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SAMPLING OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX

VARIABLES ON A LATTICE AND MULTIVARIATE GABOR

FRAMES

KARLHEINZ GRÖCHENIG AND YURII LYUBARSKII

Abstract. We give a general construction of entire functions in d complex
variables that vanish on a lattice of the form Λ = A(Z + iZ)d for an invertible
complex-valued matrix. As an application we exhibit a class of lattices of density
> 1 that fail to be a sampling set for the Bargmann-Fock space in C2. By using an
equivalent real-variable formulation, we show that these lattices fail to generate
a Gabor frame.

1. Introduction

We study the sampling problem in the Bargmann-Fock space of several complex
variables and the related construction of Gabor frames with a Gaussian window.
Our main point is the restriction to sampling on a lattice in Cd and the consequences
resulting from the additional invariance properties.

The first problem is a sampling problem for entire functions in several complex
variables. Recall that the Bargmann-Fock space F2

d consists of all entire functions
of d complex variables z = (z1, . . . , zd) ∈ C

d with finite norm

(1) ‖F‖2F2
d
=

∫

Cd

|F (z)|2e−π|z|2 dz.

A set Λ ⊆ C
d is called a sampling set for F2

d , if, for some constants A,B > 0,

(2) A‖F‖2F2
d
≤

∑

λ∈Λ
|F (λ)|2e−π|λ|2 ≤ B‖F‖2F2

d
, ∀F ∈ F2

d .

Our second question deals with the spanning properties of time-frequency shifts
of the Gaussian function φ(x) = exp(−π|x|2), x ∈ Rd, and thus is a problem for
functions on Rd. Let λ = ξ + iη ∈ Cd with ξ, η ∈ Rd and

(πλφ)(x) = e2iπ<η,x>e−π|x−ξ|2

be the corresponding time-frequency shift of φ by λ. Given a discrete set Λ ⊆ Cd,
we denote the set of time-frequency shifts along Λ by

G(Λ) = {πλφ : λ ∈ Λ} ,
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which is usually called a Gabor family. We then say that G(Λ) is a frame for
L2(Rd), if for some constants A,B > 0

(3) A‖f‖2L2(Rd) ≤
∑

λ∈Λ
|〈f, πλφ〉|2 ≤ B‖f‖2L2(Rd), ∀f ∈ L2(Rd).

We are interested in the frame property of G(Λ) in L2(Rd). This is a “real-variable”
problem about functions in L2(Rd).

It is well-known that the Bargmann transform maps the time-frequency shifts
πλφ to the normalized reproducing kernel of F2

d [2]. Therefore these two problems
are equivalent via the Bargmann transform:

The system G(Λ) forms a frame in L2(Rd), if and only if Λ is sampling in F2
d .

See Section 2.1 for a detailed description.
In the case of one variable d = 1 the sampling property in F2

1 and frame property
of G(Λ) can be completely characterized in terms of the density of Λ by the results
in [19,29,30]. Precisely, a separated set Λ ⊆ C is a sampling set for F2

1 , if and only
if its (lower) Beurling D−(Λ) is greater than 1. See also the discussion in [10,12,17].
In the multivariate case the density condition D−(Λ) > 1 is necessary (see [21,22]),
but is far from sufficient. Sufficient conditions in terms of a covering density are
given in [5, 21], but they imply a large Beurling density.

For more detailed results, additional arithmetic conditions are required. For this
reason we restrict our attention exclusively to lattices. As in [9] we consider only
complex lattices. By a complex lattice we understand a lattice of the form

Λ = A(Z+ iZ)d = AZ[i]d

for some A ∈ GL (d,C). Throughout we will write Z[i] = Z + iZ for the ring of
Gaussian integers in C. Since Λ is a discrete subgroup of Cd, the corresponding
sampling set and the Gabor family G(Λ) possess an additional structure.

To answer the question about Gabor frames over a lattice, one applies the fun-
damental duality theory [6, 14, 27] (see also Section 2.1 below). One of the key
points is relation between the sampling problem in the space F2

d and the unique-
ness problem in the space F∞

d , which consists of entire functions F on C
d such

that

‖F‖F∞
d

= sup
z∈Cd

|F (z)| e−π|z|2

2 < ∞.

After a suitable reformulation, we see that the construction of Gabor frames is
intimately connected to two fundamental problems about entire functions.

(i) Construct an entire function σΛ with possibly smallest growth that vanishes
on Λ, which in analogy to the one-dimensional case we call a sigma-type
function for Λ.

(ii) Construct an entire function τΛ that is interpolating on Λ, i.e., τΛ(λ) = δλ,0
for λ ∈ Λ.
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In dimension d = 1 the above problems on Z[i] are solved by the classical
Weierstrass σ-function

σ(z) = z
∏

m,n∈Z, (m,n)6=(0,0)

(

1− z

m+ in

)

e
z

m+in
+ 1

2
z2

(m+in)2 , τ(z) =
σ(z)

z
.

Clearly, σ is an entire function with Z[i] as its zero set, and τ in interpolating on
Z[i].

By contrast, in several complex variables the above questions are rather unusual.
The zero set of an entire function of d > 1 variables is always an analytic manifold.
Although it is possible to extend the construction of the Weierstrass product to
obtain entire functions whose zero set is a given analytic hypersurface [15,28], this
construction sheds no light on the search of sigma-type functions on a lattice. Only
few results about interpolation with discrete sets are known, see, e.g., [23, 24].

Our first contribution is a general recipe for the construction of sigma-type func-
tions and interpolating functions associated to an arbitrary complex lattice. The
idea builds essentially on the one-dimensional machinery and yields a special class
of sigma-type functions, whose zero set is a union of analytic planes that contain
the original lattice. Entire functions on C2 with plane zeros also play an impor-
tant role in [20]. In principle this idea works for arbitrary dimensions, but we will
restrict ourselves to entire functions of two variables.

Our second contribution is the application of the general construction of sigma-
type functions to show that certain complex lattices fail to yield sampling sets for
F2

2 . This requires the control of the growth of the sigma-type function so that
it is in F2

d . For the application to sampling in Bargmann-Fock space the goal is
therefore to find sigma-type functions with small growth.

To provide an idea of the main construction, we consider a model example that
inspired our general construction.

Let

(4) A =

(

1 1/2

0
√
3/2

)

, Λ = AZ[i]2.

This lattice is the complexification of the usual hexagonal lattice in R2. Our main
construction then suggests the following sigma-type function for Λ:

(5) σΛ(z1, z2) = σ(z1) σ(
z2√
3
− 1

2
) σ(

z2√
3
− i

2
) σ(

z2√
3
− 1 + i

2
)e2π(1−i)z2 .

It is easy to check that σΛ vanishes on Λ and satisfies the growth estimate
|σΛ(z)| ≤ Ceπ|z|

2/2.
The general characterization of lattice sampling sets (Proposition 2.1) then im-

plies the following result:

Λ fails to be a sampling set for F2
2 .

By contrast, the sigma-type function

σ2(A
−1z) = σ(z1 −

z2√
3
)σ(

2z2√
3
)
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also vanishes on Λ, but it grows much too fast to be of use in the analysis of F2
2 .

A small modification of (5) yields the interpolating function

(6) τΛ(z1, z2) =
σ(z1)

z1
σ(

z2√
3
− 1

6
) σ(

z2√
3
− i

6
)σ)(

z2√
3
− 1 + i

6
)eπ(1−i)/

√
3z2 .

Although τΛ 6∈ F2
2 , it satisfies the growth rate φΛ(z) ≤ Ceπ|z|

2/2. This suffices to
derive a weak Lagrange interpolation formula. See Theorem 5.3.

This example is rather puzzling. In dimension d = 1 the hexagonal lattice AZ2

has density 2/
√
3 > 1 and generates a Gabor frame G(AZ2) with certain optimal

features [4, 32]. By contrast in dimension d = 2, AZ[i]2 fails to generate a Gabor
frame and a sampling set for F2

2 , although it has density 4/3 > 1.
Currently the investigation of sampling the Bargmann-Fock space on lattices is

poorly understood, and still amounts to the investigation of examples and counter-
examples. We hope that this article will stir some interest among the experts in
several complex variables and that it will inspire a deeper analysis of the problem.

The article is organized as follows. In Section 2 we collect the background ma-
terial about the connection between sampling in Bargmann-Fock space and Gabor
frames, the basic information about the Weierstrass sigma-function, and a normal-
ized representation of lattices by means of Minkowski reduced bases. Section 3
contains the main construction of sigma-type functions and interpolating functions
for complex lattices. In Section 4 we use this class of sigma-type functions to show
that certain “natural” lattices of density > 1 fail to be sampling in Bargmann-Fock
space. In Section 5 we prove a weak Lagrange interpolation formula for certain lat-
tices of density ≥ 1.

2. Sampling, Sigma Functions, and Lattices

2.1. Sampling in Bargmann-Fock space and Gabor frames. The lattice
structure leads to special criteria for a set Λ to be sampling. We emphasize that
these are unavailable for arbitrary sets of points.

The relation between the sampling property of the lattice Λ and the frame prop-
erty of the system G(Λ) is summarized in the following statement. For its formu-
lation we need the adjoint lattice Λ◦ = (A∗)−1 Z[i]d of Λ = AZ[i]d

Proposition 2.1. For a lattice Λ = AZ[i]d ⊆ C
d the following are equivalent:

(i) G(Λ) is a frame in L2(Rd);
(ii) Λ is a sampling set for F2

d ;
(iii) There exists an interpolating function G ∈ F2

d for Λ◦ satisfying the Bessel
property, i.e.,

(7) G(µ) = δµ,0, for all µ ∈ Λ◦ ,

and F →
(

〈F, eπλ̄·zG(z)〉e−π|λ|2/2)
λ∈Λ maps F2

d to ℓ2(Λ).

(iv) Λ is a set of uniqueness for F∞
d , i.e., if F ∈ F∞

d and F (λ) = 0 for all λ ∈ Λ,
then F ≡ 0.
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Proposition 2.1 explains the fundamental importance of sigma-type functions and
interpolating functions in F2

d for the theory of Gabor frames. It follows from this
proposition that a function F ∈ F2

d can be recovered from its samples {F (λ)}λ∈Λ
by mean of the interpolating function G constructed for Λ◦, not for Λ! Namely 1

(8) F (z) =
∑

λ∈Λ
F (λ)eπλ̄·zG(z − λ)e−π|λ|2/2 .

The connection (i) and (ii) is classical. Let f ∈ L2(Rd) and

(9) Bf(z) = 2d/4 e−πz·z/2
∫

Rd

f(x)e−π|x|2+2πx·z dx

be the Bargmann transform of f . Then B is unitary from L2(Rd) onto the Bargmann-
Fock space F2

d , e.g., by [8]. Moreover, the Bargmann transform maps the time-

frequency shift 2d/4 πλφ to the normalized reproducing kernel eπλ̄·ze−π|λ|2/2 of the
Fock space. Therefore

(10) 〈f, πλφ〉L2 = 〈Bf,B(πλφ)〉F2
d
= Bf(λ)e−π|λ|2/2 .

See [8, 10] and the original literature [2].
The equivalence of (ii) and (iii) seems beyond the realm of complex analysis and

is due to the invariance properties of lattices. It shows that the problem of sampling
on a given lattice Λ is equivalent to an interpolation problem of the adjoint lattice
Λ◦. This statement is part of the duality theory of Gabor frames [6, 14, 27].

The equivalence of (ii) and (iv) follows from one of the characterizations of Gabor
frames without inequalitites [11] via the Bargmann transform.

2.2. Sigma-type functions for lattices. Our main tool for the construction of
sigma-type functions in Cd is the classical Weierstrass σ-function of one variable

σ(z) = z
∏

λ∈Z[i]

(

1− z

λ

)

e
z
λ
+ 1

2
z2

λ2 .

We refer to [1,31] for basic properties of σ(z). In particular, σ is an entire function
with Z[i] as the zero set.

In addition , see e.g. [16], for each ǫ > 0

(11) |σ(z)| ≍ eπ|z|
2/2, dist(z, Z[i]) > ǫ.

We note that σ ∈ F∞
1 \ F2

1 . By Proposition 2.1 the lattice of Gaussian integers
Z[i] fails to be a sampling set for Z[i]. This fact was already proved in [3, 25]

For z = (z1, . . . , zd) ∈ Cd we set

(12) σ0(z) =
d
∏

j=1

σ(zj) .

Then the function

(13) σA(z) = σ0(A
−1z)

1We always use the ”real” inner product: z · w =
∑d

j=1
zjwj for z = (zj), w = (wj) ∈ C

d.
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vanishes on Λ and satisfies the growth estimate

(14) |σA(z)| ≤ Ceπ‖A
−1‖2op|z|2/2 ,

where as usual ‖A‖op denotes the largest singular value of A.
Similarly we construct the interpolating function for Λ = AZd. We define

τ(z) = z−1σ(z) for z ∈ C and

(15) τ0(z) =

d
∏

j=1

τ(zj); τΛ(z) = τ0(A
−1z) for z = (z1, . . . , zd) ∈ C

d.

For example, consider the lattice αZ[i] ⊆ C with adjoint lattice Λ◦ = α−1 Z[i].
Then Λ◦ possesses the interpolating function τ(αz), which belongs to F2

1 , if and
only if 0 < |α| < 1. By Proposition 2.1 αZ[i] is a sampling set for F2

1 , if and only if
|α| < 1. This is a baby version of the complete characterization of one-dimensional
sampling sets in [19, 29, 30].

2.3. Lattice reduction and Minkowski-reduced bases. Clearly, the functions
σΛ and τΛ depend on the generating matrix A, or equivalently, on the choice of
a basis of Λ. Our first task is to choose a suitable basis of Λ, so that ‖A−1‖op
is small. One of possible recipes is to choose a basis of Λ which consists of the
shortest possible vectors.

Precisely, choose vectors aj ∈ Λ, such that ‖a1‖ = min{‖λ‖ : λ ∈ Λ} and

‖aj‖ = min{‖λ‖ : λ ∈ Λ, λ 6∈ span [a1, . . .aj−1]} .
Such a basis is called Minkowski reduced for Λ [18], and satisfies

‖a1‖ ≤ ‖a2‖ ≤ · · · ≤ ‖ad‖ .
After setting A =

(

a1 a2 . . . ad

)

, the lattice is Λ = AZ[i]d.
We may write A = US, where U is a unitary matrix and S is an upper triangular

matrix with real values on the diagonal and with columns bj (by QR-factorization
or Gram-Schmidt orthogonalization). Since the Fock space F2

d is invariant under a
unitary transformation U of coordinates, a set Λ is sampling, if and only if U−1Λ
is sampling. Replacing Λ = AZ[i]d by U−1Λ = S Z[i]d, we may therefore assume
without loss of generality that Λ = S Z[i]d for an upper triangular matrix S.

Since U preserves lengths, the columns of S are also Minkowski-reduced basis,
and ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bd‖. The upper triangular matrix S is of the form

(16) S = (sjk) =









γ1 ∗ . . . ∗
0 γ2 . . . ∗
...
0 . . . 0 γd









,

and its entries satisfy the additional conditions

sj,k = 0 k < j, skk = γk > 0,(17)

|Re sj,k|, |Im sj,k| ≤
sj,j
2

.(18)
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In [9] we proved the following result for general upper-diagonal matrices in arbitrary
dimension.

Proposition 2.2. Let Λ = S Z[i]d with an upper triangular matrix S.
(i) If γj < 1 for j = 1, . . . , d, then Λ is a sampling set for F2

d (and G(Λ) is a
frame for L2(Rd)).

(ii) If γd ≥ 1, then Λ is not sampling and G(Λ) is not a frame.

The proof goes roughly as follows. The adjoint lattice is Λ◦ = (S∗)−1 Z[i]d, where
(S∗)−1 is a lower trigonal matrix with diagonal (λ−1

j )j=1,...,d. Then the function

F0(z1, z2, . . . , zd) =

d
∏

j=1

σ(γjzj)

zj

belongs to F2
d and solves the interpolation problem (iii) in Proposition 2.1. If

γd ≥ 1, then the function F1(z1, z2, . . . , zd) := σ(γ−1
d zd) belongs to F∞

d and vanishes
on Λ. By Proposition 2.1 Λ fails to be a sampling set.

A different class of examples is discussed in [26].
From now on we deal with explicit constructions in two complex variables. We

may assume without loss of generality that Λ is determined by the matrix

(19) A =

(

γ1 β
0 γ2

)

with

(20) γ1, γ2 > 0, γ2
1 ≤ |β|2 + γ2

2 .

Since the basis is reduced, we have

(21) |Re β|, |Im β| ≤ γ1
2
.

3. A Construction of Sigma-Type Functions and Interpolating

Functions via Sublattices

To go beyond Proposition 2.2, we need a more involved recipe for sigma-type
and interpolating functions. In this section we provide such a general construction
inspired by the model example (5). The goal is to produce sigma-type functions or
interpolation functions with small growth.

Given a lattice Λ = AZ[i]2 in C2, we will use the following master plan to
construct a sigma-type function function or an interpolating function on Λ via a
sublattice.

(1) Construct a sublattice Γ ⊆ Λ that possesses an orthogonal basis (or possibly
a nearly orthogonal basis).

(2) Construct a sigma function σΓ and an interpolating function τΓ on Γ ac-
cording to (13) and (15).

(3) Determine a suitable set of coset representatives Λ/Γ.
(4) The sigma function and the interpolating function on Λ will be a suitable

product of shifts of each of the factors of σΓ and τΓ.
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3.1. Sublattices and their cosets. Following the outline above, we first describe
sublattices and their cosets in C2.

Every (complex) sublattice of Z[i]2 is of the form B Z[i]2 for an invertible matrix
2 × 2-matrix B with entries in Z[i] (in short, B ∈ GL(2, Z[i])). Consequently,
every sublattice of a lattice Λ = AZ[i]2 ⊆ C

2 is of the form

Γ = AB Z[i]2

for some B ∈ GL(2, Z[i]).
Clearly, we can represent the full lattice Λ as a union of shifts of the sublattice

Γ as follows Λ =
⋃n

j=1(δj + Γ) for some lattice points δj ∈ Λ. In fact, the shifts

δj are the representatives of the quotient Λ/Γ. We will use the following explicit
parametrization of Z[i]2/B Z[i]2 and hence of Λ/Γ.

Lemma 3.1. Let B =
(

a c
b d

)

with entries a, b, c, d ∈ Z[i]. Let γ = gcd(a, c) ∈ Z[i] 2

and ∆ = detB = ad− bc. Let Q =
(

[0, 1) + i[0, 1)
)

⊆ C. Then the set

D = {(δ1, δ2) ∈ Z[i]2 : δ1 ∈ γQ ∩ Z[i], δ2 ∈ ∆
γ
Q ∩ Z[i]}

is a set of coset representatives for Z[i]2/B Z[i]2.
In particular, if B possesses real-valued entries a, b, c, d ∈ Z, and a and c are

relatively prime over Z, then

D = {(0, δ); δ = α+ iα′), 0 ≤ α, α′ < | detB|}
is a set of coset representatives of Z[i]2/B Z[i]2.

Proof. We observe that the set Q is a (half-open) square in C and that (Q −
Q) ∩ Z[i] = {0}, where Q−Q = (−1, 1) + i(−1, 1) is the difference set. We write
a = γa′, c = γc′ for a′, c′ ∈ Z[i], and note that ∆ = γ(a′d−bc′), so that ∆/γ ∈ Z[i].

Assume that δ1, δ
′
1 ∈ γQ∩ Z[i], δ2, δ

′
2 ∈ ∆

γ
Q∩ Z[i] and that (δ1 − δ′1, δ2 − δ′2)

T =

B(k, l)T for some k, l ∈ Z[i], in other words (δ1, δ
′
1) and (δ2, δ

′
2) represent the same

coset. Then
(

a c
b d

)(

k
l

)

=

(

ak + cl
bk + dl

)

=

(

δ1 − δ′1
δ2 − δ′2

)

.

The first coordinate is

δ1 − δ′1 = ak + cl = γ(a′k + c′l) ∈ γ(Q−Q) ∩ Z[i] ,

and therefore the Gaussian integer a′k + c′l is in Q− Q, which implies that a′k +
c′l = 0. Since gcd(a′, c′) = 1 (up to multiplication by ±1,±i), it follows that
l = Na′, k = −Nc′ for some N ∈ Z[i].

Now the second coordinate of B(k, l)T is

bk + dl = N(−bc′ + a′d) = N
∆

γ
∈ ∆

γ
(Q−Q) ∩ Z[i] .

Therefore N ∈ (Q − Q) ∩ (Z[i]). This implies that N = 0 and thus k = l = 0.
Altogether we have shown that (δ1, δ

′
1) = (δ2, δ

′
2). It is easily verified that the

2Note that over Z[i] the greatest common divisor is only determined up to multiplication with
±1,±i. We refer the reader to [13] for the facts on division in Z[i].
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cardinality of γQ ∩ Z[i] is |γ|2 for γ ∈ Z[i], therefore the cardinality of D is
| detB|2. Consequently D is a complete set of representatives of Z[i]2/B Z[i]2.

�

3.2. A construction of sigma-type functions. We begin with the calculation
of σΓ and τΓ on the cosets ν + Γ of Γ in Λ. Let B =

(

a c
b d

)

, ∆ = detB and
Γ = AB Z[i]2 be the sublattice of Λ = AZ[i]2. In view of the explicit examples, we
assume furthermore that |gcd (a, c)| = 1.

Let, as before, σ(z) be the classical Weierstrass σ-function for Z[i]. For z =
(z1, z2) ∈ C we denote σ ⊗ σ(z) = σ(z1)σ(z2) and set

σΓ(z) = (σ ⊗ σ)
(

(AB)−1z
)

.

We first evaluate σΓ on Λ. Since |gcd(a, c)| = 1, the representatives of Z[i]2/B Z[i]2

can be chosen to be (0, δ), and thus a general lattice point λ ∈ Λ = AZ[i]2 can be
written as

(22) λ = A
(

B

(

k
l

)

+

(

0
δ

)

)

for some k, l ∈ Z[i] and (0, δ) ∈ D. Consequently

σΓ(λ) = (σ ⊗ σ)
(

(AB)−1
(

AB(k, l)T + A(0, δ)T
)

)

(23)

= (σ ⊗ σ)
(

(

k
l

)

+B−1

(

0
δ

)

)

.

Since

B−1

(

0
δ

)

=
1

∆

(

d −c
−b a

)(

0
δ

)

=

(

−cδ/∆
aδ/∆

)

,

the sigma function of the sublattice Γ evaluated on Λ is

(24) σΓ(λ) = σ
(

k − cδ

∆

)

σ
(

l +
aδ

∆

)

.

Here is our key observation:
If ∆

c
divides δ, then cδ

∆
∈ Z[i] and σ(k − cδ

∆
) = 0, thus σΓ

((

0
δ

)

+ γ
)

= 0 for all
γ ∈ Γ.

Similarly, if ∆
a
divides δ, then σ(l + aδ/∆) = 0. Thus a single factor of σΓ in

the product (24) vanishes on the whole coset (0, δ) + Γ and we need not include
additional factors to σΛ in order to annihilate this coset. We will therefore try to
choose a sublattice Γ such that a or c divides detB = ∆ and ∆/c is small.

To take care of the cosets that do not vanish in this way, we use (one-dimensional)
Fock shifts. For z, ζ ∈ C let

(25) βζf(z) = eπζ̄z−π|ζ|2/2f(z − ζ) .

We have

e−
π
2
|z|2|βζf(z)| = e−

π
2
|z−ζ|2|f(z − ζ)|,
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so βζ is a unitary operator on F2
1 and an isometry on F∞

1 . In particular, together
with (11) this yields

(26) |βζσ(z)| ≍ eπ|z|
2/2 , if dist(z, Z[i] + ζ) > ǫ.

For z = (z1, z2) ∈ C2 let p1(z1, z2) = z1 and p2(z1, z2) = z2 be the pro-
jections onto the first and second coordinate of z. In this notation σΓ(z) =
σ
(

p1((AB)−1z)
)

σ
(

p2((AB)−1z)
)

.

We split the construction of a sigma-type function for Λ into several steps.
Step 1. Partition the coset representatives D into disjoint subsets

(27) D = {(0, δ) ∈ D :
∆

c
|δ} ∪ E1 ∪ E2 = E0 ∪ E1 ∪ E2 ,

or

D = {(0, δ) ∈ D :
∆

a
|δ} ∪ E ′

1 ∪ E ′
2 .

where E1 and E2 are a convenient or arbitrary partition of those δ with ∆
c
6 | δ.

Step 2. We now define the entire functions

σΛ(z) =

(28)

= σ(p1((AB)−1z))
∏

ν∈E1

(

βp1(B−1ν))σ
)(

p1
(

(AB)−1z)
)

∏

ν∈E2

(

βp2(B−1ν)σ
)(

p2
(

(AB)−1z
)

)

,

and

σ̃Λ(z) =

= σ(p2((AB)−1z))
∏

ν∈E ′
1

(

βp1(B−1ν))σ
)(

p1
(

(AB)−1z)
)

∏

ν∈E ′
2

(

βp2(B−1ν)σ
)(

p2
(

(AB)−1z
)

)

.

Proposition 3.2. The functions σΛ and σ̃Λ vanish on Λ.

Proof. Let k, l ∈ Z[i], (0, δ) ∈ D, ν = (0, η) ∈ D and let λ = A
(

B
(

k
l

)

+
(

0
δ

))

be

a general lattice point in Λ. We write the coordinates of the argument in (24) as

p1
(

(AB)−1λ
)

= k − cδ/∆ and p2
(

(AB)−1λ
)

= l + aδ/∆ .

If we omit the normalizing factors of the Fock shifts, we have

βp1(B−1ν)σ(p1((AB)−1λ) ≍ σ(k − cδ

∆
+

cη

∆
) ,

βp2(B−1ν)σ(p2((AB)−1λ) ≍ σ(l +
aδ

∆
− aη

∆
) .

If (0, δ) ∈ E0, i.e., ∆
c
|δ and thus δ = r∆

c
for some r ∈ Z[i], then

σ(p1((AB)−1λ)) ≍ σ(k − cδ/∆) = σ(k − r) = 0 .

So σ vanishes on the cosets (0, δ) + Γ, whenever ∆
c
|δ.
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If (0, δ) ∈ E1, i.e., ∆
c
6 |δ, then the factor

βp1(B−1ν)σ(p1((AB)−1λ) ≍ σ(k − cδ

∆
+

cη

∆
)

vanishes for ν = (0, δ) ∈ E1. Likewise, if (0, δ) ∈ E2, then for ν ∈ E2

βp2(B−1ν)σ(p2((AB)−1λ) ≍ σ(l +
aδ

∆
− aη

∆
) = 0 .

Thus every coset (0, δ)T +Γ is annihilated by a single factor of σΛ, and σΛ vanishes
on Λ.

The proof for σ̃Λ is the same. �

3.3. Interpolating Functions. For the interpolating function on Λ we make a
similar ansatz. However, we need to pay special attention to the cosets in E0, where
∆
c
|δ. We partition D = E0 ∪ E1 ∪ E2 as in (27). Evaluating pj

(

(AB)−1λ
)

, j = 1, 2,
on these cosets, eventually leads to the following definitions. Let b1, b2 be the basis
vectors of Γ, namely b1 = AB

(

1
0

)

and b2 = AB
(

0
1

)

, and set

(29) b3 = b2 + A
(

0
∆/c

)

∈ C
2 and ζ =

〈b3, b2〉
‖b2‖2

∈ C .

Recall that τ(w) = σ(w)/w, w ∈ C is interpolating for Z[i] and define the entire
function

τΛ(z) = τ
(

p1((AB)−1z)
)

∏

ν∈E1

(

βp1(B−1ν)σ
)(

p1
(

(AB)−1z
)

)

×
∏

ν∈E2

(

βp2(B−1ν)σ
)(

p2
(

(AB)−1z
)

)

∏

r=cδ/∆∈Z[i]\{0}
βrζσ

(〈z, b2〉
‖b2‖2

)

.

The construction of τΛ is more subtle, since we need to include a finite number of

extra factors βrζσ
(

〈z,b2〉
‖b2‖2

)

.

Proposition 3.3. τΛ is an interpolating function for Λ.

Proof. The proof is similar to the proof of Proposition 3.2. Let (0, δ) ∈ D, ν =
(0, η) ∈ D and λ = A

(

B
(

k
l

)

+
(

0
δ

))

be a general lattice point in Λ. Then as before
we have

τ
(

p1((AB)−1λ)
)

= τ(k − cδ

∆
)

βp1(B−1ν)σ(p1((AB)−1λ)) ≍ σ(k − cδ

∆
+

cη

∆
)

βp2(B−1ν)σ(p2((AB)−1λ)) ≍ σ(l +
aδ

∆
− aη

∆
) .

If λ = 0 (k = l = δ = 0), then

τΛ(0) ≍ τ(0)
∏

η∈p1(E1)
σ(

cη

∆
)

∏

η∈p2(E2)
σ(

−aη

∆
) 6= 0
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since by definition τ(0) = 1 and cη
∆

6∈ Z[i], −aη
∆

6∈ Z[i] for ν ∈ E1 ∪ E2.
If (0, δ) ∈ E1 ∪ E2, then τΛ(λ) = 0 as in Proposition 3.2.
Finally, if (0, δ) ∈ E0, then δ = r∆/c for some r ∈ Z[i]. Therefore

τ
(

p1((AB)−1z)
)

= τ(k − cδ

∆
) = τ(k − r)

and τΛ(λ) = 0, unless k = r.
If k = r or δ = r∆/c, then, with the notation of (29),

λ = A
(

B
(

r
l

)

+
(

0
r∆/c

))

= lAB
(

0
1

)

+ r
(

AB
(

1
0

)

+ A
(

0
∆/c

))

= lb2 + rb3 .

We consider the factor βrζσ
(

〈z,b2〉
‖b2‖2

)

of τΛ with ζ = 〈b3,b2〉
‖b2‖2 and evaluate at λ:

βrζσ
(〈λ, b2〉
‖b2‖2

)

≍ σ
(〈λ, b2〉
‖b2‖2

− rζ
)

= σ
(〈lb2 + rb3, b2〉

‖b2‖2
− r

〈b3, b2〉
‖b2‖2

)

= σ(l) = 0 .

Altogether we have shown that τΛ(λ) = τλ(0)δλ,0 and that τΛ(0) 6= 0, so that τΛ is
an interpolating function for Λ.

�

4. Failure of Sampling in Fock Space

We now apply the construction of sigma-type functions to prove the failure of
sampling for certain lattices of density > 1. Such examples appear naturally if one
considers a sigma-type function of sufficiently small growth. Its zero set is a ”lat-
tice” of hyperplanes, and one can then choose a discrete lattice of arbitrarily large
density which belongs to these hyperplanes. For instance, σ0(z1, z2) = σ(z1)σ(z2)
is constructed to vanish on Z[i]2, but its zero set is the union of the complex lines
{k} × C and C × {l} for k, l ∈ Z[i]. Consequently σ0 vanishes on every lattice
ǫZ[i]× Z[i], which has density ǫ−2 >> 1.

Surprisingly this is not the only possibility of building such examples.

Theorem 4.1. Let q = q1 + iq2 ∈ Z[i] with |q| ≥ 2, γ2 + 1/|q|2 = 1 and

Λ =

(

1 1
q

0 γ

)

Z[i]2 .

Then Λ fails to be a set of sampling for F .

Proof. According to Proposition 2.1 it suffices to find an F ∈ F∞
2 , such that F (λ) =

0 for all λ ∈ Λ. We apply Proposition 3.2 to the sublattice Γ = AB Z[i]2 of Λ defined
by the matrix

B =

(

1 −q̄
0 |q|2

)

with inverse B−1 =
(

1 1/q

0 1/|q|2
)

. Then AB = diag (1, γ|q|2) and thus Γ = AB(Z[i])2 =

Z[i] × γ|q|2(Z[i]) possesses an orthogonal basis. Then ∆ = detB = |q|2, and by
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Lemma 3.1 the cosets of Z[i]2/B Z[i]2 are represented by the set D = {(0, δ1+iδ2) ∈
Z[i]2 : 0 ≤ δ1, δ2 < |q|2}.

Consequently the sigma-type function of Γ is

σΓ(z) = (σ ⊗ σ)
(

(AB)−1z
)

= σ(z1)σ(
z2

γ|q|2 ) .

Following the recipe of (27) and (28) we partition the coset representatives D into

E0 = {(0, δ) ∈ D : q|δ} = {(0, δ) : δ = q(m+ in), m, n = 0, . . . , |q| − 1} ,
and E1 = ∅, and E2 = D \ E0 = {(0, δ) ∈ D : q 6 | δ}.

Then card E0 = |q|2 and card E2 = |q|4 − |q|2. In the notation of Section 3.2
p2((AB)−1z) = z2/(γ|q|2) and p2(B

−1ν) = δ/|q|2. Then (28) yields the explicit
formula

σΛ(z1, z2) = σ(z1)
∏

δ∈E2

(βδ/|q|2σ)
( z2
γ|q|2

)

= σ(z1)
∏

δ∈E2

eπδ̄z2/|q|
2

σ
( z2
γ|q|2 − δ

|q|2
)

e
−π

2
|δ|2

|q|4(30)

By Proposition 3.2, σΛ vanishes on Λ.
Finally we need to check the growth of σΛ. Since βw0 is an isometry on F∞

1 by
(26), and since there are exactly |q|4−|q|2 factors in the product over E2, we obtain

|σΛ(z1, z2)| = |σ(z1)|
∏

δ∈E2

|(βδ/|q|2σ)
( z2
γ|q|2

)

|

≤ exp
(π

2
|z1|2

)

∏

δ∈E2

exp
(π

2

|z2|2
γ2|q|4

)

= exp
(π

2
(|z1|2 +

|q|4 − |q|2
γ2|q|4 |z2|2)

)

= exp
(π

2
(|z1|2 + |z2|2

)

,

where in the last identity we have used 1 − 1
|q|2 = γ2. Thus σΛ ∈ F∞

2 and by

Proposition 2.1 Λ cannot be a set of sampling for F . �

Corollary 4.2. Let Λ′ be a lattice of the form

Λ′ =

(

α 0
0 β

)(

1 1
q

0 γ

)

Z[i]2

with α, β ≥ 1 and γ2 + 1
q2

= 1. Then Λ′ is not a set of sampling for F .

Proof. Let D = diag(α, β), then Λ′ = DΛ with Λ as in Theorem 4.1.
According to Theorem 4.1 there exists a non-zero function F ∈ F∞

2 , such that
F (λ) = 0 for all λ ∈ Λ. Set F̃ (z) = F (D−1z). If λ′ ∈ Λ′, i.e. λ′ = Dλ for some

λ ∈ Λ, we have F̃ (λ′) = F (D−1Dλ) = F (λ) = 0 and

|F̃ (z)| = |F (D−1z)| ≤ Ce
π
2
|D−1z|2 ≤ Ce

π
2
|z|2 .
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So F̃ ∈ F∞
2 and F̃ vanishes on Λ′. Therefore Proposition 2.1 implies that Λ′ fails

to be a set of sampling for F . �

Corollary 4.3. Let p, q ∈ N, q ≥ 2, γ2 + 1/q2 = 1 and

Λ =

(

1 p
q

0 γ

)

Z[i]2 .

Then Λ fails to be a set of sampling for F .

Proof. The proof is almost the same as of Theorem 4.1. We choose the sublattice
Γ determined by the matrix

B =

(

1 −p
0 q

)

.

Then Γ = AB Z[i]2 =
(

1 0
0 γq

)

Z[i]2 has an orthogonal basis, and B−1 =
( 1

p
q

0
1
q

)

and

D = {(0, δ1 + iδ2) : 0 ≤ δj < q}. The sigma function is

σΛ(z1, z2) = σ(z1)
∏

η∈D\{0}
βη/qσ

( z2
γq

)

with growth

|σΛ(z)| ≤ e
π
2
|z1|2 e

π
2
(q2−1)

|z2|
2

γ2q2 = e
π
2
|z|2 ,

because 1− q−2 = γ2. �

One may wonder how we chose the sublattice Γ. Our guiding principle was to
find a sublattice with an orthogonal basis because in this case the norm ‖(AB)−1‖op
is minimized. We do not know how to make Theorem 4.1 work in greater generality.

Consider the one-parameter family of matrices At =
(

1 2
5

0 t

)

with t2 + (2/5)2 ≥ 1

(as we assume a reduced basis). Corollary 4.3 and 4.2 say that the lattices Λt =
At Z[i]

2 fail to be sampling for t ≥
√
24/5, but we do not know what happens for√

21/5 ≤ t <
√
24/5.

5. A Weak Sampling Formula

Theorem 4.1 and Corollaries 4.2 and 4.3 show that many lattices with density
> 1 fail to be sampling sets for F2

2 . By contrast, we have not succeeded to use the
interpolating functions of Proposition 3.3 to prove positive results about sampling
lattices. Nevertheless, we can prove a slightly weaker sampling theorem which
holds even for dimensions d > 2.

This section is a symbiosis of complex analysis (construction of interpolating
functions) and Gabor analysis (duality theory of Gabor frames). In fact, we
translate a weak reconstruction formula of Feichtinger and Zimmermann [7] into a
Lagrange-type reconstruction for entire functions.

For the discussion we need some more background from Gabor analysis. The
modulation space M1(Rd) is the subspace of L2(Rd) for which the norm

‖h‖M1 =

∫

R2d

|〈h, πzφ〉| dz
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is finite, where φ is the normalized Gaussian. Its dual is the space of tempered
distributions such that supz∈R2d |〈h, πzφ〉| < ∞. Then (M1)∗ = M∞, and the
duality is given via the Bargmann transform as

〈h, k〉M1×M∞ =

∫

Cd

Bh(z)Bk(z) e−π|z|2 dz = 〈Bh,Bk〉 .

Introducing the Fock space F1
d consisting of all entire functions with finite norm

‖F‖F1
d
=

∫

Cd

|F (z)| e−π|z|2/2 dz < ∞ ,

we can identify M1 and M∞ as the pre-images of F1
d and F∞

d of the Bargmann
transform [10].

The detailed analysis of the duality theory of Gabor frames led Feichtinger and
Zimmermann [7] to the theory of weak dual pairs. We will apply the following
version of the duality theory [7, Thm. 3.5.12].

Proposition 5.1 (Weak duality). Let Λ ⊆ R2d be a lattice with adjoint lattice Λ◦,
g ∈ M1(Rd) and γ ∈ M∞(Rd). Then the following are equivalent:

(i) Biorthogonality on the adjoint lattice:

(31) 1
vol (Λ)

〈γ, πµg〉 = δµ,0 for all µ ∈ Λ◦ .

(ii) For every f, h ∈ M1(Rd) we have

(32) 〈f, h〉 =
∑

λ∈Λ
〈f, πλg〉〈πλγ, h〉

with absolute convergence of the sum.

The identity (32) can be interpreted as a reconstruction formula

f =
∑

λ∈Λ
〈f, πλg〉πλγ

for f ∈ M1, but with convergence in the weak∗-topology on M∞.
By applying the Bargmann transform, Proposition 5.1 with g(x) = 2d/4e−π|x|2 is

translated into the following Lagrange interpolation formula for F1
d .

Corollary 5.2. Let Λ ⊆ Cd be a complex lattice with adjoint lattice Λ◦ ⊆ Cd and
τ ∈ F∞

d . Then the following are equivalent:
(i) τ is interpolating on Λ◦.
(ii) For all F ∈ F1

d

(33) F (z) =
∑

λ∈Λ
F (λ)eπλ̄·zτ(z − λ) e−π|λ|2 .

The series expansion converges weakly in the sense that for all H ∈ F1
d

∫

Cd

F (z)H(z)e−π|z|2 dz =
∑

λ∈Λ
F (λ)e−π|λ|2

∫

Cd

eπλ̄·zτ(z − λ)H(z)e−π|z|2 dz .
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Proof. This follows from the properties of the Bargmann transform: 〈f, h〉 =
∫

Cd Bf(z)Bh(z)e−π|z|2 dz, and 〈f, πλφ〉 = Bf(λ)e−π|λ|2/2 and the fact that the
Bargmann transform is an isomorphism from M1 onto F1

d and from M∞ onto
F∞

d . �

Combining Corollary 5.2 with the construction of interpolating functions we
obtain the following Lagrange interpolation formula.

Theorem 5.3. Let Λ = S Z[i]d where S is an upper triangular matrix with diagonal
(γ1, . . . , γd) as in (16). Assume that maxj=1,...,d γj = 1.

(i) Then there exists γ ∈ M∞ such that 1
vol (Λ)

〈γ, πµg〉 = δµ,0 for all µ ∈ Λ◦ and

the weak reconstruction formula (32) holds.
(ii) Equivalently, there exists an interpolating function τ ∈ F∞

d for the adjoint
lattice Λ◦, such that the weak Lagrange interpolation formula (33) holds. In par-
ticular, Λ is a set of uniqueness for F1

d .

Proof. The adjoint lattice of Λ is (S−1)∗ Z[i]d, and the diagonal of (S−1)∗ is (γ−1
1 , . . . , γ−1

d ).
Then the entire function

τ(z) = τ(z1, z2, . . . , zd) =
d
∏

j=1

σ(γjzj)

zj

is interpolating for Λ◦. This was already proved in [9]. Furthermore, by the growth

estimate for the Weierstrass sigma-function (11) we have
∣

∣

σ(γjzj)

zj

∣

∣ ≤ Ceπγ
2
j |zj |2/2.

Consequently,

|τ(z)| ≤ C ′eπ(max γ2
j ) |z|2/2 .

Consequently, τ ∈ F∞
d . However, since γl = 1 for some l, we have τ 6∈ F2

d . We now
choose γ ∈ M∞, so that Bγ = τ . The statement now follows from the assertion of
Proposition 5.1 and Corollary 5.2. �

Obviously our results are far from complete and should be considered a collection
of expected and of surprising examples. At this time we do not even understand
the sampling property of the class of lattices Λ = AZ[i]2 with A =

(

1 β
0 γ

)

and

|β|2 + γ2 = 1. As we have seen, for certain values of β, β = 1/q, q ∈ Z[i], |q| ≥ 2,
the lattice Λ is not sampling, but nothing else is known.
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