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Abstract
Dimensional accuracy in additive manufacturing (AM) is still an issue compared with the tolerances for injection molding. In
order to make AM suitable for the medical, aerospace, and automotive industries, geometry variations should be controlled
and managed with a tight tolerance range. In the previously published article, the authors used statistical analysis to develop
linear models for the prediction of dimensional features of laser-sintered specimens. Two identical builds with the same
material, process, and build parameters were produced, resulting in 434 samples for mechanical testing (ISO 527-2 1BA).
The developed linearmodels had low accuracy, and therefore needed an application ofmore advanced data analysis techniques.
In this work, machine learning techniques are applied for the same data, and results are compared with the previously reported
linear models. The linear regression model is the best for width. Multilayer perceptron and gradient boost regressor models
have outperformed other for thickness and length. The recommendations on how the developed models can be used in the
future are proposed.

Keywords Additive manufacturing · PA12 · Polyamide · Machine learning · Dimensional accuracy · Support vector
regression · Decision tree regressor · Multilayer perceptron · Gradient boosting regressor

Introduction

Additivemanufacturing (AM) is a relatively new technology,
and most common use is for prototyping purposes. However,
during the last decades, AM has found increased use for fab-
rication of functional parts, and this has led to an increased
attention to this technology from both researchers and the
various industries. One of the most attractive features of AM
is the flexibility of design. Complex shapes aremanufactured
directly from 3D CAD model.

There have been several examples of benefits of AM cre-
ating lighter structures, combining several components into
one as well, as the possibility to customize products for per-
sonal use. One area where AM has found much use is in the
dental industry, where the potential to make dental protheses
adapted to patients’ anatomy is utilized. This is caused by
the flexibility in design, achieving a lighter product, adding
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more functionality into the product, and the ability of cus-
tomization of each product for small production batches.

Nowadays, additive manufacturing has already been used
to produce end user products in electronics, automotive,
medical and aerospace industries (Wohlers 2016; Stoyanov
and Bailey 2017). Management and control of variations in
additive manufacturing are, however, one of the challenges
of today’s AM processes. “Fist-time-right” and consistency
of the parts’ properties are one of the major issues that
researchers attempt to address in order tomake additiveman-
ufacturing more attractive for end user parts production.

Dimensional accuracy is alreadypresented as an important
issue in different studies (Baturynska et al. 2018; Caulfield
et al. 2007; De Ciurana et al. 2013; Paras et al 2016; Wohlers
2016; Zhu et al. 2018). Zhu et al. (2018) have presented
three main mechanism of error generation in AM processes,
which are the mathematical geometry approximation error
(conversion from CAD to STL file), error due to machine
and process parameters, and material-related error (thermal
shrinkage and material distortion). Typically, research focus
is set on the investigation of howmachine process parameters
influence the shrinkage effect, while the investigation of an
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effect of build layout design on dimensional accuracy is not
presented in the literature.

For example, Singh et al. (2012) reported that shrinkage
effect is connected to such process-related parameters as scan
spacing, optimization of laser power, bed temperature, and
hatch length of a polymer powder bed fusion process (3D
Systems). Delgado et al. (2012) also evaluated significance
of the process parameters’ effects on dimensional error, sur-
face roughness, and mechanical properties for metal powder
bed fusion systems. The authors also reported that research
on dimensional accuracy for two metal materials is very
limited comparing with surface roughness and mechanical
properties. Another study on part quality of parts fabricated
with selective laser sintering (SLS) was statistically inves-
tigated concerning various machine parameters by Dingal
et al. (2008), but dimensional accuracy was not mentioned.

While other researchers focused on the investigation of
how part placement (Yang et al. 2002; Zhang et al. 2017)
and different build strategies (Senthilkumaran et al. 2009a)
may affect the dimensional accuracy, Yang et al. (2002)
reported that application of Taguchi and Analysis of Vari-
ance allowed authors optimizing shrinkage ratio for three
orientation groups, which they call X, Y, and Z orientation.

Investigation of different build strategies performed by
Senthilkumaran et al. (2009a) pointed out to the importance
of contouring and hatching, beam compensation, inertia of
scanning mirror, scan direction and compensation of posi-
tioning errors with regards to shrinkage effect. Moreover, the
authors highlighted the impact of part orientation on devia-
tions per unit length.

Later, Senthilkumaran et al. (2009b) introduced a new
model for shrinkage compensation based on the results and
gained knowledge from the previous study. This model was
developed for compensation of shrinkage “at every layer and
at every hatch length, unlike a uniform compensation scheme
applied to entire part” (Senthilkumaran et al. 2009b). Results
were compared with suggested compensation by machine
manufacturer, and improvements of dimensional accuracy
approximately by 55–62% were observed for newly devel-
oped compensation scheme.

To date, the role of STL model properties, which are the
number of mesh triangles, number of mesh points, surface
and volume of the CAD model, with respect to shrinkage
effect is not known. Moreover, compensation of shrinkange
effect is usually performed by using scaling ratio for the
whole build layout. In the previous study (Baturynska 2018)
the authors have already made an attempt to predict scaling
ratio for each part separately and investigate these parame-
ters in combination with part placement and part orientation.
The results obtained from a Pearson correlation test showed
that abovelisted parameters are significant with respect to
dimensional features. In addition to central part placement
coordinates, maximal and minimal coordinates have also

been included in the analysis (see Fig. 11). However, predic-
tion of dimensional features (thickness, width, and length of
the part) required improvement by applying more advanced
techniques.

Therefore, in this paper, the authors describe a prelim-
inary study of using four machine learning techniques to
predict dimensional accuracy based on the collected data.
The results of multi-layer perceptron neural network, deci-
sion tree regressor, gradient boosting regressor and support
vector regressor compared with findings from the previous
report, where solely linear regression models were used to
make a prediction ( Baturynska 2018).

In order to be able to compare the results ofmachine learn-
ing techniques with linear regression models, data analyzed
in this study is the same as in Baturynska (2018). This data
was gathered from an EOS P395 polymer powder bed fusion
system, with more details on practical experiment and data
gathering are described in “Experimentalwork and data gath-
ering” section.

This work addresses the following aims:

– Investigate effect of part placement, part orientation and
STLmodel properties on dimensional accuracy by apply-
ing more advanced methods and compare them with
results of the previous study.

– Develop non-linear models (a result of machine learning
techniques) for prediction of thickness, width and length
for each part separately.

– Compare the performance of non-linear models and lin-
ear regression models based on the prediction accuracy
and define which one(s) could be used in the future.

– Discuss how the predicted dimensional features can be
used to compensate geometry deviations for every part
separately instead of using scaling ration in x, y and z
axes for the whole build.

– Provide recommendations on how proposed models
could be used in the future within the manufacturing
industry.

Results of this study are also considered as the first step
towards the development of an intelligent system for qual-
ity assurance in additive manufacturing. This system will be
used as a decision support tool for designers and operators
in manufacturing. The proposed models will be incorporated
as separate modules, which would be executed in different
orders based on the requirements.

Due to the high importance of mechanical properties in
the end user products, improvements of dimensional fea-
tures may contribute to the improvements in mechanical
properties. How this may be executed is discussed in the
“Recommendations” section.
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Fig. 1 Build layout in Magics 20.0

Table 1 Material and process parameters used in experiment

Parameters Value

Virgin/aged PA2200 powder ratio, % 50/50

EOS P395 system settings Balance

AM system warm up time, min 120

AM system cooling down time, min 240

Working chamber temperature, ◦C 180.5

Removal chamber temperature, ◦C 130.0

Experimental work and data gathering

AnEOSP395 polymer powder bed fusion systemwas used in
the experiment performed to collect data. Two identical runs
were executed in order to evaluate the repeatability of the
results for the build layout presented in Fig. 1. By identical
runs it is meant that a build layout, material and process
parameters were the same for both runs (for details see Table
1). Polyamide 2200, also known as PA12, was used in both
runs with virgin/aged powder ratio of 50/50 %. In order to be
able to control material properties and keep them constant in
both runs, polymer powder was self-aged, with more details
presented in the previous study Baturynska 2018).

The results presented by Rüsenberg et al. (2014) was used
as the reference.Although placement and orientation of spec-
imens were chosen to be different, the authors assumed that
build layout should be designed similarly to real manufac-

Fig. 2 The schematic representation of the process from build layout
design to predicted models

turing conditions. Based on this assumption, the maximum
number of parts is chosen to be the main criterion for design
of the build layout. It means that the parts are placed as close
to each other as possible, and the minimum distance between
the specimens is set to 5 mm based on the recommendations
fromMagics 20.0 software. Additional attention was paid to
the specimens placed in the same orientation for verification
and validation of the results. In other words, more than five
specimens in the same orientation were placed as close to
each other as possible for better control of potential coordi-
nate variations.

In total, 358 specimens were produced in one run (or
716 specimens for the two runs combined). However, in this
paper, data were analyzed from 217 (or 434 in total) speci-
mens of type ISO 527-2 1BA for mechanical testing. Since
the first attempt to predict dimensional features with the help
of statistical methods were performed based on the data from
Baturynska (2018), the same data is used in this work in order
to be able to compare the results of linear regression model-
ing with the machine learning techniques.

The schematic represenation of software and hardware
components is depicted in Fig. 2. This representation shows
themain steps and attributes the authors performed for devel-
opment of the predictive models.

Description of specimens’orientation

All investigated parts were placed in four different orienta-
tions (see Fig. 3), and the names of the orientations were
defined according to the ISO/ASTM 52921:2013(E) (2013)
standard:

– Group 1 XYZ (XY on Fig. 3 )-oriented parts
– Group 2 XZY (XZ on Fig. 3)-oriented parts
– Group 3 ZYX (Z on Fig. 3)-oriented parts
– Group 4 Angle-oriented parts
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By the Angle-oriented parts, the authors mean parts ori-
ented at 45◦ between X and Z axes.

Since the design of the experiment defined the requirement
tofit asmany specimens as possible, the number of specimens
in each orientation differ. Thus, 65 parts (the word “parts” is
used as a synonym) are placed in XY orientation, 24 parts
in XZ orientation, 84 parts in Z orientation, and 44 in Angle
orientation.

To identify parts and be able to connect the results of test-
ing and measurements by part placement, every part has its
label, which is placed on two sides of the part. This led to
variations in the number of mesh triangles, surface and vol-
ume values for each part within the build layout (see Table 2).
Therefore, it is critical to evaluate whether these variations
can influence the quality of the parts with more advanced
methods. In addition, it is important to mention that there
is no variation in STL model properties between Run 1 and
Run 2 due to the usage of the same build layout.

Data gathering

The data is collected from two identical runs and is used
to evaluate the dimensional accuracy of the produced spec-
imens. Length value was measured using a Digital ABS
Caliper CoolantProof IP67 with the accuracy of ± 0.02 mm.
Width and thickness were measured using a Digital Microm-
eter QuantuMike IP65 with the accuracy of ± 1µm.

In addition, tominimizemeasurement error, the final value
of each dimensional feature (see Fig. 3) was calculated as a
mean of three repeated measurements.

Distributions of measured thickness, width and length are
shown in Figs. 4, 5, 6 respectively, desired (nominal) values
shown as a straight line. Kernel density estimation was used
to estimate the density probability function for the illustrated
dimensional features. In addition, measurements from Run
1 and Run 2 are presented separately to show the variations
between runs.

Machine learning techniques: theoretical
background

MLP using backpropagation

A feed-forward multi-layer perceptron using backpropaga-
tion is one of the machine learning techniques. This method
can be applied for modeling of complex tasks, where more
conventional mathematical modeling is difficult or unsuit-
able.A performance ofMLPneural network can be described
based on its operational unit, the perceptron. The perceptron
takes a set of features as an input vector. Typically, it is rep-
resented as a vector x ∈ R

n where n is a number of features.
A set of features should be preliminary collected describ-

Fig. 3 Schematic visualization of parts’ orientation and dimensional
features (where t—thickness, w—width and L—length )

ing an event that MLP algorithm is learning to approximate.
However, an output vector y ∈ R should also be provided
beforehand. Thus, an algorithm will map the input values to
output as a function f : Rn → R. The function f is eval-
uated based on the sum of weighted inputs and bias factor∑n

i=1 xiwi + b.
The most common MLP is a three-layer neural network

that uses different layers for processing information sequen-
tially. These layers are an input layer, a hidden layer and an
output layer, which are schematically represented in Fig. 7.
Each hidden unit approximates an input layer to the output
layer using activation function:

h j = f

(
n∑

i=1

xiw j i + b j

)

(1)

where h j is the output of j th hidden unit, n is a number of
inputs, w j i is a weight (connection link) for i th neuron, and
b j is a bias.

The approximated output is calculated by using the output
from Eq. 1 as an input:

ŷk = f

⎛

⎝
N∑

j=1

h jwk j + bk

⎞

⎠ (2)

where ŷk is an approximated value of the kth output unit, N
is a number of neurons in a hidden layer, and bk is a bias.

Optimization of weights needs to be performed until dif-
ference (e) between observed and approximated outcomes is
minimized:

e = argmin
w j i ,b j ,wk j ,bk

(
1

2

m∑

k=1

(yk − ŷk)
2

)

(3)
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Table 2 Comparison of STL
model data in XZY orientation
and all specimens together
including values of standard
deviation (σ )

Orientation Run Number of mesh triangles (N) Volume (m3) Surface (m2)

± 3σ—XZY 1 1615.96 1.997 9.327

2 1615.96 1.997 9.327

Mean value—XZY 1 5076.25 1029.512 1434.408

2 5076.25 1029.512 1434.408

Min value—XZY 1 4158.0 1028.445 1428.687

2 4158.0 1028.445 1428.687

Max value—XZY 1 6030.0 1030.963 1441.187

2 6030.0 1030.963 1441.187

± 3σ—all together 1 3086.086 6.298 36.293

2 3086.086 6.298 36.293

Mean value—all together 1 4130.359 1032.625 1417.69

2 4130.359 1032.6259 1417.69

Min value—all together 1 1700.0 1028.445 1381.555

2 1700.0 1028.445 1381.555

Max value—all together 1 6752.0 1038.801 1441.187

2 6752.0 1038.801 1441.187

Fig. 4 Distribution of measured thickness for run 1 and run 2 based on
kernel density estimation (The nominal value is 2 mm)

Fig. 5 Distribution of measured width for run 1 and run 2 based on
kernel density estimation (The nominal value is 10 mm)

Fig. 6 Distribution of measured length for run 1 and run 2 based on
kernel density estimation (The nominal value is 75 mm)

Fig. 7 Schematical representation of three-layer feed-forward back-
propagation MLP

where yk refers to the observed outcome, ŷk is the approxi-
mated outcome, and m is a number of outcomes.

The collected dataset needs to be randomly divided into
training and testing sets as 70/30% respectively. A training of
MLPneural network should be performedon training dataset,
while testing should be done on a testing dataset.
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Decision tree regressor

A decision tree is also one of the machine learning tech-
niques. Typically, this method is used for classification tasks,
but there is a possibility of applying it for a regression task.
Opposite to using an artificial neural network as a black-box,
a decision tree method is an open and easy to understand
method.

For a given training vector x ∈ R
n (where n is a number of

features) and a training labely ∈ R
l (i = 1, 2, . . . l represents

a number of labels) the regression tree algorithm recursively
partions the features domain into smaller regions (separate
classes). It is important to choose correct metrics for best
data split and determining when a tree node should become
a terminal.

Since in this work a decision tree algorithm is used for a
regression task, then the target is a continuous value.Thus,
for node m, which represents a region Rm with Nm obser-
vations, mean squared error (MSE) or mean absolute error
(MAE) are possible regression criteria to minimize impu-
rity function H() as for determining locations for future data
splits. Minimization ofan error can be done by using mean
values of the terminal nodes for MSE (Smola and Schölkopf
2004):

H(Xm) = 1

Nm

Nm∑

i=1

(yi − ỹm)2 (4)

and for MAE:

H(Xm) = 1

Nm

Nm∑

i=1

|yi − ỹm | (5)

where Xm is training data in node m.
However, when it comes to analysis of the big amount

of data, this method has issues with scalability, stability and
robustness (Aluja-Banet and Nafria 2003; Kotsiantis 2013).
Another issue that should be addressed is an increase of
the complexity when large data samples are used. The total
number of nodes, total number of leaves, tree depth and
the number of attributes are metrics that can be controlled
in order to minimize the complexity of decision tree (Kot-
siantis 2013). Since these issues not always can be addressed,
ensemble decision trees are used instead and aremore robust.

Gradient boosting regressor

Gradient boosting regression machine learning method can
be described as an ensemble of decision trees (see Fig. 8).
Instead of building one tree, this method predicts the desired
outcome based on the additive regression model that uses
decision trees as a weak learner (Ye et al. 2009). Sequential

Fig. 8 Schematical representation of gradient boosting regression in
regards to algorithm iterations

fitting of a parameterized function (base learner) to current
“pseudo”-residuals is done at each iteration by optimizing
regression loss (e.g., least squares, absolute error) Friedman
2002). Friedman (2002) describes “pseudo” residuals asmin-
imization of the gradient of a loss function with respect to
values of the regression model at each training data point for
the current step.

Introduction of randomization in the process of training
data set selection allows to improve accuracy and reduce the
possibility of overfitting. This way of compiling a decision
tree allows tominimize the errors at each next step, and there-
fore boosting regressor is considered as more reliable and
robust method comparing to classic decision tree regressor.

Support vector regression

Support vector regression (SVR) is a type of Support Vec-
tor Machine techniques that tackle the regression tasks. This
machine learning method is less sensitive to the dimension-
ality of the input and has greater ability to achieve lower
generalization error of regressionmodel (Drucker et al. 1997;
Gunn et al. 1998). Gunn et al. (1998) explains that better
generalization is due to minimization of upper bound on
the expected risk, also called as structural risk minimiza-
tion (SRM) principle, although optimization of error on the
training data is typically used (Empirical Risk Minimiza-
tion principle). The former principle is employed by support
vector machines, while neural network algorithms apply the
latter.

If to assume that input data is presented as a space of the
input patterns, then the main goal in SVR is to find such
function f (x) = 〈w, x〉 + b that has the largest deviations
from the observed outcome yi for all training data and at
the same time is as flat as possible (Smola and Schölkopf
2004). By flatness is meant determining the smallest weight
w (Smola and Schölkopf 2004):

minimize
1

2
‖w‖2 (6)
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Fig. 9 Description of 5-fold cross-validation

where w ∈ χ and b ∈ R.
In order to map inputs into high-dimensional feature

spaces, different kernel functions (e.g., linear, polynomial,
radial basis function or sigmoid) are used. In addition, tuning
of algorithm parameters is a critical task for SVR perfor-
mance, and therefore, one should pay attention to the choice
of a subset of training data and parameters defined in kernel
functions.

Model’s evaluation with 5-fold cross-validation

Typically, the five-fold cross-validation (CV) is a process
when all data is randomly split into k folds, in our case
k = 5, and then the model is trained on the k −1 folds, while
one fold is left to test a model (an example is illustrated
on Fig. 9). This procedure is repeated k times. However,
in this work, all data first is split into training and testing
datasets, and a training dataset is used for cross-validation.
The repeated cross-validation technique is used for the esti-
mation of models’ accuracy and 95% confidence intervals
(CI) (Vanwinckelen and Blockeel 2012).

The 5-fold cross-validation is repeated for each model 50
times. An average of all repetitions is used as CV accuracy,
and 95% confidence intervals are calculated based on the
results of the repeated cross-validation. The final evaluation
of themodel performance is conducted by looking at whether
testing accuracy is in the range of 95% CI. If testing accu-
racy is in the 95% CI, the model is considered as acceptable,
if testing accuracy is outside of the range and difference is
significant, the underfitting or overfitting is considered to be
present. The testing data is an isolated dataset that is not used
in the cross-validation procedure.

Architecture of usedmachine learning
techniques

The development ofmachine learningmodels is conducted in
several steps. First of all, data preprocessing is performed in

Fig. 10 Respresentation of data analysis pipeline

two stages: (i) cleaning the collected data and (ii) normaliza-
tion of investigated features,which are described in “Descrip-
tion of investigated parameters” section. More details about
data preprocessing are described in the following section,
while the data analysis pipeline is illustrated in Fig. 10. The
preprocessed data is split into training and testing datasets to
evaluate the generalization ability of the model and to detect
overfitting. If prediction accuracy (R2—determination coef-
ficient) obtained from the model’s training is significantly
larger than the testing prediction accuracy, then overfitting is
present. The model should be retrained with new hyperpa-
rameters. In addition, k-fold cross-validation is typically used
to detect the overfitting. The resulting models’ architectures
are described in “MLP using backpropagation”, “Decision
tree regressor”, “Gradient boosting regressor”, “Support vec-
tor regression” sections.

Data preprocessing

Data analysis always requires clean and normalized data
beforehand. This step is especially important in a case when
parameters’ values are different. The application of machine
learning requires the normalization of features in the training
data. In this study, an impact of 13 different parameters on
three-dimensional features (thickness, width, and length) is
investigated (see Table 3). For example, thickness has a value
ca. 1.8–2.5 mm, while the value of the number of mesh tri-
angles starts at ca. 1200 and increases up to ca. 7000. These
ranges in parameters’ values have to be scaled to zero mean
and unit variance.

Thework underlying this paper is based on SPSS statistics
(Pearson correlation test) and Scikit-learn (Pedregosa et al.
2011). The authors performed data preprocessing for Scikit-
learn applications. In the case of analyzing all orientations
as one dataset, the original data is split into training (347
samples) and testing (87 samples) sets using train_test_split.

However, each orientation has different data points used
for training and testing. Thus, for the XYZ orientation group,
the training set consists of 104 samples and 26 samples in the
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Table 3 Investigated parameters

Input Output

Number of mesh triangles Number of mesh points Volume Surface Width

Maximal coord x Minimal coord x Central coord x Maximal coord z Thickness

Minimal coord z Central coord z Maximal coord y Minimal coord y Length

Central coord y

testing set. For XZY orientation, 38 samples in the training
set and ten samples in the testing set. ForZYXorientation 134
and 34 samples in training and testing sets respectively, while
for Angle orientation, these numbers are lower, the training
sample consists of 70 samples and 18 samples in the testing
sample. Before training themodels, the training data is scaled
to zero mean and unit variance using StandardScaler.

The training and testing of models were performed with
the help of Scikit-learn in the conda environment on
macOS.

Description of investigated parameters

In order to evaluate the performance of proposed predic-
tion models, there is a need for describing parameters
that are used to predict thickness, width, and length. All
parameters that are listed in Table 3 can be clustered into
two groups. The first group corresponds to STL model
properties (number of mesh triangles and mesh points, sur-
face, and volume), while the second group describes part
placement in the build chamber with respect to build cham-
ber global coordinate system (world coordinate system—
WCS).

Since Magics 20.0 software provides information about
part placement in terms of central, minimal, and maximal
coordinates (see Fig. 11), it is important to define what
these coordinates mean. Minimal coordinate corresponds to
a point on the part that is placed closest to the origin of WCS
of the build chamber, while maximal coordinate describes
the position on the part that is farthest from the origin of
WCS.

Figure 11 illustrates how minimal and maximal coordi-
nates are defined for a part that is placed in the build chamber
in two different orientations. For the part in XZY orientation,
the difference between maximal and minimal coordinates
corresponds to its dimensional features. However, a distance
betweenmaximal andminimal coordinates for parts inAngle
orientation will not correspond to the value of a dimensional
feature. In other words, the authors show that part placement
coordinates are used to describe the part placement in the
build but not the dimensional features of parts.

Fig. 11 Example of part placement description in the build chamber
through maximal, central and minimal coordinates for Angle and XZY
orientation using Magics 20.0

MLP using backpropagation

The multilayer perceptron algorithm using backpropagation
was used both on all datasets and orientation groups sepa-
rately.Model parameter optimizationwas done by evaluating
different combinations of hyperparameters of a model. A
number of nodes in a hidden layer were varied from 2 to 27,
’relu’ and logistic activation functions were considered, and
’lbfgs’ (a weight optimizer from the family of quasi-Newton
methods) was used as a solver for weight optimization.

In this work, the architecture of MLP models that outper-
formed other methods are the following: for thickness, the
model consists of one hidden layerwith a size of 11 nodes and
relu activation function, and for length, the model consists
of 17 nodes and logistic activation function. The 13 parame-
ters used as input and one-dimensional feature as output (see
Table 3).

Decision tree regressor

The architecture of the decision tree is very complex and dif-
fers based on the size of the input. For example, for the XYZ
orientation group, a number of nodes is 111, while the deci-
sion tree in XZY orientation has 43 nodes, and this number
was defined automatically by the algorithm.When the author
set a limit, the performance of the algorithm was unsatis-
factory with law prediction accuracy (close to 0), therefore
allowing the algorithm to define a number of nodes and leaves
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based on the provided data led to improvements in algorithm
performance.

It is also observed that for larger input, the decision tree
consists of a larger number of nodes. Since the algorithm
was tuned manually by the authors in this work, one of the
future tasks will be to add optimization of decision trees by
defining hyperparameters for robust and satisfactory perfor-
mance. This task is complicated, and therefore, it is out of
the scope for the current article.

Gradient boosting regressor

Gradient boosting regressor (GBR) has even more compli-
cated architecture than decision tree regressor, and therefore
a number of nodes and leaves will not provide enough infor-
mation about the algorithm. However, initial parameters are
critical for algorithm performance. Optimization of hyperpa-
rameters for GBR models has been conducted considering a
different set of hyperparameters. A number of estimators was
chosen from the following list [5, 8, 9, 10, 11, 14, 20, 25, 30,
50, 80, 100, 150, 200, 250, 300]. A learning rate was chosen
from the following list [0.01, 0.001, 0.05, 0.1], and three loss
functions were considered, namely ’ls’ (least squares), ’lad’
(least absolute deviation), and ’huber’ (combination of ’ls’
and ’lad’).

In this work, a number of iteration was set to 100 /150
/100 (thickness in XYZ/thickness in Angle/length in ZYX
orientations, respectively). The maximum depth is chosen to
be 3, and the minimal samples split selected to be 2. The
learning rate is chosen as 0.05. The loss function is set to
’ls’ for thickness in the XYZ orientation model, and the ’lad’
loss function was chosen for thickness in Angle orientation
and length in ZYX orientation models.

Support vector regression

The main parameters, which are used to define support vec-
tor regression algorithm, are the type of kernel (radial basis
function kernel is used in this work) and type of kernel cash
size (used a default value of 200 MB due to RAM limi-
tations). Besides, typically, two kernel-related coefficients
should be optimizedwhile training a support vector machine.
The parameter c is responsible for trading off misclassifica-
tions, and in this work is set to its highest value 1.0. The
parameter gamma controls how much influence each train-
ing sample has, and it is auto-defined by the algorithm.

Significance of parameters with regards to
dimensional features

Two techniques are used in this work in order to estimate
the significance of parameters. The first one is the Pearson

correlation test, which is used for linear models. The second
technique is a feature importance property incorporated into
earlier described machine learning algorithms. Since gradi-
ent boost regressor is compared with the Pearson correlation
test results, it is important to describe in more detail how
feature importance in gradient boost regressor works.

As was described earlier, the GBR is an ensemble of
decision trees. Feature importance is derived from the eval-
uation of how each parameter contributes to predicting the
response. The feature importance is calculated separately for
each parameter. The evaluation consists of two main stages;
(1) evaluation of which parameters provide maximal predic-
tion improvements for each node, and (2) averaging over the
sum of nodes where one parameter has contributed the most
overall trees in the machine learning model (Hastie et al.
2009). The parameter with the highest score is assigned to
100 % relative importance, and then the relative importance
of other parameters is scaled accordingly.

Orientation-based significance of parameters

Distribution of specimens in the build chamber

Since it is already well-known from the previous studies
(Caulfield et al. 2007; Dingal et al. 2008; Hur et al. 2001;
Lee et al. 2014; Senthilkumaran et al. 2009a) that orientation
of specimens has a significant impact on the part quality, a
more detailed description of how specimens are distributed
in the build chamber is an important step in the analysis of the
results. In this study, four different orientation groups have
been introduced in the “Experimental work and data gath-
ering” section, which are XYZ-orientation group shown in
Fig. 12; XZY-orientation group illustrated in Fig. 13; ZYX-
orientation group shown in Fig. 14; and Angle-orientation
group presented in Fig. 15.

The distribution of the specimens in the build chamber
has a different concentration for each orientation group. As
can be seen from Figs. 12, 13, 14 and 15, specimens from
XYZ- and ZYX-orientation groups are positioned mainly in
the center of the build chamber, with some on the sides. How-
ever, specimens fromXZY- andAngle-orientation groups are
mostly placed close to the sides of the build chamber.

The main benefit of positioning the specimens in such
a way is due to the possibility of fitting in a larger num-
ber of specimens, and thus reducing their cost and gaining
more information about different regions in the build cham-
ber. However, this uneven distribution of the specimens can
influence dimensional accuracy for each specimen and the
whole build in general. In the regions where samples are
more concentrated, cooling time will be longer than for areas
where specimens are spread with a larger distance from each
other. Thus, different temperature distribution and cooling
time for different groups of specimens can lead to different
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Fig. 12 Representation of specimens’ placement in the build chamber
in XYZ orientation for one run (Magics 20.0)

Fig. 13 Schematic representation of specimens’ placement in the build
chamber in XZY orientation for one run (Magics 20.0)

shrinkage and expansion effects (more details are presented
in Baturynska 2018).

In order to compare which parameters are significant
for minimization of geometry variations for each specimen
within one build layout, collected data is analyzed based on
the orientation groups and without division for orientations
groups (when all the orientations groups form a combined
dataset).

In the following analysis of the results, the authors use
abbreviations XYZ, XZY, ZYX, and Angle for describing
the orientation groups. The axes of the coordinate system
will be denoted as x , y, and z axes. When minimal, maximal,
and central coordinates have the same meaning, the term “all
x, y and z coordinates”will be used as a synonym.At the same
time, min_coordinate, max_coordinate, and cent_coordinate
is a shorter name for minimal, maximal, and central coordi-
nates, respectively.

The orientation-based description of the significance of
investigated parameters is graphically illustrated only for
those models that have achieved prediction accuracy higher
than 50%.

Fig. 14 Representation of specimens’ placement in the build chamber
in ZYX orientation for one run (Magics 20.0)

Fig. 15 Representation of specimens’ placement in the build chamber
in Angle orientation for one run (Magics 20.0)

Width

Dimensional features are dependent on both orientation and
position in the build chamber. However, from the previous
study, the results from a Pearson correlation test showed that
in addition to the part positioning, the STL model properties
are also significant parameters. However, linear regression
models developed based on the Pearson correlation test
results achieved low prediction accuracy. Thus the correla-
tion between the investigated parameters and the dimensional
features is not entirely reliable. In order to better understand
how to control and minimize geometry variation based on
the build layout design, more advanced methods are applied
in this work.

Since the prediction accuracy of width dimensional fea-
ture in ZYX and Angle orientations are below 50% for both
linear and machine learning methods, the significance of
parameters for these orientations with regards to width is
not presented. The low prediction accuracy means that mod-
els are not reliable, and thus, the obtained feature importance
for those models are not reliable as well.

However, a predictionof thewidth inXYZandXZYorien-
tations is more reliable due to higher prediction accuracy. For
example, the Pearson correlation test results (see Fig. 16a)
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pointed out that all coordinates in the y axis are significant to
the same level, and are themost significant parameters. At the
same time, the Gradient boosting regressor highlighted the
importance of y coordinates (see Fig. 16b), but in a different
way. The minimal coordinate y is shown as the most signifi-
cant one and is followed by central and maximal coordinates
y. The minimal coordinate y corresponds to the left side of
the specimen, which is positioned closer to the sides in the
build chamber. Therefore a cooling process for this region is
faster than for other specimens. This could be a reason why
the machine learning method has highlighted this coordinate
over central andmaximal coordinates in the y axis. However,
to evaluate this assumption, an additional experimental work,
where specimens are positioned differently, is required.

The reason why all y coordinates in XYZ orientation have
been chosen as the most important ones can be explained by
looking at the similarities between coordinates and dimen-
sional features. In other words, for XYZ orientation, the
distance between y coordinates can also be seen as a descrip-
tion of thewidth dimensional feature (see Fig. 3). At the same
time, the distance betweenmaximal andminimal coordinates
define regions where energy is applied to each specimen. The
concentration of the energy on different sides of the speci-
men will influence the cooling process and thus can lead to
geometry variations.

Similarly, the width can be described as a difference
between z coordinates for XZY-orientation group. The sig-
nificance of parameters based on the Pearson correlation test
depicted in Fig. 17a are easier to understand and describe,
especially by following the same principle as used for the
XYZ-orientation group. Thus, z coordinates define the width
dimensional feature as a difference between minimal and
maximal z coordinates (see Fig. 3). However, a Gradient
boosting regressor could lead to new knowledge about the
process. For example, the importance of the maximal coor-
dinate y and minimal coordinate x could be explained by
looking at the hatching line distribution. In order to elabo-
rate on such an assumption,more experimental work needs to
be done in the future with a focus on hatch lines distribution.

In addition to all z coordinates in XZY orientation, the
number of mesh triangles has been chosen as a significant
parameter. For example, Hu (2017), Adnan et al. (2018)
reported that such STL model properties as surface, volume,
and the number of mesh triangles are important parameters
for the slicing process. Thus they influence the way how
energy is applied to the material and how the object is solid-
ified. The authors assume that the slicing process and energy
distribution have an impact on the geometry deviations, and
STLmodel properties, in combination with coordinates, pro-
vides an additional description of these phenomena without
prior knowledge about the scanning strategy used in the AM
process.

Fig. 16 Significance of parameters for width in XYZ orientation: a
Pearson correlation test results, b Gradient boosting regression results

Length

Similarly to the width dimensional feature, the significance
of parameters for length is done for the orientations that have
prediction accuracy higher than 50%. Therefore, ZYX- and
Angle-orientation groups are analyzed for the length dimen-
sional feature.

As can be seen from Fig. 18, both Pearson correlation test
andGradient boosting regressor point out to the z coordinates
as the most significant parameters. While minimal, maximal,
and central z coordinates are important to the same extent
according to the Pearson correlation test, Gradient boosting
regressor highlights central coordinate z as the most impor-
tant. The maximal coordinate z and minimal coordinate z
still are significantly important with a small difference (ca.
5–10%) between them, and therefore, this difference can be
neglected. Moreover, the prediction accuracy is 91.8 % and
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Fig. 17 Significance of parameters for width in XZY orientation: a
Pearson correlation test results, b Gradient boosting regression results

92.25% for linear regression (model based on the Pearson
correlation test results) and Gradient boosting regressor, and
this means that there is more than one model, which can be
used to predict length dimensional feature. Besides, the order
of other parameters’ significance could also be neglected.

While all z coordinates could be considered as param-
eters that define layer distribution within a specimen and,
therefore, may influence the length dimensional feature the
most. All other parameters also have a connection with the
slicing process and energy distribution similar to the above-
described principles for width.

However, the results of the Pearson correlation test and
Decision Tree regression for the Angle-orientation group are
different and illustrated in Fig. 19a, b respectively. While all
z coordinates are the most important parameters (according
to the Pearson correlation test), the central coordinate x is the
most significant in regards to theGradient boosting regressor.
This difference couldbe causedbydifferent principles related

Fig. 18 Significance of parameters for length in ZYX orientation: a
Pearson correlation test results, b Gradient boosting regression results

to both x and z axes, which are a distribution of the hatch lines
and slicing (along the x axis) of the specimens into layers
(along the z axis). Since the number of specimens is low, and
they are concentrated in the one area in the build chamber,
more experimental work needs to be performed in the future
for a better understanding of which parameters should be
considered during the build layout design. The observations
regarding STL model properties are similar and also require
more experimental work.

Thickness

The orientation-based description of the importance of inves-
tigated parameters is similar for each dimensional feature.
The main reason lies in the physical principles of an AM
process. Similarly to the width, thickness dimensional fea-
ture in XYZ- and XZY-orientation groups is related to z
coordinates (XYZ-orientation—Fig. 20a) and y coordinates

123



Journal of Intelligent Manufacturing

Fig. 19 Significance of parameters for length in Angle orientation: a
Pearson correlation test results, b Decision Tree regression results

(XZY-orientation—Fig. 21a), respectively. Each of them can
define the dimensional feature as a difference between min-
imal and maximal coordinate in the corresponding axis.

The importance of y coordinates for thickness in ZYX
orientation (see Fig. 22a) is due to the same reason as for
XYZ- and XZY-orientation groups. However, the Gradient
boosting regressor highlights the number of mesh triangles
(mesh points is another way of describing mesh triangles)
and volume STL model properties over other parameters.
This can be related to the importance of contours, and thus
also associated with the definition of the energy deposition
boundaries for each specimen. Besides, it is important to pay
attention to the prediction accuracy of models. The predic-
tion accuracy for the linear regression model is lower than

0, while prediction accuracy for Gradient boosting regressor
is 55.82 %, and it is also relatively small value. Therefore,
more experimental work needs are required to achieve more
reliable results.

Explaining the importance of parameters for thickness
in the Angle-orientation group is a more complicated task
than for other orientations. This is caused by the reason that
dimensional features cannot be explained as a difference
between the minimal and maximal coordinates. Moreover,
the energy deposition area at each layer is much smaller for
this orientation than for others. Therefore, both x and y coor-
dinates are important almost at the same level according to
a Pearson correlation test (Fig. 23a) and Gradient boosting
regressor (Fig. 23b).

Even though STL model parameters are less important
compared with previously described results, the authors
assume that for Angle-orientation positioning of the sam-
ple in terms of x and y coordinate is the most sensitive to the
hatch line distribution, which is followed by the importance
of layer distributions (z coordinates).

Significance of parameters without division for
orientations

A comparison of methods used to evaluate which parame-
ters have an impact on dimensional features with regards to
the orientation groups leads to the decreasing performance
of proposed models due to a limited number of data. Thus,
joining all orientations into one dataset gives a possibility
to improve model performance. Besides, machine learning
algorithms can find a correlation between dimensions and
orientation groups by themselves. The illustrated values of
prediction accuracies for differentMLmethods can be seen in
Table 4, and for all dimensions, gradient boost regressor out-
performed both linear regression and decision tree regressor.
Therefore, the level of significance of parameters proposed
by the latter method can be used in the future by designers
and additive manufacturing machine operators.

Width

Figure 24b shows that for width dimensional feature all
parameters are significant to a specific extent and this result
is also observed in Pearson correlation test (see Fig. 24a).
However, based on the prediction accuracy of the regression
model and gradient boost regressor, predictions of the latter
one is to be considered as more accurate. According to the
results of Gradient boost regressor, maximal coordinate x is
the most important parameter for prediction of width. The
next in the list are volume, minimal coordinates x and y, and
surface parameter, which are followed by central and max-
imal y coordinates. The next important parameters are the
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Fig. 20 Significance of parameters for thickness in XYZ orientation: a
Pearson correlation test, b Gradient boosting regression

number of mesh triangles, maximal coordinate z, and central
coordinates x and z.

Length

Similarly to thewidth dimensional feature, the gradient boost
regressor outperformed the regression model (see Fig. 25a),
which is based on the results of Pearson correlation test, in
regards to prediction accuracy.

According to the Gradient boost regressor, predictions on
parameters’ significance for length and thickness have a dif-
ferent character compared with results for width. While all
parameters are significant for width, a number of parame-
ters are reported to be significant to the same extent for both
length and thickness. Thus, the length is dependent on the
maximal coordinate z, minimal coordinates x and z, volume,
and surface STL model properties. The significance level is
defined by the listed order meaning the first in the list has a

Fig. 21 Significance of parameters for thickness in ZYX orientation: a
Pearson correlation test results, b Decision Tree regression results

relative importance value of 100%, and the last one has this
value of 20 %. The significance level for other parameters
for length is shown in Fig. 25b.

Thickness

Even though the significance of parameters for thickness is
similar for the regression model and gradient boost regressor
(see Fig. 26), the latter one has a higher prediction accuracy
value. Therefore, predictions of this method are considered
more accurate.

Gradient boost regressor describes that for the chosen
model, minimal coordinate x is 100% important, and it is
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Fig. 22 Significance of parameters for thickness in ZYX orientation: a
Pearson correlation test results, b Gradient boosting regression results

followed by minimal coordinate z and maximal coordinate
x. These parameters have a relative importance of ca. 62%
and 53%, respectively. Then it is important to consider sur-
face and volume parameters, which are followed bymaximal
and central coordinates z. All other parameters have relative
importance less than 20%, but can be seen in Fig. 26b.

These results can be described that in this build layout
placement in x and z axes should be defined first, and STL
model properties such as surface and volume should be opti-
mized at the design stage. These changes may help to control
variations. Still, the authors assume that usingmachine learn-
ing techniques to predict dimensional features before build
will help to decrease variation since it will be possible to
optimize part placement and part orientation.

Fig. 23 Significance of parameters for thickness in Angle orientation:
a Pearson correlation test results, bGradient boosting regression results

Comparison of the predictive models for
each dimensional feature separately

A comparison of the predictive models for width, thickness,
and length is conducted at two levels: (i) orientation-based
analysis, and (ii) joint data analysis (without separation on
the orientations). The testing accuracies in terms of the deter-
mination coefficient calculated for the testing dataset are
presented for all proposed models and are shown in Table 4.

As can be seen from Table 4, performance of predic-
tive models for orientation-based modeling depends on both
dimensional features and orientation groups.While it is com-
mon knowledge that machine learning techniques require
a large number of data points, the correlation between the
chosen features and predicted outcome is also an important
factor. For instance, prediction of thickness in XZY orien-
tation, despite the small number of data points, has high
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Table 4 Evaluation of prediction (testing) accuracy of methods: MLP (BP) stands for MultiLayer Perceptron using backpropagation, DTR is
decision tree regressor, GBR—gradient boosting regressor and SPR—support vector regressor

Feature Train/test data Orientation Linear regression MLP (BP) DTR GBR SVR

Width 104/26 XYZ 0.096 − 0.2092 − 0.3758 0.1449 0.5085

38/10 XZY 0.550 − 0.0729 0.1502 0.6746 0.3480

134/34 ZYX 0.096 0.0986 − 0.0544 0.3362 − 0.3485

70/18 Angle 0.419 0.2471 0.3562 0.1198 0.2301

347/87 All together 0.647 0.7242 0.3998 0.4944 0.6804

Thickness 104/26 XYZ 0.590 0.5812 0.5668 0.7512 0.3503

38/10 XZY 0.868 0.8733 0.8593 0.8327 0.5874

134/34 ZYX − 0.482 0.6108 0.4073 0.5582 − 0.4983

70/18 Angle 0.539 0.7037 0.7992 0.8526 0.4883

347/87 All together 0.919 0.8906 0.6567 0.880 0.8326

Length 104/26 XYZ 0.306 − 0.5334 0.4881 0.6364 0.4103

38/10 XZY 0.249 0.2113 − 1.6030 −0.0317 − 0.0989

134/34 ZYX 0.918 0.9202 0.9225 0.9487 0.9609

70/18 Angle 0.593 0.6809 0.7484 0.8631 0.8773

347/87 All together 0.622 0.9312 0.7233 0.5487 0.8923

prediction accuracy, while predictive models for width and
length in XZY orientation are not satisfactory for any used
method.On the one hand, a small number of data points could
be one of the reasons for this observation. On the other hand,
the thickness prediction, evenwith this number of data points
has a high determination coefficient. Since for a small num-
ber of data points, there is a higher risk of getting overfitting
issues, a more detailed overview of the results needs to be
done.

Therefore, the cross-validation prediction accuracies are
compared with testing prediction accuracies for the models
with the prediction testing accuracy higher than 0.6 (60%).
Besides, root mean square error is used as a supportive
metric for the comparisonof themodel’s performance.Cross-
validation accuracies are used to avoid overfitting issues and
evaluate the generalization abilities of a model.

A comparison of the linear regression models with
machine learning models is described for width, thickness,
and length in the corresponding sections below.

Prediction of width dimensional feature

The performance of predictive models for width is unsatis-
factory for most of the orientation groups for all methods.
One of the reasons could be due to the presence of noise in
the data, and due to a small number of data points in each
orientation group. Evenwhen a large dataset is available, typ-
ically, defining a clear signal (pattern) in the data is a hard task
for anymodel. Therefore, small datasets available for model-
ing affect themodels’ performance. Besides, a division of the
collected data into orientation groups eliminates the informa-

tion about orientation as an important factor (Caulfield et al.
2007; Senthilkumaran et al. 2009a), and this leads to unsat-
isfactory models’ performance except for the cases when
other parameters have a strong correlation with the width.
While all methods show almost random performance, only
the GBR model has testing prediction accuracy relatively
high (0.6746 from Table 4). However, when comparing the
cross-validation results with testing prediction accuracy for
GBR in XZY orientation, one can see from Table 5 that the
proposed model has testing accuracy outside the confidence
intervals. Even though the testing accuracy is relatively high,
this model should not be used in the future due to insufficient
generalization ability.

When all orientation groups are joint into one dataset,
the performance of the predictive models for width changes
drastically. This change could be connected to the earlier
statement about the importance of the orientation.

As can be seen from Table 4, MLP, GBR, and linear
regression models have the best performance among all
investigated methods. Due to the nature of the chosen ML
methods, one machine learning method works better than
other ones depending on the tasks. For instance, the decision
tree method typically works good for the classification tasks,
while an assembly of decision trees, like GBR, works better
for the regression task. Therefore, a comparison of the pre-
dictive models is conducted only for the methods with the
best performance and is shown in Table 5.

The developed linear regression model is compared to the
MLP and SVR models. The testing accuracy is out of the
confidence range for each model and is lower than average
CV accuracy, meaning that overfitting is present. Tuning of
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Table 5 Comparison of the
predictive models for width ML model CV R̂2 95% CI Test R2 MAE RMSE

XZY—GBR 0.380 [0.379, 0.380] 0.675 8.218 8.218

All together—MLP 0.805 [0.777, 0.832] 0.724 0.049 0.069

All together—SVR 0.743 [0.7439, 0.744] 0.680 0.058 0.073

All together—LR 0.669 [0.6689, 0.669] 0.647 0.060 0.077

Fig. 24 Predicted siginificance of the parameters on width: a Pearson
correlation test results, b Gradient boost regressor

the hyperparameters haven’t help to avoid this issue. How-
ever, the difference between CV and testing accuracies for
the regression model is small, and thus this model can be
considered as acceptable.

In the future, all models need to be improved since the
random sampling of training and testing data affect the mod-
els’ performance. Even though 347 data points are used for
training the models, this is still a relatively small dataset.
Therefore, predictive models for width should be further

Fig. 25 Predicted siginificance of the parameters on length: a Pearson
correlation test results, b Gradient boost regressor

improved by taking into account more information about
the material and AM process. More experimental work is
required for increasing the size of the dataset.

Prediction of thickness dimensional feature

The predictive models for thickness in different orienta-
tion groups have a better performance comparing with the
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Fig. 26 Predicted siginificance of the parameters on thickness: a Pear-
son correlation test results, b Gradient boost regressor

results obtained for width. Table 4 shows that both linear and
machine learning models show relatively good performance
even for the XZY orientation, which has the smallest dataset
among all orientation groups. These results showus that there
are a strong linear correlation between investigated parame-
ters and thickness, which is in line with the results presented
in “Thickness” section. However, models’ performance for
ZYX orientation differs from other orientations. While GBR
and MLP models have prediction accuracies 55.82% and
61.08%, respectively, linear regression has accuracy lower
than 0. Thus, one can assume that investigated parameters
have a non-linear correlation with thickness.

For thickness in the XYZ orientation group, the GBR
model has significantly larger testing accuracy, and therefore
more detailed analysis of this model is shown in Table 6.

The testing accuracy is smaller than the average of cross-
validation accuracy and is outside of 95% confidence level.
A similar observation was made for width, and due to the
small dataset used for training a model, and random sam-
pling of the testing dataset could have affected the model’s
performance. However, the difference is small and could be
neglected, and thus meaning that the GBRmodel can be con-
sidered as acceptable.

For thickness in XZY orientation, linear regression and
MLPmodels have the highest prediction accuracy. However,
a more detailed analysis shows that linear regression has an
overfitting issue, while the MLP model can be considered as
acceptable since its testing accuracy lies in the 95% CI for
this model.

For thickness in ZYX orientation, MLP and GBR models
are compared by looking at the cross-validation accuracy,
95% CI, and testing accuracy. As can be seen from Table 6,
the testing accuracy differs from other metrics significantly
for bothmodels. Tuning of the hyperparameters hasn’t helped
to avoid this issue, and therefore, thesemodels require further
improvements and a larger dataset.

For thickness in Angle orientation, linear regression, and
GBRmodels are compared, and results are shown in Table 6.
While the LR model has significantly different performance
for training and testing datasets, the GBR model shows high
prediction accuracy 85.2%and is similar for both training and
testing datasets. Therefore, the lattermodel can be considered
as acceptable, and strong correlations have been determined
between investigated features and thickness dimensional fea-
ture.

When it comes to predicting thickness by using a joint
dataset (all orientation groups are used as one dataset), one
can see from Table 4 that almost all methods have high pre-
diction accuracy for testing dataset. LR, MLP, and GBR are
further evaluated due to the high testing accuracies, and their
comparison is presented in Table 6. As a result, only theMLP
model has prediction accuracy in 95%CI range, and therefore
it is considered as an acceptable model. However, the GBR
model has a very small difference between CV and testing
accuracies, and thus, can also be regarded as acceptable.

Since there are strong correlations between investigated
parameters and thickness, merging data from different orien-
tation groups have provided new patterns in the data, which
resulted in the higher prediction accuracies.

Prediction of length dimensional feature

In contrast with the predictive models for thickness, the pre-
dictive models for length in ZYX have the highest prediction
accuracies among all orientation groups (see Table 4). In the
section about the significance of investigated parameters, it
was highlighted that length in ZYX orientation has strong
linear correlations with coordinate z, the prediction accuracy
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Table 6 Comparison of the
predictive models for thickness ML model CV R̂2 95% CI Test R2 MAE RMSE

XYZ—GBR 0.764 [0.7639, 0.764] 0.751 0.027 0.034

XZY—MLP 0.825 [0.654, 0.996] 0.873 0.027 0.030

XZY—LR 0.908 [0.9079, 0.908] 0.868 0.027 0.031

ZYX—MLP −0.165 [−0.782, 0.452] 0.611 0.014 0.017

ZYX—GBR 0.271 [0.271, 0.271] 0.558 0.014 0.019

Angle—GBR 0.852 [0.8529, 0.853] 0.853 0.019 0.024

Angle—LR −8.28e+12 [−8.28e+12, −8.28e+12] 0.539 0.036 0.042

All together—MLP 0.926 [0.867, 0.985] 0.891 0.041 0.052

All together—GBR 0.885 [0.8849, 0.885] 0.880 0.044 0.054

All together—LR 0.911 [0.9109, 0.911] 0.919 0.035 0.044

obtained for predictive models in ZYX orientation supports
this observation. Similar observations for the relationship
between length and investigated parameters were made for
the Angle orientation group, which also results in relatively
high prediction accuracies on the testing dataset. However,
since machine learning techniques have better performance
than linear regression, one can assume a presence of non-
linear correlations as well. The predictive models for length
in XYZ and XZY show bad performance, which means that
the correlation between part position, STL models’ parame-
ters, and length is weaker than for the other two orientation
groups.

A more detailed analysis of the models’ performance is
shown in Table 7. For instance, all models in ZYX orien-
tation have high prediction accuracies, but all of them are
outside the 95% CI range. However, the MLP model has
a small difference between prediction accuracies for train-
ing and testing datasets, which can be neglected. While the
linear regression model, along with models in Angle orien-
tation, has larger prediction accuracy for testing dataset than
for training dataset. The reasons are similar, as reported ear-
lier, a small dataset affects random sampling of training and
testing datasets.

A similar observation can bemade for the predictive mod-
els when all orientations are analyzed as one dataset. Even
though the MLP and SVR show better performance than the
linear regression model (see Table 7), Table 7 shows that
both machine learning models have their testing accuracies
outside of the model’s confidence intervals. However, for
the MLP model, this difference is smaller, and the root mean
square error (RMSE) is also the smallest one among the eval-
uated models. Therefore, this difference can be neglected,
and the MLP model can be considered as acceptable.

Recommendations

The primary assumption that was made by authors at the
beginning of this work is that one single method will be the
best for predicting dimensional features both concerning ori-
entations and when orientations are combined in one dataset.
However, analysis has shown that for different tasks, differ-
ent methods should be used, and a choice should be made
based on the user needs and requirements.

Even though this is a preliminary study and the pro-
posed models need to be optimized and improved on a larger
dataset, the future perspectives on how the final models could
be used are suggested below.
Case 1 Dimensional accuracy is the main requirement, and
mechanical properties can be neglected - for use in real man-
ufacturing.Results presented in thiswork can be already used
in the manufacturing for applications where dimensional
accuracy is the main requirement. By predicting dimensional
features beforehand, the application of the calculated scaling
ratio at the design stage will help to adjust dimensions for
each separate part with respect to its placement in the build
chamber, orientation, and STL model properties.

However, there two major limitations that need to be
addressed in future work. The first one is a design complex-
ity. The proposed models can be used for the parts with a
simple and similar design to the one used to train the models.
The second limitation is a material choice. Since developed
models do not include information about usedmaterial, these
models nowcanbeused just for Polyamide2200with a 50/50
ratio of virgin/used powder.
Case 2 Prediction of mechanical properties based on the pre-
dicted dimensional features’ values for PA12. Typically, in
addition to dimensions, mechanical properties are of interest
in manufacturing. The material used in this study is plas-
tic with anisotropic properties, which makes it challenging
to develop mathematical material models. Along with that,
lack of information needed to build amaterial model does not
allow performing finite element modeling (FEM), which is
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Table 7 Comparison of the
predictive models for length ML model CV R̂2 95% CI Test R2 MAE RMSE

XYZ—GBR 0.484 [0.484, 0.484] 0.636 0.047 0.058

ZYX—GBR 0.951 [0.951, 0.951] 0.949 0.065 0.083

ZYX—SVR 0.952 [0.9519, 0.952] 0.961 0.058 0.072

ZYX—LR 0.917 [0.9169, 0.917] 0.918 0.087 0.104

Angle—GBR 0.830 [0.830, 0.830] 0.863 0.062 0.073

Angle—SVR 0.849 [0.8499, 0.850] 0.877 0.059 0.069

All together—MLP 0.944 [0.9395, 0.9445] 0.931 0.066 0.083

All together—SVR 0.921 [0.9209, 921] 0.892 0.082 0.104

All together—LR 0.659 [0.6589, 0.659] 0.622 0.160 65.195

one of the most widely used methods to simulate mechanical
properties beforehand.

In order to address this issue, the author proposes to apply
machine learning techniques to predict the mechanical prop-
erties of a part before it is fabricated. This prediction will be
based on the data collected in advance, including mechanical
testing results. Besides, the predicted values of dimensional
features, together with part’s placement and orientation in
the build chamber, will be used to develop new models, and
material properties should also be included since they are
one of the critical components of the future models. Addi-
tionally, the complexity of the design needs to be improved
and be more sophisticated in the future.
Case 3 Development of an intelligent system for quality
assurance in additive manufacturing. Even though the pro-
posed models can already be used in the way they are now,
additional knowledge of Python programming language is
needed for the user to be able to make requests. Therefore,
the author considers the results presented in this article as the
first step towards the development of an intelligent system for
quality assurance in additive manufacturing.

This system will consist of different modules, which will
be executed in different orders to provide a solution to the
user. A calculation core will be working behind a user-
friendly interface.

However, more details of system design will be presented
in future publications. Moreover, more experimental work
should be done in the future to improve existing modules and
create new ones. A particular focus should be set to the varia-
tion of different parameters (process andmaterial), including
the analysis of samples with a different level of design com-
plexity.

Conclusions

A comparison of regression models with machine learn-
ing techniques has been described in this paper. The main
aim was to develop models that could predict dimensional

features, namely thickness, width, and length, for additive
manufacturing with high accuracy. Besides, for a better
understanding of the process, investigation of parameters’
significance was performed based on the Pearson correlation
test, decision tree regressor, and gradient boost regressor. The
13 parameters were analyzed with respect to the data subsets
partitioned against each orientation, as well as for the com-
bined dataset.

For the models with the highest prediction accuracy, all
investigated parameters were defined as significant. More-
over, STLmodel properties were of the major interest as they
haven’t been studied in the same context by other researchers
except for the previous work by the authors (Baturynska
2018). Most of the applied methods have defined either the
surface or the number of mesh triangles as one of the most
important parameters with respect to dimensional features.
This information can be used during the design stage in the
future.

Along with that, the predictive models for width, thick-
ness, and length have been developed. The linear regression
model for width was determined as the best among all inves-
tigated methods for the case when data is not separated into
orientation groups. The three predictive models are accept-
able for thickness, namely gradient boost regressor models
in XYZ and Angle orientations, and the MLP model when
data is not divided into orientation groups. The MLP model
has also outperformed other methods for length, and gradi-
ent boost regressor was found to be the best for length in the
ZYX orientation group. All other models have unsatisfactory
performance and require further developments.

In order to continue improving developed models and cre-
ating new ones, more experimental work should be done in
the future. A particular focus should be set to varying parts’
design, and different processes, andmaterial parameters. The
authors have also proposed recommendations on how the
improved models could be used in the future.
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