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Abstract

The inner structure of a material is called its microstructure. It stores the
genesis of a material and determines all the physical and chemical properties.
However, the microstructure is highly complex and numerous image defects
such as vague or missing boundaries formed during sample preparation, which
makes it difficult to extract the grain boundaries precisely. In this work, we
address the task of grain boundary detection in microscopic image processing
and develop a graph-cut based method called Fast-FineCut to solve the problem.
Our algorithm makes two key contributions: 1) an improved approach that
incorporates 3D information between slices as domain knowledge, which can
detect the boundaries precisely, even for the vague and missing boundaries. 2)
a local processing method based on overlap-tile strategy, which can not only
solve the ”chain scission” problem at the edge of images, but also economize on
the consumption of computing resources. We conduct experiments on a stack
of 296 slices of microscopic images of polycrystalline iron (1600 × 2800) and
compare the performance against several state-of-the-art boundary detection
methods. We conclude that Fast-FineCut can detect boundaries effectively and
efficiently.
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1. Introduction

Microstructure is of great importance for controlling the properties and per-
formance in materials science (Hu et al., 2017). During the quantitative analy-
sis of microstructure, an important step is microscopic image processing (Sonka
et al., 2014), which is used for extracting the key information in microstructure5

(Lewis & Howe, 2014). As shown in Figure.1 with images (or slices) of poly-
crystalline iron, this means detecting a grain boundary: the interface between
two grains (Cantwell et al., 2014), shown in Figure.1(b) with straight and thick
arrows. However, grain boundary detection is a highly challenging problem in
microscopic image processing 1 for several reasons. First, the microstructure of10

material is highly complex (Wu et al., 2010). For example, there are hundreds of
substructures with different shapes and sizes such as grains in metallic materials
(Hu et al., 2017) or cells in biomaterials (D’Amore et al., 2010). Those grains
have to be detected with high accuracy in each image. Second, as shown in Fig-
ure.1 (b), numerous image defects such as vague or missing boundaries (straight15

and thin arrows), noise (curved arrows), and spurious scratches (notched ar-
rows). These flaws are coming from sample preparation, image acquisition, or
other processes. They usually lead to a difficult transfer from grain boundary
network to digital structure. Third, most microstructure in different sections
retain consistency in shape and topology (adjacency relations), as shown in Fig-20

ure.1(a). It is critical to model and incorporate such domain knowledge in the
detection method (Waggoner et al., 2013; Huffman et al., 2011). Fourth, micro-
scopic images are usually large and of high resolution. This asks for an efficient
boundary detection method with high speed and less memory consumption.

Many existing image processing methods have been – or have the potential25

to be – used for detecting boundaries in microscopic images. In general, they
can be grouped into two categories: 2D image processing methods to directly
detect boundaries and 3D image processing methods based on tracking informa-
tion. Many existing 2D methods detect boundaries independently, such as otsu
(Vala & Baxi, 2013), adaptive threshold (Dewan et al., 2011), canny (Mcilhagga,30

2011), bayesian (Comer et al., 2011; Simmons et al., 2008), watershed (Li et al.,
2007), EM/MPM algorithm (Comer & Delp, 2000), graph cut (Birkbeck et al.,
2009), multi-scale morphological method (Ullah et al., 2014), fuzzy clustering
(Ali et al., 2017), deep learning-based image segmentation (Boyuan M, 2018)
and so on. However, those methods did not consider consistency between slices.35

In addition, 2D methods often over- or under-segment individual slices, and thus
they resulted in many inevitable errors. Tracking-based methods are developed

1This challenge can be described by two similar terms in the field of computer vision,
boundary detection and segmentation. Boundary detection means extracting grain boundaries
in the image, while segmentation means separating different grains in the image. Our work
prefers the former one.
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Figure 1: Microscopic images of polycrystalline iron. (a) Stack of serial sections for polycrys-
talline iron. (b) One slice of metallographic image, it contains grain boundaries (straight and
thick arrows), vague or missing boundaries (straight and thin arrows), noise (curved arrows)
and spurious scratches (notched arrows). For detailed visiualization, we only add the scale
bar in this image. All microscopic images share same scale bar in this paper.

to detect boundaries in a stack of 2D slices. (Feng et al., 2017) proposed an in-
teractive segmentation method based on breakpoint detection. But it will take
a long time for manual refinement. (Waggoner et al., 2013, 2014) presented a40

more elegant architecture, ”segmentation propagation”, a graph-cut based seg-
mentation method (Boykov & Kolmogorov, 2004; Kolmogorov & Zabin, 2004)
which minimizes the energy set based on 3D information between slices, but can
not recover the vague and missing boundary. Beside, with the slice’s resolution
increases, the computation time and memory consumption grow exponentially.45

We can not solve this by simply applying divide-and-conquer strategies because
of ’chain scission’ at image border.

In this work, we propose a boundary detection algorithm called Fast-FineCut,
using 3D information between slices as domain knowledge. This algorithm is
built on the propagative framework (Waggoner et al., 2013) and modifies its50

architecture, so that it can yield more precise result and make it possible to
detect the boundaries for slices with high resolution. To the practical extent,
the two advantages of our Fast-FineCut algorithm are :

(1) Accuracy: we modify and extend the binary term of multi-label graph-cut
(Boykov et al., 2002) in the framework of propagative method (Waggoner55

et al., 2013), such that it can make better use of domain knowledge between
slices and detect boundaries more precisely, even for the vague and missing
boundaries. As shown in our experiments, Fast-FineCut has highest figure
of merit (Lopez-Molina et al., 2013) and small deviation compare to other
methods.60

(2) Speed: by virtue of the idea of divide-and-conquer (Ronneberger et al.,
2015), we propose a local propagative method based on overlap-tile strategy
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(shown in Figure.6). This strategy can not only save the memory consump-
tion, but make it faster than the global propagation. In addition, it will
deal with the problem of ”chain scission” at the edge of the image (shown65

in Figure.7), which appears in the method of simple local propagation.

We share our code at web site: https://github.com/clovermini/Fast-FineCut
The remainder of this paper is organized as follows: In Section 2, we provide

a brief introduction to the material background in this paper. Section 3, de-
scribes the Fast-FineCut Algorithm and the overlap-tile strategy. We present,70

in Section 4, our experiments on different segmentation methods to show the
effectiveness and efficiencies of the proposed approach. In Section 5, we show
the 3D reconsruction result. Finally, We conclude the paper in Section 6.

2. Material

The specimen was intercepted from a hot-rolled iron slab and forged into75

round bars with a diameter equals to 30 millimeter. The pure iron bars were
then fully recrystallized by annealing at 880◦C for 3 hours to gain uniform grain
microstructures in two dimensions. The samples were polished for a fixed time,
and each polished layer was etched with 4vol% nital solution in preparation
for optical microscopy. Images of microstructure were collected by an optical80

microscope, and a total of 296 serial sections with an average section thickness
of 1.8 µm were obtained. We used Leica VMHT 3000 Victorinox microhardness
tester to produce two sets of points, which meant that new points were struck
before the previous ones disappeared to mark for image alignment and control
the thickness of each section. This procedure effectively ensured that the images85

of the same area of interest were collected.

3. Fast-FineCut Algorithm

3.1. Overview of the proposed propagation method

Figure 2 shows an overall flowchart of the Fast-FineCut algorithm. Firstly,
we clip the previous and next slice with high resolution into sub-images based90

on overlap-tile strategy. Secondly, we apply our method to define the unary and
binary term for each sub-images in next slice. Thirdly, we apply multi-label
graph-cut algorithm to get segmentation and edge detection result. Fourthly,
we stitch the detection results by using overlap-tile strategy. Finally, we could
repeatedly propagate it to obtain detection result of remaining slices in the95

stack.

3.2. Proposed propagation method

After collecting the serial sections of the specimen, the key challenge is to de-
tect the grain boundaries among all the intricate microscopic images. Based on
the high consistency between two neighboring slices in materials’ images, (Wag-100

goner et al., 2013) proposed a segmentation propagation method by propagating

4
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Figure 2: Flowchart of the proposed method.

segmentation SP of a slice P to its neighboring slice N 2, yielding segmentation
SN . In this way, using an initial segmentation on one slice, the algorithm can
repeatedly propagating it to remaining slices in the stack.

SP is a partition of the pixels in P into n segments Sp = {Sp
1 , S

p
2 , ..., S

p
n},105

where

P = Sp
1 ∪ S

p
2 ∪ ... ∪ Sp

n and S
p
i ∩ S

p
j = ∅ ∀i 6= j (1)

To propagate segmentation by concerning consistency between slices as do-
main knowledge, we minimize the energy according to graph-cut theory (Boykov
& Kolmogorov, 2004; Kolmogorov & Zabin, 2004).

E(SN ) =
∑
p∈N

Θp(SN
i ) +

∑
{p,q}∈PN

n

Φp,q(SN
i , S

N
j ) (2)

Where PN
n is the set of all four-connected pixels in slice N . The four-110

connected pixels are pixels whose x or y coordinate (but not both) differ by no
more than 1. The unary term Θp(SN

i ) symbols the cost when a particular pixel
p being assigned to a segment SN

i , while the binary term represents the cost for
two four-connected pixel p and q ,which belong to SP

i and SP
j , being assigned

to SN
i and SN

j respectively, subject to the structure continuity between P and115

N . They all constrained by the homomorphism of the RAGs(Region Adjacency
Graphs 3) in segmentation.

2P represents the previous image in the stack, while N represents the next image beneath
the P .

3Region Adjacency Graphs is a graph in which the nodes correspond to the area, and the
adjacent areas are connected by arcs.
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We set the unary term like (Waggoner et al., 2013):

Θp(SN
i ) =

{
0 p ∈ S̃N

i

∞ p /∈ S̃N
i

(3)

In the unary term, S̃N
i is the bounding region, containing all the pixels p in

N that with a distance less than d from any pixels in SN
i . As shown in Figure.3,120

this bounding region stipulates the largest possible region that SN
i may occupy.

In addition, the overlap bounding region shows the maximum possible varying
area of grain boundary, which has shown in Figure.3 (d).

Figure 3: An illustration of defining the unary term in the proposed approach. (a) Three
adjacent segments in P , represented by SP

1 , SP
2 , SP

2 respectively. (b) Label assignment of (a).

White line denotes bounding region S̃P
i . (c) Three adjacent SN

i in N beneath the P . (d)
The overlap bounding region shows the maximum possible varying area of grain boundary.

For clarity, associated bounding region S̃N
i is represented by the black line. (e) Unary term

value Θ of pixels p1, p2 and p3 in (d), which are located at bounding region S̃N
1 , S̃N

2 , S̃N
1

respectively.

During the processes of sample preparation and image acquisition, numerous
image defects such as vague or missing boundaries, noise, and spurious scratches125

occur, as shown in Figure.1 and Figure.4. In Figure.4(a), the boundary (i) and
(ii) are too vague to detect by traditional boundary detection method (Fig-
ure.4(e)) or even by naked eye. In this paper, we modify the binary term of
Waggoner’s energy (Waggoner et al., 2013) according to this phenomenon.

Φp,q(SN
i , S

N
j ) = φp,q × δ(SN

i , S
N
j ) (4)

δ(SN
i , S

N
j ) =

{
1 i 6= j

0 otherwise
(5)
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φp,q =


∞ p, q /∈ S̃N

i ∩ S̃N
j and i = j

M×g(p, q) p, q ∈ S̃N
i ∩ S̃N

j and i = j

K p, q ∈ S̃N
i ∩ S̃N

j and i 6= j

(6)

where p ∈ SP
i and q ∈ SP

j .

g(p, q) = exp(−max(V (p), V (q))2

2β
) (7)

β =
〈
(V (p)− V (q))2

〉
(8)

For our method, we deal with edge image of N , which show a higher intensity130

at the pixel along the boundaries of a substructure than the pixels within each
substructure (as shown in Figure.4 (e)). In the binary term, the constants K
and M satisfy the condition: 0 < K < M < ∞. V (p) is the intensity of p in
the edge image of N , and function g in formula (7) describes the possibility of
pixels p and q are along an image edge, β represents the variance of edge energy135

over all images.
More specifically, as shown in Figure.4, the energy for pixels p and q outside

overlap bounding region are set to infinity, which is marked as red in Figure.4(c).
The energy of pixels p and q inside overlap bounding region are set to M×g(p, q),
as shown in Figure.4(f), in which, the blue represents the non-edge part and the140

black represents the edge part. Besides, we set the energy of pixels p and q,
which belong to two different segments in P , to constant K which is represented
by green line, as shown in Figure.4 (g). In this paper, we set M equals 10 and
K equals 3.

In (Kolmogorov & Zabin, 2004), it shows that the graph-cut algorithm can145

find the global minimum of formula (2) in polynomial time if there are only
two segments, while it’s a NP-hard problem to find the global minimum in the
case of multi-label problem. However, the local minimum can be found quickly
by αβ swap or α expansion. In this paper, we use a constrained αβ swap to
minimize the energy and get the local minimum quickly, which means the swap150

only happened between the neighboring segments of P . After the propagation
of the segmentation, the boundaries is detected as shown in Figure.4 (h).

3.3. Local propagation method based on Overlap-tile strategy

Unfortunately, due to the nature of Graph Cut theory, as the image’s reso-
lution increases, the computational time and memory space consumption grows155

exponentially.
Divide-and-conquer is a common way used to deal with this problem, it

works by recursively breaking down a problem into two or more sub-problems
of the same type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the original160

problem. Based on that, we splits one image with large resolution into N small
size sub-images to reduce the time and memory consumption. For example, if we
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Figure 4: An illustration of defining the binary term in the proposed approach. (a) Original
image N . (b) Bounding region same as Figure.3 (d). (c) Outside of overlap bounding region
is set to infinity. (e) Edge detected by traditional algorithm. (f) Inside of overlap bounding
region is set to function g. (g) The edge of previous layer’s image is set to constant K. (h)
Propagation result with modified binary term.

split a 400×400 size image into four 200×200 size image, the time consumption
may be reduced to one fourth in theory.

However, as shown in Figure.5 with red boxes, we find that there are some165

”chain scission” problems at the edge of sub-images by applying simple local
propagation. After comparing the binary term of global propagation with simple
local propagation, we find the fact that the disappeared phenomenon only occurs
along the border between sub-images.

Figure 5: Propagation result of simple local propagation method. (a) Original image. (b) Bi-
nary term of simple local propagation. Gridlines represents the split strategy. (c) Propagation
result with ”chain scission” problems represented by red boxes.

In this paper, we introduce the overlap-tile strategy into local propagation170

method to solve the problem of ”chain scission”. As shown in Figure.6, we use
image data within the blue area as input, but only pick up boundary detection
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result in yellow area. Note that the length of overlap region should be set as same
as the length of bounding region to make sure all the disappeared boundaries
are involved in it.175

Figure 6: Overlap-tile strategy for seamless boundary detection of arbitrary large images.
Result of boundary detection in the yellow area, requires image data within the blue area as
input. Missing input data is extrapolated by mirroring.

The comparison of simple local propagation and local propagation based on
overlap-tile strategy is shown in Figure.7. It is clearly to see that the local
propagation based on overlap-tile strategy can remove the chain scission phe-
nomenon effectively. At the same time, the efficient boundary detection with
high speed and less memory space consumption makes it possible to analyze180

microscopic images with large resolution.

Figure 7: The comparison of simple local propagation and local propagation based on overlap-
tile strategy. (a) Boundary detection result of simple local propagation. (b) Boundary detec-
tion result of local propagation based on Overlap-tile strategy.
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4. Experimental Results

In this section, we use a stack of 296 microscopic pure iron images with
large resolution (1600× 2800 pixels) (shown in Fig.1) as the dataset to evaluate
the proposed propagative boundary detection method. However, the dataset has185

large resolution, which is too large to apply global propagation with limit device
resources. Therefore, we sample a sub-dataset to evaluate the performance of
the proposed method and other methods. The sub-dataset consist of five group
images chosen from 296 microscopic iron images randomly, each group includes
a stack of 10 images with resolution 400× 400.190

We conduct five experiments to show the performance of our Fast-FineCut
algorithm. The first four experiments use sub-datasets, and the fifth experiment
uses the whole dataset. Firstly, according to the hyper-parameter, we adjust our
Fast-FineCut algorithm to find the best performance. Secondly, we demonstrate
that our algorithm could recover the vague and missing boundaries precisely us-195

ing 3D information, while waggoner’s method (Waggoner et al., 2013) couldn’t
handle it. Thirdly, we compare its performance to other boundary detection
methods, such as Waggoner’s method (Waggoner et al., 2013), Otsu (Vala &
Baxi, 2013) Adaptive Threshold (Dewan et al., 2011) and Canny (Mcilhagga,
2011). Fourthly, we compare the computational time and memory consump-200

tion of global propagation and local propagation based on overlap-tile strategy.
Fifthly, attribute to the success of the overlap-tile strategy, we could analyze the
microscopy images with high resolution based on graph-cut theory. Therefore,
we evaluate the performance of algorithms on the whole dataset.

For performance evaluation, we use the manual labeled boundaries detection205

of all slices as ground truth, provided by materials scientists in the work of
(Feng et al., 2017). The ground truth detection was obtained by morphology
segmentation using ImageJ software (Schindelin J, 2013), commonly used in
microscopic image processing. However, it required 4 hours to carefully refine
the result for each slice. To evaluate the accuracy of all boundary detection210

method objectively and precisely, we take the figure of merit (Lopez-Molina
et al., 2013) as the evaluation criterion. It is defined as:

F =
1

max(NGT , NSeg)

NSeg∑
i=1

1

1 + ζd2i
(9)

In formula (9), NGT represents the number of pixels on boundary which
marked by human, NSeg represents the number of pixels on boundary detected
by algorithm, and di describes the euclidean distance between the ith boundary215

pixel detected by algorithm with its nearest real boundary pixel. The constant ζ
is introduced to punish the boundary pixel that detected wrong, which usually
equals 0.1. The bigger value of F , means the detected boundary is closer to
the real boundary, in another word, the higher accuracy of boundary detection
algorithm.220

All the experiments are conducted on an E5-2687W Intel core of a 2.60GHz
Windows workstation with 16GB of memory.
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The energy minimization components are implemented in Python using the
Numpy/SciPy (Van et al., 2014) and OpenCV (Laganiere, 2017), along with the
publicly available graph cut optimization (GCO) library (Mueller, 2011).225

4.1. The selection of hyper-parameter

The length of bounding region is the only hyper-parameter of the Fast-
FineCut algorithm. We design an experiment to illustrate how the hyper-
parameter affects the performance of our Fast-FineCut algorithm.

Figure 8: The selection of hyper-parameter

The length of bounding region affects the total length of overlap bounding230

region, it shows the maximum possible varying area of grain boundary, which is
determined by the properties of the materials. We select the length of bounding
region as 5, 10, 15, 18, 20, 23, 30 and 40 for comparsion respectively. The results
of our Fast-FineCut algorithm are shown in Figure.8. It is clearly to see that
the small length has poor performance, because it may cause some boundaries235

beyond the overlap region and then can not be detected, while the big length
decreases the performance, because it may include some noise that affects the
performance of our algorithm. According to the results, we assign the length of
the bounding region equals 18.

4.2. Recovering the vague and missing boundary240

For some microscopic images, there may exist some vague or missing bound-
aries in structure, as shown in Figure.9 ((a) is the previous slice, and (d) is the
next slice which exists many vague and missing boundary).

In general, the section thickness of microscopic images is thin enough to pro-
duce two high-similarity neighboring slices (may be exactly same). Therefore,245

Fast-FineCut sets the binary term according to the boundary extracted from
image of this layer in combination with the grain boundaries of the previous
image (shown in Figure.9 (c)).
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Figure 9: Recovering the vague and missing boundaries. (a) Original image P . (b) Binary
term of Waggoner’s method. (c) Binary term of method we improved. (d) Original image N
with many vague and missing boundaries. (e) Detection Result with Waggoner’s method. (f)
Detection Result with method we improved.

As the propagtaion results shown in Figure.9 (e) and (f), it is obvious that
the result of Fast-FineCut looks more natural and closer to the real image than250

that of Waggoner’s method. (Waggoner et al., 2013).

4.3. Comparison Method

In order to justify the proposed method, we compare its performance to other
boundary detection methods, such as Waggoner’s method (Waggoner et al.,
2013), Otsu (Lopez-Molina et al., 2013), Adaptive threshold (with mean kernel255

and Gaussian kernel) (Ronneberger et al., 2015), and Canny (Vala & Baxi,
2013). The contrast results are shown in Figure.10, from which we can see
that our algorithm has the highest figure of merit (0.87) and smallest deviation
compare to other methods. Comparing with 2D image process methods which
only consider the information in one slice, such as otsu, adaptive threshold260

and canny, our algorithm combine 3D information between slices as domain
knowledge. While comparing to Waggoner’s method, our method modify and
extended its binary term to yield more precise result.

4.4. The performance of local propagation based on overlap-tile strategy

The local propagation based on overlap-tile strategy can not only solve the265

problem of ”chain scission” produced by simple local propagation, as shown in
Figure.7, but also save the computational time and memory space. To demon-
strate it, we compare the computational time and memory space consumption
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Figure 10: Comparison method

of global propagation with local propagation based on overlap-tile strategy in
200× 200, 400× 400, 600× 600, 800× 800, 1000× 1000 sized images.270

Figure 11: Comparison of global propagation and local propagation based on overlap-tile
strategy(M denotes memory, T denotes time)

As shown in Figure.11, with the resolution of image increases, the time and
memory space consumed by the global propagation method grows exponentially,
while those of overlap-tile strategy based local propagation grows linearly. That
is because the time complexity of graph-cut is O(mn2|C|), where n is the num-
ber of nodes and m is the number of edges in the graph, |C| is the cost of the275

minimum cut (Boykov & Kolmogorov, 2004). In addition, the memory con-
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sumption do not changes with the increase of the resolution. This strategy
make it possible to analyze the high resolution of microscopic images, which is
common in material science.

4.5. The Evaluation of Fast-FineCut in whole dataset280

Attribute to the success of overlap-tile strategy, we can analyze the micro-
scopic images with high resolution. In this section, we illustrate the performance
of seven methods apply to the high dataset (stack of 296 microscopic pure iron
images with resolution of 1600×2800). For fair comparison, we apply overlap-
tile strategy both to Fast-FineCut and Waggoner’s work.285

As shown in Table 1, the ground truth provided by the materials scientists
in the work of (Feng et al., 2017).It was obtained by morphology segmentation
using ImageJ software (Schindelin J, 2013), commonly used in microscopic image
processing. However, it required 4 hours to manually refine the result for each
slice.290

Since the combination of 3D information, the Fast-FineCut has the high-
est average figure of merit (0.87) compare to other methods. However, due to
the nature of graph-cut theory, it cost much time both in Fast-FineCut and
Waggoner’s with overlap strategy. Besides, due to the complexity of binary-
term computation, Fast-FineCut will cost more time than the Waggoner’s with295

Overlap strategy. However, it could be acceptable beacause its highest accu-
racy. On the aspect of memory consumption, the Fast-FineCut and Waggoner’s
work equipped with overlap-tile strategy are local processing methods which
could cost lower memory compare to other global methods, which make our
method could be applied to practice. We visualize the results of segmentation300

in Figure.13 in Appendix.

Table 1: The average performance of one slice

Methods Figure of Merit Time(s)
Memory
Consump-
tion(MB)

Ground Truth 1.000 14,400.000 500

Fast-Fine Cut 0.870 1478.033 200

Waggoner with
Overlap strategy

0.827 512.760 200

Otsu 0.782 0.006 270

Canny 0.738 0.019 280

Adaptive Mean 0.433 0.009 275

Adaptive Gaussian 0.586 0.014 275

There are still some problems exist in the propagative boundary detection
algorithm. First, it is hard to detect the boundary which beyond the bounding
region, as shown in the red cycle of last row in Figure.13. Second, because the
nature of multi-label graph-cut theory, the number of label could not be changed305

in the process, so that it can not automatically detect the new grain boundary
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occurred in the volume, as shown in the cycle of 3rd row in Figure.13. Thirdly,
it will cost much time on the computation in propagative framework. Our team
will work on those problems in later work.

5. 3D reconstruction310

After extracting all the grain boundaries of 296 slices with proposed algo-
rithm, we used 297 serial sections (including the first manually labeled slice)
to perform 3D reconstruction on the microstructure. The result is shown in
Figure.12. The 3D reconstructed pure iron’s volume is 1090 µm×1730 µm ×540
µm, it contains a sum of 16254 intact iron grains from more than 40,000 grains,315

including surface ones. For illustration, the picture and figures of the 3D recon-
structed pure iron are provided by (Feng et al., 2017).

Figure 12: 3D reconstruction of 297 serial iron grain slices

6. Conclusion

In this paper, we proposed a propagative grain boundary detection algorithm
called Fast-FineCut considering 3D information as domain knowledge. This al-320

gorithm is built on the Waggoner’s work and modify their architecture so that
it can detect the vague and missing boundary and yield more precise result. In
addition, we developed a local propagation method based on overlap-tile strat-
egy, it not only solve the ”chain scission” problem, but save the consumption
of resources (such as computational time and memory space). We tested the325

proposed method on a stack of 296 slices microscopic images of polycrystalline
iron with high resolution and achieved promising performance that is superior to
the previous methods and other state-of-the-art methods. Besides, Our method
can support the other applications in 3D microscopic images, such as Magnetic
resonance imaging (MRI) and computed tomography (CT) images.330
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8. Appendix

Figure 13: Detection result with various methods
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