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Abstract

Background: Transcription factors are key proteins in the regulation of gene transcription. An important step in this
process is the opening of chromatin in order to make genomic regions available for transcription. Data on DNase I
hypersensitivity has previously been used to label a subset of transcription factors as Pioneers, Settlers and Migrants to
describe their potential role in this process. These labels represent an interesting hypothesis on gene regulation and
possibly a useful approach for data analysis, and therefore we wanted to expand the set of labeled transcription factors
to include as many known factors as possible. We have used a well-annotated dataset of 1175 transcription factors as
input to supervised machine learning methods, using the subset with previously assigned labels as training set. We
then used the final classifier to label the additional transcription factors according to their potential role as Pioneers,
Settlers and Migrants. The full set of labeled transcription factors was used to investigate associated properties and
functions of each class, including an analysis of interaction data for transcription factors based on DNA co-binding and
protein-protein interactions. We also used the assigned labels to analyze a previously published set of gene lists
associated with a time course experiment on cell differentiation.

Results: The analysis showed that the classification of transcription factors with respect to their potential role in
chromatin opening largely was determined by how they bind to DNA. Each subclass of transcription factors was
enriched for properties that seemed to characterize the subclass relative to its role in gene regulation, with very general
functions for Pioneers, whereas Migrants to a larger extent were associated with specific processes. Further analysis
showed that the expanded classification is a useful resource for analyzing other datasets on transcription factors with
respect to their potential role in gene regulation. The analysis of transcription factor interaction data showed
complementary differences between the subclasses, where transcription factors labeled as Pioneers often interact with
other transcription factors through DNA co-binding, whereas Migrants to a larger extent use protein-protein interactions.
The analysis of time course data on cell differentiation indicated a shift in the regulatory program associated with
Pioneer-like transcription factors during differentiation.

Conclusions: The expanded classification is an interesting resource for analyzing data on gene regulation, as illustrated
here on transcription factor interaction data and data from a time course experiment. The potential regulatory function
of transcription factors seems largely to be determined by how they bind DNA, but is also influenced by how they
interact with each other through cooperativity and protein-protein interactions.
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Background
Cells recognize and respond to internal and external sig-
nals, often leading to changes in the transcription level of
specific genes. Transcriptional regulatory systems play a
key role in many biological processes, such as cell cycle
progression, maintenance of intracellular metabolism,
physiological balance, and cellular differentiation in devel-
opmental time courses [1, 2]. The regulatory system for
transcription involves several proteins, and in particular
transcription factors (TFs) can coordinate a diversity of
regulatory processes. Many diseases arise from errors in
the regulatory system for transcription; TFs are overrepre-
sented among oncogenes [3], and a third of human devel-
opmental disorders have been related to dysfunctional
TFs [4]. However, alterations in the activity and regulatory
pathway of TFs are also likely to be a source for pheno-
typic diversity and evolutionary adaptation [5–7].
Most TFs bind to DNA by recognizing specific DNA

sub-sequences known as transcription factor binding
sites (TFBSs), and thereby they control the transcription
of nearby genes through their promoters, or more dis-
tant genes through enhancers. However, it has been real-
ized that binding of TFs to TFBSs is not enough to fully
explain the regulatory program of gene expression [8].
The set of cis-regulatory regions (promoters, enhancers)
is identical at the DNA sequence level in all cell types of
a given species. Therefore the transcriptional program
specific to each cell type must be the result of the set of
TFs expressed in that cell type, and how genes are
selected for transcriptional activation or repression. The
same TFs can be expressed at the same rate in different
cell types, but may have separate binding sites, as TF
function and regulatory pathways also depend upon
chromatin structure and epigenetic modifications [9].
TFs can be classified according to regulatory function.

Sherwood et al. (2014) introduced PIQ (protein interaction
quantitation), a computational method for modeling the
magnitude and shape of genome-wide DNase I hypersensi-
tivity profiles used for identification of transcription factor
binding sites [10]. They identified binding sites for more
than 700 transcription factors from an experiment using
DNase I hypersensitivity analysis followed by sequencing,
and used the data for a hypothetical classification of tran-
scription factors into three groups; Pioneers, Settlers and
Migrants. Pioneer TFs are assumed to be distinguished by
their ability to bind to DNA target sites, even in inaccess-
ible regions, and were found bound to chromatin before
activation of enhancers and gene expression modulation.
The binding of Settler TFs seems to depend upon the open-
ness of chromatin at their binding sites. They almost always
bind to sites matching their DNA-binding motif, but they
do not enable binding to inaccessible DNA sites [10, 11].
And finally Migrant TFs only bind to a subset of their
target sites, even in accessible DNA [10].

TFs can also be classified based on structural proper-
ties, and the most common classifications are based on
the structure of their DNA-binding domains (DBDs)
[12]. In some instances the structural classification may
also indicate the function of TFs. For example, TFs with
homeodomain are often associated with developmental
processes, and those with a “winged” helix-turn-helix
(HTH) motif are frequently associated with the inter-
feron regulatory factor family and triggering of immune
responses against viral infections [12]. Wingender et al.
(2013) have made a comprehensive classification of 1558
human TFs based on a hierarchy of general topology
(Superclass), similar structures of the DBD (Class),
sequence and functional similarities (Family), sequence-
based subgroupings (Subfamily), TF gene (Genus), and
TF polypeptide (Factor ‘species’), and this classification
is known as TFClass. TFs are classified according to this
six-level classification scheme, where four levels are ab-
stractions according to different criteria, while the fifth
level shows the TF genes, and the sixth level individual
gene products. They collected and curated 71 animal TF
families. Altogether, ten superclasses have been identi-
fied, comprising of 40 classes and 111 families [13].
In a previous paper we presented a comprehensive list

of properties for 1978 human TFs. We identified 1225
DNA binding TFs, based on existing annotation of Pfam
domains and identification of additional Pfam DBDs. For
the remaining 753 TFs we could not identify a clear DBD.
Annotated properties included DBDs, protein–protein in-
teractions, and post-translational modifications. The paper
demonstrated how such a resource can be used to identify
properties that are enriched in a subset of TFs [14]. How-
ever, it is an interesting question whether TF properties
also can be used to predict the regulatory function of TFs,
for example as defined by Sherwood et al. This is particu-
larly relevant as Sherwood et al. could assign regulatory
function only to a subset of the known TFs.
There are several different types of classifiers from ma-

chine learning that may be used for this type of function
prediction, as for example Random Forest (RF), Support
Vector Classifier (SVC) with different kernels (e.g. linear,
Radial Basis Function (RBF), polynomial), k Nearest
Neighbours (kNN), and Gaussian naïve Bayes (GNB)
classifiers. There are also several approaches for improv-
ing classifier performance, like boosting, where an
ensemble of possibly weak classifiers as combined into a
stronger classifier, and AdaBoost [15] is an important
implementation of boosting.
Random Forest (RF) is one of the most successful en-

semble techniques in machine learning and bioinformat-
ics for high-dimensional classification, and also the main
classifier for this project. The RF algorithm makes a
large number of individual decision tree classifiers (i.e. a
forest) where each tree gives a classification, and the
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final classification is based on the votes over all the trees
in the forest. The rule to generate a tree is through splits
at each node based on the yes and no answer of the
predictors. The split selection can be performed by using
decrease of Gini impurity in each step, where Gini
impurity is a measure of how often a randomly chosen
element from the set would be incorrectly labeled if it
was randomly labeled according to the distribution of
labels in the subset.
The goal of this project was to predict regulatory func-

tion according to Sherwood et al. for the majority of the
TFs. We therefore made a training set of TFs with regu-
latory function as hypothesized by Sherwood et al., and
used TF properties, including the structural classification
by Wingender et al., to define a feature vector for each
TF. We used machine learning techniques to evaluate
and select classifiers and feature vectors [16–19], and
showed that the structure of the DBD is the most
important property for predicting regulatory function.
We then used this to predict regulatory function for the
TFs not classified by Sherwood et al., and analyzed the
outcome of the classification. We also used the full set
of classified TFs (measured and predicted) to identify
properties of the functional classes by enrichment
analysis, and to analyze data on TF-TF interactions as
well as time course data on cell differentiation.

Methods
Data for training and classification
We used the comprehensive collection of properties for
1978 TFs from our previous work [14]. This included
information on DNA binding domains (DBDs), protein–
protein interactions (PPIs), and post-translational modi-
fications (PTMs). The information on DNA binding
domains was based on Pfam annotation and literature,
plus a DBD prediction method for identification of add-
itional DNA-binding Pfam-domains [20, 21]. The ori-
ginal list of 1978 human transcription factors was taken
from Ravasi et al., where they generated experimental
data on PPIs to build an atlas of combinatorial regula-
tion [22], and this information on PPIs was included in
our data set. We also used information about PTMs
from Phosphosite [23]. For this project we extended the
initial annotation by adding data on TF classification
from the set of 1558 TFs classified by Wingender et al.
[13] (TFClass), and 1175 TFs were found in the overlap
between TFClass and our set of annotated TFs.
We then used the set of TFs classified according to

chromatin activity (regulatory function) by Sherwood
et al. [10]. We could identify 459 of these TFs in our
database, and 457 of these had intersection with the
1175 TFs with TFClass annotation. These 457 TFs included
45 TFs with function as Pioneers, 47 as Settlers, and 365 as
Migrants, and were used as training set for machine

learning, which subsequently was used to classify the
remaining 718 TFs from the set of 1175 TFs.

Encoding TF properties in feature vectors
We encoded a large set of available properties in feature
vectors for TF classification: TFClass, frequent Pfam
domains, DNA binding (yes/no), number of DBDs, PPI
(yes/no), number of PPIs, PTMs (general and individ-
ual), number of zinc fingers, and number of positions
for phosphorylation. Since the properties initially were a
mixture of quantitative and qualitative features (e.g. hav-
ing a specific Pfam domain (yes/no) versus the number
of phosphorylation sites (0, 1, 2, …)), they were
converted to a more consistent binary representation
before analysis, as described below and in Table 1.

Encoding of TFClass (TF_Class)
TFClass uses a hierarchical classification, with 10 super-
classes at the top level, and a varying number of classes,
families, subfamilies etc. below that. We encoded the
superclasses (10) and classes (37 in total, ignoring 3 clas-
ses with no overlap with our set of TFs) as a 47 bit
binary vector, with 1 for the corresponding superclass
and class, and 0 elsewhere. This is a reasonable encoding
because it will give a Hamming distance of 2 between
TFs belonging to different classes within the same super-
class, whereas it will be 4 for TFs belonging to different
superclasses. Thereby TFs from the same superclass (but
different class) will be more similar than TFs from

Table 1 Summary of property encodings for transcription
factors (TFs)

Property Description Encoding

TF_Class Encoded 2–3 top levels of
five digit code based on
TFClass classification; i.e.
superclass followed by
class (see text)

A 47-dimensional vector
where ith position (superclass)
and jth position (class) are 1,
other positions are 0

PD TF has a frequent Pfam
domain (yes/no)

1/0

DBD TF has a DNA-binding
domain (DBD) (yes/no)

1/0

N_DBD Number of DBDs (see text) 11/10/00

PPI TF has a protein-protein
interaction (PPI) (yes/no)

1/0

N_PPI Number of PPIs (see text) 11/10/00

N_PhS Number of Phosphorylation
sites (see text)

11/10/00

PTM TF has a post-translational
modification (PTM) (yes/no)

1/0

Ind_PTM TF has a specific PTM (yes/no) An ordered 6-dimensional
vector where position i
corresponding to PTM i is 1/0

N_ZFD Number of the zinc finger
domains (see text)

11/10/00
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different superclasses. The largest class was class 2.3, the
C2H2 zinc finger factors with 475 TFs (the second lar-
gest was the homeodomain (3.1) with 199 TFs). To get
more balanced subset sizes for the feature vector we
extended this into four subclasses (families 2.3.1-4, as
family 2.3.5 did not have any overlap with our data).

Encoding of frequent Pfam domains (PD)
Transcription factors are typically modular in structure,
and will often contain effector domains, one or more
DNA-binding domains and other domain types. Type
and frequency of domains may reflect the function of a
transcription factor.
There were 20 domains with occurrence frequency of

more than 20 in the set of TFs mapped to TFClass (see
Additional file 1: Table S1). We encoded this as a 20 bit
binary vector with each bit corresponding to having a
particular Pfam domain or not (1/0).

Encoding of DNA binding, PPI, and PTM (DBD, PPI, and
PTM)
For encoding of DNA binding, PPI, and PTM as TF
properties we encoded each of these properties individu-
ally as bits in a binary feature vector, indicating whether
it had this property or not (1/0), without taking the
number of occurrences into account, i.e. whether it is
known to have a PTM or not, and not type or frequency.
However, see below for a more detailed encoding.

Encoding of individual PTMs (Ind_PTM)
We have previously shown that in particular PTMs may
show artificial correlations due to how they are identified
[14], and we therefore wanted to test more than one en-
coding, but with focus on relatively simple encodings
that may be more robust to missing data. There were six
different types of PTMs annotated in our TF collection;
phosphorylation, acetylation, methylation, ubiqutination,
sumoylation, and O-GlcNAc. We encoded this for each
TF as bits in a binary vector of length six.

Encoding of number of DBDs, PPIs, and phosphorylations
(N_DBD, N_PPI, and N_PhS)
We extracted the number of DBDs for each TF from our
collection. We also used the BioGRID database [24] to
extract the number of PPIs for each TF, and added this
to our set of properties. From Phosphosite we used the
number of sites for each individual modification. We
encoded each TF in binary as [1 1] if the number of sites
(e.g. for phosphorylations) was higher than the average,
[1 0] if it was between one and the average, and [0 0]
otherwise. This was done for the number of DBDs
(average = 4), the number of PPIs (average = 9), and the
number of phosphorylation sites (average = 14). The
average for other PTMs was less than 1 and was

therefore not considered for extended encoding. This
can be seen as a reduced resolution encoding of counts
(zero, below average, above average), which is more ro-
bust against non-relevant variation than a direct binary
encoding of the individual counts.

Encoding of the number of frequent zinc finger domains
(N_ZFD)
The zinc finger domains are very frequent in TFs, and
may therefore require special treatment to get good clas-
sification. The Pfam domains zf_C2H2 and zf_H2C2_2
had the highest frequency among zinc fingers. These
domains were therefore encoded for the TFs as [1 1] if
the TF had more than three of these zinc finger
domains, [1 0] if it had between one to three of these
domains, and as [0 0] if had none.

The general classification strategy
The classes of regulatory function
In the initial functional classification on chromatin activ-
ity there are three main classes; Pioneers, Settlers, and
Migrants. An enrichment analysis based on DAVID [25]
indicated a functional and structural difference between
the Migrants with negative chromatin opening index
and the Migrants with positive chromatin opening index
(see Results and discussion). For classification we there-
fore considered them separately, as positive Migrants
and negative Migrants.

Multiclass classification
The functional classification of additional human TFs is
a multiclass classification problem, i.e. classification of
patterns into more than two classes. Some classification
algorithms are binary algorithms that can be adapted to
multiclass classification, whereas other classification
algorithms can handle more than two classes by design.
There are general strategies for handling the problem of
multiclass classification as a binary classification prob-
lem [26], and we used a well-known one-vs-rest strategy,
which involves training a single classifier per class, with
the patterns of that class as positive patterns and all
other patterns as negatives. This strategy requires that
the base classifier produces a real-valued confidence
score for its decision, rather than just a class label, as
discrete class labels alone can result in ambiguities,
where multiple classes are predicted for a single sample
[26]. We used four different cases: Pioneers vs Rest,
Settlers vs Rest, positive Migrants vs Rest, and negative
Migrants vs Rest.

Handling imbalanced data
Any data set that shows an unequal distribution between
its classes can be considered as imbalanced. Studies have
shown that for several base classifiers, a balanced data
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set improves the overall classification performance, com-
pared to an imbalanced data set [27, 28]. Using sampling
methods on an imbalanced data set, in order to make a
balanced one, will therefore normally improve the per-
formance [29].
In this paper we used random under-sampling on

training data, without replacement [29]. Specifically, in
the Pioneers vs Rest case we randomly split the Migrants
and Settlers into 9 subclasses, making 9 different cases,
each of them balanced (see Table 2). Random splitting in
the Settlers vs Rest case was handled in the same way.
For the positive Migrants vs Rest case we randomly split
the Rest case into 5 subclasses. For the negative
Migrants vs Rest case we randomly split the negative
Migrants case into 2 subclasses, and used all Pioneers,
Settlers, and positive Migrants as the Rest class. This en-
sures that each classification problem is balanced, even
though the number of cases varies between the classes.

Classifiers
Several classifiers including Random Forest (RF),
Support Vector Classification (SVC) with different
kernels (linear, Radial Basis Function (RBF), polyno-
mial), k Nearest Neighbors (kNN) and Gaussian
Naïve Bayes (GNB) were evaluated, using the one-vs-
rest strategy described above. The kNN methods
need a specification of the number of neighbors, and
the SVC requires parameterization of the complexity
constant C and the kernel function. The number of
neighbors for kNN was limited to the set {3, 5, 7, 9}
[30]. The kNN was performed over all the allowable
number of neighbors and the one that had the high-
est AUC score (see below) was kept. For SVC we
considered two kinds of kernel; RBF K(xi, xj) =
exp(−γ(xi − xj)

2) where γ is the width of the RBF
function, and polynomial K(xi, xj) = (xi. xj)

d where d
is the degree. A grid search was performed to
optimize the parameters of support vector machine
(SVM) classifiers. For the RBF kernel, C = {2− 4, 2− 3,
…, 23, 24} and γ = {2− 4, 2− 3,…, 23, 24} and for polyno-
mial kernel C = {2− 4, 2− 3,…, 23, 24} and d = {2, 3} .
All machine learning methods were implemented

using scikit-learn [31], and all scripts used in the analysis
were based on python 2.7 [32].

Performance measures
We used several common measures to evaluate the per-
formance of the classifiers, including precision (positive
prediction value or PPV), recall (sensitivity or SN),
F-score, MCC (Matthews’s correlation coefficient), and
AUC (area under curve for receiver operating characteris-
tics (ROC)) [33–35]. The true positive (TP) and true nega-
tive (TN) cases correspond to TFs correctly predicted as
belonging to the specific class or the Rest class, respect-
ively, false positive (FP) denote cases where TFs from the
Rest class where predicted as belonging to the specific
class, and false negative (FN) denote cases where TFs from
the specific class were predicted to the Rest class.

Cross-validation and comparison of results
The performance of classifiers was tested using five-fold
bootstrap cross-validation with ten runs (10 × 5) on all
possible rebalanced TF subsets on regulatory function,
and for each individual property [36]. In each fold, TFs
were randomly sampled as two separate sets: one subset
to establish the model (80%, training set) and the rest of
the TFs to test the prediction model (20%, test set). The
precision, recall, F-score, MCC, and AUC were com-
puted for each run and then averaged over runs for each
classifier. It was applied for the four classification cases
separately (Pioneers vs Rest, Settlers vs Rest, positive Mi-
grants vs Rest, and negative Migrants vs Rest).
The most frequently used statistical tests to determine

significant differences between two machine learning al-
gorithms are the t-test and the Wilcoxon test [17]. The
t-test is a parametric one and requires that the necessary
conditions for using it are true, i.e. independence,
normality, and heteroscedasticity. This is not the case in
the majority of experiments in machine learning [37].
Thus, we investigated the statistical significance of the
differences on performance using the nonparametric
Wilcoxon test; we kept the result of the AUC measure
for each fold and each classifier, and then compared
them using Wilcoxon [17].
After identification of the locally best classifier we

evaluated the performance on each individual property
using the same process as above (bootstrap cross-
validation). Again the performance measures were com-
puted for each fold and then averaged on runs for the
four classification cases separately.
The final set of properties was selected using a forward

best-first search on the list of properties for the four
classification cases separately. We executed the runs of
each cross-validation and used the average AUC to rank
the properties. We started with the property giving the
largest AUC, and at each step added the property
(among the remaining properties) which results in the
best average AUC [38]. We also investigated the statis-
tical significance of the differences of the average AUC

Table 2 Summary of criteria for balanced datasets

Case Specific class Rest class Splits Average size

Pioneers vs Rest 45 47 + 77 + 288 1 + 9 45 + 46

Settlers vs Rest 47 45 + 77 + 288 1 + 9 47 + 46

Positive Migrants
vs Rest

77 45 + 47 + 288 1 + 5 77 + 76

Negative Migrants
vs Rest

288 45 + 47 + 77 2 + 1 144 + 169
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in each step after adding a new property, using the
paired Wilcoxon tests.

Analyses using regulatory function
We performed three analyses to illustrate how the
predicted regulatory function can be used; enrichment
analysis on the subsets of TFs according to regulatory
function, co-localization of TFs, and function of TFs
involved in a time course experiment.

Enrichment analysis
Subsets of TFs were analyzed for enriched properties
using DAVID [25] and GOrilla [39], with the set of 1175
TFs with functional classification as background. The set
of unclassified TFs was analyzed separately with DAVID,
using the full set of 1978 TFs as background.

Analysis of TF-TF interactions
We used data on TF-TF interactions from four different
sources. Jolma et al. [40] used SELEX with a two-step af-
finity purification to map TF-TF-DNA interactions, show-
ing that interactions between TFs were predominately
mediated by DNA. They identified 315 TF-TF pairs show-
ing cooperative binding (out of 9400 potential pairs), and
we used these pairs to identify significant (p < 0.05) en-
richment (or depletion) for TF-TF interactions within and
between the different TF classes, using a 2 × 2 matrix
for statistical analysis (i.e., testing for each possible pair
of TFs whether the pair represented a specific combin-
ation of regulatory functions, and whether there was a
known interaction between the pair of TFs). Estimation
of p-values on the 2 × 2 matrices was done using the
fisher.test in R. Further, we used results from the
ENCODE Consortium [41], where they used ChIP-seq
data to identify pairs of TFs that tend to be co-located to
the same genomic regions. For PPIs we used data from
Human Protein Reference Database (HPRD) [42] release
9, which includes data on pairwise PPIs for a large number
of proteins, including TFs. We also used data from Ravasi
et al. [22], where they used a M2H system to systematic-
ally screen for PPIs between TFs. This should represent a
more coherent dataset than the collection in HPRD, but
limited to the experimental conditions used in the M2H
system. Data on the number of DNA-binding domains
were generated from the list by Bahrami et al. [14]. Data
on GC content and IC was generated from matrices
downloaded from the Jaspar database [43].

Analysis of TFs in a time course experiment
Time course data were made available by the FANTOM
Consortium [44, 45], and the assignment of genes to
CAGE TSS clusters and edgeR analysis performed by
the consortium was used for the project. We analyzed

data from an in vitro differentiation time course experi-
ment, generated by Soichi Ogishima and analyzed for
expression levels by the FANTOM5 consortium using
CAGE (cap analysis of gene expression) [44]. The ex-
periment follows the transition from epithelial cells to
mesenchymal cells after induction with TGF-β and
TNF-α. The expression levels of individual genes com-
pared to time zero had been analyzed by the FANTOM
Consortium using edgeR [46], and we assigned TFs with
significantly changed expression level (adjusted p < 0.05)
to functional classes. Enrichment analysis was done with
a Fisher exact test, asking whether a given property was
significantly enriched (or depleted) in a given set of TFs,
compared to the full set of annotated TFs. The p-values
were corrected for multiple testing using the Benjamini
correction.

Results and discussion
Data for training and classification
We defined a training set of 457 TFs with known
chromatin activity (regulatory function) according to
Sherwood et al. [10] and a classification set of 718 TFs,
as described in Methods. An initial enrichment analysis
of the training subsets using DAVID [25] indicated a
functional and structural difference between the
Migrants with negative chromatin opening index and
the Migrants with positive chromatin opening index (see
Additional file 1: Table S2). For classification we there-
fore considered them separately, and divided our data-
base into four functions: Pioneers (P, 45 TFs), Settlers (S,
47 TFs), positive Migrants (M+, 77 TFs) and negative
Migrants (M-, 288 TFs) (see Fig. 1). We encoded TF

Fig. 1 Distribution of TFs based on the classification by Sherwood
et al. The classification by Sherwood et al. [10] has been extended to
four different functional classes; Pioneers, Settlers, positive Migrants
and negative Migrants. The points in light olive show the TFs that
had intersection with TF classification (TFClass), regulatory function
(Sherwood et al.), and our database of TF properties. The figure has
been adapted from Sherwood et al
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properties as feature vectors; please see Methods and
Table 1 for details and property names.

Finding the optimal classifier
We first tested the performance of several classifiers
using the full set of properties and the one-vs-rest strat-
egy (see Methods) in order to find the classifier with best
overall performance on these data. The RF classifier was
selected for further analysis as it had the best perform-
ance compared to the other classifiers; together with the
SVC-RBF classifier it was always ranked as one of the
best classifiers in the different cases, but with a higher
average AUC score than the SVC-RBF classifier (see
Additional file 1: Table S3 for detailed results). Since RF
is a multiclass classifier we could in principle also have
switched to multiclass classification, rather than the
one-vs-rest binarization strategy used so far. However, as
shown by Adnan and Islam [47], RF with binarized data
actually has a better performance than standard multi-
class RF, in particular for cases with more than 3 distinct
class values. We therefore decided to keep the one-vs-
rest strategy, which also made the subsequent classifica-
tions comparable to the initial tests.

Finding the optimal feature set
We then tested each individual property for classifica-
tion by estimating the AUC score and the feature im-
portance score, using the RF classifier. The results for
the individual properties in the four classification cases
are shown in Fig. 2. The data for Fig. 2 are shown in
Additional file 1: Table S4, and complete measures of
performance on the individual properties are shown in
Additional file 1: Table S5. The results showed that the
AUC score and the feature importance are highly corre-
lated, and the TF_Class and PD (i.e., Pfam domains)
properties gave the highest performance for each of the
four binary classification cases. The N_ZFD, PPI and
Ind_PTM properties gave the next highest performance
for the Pioneers vs Rest, the Settlers vs Rest and
Migrants vs Rest cases respectively. The remaining prop-
erties gave roughly the same (and lower) performance,
often close to random classification (AUC 0.5), even
though all the properties were initially selected as poten-
tially relevant for TF function.
Finally we used the forward best-first algorithm with

the RF classifier, which should be robust with respect to
redundancy between properties. We started with the

Fig. 2 - Important properties for classification. The plot shows RF feature importance and AUC score for each property for the classification of each
functional class (Pioneers (P), Settlers (S), positive Migrants (M+) and negative Migrants (M-)) versus Rest. This highlights the importance of structural TF
classification (TFClass) and Pfam domains (PD) for correct classification of regulatory function. The other properties are DNA binding domain (DBD),
number of DBDs (N_DBD), protein-protein interaction (PPI), number of PPIs (N_PPI), post-translational modifications, both in general (PTM) and as
individual modifications (Ind_PTM), number of frequent zinc finger domains (N_ZFD) and number of positions for phosphorylation (N_PhS)
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property that gave the highest AUC score in each case.
The process was continued by adding all remaining
properties separately to the pervious step, and selecting
the property that produced the highest AUC score on a
five-fold cross validation over ten runs. Figure 3 shows
the general improvement of AUC while stepwise increas-
ing the number of properties, together with the p-values
(see Additional file 1: Table S6 for details).
The results showed that a list including the TF_Class,

PD and N_PPI properties was the best list for the
Pioneers vs Rest case; a list including the PD, N_PPI and
TF_Class properties was best for the Settlers vs Rest
case; a list including the PD, TF_Class, and N_ZFD
properties was best for the positive Migrants vs Rest
case; and finally for the negative Migrants vs Rest the
best list included the TF_Class and PD properties. Inter-
estingly the Ind_PTM property was not selected despite
a good ranking based on the feature importance (see
Additional file 1: Table S4), indicating that the informa-
tion may be redundant when other properties are
included. The result showed that in particular TF classi-
fication and frequent Pfam domains were important
features for correct prediction of functional roles. The
individual subsets of properties that are listed above
were used for the final classification.
Figures 2 and 3 show that the classification is not per-

fect, according to the AUC score. It is possible that more
informative features could have improved the perform-
ance. However, it is well documented that TF structure is

highly informative on function [12]. It is possible that the
non-optimal performance is due to the inherent variation
and noise in the biological system, and the fact that the
classification of the TFs into subclasses uses cutoff values
on continuous variables, which may create some random-
ness in the classification of borderline cases.

Classification
The RF classifier was used for the final classification,
with the balanced set of 457 TFs with known regulatory
function as training data. Classification of the 718 un-
classified TFs was predicted over all splits of balanced
data as shown in Table 2, and the optimal list of features
was used for each case separately. This means that each
TF was predicted 9 times for Pioneer vs Rest and Settler
vs Rest, 5 times for Positive Migrant vs Rest and 2 times
for Negative Migrant vs Rest. Average probability was
then computed for each TF for each case separately. The
highest probability was used for final classification.
By this strategy we identified 289 TFs as Pioneers, 169

TFs as Settlers, 211 TFs as positive Migrants, and 49 TFs
as negative Migrants in the set of 718 unclassified TFs
(see Additional file 2: Table S7). The average and margin
probability from the adaptive boosting on RF were used to
evaluate the quality of the final prediction. A more exten-
sive and in particular experimental validation would re-
quire DNase data and binding site models for some of the
TFs not included in the original training set. It was not
feasible to generate such new data at the current stage,

Pioneer vs Rest Settler vs Rest Migrant+ vs Rest Migrant− vs Rest
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1.0e−05 0.0365 0.5172

0.0182 0.3988 0.1448

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TF
_C
las
s

PD

N_
PP
I

N_
DB
D PD

N_
PP
I

TF
_C
las
s

PT
M PD

TF
_C
las
s

N_
ZF
D

PP
I

TF
_C
las
s

PD PT
M

N_
ZF
D

Properties

A
U

C

Fig. 3 - AUC scores for forward best-first search. The forward best-first algorithm with the RF classifier was used to find a list of properties with
good classification performance. The AUC scores while adding properties stepwise (with p-values) are shown, at each step adding the property
that gave the highest AUC score
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and the validation is therefore limited to the cross-
validation performed during training. An overview of the
classification result for all the 1175 TFs is given in Table 3.

Discussion of the classification result
Several interesting observations can be made from the
classification results. It is clear that the original dataset
by Sherwood et al. is highly biased, in particular with
respect to TFClasses 2.3.3 (Zinc-coordinating DNA-
binding domains/C2H2 zinc finger factors/More than 3
adjacent zinc finger factors) and 2.3.4 (…/…/Factors with
multiple dispersed zinc fingers), where the training set
contains only 3.7 and 4.9% of the TFs from each class,
respectively. Still the classification seems to be quite
robust, in particular for 2.3.3 where the average p-value
is 0.86 and margin is 0.21. This means that the classifica-
tion presented here provides an important extension of
the initial functional classification.
The results show clearly that the regulatory function

of a TF to a large extent is determined by how it binds
DNA, as the main properties for successful classification
are TFClass and Pfam domains. It is also clear that
although TFClass is very important for the classification,
it is not sufficient by itself, as other properties, in par-
ticular Pfam, provide complementary information. This
is seen for example in TFClass 2.3.2 (…/…/Other factors
with up to three adjacent zinc fingers), with 0 cases in
the training set, where 15 cases in the full set still could
be classified as Pioneers (12) or positive Migrants (3)
with reasonable performance (average p-value 0.77, mar-
gin 0.20). A similar example is TFClass 3.7 (Helix-turn-
helix domains/ARID domain factors). However, the
number of TFs in classes with no cases in the training
set is very low (76 TFs in total), and in general there is a
good distribution of cases in the training set. This is
reflected in the classification result as several cases of
high average p-values. An example is TFClass 3.5
(…/Tryptophan cluster factors), with an average p-value
of 0.94 and a margin of 0.26. This indicates a quite
reliable classification.
However, the classification is clearly not perfect, with

an AUC score in the range of 0.82–0.92. It is difficult to
say whether the main reason is imperfect training set,
key features lacking in the property set, or non-optimal
classifiers. However, it is clear that the best performance
is seen for the negative Migrants, which also represent
the most well-defined subset (see Fig. 1). This may indi-
cate that the initial classification by Sheerwood et al. can
be improved. However, this aspect has not been investi-
gated further.

Analyses using regulatory function
We then used the full set of TFs that could be classified
as Pioneers, Settlers or Migrants for three types of data

analysis; enrichment analysis on regulatory function,
analysis of properties associated with TF-TF and TF-
DNA interactions for the individual classes of regulatory
function, and finally a time course experiments where
several TFs show changes in expression level.

General properties associated with regulatory function
Subsets according to regulatory function were analyzed
for enriched properties using DAVID [25] and GOrilla
[39], using the set of 1175 TFs as background. The set of
unclassified TFs was analyzed separately with DAVID to
test for any potential bias, using the full set of 1978 TFs
as background.
For DAVID we looked in particular into the Functional

Annotation Clustering output, which groups together as-
sociated terms from different annotation sources into
functional clusters, based on enrichment (see Additional
file 3: Table S8). For the unclassified TFs the most
enriched terms where “chromatin modification” and simi-
lar terms, followed by for example “protein complex as-
sembly”, “transcription initiation”, “RNA processing” and
“DNA repair”. This seems to indicate that the unclassified
TFs were not enriched for regulatory TFs, but rather
general TFs and proteins associated with TFs and other
regulatory functions. There was no strong indication of
any problematic bias associated with the unclassified TFs.
For Pioneers all the most enriched clusters were

related to DNA-binding domains and their properties,
such as “zinc fingers”, “metal binding”, KRAB, BTB, ETS
etc. More functional terms like “cell cycle” or “cancer”
were found only at quite low enrichment. This was con-
firmed by GOrilla (see Additional file 1: Table S9), where
the most enriched term was “metal ion binding”, and no
terms related to function were enriched. For Settlers the
picture was similar, with highest enrichment for domains
like HLH, PAS, TBOX and bZIP, which also was con-
firmed by GOrilla, where the most enriched term was
“protein dimerization activity”. However, in DAVID also
more functional terms like “tissue morphogenesis” and
“response to stimulus” were clearly enriched. This trend
was even clearer for the positive Migrants. Although
terms like “zinc finger” and “metal ion binding” were
strongly enriched, so were also terms like “ligand bind-
ing”, “hormone receptor”, “lipid binding” and “signaling
pathway”, and for GOrilla the most enriched term was
“receptor activity”. A similar picture was seen in negative
Migrants. Here “fork head” and POV was strongly
enriched, but for example “cell motility”, “cell migra-
tion”, “cell morphogenesis” and “axonogenesis” showed a
similar enrichment. For GOrilla “chromatin binding”
was the most enriched term.
This seems to indicate functional roles of these classes

of TFs that are consistent with what previously has been
assumed, where Pioneers may have a very general role in
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Table 3 Experimental data and classification results according to TFClass

Total Experimental Classified Average p-value

TFClass Code #TFs #TFs P S M+ M- #TFs P S M+ M- All Margin

Uncharacterized 0.0 6 0 0 0 0 0 6 0 5 1 0 0.682 0.027

NonO domain factors 0.2 2 0 0 0 0 0 2 0 2 0 0 0.679 0.022

Leucine-rich repeat proteins 0.3 1 0 0 0 0 0 1 0 1 0 0 0.679 0.022

NFX1-type putative zf factors 0.4 3 0 0 0 0 0 3 1 2 0 0 0.673 0.016

bZIP 1.1 54 25 2 9 3 11 29 10 9 0 10 0.720 0.150

bHLH 1.2 84 29 1 23 3 2 55 0 55 0 0 0.943 0.539

bHSH 1.3 4 1 1 0 0 0 3 3 0 0 0 0.759 0.128

Nuclear receptors with C4 zfs 2.1 47 47 1 1 45 0 0 0 0 0 0 - -

Other C4 zfs 2.2 17 4 0 0 1 3 13 0 0 0 13 0.738 0.056

Three-zf Kruppel-related factors 2.3.1 26 5 4 1 0 0 21 21 0 0 0 0.958 0.273

Other factors with 3 adjacent zf 2.3.2 15 0 0 0 0 0 15 12 0 3 0 0.773 0.203

More than 3 adjacent zf 2.3.3 327 12 6 1 4 1 315 201 0 114 0 0.862 0.213

Factors multiple dispersed zf 2.3.4 103 5 1 2 1 1 98 35 58 5 0 0.765 0.086

DM-type intertwined zf factors 2.5 6 0 0 0 0 0 6 0 0 6 0 0.704 0.166

CXXC zf factors 2.6 7 0 0 0 0 0 7 0 0 7 0 0.704 0.112

C2HC zf factors 2.7 8 0 0 0 0 0 8 0 0 8 0 0.704 0.116

C3H zf factors 2.8 2 0 0 0 0 0 2 0 0 2 0 0.704 0.116

C2CH THAP-type zf factors 2.9 1 0 0 0 0 0 1 0 0 1 0 0.704 0.084

Homeo domain factors 3.1 198 198 0 0 3 195 0 0 0 0 0 - -

Paired box factors 3.2 9 5 0 1 1 3 4 0 1 2 1 0.735 0.181

Fork head 3.3 56 56 2 3 1 50 0 0 0 0 0 - -

Heat shock factors 3.4 5 0 0 0 0 0 5 0 5 0 0 0.683 0.120

Tryptophan cluster factors 3.5 50 34 23 3 7 1 16 0 0 16 0 0.937 0.264

TEA domain factors 3.6 4 1 0 0 1 0 3 0 0 3 0 0.808 0.152

ARID domain factors 3.7 12 1 0 0 0 1 11 1 10 0 0 0.631 0.012

HMG domain factors 4.1 41 19 0 0 2 17 22 0 0 0 22 0.741 0.338

Het. CCAAT-binding factors 4.2 4 2 2 0 0 0 2 2 0 0 0 0.817 0.357

MADS box factors 5.1 5 2 0 0 0 2 3 0 0 0 3 0.650 0.014

SAND domain factors 5.3 7 3 1 0 2 0 4 0 0 4 0 0.906 0.304

RHR factors 6.1 21 3 0 1 2 0 18 0 0 18 0 0.907 0.125

STAT domain factors 6.2 7 0 0 0 0 0 7 0 0 7 0 0.777 0.076

p53 domain factors 6.3 3 0 0 0 0 0 3 0 0 3 0 0.777 0.062

Runt domain factors 6.4 3 0 0 0 0 0 3 0 0 3 0 0.777 0.062

T-Box factors 6.5 16 1 0 1 0 0 15 0 12 3 0 0.814 0.071

Grainyhead domain factors 6.7 4 0 0 0 0 0 4 0 0 4 0 0.777 0.122

SMAD/NF-1 DBD factors 7.1 8 1 1 0 0 0 7 3 4 0 0 0.761 0.211

GCM domain factors 7.2 2 1 0 1 0 0 1 0 1 0 0 0.844 0.268

TATA-binding proteins 8.1 2 1 0 0 1 0 1 0 0 1 0 0.805 0.171

AT hook factors 8.2 2 1 0 0 0 1 1 0 1 0 0 0.634 0.001

Cold-shock domain factors 9.1 3 0 0 0 0 0 3 0 3 0 0 0.679 0.022

Sum - 1175 457 45 47 77 288 718 289 169 211 49

The results are shown for Pioneers (P), Settlers (S), positive Migrants (M+) and negative Migrants (M-)

Ehsani et al. BMC Bioinformatics  (2016) 17:459 Page 10 of 16



initiating gene regulation, independent of specific bio-
logical processes. Then Settlers may be somewhat closer
to biological process, whereas positive and negative Mi-
grants are even more closely linked to specific processes,
in particular signaling and differentiation, respectively.
The fact that similar DBDs tend to be associated with

the same functional class may be consistent with a
hypothesis suggesting that TFs from different functional
classes bind to cis-regulatory regions in a hierarchical
process, rather than by competing for the same binding
site(s) [10].

Analysis of TF-TF interactions
Binding of several TFs to a regulatory region is an im-
portant process for gene activation. Interactions between
TFs can take place either because the TFs tend to bind
to neighboring binding sites in DNA, or because they
tend to interact through protein-protein interactions, or
both, and it seems likely that the relative importance of
this may differ with regulatory function. We therefore
used data from two different sources (SELEX and ChIP-
seq) on TF-TF interaction through co-localization to
DNA, and on TF-TF interaction through PPI, also from
two different sources (TF-specific and general, see
Methods for details). These data were tested for enrich-
ment or depletion of the functional subclasses. The
results are illustrated in Fig. 4.
As expected, the results are somewhat noisy, as in par-

ticular PPI data are known to be affected by large frac-
tions of false positives, e.g. due to non-specific binding.
However, the results are fairly consistent within the two

main interaction types (TF co-localization and PPI), and
the overall trend is also quite clear; TF co-localization
and PPI are to some extent mutually exclusive features.
Whereas Pioneers and Settlers tend to be enriched for
TF-TF-DNA interactions and depleted for PPI, the Mi-
grants (and in particular positive Migrants) are enriched
for PPI and depleted for TF-TF-DNA. This is consistent
with what we see at a more detailed level. In the data on
TF-TF-DNA interactions we see for example a clear de-
pletion of interactions between Pioneers like ETV2 and
ETV5 and positive Migrants (log ratios of observed vs
expected are −1.12 and −1.23, respectively), whereas the
Settler MAX is enriched for interaction with other
Settlers (log ratio 1.00). The positive Migrant TEAD4,
which is known to bind non-cooperatively [48], is
depleted for interaction with other positive Migrants
(log ratio −1.08). In the PPI data we see that positive
Migrants like RXRB and RXRG are enriched for inter-
action with other positive migrants (log ratio 1.41 and
1.25, respectively), and negative Migrants like ALX4 and
POU2F1 are enriched for interaction with other negative
Migrants (log ratio 1.17 and 1.25, respectively). However,
there seems to be a lack of frequent interactions between
individual Pioneer TFs and other TFs, in particular for
PPIs, probably indicating that most Pioneers may enable
transcription through other mechanisms, for example by
initiating chromatin remodeling [49].
In order to explain our observations we looked at

three properties that may influence TF-binding to DNA;
the number of DNA-binding domains in the TF, the
GC-content of the binding site, and the Information

a)

b)

Fig. 4 – Enrichment and depletion in TF-TF interactions. The figure illustrates cases of enrichment (red plus) and depletion (blue minus) relative to
random expectation for TF-TF interactions between classes of regulatory function, based on data related to a DNA binding and b PPI. For each
pair of regulatory functions (Pioneers (P), Settlers (S), positive Migrants (M+) and negative Migrants (M-)) the enrichment or depletion is indicated
for each of the data sources, 2× DNA binding in a) and 2× PPI in b). The strongest tendency is that interactions involving in particular Pioneers
tend to be enriched in DNA-based interactions, whereas interactions involving in particular positive Migrants tend to be depleted in DNA-based
interactions and enriched in PPIs
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Content (IC) of the binding site motif. In all three cases
we split the set of TFs into two, based on a suitable
cutoff value for the relevant property, and tested each
functional class of TFs for enrichment or depletion. The
results are shown in Table 4.
For the number of TFs with more than one DBD, we

saw a very significant enrichment in Pioneers, and a
clear depletion in Settlers and negative Migrants, which
means that Pioneers often will have a very strong and
specific binding, compared to the other TFs. With
respect to GC content, the negative Migrants were
strongly depleted for binding sites with high GC content,
whereas the other TFs were enriched. The general en-
richment is consistent with previous results [50] showing
that many TF binding sites have a high GC-content, and
that this also favors binding and positioning of nucleo-
somes. The high GC-content of Pioneer binding sites is
consistent with this, as the Pioneers are more likely to
be involved in chromatin opening and repositioning of
nucleosomes. This strengthens the significance of the
depletion seen in negative Migrants, where the low GC-
content in binding sites may be consistent with their
preference for open chromatin without stably bound
nucleosomes. Finally, the analysis of information content
showed that Pioneers are enriched for high IC, whereas
positive Migrants are depleted. The result for Pioneers is
consistent with their role in initiating chromatin opening
at specific genomic positions, requiring a more specific
motif than other TFs, in particular Migrants.
The results suggest that the chromatin opening index

of Sherwood et al. is associated with the number of

DBDs and possibly IC of the motif, whereas the chroma-
tin dependence is associated with GC content of the
binding sites. The enrichment for multiple DBDs in
Pioneers and the corresponding depletion in Settlers and
in particular negative migrants coincides mainly with the
axis for chromatin opening index in Fig. 1. The deple-
tion for high GC content in negative Migrants and the
corresponding enrichment in Pioneers, Settlers and
positive Migrants coincides mainly with the axis for
chromatin dependence. The pattern for IC is less clear,
given the enrichment for high IC in Pioneers and corre-
sponding depletion in positive Migrants.
The results from this analysis can be summarized as a

scenario for how TFs may cooperate to enable gene
expression. As a first step activating Pioneers can bind
strongly and with high specificity (due to multiple DBDs
with high IC) to nucleosome-bound regions (due to high
GC) to initiate chromatin remodeling, leading to at least
partly open chromatin. This is followed by Settlers,
which are quite similar to Pioneers, but with fewer
DBDs. They are therefore less likely to compete directly
with nucleosomes for binding, at least at an individual
level, but can stabilize open chromatin through coopera-
tive binding. This process may be supported by the posi-
tive Migrants, which are somewhat similar to Settlers,
although they have on average more DBDs but with
lower IC, and they are more likely to interact through
PPIs. This may give more general (less specific) binding
in regions of open chromatin, which may contribute to
stabilizing these regions in an open state. Finally, the
negative Migrants have few DBDs and low GC content,
which means that they can bind to more AT-rich regions
as found in for example linkers [51], and their binding
may be stabilized through PPIs. This scenario provides
an interesting basis for further testing and verification.

Analysis of TFs in a time course experiment
We analyzed data from an in vitro differentiation time
course experiment following the transition from epithe-
lial cells to mesenchymal cells after induction with TGF-
β and TNF-α. TFs with significantly changed expression
level (p < 0.05) were assigned to classes of regulatory
function. The number of TFs showing significant
changes in expression level at each time point are shown
in Table S10 (see Additional file 1). All groups of TFs
followed a similar time course where they were rapidly
upregulated, followed by a relaxation leading to what
seems to be a net downregulation in number of
expressed genes (see Additional file 1: Figure S1). This
may reflect a rapid activation of new genes in the regula-
tory network, with no clear distinction between TFs with
different regulatory function. Since Pioneers, Settlers
and Migrants are all needed for this, it is not surprising
that they seem to be regulated in parallel.

Table 4 Enriched or depleted features related to TF-TF-DNA
interactions

Obs/Exp P Average

TFs with #DBDs > 1 #DBDs

Pioneers 278/152 <2.2e-16 7.05

Settlers 61/98 1.1e-08 2.87

Migrants+ 145/131 0.07 4.80

Migrants- 51/153 <2.2e-16 1.23

TFs with GC > 40% %GC

Pioneers 45/16 1.4e-11 60.7

Settlers 47/17 6.9e-11 58.8

Migrants+ 71/28 5.3e-11 52.6

Migrants- 9/108 1.8e-10 23.7

TFs with IC > 9.0 IC

Pioneers 38/23 3.2e-06 10.4

Settlers 29/24 0.21 10.3

Migrants+ 20/40 3.4e-07 7.7

Migrants- 153/151 0.77 9.3

Significantly depleted features are highlighted in italics
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We then used our list of TF properties [14], including
e.g. Pfam domains and post-translational modifications,
to check whether there were significant enrichment of
specific properties associated with TFs in this experi-
ment, using p-values after Benjamini correction for mul-
tiple testing (see Table 5). It should be noted that
although we are partly using the same properties as for
the classification, we are here testing for enrichment in
the specific subset of TFs that show significant changes
in expression levels in this particular experiment, rather
than across all TFs.
This analysis revealed several interesting features, in

particular for Pioneers where there seems to be a shift in
the regulatory program. The Pfam Ets domain is

enriched in up-regulated Pioneers, whereas KRAB is
enriched in down-regulated. The KRAB domain is asso-
ciated with transcriptional repression, as it interacts with
a corepressor protein (KAP-1) which recruits histone
deacetylases and chromatin remodeling complexes to
chromatin [52], maintaining a repressed status. This in-
dicates that transcriptional repression is actively released
in the differentiation process, enabling activation of new
genes. This is similar to what has been observed for
KRAB-containing TFs in several processes involving
metabolic changes or differentiation [52]. The Ets do-
main, which is enriched in up-regulated Pioneers, can
act both as an activator and a repressor [53], and is
known to be involved in differentiation of e.g. T-cells

Table 5 Enriched or depleted features in significantly regulated TFs

Class Up Down

Term Obs/Exp P(Benj) Term Obs/Exp P(Benj)

Pioneers Ets 9/0 2.2e-07

zf-H2C2_2 25/9 1.2e-05 zf-H2C2_2 69/18 1.0e-08

KRAB 36/10 1.1e-08

zf-H2C2_4 14/3 9.2e-05

Settlers HLH 20/1 2.5e-09 HLH 18/2 3.9e-09

Ubiquitination 33/18 4.7e-04

Sumoylation 11/5 4.6e-02

PPI 5/11 4.9e-02

Migrants+ PPI 20/11 6.1e-03

Hormone_recep 19/1 6.6e-09

zf-C2H2 33/8 7.3e-09

zf-C4 19/1 9.7e-09

Migrants- HMG_box 11/1 1.1e-05

zf-H2C2_2 1/14 3.6e-04

Homeobox 17/5 9.3e-04

Methylation 16/8 4.2e-02

All Ubiquitination 74/49 5.4e-05 Ubiquitination 112/90 8.4e-03

bZIP_1 12/2 1.8e-04

HLH 20/6 2.7e-04

Ets 10/2 1.1e-03

Sumoylation 27/15 5.1e-03

PPI 50/37 1.8e-02

Phosphorylation 144/136 4.9e-02 Phosphorylation 269/252 7.7e-04

zf-H2C2_2 113/63 5.7e-08

zf-C2H2 56/29 6.0e-05

zf-C4 20/6 4.8e-05

Hormone_recep 20/6 8.4e-05

KRAB 58/34 8.9e-04

zf-C2H2_4 24/10 2.5e-03

Only features with at least 9 occurrences (as observed for enrichments or expected for depletions) are listed. Depleted features are highlighted in italics. The All
category shows enrichment analysis of all significantly up- or down-regulated genes, independent of functional classification
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[54]. However, another point here could be that many
Ets-containing TFs are down-stream targets of signal
transduction cascades [53], indicating an up-regulation
of responses to signaling.
As already indicated, most of the observed changes are

linked to down-regulation. For example, down-regulated
Settlers are enriched in ubiquitination, a post-translational
modification that may target proteins for degradation,
possibly leading to a more rapid and efficient down-
regulation of TFs than by changing the transcript level
alone. For up-regulated positive Migrants there is enrich-
ment for PPIs, supporting the observation above regarding
PPIs and positive Migrants. This is possibly linked to
stabilization of protein complexes involved in regulation
of transcription.
A couple of Pfam domains (zf-H2C2_2 and HLH) are

enriched in both up-regulated and down-regulated sets.
The zinc-finger domain zf-H2C2, which is often involved
in sequence-specific targeting of other domains, including
KRAB [52], is strongly enriched in Pioneers, indicating
site-specific changes in gene regulation. This is not seen
for the Settlers, although the HLH domain may play a
similar role here. For the positive Migrants it is seen only
for the down-regulated TFs, whereas the negative Mi-
grants actually are strongly depleted for zf-H2C2 domains.
This illustrates a clear difference between the sequence-
specific targeting of Pioneers, compared to other TFs
where additional interactions may be important.
We also did the same analysis over all TFs, independ-

ent of functional classification (Table 5). This identified
most of the same terms as enriched, but at lower signifi-
cance, and not the two depletions. Also, the analysis
using classes of regulatory function clearly linked several
changes in enrichment of properties to specific classes,
such as Ets to Pioneers and PPI to positive Migrants.
This is additional information that may help in interpret-
ation of results, and underlines the added benefit of in-
cluding data on regulatory function.
The results described above seem to support a general

picture of these TFs that is consistent with their as-
sumed roles. The Pioneers are rapidly regulated to mod-
ify the transcriptional program, mainly by removing
repressing TFs and up-regulating activating TFs that
bind in a sequence-specific manner. This process is sup-
ported by the regulation of Settlers, many of which are
rapidly degraded and removed, possibly to close up the
regulatory regions that are being de-activated. The up-
regulated Migrants are enriched for protein-protein in-
teractions, which may support the formation of clusters
of TFs in open regulatory regions.

Conclusions
Data on properties of transcription factors has been used
as input for supervised machine learning in order to

expand an experimental classification of transcription
factors into functional classes associated with chromatin
opening, as Pioneers, Settlers, positive and negative Mi-
grants. The expanded classification is a useful resource
for analyzing other data. Here is has been used to
analyze transcription factor interaction data and data
from a time course experiment. The results are consist-
ent with the expected roles of the functional TF classes,
in particular the role of Pioneers in initiating changes in
gene regulation.
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