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Abstract 

In material research, it is often highly desirable to observe images of whole microscopic 

sections with high resolution. So that micrograph stitching is an important technology to produce a 

panorama or larger image by combining multiple images with overlapping areas, while retaining 

microscopic resolution. However, due to high complexity and variety of microstructure, most 

traditional methods could not balance speed and accuracy of stitching strategy. To overcome this 

problem, we develop a method named very fast sequential micrograph stitching (VFSMS), which 

employ incremental searching strategy and GPU acceleration to guarantee the accuracy and the 

speed of stitching results. Experimental results demonstrate that the VFSMS achieve state-of-art 

performance on three types’ microscopic datasets on both accuracy and speed aspects. Besides, it 

significantly outperforms the most famous and commonly used software, such as ImageJ, Photoshop 

and Autostitch. The software is available at https://www.mgedata.cn/app_entrance/microscope. 

 

Keywords: micrograph stitching, feature matching, GPU acceleration. 

1. Introduction 

Microstructure is the classic term used in metallography to describe small scale structure 

features in the scale less than 1000 μm [1]. The microstructure of a material (such as metals, ceramics, 

polymers or composites) can strongly influence almost all properties such as mechanical properties, 

physical properties, corrosion resistance, etc., which govern the application of the material in 
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industrial practice. The microstructure is often observed and analyzed using various microscopy 

methods such as optical microscopy, electron microscopy, etc. according to the necessary of 

examining and determining magnifications [2] [3]. With the development of material design, integrated 

design from micro- or nano-structure of materials to large-scale structure of components has aroused 

more and more attention from material scientists and engineers. Multi-scale material design often 

need illustrate macro- and micro-structure simultaneous. A large-scale panorama of material or 

component with micro-level resolution may help multi-scale and integrated design of material and 

component. Fig.1 shows a sample of a large-scale panorama (35mm×17mm) of a cross section for 

Ni-based superalloy turbine blade with a high resolution (10μm) obtained by Prof. Feng’s group to 

assist the optimization of service performance.  

However, due to the limitation of imaging principle, it is usually difficult to get a single image 

with high resolution to view a whole sample with large size [4]. A usual solution is to stitch several 

local images with overlapping areas to form a global composite one, which refers to as Stitching [5] [6]. 

Some examples of optical micrograph stitching in material researches are shown in Fig. 2. We 

demonstrate three types’ microscopic images with different shooting paths, which represented by red 

dashed line. Besides, the red translucent regions refer to a shot of microscope. As shown in the figure, 

there are some challenges in the stitching processes: First, the micrographs have high complexity and 

compose of diverse tiny microstructures, which increases demand for robustness of stitching strategy. 

Second, microscopic images usually have high resolution which increases demand for efficiencies of 

stitching strategy. Third, there is no static shooting path in actual practice, so the stitching strategy 

should self-adaptive to any situation. 

 

Fig. 1 a large-scale panorama (35mm×17mm) of a cross section for Ni-based superalloy turbine blade with a high 

resolution (10μm) for multi-scale and integrated design of material and component. 

Currently, many stitching methods and software can be categorized into two classes: Feature 

based and Phase correlation based [7]. 

Feature based stitching methods can achieve high accuracy with invariant features, such as SIFT 
[8] [9], SURF [10] [11] and ORB [12]. These methods establish correspondences between points, lines, 
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edges, corners, or other geometric entities. Characteristics of robust detectors include invariance to 

image noise, scale invariance, translation invariance, and rotation transformations. However, since 

the microstructures are always highly complicated, most of these methods can extract thousands of 

features to match, which may cause time consumption and a heavy computational burden so that 

couldn’t be applied in real time [13][14]. Some works try to sample the image in order to decrease the 

time consumption of feature searching and matching [6] [18]. However, these methods will 

unavoidably lose the information in micrograph. Besides, most of them apply ransac [15] and 

homography [16] [17] to match two sequential micrographs, which are suited for nature scene and will 

cause some deformations for local micrographs in horizontal translation model. 
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Fig. 2 Three types’ local and global micrographs and their shooting path. The red translucent regions represent 

one shot from microscope. The red dashed lines refer to the shooting path. (a) Optical microscopy (OM) image of 

Iron polycrystal with its detail imaging. (b) Pairwise shooting path of (a) with 2 local images. (c) OM image of 

dendritic crystal with its detail imaging. (d) Grid shooting path of (c) with 90 local images. (e) Scanning electron 

micrographs of zircon in reflected mode (SEM-RE), (f) in transmission mode (SEM-TR), (g) in black scattered 

mode (SEM-BS), and (h) cathodoluminescence mode (SEM-CL) respectively with its detail imaging. (i) Shooting 

path for (e)(f)(g)(h), the number of local images depends on the length of sample. 

 Phase correlation based methods can achieve real time stitching by using implementation of fast 

fourier transformation (FFT) [19] [20]. Most software build upon those methods by considering the 

speed demand of users [21] [24] [25]. However those may yield ambiguous results when micrographs 

contain much of similar microstructures [26], which will lead low accuracy when stitching. 

In this work, we describe a developed stitching method, named very fast sequential micrograph 

stitching (VFSMS), to balance the accuracy and speed of stitching strategy. Our algorithm presents 

three contributions: 

(1) Incremental searching strategy and corresponding matching and fusing method. Those make 

the algorithm achieve improvement both on accuracy and speed aspects. 

(2) GPU acceleration. We introduce GPU acceleration in feature search process which make 
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stitching could be applied in real time, even for the complicated micrograph with huge 

resolution. It is the first demonstration of GPU acceleration in this context that in particular 

has substantial gains in the aspects of stitching speed. 

(3) Sequential stitching. The algorithm developed in this paper is completely automated for fast 

stitching of micrographs. There is no need to design the shooting path. 

Experimental results demonstrate that VFSMS achieves state-of-art performance on several 

microscopic datasets on both accuracy and speed aspects. Besides, it significantly outperforms the 

most famous and commonly used software, such as ImageJ [21] [27], Photoshop [24] and Autostitch [28] 

[29]. The average time consumption of VFSMS is 60% of ImageJ, which is most popular software in 

material image processing. In addition, VFSMS achieves 100% accuracy in experimental datasets, 

which is more robust than other software. 

The remainder of this paper is organized as follows: In section 2, we provide a description of 

the VFSMS. In section 3, we present experiments on different stitching methods to show the 

effectiveness and efficiencies of the proposed approach. Besides, we discuss the results of different 

methods in section 4. Finally, we conclude the paper in section 5. 

2. Method 

2.1 Framework of the VFSMS 

VFSMS is a feature based image stitching method. For traditional feature based method, it is 

used to extract thousands of features in one local image, which may cause time consumption and a 

heavy computational burden so that cannot be applied in real time [13] [14]. In order to handle this 

problem, we proposed to use incremental searching strategy and GPU acceleration to increase 

stitching speed and robustness. 

The flowchart of VFSMS is shown in Fig.3. First, we input micrograph sequences, the 

algorithm will carry on if there is any micrograph never been calculated. Second, it uses incremental 

searching strategy to find pairs of feature points and match them. The detailed flowchart and diagram 

of incremental search can be found in the section 2.2. The detailed match method could be found in 

the section 2.3. If the last two sequential micrographs match correct, the algorithm will record the 

offset (between original point of next image and that of last image) and stitch next micrograph. 

Otherwise the algorithm will interrupt the stitch and restart from next micrograph if not correct. 

Therefore, VFSMS will save stitch previous results and restart the stitch on the next images when it 

faces mismatch, which is designed for multi section stitch. Third, it uses trigonometric function to 

fuse images and eliminate obvious seamline. The detailed of fusing algorithm can be found in the 

section 2.4. Finally, it gets stitching output result. 
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Fig. 3 The flowchart of the VFSMS 

2.2 Incremental searching strategy 

We demonstrate the schematic diagram and flowchart of incremental searching strategy in Fig.4 

and Fig.5. Let f1(x, y) and f2(x, y) represent the two sequential local micrographs. There are three 

parameters influence the algorithm’s performance: local direction, incremental parameter and feature 

search length. Local direction means stitching direction of two sequential micrographs. As shown in 

the Fig.4, when it equals 0, it means the first image locates at the above of the second image. 1 

means the first image locates at the left of the second image. 2 means the first image locates at the 

bottom of the second image. And 3 means the first image locates at the right of the second image. 

Incremental parameter is constrained to be any of -1, 0 or 1, which control stitching direction in the 

next stage. For example, let 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  represents the previous local stitching 

direction of the first and the second micrographs and 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑛𝑒𝑥𝑡 represents the next local 

stitching direction of the second and the third micrographs. If incremental parameter equals 0, the 

𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑛𝑒𝑥𝑡 is consistent with 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠. If incremental parameter equals 1, 

the algorithm will turn 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 90 degrees clockwise to form 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑛𝑒𝑥𝑡. 

If incremental parameter equals -1, the algorithm will turn 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 

counterclockwise 90 degrees to form 𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑛𝑒𝑥𝑡. The algorithm uses following equation (1) 

to update the local direction when the algorithm cannot find correct result in certain local direction, 

where “mod” denotes remainder calculation. The third parameter is feature search length. We believe 

that stitching task will only require the partial region of image to compare the similarity and it is no 

need to calculate all information in two images. Therefore, feature search length is the key parameter 

to control feature search region. It will be initialized as relative small value (for example, 20% of the 

corresponding edge) and expanded if the algorithm cannot find correct result. By the way, if the 

feature search length beyond the 50% of the corresponding edge and the algorithm does not find 

correct stitch, we will assume that these two sequential images cannot be stitched.  

𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑛𝑒𝑥𝑡 = (𝑙𝑜𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 +  𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 𝑚𝑜𝑑 4..(1) 
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(a) local direction = 0 (b) local direction = 1

local direction

(c) local direction = 2 (d) local direction = 3 (e) local direction = 0 with 

double Feature Search 

Length

Initial local direction = 0

Incremental parameter = 1

 

Fig. 4 Diagram of incremental stitching strategy. (a) to (e) shows the updating process of stitching direction by 

using local direction and incremental parameter. In this example, initial local direction equals 0 and incremental 

parameter equals 1. 

We will show the procedure of incremental strategy step by step using the Fig.4 and the Fig.5. 

First, the VFSMS sets local direction and incremental parameter or inherits it from last stitch (In the 

Fig.4, the local direction equals 0 and incremental parameter equals 1). Second, it initializes feature 

search length (20% of the corresponding edge in this paper’s experiments). Third it stitches images if 

feature search length is below the certain threshold (50% of the corresponding edge). Fourth, it uses 

two search regions in corresponding areas of two sequential images, which represented by red 

translucent regions in the Fig.4, to find feature points and match them. If match correct, it records the 

offset and goes back to other processes in the Fig.3. Otherwise, it modifies the local direction by 

using above equation (1), for example, from the Fig.4(a) to 4(d). We can use default value of local 

direction and incremental parameter to let algorithm to find correct stitching result (local direction 

equals 0, and incremental parameter equals 1). In addition, we can customize these parameters to let 

the algorithm change the direction of feature search length increment, according to different shooting 

paths (see Fig.6). For example, if the image is taken from right to left, the initial local direction can 

be set to 3, and the incremental parameter can be set to 0. Therefore, the algorithm can accelerate the 

stitching speed by customizing key parameters to decrease the number of searching, according to 

different shooting paths. Fifth, we double the search length in order to access more micrographs 

information and carry the loop if it returns to the initial direction, as shown in the Fig.4(e). Finally, it 

will record the offset if match correct. Otherwise, it will report to the algorithm that these two 

sequential images cannot be stitched. 

By using incremental searching strategy, the algorithm needs only partial of images to calculate 

the offset. Therefore, it will save the consumption of resources and increase the speed of the stitching 
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task. 

 

Fig. 5 Flowchart of incremental stitching strategy. 

 

 
Fig. 6 Custom stitching parameters according to shooting path. 

To realize the stitching of microscopic images with high speed and high accuracy, SURF 

algorithm [10] was chosen to extract image features in this paper. It has been proved to have a good 

performance than SIFT and ORB. Besides, the speed of searching feature points would have notable 

enhancement because of GPU acceleration. 

2.3 Matching 

Incremental searching strategy needs algorithm to detect the mismatch in order to transform to 

the next direction. However, traditional matching strategies of feature based methods such as 
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homography and ransac cannot detect the mismatch effectively. Besides, phase correlation based 

methods just only pick the first peak value in correlation plane of image, which also cannot detect the 

mismatch. 

Therefore, we build a matching method that is suited to incremental searching strategy. We 

assume all transformations between overlapping images to be translation only which is reasonable 

for most commonly used microscopy techniques where the static, fixed sample rests on a level 

microscope slide moved by a motorized stage. The matching strategies are shown in the Fig.7. 

In the Fig.7, the first row represents horizontal stitching. The second row represents vertical 

stitching. The green line denotes the location of border of the first micrograph actually correspond to 

the location in the second micrograph. The blue line denotes a pair of registered surf feature points. 

SURF is a feature search algorithm, and it can extract many pairs of feature in the two sequential 

micrographs. In addition, we use ratio of closest to second-closest neighbors [8] of each key-point to 

register pair of key-points. For our stitching experiment, we reject all matches in which the distance 

ratio is greater than 0.75. For each pair, we can calculate the offset (‘dy’ and ‘dx’) according to the 

location of two points. Finally, we could get the mode of offsets, which is the value that appears 

most often in data set. In addition, if the number of mode value beyond a threshold (in our 

experiment, we set 3), we can convince that the offset is correct.  

 

Fig. 7 Matching strategy for two sequential micrographs. M, N denote the rows and columns of the micrograph. 
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2.4 Image Fusion 

There are overlapping areas in the stitching process, as described in the Fig 8 and Fig.9. Due to 

imaging principle of microscope, the border of micrograph will have lower luminance than the center 

region, which will cause obvious seamline in stitching result, as shown in Fig 10. 

 

Fig. 8 Fusing demonstration. (a) left-right pairwise image fusion. (b) upper-bottom pairwise image fusion. 

We use trigonometric functions [30] to fuse two overlapping regions in order to eliminate 

seamline. Let f1(x, y) and f2(x, y) represent the two sequential local micrographs, f(x, y) denotes the 

fusing result, each pixel value can be given by the following equation: 

𝑓(𝑥, 𝑦) = {

𝑓1(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑓1
𝑤1𝑓1(𝑥, 𝑦) + 𝑤2𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ (𝑓1 ∩ 𝑓2)

𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑓2

                       (2) 

where,    𝑤1 = 𝑐𝑜𝑠2 (
𝜋∗(𝑥−𝑥𝑙𝑒𝑓𝑡)

2∗(𝑥𝑟𝑖𝑔ℎ𝑡−𝑥𝑙𝑒𝑓𝑡)
) , 𝑤2 = 𝑠𝑖𝑛2 (

𝜋∗(𝑥𝑟𝑖𝑔ℎ𝑡−𝑥)

2∗(𝑥𝑟𝑖𝑔ℎ𝑡−𝑥𝑙𝑒𝑓𝑡)
)  or  

𝑤1 = 𝑐𝑜𝑠2 (
𝜋 ∗ (𝑌 − 𝑌𝑢𝑝𝑝𝑒𝑟)

2 ∗ (𝑌𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑌𝑢𝑝𝑝𝑒𝑟)
) ,𝑤2 = 𝑠𝑖𝑛2 (

𝜋 ∗ (𝑌𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑌)

2 ∗ (𝑌𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑌𝑢𝑝𝑝𝑒𝑟)
) 

where 𝑌𝑢𝑝𝑝𝑒𝑟, 𝑌𝑏𝑜𝑡𝑡𝑜𝑚, 𝑋𝑟𝑖𝑔ℎ𝑡, 𝑋𝑙𝑒𝑓𝑡 denote the upper edge, lower edge, right edge and left edge 

of overlapping region of the two images respectively(see the Fig.8). 𝑤1 and 𝑤2 are weighting 

parameters which control fusion result of two pixel value. 

However, this method is designed to fuse pairwise micrographs. We make an improvement 

according to sequential stitching strategy especially for the ‘corner’ stitching (see the Fig.9). The 

equation of corner region stitching is: 

𝑓(𝑥, 𝑦) =

{
 
 

 
 

𝑓1(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑓1
𝑤1𝑓1(𝑥, 𝑦) + 𝑤2𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑙 − 𝑟 𝑟𝑒𝑔𝑖𝑜𝑛

𝑤3𝑓1(𝑥, 𝑦) + 𝑤4𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑢 − 𝑏 𝑟𝑒𝑔𝑖𝑜𝑛

𝑤1𝑤3𝑓1(𝑥, 𝑦) + (1 − 𝑤1𝑤3)𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑐 𝑟𝑒𝑔𝑖𝑜𝑛

𝑓2(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑓2

           (3) 
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where  𝑤3 and 𝑤4 are calculated as same as pairwise stitching. 𝑙 means left, 𝑟 means right, 𝑢 

means upper, 𝑏 means bottom, 𝑐 means corner. 

 
Fig. 9‘Corner’ stitching fusing demonstration. (a) left-bottom corner. (b) right-upper corner. The red translucent 

region denotes corner region 

Some examples of fusing results are showing in the Fig.10. As shown in the figure, 

trigonometric image fusion can eliminate obvious seamline perfectly. 

Dendritic

Crystal

OM

No fusion Trigonometric fusion

Zircon

SEM-RE

Zircon

SEM-TR

 
Fig. 10 Fusing results. The first column represents stitching without fusing operation. The second column 

represents stitching with trigonometric fusing operation. The red arrows denote obvious seamlines. 

3. Experimental Results 

3.1 Datasets 

As shown in the Fig. 2, we chose three types’ micrographs of different materials, different 

structure and different imaging modes as datasets. Type 1 micrograph is optical microscopy (OM) 
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image of pure iron polycrystalline structure (Iron Polycrystal OM), which as a sample for 

polycrystalline grain structure. Type 2 micrograph is OM image of dendritic crystalline structure of 

Al-La alloy (Dendritic Crystal OM), which as a sample for fractal structure. Type 3 micrograph is 

scanning electron micrographs of zircon block embedded in resin matrix in reflected mode 

(SEM-RE), transmission mode (SEM-TR), black scattered mode (SEM-BS), and 

cathodoluminescence mode (SEM-CL) as the samples for two phase/composition structure. Type 1 

and type 2 micrographs are provided by Beijing advanced innovation center for materials genome 

engineering, and type 3 are provided by hebei bureau of geo-information. Type 1 and type 2 

micrographs have thousands detailed highly complex and diverse tiny microstructures with different 

sizes and shapes which increase demand for effectiveness and efficiency of method. Scientists need 

image stitching method to observe and analysis large scale of microstructures with high resolution. 

Type 3 micrographs have a little zircon block in one local image, however, the texture of zircon is 

very similar which increase demand for robustness of method. Inspectors need large scale of sample 

to measure geological age. Each type has different dimensions (image sizes, the unit is pixel). Each 

type has ten groups of sub-image datasets for parallel tests to ensure the reliability of experimental 

results. Each group has different numbers of micrographs according to the shooting situation as 

shown in Table 1. All the local micrographs in each group can be stitched to form a global composite 

one. In total, we have 1584 micrographs for stitching performance testing. 

Table 1 images datasets 

Types 

Dendritic 

Crystal 

OM 

Iron 

Polycrystal 

OM 

Zircon 

SEM-BS 

Zircon 

SEM-CL 

Zircon 

SEM-RE 

Zircon 

SEM-TR 

Dimensions 

(pixel×pixel) 

(1936×

2584) 

(1936×

2584) 

(1024×

1280) 

(1024×

1280) 

(1728×

2592) 

(1728×

2592) 

Group 

1 90 2 4 24 11 9 

2 90 2 6 20 12 12 

3 90 2 27 20 13 13 

4 90 2 25 23 9 13 

5 91 2 22 24 14 8 

6 90 2 28 23 10 13 

7 91 2 30 24 8 9 

8 90 2 22 21 14 12 

9 90 2 24 16 12 18 

10 90 2 24 18 9 18 

3.2 Implementation and evaluation Details 

Our implementation of VFSMS was derived from the publicly available python [31], numpy [32] 

and opencv toolbox [33]. In addition, all the experiments are conducted on an E5-2687W Intel core of 

a 2.60GHz Windows workstation with 16GB of memory and Nvidia Quadro K1200 with a graphics 

memory of 4GB [34]. 

In this work, we use the accuracy and time consumption to evaluate performance of stitching 
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strategy and software. The accuracy in each type was calculated as following formula and it was 

evaluated by material scientists. In experiments, they judged whether the stitching was correct by 

observing whether there was a misplacement which can tell by human eyes on both sides of the 

stitching line. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇 =
𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
× 100%                                    (4) 

where 𝑁𝑟𝑖𝑔ℎ𝑡 means the number of groups which stitching result have no observably misplacement, 

𝑁𝑡𝑜𝑡𝑎𝑙 means total groups in type T.  

3.3 Time consumption for feature search in VFSMS 

Feature based stitching would have high accuracy, but it will cost a lot of time consumption if 

there are thousands of feature points in local micrographs. For micrographs of dendritic crystal and 

iron polycrystal in particular, those microstructures are always highly complicated. That will cause 

much more time consumption shown in Fig.11. As shown in the Fig.11(a), we demonstrate feature 

numbers and matching numbers per image in the three types’ datasets. Dendritic crystal and iron 

polycrystal images have nearly same dimensions compared to other datasets, however, the feature 

numbers of those are eight times larger than the other’s. Therefore, the time consumption of those is 

thirty-six times larger than the other’s in CPU mode as shown in the Fig.11(b). 

Incremental searching strategy is a highly effectively method which suites for feature based and 

sequential stitching. In the Fig.11(b), incremental strategy is much faster than the method without it, 

even in the CPU mode. Besides, GPU acceleration can further improve the speed of stitching 

especially for the dendritic and iron polycrystal which have thousands of features. However, GPU 

acceleration would have little influence when applied to the certain datasets which have lower 

feature points. That is because that there is some inevitable time consumption spends on data 

migration from CPU to GPU. 

 

Fig. 11 Time consumption with different methods 
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3.4 Performance evaluation  

We compare the performance of VFSMS with other software, such as ImageJ (1.51s) [21] [22], 

Photoshop-photomerge [23] [24] and Autostitch [17] [28]. There are three types of stitching strategies in 

ImageJ (1.51s): grid stitch, sequential stitch and pairwise stitch. Grid stitch needs user to specify the 

size of grid and shooting path in order to increase accuracy of stitching and decrease time 

consumption by using multi-threaded CPU programing [27]. Sequential stitch do not need to design 

the shooting path as same as VFSMS. Pairwise stitch can only stitch two sequential micrographs 

which are not suited to large numbers of local micrographs. For Photoshop, we use collage mode in 

photomerge plugin. In addition, ImageJ and Photoshop use phase correlation based stitching strategy. 

While Autostitch use feature based stitching strategy. All experiments are implemented on the 

machine that has described in the section 3.2. 

We compare the performance of VFSMS and other software in Table 2 and Table 3. We 

calculate the average time consumption per image and statistic the accuracy of the images for each 

type in different methods. For dendritic crystal micrographs, Autostitch would omit some 

micrographs that it cannot match, so that the duration of calculation time is very small, however, the 

accuracy of stitching result is zero. For zircon SEM-CL and zircon SEM-BS datasets, the VFSMS 

would be a little slower than the ImageJ with grid mode, that is because there is some duration time 

wasted in the data transformation between CPU and GPU. However, the VFSMS is more robust than 

ImageJ in the accuracy aspect. Some examples are shown in the Fig. 12. 

There are three types of micrographs with 1584 micrographs in total. Each type of micrograph 

has ten groups of sub image data and each group have a series of images which could be stitched to a 

global one. Therefore, we refer one group of images stitching task as one test and there are 60 tests in 

total. However, the assessment is a very stick standard. It means the result would be correct only if 

the stitching result of all micrographs in one group has no observably misplacement. According to 

the accuracy assessment method described in section 3.2, the denominator 𝑁𝑡𝑜𝑡𝑎𝑙 is always 10. And 

the numerator 𝑁𝑟𝑖𝑔ℎ𝑡 is range from 0 to 10. 

Experimental results demonstrate that VFSMS achieves state-of-art performance on several 

microscopic datasets on both accuracy and speed aspects. Besides, it significantly outperforms the 

most famous and commonly used software, such as ImageJ, Photoshop and Autostitch. The average 

time consumption of VFSMS is 60% of ImageJ, which is most popular software in material image 

processing. In addition, VFSMS achieves 100% accuracy in experimental datasets, which is more 

robust than other software. 

 

Table 2 Time per image of VFSMS and other software (* is stitching mode in Image-J, the unit is second) 

Types 

Dendritic 

Crystal 

OM 

Iron 

Polycrystal 

OM 

Zircon 

SEM-BS 

Zircon 

SEM-CL 

Zircon 

SEM-RE 

Zircon 

SEM-TR 
Average 

VFSMS 1.55 0.75 0.36 0.35 0.63 1.00 0.77 

Grid 

Stitch* 
2.10 1.99 0.30 0.27 1.28 1.30 1.21 
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Sequential 

Stitch* 
2.78 3.15 0.65 0.41 2.30 2.13 1.90 

Pairwise 

Stitch* 
/ 2.57 / / / / / 

Photoshop 

photomerge 
3.43 3.56 3.92 5.63 2.46 3.75 3.79 

AutoStitch 0.65 2.08 0.55 0.35 0.83 3.32 1.30 

 

Table 3 Accuracy of VFSMS and other software (* is stitching mode in Image-J) 

Types 

Dendritic 

Crystal 

OM 

Iron 

Polycrystal 

OM 

Zircon 

SEM-BS 

Zircon 

SEM-CL 

Zircon 

SEM-RE 

Zircon 

SEM-TR 
Average 

VFSMS 100% 100% 100% 100% 100% 100% 100% 

Grid 

Stitch* 
50% 100% 60% 100% 100% 100% 73% 

Sequential 

Stitch* 
0% 100% 100% 0% 30% 100% 55% 

Pairwise 

Stitch* 
/ 100% / / / / / 

Photoshop 

photomerge 
40% 100% 0% 0% 0% 20% 27% 

AutoStitch 0% 0% 60% 0% 20% 70% 25% 

 

4. Analysis and Comparison 

We demonstrate some examples of stitching results of VFSMS and other software in this 

section. 

In the Fig.12, we show some stitching results of VFSMS and ImageJ (1.51s). Each row refers to 

one sample. ‘Dendritic crystal OM–2’ represents the second group in dendritic crystal OM dataset. 

As described in the section 3.4, there are grid, sequential and pairwise mode in ImageJ. Grid stitch 

needs user to specify the shooting path and grid size. It can eliminate accumulative error so that error 

in one line would not influence the other line, as shown in the second image of the first row. 

Moreover, ImageJ is a phase correlation based software. It may yield ambiguous results when 

micrographs contain much of similar microstructures [26]. Besides, ImageJ doesn’t split the mismatch 

result which causes troubles for users, shown in the dendritic crystal OM-2, Zircon SEM-BS-5, 

Zircon SEM-CL-1 and Zircon SEM-RE-9 samples. 
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Dendritic

Crystal OM - 2

VFSMS

VFSMS

Zircon

SEM-BS - 5

VFSMS

Zircon

SEM-CL - 1

Zircon

SEM-RE - 9

VFSMS

ImageJ – Grid Stitch

ImageJ-Grid stitch ImageJ-Sequential stitch

ImageJ – Sequential Stitch

ImageJ – Sequential Stitch

 
Fig. 12 Some examples of VFSMS and ImageJ 

In Fig.13, we show some stitching results of VFSMS and Photoshop. For fairly comparison, we 

use collage mode in photomerge plugin. As same as ImageJ, Photoshop is a phase correlation based 

software. In addition, it picks up an improved version which can detect rotation of image. However, 

for most microscopic research, we commonly use microscope equipped with motorized stage, which 
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will not cause rotation in sequential micrographs. Unfortunately, it also yields ambiguous results 

when micrographs contain much of similar microstructures. 
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VFSMS
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SEM-CL - 4

Zircon

SEM-RE - 2
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VFSMS
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Photoshop-photomerge

Photoshop-photomerge

Photoshop-photomerge

Photoshop-photomerge

Photoshop-photomerge
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Fig. 13 Some examples of VFSMS and Photoshop 

 

Dendritic

Crystal 

OM - 1

VFSMS AutoStitch

VFSMS AutoStitch

Iron

Polycrystal 

OM- 2

VFSMS

AutoStitch

Zircon

SEM-BS - 4

VFSMS

AutoStitch

Zircon

SEM-CL - 1

Zircon

SEM-RE - 1

Zircon

SEM-TR - 6

VFSMS

AutoStitch

VFSMS

AutoStitch

 
Fig. 14 Some examples of VFSMS and Autostitch 

In Fig 14, we show some stitching results of VFSMS and AutoStitch. AutoStitch is a feature 

based software. It is particularly suited to stitch images in nature scene and doesn’t have good results 

in micrograph stitching. It employ SIFT, ransac and homography strategy which can detect 

projective transformation in sequential images. However, those methods can cause large deformation 

when applied to micrograph stitching, as shown in dendritic crystal OM-1, iron polycrystal OM-2 

and zircon SEM-TR-6 samples. Besides, Autostitch will abort stitch when it detect mismatch, which 
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is not suited to scientific research. By contrast, VFSMS will save previous stitching result and restart 

the stitch on the next images when it faces mismatch. 

5. Conclusion 

In this work, in order to handle the task of micrograph stitching, we develop a very fast 

sequential micrograph stitching method, named VFSMS, which employ incremental searching 

strategy and GPU acceleration to guarantee the accuracy and speed of the stitching results. By using 

those strategies, we can stitch several local images with overlapping areas to form a final global 

composite one with huge resolution. Experimental results demonstrate that VFSMS achieves 

state-of-art performance on three types’ microscopic datasets on both accuracy and speed aspects. 

Besides, it significantly outperforms the most famous and commonly used software, such as ImageJ, 

Photoshop and Autostitch. 

The limitation of VFSMS is that it only fuses local micrographs in gray mode and doesn’t fuse 

micrographs in RGB channels, which will lose color information in micrographs. Besides, there is 

little tiny distortion in the dendritic crystal’s stitching result which might be caused by imaging 

principle of microscope. Our team will work on this problem in subsequent work. 
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