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Abstract We consider a new problem of planning interrelated voyages with sepa-
ration requirements along a single trade in roll-on roll-off shipping. Along a given
trade with a sequence of port calls, there is a number of contracts for transporta-
tion of cargoes between the different port pairs, where each contract states its
service frequency as well as that these services should be evenly separated in time.
Instead of visiting all ports every time a trade is serviced, as closely resembles
current planning practice, we aim at determining the sailing routes of each voyage
along the trade, i.e. which ports to visit when, which contracts to serve, and the
sailing speeds, so that all contract requirements regarding frequency and separation
are satisfied at minimum cost. We propose and compare two novel mixed integer
programming models for the problem, both including a new way of modeling the
contracts’ separation requirements. Then we show through a computational study
on a set of realistic test instances that significant gains can be obtained compared
to current planning practice.

Keywords Maritime transportation · Roll-on roll-off shipping · Separation
requirements · Speed optimization · Transit time constraints

1 Introduction

In maritime transportation it is common to distinguish among three, not necessar-
ily mutually exclusive, modes of operation: industrial, tramp and liner. In industrial
shipping, the shipper controls the fleet of ships, trying to minimize the cost of
transporting its cargoes, similar to a private fleet. In a tramp operation the ships
follow the available cargoes, some of which may be optional from the spot market,
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trying to maximize profit, similar to a taxi service. Bulk ships usually operate in
one of these two modes. In liner shipping, the ships operate on more or less fixed
services or trades according to a published schedule. See Christiansen et al (2013)
for a general review on ship routing and scheduling for the various modes and
Meng et al (2014) for a specific one on liner shipping.

In this paper we focus on a planning problem arising in the roll-on roll-off
(RoRo) shipping segment, which is normally categorized in the liner shipping
mode. In RoRo-shipping, a wide variety of rolling cargoes, such as cars, trucks,
and heavy rolling machinery, is transported. Additionally, RoRo vessels are de-
signed to carry complex cargoes that are placed on trolleys and rolled on and off
the vessels, such as turbines, yachts, and windmill blades. RoRo-shipping is an
important segment with a world fleet of around 5000 vessels with a total capacity
of more than 24 million deadweight tons (ISL 2017).

Fig. 1 Example of a trade from Asia to Europe.

We study the single trade ship routing and scheduling problem (STSRSP) in
RoRo-shipping, which is the problem of planning the voyages to fulfill the demand
for transportation along a single trade for a given planning period (e.g. a month). A
trade connects two geographical regions, such as Asia and Europe as exemplified in
Figure 1, where each region contains a set of ports that are called upon for loading
and unloading the cargoes. A vessel that is deployed on the trade performs a
voyage, i.e. it visits a sequence of port along the trade, see Figure 1. For each trade
a number of voyages must be performed during the planning period.

The trades to be serviced in liner shipping are usually designed based on a large
number of contracts for transportation of cargoes between the different port pairs
along a trade, e.g. from Shanghai to Santander along the Asia - Europe trade shown
in Figure 1. The trades are directed, such that Asia-Europe is the trade from Asia
to Europe and the Europe-Asia trade covers the opposite direction. Each contract
states a given total quantity to be transported during the planning horizon. This
quantity should be distributed among a given number of services (i.e. with some
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given frequency), which must also be fairly evenly spread or separated in time. This
means that, for a given contract, vessels must visit the corresponding loading port
(e.g. Shanghai) to pick up cargoes under that contract with the regularity as stated
by the contract and transport that cargo to the corresponding unloading port (e.g.
Santander). In contrast to container liner shipping, transshipment between vessels
and trades is rarely performed in RoRo-shipping due to the time consuming loading
and unloading operations, and is therefore disregarded in this study.

In container liner shipping, the port visit regularity is easily achieved as each
trade is usually serviced on a strict weekly basis and each voyage along the trade
includes all ports in the same order, see for example Brouer et al (2013), Ng
(2015) and Wang and Meng (2017). However, RoRo-shipping entails more planning
flexibility as both to when to start each voyage as well as when and how often to
visit each port along the trade. For example, even though a trade, such as the one
in Figure 1, may have a weekly frequency, it does not have to be exactly seven
days between the voyages, but just seven days on average. In previous studies
on fleet deployment in RoRo-shipping, one has therefore used time windows for
when each voyage along each trade should start, see for example Fagerholt et al
(2009), Andersson et al (2015) and Fischer et al (2016). One problem with using
time windows, and especially if they are wide, is that one might obtain solutions
where a given voyage starts at the beginning while the subsequent one on the
same trade starts at the end of their time windows. This is not desirable from the
customers’ perspective, as they want their cargoes to be shipped out at relatively
regular intervals, i.e. fairly evenly spread in time. Bakkehaug et al (2016), Norstad
et al (2015) and Vilhelmsen et al (2017) overcome this, though for a problem from
another shipping segment than RoRo-shipping, by imposing voyage separation
constraints to make sure that the voyages on the same trade are evenly spread
in time. However, this only makes sure that the starting times for each voyage
along a given trade are evenly spread. This can be sufficient in the case, as for
the previously mentioned studies, where the voyages are sailed in the exact same
way every time, i.e. visiting the same ports in the same order and sailing with the
same speed.

In the STSRSP we aim at utilizing the inherent planning flexibility in RoRo-
shipping, also when it comes to when and how often to visit each port along a given
trade. Depending on the frequency and spread requirements of each cargo contract,
one might not need to visit each port on every voyage. Using the example from
Figure 1; if the combined requirement for all contracts with cargoes to be picked
up and delivered in Shanghai specifies that a visit to that port must be done only
every second week, one might not need to visit that port along every voyage, even
though the trade itself needs to be serviced with a weekly frequency. Therefore,
instead of aggregating requirements from contracts to frequency requirements for
the whole trade, which has been common to simplify planning and as done in
the previous studies, we look at the frequency requirements for each contract and
port along the trade. This is further utilized in the STSRSP to determine the
sailing routes of each voyage along the trade, i.e. which ports to be visited, what
contracts to serve, as well as the sailing speeds along the voyages, so that all
contract requirements regarding frequency and spread are satisfied at minimum
cost. This can also be seen as taking some of the flexibility one finds in tramp
shipping regarding deciding which ports to visit and which cargoes to transport
and combine this with operating on given trades as in liner shipping.
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The STSRSP is a problem that, to the best authors’ knowledge, is new to
the research literature. However, in addition to the literature discussed above,
the STSRSP has some similarities with the periodic vehicle routing problem (e.g.
Campbell and Wilson (2014)) and the supply vessel planning problem (e.g. Kisialiou
et al (2018) and Borthen et al (2017)), as well as the special liner shipping network
design problem considered by Sigurd et al (2005), in the sense that one needs to
separate the services for each customer in time. In the STSRSP, we also consider
that some contracts may impose transit time limits like we also see in some studies
on container liner shipping, e.g. Karsten et al (2015), Reinhardt et al (2016) and
Wang et al (2013).

Our main contributions are twofold. Firstly, we introduce two novel mixed
integer programming (MIP) models for the STSRSP. A central part of both MIP
models includes a new way of modeling the fairly evenly spread (or separation)
requirements for the contracts. We show that the less intuitive model outperforms
the other one. Secondly, we demonstrate through a computational study based on
data mostly from the case company the potential gains that can be achieved from
utilizing the inherent planning flexibility. Furthermore, we discuss the trade-offs
between service level with regards to the contract separation requirements and the
costs of a solution.

A detailed description of the problem is given in Section 2, while the two MIP
models we propose are presented in Section 3. Section 4 provides the computational
study, while concluding remarks are given in Section 5.

2 Problem definition and some modeling assumptions

The STSRSP is the problem of planning the interrelated voyages along a single
trade, i.e. it consists of determining the routes and schedules for the vessels to
fulfill the demand for transportation in the next planning period. Let N be the
set of all nodes in the network, and NP be the set of ports along the trade route.
Let K be the set of available vessels. Each vessel k has a starting position o(k),
an artificial ending position d(k), and a graph Gk = (Nk,Ak) associated with
it. The set of nodes Nk consists of all ports that can be visited by vessel k, i.e.
NP

k ⊆ N
P , in addition to its starting position and artificial ending position, Nk =

NP
k ∪ {o(k), d(k)}. The set of arcs Ak ⊂ Nk × Nk defines the feasible movements

for vessel k, while the set A ⊂ N × N defines all feasible movements. In RoRo-
shipping, the ports are most often serviced in a directed order, such that if ports
i1 and i2 are both visited on a given voyage, port i1 will always be visited before
port i2 (as illustrated in Figure 1). Due to the inherent geographical structure of
the trades, the graphs Gk therefore become directed and acyclic.

Let C be the set of given contracts for cargoes to be transported along the trade
during the planning horizon. Most contracts are inter-regional, which means that
a given contract’s cargoes are to be loaded at a specific port in one geographical
region (e.g. Asia) and unloaded in another (e.g. Europe). However, some contracts
can also be intra-regional, i.e. both the loading and unloading ports are in the same
region. Each contract c is a transportation arrangement for a certain product type.
Let P be the set of product types, and PS

p be the set of product types that can
be stored in the same space as product type p. E.g. cars can be stored on decks
facilitated for storing breakbulk, but not the other way around. See for example



Planning interrelated voyages in RoRo shipping 5

Pantuso et al (2016) for more details. Further, let KV
kp denote the capacity for

product p on ship k. The demand for the whole planning period for product type
p for contract c (measured in square meters) is given by Dcp, where each contract
contains only one product type. Each contract c has a given loading port l(c) and a
given unloading port u(c) associated with it. Let CLi and CUi be the sets of cargoes
that are to be loaded and unloaded at port i, respectively. Each time that contract
c is serviced, i.e. picked up by a vessel, the quantity picked up must be within the
interval [

¯
Qcp, Q̄cp]. These limits ensure that impractical pickups are omitted, such

as e.g. loading 15 cars on one and 985 cars on another vessel voyage, fulfilling
a total demand of 1000 cars. The shipping company is committed to service all
contracts, but the total quantity of each contract can be split among multiple
voyages. Finally, let CT denote the set of contracts with transit time restrictions,
where the maximum transit time of a corresponding contract c is given by TT

c .

Fig. 2 A contract is to be serviced three times a month (30 days). Three voyages serve the
contract, where the time of each service is shown in the figure. The desired spread of ten
days between each pickup is illustrated by the black squares. The slack variable sc gives the
maximum deviation from the desired spread, i.e. one day in this example.

Some of the transportation demand arises from contracts that require their
pickups to be fairly evenly spread or separated throughout the planning horizon.
Let CE be the set of such contracts. Each such contract c specifies a lower and
an upper limit on the number of pickups within the planning horizon, i.e. the
number of partial cargoes the contract may be split into, which is a decision
to be made within the STSRSP. Let

¯
Pc and P̄c denote these lower and upper

pickup limits, respectively. Furthermore, the partial cargoes should then be fairly
evenly spread or separated in time. From a modeling perspective, it is hardly
possible to model this using time windows, as the number of partial cargoes is not
given a priori. Instead, we have implemented the fairly evenly spread requirements
using separation constraints. The desired spread for the partial cargoes for a given
contract c is given by TPH/bc, where TPH is the point in time up to which all
voyages along the trade must begin, i.e. the length of planning horizon, and bc ∈
[
¯
Pc, P̄c] is the number of partial cargoes chosen, i.e. the number of pickups. Given
a planning horizon of 30 days and three partial cargoes, the desired spread is ten
days, as illustrated in Figure 2. As shown in the example, a perfect spread could
have the pickup times for the three partial cargoes at days 5, 15, and 25. Note
that servicing a contract on days 0, 15, and 30, is not recognized as evenly spread,
as it would generate problems when rolled out over several planning horizons.
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Thus, two vessel voyages that both service partial cargoes from contract c

comply with the evenly spread requirements if the following constraint is satisfied:

TPH

bc
− sc ≤ tl(c)m − tl(c)k ≤

TPH

bc
+ sc

where sc is a spread slack variable for contract c, which gives the maximum devia-
tion from the desired spread for each contract. The variables tl(c)m and tl(c)k give
the times at the pickup port of contract c for vessels m and k, respectively. These
separation constraints are non-linear, since bc is a variable. They should only be
active if both vessels m and k carry contract c, and if m is the next vessel after
k, servicing contract c. In the example in Figure 2, the slack variable must be at
least 1 to satisfy the constraint. Alternatively, one could delay vessel voyage 2’s
visit to this given port with one day, but that may increase other costs, such as
the charter time costs. The sum of sc for all contracts reflects the evenly spread
service level at company level, which is bounded by a preset threshold L. Here, a
lower threshold gives a higher service level, and vice versa.

There are costs associated with sailing a voyage along the trade, i.e. port visit
costs, fuel costs, and time charter costs. Let CV

i be the cost of calling port i.
The piecewise linear approximation method proposed by Andersson et al (2015)
is used for modeling the speed-dependent fuel consumption for each vessel. Let S
be the set of discrete speed alternatives indexed by s, ordered from low to high.
The cost of sailing from a node (port) i to node (port) j for vessel k using speed
alternative s is denoted CS

ijks, where the corresponding sailing time is given by

TS
ijks. The vessels can be available at the start of the planning horizon or become

available during the planning horizon, due to duties on other trades. Let TA
k be

the time vessel k becomes available at its origin. Furthermore, let TP
ik represent

the time used on piloting at port i by ship k. The time used to handle, i.e. load
or unload, one unit of product type p on vessel k is given by TH

kp. Let CC
k be the

daily charter rate for vessel k. The total time charter cost for performing a voyage
with a given vessel k is given by the vessel’s daily charter rate multiplied by the
number of days spent on the voyage, which again depends on the port times and
the speed-dependent sailing times between the ports chosen to be visited along
the voyage. A list of all notations used in the models is given in the Appendix.

Figure 3 a) shows a small example of the STSRSP for a trade from US to Japan
with five ports and with only three contracts (only for illustrational purposes, as
a realistic number of contracts is much larger). Contract 1 has a total demand
for the planning period (assumed to be one month) of 1000 units, which can be
split in two, three or four partial cargoes to be loaded in Baltimore and unloaded
in Yokohama. Contract 2 from Tacoma to Yokohama has a demand of 1500 and
must be serviced three or four times, while contract 3, which is an intra-regional
contract from Baltimore to Port Hueneme (both ports in the US), has a demand
of 300 to be split in one or two partial cargoes.

Figure 3 b) shows a possible solution to the example problem, which consists
of three vessel voyages along the trade. Voyage 1 visits only two ports, starting in
Tacoma on day 7 and ending in Yokohama on day 19. Voyage 2 starts in Baltimore
on day 2, then visiting Port Hueneme, Tacoma and Yokohama on days 14, 17 and
29, respectively, while voyage 3 starts in Baltimore on day 15 and visits Tacoma
on day 28, before ending up in Yokohama on day 39. In this solution, contract 1
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Fig. 3 An example of the STSRSP for a trade from US to Japan with five ports and only
three contracts (a) and parts of a possible solution to the problem (b).

(from Baltimore to Yokohama) is serviced twice, i.e. on days 2 and 15, contract
2 (from Tacoma to Yokohama) is serviced three times, i.e. on days 7, 17 and 28,
while contract 3 (from Baltimore to Port Hueneme) is serviced once on day 2.
We can see that the services of each of the contracts are fairly evenly spread.
Evaluating the evenly spread requirements for contract 2, we understand that the
desired spread is 10 days, as it is serviced three times. From the solution, we see
that the first two pickups are perfectly spread, with pickup on days 7 and 17. The
second pickup and the third pickup are on days 17 and 28, respectively. Here, the
spread is 11, which is one day off the desired spread. Thus, for contract 2, the
spread slack variable equals one day.

In this example there is no contract associated with the port Manzanillo (which
is unrealistic for a practical case as long as it is included in the trade). It is therefore
no need to visit that port on any of the voyages along this trade. It should also be
emphasized that we have neither shown how each contract’s demand is distributed
among the voyages nor the chosen speeds used on the different sailing legs for the
voyages, which are also important decisions that have to be made in the STSRSP.

So to summarize, the objective of the STSRSP is to minimize the total cost
while satisfying all transportation and service requirements within the planning
horizon. The decisions to be made are which vessels to use, the routing (i.e. which
ports to visit along each voyage), the assignment of contracts to vessels, the size
of each partial cargo to transport at each port visit, as well as the sailing speeds
for all sailing legs along each voyage (i.e. the schedule).
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3 Mathematical models

In this section, we present two arc-flow models representing the STSRSP. The first
model, named Vessel-model, is based on the typical ship routing and scheduling
formulation for industrial and tramp shipping, see e.g. Christiansen et al (2007),
with some notable differences. Firstly, in our approach, each node represents a
physical port and not a pickup or delivery of a cargo, as is commonly used in
the literature. Secondly, time window constraints are replaced by transit time
constraints. Finally, separation constraints are added to ensure that the partial
cargoes for each contract are evenly spread. The second model, referred to as
the Voyage-model, is an alternative formulation of the STSRSP, which generates
the sailing routes and schedules for each voyage and assign vessels to them. Both
models represent the exact same problem, though modeled in two different ways.
The key difference between the two formulations is how the arc-flow variables are
defined. In the Vessel-model, we use decision variables to decide whether a vessel
sails an arc or not, which is the most intuitive way to model the problem. In the
Voyage-model, the corresponding decision variables are connected to voyages, i.e.
if an arc is used on a voyage or not. Additional decision variables are included to
assign a vessel to each voyage.

The explicit use of voyages reduces the Voyage-model’s readability to some
extend and increases the overall number of constraints and variables in the model.
On the other hand, the voyage ordering enables symmetry breaking and eases
the modeling of the evenly spread requirements. In Section 4.2, we continue the
comparison of the models, based on the computational results. Sections 3.1 and
3.2 present the Vessel and the Voyage models, respectively.

3.1 Vessel-model

In order to present the Vessel-model we define the following additional notation.
The binary decision variable xijk defines whether vessel k sails from node i to node
j or not. The variable wijks represents the weight of speed alternative s for vessel
k on the arc (i, j). As explained in Section 2, we use the linear approximation
method proposed by Andersson et al (2015) to model the speed. In this method,
the speed is determined through the use of continuous speed variables representing
the weight of each discrete speed alternative. This means that a vessel k sailing
arc (i, j) could use a sailing speed which results from an interpolation of two
discrete speed alternatives. Suppose speed alternatives 1 and 2 are 14 and 16
knots, respectively. If wijk1 = 0.4 and wijk2 = 0.6 in the solution, vessel k sails
arc (i, j) with a sailing speed of 14 · 0.4 + 16 · 0.6 = 15.2 knots. The variable lijkp
equals the load of product type p on vessel k on the arc (i, j). Furthermore, binary
variable δkc is 1 if vessel k serves contract c, 0 otherwise, and qkcp represents the
quantity of product p included in contract c that is picked up by vessel k. The
time variable tik defines the start of service at node i for vessel k.

With this notation, the STSRSP can be formulated as follows:

min z =
∑
k∈K

∑
(i,j)∈Ak

∑
s∈S

CS
ijkswijks +

∑
k∈K

∑
(i,j)∈Ak

CV
i xijk +

∑
k∈K

CC
k (td(k)k − to(k)k)

(1)
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∑
j∈NP

k ∪d(k)

xo(k)jk = 1, ∀k ∈ K (2)

∑
i∈Nk

xijk −
∑
i∈Nk

xjik = 0, ∀k ∈ K, j ∈ NP
k (3)

∑
i∈NP

k ∪o(k)

xid(k)k = 1, ∀k ∈ K (4)

xijk =
∑
s∈S

wijks, ∀k ∈ K, (i, j) ∈ Ak (5)

0 ≤ lijkp ≤ KV
kpxijk −

∑
p′∈PS

p

lijkp′ , ∀k ∈ K, (i, j) ∈ Ak, p ∈ P (6)

∑
j∈Nk

ljikp +
∑
c∈CL

i

qkcp −
∑
c∈CU

i

qkcp =
∑
j∈Nk

lijkp, ∀k ∈ K, i ∈ NP
k , p ∈ P (7)

∑
j∈NP

k

lo(k)jkp = 0, ∀k ∈ K, p ∈ P (8)

¯
Pc ≤

∑
k∈K

δkc ≤ P̄c, ∀c ∈ CE (9)

δkc ≤
∑

i∈NP
k ∪o(k)

xil(c)k, ∀k ∈ K, c ∈ C (10)

δkc ≤
∑

i∈NP
k

xiu(c)k, ∀k ∈ K, c ∈ C (11)

¯
Qcpδkc ≤ qkcp ≤ Q̄cpδkc, ∀k ∈ K, c ∈ C, p ∈ P (12)∑
k∈K

qkcp = Dcp, ∀c ∈ C, p ∈ P (13)

to(k)k = TA
k , ∀k ∈ K (14)

tik + TP
ikxijk +

∑
c∈CL

i ∪CU
i

∑
p∈P

TH
kpqkcp +

∑
s∈S

TS
ijkswijks ≤ tjk, ∀k ∈ K, (i, j) ∈ Ak

(15)

tu(c)k − tl(c)k ≤ T
T
c +MT

c (1− δkc) ∀k ∈ K, c ∈ CT (16)

tjk −MS
jk(1− xo(k)jk) ≤ TPH , ∀k ∈ K, j ∈ NP

k (17)

xijk ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ Ak (18)

δkc ∈ {0, 1}, ∀k ∈ K, c ∈ C (19)

0 ≤ wijks ≤ 1, ∀k ∈ K, (i, j) ∈ Ak, s ∈ S (20)

The objective function (1) is to minimize the total cost; the sum of the sailing
costs, the costs associated with visiting ports, and the time charter costs. Con-
straints (2)-(4) describe the network flow on a route for each vessel k. Constraints
(5) describe the relationship between the flow variables and the speed variables,
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such that the weights of the speed alternatives add up to 1 if the vessel k sails be-
tween node i and j, and 0 otherwise. When a vessel k is not used, i.e. xo(k)d(k)k = 1,
then

∑
s∈S wo(k)d(k)ks = 1. To ensure that this sailing does not generate any costs,

the corresponding cost parameters are set to CS
o(k)d(k)ks = 0 for all s. Constraints

(6) ensure that the capacity limit of each product type on vessel k is respected.
The load balance constraints (7) ensure that the load on vessel k in node j equals
the load in the previous node i adjusted for the quantities loaded and unloaded
in node i. Constraints (8) define the initial load on vessel k to be 0. Constraints
(9) ensure that the number of pickups of an evenly spread contract c is within
the required interval. Constraints (10) and (11) ensure that a vessel k visits both
the loading and unloading port of contract c if it serves that contract. Constraints
(12) ensure that the quantity picked up from contract c is within the prescribed
bounds, while constraints (13) require that the contracted demand over the plan-
ning horizon must be serviced completely. Constraints (14) define the time vessel
k can start sailing. Constraints (15) ensure that the time of starting service at a
node j must be greater than or equal to the start of service at the previous node
i, plus the speed-dependent sailing time between the nodes, the piloting time in
node i, and the cargo handling time. Constraints (16) ensure that the transit time
restrictions are respected, where an upper bound on MT

c is given by the maximum
time a ship may use from l(c) to u(c), i.e. the sum of the maximum sailing, pi-
loting, handling, and waiting times. Constraints (17) require that each vessel that
sails must visit the first port within the planning horizon, where an upper bound
on MS

ik is given by the maximum time ship k may use from its origin o(k) to port
i. Constraints (18) and (19) put binary restrictions on the arc-flow and pickup
variables, respectively. Constraints (20) ensure that the speed variable wijks takes
values between 0 and 1.

Evenly spread constraints

The model above does not account for the evenly spread requirements for the par-
tial cargoes under contracts CE , which represents the planning situation where the
service level is completely disregarded. We define the following additional notation
to include evenly spread requirements: Let the binary variable zkmc define whether
vessel m is the next vessel after vessel k, picking up contract c or not. If zkmc = 1,
we will refer to the pair of vessels (k,m) as a spread pair. For example, if vessels
k, m, and l pick up contract c in the given order, the spread pairs for contract c
are given by (k,m) and (m, l). Thus, if a contract is picked up n times, there will
exist (n− 1) spread pairs for contract c. Furthermore, let φnc be 1 if contract c is
picked up n times during the planning horizon, and 0 otherwise. The variable sc
defines the maximum number of days contract c deviates from the evenly spread
requirement, i.e. the maximum deviation from the perfect spread over all spread
pairs. If we use the example from Figure 2 where the perfect spread is ten days, we
see that the time between service of the first two partial cargoes (first spread pair)
is nine days, while it is 11 between the second spread pair. The maximum devia-
tion from the perfect spread is therefore one day, so sc = 1. Finally, let L be the
upper limit on the total deviation in days for all contracts from the evenly spread
requirement. This can be considered as a measure for the service level regarding
the evenly spread requirements.
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The evenly spread feature can be added to the STSRSP model (1)-(20) through
the following constraints:∑
k∈K

∑
m∈K\{k}

zkmc ≥
∑
k∈K

δkc − 1, ∀c ∈ CE (21)

∑
m∈K\{k}

zkmc ≤ δkc, ∀k ∈ K, c ∈ CE (22)

∑
m∈K\{k}

zmkc ≤ δkc, ∀k ∈ K, c ∈ CE (23)

P̄c∑
n=

¯
Pc

nφnc =
∑
k∈K

δkc, ∀c ∈ CE (24)

P̄c∑
n=

¯
Pc

φnc = 1, ∀c ∈ CE (25)

P̄c∑
n=

¯
Pc

TPHφnc
n

− sc −ME
c (1− zkmc) ≤ tl(c)m − tl(c)k, ∀k ∈ K,m ∈ K\{k}, c ∈ CE

(26)

P̄c∑
n=

¯
Pc

TPHφnc
n

+ sc +ME
c (1− zkmc) ≥ tl(c)m − tl(c)k, ∀k ∈ K,m ∈ K\{k}, c ∈ CE

(27)

∑
c∈CE

sc ≤ L (28)

zkmc ∈ {0, 1}, ∀k ∈ K,m ∈ K\{k}, c ∈ CE , (29)

φnc ∈ {0, 1}, ∀c ∈ CE , n =
¯
Pc..P̄c (30)

sc ≥ 0, ∀c ∈ CE (31)

Constraints (21) ensure that the sum of spread pairs for contract c is greater
than or equal to the number of pickups minus 1. These could have been modeled
as equality constraints, but preliminary testing showed that the model was easier
to solve with the constraints as presented here. (22) and (23) require a vessel k
to pick up contract c in order be included in a spread pair, while also ensuring
that a vessel is present in at most two spread pairs for each contract. Constraints
(24) and (25) ensure that φnc is 1 if contract c is picked up n times. Constraints
(26) and (27) ensure that vessels k and m have evenly spread arrival times at the
loading port of contract c if vessel m is the next vessel after vessel k, picking up
contract c. Here, the spread slack variable sc may take a positive value to correct
for the deviation from the desired spread and ME

c is bounded by the latest time
contract c may be serviced plus TPH minus the earliest time contract c may be
serviced. The sum of deviations for all contracts are limited by the service level
constraint (28). Constraints (29) and (30) put binary restrictions on the spread
pair and pickup-counter variables, respectively. Constraints (31) ensure that the
spread deviations are non-negative.
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3.2 Alternative formulation: Voyage-model

In the Vessel-model formulation, vessels are routed, which is the common way
to model similar problems. Here, we present an alternative formulation, where we
generate the sailing routes and schedules for all voyages and assign vessels to them.
Let V be the set of possible voyages during the planning horizon, where |V| = |K|.
Let binary variable yvk define whether vessel k sails voyage v or not. The binary
variable xijv defines whether voyage v use the arc between nodes i and j or not,
wijvks represents the weight of speed alternative s for vessel k on the arc (i, j)
on voyage v, and lijvp equals the load of product type p on voyage v on the arc
(i, j). δvc is 1 if voyage v serves contract c, and 0 otherwise, and qvcp represents
the quantity of product p in contract c that is picked up on voyage v. The time
variables tiv define the start of service at node i on voyage v.

In the Vessel-model, the cost of chartering a vessel was calculated by multi-
plying a vessel’s charter rate by the time spent on its voyage. Here, we split the
chartering cost calculations into two terms, where four aspects constitute the total
time of a voyage, i.e. sailing time, piloting time, handling time and waiting time.
Let CSC

ijks be the sailing and chartering cost corresponding to the piloting and sail-
ing time from node i to j with vessel k using speed alternative s. Furthermore, let
the variable tHW

k represent the total time used for handling and waiting by vessel
k during the voyage. This split has a positive impact on the linear relaxation of
the Voyage-model (in contrast to what it had for the Vessel-model).

With this notation, the Voyage-model is given by:

min z =
∑
k∈K

∑
(i,j)∈Ak

∑
v∈V

∑
s∈S

CSC
ijkswijvks +

∑
(i,j)∈A

∑
v∈V

CV
i xijv +

∑
k∈K

CC
k t

HW
k

(32)

∑
k∈K

∑
j∈NP∪{d(k)}

xo(k)jv = 1, ∀v ∈ V (33)

∑
i∈N

xijv −
∑
i∈N

xjiv = 0, ∀v ∈ V, j ∈ NP (34)

∑
k∈K

∑
i∈NP∪{o(k)}

xid(k)v = 1, ∀v ∈ V (35)

xijv =
∑
k∈K

∑
s∈S

wijvks, ∀(i, j) ∈ A, v ∈ V (36)

∑
j∈N

∑
v∈V

xo(k)jv = 1, ∀k ∈ K (37)

∑
i∈N

∑
v∈V

xid(k)v = 1, ∀k ∈ K (38)

∑
s∈S

wijvks ≤ yvk, ∀k ∈ K, (i, j) ∈ Ak, v ∈ V (39)

∑
v∈V

yvk = 1, ∀k ∈ K (40)

∑
k∈K

yvk = 1, ∀v ∈ V (41)
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0 ≤ lijvp ≤
∑
k∈K

KV
kpyvk −

∑
p′∈PS

p

lijvp′ , ∀(i, j) ∈ A, v ∈ V, p ∈ P (42)

lijvp ≤MC
p xijv, ∀(i, j) ∈ A, v ∈ V, p ∈ P (43)∑

j∈N
ljivp +

∑
c∈CL

i

qvcp −
∑
c∈CU

i

qvcp =
∑
j∈N

lijvp, ∀i ∈ N , v ∈ V, p ∈ P (44)

∑
k∈K

∑
j∈N

lo(k)jvp = 0, ∀v ∈ V, p ∈ P (45)

P c ≤
∑
v∈V

δvc ≤ P c, ∀c ∈ C (46)

δvc ≤
∑
i∈N

xil(c)v, ∀v ∈ V, c ∈ C (47)

δvc ≤
∑
i∈N

xiu(c)v, ∀v ∈ V, c ∈ C (48)

Q
cp
δvc ≤ qvcp ≤ Qcpδvc, ∀v ∈ V, c ∈ C, p ∈ P (49)∑

v∈V
qvcp = Dcp, ∀c ∈ C, p ∈ P (50)

to(k)v = TA
k yvk, ∀v ∈ V, k ∈ K (51)

tiv + TP
ivxijv +

∑
c∈CL

i ∪CU
i

∑
p∈P

TH
kpqvcp +

∑
k∈K

∑
s∈S

TS
ijkswijvks ≤ tjv ∀(i, j) ∈ A, v ∈ V

(52)

tl(c)v + TT
c +MT

c (1− δvc) ≥ tu(c)v, ∀v ∈ V, c ∈ C (53)

tjv −MS
jk(1− xo(k)jv) ≤ TPH , ∀j ∈ NP , v ∈ V, k ∈ K (54)

tHW
k ≥ td(k)v − to(k)v −

∑
(i,j)∈Ak

TP
ivxijv −

∑
(i,j)∈Ak

∑
s∈S

TS
ijkswijvks −ML

k (1− yvk), ∀v ∈ V, k ∈ K

(55)∑
k∈K

tHW
k ≥ 2 ·

∑
c∈C

∑
p∈P

min
∀k∈K

(TH
kp)Dcp, (56)

∑
i∈NP

∑
k∈K

xo(k)i(v+1) ≤
∑

i∈NP

∑
k∈K

xo(k)iv, ∀v ∈ V\{|V|} (57)

xijv ∈ {0, 1}, ∀(i, j) ∈ A, v ∈ V (58)

δvc ∈ {0, 1}, ∀v ∈ V, c ∈ C (59)

0 ≤ wijvks ≤ 1, ∀k ∈ K, (i, j) ∈ Ak, v ∈ V, s ∈ S (60)

The objective function (32) replaces (1) and constraints (33)-(36) correspond to
(2)-(5). Constraints (37) and (38) state that each vessel must sail at most one time
out from its origin and to its destination. These constraints are redundant with
(33) and (35), but included to tighten the linear relaxation. Constraints (39) ensure
that a vessel k cannot sail a leg (i, j) on voyage v unless the vessel is assigned to
the given voyage. Constraints (40) and (41) ensure that each vessel is assigned to a
voyage and each voyage is sailed by one vessel, respectively. Constraints (42) and
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(43) are equivalent to (6), while constraints (44)-(54) replace (7)-(17) in the Vessel-
model. Constraints (55) set the time each vessel uses on handling and waiting,
where an upper bound on ML

k is given by the latest time ship k may arrive at its
artificial destination d(k). Constraint (56) defines a lower bound on the minimum
time used to handle the contracts, included to tighten the formulation. Symmetry
breaking constraints (57) ensure that voyages that do not visit any ports, i.e.
unused voyages, are placed last in the voyage ordering.

Evenly spread constraints

The evenly spread constraints for the Voyage-model are almost identical to the
Vessel-model’s ones. The main difference is that in the Voyage-model we can utilize
the inherent property of the voyage ordering, i.e. if both voyages v1 and v2 include
a visit to port i, voyage v1 will visit port i no later than voyage v2. Let VSv be
the set of voyages succeeding voyage v, VSv ⊂ V. For example, if V = {1, 2, 3, 4},
then VS2 = {3, 4}. Let the binary variable zvwc define whether voyage w is the next
voyage after voyage v, picking up contract c or not, defined for all v ∈ V, w ∈ VSv .
The evenly spread constraints for the voyage-model can be formulated as follows:∑
v∈V

∑
w∈VS

v

zvwc ≥
∑
v∈V

δvc − 1, ∀c ∈ CE (61)

∑
w∈VS

v

zvwc ≤ δvc, ∀v ∈ V, c ∈ CE (62)

∑
w∈V\(VS

v ∪{v})

zwvc ≤ δvc, ∀v ∈ V, c ∈ CE (63)

P̄c∑
n=

¯
Pc

nφnc =
∑
v∈V

δvc, ∀c ∈ CE (64)

P̄c∑
n=

¯
Pc

φnc = 1, ∀c ∈ CE (65)

P̄c∑
n=

¯
Pc

TPHφnc
n

− sc −ME
c (1− zvwc) ≤ tl(c)w − tl(c)v, ∀v ∈ V, w ∈ VSv , c ∈ CE (66)

P̄c∑
n=

¯
Pc

TPHφnc
n

+ sc +ME
c (1− zvwc) ≥ tl(c)w − tl(c)v, ∀v ∈ V, w ∈ VSv , c ∈ CE (67)

∑
c∈CE

sc ≤ L (68)

zvwc ∈ {0, 1}, ∀v ∈ V, w ∈ VSv , c ∈ CE , (69)

φnc ∈ {0, 1}, ∀c ∈ CE , n =
¯
Pc..P̄c (70)

sc ≥ 0, ∀c ∈ CE (71)

Constraints (61)-(71) replace constraints (21)-(31) for the Vessel-model.
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4 Computational study

We have performed a computational study using 90 test instances, generated
mainly based on data provided by the case company. We begin in Section 4.1
by introducing the test instances, before testing the performance of the Vessel and
Voyage models in Section 4.2. Finally, the potential benefits of flexible planning
and managerial insights are explored in Section 4.3.

The mathematical models are implemented in Mosel and solved using Xpress-
IVE 1.28.12. All computational experiments have been run on a PC with Intel
Core i7-6500U processor and 16 GB of RAM running Windows 10.

4.1 Test instances

To evaluate the performance and capabilities of the two proposed models, we have
generated a large number of instances, representing realistic planning instances
for the case company. Three different trade routes are used in this computational
study: US - Japan (5 ports in total), Asia - Europe (10 ports in total), and Europe
- US (15 ports in total). The trade routes are referred to based on their number
of ports, i.e. small (S), medium (M), and large (L), respectively. The port visit
costs are drawn from a uniform distribution in the interval [25 000 USD, 40 000
USD]. The total volume to be transported is based on data from the case company.
For each trade route, two sets of instances with 50 and 100 contracts are created,
which results in a total of six cases with 15 instances in each, i.e. S-50, S-100,
M-50, M-100, L-50, and L-100.

Each case is further divided into three sets of instances used for studying
the effect of the service level requirement, i.e. N, M, and H, representing sets of
five instances with no (N), medium (M) or high (H) service level requirements,
respectively. This results in five triples of instances where only the service level re-
quirements differ among the instances within a triple. The instance specific service
level requirement is defined by the service level threshold L. The threshold value
for the high service level, i.e. LH , is set by solving the STSRSP where the objective
function is replaced by min LH =

∑
c∈C

sc, for each instance. This means that the

service level threshold L is an instance specific parameter, not a fixed (e.g. average)
value used for all instances. We do this to ensure that all instances can be solved
feasibly. The medium service level threshold is set as LM = LH + (LN − LH)/3,
where LN is the post calculated threshold with no service level requirement.

Finally, for all instances the following parameters are drawn from a uniform
distribution with the corresponding intervals given in brackets: First, the size of
each contract is set, measured in square meters of goods. We associate a size
parameter with each contract c, which is set in the interval [0.05, 1] for ordinary
contracts and [0.2, 1.5] for the evenly spread contracts. Then, the size parameters
are normalized. The total volume to be transported is then distributed among the
contracts based on the normalized size parameters, which gives the demand for
each contract. The service frequency requirement for each contract is chosen in
the interval [1, minimum required voyages], where the minimum required voyages
is calculated as the total demand among all contracts over the planning horizon
divided by the capacity of the largest vessel (rounded up to the nearest integer).
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The transit time limits for the contracts with such requirements are chosen in the
interval [minimum sailing time · 1.2, maximum sailing time without waiting], where
the minimum sailing time is the time for the direct sailing between the two ports
with the highest possible speed, while the maximum sailing time without waiting
corresponds to the sailing time in the case with the lowest possible speed and
where all ports between the contract’s loading and unloading port along the trade
are visited. Loading and unloading ports are set based on the typical demand in
the ports. For the evenly spread contracts, the minimum and maximum quantities
picked up are given by

¯
Qcp = 0.8Dcp/P̄c and Q̄cp = 1.2Dcp/

¯
Pc, respectively. For

all other contracts,
¯
Qcp = Dcp/|K| and Q̄cp = Dcp. The vessels’ characteristics,

such as capacities, speed-dependent fuel consumption functions, and estimations
of time charter rates are provided by the case company. The bunker price is set to
350 USD/mt. Daily charter rates are in the interval [15 000 USD, 40 000 USD],
ship capacities are in the interval [35 000 m2, 75 000 m2], and fuel consumptions
are in the interval [25 ton/day, 90 ton/day]. A randomly selected subset of the
vessels are available in each instance.

We identify each set of five instances by its name Size-Contracts-Service level
characteristics, so that M-50-H means a set of five instances on the medium trade
route, with 50 contracts, with a high service level requirement. All instances consist
of 40% evenly spread contracts, 20% transit time contracts, and 40% of contracts
without any service requirements. 90% of the contracts are inter-regional and 10%
intra-regional. The planning horizon is set to 30 days, meaning that all voyages
must begin within this time limit. We have set a maximum running time of three
hours (10,800 seconds) for solving each of the instances.

4.2 Comparison of models

Table 1 shows the average sizes of the MIPs for the Vessel and the Voyage models,
grouped by trade size. For the small instances, we see that the number of con-
straints and variables in the models are moderately higher for the Voyage-model,
while having almost equally many binary variables. However, for the medium and
large instances, the differences are notable. The continuous speed variables make
up the largest share of the variables, given by wijks and wijvks for the Vessel and
the Voyage models, respectively. Thus, the Voyage-model has approximately the
cardinality of voyages (|V|) as many speed variables than the Vessel-model. The
Voyage-model has more constraints and binary variables on average. Note that al-
most half of the binary variables in the Vessel-model are present due to the evenly
spread constraints, while this share is only around 20% for the Voyage-model.

To compare the performance of the Vessel and Voyage models, we have tested
both formulations on all 90 test instances. The test results are summarized in Table
2. For each of the six cases, shown as separate rows in the table and containing
15 instances each, average solution times for both models are presented, as well
as the number of instances solved to optimality (# Optimal) and for which we
have obtained feasible integer solutions (# Feasible) within the maximum running
time, which we have set to three hours (10,800 seconds).

For the smallest instances, case S-50-*, we see that the difference in solution
times are small, and both the Voyage and the Vessel-models solve all instances
to optimality in reasonable time. For the instances in case S-100-*, we see signifi-
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Table 1 Average number of constraints, variables (both continuous and binary), and binary
variables for all instances per case after presolve, reported as: (result without evenly spread)
/ (result with evenly spread).

Set of instances Vessel-model Voyage-model

# Constraints # Variables # Binary variables # Constraints # Variables # Binary variables
S-50-* 1428/2116 936/1028 269/457 2103/2530 1791/1923 421/535

S-100-* 2329/3487 1200/1630 440/836 3203/3863 2183/2434 621/833
M-50-* 2685/3829 2392/2819 506/919 7244/7698 8298/8550 1040/1274
M100-* 4212/6228 2945/3731 763/1554 8081/9145 8857/9415 1303/1753
L-50-* 5085/6508 5394/5884 928/1428 14473/14908 21359/21508 1922/2203

L-100-* 6419/7974 5918/6925 1183/2170 14972/16023 20691/21122 2098/2628

The asterisks (*) denote all instances within a certain set.

Table 2 Average solution time (in seconds) and number of instances solved per case

Set of instances Vessel-model Voyage-model

Sol time # Optimal # Feasible Sol time # Optimal # Feasible
S-50-* 13 15 15 12 15 15

S-100-* 188 15 15 27 15 15
M-50-* 4352 11 15 2407 13 15

M-100-* 7469 5 5 5424 9 15
L-50-* 10800 0 7 9637 3 12

L-100-* 10373 1 5 9505 3 9

Average 5533 7.8 10.3 4502 9.7 13.5

The asterisks (*) denote all instances within a certain set.

cant differences in the average solution times between the two models, which may
indicate that the Vessel-model is more sensitive to an increase in the number of
contracts than the Voyage-model. For the medium-sized instances, i.e. cases M-
50-* and M-100-*, the Voyage-model clearly outperforms the Vessel-model. The
Voyage-model solves 22 of the 30 instances to optimality and finds feasible so-
lutions to all 30, while the Vessel-model finds the optimal solutions only for 16
instances and cannot find feasible solutions for as many as 10 instances. Finally,
we see that both models struggle with solving the large instances belonging to
cases L-50-* and L-100-*, but also here it can be noticed that the Voyage-model
performs significantly better. The Vessel-model can only find one optimal and 12
feasible solutions for the 30 instances, while the Vessel-model finds six optimal and
21 feasible solutions within the maximum running time.

These results contradict the expected outcomes based on the average number of
constraints and variables in the models, see Table 1. However, despite the Voyage-
model having more constraints and variables, the computational tests show that
the average LP-relaxation over all 90 instances is 8.82% better when using the
Voyage-model, compared to the Vessel-model. For all instances solved to optimal-
ity, the average relative MIP gap in the root node is 18.37% for the Vessel-model
and 11.52% for the Voyage-model, which may explain the better performance of
the Voyage-model.

Table 3 shows the average results over all instances, sorted by the service level.
We see that for the 30 instances solved without the evenly spread requirement
(marked with *-*-N), the Voyage-model performs slightly better than the Vessel-
model. When the evenly spread constraints are active, i.e. service level medium
and high (marked with *-*-M and *-*-H, respectively), the Voyage-model clearly
outperforms the Vessel-model, both with regards to solution times and the num-
ber of instances where both optimal and feasible solutions are found within the
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Table 3 Average results, grouped by service level.

Set of instances Vessel-model Voyage-model

Sol time # Optimal # Feasible Sol time # Optimal # Feasible
*-*-N 3546 21 30 2701 25 30
*-*-M 5864 15 17 4369 20 29
*-*-H 7188 11 15 6437 13 22

The asterisks (*) denote all instances within a certain set.

maximum running time. It is also clear that the instances where the evenly spread
requirements are disregarded are significantly easier to solve. This is most likely
due to the reduced number of constraints and binary variables, as shown in Table
1.

The results also show that a higher service level requirement increases the
difficulty of solving the instances, which could be explained by the following two
aspects. Firstly, as a high service level implies a low service level threshold L, these
instances are more constrained and feasibility becomes a challenge. Secondly, when
lowering the service level threshold, the objective function value in the optimal
solution increases, but the computational tests show that the LP-relaxations are
unaffected by the threshold L for all test instances. This means that the solver
needs to close a larger MIP gap when lowering the service level threshold, which
most often implies increased solution times.

Overall the Voyage-model performs better than Vessel-model. It seems like the
evenly spread requirements are handled in a better way by the Voyage-model,
based on the results in Table 3. Surprisingly, the Voyage-model also performs
better than the Vessel-model when solved without the evenly spread constraints.
This is an interesting finding. Without the evenly spread restrictions, the STSRSP
has similarities with both the industrial and tramp ship routing and scheduling
problem (e.g. Christiansen et al (2013)) and the vehicle routing problem with a
heterogeneous fleet and time windows (e.g. Jiang et al (2014) and Koç et al (2015)).
It might be that the arc-flow formulations also for these problems could benefit
from routing voyages/trips instead of vessels/vehicles.

4.3 Managerial insights

The problem discussed in this paper is motivated by the fact that RoRo-shipping
companies are neither limited to weekly frequencies on the trades, nor to visiting
every port on each voyage. One could say that RoRo-shipping is more demand-
driven, in contrast to container shipping which is more frequency-driven. In this
section, we study the potential gains that can be achieved by utilizing this inherent
planning flexibility. Furthermore, we discuss the trade-offs between service level
with regards to the evenly spread requirements and the costs of the solutions.

The test instances presented in Section 4.1 are again used for studying the
potential gains of utilizing the planning flexibility. For each instance, we also solve
a version of the problem where all ports are visited along each voyage, which
we denote as the All Ports Regularly (APR) approach. This closely resembles
current practice where, to make the planning tractable, one lets all ports along
the trade be visited on each voyage (similar to container shipping). As discussed
in the introduction, this also makes it much easier to obtain solutions that respect
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all contract requirements regarding evenly spread in a reasonable way. Then, for
each instance, we compare the cost of sailing with regular intervals (APR) with
the cost of the solutions with no, medium or high service level requirements. The
Voyage-model is used for these calculations. The costs of APR are found using
a slightly altered version of the Voyage-model. Firstly, we assume that regular
intervals are sufficient to accommodate the evenly spread restrictions. Thus, we
remove the service level threshold constraints (68) from the problem, but the
remaining evenly spread constraints are kept to calculate the provided service
level. Secondly, we ensure that each port is visited at regular intervals, e.g. every
10th day. We set the intervals based on the length of the planning horizon divided
by the number of vessels used in the best solution from the commercial solver.
Thus, if three vessels serve the trade, each port is visited every tenth day. The
average results for the small and medium trade instances are presented in Table
4. All costs are shown in percentage of the APR solutions to easily see the cost
reduction potentials from utilizing this planning flexibility. As the solver is unable
to provide reasonable optimality gaps for the large instances, these instances are
omitted in this analysis.

Table 4 Planned costs and service level comparison for the small and medium trade sizes.
All instances are solved to optimality for the different service level requirements and the all
ports regularly approach (APR)

Service level requirement

Set of instances APR No requirement Medium High

Cost ST/c Cost ST/c Cost ST/c Cost ST/c
S-50-* 100 % 0.90 92.9 % 1.97 94.3 % 0.75 101.5 % 0.28

S-100-*1 100 % 1.00 92.3 % 1.19 96.5 % 0.48 102.3 % 0.24
M-50-*1 100 % 0.63 87.5 % 2.93 89.1 % 1.00 96.7 % 0.08

M-100-*1 100 % 0.59 90.9 % 2.94 92.6 % 1.03 100.5 % 0.14

Average 100 % 0.81 90.9 % 2.18 92.6 % 0.80 100.5 % 0.21

Cost - objective value as a percentage of the APR objective value. ST/c - Average deviation in days from the
evenly spread requirement, per evenly spread contract. 1. Three out of the five instances in each set were infeasible
due to transit time restrictions for the APR computations and are therefore not included in the table.

The results show that visiting all ports on a regular basis gives an average devi-
ation from the desired spread of 0.81 days per evenly spread contract. If the evenly
spread requirements are disregarded (No requirement), the average deviation in-
creases to 2.18 day per evenly spread contract. While this increase is substantial,
the average savings on planned costs are 9.1%, which highlights the important
trade-off between service level and planned costs. For the medium service level,
the results show that an equally good service level as for the APR can be provided
at 7.4% lower costs. From a managerial point of view, this result shows that relax-
ing a strict, regular service requirement for each port (close to current practice)
can greatly reduce the overall costs. For the high service level, we observe lower
deviations for the evenly spread, but the costs are slightly higher than for the
APR. Possible explanations for this finding are increased waiting times and higher
sailing speeds.

In Table 4, we have chosen to report the average deviation from the desired
spread, as the service threshold is set on a company level. However, it could be
argued that the service level constraints also should be set on contract level, to
ensure a fair spread balance between the contracts and prevent extreme deviations
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Fig. 4 Cost comparison of various threshold values for both the average slack time per contract
(ST/c) and the maximum slack time (MST) for case S-50-*. The thresholds for each entry are
given in the top right corner. Each entry is presented in the graph as a line, where the leftmost
marker shows the resulting ST/c and the rightmost marker shows the MST.

from the desired spread. In Figure 4, we study the effects of constraining the max-
imum deviation with regards to costs, for case S-50-*. This is enforced by adding
a new set of constraints, similar to constraints (28) and (68): sc ≤MST, ∀c ∈ CE ,
where the parameter MST is the maximum slack time for each contract. Each of
the instances within case S-50-* is solved for five MST values, ranging from the
lowest feasible integer slack time (2 days) to the lowest non-binding MST value
(6.6 days), with fixed step length (1.15 days). All instances are solved twice, both
with medium and no service level requirement, i.e. with and without a service level
threshold L. In Figure 4, entries A1-A5 show the results when enforcing medium
service level, as well as constraining the maximum deviation. For entries A6-A10,
only the maximum service level is constrained. If both sets of service level con-
straints are disregarded, i.e. entry A10, the average slack time per contract (ST/c)
and the maximum slack time are approximately two and six days, respectively.
We observe a minor cost increase from reducing the MST to 5.45 days (A9), but
as the MST is further lowered, the cost rapidly increases. The results for entries
A6-A10 also show that reducing the MST most often has a positive effect on the
ST/c. Entry A5 shows that the medium service level results both have a lower
ST/c and MST, at a cost increase of 1.5 %, which may be preferable from a man-
agerial point of view. Entries A3 and A7 highlight the intricacy of these trade-offs.
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Fig. 5 Cost distributions of the solutions to the instances from Table 4

At approximately the same cost, one could either provide a low average deviation
and a high maximum deviation, or vice versa.

The results summarized in Table 4 show the trade-offs between service level
and the planning costs. We see that a higher service level implies higher costs. The
main reason for this is that a higher service level may require more port visits to
comply with the evenly spread requirements, which increases the port costs and
the charter times. Additionally, we see that some voyages have increased waiting
time at ports or lower/higher sailing speed to spread the contracts’ pickups evenly.
While this result is as expected, the trade-off costs were more significant than ex-
pected. We see that reducing the service level from high to medium reduces the
average costs from 100.5% to 92.6%, while the difference in the average slack time
per contract (ST/c) is close to half a day. The results highlight the importance,
from a managerial point of view, of determining an appropriate service level. The
results can be used to identify unfavorable/costly customers/contracts and deter-
mining the marginal cost of increasing the service level, which may be useful in
future contract negotiations.

Figure 5 shows how the total costs are distributed between sailing costs, port
call costs, and charter costs. The height of each column corresponds to the average
total costs for the different service levels from Table 4. On average, the sailing costs
constitute close to 40 % of the total costs, while the port call costs make up 15 %
of the total costs. For the small instances, we see that the port costs are close to
equal between APR and the three service levels. However, for the medium sized
instances, it is clear that visiting all ports regularly has a considerable impact
on the total costs. The figure also shows that the charter costs are the main cost
component. We see that when increasing the service level, the charter costs increase
more than the other cost components. This is most likely due to increased waiting
times at ports to comply with the evenly spread restriction.
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5 Conclusions

We have considered a new problem to the literature, which we have called the
single trade ship routing and scheduling problem (STSRSP). The STSRSP deals
with the planning of interrelated voyages with separation requirements along a
single trade with the aim of utilizing the inherent planning flexibility in roll-on
roll-off (RoRo) shipping. A given trade in RoRo-shipping is usually designed based
on a large number of cargo contracts for transportation of cargoes between the
different port pairs along a trade, where the contracts state that they should
be serviced with a given frequency, but also that these services should be fairly
evenly spread in time. Depending on the frequency and spread requirements of
each cargo contract, one might not need to visit each port every time a vessel
performs a voyage on the trade. Therefore, instead of aggregating requirements
from cargo contracts to frequency requirements for the whole trade, which has
been common to simplify planning in previous studies, we look at the frequency
requirements for each contract and port along the trade. This is further utilized
in the STSRSP to determine the sailing routes of each voyage along the trade, i.e.
which ports to be visited and not, which ships to use, what contracts to serve,
as well as the sailing speeds along the voyages, so that all contract requirements
regarding frequency and spread are satisfied at minimum cost.

We have proposed two novel mixed integer programming models for the STSRSP.
A central part of the models includes a new way of modeling the separation require-
ments for the contracts. Firstly, we showed that the less intuitive model (i.e. the
Voyage-model) performs significantly better than the other one (i.e. the Vessel-
model). Secondly, we demonstrated through a computational study on a large
number of realistic test instances that there are significant gains that potentially
can be obtained from utilizing the inherent planning flexibility. We also discussed
the trade-offs between service level with regards to the evenly spread requirements
and the costs of a solution.
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Appendix

List of notations used in the models:

Sets

K Set of available vessels.
N Set of nodes.
Nk Set of nodes that can be visited by vessel k.

NP Set of ports along the trade route.

NP
k Set of ports that can be visited by vessel k.
A Set of feasible arcs.
Ak Set of feasible arcs for vessel k.
C Set of given contracts for cargoes to be transported along the trade

during the planning horizon.

CT Set of contracts with transit time restrictions.

CE Set of contracts with evenly spread requirements.

CLi Set of cargoes that are to be loaded at port i.
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CUi Set of cargoes that are to be unloaded at port i.
P Set of product types.

PS
p Set of product types that can be stored in the same space as product

type p.
S Set of discrete speed alternatives.
V Set of voyages (Voyage-model only).

VSv Set of voyages succeeding voyage v (Voyage-model only).

Parameters

KV
kp Capacity for product p on ship k.

Dcp Demand for the whole planning period for product type p for contract
c.

¯
Qcp Minimum pickup quantity for product type p for contract c.
Q̄cp Maximum pickup quantity for product type p for contract c.

¯
Pc Minimum number of pickups of contract c.
P̄c Maximum number of pickups of contract c.

TS
ijks Sailing time from a node (port) i to node (port) j for vessel k using

speed alternative s.

TA
k The time vessel k becomes available at its origin.

TP
ik Piloting time at port i by ship k.

TH
kp The time used to handle, i.e. load or unload, one unit of product type

p on vessel k.

TT
c Maximum transit time for contract c.

TPH Length of the planning horizon.
L Evenly spread service level threshold.
o(k) Initial position of vessel k.
d(k) Artificial ending position of vessel k.
l(c) Loading port of contract c.
u(c) Unloading port of contract c.

CC
k Daily charter rate for vessel k.

CV
i Cost of calling port i.

CS
ijks Cost of sailing from a node (port) i to node (port) j for vessel k using

speed alternative s. (Vessel-model only).

CSC
ijks Sailing and chartering cost corresponding to the piloting and sailing

time from node i to j with vessel k using speed alternative s (Voyage-
model only).

Variables, Vessel-model

xijk 1 if vessel k sails from node i to node j, 0 otherwise.
δkc 1 if vessel k serves contract c, 0 otherwise.
wijks Weight of speed alternative s for vessel k on the arc (i, j).
lijkp Load of product type p on vessel k on the arc (i, j).
qkcp Quantity of product p in contract c that is picked up by vessel k.
tik Start of service at node i for vessel k.
zkmc 1 if vessel m is the next vessel after vessel k, picking up contract c, 0

otherwise.
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φnc 1 if contract c is picked up n times during the planning horizon, 0
otherwise.

sc Maximum number of days contract c deviates from the evenly spread
requirement.

Variables, Voyage-model

xijv 1 if voyage v use the arc between nodes i and j, 0 otherwise.
yvk 1 if vessel k sails voyage v, 0 otherwise.
δvc 1 if voyage v serves contract c, 0 otherwise.
wijvks Weight of speed alternative s for vessel k on the arc (i, j) on voyage

v.
lijvp Load of product type p on voyage v on the arc (i, j).
qvcp Quantity of product p in contract c that is picked up on voyage v.
tiv Start of service at node i on voyage v.

tHW
k Total time used on handling and waiting by vessel k.
zvwc 1 if voyage w is the next voyage after voyage v, picking up contract c,

0 otherwise.
φnc 1 if contract c is picked up n times during the planning horizon, 0

otherwise.
sc Maximum number of days contract c deviates from the evenly spread

requirement.


