
Vulnerability Discovery Modelling With
Vulnerability Severity

Ankur Shukla, Basel Katt and Livinus Obiora Nweke
Department of Information Security and Communication Technology (IIK),

Norwegian University of Science and Technology (NTNU),
Gjφvik, Norway

ankur.shukla@ntnu.no
basel.katt@ntnu.no

livinus.nweke@ntnu.no

Abstract—Web browsers are primary targets of attacks be-
cause of their extensive uses and the fact that they interact
with sensitive data. Vulnerabilities present in a web browser can
pose serious risk to millions of users. Thus, it is pertinent to
address these vulnerabilities to provide adequate protection for
personally identifiable information. Research done in the past has
showed that few vulnerability discovery models (VDMs) highlight
the characterization of vulnerability discovery process. In these
models, severity which is one of the most crucial properties
has not been considered. Vulnerabilities can be categorized into
different levels based on their severity. The discovery process of
each kind of vulnerabilities is different from the other. Hence,
it is essential to incorporate the severity of the vulnerabilities
during the modelling of the vulnerability discovery process. This
paper proposes a model to assess the vulnerabilities present in
the software quantitatively with consideration for the severity
of the vulnerabilities. It is possible to apply the proposed
model to approximate the number of vulnerabilities along with
vulnerability discovery rate, future occurrence of vulnerabilities,
risk analysis, etc. Vulnerability data obtained from one of the
major web browsers (Google Chrome) is deployed to examine
goodness-of-fit and predictive capability of the proposed model.
Experimental results justify the fact that the model proposed
herein can estimate the required information better than the
existing VDMs.

Index Terms—Vulnerabilities, Vulnerability discovery model,
Severity, Web browser

I. INTRODUCTION

The recent progresses achieved in information and commu-
nication technology have resulted in data security becoming a
serious issue for both academia and the industry. Nowadays,
web applications have been extensively used in many do-
mains including banking, healthcare, transportation and social
networking. A critical vulnerability is capable of giving an
attacker full access to the web applications, which could
lead to compromising the security properties (confidentiality,
integrity and availability) of the applications. Therefore, steps
should be taken to ascertain the fact that the security properties
of the developed web applications are not breached.

Security vulnerability is caused due to the potential exploita-
tion of software code or system in the form of unauthorized
access. This malicious behavior or fraudulent access may be

reflected as introduction of viruses, Trojan horses, malware,
etc. to the original code. Pfleeger [1] defines vulnerability
as a flaw that is inherent in an application which may be
abused by an attacker. According to NVD [2], more than
18000 and 14600 vulnerabilities were reported in 2018 and
2017 respectively, which are more than twice the amount of
the vulnerabilities reported in 2016, i.e., 6,447. This issue is of
great concern to the cybersecurity community and should be
addressed as attackers try to exploit these vulnerabilities caus-
ing compromise upon the availability, confidentiality or system
integrity. Also, security vulnerabilities research received a lot
of attention in the last decade, and VDMs have been playing
an important role in the study of the trend of vulnerability
discovery in the software. Furthermore, VDMs help to de-
termine the readiness of release, allocation of resource for
future patch release, followed by assessment of the risk of
code vulnerability owing to human exploitation.

Characterization of security vulnerabilities and predicting
the unknown future vulnerabilities have been studied for
several years. Many authors have considered the importance of
characterization of security vulnerability and their exploitation
in assessing risk. Some of the authors have made efforts to
study the behavior of vulnerability discovery process by using
different modelling techniques. The first VDM was developed
by Anderson [3], but the model had significant drawbacks.
Alhazmi and Malaiya [4] presented a time and effort-based
model to examine quantitatively the content of vulnerabilities
in a couple of operating systems using the database which
accounts for the reported vulnerabilities. Whilst the time-
based model involves understanding the correlation between
cumulative vulnerabilities and calendar time; the effort-based
model uses equivalent effort, which signifies the effort that
goes into finding vulnerabilities as a metric. In addition, they
introduced another metric referred to as known vulnerability
density, which compared the values against the systems and as-
sesses their maturity corresponding to security vulnerabilities.
The vulnerability data reported against the varying versions
of the main operating systems (Windows and Red Hat), and
for IIS HTTP ServersApache and Apache were tested using
Alhazmi and Malaiya model [5], [6].

Rescorla [7] examined the vulnerability discovery rate from

empirical data. The process involves associating a reliability
growth model on rate of vulnerability discovery and using
that to uncover the trend of total number of vulnerabil-
ities. Woo et al. [8] deployed Alhazmi Malaiya Logistic
Model [4] to characterize the vulnerabilities of the major
browsers, namely: Mozilla, Internet Explorer, and Firefox;
and examined the vulnerability discovery shifts. They also
applied the vulnerability severity levels to evaluate the utility
of the Logistic model. Shar and Tan [9] developed defect
predictors against a static code attributes set which depicts
input sensitization and validates patterns in code. Hovsepyan
et al. [10] exploited raw source code analysis as text for
vulnerability prediction. Massacci and Nguyen [11] built an
empirical methodology which measured VDMs’ performance
using quality and predictability as the quantitative metrics.
Shar et al. [12] utilized the benefits offered by the current
static and dynamic taint analysis methods (which they referred
to as hybrid analysis) and proceeded to use prediction models
developed using machine learning techniques for web appli-
cation vulnerability prediction. Jeffrey et al. [13] also studied
the effect of the reduction in dimensionality in vulnerability
prediction of software models.

Numerous studies have opined that the vulnerability dis-
covery process is similar to the fault recognition process
during the testing period of software. Therefore, software
reliability growth models are applied in characterizing the
vulnerability discovery process in these studies. The authors
in [14] proposed a logarithmic Poisson model based on the
Musa-Okumoto [15] logarithmic execution time model to
ascertain the number of vulnerabilities. Kimura [16] also
developed a software vulnerability assessment model based on
the non-homogeneous Poisson process to analyze the software
vulnerabilities present in the sendmail system. Several authors
have also made efforts in vulnerability prediction [11], [17]–
[28].

Web browsers are the most favored target of the attackers.
Websites use various components from the multiple sources
and many of these sources are not authorized by the site own-
ers. Attackers make these websites easy target by distributing
the malware through the websites without risking detection.
The increasing number of vulnerabilities detected in various
web browsers like Google Chrome, Microsoft ChakraCore,
Mozilla Firefox, Internet Explorer, Apple Safari etc. is a
major concern of the cybersecurity industries and researchers.
According to a report published in 2019 [29], vulnerabilities
present in the browsers are still on the rise. For web browsers,
vulnerabilities reported in 2018 are 20 percent higher than
the vulnerabilities reported in 2017. However, Microsoft Edge
and Apple Safari are exceptions. As published in this report,
Google Chrome and Microsoft Edge are the most favored web
browsers, while Microsoft Chakra Core and Apple Safari are
less popular among attackers. Therefore, there is a need to
develop a systematic methodology to study the behavior of
vulnerability discovery process of web browsers. In this paper,
a method to model vulnerability in the discovery process with
consideration for the vulnerability severity has been proposed.

The three categories of vulnerability severity that are use for
the study include: low, medium and high. The model proposed
has been validated using the vulnerabilities data reported for
Google Chrome web browser.

The remaining paper is structured as follows: The detailed
description of vulnerability severity and systematic devel-
opment of model proposed is presented in Section II. The
description of vulnerabilities data for Google Chrome and
various comparison benchmarks employed to measure the
performance of the proposed model are given in Section III.
In Section IV, the performance analysis of the proposed model
is done and Section V concludes the paper.

II. MODEL DEVELOPMENT

This section elaborates on the severity of vulnerabilities and
detailed development of the proposed model are discussed.

A. Severity of Security Vulnerability

Security vulnerabilities can be indicated by a vulnerability
value which denotes the severity of risk or loss because of
the vulnerability. For example, password file and Microsoft
Word are used to store the information on the computer
systems, but the vulnerability related to the password file
typically has high severity due to importance of password. The
severity in vulnerability depends on numerous factors ranging
from impact on the integrity, confidentiality or availability
of data, along with which particular attack vector is used,
the complexity of the attack, the required privileges, or any
other interaction with the user. National Vulnerability Database
(NVD) [2] assigns qualitative vulnerability severity rating
which helps responders to prioritize responses and resources
according to threat. NVD use Common Vulnerability Scoring
System (CVSS) to assign score to vulnerability. National In-
frastructure Advisory Council (NIAC), introduced first version
of CVSS in February 2005 with the goal being designed
to provide open and universal standard severity ratings of
software vulnerabilities. The current version of CVSS, i.e.,
CVSS 3.0 was launched in June 2015. NVD use two version
of CVSS (CVSS v2.0 and CVSS v3.0) standards. It assigns
qualitative severity rankings based on the base score range of
the vulnerabilities. Severity ranking with base score range is
given in Table I for two versions of CVSS.

TABLE I
CVSS SEVERITY RATINGS [2]

CVSS v2.0 Ratings CVSS v3.0 Ratings
Severity Base Score Range Severity Base Score Range

Low
Medium

High

0.0-3.9
4.0-6.9

7.0-10.0

None
Low

Medium
High

Critical

0.0
0.1-3.9
4.0-6.9
7.0-8.9

9.0-10.0

B. Related Models

In the past, some authors have developed VDMs to char-
acterise the vulnerability discovery rate. Some of the most
relevant contributions are as follows.

Alhazmi and Malaiya [4] developed a time-based model
which is based on the fact that the change in the rate of
cumulative number of vulnerabilities depends on two factors
and it is formulated as follows:

dV

dt
= aV (b− V), (1)

where V refers to the cumulative number of vulnerabilities, a
and b are considered to be the empirical constant which depend
on available data. Solving the above equation, the total fault
content function can be represented as follows:

V =
b

bc exp(−abt) + 1
(2)

Rescorla [7] examined the trend of the vulnerability discov-
ery process by conducting some statistical tests. In first test,
he utilized the vulnerability discovery rate as a linear function
of time as follows:

v(t) = bt+ k (3)

where b and k are the constants. He suggested to fit the
above linear curve to the curve of vulnerability discovery and
then, the total number of vulnerabilities may be find easily by
integrating it as follows:

V (t) =
bt2

2
+ kt (4)

Similarly, he [7] considered the vulnerability discovery rate
as exponential function of time in his second test that was
based on model framed by Goel-Okumoto (G-O) [30]. He
represented the rate of vulnerability discovery as

v(t) = Nλe−λt, (5)

where N represents the overall number of vulnerabilities and
λ represents the discovery rate constant. Cumulative number
of vulnerabilities can be obtained by integrating the above
equation

V (t) = N(1− e−λt), (6)

where V (t) is the cumulative number of vulnerabilities and
V (0) = 0. v(t) is also expressed as v(t) = dV (t)

dt .
Alhazmi and Malaiya [14] developed a logarithmic Poisson

model based on the Musa-Okumoto [15] logarithmic execution
time model to estimate the number of vulnerabilities which is
as follows:

V (t) = b0 ln(1 + b1t), (7)

where b0 and b1 are the constants and V (0) = 0.

C. Proposed Model: Vulnerability Discovery Model with Vul-
nerability Severity

1) Formulation of the Proposed Model: In the proposed
model, vulnerabilities discovery process is assume to follow a
non-homogeneous Poisson process similar to the model devel-
oped by Goel-Okumoto [30] and it is assume that the rate of
vulnerability discovery process is proportional to the number

of undiscovered vulnerabilities at time t. The vulnerability
discovery rate is represented as follows:

dV (t)

dt
= λ (N − V (t)) , (8)

where V (t) is the cumulative number of vulnerabilities dis-
covered, N is the overall number of product’s vulnerabilities
and λ is a discovery rate constant. Solving the equation (8),
with V (0) = 0 we have

V (t) = N(1− e−λt), (9)

As discussed in the previous section, a product may have
vulnerability with different severity. In the past, numerous
VDMs have been recommended to study the vulnerability
discovery process, however no effort has been made to
incorporate the severity of vulnerabilities in modelling the
vulnerability discovery process. Considering this fact, a VDM
is proposed in this section which incorporated the vulnerability
severity. In this model, vulnerability severity is categorized in
three parts similar to the CVSS v2.0 standards, as follows:

1) Low
2) Medium, and
3) High.

It is assume that vulnerability discovery rate of a category of
vulnerabilities is proportional to the number of undiscovered
vulnerabilities of that category at time t. For example, the rate
of discovery of vulnerabilities with low severity is proportional
undiscovered vulnerabilities of the product with low severity
at time t. Therefore, the vulnerability discovery rate of ith

type of vulnerabilities is given by the differential equation, as
follows

dVi(t)

dt
= λi{Npi − Vi(t)} (10)

where Vi(t) is the cumulative number of ith type vul-
nerabilities discovered, N is the total number of product’s
vulnerabilities to be eventually reported, λi is a constant
discovery rate of ith type of vulnerabilities, and pi is the
proportion of ith type of vulnerabilities. where i = 1, 2, 3.
The above equations satisfy the initial condition Vi(0) = 0.

2) Solution of the Proposed Model: Cumulative number of
vulnerabilities of each category of the vulnerabilities can be
represented by the equation obtained by solving the Eqn. (10)
with Vi(0) = 0, as follows:

1) Vulnerabilities with low severity (for i = 1)
Cumulative number of vulnerabilities of this category of
the vulnerabilities can be represented as

V1(t) = Np1(1− e−λ1t), (11)

2) Vulnerabilities with medium severity (for i = 2)
Cumulative number of vulnerabilities of this category of
the vulnerabilities can be represented as

V2(t) = Np2(1− e−λ2t), (12)

3) Vulnerabilities with high severity (for i = 3)
Cumulative number of vulnerabilities of this category of
the vulnerabilities can be represented as

V3(t) = Np3(1− e−λ3t), (13)

Fig. 1. Number of vulnerabilities with different severity reported during January 2010 to December 2018.

3) Mean Value Function of the Proposed SRGM: Since the
reported cumulative number of vulnerabilities in the product is
the sum of vulnerabilities with all type of severity. Therefore,
mathematically it can be represented as

V (t) =
∑
i

Vi(t), (14)

where i = 1, 2, 3.
Proposition 1: As mentioned in the above equations, p1, p2,
and p3 are the proportionality of the vulnerabilities with low,
medium and high vulnerabilities and N is the expected number
of vulnerabilities to be reported. Then N = N(p1 + p2 + p3)
where p1 + p2 + p3 = 1 or p3 = 1− p1 − p2.

This proposition will also be helpful in parameter estimation
of the proposed model.

III. DATA SET AND COMPARISON CRITERIA

In this section, a detailed description of the data set and
different criteria used for comparing the proposed model and
existing related models are presented.

A. Data Set

In this paper, vulnerability data set of one of the most
popular browser (Google Chrome) is used. This data set was
obtained from the CVE Details [31] which is a Common
Vulnerabilities and Exposures (CVE) security vulnerability
database/information source. This data set has been collected
between January 2010 to June 2019. During the period of
114 months, total 1812 vulnerabilities are reported in Google
Chrome. In the reported vulnerabilities, total 18 vulnerabil-
ities are reported with low severity, 1056 vulnerabilities are
reported with medium severity and 738 vulnerabilities are
reported with high severity. The graphical representation of
year wise vulnerabilities reported with different severity is
shown in Fig. 1.

B. Comparison Criteria

The following set of measures are considered in comparing
the proposed model with some related models:

1) Mean Square Error (MSE)
Let V (ti); i = 1, 2, ...n and Vi are the estimated and
actual number of vulnerabilities respectively, then MSE
can be measured as

MSE =
1

(n− k)

n∑
i=1

(V (ti)− Vi)2, (15)

where the total number of observations is denoted by n,
and the number of unknown parameters is denoted by
k.

2) Bias
The term Bias is explained as the sum of the deviations
between estimated vulnerabilities and actual vulnerabil-
ities given as

Bias =
1

n

n∑
i=1

(V (ti)− Vi) (16)

3) Variation
Variation is the measure of estimation error, and it can
be defined as follows:

Variation =

√√√√ 1

n− 1

n∑
i=1

(V (ti)− Vi − Bias)
2
. (17)

4) R-Square (R2)
R2 is the ratio of the sum of square (R2) derived from
the trend VDM to the actual vulnerabilities. It can be
expressed as follow:

R2 =
residualSS

correctedSS
(18)

5) Predictive Sum of Square Error (PSSE)

TABLE II
ESTIMATED PARAMETERS OF THE VDMS.

Model Estimated parameters
a b c

Alhazmi-Malaiya Logistic Model [4] 0.00004776 1317.007 0.008
N λ

Rescorla Exponential Model [7] 4189.074 0.005
b0 b1

Musa-Okumoto Model [15] 3645.623 0.005
N p1 p2 p3 λ1 λ2 λ3

Proposed Model 3856.734 0.231 0.209 0.560 0.003 0.003 0.007

TABLE III
COMPARISON BETWEEN EXPONENTIAL VDM WITH CHANGE POINT AND WITHOUT CHANGE POINT.

Model Comparison Criteria

MSE |Bias| Variation R2 PSSE
Alhazmi-Malaiya Logistic Model 3.7517e+03 18.1063 57.7214 0.9395 2.0287e+06
Rescorla Exponential Model 6.4849e+03 71.4549 35.2525 0.9748 4.3097e+05
Musa-Okumoto Model 2.3908e+03 23.0402 63.0391 0.9915 1.2954e+05
Proposed Model 1.6606e+03 24.9062 30.5834 0.9950 6.0817e+04

PSSE is defined as:

PSSE =

n∑
i=1

(Vi − V̂i)
2

(19)

where Vi denotes the observed vulnerabilities, and V̂i
denotes the predicted vulnerabilities.

IV. PERFORMANCE ANALYSIS

In this section, details of the performance analysis for the
proposed model with respect to related models which were
discussed in Section II.C are described. For this, two criteria:
goodness of fit to the data set and its predictive capability
are used. 75% of the data is used to test the goodness of
fit and the remaining data is used to examine the prediction
capability of the proposed model. The parameters value of the
VDMs are obtained using least square estimation technique
with the help of non-linear regression module of “SPSS”
software [32]. Estimated parameters of VDMs are given in
Table II. Comparison criteria, MSE , Bias, Variation and R2

are used to test the goodness of fit, and PSSE is used to test
the prediction capability.

After estimation of parameters, the proposed model and
other VDMs are fitted to the vulnerability data reported in
Google Chrome and hence the values of different comparison
criteria are calculated. As given in Table III, the proposed
model gives the best MSE and R2 value as the value of MSE
for the proposed model is lower, and the value of R2 is higher
in comparison to the existing models. However, Alhazmi-
Malaiya Model gives a better bias value in comparison to
the proposed model but the proposed model give the best
value of the other comparison criteria. Fig. 2 shows the
graphical representation of fitted plots and the actual curve of
vulnerabilities reported in Google Chrome. As shown in this
figure, fitted plot and actual vulnerabilities are very closed.
The comparison of vulnerabilities determined by the proposed
model and existing VDMs is shown graphically in Fig. 3. As

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

t

V
(t

)

Actual vulnerabilities

Vulnerabilities estimated by proposed model

Fig. 2. Actual vulnerabilities and vulnerabilities estimated by the proposed
model.

shown in this figure, vulnerabilities obtained by the proposed
model are relatively closer to the reported vulnerabilities as
compared to the existing VDMs. From these results, it is clear
that the proposed model fits best in score to the vulnerability
of the data set. Moreover, PSSE estimated by the proposed
model is also lower in comparison to the existing VDMs. This
implies that the prediction capability of our proposed model
is also superior.

Hence, the above results show that our proposed model
performs better for both goodness of fit and forecasting.

V. CONCLUSION

In this paper, a VDM is presented to assess the total number
of vulnerabilities present in the web browser quantitatively
considering vulnerability severity, that can be employed in esti-
mating the number of vulnerabilities, discovery rate of vulner-
abilities, future occurrence of vulnerabilities, risk analysis, etc.
Vulnerabilities can be categorized into different types based on

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

t

V
(t

)

Alhazmi−Malaiya Logistic Model

Rescorla Exponential Model

Musa−Okumoto Model

Proposed Model

Actual Vulnerabilities

Fig. 3. Estimated vulnerabilities by the proposed model and existing models

severity. We categorized the vulnerabilities based on severity
into three categories, namely: low, medium and high and these
categories are also considered in the model development. To
measure the performance of our model, vulnerability data
from the most popular web browser, that is Google Chrome
was used. Experimental outcomes demonstrate that our model
performs better than related models. Therefore, our model can
be helpful for academia and the industry with regards to risk
assessment and decision-making when allocating resources for
patches releases, etc.

ACKNOWLEDGMENT

This work was carried out during the tenure of an ERCIM
Alain Bensoussan Fellowship Programme.

REFERENCES

[1] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall
Professional Technical Reference, 2002.

[2] Nvd.Nist.Gov, “National vulnerability database,” May 2019. [Online].
Available: https://nvd.nist.gov/vuln/full-listing

[3] R. Anderson, “Security in open versus closed systems-the dance of
boltzmann,” in Coase and Moore Conference on Open Source Software
Economics, Toulouse, France, 2002.

[4] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assess-
ment of systems software,” in Annual Reliability and Maintainability
Symposium, 2005. Proceedings. IEEE, 2005, pp. 615–620.

[5] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers &
Security, vol. 26, no. 3, pp. 219–228, 2007.

[6] O. H. Alhazmi and Y. K. Malaiya, “Measuring and enhancing prediction
capabilities of vulnerability discovery models for apache and iis http
servers,” in 2006 17th International Symposium on Software Reliability
Engineering. IEEE, 2006, pp. 343–352.

[7] E. Rescorla, “Is finding security holes a good idea?” IEEE Security &
Privacy, vol. 3, no. 1, pp. 14–19, 2005.

[8] S.-W. Woo, O. H. Alhazmi, and Y. K. Malaiya, “An analysis of the
vulnerability discovery process in web browsers,” Proc. of 10th IASTED
SEA, vol. 6, pp. 13–15, 2006.

[9] L. K. Shar and H. B. K. Tan, “Predicting common web application
vulnerabilities from input validation and sanitization code patterns,” in
2012 Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2012, pp. 310–313.

[10] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software
vulnerability prediction using text analysis techniques,” in Proceedings
of the 4th international workshop on Security measurements and metrics.
ACM, 2012, pp. 7–10.

[11] F. Massacci and V. H. Nguyen, “An empirical methodology to evaluate
vulnerability discovery models,” IEEE Transactions on Software Engi-
neering, vol. 40, no. 12, pp. 1147–1162, 2014.

[12] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vulnera-
bility prediction using hybrid program analysis and machine learning,”
IEEE Transactions on dependable and secure computing, vol. 12, no. 6,
pp. 688–707, 2014.

[13] J. Stuckman, J. Walden, and R. Scandariato, “The effect of dimen-
sionality reduction on software vulnerability prediction models,” IEEE
Transactions on Reliability, vol. 66, no. 1, pp. 17–37, 2016.

[14] O. H. Alhazmi and Y. K. Malaiya, “Application of vulnerability dis-
covery models to major operating systems,” IEEE Transactions on
Reliability, vol. 57, no. 1, pp. 14–22, 2008.

[15] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in Proceedings of the 7th
international conference on Software engineering. Citeseer, 1984, pp.
230–238.

[16] M. Kimura, “Software vulnerability: definition, modelling, and practical
evaluation for e-mail transfer software,” International journal of pressure
vessels and piping, vol. 83, no. 4, pp. 256–261, 2006.

[17] L. K. Shar and H. B. K. Tan, “Predicting sql injection and cross
site scripting vulnerabilities through mining input sanitization patterns,”
Information and Software Technology, vol. 55, no. 10, pp. 1767–1780,
2013.

[18] H. Joh and Y. K. Malaiya, “Modeling skewness in vulnerability dis-
covery models in major operating systems,” Red, vol. 2, no. 5, p. 0,
2010.

[19] S. Rahimi and M. Zargham, “Vulnerability scrying method for software
vulnerability discovery prediction without a vulnerability database,”
IEEE Transactions on Reliability, vol. 62, no. 2, pp. 395–407, 2013.

[20] J. Yang, D. Ryu, and J. Baik, “Improving vulnerability prediction
accuracy with secure coding standard violation measures,” in 2016
International Conference on Big Data and Smart Computing (BigComp).
IEEE, 2016, pp. 115–122.

[21] M. K. Gupta, M. C. Govil, and G. Singh, “Predicting cross-site scripting
(xss) security vulnerabilities in web applications,” in 2015 12th Interna-
tional Joint Conference on Computer Science and Software Engineering
(JCSSE). IEEE, 2015, pp. 162–167.

[22] D. Last, “Using historical software vulnerability data to forecast future
vulnerabilities,” in 2015 Resilience Week (RWS). IEEE, 2015, pp. 1–7.

[23] A. Shrivastava, R. Sharma, and P. Kapur, “Vulnerability discovery
model for a software system using stochastic differential equation,” in
2015 International Conference on Futuristic Trends on Computational
Analysis and Knowledge Management (ABLAZE). IEEE, 2015, pp.
199–205.

[24] H. Alves, B. Fonseca, and N. Antunes, “Experimenting machine learning
techniques to predict vulnerabilities,” in 2016 Seventh Latin-American
Symposium on Dependable Computing (LADC). IEEE, 2016, pp. 151–
156.

[25] M. Jimenez, M. Papadakis, and Y. Le Traon, “Vulnerability prediction
models: A case study on the linux kernel,” in 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2016, pp. 1–10.

[26] H. Joh and Y. K. Malaiya, “Periodicity in software vulnerability dis-
covery, patching and exploitation,” International Journal of Information
Security, vol. 16, no. 6, pp. 673–690, 2017.

[27] K. Z. Sultana, “Towards a software vulnerability prediction model
using traceable code patterns and software metrics,” in Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 2017, pp. 1022–1025.

[28] X. Wang, R. Ma, B. Li, D. Tian, and X. Wang, “E-wbm: An effort-based
vulnerability discovery model,” IEEE Access, vol. 7, pp. 44 276–44 292,
2019.

[29] Lp.Skyboxsecurity.Com, “Skyboxsecurity,” May 2019. [Online].
Available: https://lp.skyboxsecurity.com/rs/440-MPQ-510/images

[30] A. L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
transactions on Reliability, vol. 28, no. 3, pp. 206–211, 1979.

[31] Cvedetails.Com, “Cve details,” May 2019. [Online]. Available:
https://www.cvedetails.com/product/15031

[32] Ibm.Com, “Ibm spss software,” May 2019. [Online]. Available:
https://www.ibm.com/analytics/spss-statistics-software

