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Many domains require the use of sophisticated simulators to adequately model the effect of chosen alter-

natives on the decision maker’s value. Decision support in such complex systems brings unique challenges

around efficiency, since simulating each combination of inputs can be time-consuming. In this paper, we con-

duct a value of information (VOI) analysis to study whether one should purchase information about critical

input uncertainties in such complex systems. We propose a novel computational approach where Gaussian

processes are used to model the decision maker’s profit as a function of different alternatives and uncertain-

ties. Under this modeling assumption, the expected improvement of the profit is analytically available, which

we use to approximate the VOI effectively over batches of simulations, thus avoiding too many computer

intensive evaluations of the system. We illustrate the proposed computational approach with an offshore

wind farm maintenance application, where the decision maker relies on outputs from large-scale simulations

to determine the optimal vessel fleet mix and number of personnel for operation and maintenance. Such

computer intensive simulations mimic long-term energy production under different input conditions. It is

often not possible to explore all the alternatives exhaustively, and one must therefore guide the simulations

to run on promising alternatives. We conduct a VOI analysis to study whether one should purchase infor-

mation about failure rates of wind turbines, for this application. The proposed methodologies are general

and apply to other domains involving expensive simulators.

Key words : value of information, simulation, expected improvement, Gaussian processes, wind farms,

failure rates
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1. Introduction

The use of computationally expensive simulation tools in decision support is increasingly recognized

across industries and fields of science (Ghanem et al. 2017, Owen et al. 2017). Modeling complex

decision situations often requires the use of such simulators so as to adequately represent the

interactions in the real world and hence avoid making decisions based on biased or erroneous

calculations.

In this paper, we highlight the challenges of performing value of information (VOI) analysis

when computing values as a function of the inputs (alternatives and states of uncertainties) is

time-consuming. We propose a computational approach that relies on Bayesian optimization (BO)

for efficient assessment of alternatives and for the associated computations required for VOI anal-

ysis of the uncertainty under consideration. BO has been shown to be useful in situations where

expensive simulators are required to evaluate an output, see e.g. Frazier and Wang (2016). Like in

that work, we approximate the relationship between inputs and the output value of a simulator

with a Gaussian process (GP), where the mean and covariance structures are adjusted after each

(batch of) computer simulation(s), but our approach goes beyond the optimization and effectively

constructs an approximation for the VOI. GPs are popular for approximating unknown functions

because of their flexibility in handling input variables, ease of interpretation from mean and covari-

ance parameterization, and computational tractability which enables fast selection of simulation

evaluation points (Gramacy and Lee 2009, Roustant et al. 2012).

VOI is a concept that has a long history in decision analysis (Howard 1966, Matheson 1968)

and VOI analysis remains an important part of a decision analyst’s toolkit. There is significant

literature on VOI analysis for decision making in applications such as health risk management

(Yokota and Thompson 2004), oil and gas (Bratvold et al. 2009), portfolio problems (Bhattacharjya

et al. 2013), the environmental sciences (Keisler et al. 2014), and broadly in the Earth sciences

(Eidsvik et al. 2015). VOI analysis has not however received much attention in the context of

complex simulator models, most likely because of the computational challenges of conducting value

evaluations and optimization routines for different data. We hence expand the applicability of VOI

analysis to complex settings in this work, by presenting new approximation methods.

The methodologies presented in this paper are motivated by an application involving the oper-

ation and maintenance (O&M) of offshore wind farms (Tavner 2012). A survey from Welte et al.

(2018) indicated that the O&M cost of an offshore farm lies between 12-32% of its total Lev-

elized Cost of Energy (LCOE), and according to a report from the International Renewable Energy

Agency, the LCOE for offshore wind turbines is 2.3 times higher than that of onshore wind turbines

(IRENA 2018). For offshore wind power to be competitive with other sources of renewable energy,

the costs related to O&M must hence be reduced. We study the optimization of O&M strategies
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in this setting, where a decision maker chooses a vessel fleet mix for transferring maintenance

personnel (technicians) to turbines after failure. Such decision situations need to deal with the

large size of the alternative space and the large simulation time required to evaluate the realized

O&M costs for a considered alternative. Matters are further complicated by uncertainties related

to the failure rate of components. Here we conduct a VOI analysis to study the economic value

of learning this failure rate before making the strategic O&M decision. This elaborate case study

brings pedagogical clarity to the application of sophisticated computational approaches for VOI

analysis by illustrating the steps for a simple but practical example.

The remainder of the paper is organized as follows. In Section 2, a decision-analytic formulation

is specified. In Section 3, BO is discussed, using GPs as surrogate models to efficiently design

evaluation points for the next iteration of the optimization procedure. In Section 4, this iterative

optimization algorithm is extended to the context of VOI approximation. Here we provide details

of the proposed approach for efficient VOI computation with expensive simulators. In Section 5,

results on the case study with O&M strategies for offshore wind farms are presented. Finally, we

conclude in Section 6.

2. Background
2.1. Complex Simulators for Decision Support

There has long been an interest in designing experiments, conducting sensitivity analysis to input

parameters, and studying the value of learning uncertainties in decision models that involve expen-

sive simulation computations (Sacks et al. 1989, Oakley and O’Hagan 2004, Strong et al. 2015).

In this paper we consider decision making and VOI analysis for situations that require complex

simulations to assess the value function.

The motivating application for this work is offshore wind power generation which is a young

industry characterized by limited operational experience, large uncertainties and costs that are

declining but still relatively high. In contrast to onshore wind farms, offshore wind farm involves

complex marine logistics. Without an effective O&M strategy, logistics delays may cause long down-

times after turbine failures and correspondingly large energy production losses that may threaten

the profitability of the wind farm project. Energy profits from offshore wind farm projects are

usually estimated via simulation experiments that mimic wind turbine activity, including turbine

failures and associated maintenance activities and logistics, along with physical and weather condi-

tions at sea, yielding economic values as output. Several such simulation tools have been developed,

see for instance Hofmann (2011), Welte et al. (2018) and Seyr and Muskulus (2019) for overviews.

In this paper, we calculate costs and profits using the NOWIcob (Norwegian offshore wind power

life cycle cost and benefit) simulation model (Hofmann and Sperstad 2013, Sperstad et al. 2017a),

see Section 5.
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The methodologies proposed here are also relevant for other applications involving planning and

design in the context of expensive computer experiments. For instance, the approach could be used

for models involving simulators in the Earth sciences that mimic physical processes in geology,

hydrology and related subjects (Eidsvik et al. 2015). It is too time consuming in such settings

to run the simulator for all possible inputs, and instead one must choose the input parameters

wisely, and this choice is often done using a surrogate model. Within this application domain,

Asher et al. (2015) provide a review of existing approaches building on complex simulators for

groundwater modeling. An emerging industry within the same domain is that of subsurface CO2

storage, with complex decision making under multivariable uncertainties and with risks related

to potential leakage. Pawar et al. (2016) use simulations over time to study risks associated with

several alternatives for CO2 storage, without doing any formal VOI analysis. The methods outlined

in the current paper would also be suitable for decision support and VOI analysis of potential

data sources in the context of traffic simulation systems (Bierlaire 2015) and large-scale stochastic

simulations or discrete event simulations of systems over time, such as applied to homeland security

models (Blum and Paté-Cornell 2016). Merrick (2009) provides a review of Bayesian simulation

from a decision analysis perspective, and calls out the need for research on VOI analysis for decision

making using simulation-based models.

2.2. A Decision-Analytic Formulation

We denote the alternatives for the decision situation by a ∈ A. The cardinality of the set A is

assumed to be relatively large. In the offshore wind farm application, the alternatives pertain to

vessel fleet mix and personnel. The main uncertainty is denoted λ ∈ Λ, which in the wind farm

application is an expected long-term failure rate for wind turbines. A discretized sample space is

used for ease of evaluations, and we associate the uncertain variable λ with a probability mass

function p(λ),
∑

λ∈Λ p(λ) = 1, that represents the decision maker’s prior beliefs about λ. We specify

this probability mass function in Section 5.

The value function is defined through the simulator, and this is denoted by

v= v(a, λ), λ∈Λ, a∈A. (1)

In the wind farm application, the input variables are processed through an event-based simulation

using Monte Carlo sampling of the weather (wave height and wind speed) and the failure occurrence

times. The value function over the inputs is then the profit estimated by the simulator, which

incorporates both the revenues from energy production as well as the costs of O&M.



Myklebust et al.: VOI Analysis for Complex Simulator Models
Article submitted to Decision Analysis; manuscript no. (Please, provide the manuscript number!) 5

In order to choose a strategy, the decision maker optimizes the expected utility. For a risk neutral

decision maker, the prior value (PV) of the decision situation, i.e. the value without any additional

information, is:

PV = max
a∈A
{E[v(λ,a)]}= max

a∈A

{∑
λ∈Λ

v(λ,a)p(λ)

}
. (2)

When facing a decision situation like the one involving the selection of personnel and fleet mix,

there is an auxiliary decision related to information gathering. Here it could be very useful to get

information about the uncertain failure rate λ. This would lead to a more informed decision that

yields a higher value on expectation. We distinguish between perfect and imperfect information,

where the former means that we get clairvoyant information on the uncertain quantity λ without

any error. With perfect information about λ, the expected posterior value (PoV) is

PoV(λ) =E
(

max
a∈A
{v(λ,a)}

)
=
∑
λ∈Λ

max
a∈A
{v(λ,a)}p(λ), (3)

where the uncertain information is used in the argument in the PoV to clearly denote the uncertain

variable over which the expectation is computed.

The VOI is the price at which the decision maker is indifferent between purchasing the infor-

mation and not. The price of indifference is thus the maximum amount that the decision maker is

willing to pay for the information. For a risk neutral decision maker, the VOI of perfect information

is

VOI(λ) = PoV(λ)−PV. (4)

With imperfect information, one is only able to observe λ indirectly through l, which is a noise-

corrupted measurement of λ. We assume the same sample space for l as for λ, and specify a

likelihood model p(l|λ) for the measurement. The marginal model for the data becomes p(l) =∑
λ p(l|λ)p(λ). The posterior model is

p(λ|l) =
p(l |λ)p(λ)

p(l)
. (5)

The expected PoV in this case is then

PoV(l) =E
(

max
a∈A
{E(v(λ,a)|l)}

)
=
∑
l

max
a∈A

{∑
λ∈Λ

v(λ,a)p(λ|l)

}
p(l), (6)

and the VOI with imperfect information is

VOI(l) = PoV(l)−PV. (7)

Recall that the main computational challenge here is that an evaluation of the value function

v(a, λ) is very time consuming, because of the complexity of the simulator. For the wind farm
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application, it is not feasible to compute all possibilities, because the input space is too large.

Instead, one must resort to methods that compute the value function for the most important

uncertainties and decision alternatives. Next we use methods from BO to help guide the evaluation

points of the simulator, for efficient approximation of the value function and the VOI.

3. Bayesian Optimization with Gaussian Process Surrogates

In our proposed approach, we aim to efficiently map the value function using a surrogate statistical

model, and then use the model to approximate the VOI. In this section, we introduce the concepts

behind the mapping of values, including:

• A statistical surrogate model for v(a, λ). We use a GP model for the value, which requires

specification of a mean and covariance function. The GP surrogate model is easily updated when

new evaluation points are provided. (Section 3.1.)

• A criterion to design the new evaluation points. We use a notion referred to as expected

improvement (EI) to guide the selection of new evaluation points. This is done in a sequential

manner, where each step consists of a batch of points that are selected and run by the simulator.

(Section 3.2.)

3.1. Gaussian Processes

There are many potential choices for a surrogate model. GPs are perhaps the most popular choice

because they allow fast updating of the model representation when new evaluations are done. GPs

further directly provide uncertainty quantification for the function approximation (profits in our

case). Alternative approaches for surrogate models include, for instance, polynomial regression

models (Queipo et al. 2005) and artificial neural networks (Snoek et al. 2015).

A GP is defined as a stochastic process where every finite subset of elements has a multivariate

normal distribution (Rasmussen 2004). A GP is fully specified by its mean function and covariance

model. In practice one must check the assumptions made about the mean and variance, and the

Gaussian distribution (see Section 5.4). In our context the GP is located at alternatives for decision

variables a ∈ A and uncertainties λ ∈ Λ, and has response v(a, λ). We denote the process at all

alternatives and all uncertainties by v= (v1, . . . , vn). Its distribution is assumed to be represented

adequately by

v∼GP(µ,Σ). (8)

The mean is set to a constant level; µ = µ01n, while the covariance structure in Σ depends on

the distance between different alternatives and different uncertainties. The choice of covariance

function encodes our initial knowledge about the smoothness of the unknown function v. Assuming
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a constant variance and a squared exponential covariance function, which is commonly used in

function applications of BO, see e.g. Roustant et al. (2012), we have covariance entries defined by

Cov(v(a, λ), v(a′, λ′)) = σ2 exp

{
−(λ−λ′)2

φ2
λ

−
∑
j

(aj − a′j)2

φ2
aj

}
. (9)

Here, the sum goes over different elements in the alternative set. For the wind farm maintenance

application, φaj indicates the different correlation range for the three decision variables: number of

personnel and different types of vessels. In practice, the mean µ0 and covariance model parameters

σ, φaj and φλ must be specified from current knowledge, or from the available function evaluations.

If the initial batch of evaluation points is small, it will help to update these parameters after

subsequent batches. There is existing software for fitting GPs, see e.g. Roustant et al. (2012)

and Gramacy (2016). Note that even though the covariance function defined in equation (9) is

stationary, it will be non-stationary when we start conditioning on simulator evaluations.

Assume we have evaluated the function at M inputs, and denote the observation set by yM =

(y1, . . . , yM). Here, yi = v(a(i), λ(i))+N(0, τ 2) is the profit estimated by the simulator for evaluation

number i, with input values (a(i), λ(i)), i= 1, . . . ,M . The Gaussian noise term with standard devi-

ation τ is included to account for uncertainty in the function evaluation, which in our application

mainly pertains to varying weather conditions in the simulations and their interaction with the sim-

ulated times of failure. Using more compact matrix notation, we can write yM =AMv+N(0, τ 2I),

where the size M ×n matrix AM contains 0 and 1 entries, and the 1 entries indicate the sampled

indices (1), (2), . . ., (M) of v. The conditional distribution given this information is a GP with

modified mean and covariance:

v|yM ∼ GP(µM ,ΣM), (10)

µM = µ+ ΣAt
M(AMΣAt

M + τ 2I)−1(yM −AMµ),

ΣM = Σ−ΣAt
M(AMΣAt

M + τ 2I)−1AMΣ.

The updating described in equation (10) is typically done sequentially, with batches of evaluation

points. The conditional mean and covariance form the basis for BO in the next batch.

Example:

Figure 1 illustrates the conditioning on the simplified domain of one decision variable a ∈

{1, . . . ,100} shown in increasing order on the horizontal axis. A simulated true process is plotted in

the top display and the goal is to predict and maximize this simulated function v(a). The middle

plot shows the M = 6 evaluation points as circles, along with the conditional process mean (solid,

black) and the prediction interval.
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The function is predicted very accurately near the data points. Going away from these evalua-

tion points, the prediction is further from the true function and there is larger uncertainty. The

smoothness of the prediction and the widths of the prediction intervals is here determined by the

correlation in the function values for similar alternatives.
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Figure 1 Top: True function. Middle: Prediction and 90% prediction interval based on GP conditional on six

evaluations. Bottom: EI computed from the updated GP model.

3.2. Expected Improvement

In BO, one uses acquisition functions to help guide the selection of evaluation points for simulation.

Since our intent in the wind farm maintenance application is to optimize the fleet mix, there is

little interest in evaluating the value function for inputs that are known to yield small profits.

A reasonable criterion for finding new evaluation points is therefore what is often referred to

as expected improvement (EI), which allows closed form expressions for GPs. We present some

foundational EI related ideas here; these functional expressions for EI are closely connected to

those used later for VOI analysis (Section 4).

Let v∗ = max{y1, . . . , yM} denote the optimal value evaluation thus far, over the existing batches

of evaluations. EI then considers the following acquisition function,

Acq(v) = max{0, v− v∗} , (11)



Myklebust et al.: VOI Analysis for Complex Simulator Models
Article submitted to Decision Analysis; manuscript no. (Please, provide the manuscript number!) 9

meaning that an improvement in the function value gives a linear reward. EI is defined as the

expected value of this acquisition function. Considering one location only, with function value

v∼N(m,s2), we have

EI = E[Acq(v)] =

∫ ∞
−∞

max{0, v− v∗}p(v)dv=

∫ ∞
v∗

(v− v∗)p(v)dv

=

∫ ∞
v∗

vp(v)dv− v∗
∫ ∞
v∗

p(v)dv=

∫ ∞
v∗−m

s

(m+ sz)p(z)dz− v∗
∫ ∞

v∗−m
s

p(z)dz

= sφ(z) + (m− v∗)Φ(z), (12)

where z = m−v∗
s

, and φ(z) is the standard normal density function and Φ(z) the cumulative distri-

bution function. Moreover,
∫
ze−

z2

2 dz =−e− z2

2 + const is used in the integration.

The expression for EI in (12) has two components – the first term encourages value exploration

where there is large uncertainty because higher levels of s yield larger EI, whereas the second term

encourages exploitation where there is a large mean because higher (m− v∗) results in larger EI.

If we select only one evaluation point in the next batch, we choose the input alternative that has

the largest EI.

Example:

As a continuation of the example from earlier, Figure 1 (bottom) shows the EI after updating the

model with realized values at the six evaluation points. The displayed EI illustrates that a natural

next evaluation point would be either a = 85 or a = 40. In practical implementations, a batch

evaluation is often combined with some sort of space filling criterion, which prevents the chosen

evaluation points to be too close to one another (Schonlau et al. 1998, Chevalier and Ginsbourger

2013). Say, in this illustrative example it would be wasteful to run the simulator for both a= 84

and a= 85 as they would provide almost identical information.

4. Value of Information Analysis

For many real-world decision situations, a reasonable model with sufficient cogency requires a

complex joint distribution over the uncertainties and/or a value function that requires extensive

simulations. In such situations, closed-form analytic expressions for VOI as shown in equations

(4) and (7) are unavailable. This is illustrated for instance in Eidsvik et al. (2015), who provide

numerous practical examples of such situations from the Earth sciences.

In this section, we present a computational approach for VOI analysis that uses a GP to approx-

imate the value function for each alternative and state of uncertainty (fleet mix and failure rate,

in our application). The VOI is then approximated by using the estimated values from this GP

surrogate model and summing over the discretized domain. This approximation becomes the main

task, and is done using formulas similar to EI, for each state of the uncertainty. This procedure

facilitates efficient approximation of the VOI for different prior and likelihood models.
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4.1. Approximating VOI with GP Surrogates

Suppose that we evaluate the simulator at M points of configurations over alternatives and uncer-

tainty states: (a1, λ1), ..., (aM , λM). As in equation (10), the simulator results are denoted y1, . . . , yM .

The value function is represented by a GP, after conditioning to the data, with values v having

mean v̂=µM and covariance matrix ΣM from equation (10).

The prior value approximation becomes

P̂V = max
a∈A

{∑
λ∈Λ

v̂(λ,a)p(λ)

}
. (13)

We will consider both perfect and imperfect information about the failure rate. For the compu-

tation of V̂OI with perfect information, we simply plug in the estimated value function v̂(a, λ) and

prior distribution p(λ) to calculate the posterior value in equation (3). For imperfect information,

the posterior value is approximated by

P̂oV(l) =E
(

max
a∈A
{E (v̂(a, λ) | l)}

)
=
∑
l

max
a∈A

{∑
λ∈Λ

v̂(λ,a)p(λ|l)

}
p(l). (14)

The evaluation points over configurations of alternatives and uncertainties must be chosen wisely

to get a reasonable approximation of the VOI. We next discuss sequential approximation of the

VOI, where M evaluation points are selected for each batch. As the number of such iterations

increases, the quality of the VOI approximation improves because the values get more accurate.

In practice, the goal is to use as few evaluations as possible while still maintaining reliable VOI

approximations.

4.2. Sequential Approximation of VOI

We suggest improving the approximation of the VOI sequentially, as illustrated in Figure 2. After

a batch of simulations are done, we augment the current observation set with these new evaluation

points and their values, and update the GP surrogate model. The steps of simulations and model

updating are repeated until we reach a stopping criterion for the VOI approximation. At each stage

of approximation, the next batch of evaluation points are chosen based on an EI-type criterion

similar to equation (12), but now this must be done for each level of uncertainty.

We define the optimal prediction value thus far for fixed uncertainty λ as

v∗(λ) = max
a∈A
{v̂(a, λ)}, λ∈Λ. (15)

We use an acquisition function

α (a, λ) =E (max{v(a, λ)− v∗(λ),0}) , (16)
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Figure 2 Flowchart illustrating the sequential approach in Algorithm 2 for approximating the values and the VOI.

which is the EI for any specified λ uncertainty. By doing so for each uncertainty level, it is straight-

forward to study sensitivities to different prior and likelihood models on the VOI result. Note

that other approaches utilizing properties of the probability mass function p(λ) could potentially

focus more directly on the VOI expression, and possibly use less evaluation points to yield a good

approximation.

Algorithm 1 Generate new points for evaluation

1. Compute α(a, λ) for all points using the GP surrogate

2. Initialize Xcand = evaluation points from previous batch evaluations

3. for each uncertainty level λk, k= 1,2, ...,M

4. Ycand,k = evaluation point for uncertainty λk from previous batch evaluations

5. repeat (until no more candidates for λk)

6. Propose acand,k = argmaxa{α(a, λk); [a, λk] 6∈ Ycand,k}

7. if α(acand,k, λk)< ε

8. return

9. elseif distance(|a−acand,k|, |λ−λk|)< δ ∀[a, λ]∈Xcand

10. return

11. else

12. Xcand = {Xcand, [acand,k, λk]}, Ycand,k = {Ycand,k, [acand,k, λk]}

13. return
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Algorithm 1 summarizes the approach for simulator evaluation point selection. The algorithm

runs through each level of uncertainty, selecting new points in the batch. There is a tuning param-

eter for maintaining some distance (as defined by a threshold δ > 0) between evaluation points.

This is based on the assumption of a smooth value function, enabling one to avoid the evaluation

of multiple points that carry almost identical information. Moreover, if the EI is minuscule (as

defined by a threshold ε > 0), there is no point in exploring points any further. Hence, there are at

most M = 15 evaluations per batch.

Algorithm 2 Sequential approximation of the VOI

1. Define

- Feasible values for decision variables, a

- M feasible values for uncertain variable, λ

2. Obtain initial sample

- Sample initial points (a, λ)1, ..., (a, λ)M

- Evaluate yi for inputs (a, λ)i using the simulator, i= 1, ...,M

- D0 = {(ai, λi, yi)}Mi=1

- Fit the GP surrogate model, v |D0 ∼N(v̂,ΣM)

3. repeat until convergence b= 1, . . .

- Find new evaluation points as in Algorithm 1

- Evaluate yi using the simulator for all new evaluation points

- Augment Db with new observations

- Fit the GP surrogate model, conditional on all observations Db

until stopping criterion

4. Specify distribution of uncertainty p(λ) and measurement model p(l|λ).

5. Return V̂OI = P̂oV− P̂V

Algorithm 2 shows how the VOI is estimated sequentially. We denote the current set of observa-

tions by Db, b= 0,1, . . ., where the data accumulates through batches of newly obtained evaluation

points. We assume that a random set of M points are evaluated for the first time (b= 0). At a given

stage b= 1, . . . , of the approximation, the procedure in Algorithm 1 is used to explore areas that

are yet to be evaluated, while exploiting promising parts given the currently available information.

For the first batch, there is no such information, but the amount of information grows over the

remaining stages. The search for the optimal configuration for each failure rate continues until

there are no more candidates Xcand satisfying the thresholds defined by ε and δ in Algorithm 1.
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Figure 3 True value surface for various alternatives and uncertainties.

Example:

We illustrate the approach using an example that extends the one discussed in Section 4. Figure

3 illustrates the underlying true values as a function of alternatives 1 to 100 on the first axis and

uncertainty level from 0.1 to 1.5 on the second axis. For this illustration the optimal alternative

for uncertainty level 0.1 is a= 8, for uncertainty 1 it is a= 40 and for 1.5 it is a= 80. There is thus

a tendency of higher optimal alternatives when there is larger uncertainty.

The goal is to learn the optimal alternatives for different uncertainties, and doing so using only

a small number of evaluation points. This would lead to accurate approximation of the VOI. Here

the true underlying values are not computed from a GP, but we use the proposed approach of

fitting a GP surrogate model to the evaluations of values in a sequential manner.

In Figure 4, the EI, as calculated for each uncertainty level, is shown over iterations (batch

runs). For the earlier evaluation batches, the EI fluctuates a bit because of some surprisingly large

evaluations, but when we learn the value surface better, the trend is declining EI over stages. Here

there is hardly any distance limit on the evaluation points and we evaluate 15 points at each stage.

Figure 5 shows the mean prediction (left) of value and the associated standard deviation (right),

after 20 iterations of the algorithm. We observe that the mean captures the true values shown in

Figure 3 reasonably well. The variances are still quite large at locations where the value function

is small, such as large uncertainty levels and small-indexed alternatives and low uncertainty and
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Figure 4 Expected improvement over iterations. The EI is calculated for each uncertainty level, and then maxi-

mized (crosses) and averaged (solid) for all alternatives and all uncertainties.
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Figure 5 Prediction (left) and prediction standard deviations (right) of values after 20 iterations of batch

evaluations.

high-indexed alternatives. This occurs because the algorithm focuses its evaluation resources at the

locations with largest potential of having high value. There is no point in evaluating points that

have low value and/or relatively small uncertainty.

The EI at iteration 20 is shown in Figure 6. Even though there are still some locations with

significant EI, it is very small in most locations away from the optimum locations. The EI is also
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Figure 6 Expected improvement after 20 iterations of batch evaluations.

quite small at the optimum locations. For some levels of uncertainty it is however still difficult to

make decisions, such as uncertainty λ= 0.6, where there are several alternatives with significant EI,

and it is still unclear which alternative is better. More iterations demonstrate that alternatives 5-10

are the best candidates. Since the algorithm is good at detecting high-value regions for different

uncertainty levels and learning their actual values, the VOI approximation turns out to be rea-

sonable. The probability of improvement is still 0.5 at these high-value locations, but because the

variance reduces with evaluations, the EI will continue to decline with more evaluations, without

really improving the VOI approximation substantially.

5. Case Study for Offshore Wind Farms

We apply the proposed methodology to offshore wind farm O&M. Our focus is on VOI analysis of

the turbine failure rate. Others have looked at VOI analysis in this setting, but not using complex

simulators as we do here. Seyr and Muskulus (2016) estimate the value of knowing the repair

times for wind turbines, for improved maintenance scheduling. For their high-level study, they only

consider a small subset of alternatives involving the vessel fleet mix and number of personnel.

Colone et al. (2018) study the value of monitoring and early warning systems of failures in wind

turbine systems.

The case study presentation is organized as follows: First we describe the decision situation

and then motivate the importance of information about the failure rates of turbine components
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to optimize operations. Next we present the approximation method and study the properties of

the GP surrogate model in the context of the application. Finally, we compare VOI results for

various prior models and different levels of accuracy for data gathering, and end by discussing the

implications of conducting such VOI analysis.

5.1. O&M for Offshore Wind Farms

There is currently a drive towards building energy producing offshore wind farms because they can

be more socially acceptable and less harmful to the environment than their onshore counterpart.

O&M costs and potential revenue losses due to turbine downtime can however be large for offshore

wind farms, and therefore it is important to plan wisely to optimize strategies. In the current

work, we limit scope to an O&M problem where the alternatives involve a vessel fleet with two

types of vessels for transferring maintenance personnel to wind turbines: standard crew transfer

vessels (CTVs) and more advanced but also more costly surface effect ships (SESs) (Sperstad et al.

2017b). The decision variables are thus: i) aCTV = the number of CTVs, ii) aSES = the number

of SESs, and iii) ap = the number of maintenance personnel. The sets of possible alternatives are

respectively:

ap ∈Ap = {10,11, ...,50}, aCTV ∈ACTV = {0,1, ...,4}, aSES ∈ASES = {0,1, ...,4}.

The cardinality of a = (ap, aCTV , aSES) ∈ A is therefore 41 · 5 · 5 = 1025. Note that there are of

course several other decisions involved in practice, in the context of wind farms: where to place the

wind farm, which turbines to use, etc. We assume that they are fixed in our study since we focus

solely on O&M strategies.

The main uncertainty is the annual failure rate of wind turbine components:

λ∈ {0.1,0.2, ...,1.5}.

The cardinality of λ∈Λ is 15. Turbine failures are assumed to follow a homogeneous Poisson process

with this average yearly rate λ. Note that in practice, one can model failure rates by distinguishing

rates for different components and levels of severity and represent these as separate failure categories

in the input data for the simulator. The simulator distinguishes between preventive and corrective

maintenance tasks: the former includes annual services for each turbine, while the latter involves

tasks related to random failures. For the sake of simplicity, in this study we limit the scope to a

failure category of medium severity (“medium repair” from Dinwoodie et al. (2015)).

In theory, it is possible to run the simulator v(a, λ) for all possible combinations of vessels and

personnel, and in this way find the optimal O&M strategy, for different failure rates. However,

the simulation involves complex event-based interactions and it is time-consuming to get profit
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values for a given combination of inputs. Hence, in practice, one can only run the simulator for

a subset of the possible inputs, and thus it becomes important to guide the evaluation to useful

combinations of the states of uncertainties (failure rates) and alternatives of decision variables

(vessel and personnel).

5.2. Modeling Failure Rates

Failure rates have previously been shown to greatly impact estimates of energy profits (Dinwoodie

et al. 2015). It has also been shown that the optimal selection of the O&M vessel fleet is sensitive

to failure rate assumptions so that one should consider reducing the uncertainty in these input

data (Sperstad et al. 2017b).

Comprehensive data collection has been carried out to learn the failure rates of wind turbine

components (Pfaffel et al. 2017, Artigao et al. 2018). However, it has been shown to be difficult

to generalize results (which could also be proprietary), and thus there are various uncertainties

pertaining to the failure rate for a given wind farm project. For instance, Scheu et al. (2017) study

uncertainties in the distribution of time to failure for a given long-term average failure rate λ. For

the purpose of this article, we model the prior uncertainty of the failure rate λ itself, and we next

discuss how to model this uncertainty.

Faulstich et al. (2011) analyze the results from a large monitoring survey for onshore wind

turbines conducted by Fraunhofer IWES. This survey collected 64,000 maintenance and repair

reports from 1500 wind turbines. The result from the analysis of this work concludes that the

annual failure rate for minor repairs is 1.8 and 0.6 for major repairs. Here, minor repairs are

defined as failures with downtimes less than a day, while a major repair is defined as a failure with

downtimes that exceed one day. Carroll et al. (2016) have conducted an analysis of a data set based

on ∼ 350 offshore wind turbines, but the type of the turbines and the exact age of the turbines

and number of wind farms are not provided in the paper for confidentiality reasons. The paper

concludes that the annual failure rate for minor repairs is 6.81, for major repair it is 1.17 and 0.28

for major replacement. Dinwoodie et al. (2015) present a reference data set for simulation of O&M

tasks for offshore wind farms. Five different failure categories are used here: manual reset, minor

repair, medium repair, major repair and major replacement. The proposed values for the annual

failure rates are 7.5 for manual reset, 3.0 for minor repair, 0.28 for medium repair, 0.04 for major

repair and 0.08 for major replacement.

From the references above, we note that there is no consensus in the literature on how failure

categories should be defined. For references with comparable categories, the value of the failure

rate also appears to vary with the data basis of the reference. Our prior assessment in p(λ) is

loosely based on the rates provided in the literature, and we focus on the medium repair failure
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Figure 7 Plot of the suggested distributions for the uncertain failure rate, λ.

rate as defined in Dinwoodie et al. (2015). We hence discuss sensitivity to results from four different

distributions for the failure rate parameter:

p1(λ) = Gamma(0.9,0.3), p2(λ) = Gamma(0.2,1.3), p3(λ) =N(0.28,0.32), p4(λ) =N(0.28,0.62),

where the first argument in the gamma density function denotes the shape parameter while the

second is the scale parameter. The distributions are truncated to lie in the interval [0.1,1.5] and

discretized to {0.1, . . . ,1.5}. The four probability mass functions are plotted in Figure 7. The mean

is 0.28 in all distributions, which is the failure rate for a medium type repair suggested by Dinwoodie

et al. (2015). The standard deviation for models p1 and p3 is 0.3, while it is 0.6 for p2 and p4.

For the other input parameters required by the simulator for the case study, we base ourselves

on the reference data sets in Dinwoodie et al. (2015) and Sperstad et al. (2017b). For each evalu-

ation, five Monte Carlo realizations of weather and physical conditions are used. Each realization

corresponds to time series of correlated wind speed and wave height data over the year with hourly

resolution and times of failure for all turbines over the same period. The same weather realizations

are used for each evaluation to reduce the variance in the difference between simulator outputs for

different evaluation points.

5.3. Approximation Steps

We gain insight by studying the optimization process and the EI at different stages. Since the value

function has four input variables, it is not easily visualized. We will, therefore, consider subsets
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Figure 8 Relative expected improvement at stages 1 (upper left), 5 (upper right), 10 (lower left) and 20 (lower

right) of the optimization process for (aCTV , aSES) = (0,2).

of the input space, where the vessel alternatives, aCTV and aSES are fixed. The critical distance

between subsequent evaluation points is here set to

distance(a,a′, λ,λ′) = |a′p− ap|+ |a′CTV − aCTV |+ |a′SES − aSES|+ 10 · |λ′−λ|> δ,

which leads to some separation of evaluation points.

Figure 8 shows contour plots of the relative EI for the points with (aCTV , aSES) = (0,2) plotted

at different stages in the optimization process. The relative EI is the ratio between the EI and the

current best observation thus far. In the upper left corner, we see that there are many points that

are candidates for being the maximum. Most of these points are for low values of λ. Points with

high ap at this stage are assumed to be promising, but in the following iterations these points are

discarded. We see that the most promising points move towards lower values of ap.

Figure 8 also demonstrates that we discard many more points than we evaluate since only

15 points are evaluated in each iteration. This is what we desire – to minimize the number of

evaluations in the simulator and still find good solutions.

When the relative EI is lower than 0.001 for all feasible points, we choose to terminate the

algorithm, which provides an estimate for v. In total 50 iterations and 499 simulator evaluations
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Figure 9 Estimated value function v̂(λ,ap, aCTV = 0, aSES = 2) and associated standard deviation (in GBP).

were required, meaning that the simulator is run less than 15 times as the iterations increase.

By 499 evaluations, there is a substantial reduction from the number of feasible points, 15375.

Figure 9 depicts the estimated posterior mean and standard deviation for (aCTV , aSES) = (0,2).

The estimated value function (left-hand side) is smooth and the shape is what we would expect –

decreasing when λ is large. For ap > 24, the profit decays monotonically, which is again what we

expect since each SES only has room for 12 maintenance personnel. This means that when the

number of personnel is more than 24, this only results in additional costs. The posterior standard

deviation (right-hand side) should be lower in the areas that are well explored, and higher elsewhere.

We notice that the areas that had a significant relative EI are the same that have low uncertainty.

Note also that the uncertainty is high at points that are unlikely to be candidates for maximum.

Thus, promising areas are well explored and less promising areas are not, as intended.

The computation time of the simulator is around 40 seconds per evaluation. In comparison, the

GP updating equations and EI calculations, done for all alternatives and failure rates, take less

than a second. With careful likelihood tuning of correlation decay parameters φ, at each batch,

the BO takes some more time, but even so it is orders of magnitude faster than the simulator

evaluations.

5.4. GP Model Validity

The parameters in the GP model are estimated based on the initial batch of data, and updated

at subsequent batches. The final estimates of the correlation decay parameters are φp = 2915,

φCTV = 11.9, φSES = 3.4 and φλ = 37, meaning that two value evaluations that differ by one in ap

are more correlated than the ones that differ by one vessel or rate. A small change in the number

of personnel should not affect the overall profit much. Changing the number of vessels might lead

to large losses either because there are too few vessels available to transport personnel to the wind

farm, or because there are too many vessels so that it becomes an unnecessary additional expense.
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Figure 10 Histogram of the empirical percentiles in the predictive cumulative Gaussian probability distribution.

We study the GP modeling assumption by comparing new observations and its predictive distri-

bution. Denote a new simulator observation by y, with predictive cumulative distribution function

F (y) ∈ (0,1). In our case, this is obtained from the fitted Gaussian, given all currently available

evaluations. When a model is correct, the empirical percentiles of new observations should be

more or less uniform. We study this empirical percentile for each evaluation in every batch. A

histogram for this is provided in Figure 10. Overall the fit to the uniform seems to be good, but

we see that there is a spike near zero and a slight overweight of large observations. From closer

inspection, the extreme observations tend to occur in areas where we have few observations, often

having many vessels and lots of available personnel, but a low failure rate. It is possible that there

are heavier tails here than what is being captured by the GP surrogate model. Note also that

the evaluations are selected from highest EI, conditional on the previous evaluations, and even

though the marginal predictive distribution is Gaussian according to the model, the approach gives

non-random sampling of evaluation points.

5.5. Results

Table 1 shows the optimal configurations, as suggested by the fitted GP, for all feasible values of the

failure rate λ. As expected, the value function v̂ decays as the failure rate increases. There are two

different vessel configurations represented in these results: (aCTV , aSES) = (0,1) and (aCTV , aSES) =

(0,2). For low values of λ, one vessel is enough, while higher failure rate means that an additional

vessel is required to reduce downtime for the wind farm sufficiently to ensure high profits. We see

that the optimal configuration lies in the areas that had a high relative EI in Figure 8. We note

that the number of CTV is always 0. This could have simplified the analysis, but it was not evident

to us before conducting the analysis. However, from the perspective of the decision maker, this
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result of the analysis means that a decision to exclude CTV alternatives from the vessel fleet would

be robust with respect to the uncertainty in the failure rate λ.

Table 1 The estimated optimal configuration for each feasible value of the failure rate, λ. Here, v̂ is the

estimated posterior mean and σ(v̂) is the estimated posterior standard deviation in the GP (in Mill GBP).

aCTV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
aSES 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
ap 12 12 12 12 12 22 22 22 22 22 23 23 23 24 24
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
v̂ 87.0 86.7 86.3 85.9 85.3 84.7 84.4 84.1 83.7 83.4 83.1 82.7 82.4 82.0 81.7

σ(v̂) 0.90 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.90

The optimal O&M strategies without information about the failure rates are listed in Table 2

for the four distributions for λ under consideration. The optimal strategies and the associated PV

are found by using (13). Note that v̂ that is plugged into this equation corresponds to the posterior

mean in the GP, at the final iteration of Algorithm 2. We see that the distributions with the highest

variance yield the lowest PV and the distributions with lowest variance yield the highest PV. The

optimal configurations suggested by the distributions agree well with Table 1. For λ ≤ 0.5, the

optimal configuration is (ap, aCTV , aSES) = (12,0,1), which is reasonable as there is little demand

for maintenance personnel. Most of the probability mass for the two distributions with low variance

are for λ≤ 0.5, so that even though the configuration (12,0,1) is sub-optimal for λ> 0.5, this is not

given much weight. The optimal configurations suggested for the distributions with high variances

have both two vessels, since a high λ here is assumed to be more likely.

Table 2 Summary of optimal O&M strategy without additional knowledge about the failure rate for the four

distributions under consideration. Prior value is in Mill GBP.

Distribution p1(λ) p2(λ) p3(λ) p4(λ)
ap 12 21 12 22

aCTV 0 0 0 0
aSES 1 2 1 2
PV 85.9 85.1 85.8 84.7

The VOI for perfect information is computed using max
a∈A
{v̂(λ,a)} listed in Table 1 for all λ and

the prior values listed in Table 2. The PoV and VOI for the four distributions under consideration

are summarized in Table 3. As expected, the VOI is largest for the distributions with highest

variance, where the gamma distribution yields the overall highest VOI.

Table 3 Estimated PoV and VOI (in Mill GBP) for perfect information for the four distributions of the failure

rate under consideration.

Distribution p1(λ) p2(λ) p3(λ) p4(λ)
PoV 86.1 85.7 85.9 85.1
VOI 0.21 0.53 0.10 0.35
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Figure 11 The estimated VOI (in GBP) as a function of the number of simulations.

The PoV for imperfect information is computed by using equation (14) and the four proposed

distributions for λ. For sensitivity analysis, we will compute the VOI for three levels of measurement

noise in the failure rate, as characterized by the likelihood p(l|λ). We let q be the probability

that measurement l= λ, while p= (1− q)/2 is the probability that l= λ±∆, with ∆ = 0.1 being

the grid cell width for the discretized domain of failure rates. The result is summarized in Table

4. Comparing Table 4 and Table 3, we note that VOI values are consistently higher for perfect

information. For q = 9
10

and p = 1
20

the differences between imperfect and perfect information in

VOI are rather small. The differences get larger when q decreases and p increases, but the estimates

of VOI are still comparably high.

Table 4 Estimated PoV and VOI (in Mill GBP) for imperfect information for the four distributions of the

failure rate under consideration.

q 9/10 2/3 1/3
Distribution p1(λ) p2(λ) p3(λ) p4(λ) p1(λ) p2(λ) p3(λ) p4(λ) p1(λ) p2(λ) p3(λ) p4(λ)

PoV 86.1 85.7 85.9 85.1 86.1 85.7 85.9 85.1 86.1 85.7 85.9 85.1
VOI 0.20 0.52 0.10 0.35 0.20 0.52 0.09 0.35 0.20 0.52 0.09 0.34

Finally, we investigate the precision of the VOI estimate over iterations of the approximation

procedure. This is shown for p2(λ). The evolution of V̂OI with the number of simulations n is

shown in Figure 11. We observe that the VOI estimate changes a lot early on, but then stabilizes

as the number of simulations grows. For simulation numbers n> 250, there are very small changes

in V̂OI which suggests that our estimate for VOI has stabilized.
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5.6. Discussion

The key observations from the VOI analysis are:

• The prior distributions for λ with the heaviest tails and large variability resulted in the highest

VOI.

• The VOI of imperfect information is relatively large compared with that of perfect information.

• The estimate of VOI converged over the number of evaluations during the approximation

procedure, and the number of simulator runs was reduced by a factor of about 30 compared to the

number of feasible points.

Even though the estimated VOI is small compared with the overall profits, it could be appreciable

compared with the O&M budget of the cost center. In particular, VOI analysis is conducted to

study information gathering opportunities. In this setting, the VOI should be compared with the

costs of getting information about the failure rate of turbines. In practice, this could entail that the

wind farm developer make further efforts to scrutinize the data basis and assumptions underlying

the failure rate input data, either involving the knowledge and judgement of in-house experts or by

procuring external consultancy services. It is not possible in practice to obtain perfect information

about the failure rate, but the results above demonstrate how reducing the failure rate uncertainty

would be valuable nevertheless. The estimated VOI can also guide additional efforts that could be

made by the decision maker during negotiations with wind turbine manufacturers or in learning

about the operational experience from comparable operational wind farm projects.

6. Closing Remarks

VOI analysis is an important part of the decision analysis process. The issue of efficiently computing

the VOI of uncertainties in complex decision situations that require the use of expensive simulators

is pervasive, applicable across many industries. In this paper, we have proposed an approach that

uses BO with a GP surrogate model of a computationally expensive simulator to estimate VOI.

When optimizing the value function, we only provided input-output relations and the feasible range

of the variables. We used the surrogate GP model to find favorable regions in the input space. Our

analysis suggests that a GP can be a suitable surrogate model and that the modified EI acquisition

function that was deployed could indeed be efficient by reducing the number of simulator runs.

Our methods are motivated by and applied on a relevant decision situation in the O&M of an

offshore wind farm. Here the optimal strategy is sensitive to the level for the uncertain failure rate

of wind turbines, and the decision maker is interested in estimating the value of knowing the failure

rate. By defining the value function as the profit for a given O&M strategy, we can search for

favorable strategies by optimizing this function. Results indicate that BO was able to find favorable

O&M strategies. VOI analysis conducted for four cases of distributions for the failure rate confirms
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the substantial value of the information, and more specifically, provides guidance around the extent

of additional research that would be worthwhile for the decision maker.

There are numerous ways to make the modeling and subsequent analysis even more realistic

and potentially useful for decision makers involved in O&M for offshore wind farms. One way

is to consider several other uncertain variables involved in the decision situation for which the

VOI could be estimated. For instance, information about the wave height could be valuable since

the O&M vessels are unable to safely transfer maintenance personnel to offshore wind turbines

when the waves become too high. One could also distinguish between failure rates for different

components or different levels of severity, and estimate VOI for these uncertainties separately or

jointly. Another practical extension is to include more decision variables in the model. For our case

study we only considered a subset of the possible decision variables for O&M. A natural extension

of this study is therefore to also include decision variables such as the location of the O&M base

(e.g. on an offshore accommodation platform) and more O&M vessel concepts (e.g. other vessels or

helicopters). This is particularly relevant for the new generation of offshore wind farms currently

under development, for which the increasing size and increasing distance to shore make the decision

situation even more complex.

We highlight that there are limitations and therefore room for improvement pertaining to

the computational methodology. Some of the assumptions we made when specifying the GP, for

instance assuming the same covariance structure over the whole feasible domain, could be over-

simplifications in some situations. By partitioning the input space into disjoint regions, one might

achieve more accurate estimates of the uncertainty. Furthermore, for more efficient optimization of

the value function, we could let the minimum relative improvement ε be a function of the failure

rate. We could then adjust the selection so that points with rates that are unlikely, based on the

probability distribution of the failure rate, be subjected to less exploration. Although this would

yield a less accurate estimate of the value function for some values of the rate, it would likely not

affect the overall estimation of VOI significantly. We also assumed a risk neutral decision maker for

the analysis here; other risk attitudes are certainly relevant in practice, and some of the analysis

could perhaps also be computationally tractable for a decision maker with an exponential utility

function, given the analytical GP equations, see e.g. Bickel (2008) and Bhattacharjya et al. (2013).

VOI analysis for complex decision models often raises computational issues in practice. We have

shown that the use of surrogate models together with methods from BO could lead to significant

computational savings. We suspect that advances in research that tackle these challenges head-on

could promote and motivate the use of decision analytic notions such as VOI in practical orga-

nizational settings. For instance, the explicit incorporation of complex simulators in the decision
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analytic model brings together cross-functional teams, making the analysis more powerful and

likely more acceptable and appreciated by the organization’s key decision makers.
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