,
3-4 forcing periods. A comparison of the measured and theoretical downstream
position of the centerline intersection for the different velocities are listed in
table 3.2. In general, the measured and theoretical values agrees well, but for
Ue = 6.8 m/s the values deviate more the further downstream.

3.3 Summary of the characterization

To finalize this chapter, a summary of the findings follows:

• Standing waves were produced in the jet enclosure at f = 250 Hz, f = 450
Hz and f = 655 Hz, corresponding to the 2nd, 4th and 6th transverse
mode, respectively.

• The nozzle setup responds as a Helmholtz resonator with mean flow
described in section 1.4.1 with resonance frequency ω0 = 2π · 260 Hz. The
phase of the velocity response relative to the ambient enclosure pressure
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3.3 Summary of the characterization

vary with frequency. This means that the phase between the axial and
transverse velocity fluctuations at the nozzle exit depends on the forcing
frequency.

• The nozzle responds linearly in terms of axial velocity fluctuations when
exposed to ambient pressure fluctuations coming from the pressure anti-
node of a standing wave in the jet enclosure, and the behavior is sinusoidal
in time.

• The unforced jet is near top-hat and symmetric for the velocities investi-
gated.

• It was decided to scale the Strouhal numbers for the varying jet position
cases to StD ≈ 0.35 for all the forcing frequencies. By doing so, the
vortex structures are expected to have the same axial separation distance,
independent of forcing frequency.

• The mean and RMS velocity fields showed significantly different behav-
ior at varying positions in the standing wave. This difference is more
pronounced for f = 450 Hz and f = 655 Hz than for f = 250 Hz.

• The mean and RMS velocity fields are symmetric for the jet placed in
the pressure anti-node and node.

• At the other positions forf = 450 Hz and f = 655 Hz, the jet potential
core bends towards the anti-node, while the jet bends back towards the
node further downstream.

• The potential core is shorter for the forced jet compared to the unforced
jet, and the core length also seems to be dependent on the jet position,
being longer at the pressure node compared to the anti-node.

• For f = 450 Hz and f = 655 Hz the transverse velocity fluctuations at
r/D = 0 are zero at the pressure anti-node and increase towards the node.
The axial component has the opposite behavior, being zero at the pressure
node, and increasing towards the pressure anti-node. The product of the
axial and transverse velocity fluctuations seem to be a good measure of
the asymmetry in the jet, as suggested by Lespinasse et al. (2013).
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Characterization of the experimental setup

• For the f = 250 Hz case, the centerline of the jet does not meander
significantly. For the two higher frequencies, the centerline meanders
for all jet positions, except at y/λ

4 = 0, where no pressure gradient is
present. At y/λ

4 = 1, the behavior of the centerline is symmetric and for
some diameters downstream similar in shape as the analytical solution
of a passive tracer in equation (3.4), while at y/λ

4 = 0.25, y/λ
4 = 0.5 and

y/λ
4 = 0.75 the centerline position during the forcing cycle is asymmetric.
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Chapter 4

Vortex structures

In this chapter, the vortex structures in the near-field of the forced jet are
studied. The vorticity field is introduced, and all the results presented in this
chapter are phase averaged to give an insight in how the jet responds to the
acoustic forcing throughout the forcing cycle. In section 4.1, results of the jet
when positioned in the pressure anti-node are shown. At this position, only
axial velocity fluctuations are present. Then section 4.2 investigate the effect
of varying the position from the anti-node to the node. Section 4.3 shows
results from the pressure node position, where the transverse fluctuations are
dominating. Finally, the role of the axial and transverse velocity fluctuations
in the vortex formation is discussed in section 4.4.

4.1 The pressure anti-node

Figure 4.1 shows contours of normalized phase averaged vorticity (see section
2.5.2) for different forcing frequencies, jet exit velocities and forcing amplitudes
for the jet positioned in the pressure anti-node (y/λ

4 = 0). For all forcing
configurations, the vorticity fields are taken from the start of the forcing cycle,
t/T = 0, defined by the enclosure pressure as shown in figure 3.3. The vorticity
fields show axisymmetric vortex structures, similar to what has been found for

109



Vortex structures

1

2

3

4

-20

-10

0

10

20

1

2

3

4

-20

-10

0

10

20

-1 -0.5 0 0.5 1

1

2

3

4

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-20

-10

0

10

20

Figure 4.1: Phase averaged vorticity contours for varying forcing frequencies,
exit velocities and forcing amplitudes, y/λ
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4.1 The pressure anti-node

longitudinal forcing (Aydemir et al., 2012; Zaman & Hussain, 1980) and previous
anti-node experiments (Baillot & Lespinasse, 2014; O’Connor & Lieuwen, 2011;
Saurabh & Paschereit, 2013). These structures are well known to be vortex
rings. The forcing amplitude increase from left to right in the figure, causing
the strength of the vortices to increase in terms of vorticity. The vortex rings
are also rolling up closer to the nozzle exit, as seen in figure 4.2, that shows
time-series of the f = 450 Hz cases. Since these time-series are phase averaged,
they are periodic. This means that the vortex structures formed somewhere in
the cycle can be followed until the end of the cycle, continuing at t = 0 and
through several cycles until they disappear out of the field of view. For the
lowest forcing amplitude, u′

AN,RMS/Ue = 0.05, the separation of the vortices
from the shear-layer happens later and more gradually. Some smaller vortex
structures are formed both upstream and downstream of the largest vortex for
this forcing amplitude, and these vortices eventually merge into one structure.
The separation distance between the vortex rings in figure 4.1 is approximately
constant and independent of forcing frequency, as is expected since StD is
matched. According to the slug model, however, the ring velocity increases
with forcing amplitude. This implies that the separation distance between the
vortices also should increase with forcing amplitude. This is not seen clearly
from the vorticity fields.

To be able to investigate the velocity and other properties of the vortex structures
more in detail, an algorithm for tracking the individual vortices was developed
(see section 2.5.2). Figure 4.3 shows the axial position of the individual vortex
structures on the left and right hand side of the jet as a function of time for
the same cases as in figure 4.1. The black, solid line has a slope equal to the
velocity obtained by combining the axial convection velocity of a vortex ring
predicted by the slug model given in equation (1.26), and the piston velocity for
a sinusoidally pulsed jet given in equation (1.32) using A = (

√
2/2)u′

RMS/Ue.
The black, dashed line has its slope from equation (1.33) with Ts = T/2. Asadi
et al. (2018) obtained this empirical formula from numerical simulations on a
pulsed jet with constant flow of duration Ts of the forcing period T , and no
flow between the pulses. This velocity program differs from the sinusoidally
pulsed jet which does not have a parameter similar to Ts defined. Ts = T/2
corresponds to the part of the cycle the fluctuating axial velocity is positive,
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4.1 The pressure anti-node
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Vortex structures

and was chosen since it gave a good match to the experimental data. One can
argue that Ts = T/3 should be used since Aydemir et al. (2012) found that
this is the effective forcing period of a sinusoidally pulsed jet, as described in
section 1.2.4. By using Ts = T/3, however, the velocity was considerably higher
than the experimental data for all forcing conditions. Both the solid and the
dashed line starts at the nozzle exit, x/D = 0, at time tũ′

0
, defined in figure 3.8

to be when the fluctuating part of the phase averaged axial velocity at the jet
exit is changing sign from negative to positive.

The left and right hand side vortices have approximately the same axial position
for all cases, and therefore also the same speed. For u′

AN,RMS/Ue = 0.05 this
speed is considerably higher than the slug model speed and the vortices start
slightly downstream of the black line. The vortex paths match quite well with
the empirical path predicted by Asadi et al. (2018). For u′

AN,RMS/Ue = 0.15,
the vortex positions match well with the slug model path and better than the
path by Asadi et al. (2018), for almost one forcing period. Then the vortices
accelerate away from the slug model path and end up in agreement with Asadi
et al. (2018). The vortices at u′

AN,RMS/Ue = 0.05 accelerate as well, but to
a lesser extent. For u′

AN,RMS/Ue = 0.25 the vortex paths are starting at the
same point as the two model paths, but with a lower velocity. Also here the
vortices accelerate with the result that they end up in good agreement with both
models. Both Didden (1979) and Asadi et al. (2018) reported that the vortex
rings increased their convection velocity during the formation process, which is
seen for all the forcing conditions in figure 4.3. The phase angle between the
enclosure pressure and the axial velocity, that in figure 3.5 were found to vary
with forcing frequency, are also seen here; while the phase of the axial velocity
fluctuations and therefore the vortex formation is approximately the same for
f = 450 Hz and f = 655 Hz, it is shifted more than 90° for f = 250 Hz.

In figure 4.4, the mean convection velocities averaged over the time interval
from tũ′

0
to when the vortices cannot longer be tracked, are marked as circles

for the different anti-node cases. According to the slug model, the ring velocity
increase with forcing amplitude. There is no clear trend for this in figure 4.4,
and this is also the case when excluding the formation period of the rings
when calculating the mean convection velocity. For all forcing conditions, the

114



4.2 Varying jet position
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Figure 4.4: Axial velocity of the individual vortex structures on the left (blue)
and right hand side (red) of the jet for varying exit velocities and forcing
amplitudes at y/λ

4 = 0.

measured convection velocity of the vortex rings is higher than the predicted
velocity from the slug model. This is in agreement with Mohseni & Gharib
(1998) who reported that the vortex ring velocity in practice is higher than
half of the piston velocity (equation (1.26)). Asadi et al. (2018) developed
equation (1.33) to match the mean ring speed when including the formation
period, and the model is in good agreement with the experimental data for
all forcing conditions. Asadi et al. found the convection velocity of the vortex
rings to be more sensitive to StD than ReD, but unfortunately equation (1.33)
was not tested against data of varying StD.

4.2 Varying jet position

Figure 4.5 shows contours of normalized phase averaged vorticity for different
forcing frequencies, jet exit velocities and jet positions at time t/T = 0. Above
the vorticity fields the theoretical pressure wave in the enclosure is sketched.
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4.2 Varying jet position

Similar to what was seen in the previous chapter, the response of the jet does
not have nearly the same development for f = 250 Hz as for the higher forcing
frequencies when the jet position is changed. For f = 250 Hz, there is no
noticeable difference in the vorticity field from y/λ

4 = 0 to y/λ
4 = 0.5. At

y/λ
4 = 0.75, the roll-up of the shear-layer happens slightly further away from

the nozzle exit, and the symmetry breaks as the vortex on the right side of the
jet, facing towards the pressure node is slightly downstream of the vortex on
the left side, towards the anti-node. y/λ

4 = 1 is the only jet position where the
asymmetry is clear, and the right vortex is significantly further downstream
of the left. An effect of changing the jet position towards the pressure node
is that the vortex structures are getting weaker in terms of lower maximum
vorticity value, and the right hand side vortex is also getting weaker relative
to the vortex on the left side. Lespinasse et al. (2013) also reported that the
vortices on the side towards the anti-node were visually larger than the vortices
on the side towards the node, but while this difference was not present at the
pressure node in their experiments, the difference between the vortices is largest
at this position for f = 250 Hz in this study.

For the rest of this section the jet forced at 450 Hz is investigated. The vorticity
fields for f = 450 Hz and f = 655 Hz has similar developments when the jet
position is changed from y/λ

4 = 0 to y/λ
4 = 1. The main difference between

these two frequencies is the vorticity structures at y/λ
4 = 1, and this will be

discussed in the next section. For all the three middle positions for f = 450 Hz,
the vortices are not convecting downstream in a straight line but move slightly
towards the pressure node. This is similar to the behavior of the mean centerline
positions in figures 3.22 and 3.23. In contrast to f = 250 Hz, the symmetry
is broken already at y/λ

4 = 0.25. On the right hand side the vortices roll up
at approximately the same x/D and t/T for all jet positions, but the shape of
the shear-layer forming a tail behind the vortex changes with jet position. This
is clearly seen by investigating the time-series of the vorticity fields in figure
4.6a. Also here the time-series are periodic, and the vortex structures formed
somewhere in the cycle can be followed until the end of the cycle, continuing
at t = 0 and through several cycles until they disappear out of the field of
view. From t/T = 0.5 to t/T = 0.92 at jet position y/λ

4 = 0, the shear-layer
aThe time-series for y/ λ

4 = 0.25 can be found in figure B.1 in appendix B
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4.2 Varying jet position

behind the vortices marked as 1 and 2 develop into an almost straight, vertical
line from the nozzle exit, and connecting to the lower left side of the vortex.
Then the shear-layer starts to gradually tilt to the left from t/T = 0 until the
iso-contour of lowest vorticity is not longer connected to the vortex at t/T = 0.5.
For the other jet positions, the vortex and its trailing shear-layer on the right
hand side has a similar development from the time the vortex is formed, until
around t/T = 0. After this, the lower part of the shear-layer tilts to the left
simultaneously as the shear-layer closer to the vortex is bending to the right.
The part of the vortex connected to the shear-layer gradually moves clockwise
in time, starting at the lower, left side, and ends up on top of the vortex. As
the jet is moved towards y/λ

4 = 1, the vorticity contours break down later in
the forcing cycle and the bending of the shear-layer gets more pronounced. At
y/λ

4 = 1, t/T = 0.58, the vortex, its tail and the upstream vortex that starts to
roll up, are all connected and form an S shaped structure before the tail breaks
down. At y/λ

4 = 0.5, a small vortex, marked as 5b, breaks off from the tail of
the larger vortex and slowly disappears. At y/λ

4 = 0.75 and y/λ
4 = 1, similar

vortices are marked as 8b and 10b, respectively. 8b is slightly larger than 5b,
while 10b is of comparable size as vortex 10a and is visible through the whole
field of view.

The vortex on the left hand side has another development as the jet is moved
from the pressure anti-node to the node. At y/λ

4 = 0.25, the position of the
left vortex is slightly downstream of the right one. The same is observed at
y/λ

4 = 0.5, but here another slightly smaller vortex, marked as vortex 3 in
figure 4.6, forms out of phase of the vortex marked as 4. Vortex 3 has a
negative transverse velocity transporting it outside the field of view of the PIV
measurements at x/D ≈ 3. A similar vortex is found at y/λ

4 = 0.75, marked
as 6 in figure 4.6. Vortex 6 has an even stronger transverse velocity and exits
the field of view at x/D ≈ 2. It is comparable in size as vortex 7, the other
vortex on the left side at y/λ

4 = 0.75. At this jet position, the meandering that
was seen in figure 3.22 gets pronounced. The meandering is at its strongest at
y/λ

4 = 1, where the vortex structures on the left hand side have developed to
be similar to the right hand side in size and shape, but forming in anti-phase.
Vortex 9a has approximately the same size and shape as vortex 10a, and the
same is true for vortex 9b and 10b. The meandering and the vortices forming
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Vortex structures

in anti-phase at y/λ
4 = 1 is in agreement with the flapping motion Matta et al.

(1996) observed in their experiments on a round jet at the pressure node.

While the vortices on the side towards the anti-node were visually larger than
the vortices on the side towards the node in the experiments by Lespinasse
et al. (2013), this is not seen for the positions between the pressure anti-node
and node for f = 450 Hz and f = 655 Hz in this study. The vortex structures
on the right side of the jet, towards the pressure node, are in general slightly
larger than the vortex structures on the left side, but for the cases where several
structures appear on both sides this is difficult to compare.

The shape in the near-field of the jet at the pressure node, and also on the right
hand side of the jet at y/λ

4 = 0.5 and 0.75, where the shear-layer curves around
the front of the vortex, has similarities to the plane along the minor axis of jets
from oval and elliptic shaped nozzles as described in section 1.3 and seen in
figure 1.14b. In these cases the explanation for the characteristic shape is the
lower convection velocity of the vortex relative to the shear-layer in this plane.
This again is due to the vortex convection velocity being inversely proportional
to the local curvature radius of the nozzle. By increasing the stroke ratio, it
has been reported that the curved shear-layer downstream of the vortex can
separate and form an isolated structure (Adhikari, 2009; O’Farrell & Dabiri,
2014). This is similar to the vortices 9b and 10b forming at y/λ

4 = 1. Low
convection velocity of the vortices at the pressure node and the right hand
side of the jet at y/λ

4 = 0.5 and 0.75 in the current experiments can be due to
meandering causing these vortices to move away from the jet centerline and
into an area of lower velocity.

To again investigate the paths of the individual vortex structures more thor-
oughly, their axial position is plotted against time in figure 4.7 for forcing
frequency f = 450 Hz and amplitude u′

AN,RMS/Ue = 0.25. In addition to the
black line showing the slug model path for u′

AN,RMS/Ue, a dashed line is plotted
showing the slug model velocity for u′

RMS/Ue → 0, which is the case at the
pressure node position. The black, dashed line starts at tũ′

0
, while there are

also blue and red, dashed lines with the same slope starting at tṽ0− and tṽ0+

These time constants specify when in the forcing cycle the transverse velocity
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Figure 4.8: Axial velocity of the individual vortex structures on the left (blue)
and right hand side (red) of the jet at different jet positions, for f = 450 Hz,
u′

AN,RMS/Ue = 0.25.

at x = 0, r = 0 changes direction to the left and right, respectively, as shown in
figure 3.3. Figure 4.8 shows the velocity of the vortices averaged over the period
they are tracked, alternatively before and after the vortex splits if this occur.
Already at position y/λ

4 = 0.25 the vortices on the two sides of the jet clearly
have different paths. The vortex on the left side facing towards the anti-node
has a similar development as the vortices in the anti-node position. It starts
out by following the solid, black line before it accelerates. The vortex on the
right side, towards the node, starts out closer to the dashed, black line, and
also this vortex accelerates and ends up between the solid and dashed, black
lines. At y/λ

4 = 0.5, vortex 5 on the right hand side follows both the black and
the red, dashed lines closely, while vortex 4 on the left side is positioned further
downstream for the whole path. Vortex 4 also accelerates, while the right hand
side vortex does not change its speed significantly. Vortex 4 is approximately
in anti-phase with the other vortex on the same side, vortex 3, and these two
vortices have about the same speed. At y/λ

4 = 0.75, the vortex on the right
hand side starts out by following the black and the red, dashed lines, but are
shortly after splitting up. The smaller of the two resulting vortices, 8b, are
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4.3 The pressure node

closer to the jet centerline and gains higher speed, while vortex 8a continues
to follow the dashed lines. On the left side, vortex 7 has approximately the
same path as the blue, dashed line, but it has a slightly higher speed, as seen
in figure 4.8. Vortex 6 has a transverse velocity moving it away from the area
of high axial velocity into the slower surrounding area. Therefore, it has a
significantly lower speed than vortex 7, and even though it starts out most
downstream of the two, it is passed by vortex 7 before it leaves the field of view.
At y/λ

4 = 1, the left and right hand side vortices start out by following the blue
and red, dashed lines, respectively, implying they are in anti-phase. Then both
vortices split up into an outer part with lower axial velocity and an inner part
with higher axial velocity. Except for vortex 6, all the vortices start out with
approximately the same axial velocity bounded by the two slug model speeds.
Later however, most of the vortices are either accelerating or splitting up, with
the resulting velocities outside this velocity region.

4.3 The pressure node

We now investigate in detail the response of the jet positioned at y/λ
4 = 1.

Figure 4.5 showed that the vortex structures for f = 250 Hz did not have
the same transition as the higher frequencies, when moving the jet from the
pressure anti-node to the pressure node. In section 3.2, figure 3.18 showed
that the amplitude of the transverse velocity fluctuations for f = 250 Hz was
approximately constant for all jet positions, and significantly lower than for
the other frequencies at y/λ

4 = 1. As seen from equation (1.47), the acoustic
velocity scales with pressure amplitude. Therefore, it is interesting to investigate
the jet behavior for f = 250 Hz for higher forcing amplitudes at y/λ

4 = 1 to
see if this gives a change in the response. Figure 4.9 shows the vorticity field
for forcing amplitudes up to u′

AN,RMS/Ue = 1.0. As the forcing increases, the
response is more similar to the pressure node response of the other frequencies
that was shown in figure 4.5. The shear-layer rolls up closer to the nozzle exit,
and the vortex structures grows in strength and are more distinct. However,
the vortex structures on the left and right hand side are not completely in
anti-phase even for u′

AN,RMS/Ue = 1. The vortices move radially towards the
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Figure 4.9: Phase averaged vorticity contours for different forcing amplitudes,
for f = 250 Hz, y/λ

4 = 1, t/T = 0.

left as they convect downstream, which is the opposite direction of what was
observed for the middle positions for f = 450 Hz and f = 655 Hz. Figure 4.10
shows the axial position of the tracked vortex structures as a function of time.
For u′

AN,RMS/Ue = 0.05 and on the right hand side for u′
AN,RMS/Ue = 0.15, the

tracking algorithm could not find any distinct vortices disconnected from the
shear-layer. The paths that are tracked show that the left hand side vortex is
slowly approaching the blue dashed line as the forcing is increased, and that
this vortex moves with a fairly constant velocity. For all forcing amplitudes,
the right hand side vortex follows the red dashed line to begin with, before it
accelerates and moves off the dashed line.

The jet positioned at y/λ
4 = 1 is also investigated in detail for f = 450 Hz and

f = 655 Hz. Figure 4.11 shows phase averaged vorticity contours for varying jet
velocities and forcing amplitudes for f = 450 Hz at time t/T = 0. Time-series
of these vorticity fields can be found in figure B.2-B.4 in appendix B. The
vortex separation distance increases with higher jet velocity, since the vortices
then move a longer distance in one forcing period. For the case Ue = 6.8 m/s,
u′

AN,RMS/Ue = 0.05, 5 vortices from 5 consecutive forcing cycles are visible on
each side of the jet in the field of view. For the velocities Ue = 13.1 m/s and
Ue = 18.9 m/s, only vortices from two and one forcing cycle, respectively, are
visible. This large difference is also due to the fact that the vortices roll up
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and right hand side (red) of the jet as a function of time for different forcing
amplitudes, at y/λ
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4.3 The pressure node

closer to the nozzle exit for lower Ue. For Ue = 18.9 m/s, u′
AN,RMS/Ue = 0.05,

the shear-layer, seen as lines of high vorticity, start to roll up approximately
2 diameters downstream, but no clear and distinct vortices appear within the
field of view. The axial roll-up position also depends on the forcing amplitude.
Higher forcing amplitude makes roll-up happen closer to the exit, similar to
what was seen for the jet in the pressure anti-node in figure 4.1. For jet velocity
Ue = 6.8 m/s, the shear-layer does not have the same S shape as for the other
jet velocities. Here the distance between the vortices are shorter and the roll-up
happens closer to the nozzle exit compared to the higher velocities. Therefore,
there is no trailing shear-layer following the vortex that are able to form such
an S shape. For most of the cases, the vortices on both sides split in two in the
same way as the node cases for f = 450 Hz and f = 655 Hz in section 4.2. The
exceptions are u′

AN,RMS/Ue = 0.05 and u′
AN,RMS/Ue = 0.15 for Ue = 6.8 m/s,

and u′
AN,RMS/Ue = 0.05 for Ue = 18.9 m/s. This is clearly seen in figure 4.12,

where the axial positions of the tracked vortices are plotted as a function of
time. For most of the cases the vortex paths start by following the dashed lines;
the left hand side vortex follows the blue lines starting at tṽ0− , and the right
hand side vortex follows the red line starting at tṽ0+ . For jet velocity Ue = 6.8
m/s, the vortices move upstream of the dashed line as the forcing amplitude
increases, and the roll-up happens closer to the nozzle exit. The mean vortex
convection velocities are shown in figure 4.13, averaged over the time period
the vortices are tracked, alternatively before and after the vortices split if this
occur. For the vortices that split up, the result is a vortex outside r = ±0.5
with lower velocity than the original vortex, and a faster moving vortex closer
to the jet centerline. The exception is for Ue = 6.8 m/s. For the cases where
the vortices split up at this jet velocity, the vortex closest to the centerline
is much smaller than the outer vortex, and the outer vortex also stays inside
r = ±0.5 and has a small increase in velocity. For the outer vortex, the increase
in velocity relative to Ue, decreases with jet velocity.

Figure 4.14 shows the phase averaged vorticity contours for different jet velocities
and forcing amplitudes for f = 655 Hz, y/λ

4 = 1, at time t/T = 0. The main
trends are similar to f = 450 Hz in figure 4.11; the separation distance between
the vortices increases for higher jet velocity, and the distance from the nozzle
exit to where the vortices roll up increase with jet velocity and decrease with
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Figure 4.13: Axial velocity of the individual vortex structures on the left (blue)
and right hand side (red) of the jet for different exit velocities and forcing
amplitudes, at y/λ

4 = 1, f = 450 Hz.

forcing amplitude. Row 2 in figure 4.11 has same StD as row 3 in figure 4.14.
By comparing these two cases we can find some differences. For the lowest
amplitude, u′

AN,RMS/Ue = 0.05, the vortex that rolls up is more pronounced
and has higher vorticity for f = 450 Hz, compared to f = 655 Hz that never
develops to a distinct vortex. For the same forcing amplitude the shear-layers
in the f = 655 Hz case do not form the S shape that is seen for f = 450 Hz.
For the two highest forcing amplitudes for f = 655 Hz, Ue = 18.9 m/s, the
shear-layers roll up into an additional vortex, seen on the left hand side of
the jet at x/D ≈ 1.1, instead of forming the S shape. By investigating the
time-series of the vorticity field and the path of the tracked vortices for the
case Ue = 18.9 m/s, f = 655 m/s, u′

AN,RMS/Ue = 0.25 in figure 4.15-4.16, it is
clear that there are now three vortices formed on either side of the jet during
each forcing cycle, two that are splitting up from the same vortex, and a third
forming in anti-phase. This means that vortices are forming simultaneously on
both sides of the jet twice per forcing period.
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Figure 4.14: Phase averaged vorticity contours for different jet velocities and
forcing amplitudes, for f = 655 Hz, y/λ

4 = 1, t/T = 0.
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Figure 4.15: Time-series of phase averaged vorticity contours for y/λ
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and right hand side (red) of the jet as a function of time for y/λ

4 = 1, f = 655
Hz, Ue = 18.9 m/s, u′

AN,RMS/Ue = 0.25.

4.4 The role of the fluctuating velocity components
in vortex formation

In this chapter the large-scale vortex structures in the near-field of the jet
has been investigated. As the jet is moved from the pressure anti-node to the
pressure node, the vortex structures change from the well-known axisymmetric
vortex rings to more complex structures. Except for f = 250 Hz, these structures
are seen as vortices in anti-phase in the z = 0 plane. At the pressure anti-node
position, where only axial velocity fluctuations are present, the formation of the
vortex rings start at tu0 . At the pressure node, where the transverse velocity
fluctuations are at their maximum and the axial fluctuations are negligible, the
results indicate that the vortex formation starts at tv0− on the left hand side
and tv0+ on the right hand side. The pressure anti-node and node positions
show the pure response of the jet exposed to velocity fluctuations in the axial
and transverse direction, respectively. For the other positions, both fluctuations
are present simultaneously.

When comparing the vortex structures for varying jet positions in figure 4.6,
similar structures can be found in neighboring plots suggesting that they change
gradually as the jet position in the standing wave is changed. We can therefore
divide vortex structures that are similar across the jet positions into groups.
On the left hand side of the jet, vortex 1 at y/λ

4 = 0 (and the left side vortex at
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Figure 4.17: Transverse velocity RMS at the jet centerline, and phase difference,
plotted against jet position for u′

AN,RMS/Ue = 0.25.

y/λ
4 = 0.25 that is not shown), vortex 4 at y/λ

4 = 0.5, vortex 7 at y/λ
4 = 0.75

and vortex 9b that splits off from vortex 9 at y/λ
4 = 1 is one such group.

Likewise, vortex 3 at y/λ
4 = 0.5, vortex 6 at y/λ

4 = 0.75 and vortex 9/9a at
y/λ

4 = 1 is another group of vortices with similar properties. On the right hand
side of the jet the vortex structures have a less prominent development, and
vortex 2, 5/5a, 8/8a and 10/10a changes only slightly between the jet positions.
Vortex 5b, 8b and 9b, that all split up from the shear-layer of their original
vortices, can be defined as a fourth group. An explanation for the similarities
of the vortices within each group can be that the underlying mechanism that
triggers and drives their formation is the same, and that their differences are
due to a change in magnitude of the driving velocity fluctuation. This, however,
cannot be the case for all the groups. The formation of vortex 2 for example,
that is formed when the jet is placed in the pressure anti-node with only axial
velocity fluctuations present, cannot be due to the same mechanisms as vortex
10/10a from the jet placed in the pressure node with only transverse velocity
fluctuations present. Somewhere between these jet positions there might be
a transition point where the transverse velocity fluctuations take over for the
axial fluctuations as the driving mechanism. The same may also be the case
for the group of vortices on the left side of the jet including vortex 1, 4, 7 and
9b. The two other groups of vortices, vortex 3, 6 and 9/9a, and vortex 5b,
8b and 9b, does not have any vortices at y/λ

4 = 0 and y/λ
4 = 0.25 where the

axial fluctuations are dominating, and can possibly be a result of the transverse
fluctuations alone.
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ũ
R
M
S

0

90

180

∆
φ
(◦
)

f = 655 Hz, Ue = 18.9 m/s

Figure 4.18: Velocity RMS ratio at the jet centerline, and phase difference,
plotted against jet position for u′

AN,RMS/Ue = 0.25.

The two groups that include vortices 1 and 2 at the pressure anti-node, are
in phase at this jet position. As soon as the jet is moved away from the
pressure anti-node to where the transverse velocity fluctuations are present, the
symmetry breaks as the vortex on the left side of the jet moves downstream
relative to the vortex on the right side. This suggests that there might be a
relationship between this asymmetry and the presence of transverse velocity
fluctuations. As a measure of the asymmetry we define the phase shift between
the vortices on either side of the jet, ∆φ, as the time difference relative to one
forcing period T between when the vortices have the same axial position. A
time shift of T then corresponds to 360°. The phase is calculated as an average
over an axial distance D/2 from x/D = 0.6 to x/D = 1.1. In figure 4.17, ∆φ
together with ṽ′

RMS at x/D = 0.6, r/D = 0 is plotted against jet position for
forcing frequencies f = 250 Hz, f = 450 Hz and f = 655 Hz. It is clear that
these two variables do not consistently follow the same trend. For example,
for f = 250 Hz the phase angle increases even though ṽ′

RMS is approximately
constant from y/λ

4 = 0 to y/λ
4 = 1. An alternative parameter that could

determine the vortex phase shift is the ratio between the transverse and axial
velocity fluctuations, ṽ′

RMS/ũ
′
RMS. Figure 4.18 shows ṽ′

RMS/ũ
′
RMS on the left

vertical axis and ∆φ on the right, versus jet position. These two values follow
a similar development for f = 250 Hz, and also for f = 450 Hz and f = 655 Hz
from y/λ

4 = 0 to y/λ
4 = 0.5. As the jet position gets closer to y/λ

4 = 1, however,
∆φ locks to 180°, while ṽ′

RMS/ũ
′
RMS continue to increase as ũ′

RMS goes to zero.
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Figure 4.19: (a) Velocity RMS at the jet centerline and (b) velocity RMS ratio
at the jet centerline and phase difference, as a function of forcing amplitude for
f = 250 Hz.

In section 4.3, f = 250 Hz with forcing amplitudes up to u′
AN,RMS/Ue = 1.0

was applied while the jet was positioned at the pressure node. As the forcing
amplitude was increased, the vorticity fields became more similar to the pressure
node response for the higher frequencies. Figure 4.19 (a) shows ũ′

RMS and ṽ′
RMS

at the jet centerline for these cases. Even for u′
AN,RMS/Ue = 1, ṽ′

RMS/Ue is
lower than it was for the pressure node cases for f = 450 Hz and f = 655
Hz presented in section 4.2, and closer to the values at y/λ

4 = 0.5 (see figure
4.17). Figure 4.19 (a) also shows that ũ′

RMS increases with almost the same
rate as ṽ′

RMS for increasing u′
AN,RMS/Ue, implying that y/λ

4 = 1 is not strictly
a pressure node for f = 250 Hz. Figure 4.19 (b) compares the ratio of the
two components of velocity fluctuations with the phase difference between the
vortex structures on the left and the right side, similar to figure 4.18. Even
though the ratio of the velocity fluctuations varies between 1 and 1.5, the phase
difference is stable at ∆φ ≈ 90°.

It seems not sufficient to describe the asymmetry in the jet only by the ũ′
RMS and

ṽ′
RMS values at the jet centerline, since this cannot explain why the development

of the vortex structures are different on the left and right side of the jet from
y/λ

4 = 0 to y/λ
4 = 1. An explanation for this difference can be that the jet

experiences different pressure fluctuations in the shear-layer on the left and
right hand side. The jet is then said to be not acoustically compact, and for this
to apply the jet diameter relative to the acoustic wave needs to be sufficiently
large. By assuming 1-dimensional pressure distribution in the jet enclosure,
p ∼ cos(2π(y + r)/λ), where y is the jet centerline position and r is the radial
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position in the jet, the forcing condition with the largest pressure difference
between the left and the right jet shear-layer is f = 655 Hz, y/λ

4 = 0.75. Then
the pressure fluctuations are as much as 33 % larger at r/D = −0.5 (left side)
compared to r/D = 0.5 (right side) (see appendix C). If this is the reason for
the differences between the left and right side of the jet, it is expected that the
left shear-layer, experiencing the highest pressure fluctuations, also would be
where the highest axial velocity fluctuations occur. Figure 3.16, however, shows
the opposite. For f = 450 Hz and f = 655 Hz, ũ′

RMS is largest on the right half
of the jet, where the pressure fluctuations are smallest. This can be explained
by the fact that the pressure fluctuations do not directly cause the axial velocity
fluctuations. Instead, the pressure fluctuations in the jet enclosure propagate
into the nozzle setup and the pipe upstream of the nozzle exit. These pressure
waves then cause the air to oscillate at the nozzle exit. It is unlikely that the
pressure differences sustain into the nozzle setup, which in reality would require
an acoustic mode in the radial direction of the pipe upstream of the nozzle.
Neither the asymmetry in the RMS profiles of transverse velocity in figure
3.16 is likely to be due to the pressure difference between the left and right
shear-layer. Since the acoustic velocity in a standing wave is proportional to
the pressure gradient, and the relative difference in this gradient over the nozzle
is largest at y/λ

4 = 0.25 for a 1-dimensional pressure wave, this jet position
is also where ṽ′

RMS would be expected to have the largest difference between
the left and right shear-layer. In addition, for both velocity components the
differences should increase with frequency since the wavelength then becomes
smaller. None of these trends are found in the RMS profiles in figure 3.16.

Another more likely explanation for the differences in vortex structures on the
left and right side of the jet for the positions between the pressure anti-node
and node, is the phase between the axial and transverse velocity fluctuations
experienced by the jet. This can also explain some of the differences in behavior
seen for f = 250 Hz compared to the other frequencies. While the transverse
velocity fluctuations are always 90° behind the pressure fluctuations, the phase
between the axial velocity and pressure fluctuations was seen in figure 3.5 to
depend on the forcing frequency. This means that also the phase between the
axial and transverse velocity fluctuations is dependent on this frequency. As
we have seen, transverse velocity fluctuations can drive vortex formation, and
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Figure 4.20: Illustration of periods of symmetric and asymmetric vortex forma-
tion, for f = 450 and f = 655 Hz.

vortex structures begin to form on the side of the jet where this velocity starts
pointing away from the centerline. We can define the radial velocity similar to
the transverse velocity, but with positive direction away from the jet centerline:

ur(x, r) =

−v(x, r), r ≤ 0,

v(x, r), r > 0.
(4.1)

This is the velocity that together with the axial velocity is of importance in
vortex formation. The phase differences between the axial and radial velocity
fluctuations are small on the right hand side for f = 450 Hz and f = 655 Hz,
varying between 15° and 25°. On the left hand side, however, they are almost
in anti-phase. This means that for the positions where both the axial and
transverse velocity fluctuations of a certain amplitude is present, the two vortex
formation mechanisms are working simultaneously on the right hand side while
they are working against each other on the left hand side. This explains why the
vortex structures are changing less on the right hand side compared to the left.
Furthermore, it can explain the creation of two independent vortices on the left
hand side for certain positions, one is created by the axial fluctuations (vortex
4 and 7 in figure 4.6), while the other is created by the transverse fluctuations
(vortex 3 and 6).
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Figure 4.21: Illustration of periods of symmetric and asymmetric vortex forma-
tion, for f = 250 Hz.

By studying the vortex structures at y/λ
4 = 0 and y/λ

4 = 1, we have been
able to state when in the forcing cycle the vortex formation happens for the
cases with only axial and with only transverse fluctuations, respectively. By
assuming that this can be superimposed to the jet positions where both axial
and transverse velocity fluctuations are present, the different regimes of vortex
formation when the transverse velocity fluctuation is 20° before the axial, which
is approximately the case for f = 450 Hz and f = 655 Hz, is shown in figure 4.20.
The duration of the two formation processes are determined by the pinch-off
time, which is considered in chapter 5. Figure 4.20 shows that the whole period
of symmetric vortex formation falls within the period of asymmetric formation
on the right hand side, and not at all during the left hand side asymmetric
formation. Figure 4.21, where the phase difference between ũ′

RMS and ṽ′
RMS is

similar to the f = 250 Hz case, shows another picture. Here the symmetric
formation starts approximately halfway into the asymmetric formation on the
left hand side, and finishes just after the right hand side asymmetric formation
has started. This might explain some of the differences between the vortex
structures for f = 250 Hz and the other frequencies. For f = 450 Hz and
f = 655 Hz, the axial position of the left hand side vortex for constant t/T
increases as the jet is moved away from the pressure anti-node, while the right
hand side vortex has approximately constant axial position. This is in contrast
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to the f = 250 Hz case, where vortices on both sides move downstream, with
the right hand side vortex slightly downstream of the left. If the vortices for
the jet positions away from the pressure anti-node are still connected structures
forming vortex rings, the reason for this asymmetry can be that the transverse
velocity causes the rings to tilt in the direction this velocity has during the
formation of the ring. This is in agreement with the direction of the tilting for
the different forcing frequencies seen in figure 4.5. A velocity pointing into the
jet center may also force the shear-layer to roll up further downstream. This
can also explain why the jet bends to the right for the three middle jet positions
for f = 450 Hz and f = 655.
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Chapter 5

Symmetric and asymmetric
pinch-off

An important phenomenon related to the formation of the vortex structures is
the pinch-off. As described in section 1.2.3 this is the process where the vorticity
from the jet stops entraining the ring. While the pinch-off of symmetric vortex
rings are studied in detail (Aydemir et al., 2012; Gharib et al., 1998; Lawson
& Dawson, 2013; Schlueter-Kuck & Dabiri, 2016), little is known about the
pinch-off process of the asymmetric vortex structures formed in the near-field
of transversely forced jets. This chapter will address this by applying three
methods for pinch-off estimation, all which have shown to successfully predict
pinch-off for axisymmetric vortex rings.

5.1 Vortex circulation and estimation of pinch-off

When discussing vortex ring pinch-off, the stroke ratio, LP /D = ūp(t)t/D, is an
important parameter. Aydemir et al. (2012) showed that for a pulsed jet with
velocity program up ≈ Ue(1 +A sin(2πft)), the formation number is the same
as for an impulsively starting jet, (LP /D)lim ≈ 4, as long as t = T/3 = 1/(3f)
is used for calculating the stroke ratio over one forcing cycle. In this study
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Figure 5.1: Total circulation (circles) and vortex circulation (squares) on the
left and right hand side of the jet as a function of time at the pressure anti-node
for u′

AN,RMS/Ue = 0.25. The calculation of circulation is started at tũ0 .
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5.1 Vortex circulation and estimation of pinch-off

the same sinusoidal velocity program in the axial direction is obtained in the
pressure anti-node, and the effective forcing period can therefore be expected
to be T/3 also in this case. The stroke ratio of a sinusoidal forcing cycle is
obtained by combining equation (1.31) and (1.32)

LP /D = UeT

3D

(
1 + 9A

4π

)
= 1

3StD

(
1 + 9A

4π

)
. (5.1)

As seen, this stroke ratio is a function of Strouhal number and forcing amplitude.
The largest stroke ratio obtained in this study is for the case StD ≈ 0.35 and
A ≈ (

√
2/2) · 0.25. This gives LP /D ≈ 1.07, which is considerably smaller

than the formation number (LP /D)lim ≈ 4. We can therefore expect that the
pinch-off time for the symmetric vortex rings formed in the jet when positioned
at the pressure anti-node, is limited by the stroke ratio and not the formation
number, and that the rings should pinch off at t/T ≈ 0.33.

As described in section 1.2.3, Gharib et al. (1998) introduced a method to find
the pinch-off time of a vortex ring where the total circulation downstream of
the nozzle exit was calculated and plotted against time. When the vortex ring
was clearly separated from the shear-layer, also the circulation of the ring was
calculated. The pinch-off time was then set to be when the total circulation
had reached the value of steady circulation of the separated vortex ring. As
explained in section 2.5.3, the method of Gharib et al. was adjusted to be
able to calculate the circulation of the vortex structures obtained in this study.
Figure 5.1 shows the total circulation and vortex circulation versus time for
the jet placed in the pressure anti-node for different forcing frequencies using
this method. The calculation was started at the same phase in the forcing
cycle as Aydemir et al. (2012) did, at tũ0 . This is the time when the axial
velocity fluctuations change from negative to positive as defined in figure 3.8,
and is also the time in the forcing cycle when the axisymmetric vortex rings
start to form. The circulation on the left and right hand side in figure 5.1 is
similar for all frequencies, which is expected as the jet is symmetric at this
position. The pinch-off time is found to lay between t/T = 0.32 and t/T = 0.38.
This is in good agreement with the results by Aydemir et al. (2012), and the
results deviate less than 0.03T from the pinch-off times achieved when using the
original method by Gharib et al. on the same data (see figure B.5 in appendix
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Figure 5.2: Total circulation (circles) and vortex circulation (squares) on the
left and right side of the jet as a function of time, for f = 450 Hz, Ue = 13.1
m/s, u′

AN,RMS/Ue = 0.25. The calculation of circulation is started at tũ0 .

B). In addition, the shape of the total circulation plots is similar to the slug
model circulation shown in figure 1.6, with a linearly growing term plus a term
fluctuating with the forcing frequency.

For the jet placed at y/λ
4 = 0.25, shown in the upper part of figure 5.2, both

the total circulation and the vortex circulation have similar development as for
the anti-node, even though there is a small asymmetry as the total circulation
is slightly lower and the pinch-off happens slightly later on the right hand side
compared to the left. At y/λ

4 = 0.5, shown in the lower part of figure 5.2,
the total circulation is very similar to y/λ

4 = 0.25. On the right hand side
the vortex circulation has an almost identical development as the right hand
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Figure 5.3: Total circulation (circles) and vortex circulation (squares) on the
left and right side of the jet as a function of time, for y/λ

4 = 0.5, f = 450 Hz,
Ue = 13.1 m/s, u′

AN,RMS/Ue = 0.25. The calculation of circulation is started at
tṽ0− and tṽ0+ on the left and right hand side, respectively.

side at y/λ
4 = 0.25 until its maximum value at t/T ≈ 1. At this time, the

vortex circulation on the right hand side at y/λ
4 = 0.5 includes both the vortex

marked as 5a and 5b in figure 4.6. Shortly after this the circulation start to
decrease, before it stabilizes at a lower circulation value at t/T ≈ 1.58. The
reason for this decrease in vortex circulation is that vortex 5b becomes weaker
and eventually the tracking algorithm is no longer able to track the vortex.
From t/T ≈ 1.58, Γ∗

v,RHS includes only the circulation of vortex 5a. The vortex
circulation on the left side at y/λ

4 = 0.5 grows considerably slower than the
other vortex circulations for the first three quarters of the cycle. During this
period, Γ∗

v,LHS includes only the circulation of the vortex marked as 4 in figure
4.6. Then there is a jump in the vortex circulation at t/T ≈ 1.17 at the same
time as vortex 3 (see figure 4.6) is tracked by the vortex tracking algorithm.
After this point, Γ∗

v,LHS is the sum of circulation of both vortex 3 and 4, and
is at about the same level as Γ∗

v,RHS. Despite a different development of the
left hand side vortex circulation, the estimated pinch-off time on both sides are
similar as for the jet positioned at y/λ

4 = 0.25, with the vortex on the right
side pinching off slightly later than the left vortex.

Until now the circulation is calculated from tũ0 , which is when the vortex
structures start to form in the axisymmetric case. However, in section 4.2 we
saw that when in the forcing cycle the vortex structures form is highly affected
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Symmetric and asymmetric pinch-off

by the jet position. At the pressure node, the vortex structures start to form at
tṽ0− and tṽ0+ on the left and right hand side, respectively, while for the positions
in between the picture is more complicated. As shown in figure 3.3, tṽ0− marks
the time in the forcing cycle when the transverse velocity fluctuations change
direction from right to left, while tṽ0+ marks when the transverse velocity
fluctuations changes from left to right. In figure 5.3, circulation versus time
is shown again for y/λ

4 = 0.5, but now the circulation on the left side of the
jet is calculated starting at tṽ0− , while the circulation on the right hand side is
calculated starting at tṽ0+ . Both the total and vortex circulation for the right
side of the jet is almost identical as the lower plot of figure 5.2, which is expected
since tṽ0+ ≈ tũ0 for f = 450 Hz. For the left hand side, the total circulation is
shifted towards tṽ0− , but the shape is not changing much compared to when
the circulation was calculated from tũ0 . The vortex circulation, however, has
a different shape. It starts when vortex 3 (see figure 4.6) is tracked by the
vortex tracking algorithm, which is also the time when the vortex circulation
calculated from tũ0 , lower plot in figure 5.2, had a jump. Then, the vortex
circulation calculated from tṽ0− has a jump when vortex 4 are tracked by the
vortex tracking algorithm at approximately t/T = 1.42. The pinch-off time is
estimated to t ≈ tṽ0− + 0.5T ≈ tṽ0+ . This is when the transverse velocity is zero
and the jet starts to move to the right, away from the vortices formed on the
left hand side. Around t/T = 2, the vortex circulation starts to decrease, and
again stabilizes around t/T = 2.58. From figure 4.6 this can be identified as
when vortex 3 moves outside the field of view. Therefore, the vortex circulation
at t/T = 2.58 represents the circulation of vortex 4 alone. By adding this to
the circulation of vortex 3 at t/T = 1.33, it matches quite well with the vortex
circulation at t/T = 1.92 where the circulation from both vortex 3 and 4 is
included: Γ∗

3 + Γ∗
4 = 0.54 + 0.92 ≈ 1.48 = Γ∗

3+4.

These results show that the circulation plots and the estimated pinch-off time
can be highly dependent on when in the forcing cycle the calculation is started.
By defining the start of the forcing cycle at tũ0 , vortex 3 forms later and is
positioned upstream compared to vortex 4. Therefore, the pinch-off time at
t/T ≈ 0.74 from the lower plot in figure 5.2 can be seen as an estimate of the
pinch-off time of vortex 3 since this is attached to the shear-layer later in the
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5.1 Vortex circulation and estimation of pinch-off

cycle. With the same reasoning, figure 5.3 gives the estimate of the pinch-off
time of vortex 4.

Figure 5.4 and 5.5 show some examples of the circulation against time for
the jet placed in the pressure node. For y/λ

4 = 0.75, and for the rest of the
forcing conditions at the pressure node, the circulation plots did not give any
reasonable results, and are therefore left out. The circulation was calculated
from when the vortex structures started to form at this jet position, which
was shown in section 4.3 to be at tṽ0− for the vortices on the left hand side
and at tṽ0+ for the vortices on the right hand side. The pinch-off, seen on the
figures as the time when the horizontal, dashed line crosses the line of total
circulation, happens in anti-phase on either side of the jet. For most of the
cases the pinch-off time coincides with tṽ0− ≈ tṽ0+ + 0.5T on the right hand side
and with tṽ0+ ≈ tṽ0− + 0.5T on the left hand side, both marked with vertical,
dashed lines. This is the time when the jet starts to move away from the side
where the vortices are rolling up, and this change in direction of the jet seems
to initiate the pinch-off.

According to the slug model, the total circulation should increase linearly for
the node position since the axial velocity is nearly constant here (u′

RMS/Ue <

0.04 for all cases with f = 450 Hz and f = 655 Hz), which according to
equation (1.24) gives a nearly constant vorticity flux. For the low forcing
cases, u′

AN,RMS/Ue = 0.05, in figure 5.4, and both cases in figure 5.5, the total
circulation grows approximately linearly in time. For the higher forcing cases
in figure 5.4, however, the growth in total circulation is, similar to the pressure
anti-node cases, fluctuating with the forcing frequency. But unlike for the
anti-node, the increase in circulation for these cases stops suddenly, suggesting
that the oscillating term of the circulation is on the form ∼ −

√
1 − cos(2πt∗)

instead of ∼ 1 − cos(2πt∗) as in equation (1.30). This might be due to nonlinear
effects, that gets stronger as the forcing amplitude is increased and the vortex
structures grow. The time when the total circulation suddenly stops to increase,
coincides quite well with the pinch-off time. The vortex circulation and the
average growth of the total circulation does not change significantly with forcing
amplitude, but are, in accordance with the slug model, growing with decreasing
Strouhal number. One possibility is therefore that the average vorticity flux is
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5.2 Investigation of pressure maxima and their role in pinch-off
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Figure 5.5: Total circulation (circles) and vortex circulation (squares) on the
left and right side of the jet as a function of time for varying forcing amplitudes
at the pressure node for f = 450 Hz, Ue = 13.1 m/s.

determined by the axial velocity and follows the slug model, while the effect
of the transverse velocity fluctuation is that it redistributes the vorticity flux
within the forcing cycle.

5.2 Investigation of pressure maxima and their role
in the pinch-off process

As described in section 1.2.3, Lawson & Dawson (2013) showed that the
formation of a trailing pressure maximum can be used as an estimate for the
pinch-off time of vortex rings formed in a starting jet. The adverse pressure
gradient upstream of the pressure maximum stops the vorticity flux from the jet
to enter the ring structure, and therefore divides the ring from the rest of the
shear-layer. Lawson & Dawson found that the formation of the trailing pressure
maximum coincided with the pinch-off time estimated using the circulation
method by Gharib et al. (1998), when tested on a longitudinally forced, synthetic
jet. This section will investigate if the same holds for the vortex structures
formed in a transversely forced jet, and specifically the method will be tested
on some of the same forcing conditions as investigated in the previous section;
forcing frequency of f = 450 Hz, and jet positions y/λ

4 = 0, y/λ
4 = 0.25,

y/λ
4 = 0.5 and y/λ

4 = 1.
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Figure 5.6: Time-series of phase averaged vorticity contours for f = 450 Hz,
Ue = 13.1 m/s, u′

AN,RMS/Ue = 0.25. Also, contours of the x component of
material acceleration, Du/Dt = 0, are shown in black. On r = 0 and in the
shear-layers, ⃝ represents a pressure maximum and � a pressure minimum.
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5.2 Investigation of pressure maxima and their role in pinch-off

Figure 5.6 shows time series of phase averaged vorticity for these forcing
conditions together with contours ofDu/Dt = 0, which is calculated as described
in section 2.5.4. According to equation (2.22), Du/Dt = 0 is equivalent to
∂p/∂x = 0 since viscous forces are assumed to be negligible. As previously
described, the vortex structures formed somewhere in these phase averaged
time-series can be followed until the end of the cycle, continuing at t = 0
and through several cycles until they disappear out of the field of view. The
upper row shows the jet positioned at the pressure anti-node. At t/T ≈ 0.5, a
Du/Dt = 0 contour appears close to the nozzle exit. This contour represents
a local pressure minimum in x direction, and is marked with � on r = 0 and
in the shear-layers. Here the shear-layer is defined as the radial position on
each side of r = 0 having the lowest pressure when averaging in time and x

direction. The contour crosses the field of view horizontally, through the vortex
cores that has started to form in each shear-layer, and follows the vortex ring as
it moves downstream. At t/T ≈ 0, when the vortex ring has moved around one
diameter away from the nozzle exit, an additional Du/Dt = 0 contour starts
to form upstream of the ring, and after some time steps this has developed
to a contour crossing the field of view horizontally. This contour represents a
local pressure maximum in x direction, and is marked with ⃝ on r = 0 and in
the shear-layers. The contour keeps an almost constant distance behind the
ring as it convects downstream. This is the only pressure maximum appearing
before a new vortex ring forms during the next forcing cycle. For all other
forcing conditions tested with the jet positioned at the anti-node, only one
pressure maximum appears between two consecutive vortex rings. This is in
contrast to the experiments by Lawson & Dawson (2013), which showed two
pressure maxima between the rings, one trailing maximum belonging to the
downstream ring and one leading maximum belonging to the upstream ring. In
addition, a pressure minimum was found between these maxima. The difference
between the pressure fields in the two studies is probably related to the fact
that the separation distance between the vortex rings are considerably smaller
in the current experiment. One explanation can therefore be that the short
ring spacing has caused the trailing pressure maximum of the downstream
ring to merge with the leading pressure maximum of the upstream ring. If so,
the maximum is expected to split in two for sufficient ring distance, i.e. low
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Symmetric and asymmetric pinch-off

enough Strouhal number. Alternatively, the same pressure extrema that was
seen in the measurements by Lawson & Dawson may exist in the flow, but
they are not shown in the result, e.g. because of the resolution of the data or
the processing method. The current measurements have a significantly lower
temporal resolution than the measurements by Lawson & Dawson (2013)a,
which may affect the accuracy of the temporal derivatives calculated. Also, an
averaging filter has been applied to the data to remove noise, and the position
and shape of the Du/Dt = 0 contours have shown to be sensitive to the filter
size.

The phenomena can be investigated analytically by combining two Hill’s vortices
given in equation (1.22), with centers at x = ±x0, r = 0, and with uniform
axial flow equal to the mean jet exit velocity Ue:

ψ =


−3

4
Uer2

a2
(
a2 − (x− x0)2 − r2) , (x− x0)2 + r2 ≤ a2.

−3
4

Uer2

a2
(
a2 − (x+ x0)2 − r2) , (x+ x0)2 + r2 ≤ a2.

1
2Uer

2
(
1 − a3

((x−x0)2+r2)3/2 − a3

((x+x0)2+r2)3/2

)
, (x± x0)2 + r2 > a2.

(5.2)

The vorticity of a Hill’s vortex ring is bounded by a sphere of radius a. The
material acceleration, Du/Dt, of this flow field is shown in figure 5.7 with
varying separation distance between the two vortex rings. As for figure 5.6,
contours of Du/Dt = 0 are shown in black, and on r = 0, ⃝ represents a local
pressure maximum in x direction and � a pressure minimum. As the separation
distance between the vortex rings decreases, the two pressure maxima between
the rings come closer together. Then for x0 = 1.25a, the pressure minimum
disappears and only one pressure maximum exists. By closer investigation it is
found that the limiting value of x0 when the maxima merge is x0 ≈ 1.26a.

The vortex centers for a Hill’s vortex are located at r = ±
√

2
2 a ≈ ±0.71a, while

the axial separation distance between two ring centers are 2x0. For x0 = 1.26a,
the separation distance between the ring centers are approximately 1.78 times the
separation distance between the vortex centers. In figure 5.6 the corresponding

a8-24 measurements per forcing cycle (depending on forcing frequency) in the current
study, compared to 41 measurements per forcing cycle in Lawson & Dawson (2013)
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-1 0 1

-3

-2

-1

0

1

2

3

-1 0 1 -1 0 1

Figure 5.7: Material acceleration, Du/Dt, of two Hill’s vortex rings with
common symmetry axes and separation distance 4a (left), 3a (middle) and 2.5a
(right) between the ring centers. Contours of Du/Dt = 0 are shown in black,
and on r = 0, ⃝ represents a pressure maximum and � a pressure minimum.

ratio is approximately 1.5, and the vortices in the experiments are therefore
more closely spaced than the limiting distance where the pressure maxima
between two Hill’s vortices merge. Even though the vorticity distribution of the
vortex rings in the experiments are clearly different from a Hill’s vortex ring,
this supports that there might be only one pressure maximum between the
vortex rings in the experiments. However, while the contour between the vortex
rings in the plot to the right in figure 5.7 is a completely straight, horizontal
line, this is not the case for the contour in the upper line of figure 5.6. At
t/T = 0.33, both the contour upstream and downstream of the vortex ring form
almost enclosed rings around the jet centerline, similar to the middle plot in
figure 5.7. This may indicate that for the vortex separation in the experiments,
the trailing contour of the downstream ring and the leading contour of the
upstream ring are about to merge into one.
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Figure 5.8: Pressure along the centerline for different times in the forcing cycle
for y/λ

4 = 0, f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25.

This is investigated further by plotting the pressure along the centerline for
different times in the forcing cycle, as shown in figure 5.8. The pressure
coefficient CP is calculated from phase averaged velocity fields as explained in
chapter 2.5.4. ⟨CP ⟩, the pressure coefficient averaged in x direction, is subtracted
from the pressure coefficient, and the reason for this will be explained in section
5.3. This plot supports that the two pressure maxima between the vortex
rings are about to merge. Between t/T = 0.33 and t/T = 0.66, where the
vortex formation happens according to the middle circulation plot in figure
5.1, a pressure minimum develops at the nozzle exit, x/D = 0. Later, while
the pressure minimum moves downstream, a saddle point with a maximum at
x/D = 0 forms, instead of the local pressure maximum that would be expected
behind a vortex ring. This is probably due to the decreasing velocity program
of the jet in this period, which causes the pressure at the nozzle exit to rise
until the jet velocity reaches a minimum at t/T ≈ 0.08. At t/T = 0.33, the
pressure at x/D = 0 has dropped and a wide peak has formed. This is most
likely the result of the trailing pressure maximum that is partly merged with
the leading pressure maximum of the upstream vortex ring. In the following
time steps a region of negative second derivative appears in the middle of the
peak, which can be traces of the pressure minimum between the rings.

The separation distance between vortex rings formed by periodic forcing are
decreasing with increasing StD. In the experiments by Lawson & Dawson
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5.2 Investigation of pressure maxima and their role in pinch-off

(2013), StD is considerably smaller than in the current study, which can explain
why the same effect of merging of the pressure maxima between the vortex
rings is not observed. In the studies by Gharib et al. (1998) and Schlueter-Kuck
& Dabiri (2016), only one vortex ring was generated by the starting jet for
each experimental run, and naturally no interaction between vortex rings was
seen. In other studies, like the experiments by Aydemir et al. (2012) and the
simulations by Asadi et al. (2018), periodic vortex rings was generated with
larger StD than in the current study, but here the pressure fields were not
investigated.

Figure 5.7 shows that the merging of the pressure maxima affects the position
of the trailing and leading pressure maximum relative to the center of the Hill’s
vortex rings. When the vortices are far away from each other, the pressure
maxima are a distance a from the ring center. For this case the trailing and
leading pressure maxima of the ring marks the extent of its vorticity along the
symmetry axis. Lawson & Dawson (2013) used this as an argument for the
pressure maxima as a good estimate of the extent of the vortex ring bubble,
both upstream and downstream. In the limiting case when the pressure maxima
merges, for x0 ≈ 1.26a, the maximum is positioned at x = 0, which is 1.26a
from the ring centers. Then the trailing and leading pressure maxima is not
longer an accurate estimate of the vortex ring boundaries. The position of
the pressure maxima in the experiments might also be affected by the other
vortex rings in a similar way as is seen to happen for the Hill’s vortex. This will
however not likely be an issue when using the pressure maximum to estimate
vortex pinch-off and time of formation, since the formation process of one ring
is expected to finish before the next ring starts to form. If so, the position of
the trailing pressure maximum is not affected during the formation process.

Figure 5.9 plots the axial position of the trailing pressure maxima from the
upper row of figure 5.6 together with the vortex core centers, as a function of
time. The position of the trailing pressure maxima is taken from the shear-layer,
and not at the centerline as was done by Lawson & Dawson (2013). For the jet
positioned in the pressure anti-node, the pressure maxima at the centerline is
in general found to be downstream of the pressure maxima at the shear-layer,
as seen in figure 5.6. This is in agreement with the findings of Schlueter-Kuck
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Figure 5.9: Axial position of the individual vortex structures together with the
pressure maxima on the left and right hand side of the jet as a function of time,
for y/λ

4 = 0, f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25.
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Figure 5.10: Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as a function of
time, for y/λ

4 = 0.25, f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25.
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& Dabiri (2016), who reported a difference in pinch-off time of approximately
0.1T between using the pressure at the centerline compared to in the shear-
layer. Using the pressure maxima at the shear-layer is also necessary for the
jet positions with asymmetric flow fields, where the pressure maximum at the
centerline does not give information about the individual vortex structures on
each side of the jet. On both sides of the jet the pressure maximum in the
shear-layer is positioned upstream of the vortex ring, but instead of forming
a straight line of constant velocity, the pressure maxima seem to follow two
different paths. This supports the hypothesis that the trailing and leading
pressure maxima of the consecutive vortex rings are about to merge, and the
pressure maxima shown are most likely the one with the highest pressure at
each time instant on the broad peaks in figure 5.8. This is indicated on the
left hand side by two regression lines, one dashed, blue line representing the
paths of the trailing pressure maxima of the downstream vortex ring, and one
dotted, blue line representing the leading pressure maxima of the upstream
vortex ring. The vertical, dashed line in black color shows tũ0 + 0.33T , which is
where the circulation plots in section 5.1 estimated pinch-off for this jet position.
In the shear-layer on both sides of the jet the pressure maxima appear after the
dashed line, also when extrapolating the path of the pressure maxima down to
the x = 0 line. Also for f = 250 Hz and f = 655 Hz at this jet position, the
trailing pressure maxima give estimations of pinch-off later than the circulation
plots.

The two middle rows in figure 5.6 show vorticity and Du/Dt = 0 contours for
the jet positioned at y/λ

4 = 0.25 and y/λ
4 = 0.5. As discussed in section 4.2,

the jet symmetry is broken for these jet positions as the vortex on the left hand
side is downstream of the right hand side vortex. The Du/Dt = 0 contours also
change in a similar way, as each contour crosses the left shear-layer downstream
of the right shear-layer. The right hand side looks for both jet positions very
similar to the pressure anti-node case, with only one pressure maximum between
two vortices from consecutive forcing cycles. On the left side, an additional
pressure maximum appears. For y/λ

4 = 0.25 this is present only for a short
period of time. First, a pressure minimum appears close to the nozzle exit at
t/T = 0.83. Then at t/T = 0.33 a pressure maximum appears, while shortly
after both the minimum and maximum disappears. The axial position of this
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Figure 5.11: Time-series of phase averaged vorticity contours, for f = 655
Hz, Ue = 13.1 m/s, y/λ

4 = 0.25, u′
AN,RMS/Ue = 0.25. Also, contours of the x

component of material acceleration, Du/Dt = 0 are shown in black. On r = 0
and in the shear-layers, ⃝ represents a pressure maximum and � a pressure
minimum.

pressure maximum is plotted as a function of time in the upper part of figure
5.10 where it is found downstream of the main vortex center and its trailing
pressure maximum. There is no vortex center corresponding to the second
pressure minimum seen in figure 5.6. For the same jet position with forcing
frequency f = 655 Hz, a secondary vortex corresponding to the additional
pressure minimum is however identified, as shown in figure 5.11 and 5.12. It is
situated downstream of the temporary pressure maximum before it merges with
the main vortex at the same time as the second pressure maximum disappears.
Also at y/λ

4 = 0.5, two vortices are found on the left hand side. At this jet
position the vortices do not merge, but are separated by the pressure maximum
between them throughout the field of view. For y/λ

4 = 0.25, the pinch-off is
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Figure 5.12: Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as a function of
time, for y/λ

4 = 0.25, f = 655 Hz, Ue = 18.9 m/s, u′
AN,RMS/Ue = 0.25.

estimated to occur at t/T ≈ 1 on the right hand side by extrapolating the path
of the pressure maxima down to the x = 0 line. This is about 0.25T later than
the pinch-off time estimated by the corresponding circulation plot. By the same
method, the pinch-off time on the left hand side is estimated at t/T ≈ 0.66,
which is the same as estimated by the circulation plot. For y/λ

4 = 0.5, the path
of the trailing pressure maxima in figure 5.13 estimates pinch-off to occur later
for both the right hand side (t/T ≈ 1) and for both vortices on the left hand
side (t/T ≈ 0.5 and t/T ≈ 0.75) compared to the findings from the circulation
plots.

The lower row in figure 5.6 shows vorticity and Du/Dt = 0 contours for the
jet positioned at the pressure node, while figure 5.14 shows axial position of
pressure maxima and vortex cores in the shear-layer as a function of time. Even
though the vortex structures for this jet position are in anti-phase and clearly
different from the axisymmetric vortex ring, also they are followed by a trailing
pressure maximum. Some time after the vortices split in two, a second pressure
maximum appears behind the vortices 9b and 10b, and follow just upstream

159



Symmetric and asymmetric pinch-off

0

1

2

3

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75
0

1

2

3
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Figure 5.14: Axial position of the individual vortex structures together with
the pressure maxima on the left and right hand side of the jet as a function of
time, for y/λ

4 = 1, f = 450 Hz, Ue = 13.1 m/s, u′
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of these vortices as they move out of the field of view. The vertical, dashed
lines in figure 5.14 shows tṽ0+ and tṽ0− , which is where the circulation plots
estimated pinch-off for the left and right hand side vortex, respectively. Also for
this jet position the trailing pressure maxima appear later than the pinch-off
times estimated by the circulation plots, and for both sides the deviation is
around 0.25T .

In general, the pinch-off times estimated by extrapolating the paths of the
trailing pressure maxima to the nozzle exit do not coincide with the pinch-
off times estimated py the circulation plots in section 5.1. Both methods
gave similar results when Lawson & Dawson (2013) used them to predict the
pinch-off of vortex rings formed by a synthetic jet. Even though there seem
to be consistently a trailing pressure maximum behind each individual vortex
structure forming in the jet, these maxima might not give a good estimate of
the pinch-off time of the vortices in this study, even not the axisymmetric vortex
rings. The reason for this can be due to the velocity program of the forced jet,
as noted by Lawson & Dawson (2013). For a sinusoidally forced jet, Aydemir
et al. (2012) found that it is the decreasing of the shear-layer velocity below
the ring’s propagation velocity that stops the ring from growing. Therefore the
formation of the trailing pressure maximum might not have an important role
in the pinch-off in this case.

5.3 The pressure in the jet shear-layer as an estima-
tion of pinch-off

This section treats a third method used to estimate pinch-off, adapted from
Schlueter-Kuck & Dabiri (2016) and described in section 1.2.3 and figure 1.8.
This method builds on the idea of Lawson & Dawson (2013) that a trailing
pressure maximum divides the ring from the rest of the shear-layer, and therefore
initiate pinch-off. Instead of contours of Du/Dt = 0, Schlueter-Kuck & Dabiri
plotted the pressure in the shear-layer of a starting jet in a x − t diagram,
and by tracing the origin of the high-pressure region behind the fully formed
vortex ring back to the nozzle exit plane (x = 0), they found a pinch-off time
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Figure 5.15: Pressure evolution in the shear-layer on the left and right hand
side of the jet, for f = 450 Hz, Ue = 13.1 m/s, y/λ

4 = 0, u′
AN,RMS/Ue = 0.25.

Pressure coefficient CP = P/ρU2
e .

coinciding with that found when using the circulation method by Gharib et al.
(1998). Figure 5.15 shows the pressure evolution in the shear-layer of the jet
positioned at y/λ

4 = 0. The pressure coefficient CP = P/ρU2
e is calculated

from phase averaged velocity fields as explained in section 2.5.4, and plotted
in a x− t diagram. Horizontal lines in the plot represent the pressure in the
shear-layer for different downstream positions at a time instant, while vertical
lines show how the pressure develops in time for a given axial position. The
pressure is taken from the radial position in the shear-layer having the lowest
pressure when averaging in time and axial direction. The core of a vortex
is a local pressure minimum, and in the plot the vortex cores are identified
as diagonal lines of low pressure and marked according to the numbering in
figure 4.6. In addition, horizontal lines of positive and negative pressure are
seen. These lines come from the standing waves from the loudspeakers, making
the pressure in the whole jet enclosure to oscillate in time. Similar pressure
lines were not found in the results by Schlueter-Kuck & Dabiri (2016), because
in their study they used a piston upstream of the nozzle exit that did not
directly affect the pressure downstream of the nozzle exit. We are interested in
investigating the vortex formation, and therefore it is the pressure caused by
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the vortex structures that are of interest. Since this is present together with the
horizontal lines from the transverse forcing, the diagonal lines from the vortex
structures are not as pronounced as in the results by Schlueter-Kuck & Dabiri.
To remove the pressure waves caused directly by the speakers and obtain an
estimate for the pressure coming from the vortex structures alone, the pressure
was averaged in the axial direction for each point in time and subtracted from
the pressure:

CP,v(x, t) ≈ CP (x, t) − 1
xend

ˆ xend

0
CP (x, t)dx = CP (x, t) − ⟨CP ⟩(t). (5.3)

Here xend is the axial position at the end of the field of view. The result is shown
in the upper row of figure 5.16, where the lines of low pressure representing
the vortex structures are more distinct. At the nozzle exit, x = 0, the pressure
is positive, and at t/T ≈ 0.3 it turns negative on both sides, which coincide
approximately with tũ0 . Then the pressure stays negative while the vortices 1
and 2 form at the nozzle exit, and the pressure again changes sign and stays
positive from t/T ≈ 0.7 to t/T ≈ 1.3. Schlueter-Kuck & Dabiri found the
pinch-off time by fitting a line to the local maximum of the high-pressure region
that followed the low-pressure region representing the vortex, and extrapolated
it backward in time to the nozzle exit at x/D = 0. The high-pressure region in
this case does not have a distinct local maximum, but stays at a fairly constant,
positive pressure for more than half of the forcing cycle. This is probably due
to the merging of the pressure maxima between the vortex rings as discussed in
section 5.2, and it makes it difficult to accurately predict the pinch-off time by
using this method. Taking the middle point in the region of positive pressure
gives an estimated pinch-off time at t/T ≈ 1, while taking the beginning of the
region of positive pressure gives an estimated pinch-off time at t/T ≈ 0.7. The
latter is close to the prediction from the circulation plots.

The pressure in the jet shear-layer for y/λ
4 = 0.25 is shown in the middle row

in figure 5.16. Also for this position it is difficult to give an estimate of the
pinch-off time. The small vortex that breaks off the main vortex on the right
hand side is seen here as a thin, white line starting at t/T ≈ 1.5, x/D ≈ 2.2,
and quickly disappearing. A similar but more pronounced line is seen on the
right hand side of the jet when positioned at y/λ

4 = 0.5, as shown in the lower
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Figure 5.16: Pressure evolution in the shear-layer on the left and right hand side
of the jet, for f = 450 Hz, Ue = 13.1 m/s, u′

AN,RMS/Ue = 0.25 for jet positions
y/λ

4 = 0, y/λ
4 = 0.25 and y/λ

4 = 0.5. Pressure coefficient CP = P/ρU2
e , and

⟨CP ⟩ is given in equation (5.3).
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row in figure 5.16. The line starts at t/T ≈ 1.2, x/D ≈ 1.2, which coincides
with when vortex 5b breaks off the main vortex 5/5a. On the left hand side,
the pressure is positive at the nozzle exit through the whole forcing cycle. Here
there are two diagonal lines of positive pressure per forcing cycle, one wide line
of dark blue representing the larger vortex 4, and one thin line of lighter blue
representing the smaller vortex 3.

In general, the pressure in the shear-layer of the jet positioned from y/λ
4 = 0 to

y/λ
4 = 0.5 have some fundamental similarities, with a distinct, diagonal line

of low pressure from the vortex structures, and with a wide area of positive
pressure in between. By moving the jet away from y/λ

4 = 0, the symmetry
gradually breaks as the main vortex structures on the left and right hand side
goes out of phase, and additional, asymmetric vortex structures appear. This
is in agreement with what the vorticity fields in section 4.2 showed.

For the jet positions y/λ
4 = 0.75 and y/λ

4 = 1 shown in figure 5.17b, the
shear-layer pressure has developed to become considerably different from the
symmetric case in the pressure anti-node, but also here the different vortex
structures seen in section 4.2 can be identified. In the shear-layer on the left
side of the jet positioned at y/λ

4 = 0.75, the lines of low pressure from vortex 6
and 7 are crossing, while the splitting of vortex 8 into 8a and 8b on the right
side of the jet is seen as an additional, thin line of low pressure coming off the
ticker, main line at t/T ≈ 1, x/D ≈ 1. One can even identify that vortex 8a
splits up again later in the cycle as another, thin line of low pressure comes off
the main line at t/T ≈ 1.7, x/D ≈ 2. For the jet placed in the pressure node
we have seen that the vortices form in anti-phase, and this is also shown here
on the pressure lines appearing due to the vortices. The lines of low pressure on
the left and right side have similar shape but are shifted 0.5T relative to each
other. On both sides the lines of low pressure split up, at t/T ≈ 0.5, x/D ≈ 1
on the left and t/T ≈ 1, x/D ≈ 1 on the right hand side. Since the larger,

bThe "dotted" behavior of the negative pressure, especially on the right hand side for jet
position y/ λ

4 = 1, is most probably an artifact, and might be due to an insufficient resolution
of the measurements or the way the pressure is calculated. A known issue with integrating the
pressure gradient field is that it can cause the error originating from the PIV measurements
to accumulate. Dabiri et al. (2014) suggests integrating the pressure gradient along several
different paths, and select the pressure at each point from median polling to remove noise,
but this did not improve the results.
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upstream vortex is moving radially, the line of low pressure from this vortex
quickly disappears from the plot. All this is in agreement with the vorticity
fields in figure 4.6. In the left shear-layer at x/D = 0, the pressure turns
negative at t/T ≈ 0.2, while it does at t/T ≈ 0.77 on the right hand side. Then
it again turns positive at t/T ≈ 0.8 on the left side, and t/T ≈ 1.33 on the right
side of the jet. The circulation plots in section 5.1 suggested that the vortices
pinch off approximately when the jet starts to move away from the shear-layer
where the vortex is forming, i.e. at t = tv0+ and t = tv0− for the left and right
hand side, respectively. For this specific case this happens at t/T ≈ 0.25 and
t/T ≈ 0.75. As for the other jet positions, the high-pressure region between
the vortices does not have a distinct local maximum, which makes it difficult
to predict the pinch-off time accurately. Taking the time at the middle point in
the region of positive pressure gives an estimated pinch-off at t/T ≈ 0.5 and
t/T ≈ 1.0 for the left and the right hand side, respectively, which is the same
as the trailing pressure maxima predicted but around t/T = 0.25 later than
the predictions from the circulation plots.
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Figure 5.17: Pressure evolution in the left and right hand side shear-layer for
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis the response of a round air-jet subjected to transverse acoustic
forcing has been investigated. The effect of changing the forcing frequency
and amplitude, the jet speed and the position of the jet in the standing-wave
pressure field has been quantified by conducting microphone measurements,
hot-wire anemometry and particle image velocimetry.

This work has shown that the nozzle setup can be modeled as a Helmholtz
resonator with mean flow, and with resonance frequency ω0 ≈ 2π ·260 Hz. As for
a Helmholtz resonator, the jet induced axial velocity fluctuations when subjected
to pressure fluctuations at the nozzle exit, and these velocity fluctuations varied
in phase and amplitude for different forcing frequencies. For that reason, the
phase between these axial velocity fluctuations and the transverse velocity
fluctuations present in the acoustic standing wave was changing with frequency.
For f = 250 Hz, the axial velocity fluctuations are more than 90° behind
the transverse, while for the other frequencies investigated, f = 450 Hz and
f = 655 Hz, the axial velocity fluctuations are slightly before the transverse,
with 15° − 25°.
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The response of the jet when positioned in the pressure anti-node has been
investigated for different forcing frequencies and amplitudes, and jet exit ve-
locities. For all forcing configurations, the vorticity fields show axisymmetric
vortex structures similar to what has been found for longitudinal forcing (Ay-
demir et al., 2012; Zaman & Hussain, 1980) and previous anti-node experiments
(Baillot & Lespinasse, 2014; O’Connor & Lieuwen, 2011; Saurabh & Paschereit,
2013). These structures are well known to be vortex rings. The increase in
vortex convection velocity with forcing amplitude, as estimated by the slug
model is not seen. The vortex paths, and therefore the convection velocity,
matched however well with the empirical path predicted by Asadi et al. (2018)
for all available forcing conditions, but the measurements conducted in this
study did not enable testing the validity for different Strouhal numbers, StD.

The response of the jet at different positions in the acoustic wave has been
investigated thoroughly. For all the frequencies the jet spreads more in the
near-field, and the shear-layer breaks down more rapidly downstream as the
jet is moved from y/λ

4 = 0 to y/λ
4 = 1. The response of the jet when forced

at f = 250 Hz, was fundamentally different from the other forcing frequencies
investigated. At this frequency the jet stayed close to unchanged for all positions
except for the pressure node, where the symmetry was clearly broken as the
right hand side vortex was positioned downstream of the left.

For the higher frequencies, however, the symmetry was broken immediately
when moving the jet away from the pressure anti-node. For the positions
between the pressure anti-node and node, the jet was found to first bend
towards the left, before bending back towards the right longer downstream. The
centerline of the jet was meandering in the radial direction for all jet positions,
except at y/λ

4 = 0, where no pressure gradient is present. At y/λ
4 = 0.25,

y/λ
4 = 0.5 and y/λ

4 = 0.75, the phase averaged centerline showed an asymmetric
pattern over the forcing cycle. At y/λ

4 = 1, the centerline showed a symmetric
pattern, and for some diameters downstream similar in shape as the analytical
solution of a passive tracer moving in a constant, axial flow with transverse,
sinusoidal fluctuations. As the jet was moved away from the pressure anti-node,
the left hand side vortex moved downstream relative to the right hand side
vortex, and at the pressure node the formation of the left and right hand side

170



6.1 Conclusions

vortices were in anti-phase. For the positions y/λ
4 = 0.5 and y/λ

4 = 0.75, the
jet showed complex vortex structures that were fundamentally different on
either side. On the left hand side vortices formed twice during a forcing cycle,
while on the right hand side the vortex divided into two. In general, both the
axial velocity fluctuations induced by pressure fluctuations, and the transverse
velocity fluctuations induced by pressure gradient fluctuations, seemed to be
the mechanism behind the vortex formation. The vortex formation in the
shear-layer was found to start when the velocity at the nozzle exit turned
positive in the cycle; either out of the nozzle in axial direction, or away from
the jet centerline for the transverse direction. For the positions with both
fluctuations present at a sufficient amplitude, they either formed one vortex
in the jet shear-layer if the fluctuations were approximately in phase, or they
formed separate structures at different times in the cycle if the phase difference
between the velocity fluctuations was sufficiently large.

Even though the jet response is highly dependent on the local pressure gradient
present at the jet position in the enclosure, the results do not support that the
difference in shear-layer pressure on the left and right side of the jet play a
role. It is however the transverse velocity fluctuations caused by the pressure
gradient, and its phase relative to the axial velocity fluctuations present in
the jet, that causes the jet response to vary with jet position and also being
responsible for the vortex structures forming in the shear-layers on the left and
right side of the jet to be different.

There seems to be two reasons for the different behavior of the jet when subjected
to a forcing frequency of f = 250 Hz compared to f = 450 Hz and f = 655 Hz,
and both are related to the acoustic property of the nozzle. Since the forcing
frequency of f = 250 Hz is close to the resonance frequency of the nozzle, the
axial velocity fluctuations in the jet for y/λ

4 = 0 are orders of magnitude larger
relative to the pressure fluctuations in the enclosure, compared to the other
forcing frequencies. This together with the imperfection of the standing wave
causes the axial velocity fluctuations to be non-negligible even at y/λ

4 = 1. The
other reason is the frequency dependent phase difference between the axial
and transverse velocity fluctuations, resulting in a different interaction between
the vortex formations driven by the axial fluctuations and those driven by
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the transverse fluctuations, for f = 250 Hz compared to the other forcing
frequencies investigated.

The jet positioned at y/λ
4 = 1 was also investigated in detail in this study. For

f = 450 Hz and f = 655 Hz, the vortex structures on the left and right side
of the jet were similar in shape but formed in anti-phase. For most cases the
vortices on both sides were shown to split in two, but prior to this the shear-layer
curved around the front of the vortex, forming an S shaped structure, similar
to the shape found in the plane along the minor axis of jets from oval and
elliptic shaped nozzles (Adhikari, 2009; O’Farrell & Dabiri, 2014). Because of
the transverse velocity at the pressure node, the original vortex moved radially
away from the high-velocity region in the jet, causing the jet shear-layer to
curve around the front of the vortex and separate into an independent vortex
of higher velocity. For some cases when forcing at f = 655 Hz, three vortices
were seen to form on either side of the jet during each forcing cycle, two that
were splitting up from the same vortex, and a third forming in anti-phase. This
means that twice per forcing period, vortices formed in phase on either side of
the jet.

An important phenomenon related to the formation process of the vortex struc-
tures, is the pinch-off. This study has compared three methods for estimating
the pinch-off time. The method by Gharib et al. (1998) estimates pinch-off as
the time when the total circulation in the jet shear-layer reaches the value of the
vortex ring circulation, implying that pinch-off appears when the shear-layer
stops delivering vorticity to the ring. In the pressure anti-node, the vortex rings
were found to pinch off about 0.33T after the vortex ring started to form. This
is in agreement with the findings of Aydemir et al. (2012). As the jet was moved
away from the pressure anti-node for the cases f = 450 Hz and f = 655 Hz,
the vortex on the right side of the jet pinched off slightly later in the forcing
cycle, and at the pressure node position the vortex structure was found to pinch
off when the transverse velocity changed direction to the left and moved the
jet away from the side the vortex was formed. On the left side of the jet, the
estimated pinch-off time stayed unchanged from the anti-node position to the
position closest to the pressure anti-node, y/λ

4 = 0.25. At y/λ
4 = 0.5, however,

where two distinct vortex structures formed, which of the two vortex structure
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the method estimates the pinch-off time for, seemed to be dependent on when
the formation process is defined to start. By carefully defining the start of the
different formation processes, the method was able to estimate the pinch-off
time for both vortex structures, one being in accordance with the pinch-off
time for the vortex rings at the pressure anti-node, and the other in accordance
with the vortex structures at the pressure node. At the pressure node position
also the left side vortex was found to pinch off when the transverse velocity
changed direction away from the shear-layer in which the vortex was formed,
which means towards the right for this case.

The methods by Lawson & Dawson (2013) and Schlueter-Kuck & Dabiri (2016)
are both built on the idea that a trailing pressure maximum divides the vortex
ring in a jet from the shear-layer, and therefore initiates pinch-off. Neither
of these methods gave reliable estimates of the pinch-off time of the vortex
structures in the jet in the current study. There may be several reasons for this.
First of all, because of a relatively high Strouhal number, the vortex rings formed
at the pressure anti-node seem to be too closely spaced for the pressure field
around the vortex rings to be completely unaffected by each other. Secondly,
it is questionable whether the measurement data have high enough resolution
for the pressure and pressure gradient field to be calculated accurately. At
last, it is questionable whether the trailing pressure maxima has an important
role in the pinch-off process for the forcing configuration in this study, since
for a sinusoidally forced jet it may be the decrease of the shear-layer velocity
below the ring’s propagation velocity that stops the ring from growing, and
therefore initiate pinch-off (Aydemir et al., 2012). Nevertheless, both methods
give additional and useful insight about the jet’s flow field. The x− t diagrams
of pressure in the shear-layer give good visualization of the development of the
vortex structures. The contours of Du/Dt = 0 on the other hand revealed that,
even though the vortex rings at the pressure anti-node seemed to be isolated
from each other when only inspecting the vorticity fields, the pressure field
around them might interact and cause the vortex rings to affect each other to
an unknown degree.

The 2-dimensional measurements presented in this study are not sufficient
to explain the 3-dimensional flow structures of the different positions in the

173



Conclusions and future work

standing wave. At the pressure anti-node it is known from the literature that
the left and right hand side vortices are connected and form vortex rings. For
the other jet positions, the vortices might still be connected structures, forming
tilted vortex rings, but it is also possible that the vortices are independent
structures and that the connection between the left and right hand side is
broken. The ratio ṽ′

RMS/ũ
′
RMS was shown to have some correlation to the phase

between the two main vortex structures on either side of the jet, at least for
moderate values of ṽ′

RMS/ũ
′
RMS. If the vortices are still connected, this ratio

may be of importance for the tilting angle of the ring. The mechanism behind
the tilting can simply be that the transverse velocity moves the ring sideways.
This causes the left and right side of the ring to have different axial convection
velocities since one side moves closer to the jet centerline with higher velocity,
and the other side moves into the ambient region. The phase between the axial
and transverse velocity fluctuations then decides the direction of the tilting; if
the transverse velocity is pointing to the right while the ring is formed, the ring
tilts clockwise, while if the transverse velocity is pointing to the left, the ring
tilts counterclockwise. At the pressure node, previous studies suggest that the
vortex structures on the left and the right hand side are not connected. Matta
et al. (1996) did not observe vortices in the shear-layers perpendicular to the
wave direction, while simulations by Urbin & Métais (1997) and Danaila &
Boersma (2000) suggest that the structures are hairpin like vortices appearing
in anti-phase on either side of the jet and forming twice per forcing period in
total. These hairpin vortices are tilted with the legs pointing downstream and
partly connecting to the next downstream vortex. These studies do not show
the additional vortex structures observed at the pressure node position in this
study, and their 3-dimensional shape remains unknown.

6.2 Future work

The measurements presented in this thesis gave new insight to the near-field
response of a transversely forced jet, but they also revealed many new questions.
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First of all, the 3-dimensional shape of the vortex structures for all positions in
the standing wave except the pressure anti-node is still unknown to a certain
degree. This can be investigated further by e.g. conducting tomographic PIV
measurements for these cases, which gives all three velocity component in a
volume.

Investigating the pressure field of the jet positioned at the pressure anti-node,
revealed that the vortex rings might interact even though the vorticity field
suggests they are completely separated. This led to the questions related to
the development of the pressure field between the vortex rings as the axial
separation distance change. It would be interesting to investigate this further
in terms of the formation process of the rings and the role of the trailing and
leading pressure maxima. In that case it is important to conduct measurements
with sufficient resolution for the calculated pressure fields to be reliable.

An important question which arose during this work was how the phase difference
between the axial and transversal velocity fluctuations affects the jet response
of the jet, and also their role in the formation of vortex structures for the
positions where both these velocity fluctuations are present. This can be done
in practice by having a nozzle setup that act as a Helmholtz resonator, as the
one in the current study. Then there is a phase shift around the resonance
frequency of about 180°, and the phase difference between velocity fluctuations
can be adjusted by changing the length of the jet enclosure together with
the forcing frequency. It is possible to make the phase change of the nozzle
setup less abrupt, and therefore easier to control, by increasing the jet velocity.
It is then important to not get too close to the resonance frequency of the
nozzle setup as it will give the same problem as was seen in this study, that
it is difficult to achieve high enough velocity fluctuation ratios (vRMS/uRMS).
Alternatively, it is possible to keep the forcing frequency constant, but have
a nozzle setup with an adjustable pipe length. This will make it possible to
change the resonance frequency of the nozzle setup and with that also the phase
difference between the velocity fluctuations. A third option is to use a setup that
combines longitudinal and transverse forcing, similar to what has been studied
with combustion (Hauser et al., 2010, 2012; Saurabh & Paschereit, 2013). By
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Conclusions and future work

doing this type of setup it is simple to adjust the phase amplitude ratio between
the axial and transverse velocity fluctuations that the jet experiences.

Traveling waves have not been investigated in this study, but are of importance
in gas turbine dynamics. A jet subjected to a traveling wave experiences both
pressure gradient fluctuations resulting in transverse velocity fluctuations, and
pressure fluctuations resulting in axial velocity fluctuations. This is also the
case for a jet subjected to any position in a standing wave except for at the
pressure anti-node and node. The difference, however, is that for a traveling
wave the maximum pressure occurs when the pressure gradient is zero (and vice
versa), while for a standing wave the maximum pressure comes simultaneously
as the maximum pressure gradient. The phase between the pressure fluctuations
and the pressure gradient fluctuations are therefore different. But as we have
seen, the phase between the axial and transverse velocity fluctuations that
are induced by the pressure are not only dependent on the forcing, but also
the nozzle setup. Therefore, it would be interesting to see if it is possible to
obtain the same response by forcing the jet with a traveling wave, as if the jet is
positioned in a standing wave between the pressure anti-node and node. In that
case the phase angle and ratio between the axial and transverse fluctuations
need to be the same for the two cases. The phase angle between the axial and
transverse velocity fluctuations can be adjusted as suggested in the previous
paragraph, while the ratio of the amplitudes can be adjusted by changing the
jet position in the standing wave case.
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Appendix A

Instability analysis of a round
jet

In a vertical jet of constant density, there is an interface on each side of the
jet between the jetflow and its surroundings. We can assume both regions are
incompressible, irrotational and inviscid. At the left interface, or shear-layer,
which divides the two flows with different velocity, both flows have a velocity
potential and a static pressure distribution (White (2006)):

r < 0 : Φ1 = 0, p1 = p0 − ρgx (A.1)

r > 0 : Φ2 = Ux, p2 = p0 − ρgx (A.2)

Since the flow is inviscid there is tangential slip at the interface. We can
introduce a disturbance, denoted by a prime:

Φ1 = Φ′
1(x, r, t) (A.3)

Φ2 = Ux+ Φ′
2(x, r, t) (A.4)

At the interface we have r = η(x, t), as seen in figure A.1. Since the flow is
irrotational it must satisfy the unsteady Bernoulli equation:

pi = Ci − ρ
∂Φi

∂t
− ρi

2 |∇Φi|2 − ρigx (A.5)
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Instability analysis of a round jet

Figure A.1: Kelvin-Helmholtz instability

The relation between C1 and C2 can be found by looking at the flow without
disturbance at r = 0:

C1 − ρgx = C2 − ρ

2U
2 − ρgx (A.6)

or
C1 = C2 − ρ

2U
2 (A.7)

One boundary condition that must be satisfied is that there cannot be a
discontinuity in the pressure over the interface. At r = η we then have

C1 − ρ
∂Φ1
∂t

− ρ

2 |∇Φ1|2 − ρgx = C2 − ρ
∂Φ2
∂t

− ρ

2 |∇Φ2|2 − ρgx (A.8)

which can be reduced to

C1 − ρ
∂Φ1
∂t

− ρ

2 |∇Φ1|2 = C2 − ρ
∂Φ2
∂t

− ρ

2 |∇Φ2|2 (A.9)
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A second boundary condition is that the horizontal velocity of the flow at each
side of the interface at r = η must equal the motion of the interface:

v1 = ∂Φ1
∂r

= dη

dt
= ∂η

∂t
+ ∂Φ1

∂x

∂η

∂x
(A.10)

v2 = ∂Φ2
∂r

= dη

dt
= ∂η

∂t
+ ∂Φ2

∂x

∂η

∂x
(A.11)

The last boundary condition is that the disturbance does not affect the flow far
away from the interface:

lim
x→−∞

∇Φ′
1 = lim

x→∞
∇Φ′

2 = 0 (A.12)

Since the flow is assumed to be incompressible, the continuity equation expressed
with the velocity potential reduces to Laplace’s equation:

∇2Φ1 = 0 ∇2Φ2 = 0 (A.13)

By subtracting the mean flow, we get

∇2Φ′
1 = 0 ∇2Φ′

2 = 0 (A.14)

By inserting equation (A.7) into (A.9) and assuming that the disturbance is
small compared to the original flow, we get the linearized pressure condition:

∂Φ′
1

∂t
≈ U

∂Φ′
2

∂x
+ ∂Φ′

2
∂t

(A.15)

In the same way we can obtain the linearized kinematic conditions:

∂Φ′
1

∂r
≈ ∂η

∂t
(A.16)

∂Φ′
2

∂r
≈ ∂η

∂t
+ U

∂η

∂x
(A.17)

If we assume that the disturbance is a two-dimensional traveling wave

η = η0e
i(αx−σt) (A.18)
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we get

Φ′
1 = Φ̂′

1(r)ei(αx−σt) (A.19)

Φ′
2 = Φ̂′

2(r)ei(αx−σt) (A.20)

For equation (A.14) to be satisfied we need:

Φ̂′
1 = A1e

αr +B1e
−αr (A.21)

Φ̂′
2 = A2e

−αr +B2e
αr (A.22)

The condition in equation (A.12) demands B1 = B2 = 0:

Φ̂′
1 = A1e

αr (A.23)

Φ̂′
2 = A2e

−αr (A.24)

Combining this with equation (A.18)-(A.20) and inserting it into (A.16) and
(A.17) give us:

A1 = −iη0
σ

α
and A2 = iη0

(
σ

α
− U

)
(A.25)

We have then found the form of the velocity potentials:

Φ′
1 = −iη0

σ

α
eαrei(αx−σt) (A.26)

Φ′
2 = iη0

(
σ

α
− U

)
e−αrei(αx−σt) (A.27)

We can now use the velocity potential to say something about the stability of
the flow. If σ is imaginary or complex, the exponent containing time, −iσt, will
contain a real part, and the disturbance η together with the velocity potential
will diverge as t → ∞. The flow is then unstable. If σ on the other hand is
purely real, −iσt will be purely imaginary and the flow is stable. Inserting
(A.26) and (A.27) into equation (A.15) gives us σ at r = 0:

σ = Uα

2 (1 ± i) (A.28)
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Therefore, the flow is unconditionally unstable and oscillations in the shear-layer
of the jet will grow in amplitude.
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Supplementary results
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Figure B.1: Time-series of phase averaged vorticity contours for y/λ
4 = 0.25,

f = 450 Hz, Ue = 13.1 m/s, u′
AN,RMS/Ue = 0.25.

194



1234

-1
0

01
0

1234

-1
0

01
0

-1
0

 
1

 

1234

-1
0

 
1

 
-1

0
 

1
 

-1
0

 
1

 
-1

0
 

1
 

-1
0

 
1

 
-1

0
 

1
 

-1
0

 
1

 
-1

0
 

1
 

-1
0

 
1

 
-1

0
 

1
 

-1
0

 
1

 

-1
0

01
0

Fi
gu

re
B.

2:
T

im
e-

se
rie

s
of

ph
as

e
av

er
ag

ed
vo

rt
ic

ity
co

nt
ou

rs
fo

r
y
/

λ 4
=

1,
f

=
45

0
H

z,
U

e
=

6.
8

m
/s

.

195



Supplementary results
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Supplementary results
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Figure B.5: Total circulation (circles) and vortex circulation (squares) on the
left and right hand side of the jet as a function of time at the pressure anti-node
for u′

AN,RMS/Ue = 0.25, using the original method by Gharib et al. (1998). The
calculation of circulation is started at tũ0 .
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Appendix C

Acoustically compact nozzle

The nozzle diameter is said to be acoustically compact if it is much smaller
than the acoustic wavelength, so that the nozzle experiences the same pressure
over the whole diameter:

D ≪ λ. (C.1)

In this study the nozzle diameter is constant, while the wavelength varies with
forcing frequency. The shortest wavelength appears at the highest frequency
and mode number, which for this study is f = 655 Hz and 6, respectively. This
gives the following ratio between the nozzle diameter and the length of the
transverse acoustic wave in the jet enclosure:

D

λ
= D

Ly/
m
2

= 1 cm
(160/3) cm = 0.019. (C.2)
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Acoustically compact nozzle

For the nozzle positioned at the pressure node, the shear-layer of the nozzle, at
r/D = ±0.5, experiences the following pressure:

|p̂′(r/D = ±0.5)|
|p̂′

AN|
= cos

(2π
λ

(λ/4 ±D/2)
)

= cos
(

2π
(

1/4 ± 0.5 cm
(160/3) cm

))
= ±0.059.

(C.3)

At y/λ
4 = 0.75, the pressure fluctuations are as much as 33% larger at r/D =

−0.5 compared to r/D = 0.5:

|p̂′(r/D = −0.5)|
|p̂′(r/D = 0.5)| =

cos
(

2π
λ (0.75 · λ/4 −D/2)

)
cos

(
2π
λ (0.75 · λ/4 +D/2)

)
=

cos
(
2π
(
0.75/4 − 0.5 cm

(160/3) cm

))
cos

(
2π
(
0.75/4 + 0.5 cm

(160/3) cm

))
= 1.33.

(C.4)
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