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Chiral ferromagnetism beyond Lifshitz invariants
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We consider a contribution wch to the micromagnetic energy density that is linear with respect to the first
spatial derivatives of the local magnetization direction. For a generalized two-dimensional Rashba ferromagnet,
we present a microscopic analysis of this contribution and, in particular, demonstrate that it cannot be expressed
through Lifshitz invariants beyond the linear order in the spin-orbit coupling (SOC) strength. Terms in wch

beyond Lifshitz invariants emerge as a result of spin rotation symmetry breaking caused by SOC. The effects of
these terms on the phase diagram of magnetic states and spin-wave dispersion are discussed. Finally, we present
a classification of terms in wch, allowed by symmetry, for each crystallographic point group.
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The Dzyaloshinskii-Moriya interaction (DMI) [1,2] is usu-
ally regarded as a key ingredient for the existence of chiral
magnetism [3–9]. In ferromagnets (FMs), DMI is described
in the continuum limit by so-called Lifshitz invariants (LIs),
antisymmetric combinations of the form

L(k)
i j = ni∇kn j − n j∇kni, (1)

where n is a unit vector of the local magnetization direction
[3–5,7,10–12]. In a broader sense, one can consider a “general
chiral contribution”

wch =
∑
βγ

�ch
βγ ∇β nγ (2)

to the micromagnetic energy density that is linear with respect
to the first spatial derivatives of n, but is not necessarily
expressed only in terms of LIs. Below, we refer to wch as the
chiral energy density.

Time-reversal symmetry dictates that elements of the ten-
sor �ch should be odd with respect to a transformation
n → −n [13]. Usually, it is simply assumed that �ch

βγ (n)
are linear functions of the components ni. In this case, wch

reduces to a linear combination of LIs and the corresponding
symmetric terms ∇k (nin j ) [14,15]. The latter describe only the
effects of boundaries [16].

Quite recently, such boundary effects came into the focus
of phenomenological studies in systems with C∞v point group
symmetry. The authors of Refs. [14,17] demonstrated that
the terms ∇k (nin j ) in wch may become important in thin
film systems. In particular, it was suggested that such terms
can lead to the formation of magnetic twist states [14] and
contribute to the stability of skyrmions [17].

In this Rapid Communication, the chiral energy density is
addressed beyond the assumption of the linear dependence of
�ch

βγ (n) on ni. Both microscopically and phenomenologically,
we demonstrate that LIs can be insufficient for describing
the chirality of a ferromagnet in the continuum limit, even
in the absence of boundary effects (e.g., when the system is
effectively infinite).

Let us start with a microscopic analysis of wch for a particu-
lar two-dimensional (2D) model system with C∞v symmetry.
We consider a FM layer coupled to a two-dimensional elec-
tron gas (2DEG) with spin-orbit coupling (SOC) of Rashba
type and assume that the 2DEG is described by the Hamilto-
nian

H = ξ (p) + αRζ (p)[p × σ]z + JsdS n(r) · σ, (3)

where the term ξ (p) parametrizes the nonrelativistic electron
dispersion, while the function ζ (p) quantifies the momentum-
dependent Rashba SOC of strength αR. In the last term of
Eq. (3), σ stands for the vector of Pauli matrices, while Jsd

represents the strength of the s-d-type exchange interaction
between the 2DEG and localized FM spins of the absolute
value S.

Using the model of Eq. (3), wch has been computed re-
cently [18] in the lowest (linear) order with respect to αR, with
the result

wch = −D
(
L(x)

zx − L(y)
yz

) = D n · [[ez × ∇] × n], (4)

where ∇ = (∇x,∇y) and D is a DMI constant proportional to
αR. We are about to show that, beyond the linear order in the
SOC strength, Eq. (4) transforms into

wch = D‖
(
n2

z

)
n · [[ez × ∇] × n‖]

+ D⊥
(
n2

z

)
n · [[ez × ∇] × n⊥], (5)

where D‖ differs from D⊥, and n‖/⊥ denotes the in-
plane/perpendicular-to-the-plane component of n,

n = n‖ + n⊥, n⊥ = eznz = ez cos θ. (6)

Note that the right-hand side of Eq. (5) is no longer expressed
in terms of LIs, as one can deduce from a direct expansion of
the vector products.
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In order to derive Eq. (5), we use a general expression for
the tensor �ch [18]:

�ch
βγ = T

JsdS

2π h̄
Re

∫
dε g(ε)

×
∫

d2 p

(2π )2
Tr (GRσγ GR vβ GR − GR vβ GRσγ GR),

(7)

where v = ∂H/∂ p is the velocity operator, the retarded
Green’s function GR describes a system with homoge-
neous magnetization, and Tr stands for the matrix trace
operation. In Eq. (7), we also use the notation g(ε) =
ln (1 + exp [(μ − ε)/T ]), where μ and T are the chemical
potential and temperature, respectively. The Green’s function
GR, in the momentum representation, takes the form

GR = ε − ξ (p) + αRζ (p)[p × σ]z + JsdS n · σ

[ε − ε+(p) + i0][ε − ε−(p) + i0]
, (8)

where the spectral branches ε±(p) = ξ (p) ± 
(p) are
parametrized by


(p) =
√


2
sd + [αR p ζ (p)]2 − 2αRς
sd p ζ (p) sin θ sin ϕ,


sd = |Jsd|S, ς = sgn Jsd.

Here, θ stands for the polar angle of n with respect to the z
axis, while ϕ is the angle between the momentum p and the
in-plane component n‖ of the vector n.

Substitution of Eq. (8) into Eq. (7) followed by the matrix
trace calculation and integration over ε produces the following
outcome:

�ch
βγ = W nγ nβ + D‖(1 − δγ z )

∑
i j

niεi jγ ε jzβ

+ D⊥δγ z

∑
i j

niεi jγ ε jzβ, (9)

where εq1q2q3 denotes the three-dimensional Levi-Civita sym-
bol, and δq1q2 is the Kronecker delta. The functions D‖ and D⊥
can be expressed as

Da = αR
2
sdT

2h̄

∫
d2 p

(2π )2
Da(p)

(
g+ − g−
[
(p)]3

− g′
+ + g′

−
[
(p)]2

)
,

(10)

where a =‖,⊥ and we use the notations

g± = g(ε±(p)), g′
± = ∂g/∂ε|ε=ε±(p), (11)

D‖(p) = ζ (p) + p ζ ′(p) sin2 ϕ, (12)

D⊥(p) = D‖(p) + p ζ ′(p) cos 2ϕ

sin2 θ
− αR p ζ 2(p) sin ϕ

ς
sd sin θ
, (13)

with ζ ′(p) = ∂ζ/∂ p.
To translate Eq. (9) into the expression for wch, we first

note that the value of W is totally irrelevant for the final result.
Indeed, upon substitution of Eq. (9) into Eq. (2), the first term

on the right-hand side of Eq. (9) produces a contribution that
is equal to (W/2)(n‖ · ∇)n2. Due to the constraint n2 ≡ 1,
it vanishes. The remaining two terms in Eq. (9) correspond
to the double vector products in Eq. (5). Noting that the
dependence of D‖ and D⊥ on the vector n, in the highly
symmetric model of Eq. (3), can be expressed as Da = Da(n2

z )
[19], we therefore conclude the microscopic derivation of
Eq. (5).

The fact that D‖ and D⊥ both turn out to be functions of
n has quite a few important consequences. Ignoring, for a
moment, the microscopic details, let us rewrite Eq. (5) as

wch = D⊥(n‖ · ∇)nz − D‖nz(∇ · n‖). (14)

Integration over space defines the total micromagnetic chiral
energy Wch = ∫

dx dy wch. Performing integration by parts
and disregarding contributions from the boundaries, we obtain
a different representation of the density,

wch = −D⊥nz(∇ · n‖) + D‖(n‖ · ∇)nz

− nz
∂D⊥
∂θ

(n‖ · ∇)θ + nz
∂D‖
∂θ

(n‖ · ∇)θ, (15)

where we have taken into account that the spatial dependence
of Da = Da(cos2 θ ) originates solely from the spatial depen-
dence of the polar angle θ = θ (r). By taking the half sum of
Eqs. (14) and (15), we arrive at the result

wch = −Das
(
L(x)

zx − L(y)
yz

) + Ddiff nz(n‖ · ∇)θ, (16)

Das = D‖ + D⊥
2

, Ddiff = ∂

∂θ

D‖ − D⊥
2

, (17)

that demonstrates an essential separation of wch into LI-type
contributions and contributions of a different symmetry.

The first term on the right-hand side of Eq. (16) has the
structure of the DMI energy density for a system of the
C∞v class, Eq. (4). The second term, however, displays a
non-LI-type symmetry and therefore does not originate from
DMI. Importantly, it cannot be “integrated out” by means
of a partial integration as opposed to the “boundary terms”
∇k (nin j ). We explicitly note that Ddiff 	= 0 requires at least
one of the functions, D‖ and D⊥, to depend on n, which
is possible due to broken spin rotation symmetry. A similar
orientational anisotropy of SOC-related phenomena has been
observed recently [25–27].

Remarkably, the phase diagram of magnetic states is af-
fected by Ddiff as well as by Das. Both functions incorporate
an infinite amount of Fourier harmonics,

Das = D(0)
as + D(2)

as cos 2θ + D(4)
as cos 4θ + · · · , (18)

Ddiff = D(2)
diff sin 2θ + D(4)

diff sin 4θ + · · · , (19)

which, obviously, complicates the minimization of the micro-
magnetic energy functional. Nevertheless, the role of the term
Ddiff nz(n‖ · ∇)θ can be illustrated by using a simple example.
Let us consider a domain wall (DW)

θ |x→−∞ = π, θ |x→+∞ = 0, φ ≡ φ0, (20)

with the fixed azimuthal angle φ of the vector n = n(x).
Assuming the DW size in the y direction to be equal to L, we
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TABLE I. Classification of LI-type and non-LI-type terms in wch allowed by point group symmetries. Here, A(k)
i j = �

(k)
i j ,�

(k)
i j and we

use the notations Q = A(x)
xx − A(x)

yy − 2A(y)
xy , S = A(y)

yy − A(y)
xx − 2A(x)

xy . For the classes C2h (D1d ), D2h, D3d , S2, S6, Th, Oh, and Cnh, Dnh with
n > 3, the chiral energy density vanishes identically. Let us give an example of how to use this table. Consider a 2D system of the class
C∞v . According to row 11, terms with the symmetry of LIs enter wch as a combination L(x)

zx − L(y)
yz . This corresponds to the first term on the

right-hand side of Eq. (16). The combination A(x)
zx + A(y)

yz with A = � corresponds to the second term there, while A(x)
zx + A(y)

yz with A = �

should be disregarded due to ∂/∂φ ≡ 0 for C∞v . In 2D, A(z)
xx + A(z)

yy with A = �, � vanish since ∇z ≡ 0.

Symmetry LI-type terms Non-LI-type terms

C2 (D1) L(x)
zx ; L(y)

yz ; L(x)
yz ; L(y)

zx ; L(z)
xy A(x)

zx ; A(y)
yz ; A(x)

yz ; A(y)
zx ; A(z)

xy ; A(z)
xx ; A(z)

yy

C2v (D1h) L(x)
zx ; L(y)

yz A(x)
zx ; A(y)

yz ; A(z)
xx ; A(z)

yy

D2 L(x)
yz ; L(y)

zx ; L(z)
xy A(x)

yz ; A(y)
zx ; A(z)

xy

D2d L(x)
yz − L(y)

zx A(x)
yz + A(y)

zx ; A(z)
xy

C3 L(x)
zx − L(y)

yz ; L(x)
yz + L(y)

zx ; L(z)
xy Q; S; A(x)

zx + A(y)
yz ; A(x)

yz − A(y)
zx ; A(z)

xx + A(z)
yy

C3v L(x)
zx − L(y)

yz Q; A(x)
zx + A(y)

yz ; A(z)
xx + A(z)

yy

C3h Q; S
D3 L(x)

yz + L(y)
zx ; L(z)

xy Q; A(x)
yz − A(y)

zx

D3h Q
Cn, n > 3 L(x)

zx − L(y)
yz ; L(x)

yz + L(y)
zx ; L(z)

xy A(x)
zx + A(y)

yz ; A(x)
yz − A(y)

zx ; A(z)
xx + A(z)

yy

Cnv , n > 3 L(x)
zx − L(y)

yz A(x)
zx + A(y)

yz ; A(z)
xx + A(z)

yy

Dn, n > 3 L(x)
yz + L(y)

zx ; L(z)
xy A(x)

yz − A(y)
zx

S4 L(x)
zx + L(y)

yz ; L(x)
yz − L(y)

zx A(x)
zx − A(y)

yz ; A(x)
yz + A(y)

zx ; A(z)
xy ; A(z)

xx − A(z)
yy

T L(x)
yz + L(y)

zx + L(z)
xy A(x)

yz + A(y)
zx + A(z)

xy

Td A(x)
yz + A(y)

zx + A(z)
xy

O L(x)
yz + L(y)

zx + L(z)
xy

can compute the corresponding total chiral energy WDW
ch =

L
∫

dx wch from Eqs. (16), (18), and (19). Making use of the
relation (∇xθ )dx = dθ to reduce the integration over x to the
integration over θ , we find

WDW
ch = −L cos φ0

∫ 0

π

dθ (Das − Ddiff sin θ cos θ )

= πL cos φ0

(
D(0)

as − 1

4
D(2)

diff

)
, (21)

where the orthogonality of the sine functions has been taken
into account. Note that this result is independent of the partic-
ular shape of the DW profile θ (x).

The contribution to WDW
ch that originates from the “anti-

symmetric part” −Das(L(x)
zx − L(y)

yz ) of the chiral energy den-
sity has been computed before [see, e.g., Eq. (19) in Ref. [22]].
The second contribution provided by the term Ddiff nz(n‖ ·
∇)θ , is the new result of this Rapid Communication. As
can be seen from Eq. (21), the DW chiral energy depends
equally on the D(0)

as and D(2)
diff Fourier harmonics. Thus, indeed,

the chirality of a ferromagnet in general cannot be properly
analyzed (in the continuum limit) without consideration of
the non-LI-type contributions to wch. Despite being simpli-
fied, the ansatz of Eq. (20) serves as a good illustration
of the importance of such contributions. We certainly ex-
pect them to be relevant for more complex structures [7]
as well.

To perform a separation of wch into LI-type and non-LI-
type terms for an arbitrary FM, which is analogous to Eq. (16),

we assume that

wch =
∑
i jk

Di jk ni∇kn j, (22)

where Di jk are even functions of n. Below, we refer to the
tensor with the components Di jk as the chiral tensor. Sym-
metrization of Eq. (22) gives [14,15]

wch = 1

2

∑
i jk

[
Das

i jkL
(k)
i j + Dsym

i jk ∇k (nin j )
]
, (23)

with Das(sym)
i jk = (Di jk ∓ Djik )/2. Applying integration by

parts to the second term inside the brackets and disregarding
contributions from the boundaries, we obtain

wch = 1

2

∑
i jk

[
Das

i jkL
(k)
i j − ∂Dsym

i jk

∂θ
�

(k)
i j − ∂Dsym

i jk

∂φ
�

(k)
i j

]
,

�
(k)
i j = nin j∇kθ, �

(k)
i j = nin j∇kφ, (24)

where θ and φ are, as before, the polar and azimuthal angles
of n, respectively.

Using a standard symmetry analysis [14,28], one can
identify the coefficients L(k)

i j , �
(k)
i j , �

(k)
i j that are allowed in

wch by a point group symmetry of a particular system. The
corresponding results for all crystallographic point groups
(except C1, C1v , and C1h that we address in the Supplemental
Material [19]) are collected in Table I. Remarkably, for the
classes C3h, D3h, and Td , DMI does not contribute to the
chiral energy density. Non-LI-type terms are the only source
of chirality in FMs described by these three groups.
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Let us now use the results of Eqs. (10)–(13) and return
to the microscopic analysis of the functions D‖ and D⊥ for
the generalized Rashba model of Eq. (3). First, it is easy to
observe that, in the leading (linear) order with respect to small
αR, the angle integration in Eq. (10) can be performed straight-
forwardly. This leads to the result D‖ = D⊥ = Das = D,
where D is the DMI constant given by Eq. (5) of Ref. [18].

In the other limit, 
sd → 0, the coefficients of the chiral
tensor do not coincide: one generally finds D‖ 	= D⊥, in the
leading (second) order with respect to small 
sd. Never-
theless, in this case, the quantity D‖ − D⊥ turns out to be
independent of θ and hence Ddiff = 0 [19]. Therefore, for
either weak SOC or weak s-d exchange, the chiral energy
density can be described by LIs alone, at least as long as the
boundary effects are disregarded. Any possible effect of Ddiff

is absent in these two limits.
A further asymptotic analysis [19] shows that the function

Ddiff does not contain contributions in the order α3
R. Indeed, in

this order, D‖ 	= D⊥— yet, again, the difference between D‖
and D⊥ does not depend on θ . In general, the expansions of
Ddiff in small αR and small 
sd start with the contributions
of the order α5

R and 
4
sd, respectively. Moreover, for the

leading-order asymptotics, only the first Fourier harmonic is
nonvanishing, so that Ddiff = D(2)

diff sin 2θ .
For the particular Bychkov-Rashba model [29] character-

ized by the choice ξ (p) = p2/2m and ζ (p) ≡ 1 in Eq. (3), we
find at T = 0 for the first nonzero terms of the expansions (in
αR and 
sd, respectively):

D(2)
diff = −mαR
sd

128π h̄

(
mα2

R


sd

)2{
Q(μ/
sd), |μ| < 
sd,

0, μ > 
sd,

D(2)
diff = −mαR
sd

16π h̄

(

sd

mα2
R

)3{
R
(
μ/mα2

R

)
, μ < 0,

0, μ > 0,

where we have introduced Q(x) = 35x4 − 30x2 + 3 and
R(x) = (35x2 + 40x + 12)/(1 + 2x)5/2, with R(x) ≡ 0 for
x < −1/2. In principle, it is clear that, in this simple model,
Ddiff is determined by three independent energy scales: mα2

R,

sd, and μ. Intuitively, one would expect |Ddiff| to be maximal
when mα2

R and 
sd are of a comparable magnitude. Our
perturbative analysis agrees with this conjecture. We also
illustrate the latter in Fig. 1, by plotting the ratio D(2)

diff/D(0)
as as a

function of the SOC strength. The absolute value of this ratio,
and even its sign, are sensitive to variation of the chemical
potential. One might recognize this as a possibility to gain
additional means of magnetic order tuning by means of gate
voltage control.

Notably, in the Bychkov-Rashba model, the leading-order
asymptotics of Ddiff vanish at zero temperature when both
spin subbands are partly occupied. This is not accidental.
In fact, chiral terms in the micromagnetic energy density
(including those originating from DMI) are totally absent in
this case, D‖ ≡ 0 and D⊥ ≡ 0, regardless of the values of αR

and 
sd [19]. Such a peculiarity, however, is a property of
the specific model and does not characterize the symmetry
class (C∞v) to which the latter corresponds. Indeed, one
may consider a slightly more general example, with ξ (p) =
(p2/2m)/(1 + κ p2/2m) and ζ (p) = 1/(1 + λ p2/2m), where
the positive parameters κ and λ represent deviations from

FIG. 1. The ratio between the leading Fourier coefficients of the
functions Ddiff and Das in the Bychkov-Rashba model. All three
curves are obtained numerically by changing the parameter αR (with
others fixed). Temperature is set to zero.

parabolic band dispersion [30–32] and nonlinear dependence
of the Rashba SOC on momentum [33–35], respectively. In
this model, finite wch for two partly occupied subbands is
restored. In particular, for μ > 
sd, we find a surprisingly
compact result in the leading α5

R order,

D(2)
diff = −14mαR
sd

3π h̄

(
mα2

R

)2

3

sd(κ − λ)4(4κ − 9λ), (25)

where the temperature is set to zero and κ ≈ λ are both
considered small in comparison with μ−1 and 
−1

sd .
In the final part of this Rapid Communication, we briefly

discuss how the chiral energy density with the symmetry
of Eq. (5) affects spin-wave dispersion. The effective field
arising due to wch is proportional to the functional derivative
δWch/δn. Taking advantage of the fact that both D‖ and
D⊥ can be considered independent of n‖ = (nx, ny), we find
δWch/δn = 2DLLGu, where

DLLG = 1

2

(
D‖ + D⊥ + nz

∂D‖
∂nz

)
, (26)

u = ∇nz − ez(∇ · n‖). (27)

The corresponding contribution to the Landau-Lifshitz-
Gilbert (LLG) equation shifts the frequency of a spin wave
by a term linear in wave vector k [36–38]. Importantly,
the frequency difference 
 f between spin waves with wave
vectors k and −k is experimentally measurable [37–40]. In
the present case, such a difference should equal


 f = 2γ DLLG

πMs
[n × k]z, (28)

where Ms is a saturation magnetization and γ denotes the
gyromagnetic ratio.

Normally, for thin magnetic films and interfaces, it is
assumed that DLLG is a DMI constant which is independent
of n and defines the DMI energy density as DLLG n · [[ez ×
∇] × n] [37]. According to Ref. [14], for a 2D system of the
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FIG. 2. The quantity DLLG in the Bychkov-Rashba model as a
function of the polar angle of magnetization direction at zero temper-
ature. Solid curves represent numerical results. For mα2

R/
sd = 0.1,
the asymptotic expansion up to the order α3

R [given by Eq. (S26)
in the Supplemental Material [19]] is shown for compari-
son. For mα2

R/
sd = 0.01, numerical and asymptotic curves are
indistinguishable.

C∞v class, DLLG in Eq. (28) should, in fact, coincide with
Das given by Eq. (17). However, once the dependence of the
functions D‖ and D⊥ on the vector n is taken into account, the

equality DLLG = Das should also be revised. As one can see
from Eq. (26), the result for DLLG is different from Das by the
term nz(∂D‖/∂nz ). Interestingly, for the model of Eq. (3), its
expansion in powers of αR starts with α3

R [19]. Therefore, one
could anticipate the effects of this term to be more pronounced
than those of Ddiff.

In Fig. 2, we plot DLLG as a function of the polar angle θ of
magnetization direction, for the Bychkov-Rashba model. It is
very clear that the Fourier harmonic cos 2θ is non-negligible,
already for small values of mα2

R/
sd. Manifestly, in systems
with strong SOC [41,42], the components of the chiral tensor
can depend on n. It would be interesting to observe such
dependence experimentally. Should this happen, the proper
treatment of chiral ferromagnetism must extend beyond Lif-
shitz invariants.
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