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Abstract

Modern pulse compression radar involves digital signal processing of high bandwidth pulses modulated with
different coding schemes. One of the limiting factors in the radar’s design to achieve desired target range and
resolution is the need of high rate analog-to-digital (A/D) conversion fulfilling the Nyquist sampling criteria. The
high sampling rates necessitate huge storage capacity, more power consumption, and extra processing
requirement. We introduce a new approach to sample wideband radar waveform modulated with Costas sequence
at a sub-Nyquist rate based upon the concept of compressive sensing (CS). Sub-Nyquist measurements of Costas
sequence waveform are performed in an analog-to-information (A/I) converter based upon random demodulation
replacing traditional A/D converter. The novel work presents an 8-order Costas coded waveform with sub-Nyquist
sampling and its reconstruction. The reconstructed waveform is compared with the conventionally sampled signal
and depicts high-quality signal recovery from sub-Nyquist sampled signal. Furthermore, performance of CS-based
detections after reconstruction are evaluated in terms of receiver operating characteristic (ROC) curves and
compared with conventional Nyquist-rate matched filtering scheme.
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1 Introduction
Modern pulse compression radars transmit wideband
pulse (linear chirp, binary phase codes, Costas codes,
etc.), and perform compression of returned pulse digit-
ally after high-rate analog-to-digital (A/D) conversion
stage. The conventional A/D converters follow Nyquist
sampling theorem, which requires uniform sampling rate
at least twice of the signal bandwidth for guaranteed re-
construction of the band-limited signal [1]. Adequate A/
D conversion of wideband radar return signal requires
both high sampling frequency and large dynamic range.
In the radars employing digital pulse compression, one
of the bottlenecks in achieving the desired range reso-
lution is high-rate A/D conversion, which in many cases
is either beyond technological limits or is too expensive.
Recently, a leap in signal sensing realm is made by the

promising approach of compressive sensing (CS), which
is mainly supported by the positive theoretical and ex-
perimental results in [2–6]. It enables sampling at a rate
comparable to signal’s information rate. In CS, an

incoherent linear projection is employed to acquire an
accurate representation of compressible signal directly
using few measurements, much lesser than the number
prescribed by the Nyquist theorem. The signal is then
recovered from undersampled measurements by solving
an inverse problem either through a linear program or a
greedy pursuit [7].
Many recent techniques employ CS to sample sparse

signal of interest at sub-Nyquist rate using a low-rate
sampler as in analog-to-information (A/I) converter.
Two popular A/I approaches are periodic nonuniform
sampling [8] and random demodulator scheme [9] with
its hardware implementation in [10]. Another A/I
model, modulation wideband converter (MWC) [11] can
undersample analog multiband signal along with
spectrum-blind recovery. CS applications to radar are
mainly focused to hard target radar [12] or multiple-
input-multiple-output (MIMO) radar [13] exploiting
sparsity in the target range, Doppler, or angle space.
Similarly, CS-based radar imaging using synthetic aper-
ture radar (SAR) for terrain mapping [14] and ultra-
wideband radar for through-the-wall target detection
[15] are of major interests. Promising research, however,
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in employing CS to reduce radar receiver complexity
and its A/D converter sampling rate [16] exploiting
radar waveform characteristics are limited.
One approach in pulse compression radar waveform

design that achieves high target range and Doppler
resolution is the Costas sequence, introduced by J.
Costas [17]. The basic building block of Costas wave-
form is a simple frequency-hopped signal of N con-
tiguous sub-pulses each having distinct frequencies,
which are selected through a special class of N ×N
permutation matrices known as Costas arrays [18]. A
class of Costas sequences for which corresponding
ambiguity function approaches an ideal or a
thumbtack-like response is called Costas codes [19].
For high-resolution delay-Doppler imaging radars,
transmitting waveform of N sub-pulses with proper
frequency-shift sequence have Pulse Compression Ra-
tio (PCR) of N2 [20].
In this paper, we propose a novel approach utilizing

the concept of compressive sensing to digital radar sig-
nal processing that employs Costas codes as the basis
functions for pulse compression. We exploited the time-
frequency sparsity of Costas sequence in transform do-
main (Gabor dictionary) to represent the received signal
with fewer measurements than traditionally required.
The fewer sampled data implies significant reduction in
memory and power consumption. The results acquired
from undersampling of radar returned waveform in A/I
converter via random demodulation, and then its recov-
ery by solving the convex optimization problem shows
promising Costas sequence reconstructions. We have
evaluated the proposed approach by comparing the CS-
based signal recovery against conventional discrete sam-
ple reconstruction in terms of signal-to-noise ratio
(SNR) and mean squared error (MSE). Finally, detection
performance of CS-based Costas coded radar is analyzed
through Monte Carlo simulations and is compared with
conventional matched filtering (MF)-based radar

detector by means of receiver operating characteristic
(ROC) curves.
The paper is further organized as follows. In Section 2,

we explain the generation of Costas waveform followed
by a discussion on discrete-time CS theory. In Section 3,
we look into sparsity in Costas waveform and present
mathematical framework of A/I model for low-rate sam-
pling of the continuous-time waveform and its subse-
quent reconstruction in transform basis. In Section 4,
we lay ground work for ROC curves based performance
analysis of CS-based detection scheme. Experimentation
and results are discussed in Section 5. The paper is con-
cluded in Section 6.

2 Background
2.1 Costas sequence waveform
The Costas sequence modulated waveform, transmit-
ted by digital pulse compression radars, of pulse
width T seconds, and can be regarded as a frequency
hopping signal of N equal-length sub-pulses with kth
sub-pulse being frequency modulated with frequency
fk with respect to carrier frequency f0. In various time
slots, frequencies to be placed are determined via se-
quence of ordered integers, S(k), k = 1,…,N. The se-
quence S(k) for which the corresponding ambiguity
function approaches an ideal or a “thumbtack” re-
sponse is called Costas code.
The expression for the frequency fk is:

Fig. 1 Frequency assignment of eight sub-pulses. a Stepped linear-frequency modulation (SLFM) waveform. b 8-order Costas coded pulse

Fig. 2 Detection scheme involving separate detector after noisy
CS reconstructions
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f k ¼ S kð Þ B
N

k ¼ 1;…; N

where B is the approximate signal bandwidth. The
Costas waveform can be written as:

x tð Þ ¼
XN
k¼1

u
kT
N

−t
� �

cos f 0 þ f k
� �

t þ θk
� � ð1Þ

where

u tð Þ ¼ 1 0≤t≤T=N
0 elsewhere

�

and f0 and θk are the carrier frequency and initial
phase, respectively.
The Costas sequence can also be expressed in a con-

venient way through a N ×N matrix shown in Fig. 1,
where N rows are used to denote the sub-pulses and the
N columns are used to denote the stepped frequency. A
“dot” indicates the frequency value assigned to the asso-
ciated sub-pulse. A near thumbtack response as obtained

by Costas indicates the placement of one and only one
frequency per time slot (row) and per frequency slot
(column) [17]. Figure 1a shows the frequency assign-
ment with a stepped linear-frequency modulation
(SLFM) whereas in Fig. 1b, the frequency assignments
are chosen in a random fashion, according to some pre-
determined rule, in 8-order Costas array.
According to the traditional Shannon/Nyquist the-

orem, the sampling of such waveform should be at least
twice of its maximum bandwidth to avoid aliasing [1].
However, since the signal has distinct frequency compo-
nents localized in time, we exploited sparse nature of
Costas code by employing the concept of compressive
sensing.

2.2 Theory of compressive sensing
Compressive sensing (CS) allows the acquisition of one-
dimensional discrete-time signal of length N indexed as
x(n), n = 1,…,N which is compressible in transform
basis Ψ that provides a K ‐ sparse representation of x as:

x ¼
XN
n¼1

bnψn ¼
XK
i¼1

b nið Þψni ð2Þ

where x is a linear combination of K basis vectors
chosen from ψn, ni are the indices of those vectors, and
bn are the weighting coefficients. By stacking the basis
vectors as columns into the N ×N sparsity basis matrix
Ψ = ψ1… ψN, its matrix notation can be

Fig. 3 8-order Costas coded pulse sampled at 4× sub-Nyquist rate: a Original wideband analog signal. b Original signal spectrogram. c Original
and reconstructed sparse vectors. d Reconstructed signal spectrogram

Table 1 SNR (dB) and MSE for 8-sub-pulsed radar waveform

Sub-
Nyquist
rate

SNR (dB) MSE

Costas coded SLFM Costas coded SLFM

2× 39.4 38.6 5.74e−5 6.90e−5

4× 36.6 36.0 1.09e−4 1.25e−4

8× 33.3 32.9 2.34e−4 2.56e−4

16× 28.4 27.2 7.23e−4 9.53e−4
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x ¼ Ψb

where b is an N × 1 column vector consisting of terms
with the K largest magnitudes while setting all other
terms to zero and K≪N.
In compressive sensing, a signal that is compressible

in one basis Ψ can be recovered with K largest bn’s from
M ¼ O K log N

K

� �
nonadaptive linear measurements on to

a second basis Φ that is incoherent with the first basis
[2, 21]. By incoherent, it is meant that the rows of Φ do
not provide a sparse representation of the columns of Ψ
and vice versa. Thus, instead of measuring the N-point
signal x directly, we take M <N linear projections that
can be expressed in matrix notation as:

c ¼ Φx ¼ ΦΨb ¼ Αb ð3Þ
where c are the measurements in M × 1 column vector,

Φ is M ×N measurement matrix, and A =ΦΨ we define
is a M ×N matrix which when holds the restricted isom-
etry property (RIP) recovers the signal x with high

Fig. 4 SLFM waveform of eight sub-pulses sampled at 8× sub-Nyquist rate. a Spectrogram of original signal. b Spectrogram of A/I converted
reconstructed signal

Fig. 5 Receiver operating characteristic (ROC) curves (Pd vs Pfa) at
SNR = 10 dB for varying order Costas coded pulses
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quality from undersampled measurements M [2, 4, 22].
The RIP and incoherency are valid for many transform
pairs such as sinusoids and wavelets and delta spikes
and Fourier sinusoids. The recovery of the set of trans-
form coefficients b can be achieved through nonlinear
optimization [23], by searching for the b with the smal-
lest l1-norm that satisfies the M observed measurements
in c:

b̂ ¼ argmin bk k1 such that c ¼ Ab ð4Þ

This optimization problem, also known as Basis Pur-
suit [24], can be solved with conventional methods such
as interior-point method. Alternatively, heuristic greedy
algorithms such as least angle regression (LARS) [25]
and orthogonal matching pursuit (OMP) [7] can also be
applied at the expense of slightly more measurements.

3 Signal sensing and recovery
3.1 Compressible Costas waveform
The wideband Costas waveform in (1) possesses time-
frequency sparsity in the sense that at each point in
time, it is well approximated by few local sinusoids of
constant frequency. The signals localized in the time-
frequency domain have sparse representation under the
Gabor transform, expressed as:

Vg τ; fð Þ ¼ x tð Þ;ψτ;f tð Þ
D E

The coefficients of Vg are interpreted as the measure
of the inner product of the signal with the Gabor atoms
given by,

ψτ;f tð Þ ¼ g t−τð Þe�j2πf t

while g is Gabor window function with ||g||2 = 1 [26].
The wideband waveform when received by the radar

receiver from a target possesses discrete, finite number
of Gabor dictionary components, which when expressed
in the form of (2), presents an ideal candidate for com-
pressive sensing.

3.2 Analog-to-information conversion
Our proposed A/I-based radar signal acquisition system
comprises of the proven steps of demodulation, filtering,
and uniform sampling [9, 10]. The signal is first modu-
lated by a pseudo-random maximal-length sequence of
+1’s, alternating at or faster than the Nyquist frequency
of the received signal, called the chipping sequence, p(t).
This demodulation spreads the frequency content of the
signal to avoid aliasing in the second stage, which is a
low-pass filter having an impulse response, h(t). The sig-
nal is finally sampled at a lower rate ℳ compared to
Nyquist rate using a traditional low rate A/D converter.
For our system of sub-Nyquist sampling of a

continuous-time Costas sequence waveform, the discrete
measurement vector c can be characterized as a linear
transformation of the discrete coefficient vector b. In ac-
cordance with (3), this discrete transformation can be
expressed as M ×N reconstruction matrix Α that com-
bines two matrices: Ψ, which translates the discrete coef-
ficient vector b to an analog signal x, and Φ, which
translates the analog signal x to the discrete set of mea-
surements c.
The output c[m], which is the result of convolution

then demodulation and then sampling at rate ℳ can be
expressed as:

c m½ � ¼
Z ∞

−∞
x τð Þp τð Þh t−τð Þdτ ð5Þ

such that t ¼ mℳ . As the Costas waveform expressed
in (2) has discrete and sparse number of coefficients Ψ,
therefore, (5) can be expanded and rearranged as:

c m½ � ¼
XN
n¼1

bn

Z ∞

−∞
ψn τð Þp τð Þh mℳ−τð Þdτ ð6Þ

The reconstruction matrix Α can be acquired from (6)
by separating expression for each element αm,n ∈ Α for
row m and column n:

αm;n ¼
Z ∞

−∞
ψn τð Þp τð Þh mℳ−τð Þdτ

The reconstruction of the Costas waveform is then
performed by exploiting the dictionary of Gabor atoms
and recovering the set of transform coefficients b using
nonlinear optimization algorithm involving least l1-norm

Fig. 6 Pd vs SNRout performance at Pfa = 10− 3 with varying
compressed sensing ratios M/N
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solution as in (4) to recover the signal directly in the
sparse domain.

4 CS-based detection
In this section, we discuss updated CS model which we
use to compare performance of CS-based Costas coded
radar detector with that of matched filtering (MF) in
classical radars. Since classical radar detection theory
has since long been well established, detection properties
of CS-based techniques are not yet very well known
[27]. As CS approach involves new set of parameters
which do not appear in conventional radar systems such
as target sparseness (K) and compression ratio (M/N),
our aim is to assess the effects of these parameters on
the detection performance of CS-based Costas coded
radar. To update the CS model for evaluating detector
performance, we incorporate reconstruction threshold
(ηbp) in (4) so that recovery is performed as:

b̂ ¼ arg min bk k1 such that c−Abk k2≤ηbp ð7Þ

where threshold ηbp is proportional to noise standard
deviation. This nonlinear optimization problem, as
already mentioned, is known as Basis Pursuit (BP). In
order to achieve desired (Pd, Pfa) with an assigned SNR
against selected number of measurements M and thresh-
old ηbp, we add a second detector after CS reconstruc-
tion as shown in Fig. 2. A separate detector after CS
(tuning γ in Fig. 2 reduces Pfa while maintaining high Pd
gives better performance than using single detector
alone [28].
We present a case of one-dimensional radar which is

to determine the presence or absence of target in a given
range bin. Consider an unambiguous mapping of target
ranges to phases over the whole transmitted bandwidth
requires N-order Costas coded waveform, of duration T,
at Nyquist rate. In a compressive sensing (CS) frame-
work, we exploit the sparsity in target presence at a
given range bin and reduce the number of discrete fre-
quency steps in a transmitted Costas coded waveform to
M. The frequencies in M-order Costas coded waveform
are selected uniformly at random (with none repeated)
out of N frequencies with M≪N, such that first and last
frequencies in bandwidth are selected and that at least
two of the adjacent transmitted frequencies have separ-
ation Δf to ensure unambiguous range ΔR preserved.
Moreover, to achieve a fair comparison with conven-
tional detection, it is assumed that same total power is
transmitted irrespective of the order of Costas code, i.e.,
transmitted pulse duration T is to remain constant, hav-
ing M/T bandwidth of each sub-pulse in Costas
waveform.

The compressed received signal of M-order Costas
code is corrupted by additive Gaussian noise of variance
σ2. The M ×N measurement matrix Φ is given as:

Φ ¼ 1ffiffiffiffiffi
M

p
e−jr1k1=N … e−jrN k1=N

⋮ ⋱ ⋮

e−jr1kM=N … e−jrN kM=N

2
64

3
75

where km = k0 +m2π/ΔR, here m = 1,…,M is the wave
number with ΔR = rN − r0 and rn = r0 + nδR, here n = 1,
…,N is the range bin index with δR = ΔR/N.
Since the signal x of length N range bins is a sparse

vector comprising of K complex target amplitudes ak
where k = 1,…, K are indices corresponding to range bins
where targets are located and zero elsewhere. Thus, x
= [a1, 0, a2, 0,… 0, aK] is sparse directly in range domain
which leads to identity matrix IN as basis matrix Ψ and
is therefore maximally incoherent with Φ. The output
signal-to-noise ratio (SNRout), for each target, both for
conventional and CS-based approach is given by:

SNRout ¼ akj j2=σ2

where σ2 is noise variance per sample. As output SNR
is input to the detector and is independent of M or N, it
makes receiver operating characteristic (ROC)-based
comparison more elegant, which is presented in next
section.

5 Experimental results and discussion
5.1 Costas waveform reconstruction performance
We demonstrate the effectiveness of our approach by
first compressive sensing a Costas coded radar wave-
form, taking its undersampled measurements in A/I
converter. The pulsed signal recovery is then performed
by solving convex optimization problem using CVX 2.1
package in MATLAB [29].
Firstly, 8-order Costas coded transmit pulse of radar

operating in L-band having random stepped-frequency
(Costas coded) modulation bandwidth of 80 MHz with
step of 10 MHz is considered. The random hopping pat-
tern satisfying the Costas conditions of having an ideal/
thumbtack-like ambiguity function response is used. The
received pulsed echo after undergoing band-pass filter-
ing and IF mixing is shown in analog form centered at
65 MHz in Fig. 3a, and its corresponding spectrogram is
depicted in Fig. 3b. The signal is then modulated with
the pseudo-random chipping sequence of +1’s alternat-
ing at clock frequency of 1 GHz in analog-to-
information (A/I) converter. The output of the demodu-
lator is passed through a low-pass filter. Finally, the out-
put is sampled in the presence of additive white
Gaussian noise (AWGN) using a low-rate A/D converter
at 40 M samples/s, i.e., at 1/4 times less than the
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traditional Nyquist sampling rate. The reconstruction of
signal is then performed by exploiting the dictionary of
Gabor atom frequencies, having potential to sparsely
represent the signal of interest. By solving the l1 ‐ norm
minimization problem in cvx using reconstruction
matrix Α, the signal is recovered directly in time-
frequency domain. Figure 3c shows accurate recovery of
sparse coefficients in dictionary of Gabor atom frequen-
cies. The spectrogram, computed by squaring the magni-
tude of reconstruction, is shown in Fig. 3d. The
reconstructed pulse spectrogram in Fig. 3d clearly dis-
plays high fidelity signal recovery when compared with
original signal spectrogram shown in Fig. 3b.
To quantify the performance of Costas sequence sam-

pled at sub-Nyquist rate, recovered signal is compared
with conventionally sampled signal and, its signal-to-
noise ratio (SNR) and mean squared error (MSE) is
computed. The second and fourth column in Table 1
give the values of SNR and MSE, respectively, for 2×,
4×, 8×, and 16× sub-Nyquist rate sampling, which de-
picts high-quality signal restoration even for minimum
sampled data.
In our second example, we performed compressive

sensing of a stepped linear-frequency modulated (SLFM)
pulse in the same L-band. The frequency modulates
linearly, among eight steps, between the frequency limits
as mentioned in our first experiment. Again, 2×, 4×, 8×,
and 16× sub-Nyquist rate sampling is performed in an
A/I converter. The reconstruction is performed by
exploiting the same Gabor dictionary of atom frequen-
cies using nonlinear recovery algorithm. The spectro-
gram of the original SLFM pulse and recovered time-
frequency sequence from 8× sub-Nyquist rate samples is
shown in Fig. 4.
The SNR and MSE performance as presented in col-

umn 3 and column 5, respectively, of Table 1 show high-
quality reconstructed waveform at different undersam-
pling rates using A/I converter. With decrease in the
number of measurements acquired, the SNR of recon-
structed signal slightly degrades as expected, but the re-
construction performance is still appreciable even for
higher undersampling rates.

5.2 ROC-based detection performance
To better appreciate the performance of CS-based
Costas coded radar, ROC curves for its detector are sim-
ulated and are compared with theoretical detection per-
formance of matched filtering (MF) in classical radars
under varying M for a given SNR and Pfa. Ten thousand
Monte Carlo simulations are performed, and results are
compared with an equal MF output SNR. The case is
simulated for 2-point targets (K = 2) of constant ampli-
tude, under ideal conditions that no sources of error
other than noise are present. N = 200 is used with

varying M/N ratio of 0.25, 0.1, and 0.05, corresponding
to 50-order, 20-order, and 10-order Costas coded wave-
forms respectively, of same pulse duration. The probabil-
ity of detection Pd and probability of false alarm Pfa are
calculated by counting the number of instances when
targets-present return and targets-absent return exceed
detector threshold γ, respectively, and normalizing them
over the length of respective simulations round. Pd in
ROC curves are then simulated by varying Pfa which is a
function of threshold γ over fixed SNR simulations out-
put, or by varying SNR over fixed Pfa simulations output.
Figure 5 shows the comparison of such simulated ROC
curves with that of MF performance at a given SNRout

of about 10 dB. Similarly, Fig. 6 depicts the performance
of CS-based detection where Pd is plotted versus SNR
for a fixed Pfa = 10− 3 for all values of M/N ratio.
The above results clearly show that CS-based Costas

coded radar performs very close to conventional
optimum MF system. Moreover, ROC curves show
graceful degradation of target detection probability as
the number of measurements is decreased in compari-
son to what is required at Nyquist rate.

6 Conclusions
In this paper, we presented a novel application of com-
pressive sensing in Costas coded pulse compression ra-
dars. The wideband radar return is sampled below
Nyquist rate in real time using an analog-to-information
(A/I) converter. The recovery in time-frequency domain
is achieved by employing nonlinear recovery algorithm.
The reconstruction of Costas waveforms with different
sub-Nyquist sampling rates are demonstrated which re-
sults in significant reduction of A/D conversion band-
width, memory capacity, and power consumption. The
recovered signal holds high fidelity discrete frequency
coding (Costas sequence) for pulse compression. The
approach relaxes the bounds of using high-rate A/D
converters for high bandwidth signal processing, in ra-
dars and other applications, having low “information
rate.” Moreover, a separate detector is used after CS re-
constructions, and its performance is evaluated in terms
of ROC curves through simulations. The analysis shows
that even less order Costas coded waveforms in pulse
compression radars depicts remarkable detection per-
formance, quite comparable to that of conventional
Nyquist-rate matched filtering.
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