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Abstract—Safe navigation for autonomous surface vehicles
requires a robust and reliable tracking system that maintains
and estimates position and velocity of other vessels. This paper
demonstrates a measurement level sensor fusion system for
tracking in a maritime environment using lidar, radar, electro-
optical and infrared cameras. The backbone of the system is a
multi-sensor version of the Joint Integrated Probabilistic Data
Association (JIPDA) with both existence and visibility proba-
bilities. Using reference targets equipped with GPS receivers,
the performance of different sensors and sensor combinations
are evaluated for autonomous surface vehicles (ASVs). Several
interesting observations are made, among them that passive
sensors can help resolve merged measurements issues in radar
tracking, and that the choice between radar and lidar may
boil down to a trade-off between fast track initiation and large
numbers of false tracks.

Index Terms—Sensor fusion, unmanned surface vehicle, target
tracking

I. INTRODUCTION

It is generally recognized that automotive and maritime
collision avoidance (COLAV) systems should utilize multiple
sensors, as opposed to a single sensor, for improved
robustness and reliability. The combination of heterogeneous
sensors is particularly enticing, and the different sensors can
complement each other and thus mitigate each others’ weak
spots. Nevertheless, a systematic empirical investigation of
different sensor configurations is missing in the scientific
literature.

Traditionally the key maritime sensor for navigation has
been the radar augmented by human look-outs. The radar,
while reliable, has challenges in certain situations and with
certain target types. In these situations a human operated
ship can rely on the look-outs to provide safe navigation.
Autonomous vessels will not have this option, requiring a
suite of several different sensors to move safely in different
environments.

Several articles have been published in the field of target
tracking and sensor fusion in recent years. [1] simulated a dual
platform multi-sensor system for maritime border control. The
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landbased platform was equipped with an infrared camera
and Automatic Identification System (AIS) while an airborne
platform was equipped with an infrared camera and radar. In
[2], a tracking system based on probabilistic data association
was used as part of a maritime COLAV system. [3] fused
radar and camera data to perform obstacle detection for
unmanned surface vehicles. They found that sensor fusion
significantly increased obstacle tracking performance. [4]
demonstrated a radar tracking system based on the PDAF
tested on real data gathered in Trondheimsfjorden. Outside the
maritime domain several papers have adressed heterogeneous
sensor fusion for cars and land robots [5], [6].

This work is the first to demonstrate, evaluate, and describe
in detail a sensor fusion system for maritime tracking using
lidar, radar, infra-red and electro-optical cameras. This suite
of sensors is relevant for autonomous operations both at
land and sea. A Markov-chain two implementation of the
JIPDA [7] method for multi-target tracking was used to
test the various sensors and sensor combinations on a large,
real-world dataset recorded using all four sensor types. This
evaluation is based on a range of metrics covering both track
management and accuracy [8].

This paper is organized as follows. Section II details
the detection system used to extract measurements from
sensor data. In section III the multisensor JIPDA tracking
method is introduced. Section IV describes the metrics used
to evaluate tracking performance. Section V introduces the
sensors used in this work as well as the experimental setup.
Results are given in section VI while section VII concludes
this work.

II. DETECTION SYSTEM

The sensor suite consists of four heterogeneous sensors,
both active and passive. Data from a high-performance, long
range lidar is mated to a clustering algorithm provided by
the NTNU Revolve project [9] for detection. Sensor data are
provided in the form of a high-resolution, 3D point cloud.
Measurements are generated by clustering points based on
geometric distance, using the cluster centroid as the target
position since extended object tracking is outside the scope
of this paper.



The radar used in this work contains a built-in detection
system. These detections are presented in the form of spokes
containing resolution cells corresponding to certain ranges
and azimuth angles. Each cell contains a binary value
representing whether a target is present or not in the range
and azimuth covered by this cell. These resolution cells are
converted into a 2D point cloud which is clustered to provide
a single detection for each target. An in-depth exploration of
this radar pipeline is available in [4].

(a) IR detection output

(b) EO detection output

Fig. 1: Visual detection output

A. SSD image data detector

For object detection in both the infrared and visual
spectrum the Single Shot Detector (SSD) [10] architecture is
used. An image is divided into a grid consisting of a fixed
amount of pre-computed bounding boxes. SSD learns these
bounding boxes as part of the training process, known as
MultiBox [11]. Regression is then employed to match these
boxes to the actual objects within the image. This allows
SSD to combine both speed and accuracy. SSD has e.g. been
used for object detection in maritime environments in [12].

Hardware constraints made it impossible to run SSD
detectors based on complex network architectures such as
VGG 16 [13] in near real-time. Therefore, MobileNet 2 [14],
which is a computationally cheaper neural net is used in this
work to meet real-time requirements.

A Mobilenet v2 [14] based SSD detector pretrained on
the COCO dataset [15] was used as a base for the detector. A
custom dataset was labelled based on data recorded in 2017
at the same location. A combined total of 2035 images were
manually labelled for both camera types with objects split
into four categories inspired by COLREGs. These categories
are kayaks, motor vessels and sailboats with and without
sails. Using these images two separate detectors were trained
using transfer learning, one for each camera type. Fig. 1
illustrates detector output for both cameras.

III. JIPDA

The joint probabilistic data association method (JPDA) [16]
is a multi-target extension of the probabilistic data association
filter, PDAF [17]. This method accounts for uncertain data
association by updating tracks according to a weighted sum
of all observations within a validation gate. Each observation
is weighted by their association probability, allowing a single
observations to influence multiple tracks. An extension of
JPDA accounting for target existence, and in some cases
visibility, also exists in the form of the JIPDA [7] method.
This work implements a Markov-chain two JIPDA which
accounts for both target existence and visibility. It differs
from the Markov Chain 2 JIPDA of [7] by decoupling the
estimation of existence and visibility, leading to two Markov
chains. [18] investigates the performance differences between
the Markov chain one and two version of the single target
JIPDA (IPDA).

For any target the target state is given by x = (y, v)
where y is a continuous state vector and v a discrete
component modelling visibility. The probability of detecting
a target is then given by

PD(x) = PD(y, v) =

{
PD if v = O

0 if v =M
(1)

where v = O means the target is observable, v = M that
the target is non-observable. The conventional single target
likelihood modelling the relationship between a true detection,
z, and target state is written as fz(z|x). This is only defined
if the target is in a visible state, v = O. False alarms are
modelled as a Poisson point process with intensity λ(z).

A. Predictions

The existence prediction is given by[
εt

1− εt
]
=

[
pε11 pε12
pε21 pε22

] [
ε̂tk−1

1− ε̂tk−1

]
, (2)

where εt denotes the predicted existence probability for target
t at time k. ε̂t is the posterior existence probability at time k
for target t. Target visibility is similarly given by[

ηt

1− ηt
]
=

[
pη11 pη12
pη21 pη22

] [
η̂tk−1

t

1− η̂tk−1t
]
, (3)

where ηt is the predicted visibility probability and η̂tk−1 the
posterior visibility probability.



Prediction is done using the Chapman-Kolmogorov equation
based on the prior distribution, f̂(ytk−1), as well as the
kinematic model, fy(yt|ŷtk−1).

f t(y) =

∫
f̂y(y

t|ŷtk−1)f̂ tk−1(ytk−1)dytk−1 (4)

For a Gaussian linear target model, such as the constant
velocity model used in this work, and a Gaussian prior, the
expected value and covariance will be given by the Kalman
filter prediction.

B. Updates

The posterior distribution of the JIPDA is given by a multi-
Bernoulli mixture over association hypotheses. An association
hypotheses, or association event, can be represented as a
mapping

θ : {1, ..., n} → {0, 1, ...,m}, (5)

where {1, ..., n} is tracks and {0, 1, ...,m} measurements.
A mapping from any track to 0 implies no measurements
originated from that target in the current hypothesis. For any
event the tracks can be split into tracks on detected targets,
D(θ), and tracks on undetected targets, M(θ). For any track
on detected targets the following are defined

lt,θ(t) =

∫
fz(z

θ(t)|y)f(y)dy (6)

f̂ tθ(t)(y) ∝ fz(zθ(t)|y)f(y) (7)

where lt,θ(t) is the likelihood of the association of track t with
a measurement given by the event θ(t). f̂ tj(y) represents the
posterior state density of track t given an association event.
The probability of any event can be found as

P{θ} ∝
∏

j /∈Im(θ)

λ(zj)
∏

t∈D(θ)

εtlt,θ(t)PDη
t

·
∏

t∈M(θ)

(1− εt + εt(1− PDη
t).

(8)

The probabilities of a measurement zj originating from target
t, the marginal association probabilities, are given by

ptj =
∑

θ s.t. θ(t)=j

P{θ}. (9)

The posterior existence probability conditional on no measure-
ment association for target t, denoted by ε̂t,0k , is

ε̂t,0 =
1− PDηt

1− εtPDηt
εt, (10)

where PD is the detection probability. For visibility probability
we have

η̂t,0 =
ηt(1− P tD)
1− P tDηt

. (11)

For any track, t, the marginal existence and observability
probabilities as well as the kinematic probability density
function will be given by

ε̂t = pt0ε̂t0 +

m∑
j=1

ptj (12)

η̂t =
1

ε̂t

pt0ε̂t0η̂t0 + m∑
j=1

ptj

 (13)

f̂ t(y) ∝ pt0ε̂t0f t(y) +
m∑
j=1

ptj f̂ tj(y). (14)

A complete derivation is available in [19, p. 53-60].

IV. TRACKING METRICS

This section presents the metrics used to evaluate the various
sensors and sensor combinations, both for track management
and track accuracy. The MATLAB Sensor Fusion Toolbox was
used to implement some of these metrics.

A. Track-truth assignment

The track-truth assignment determines whether a track is
associated with a truth or originates from clutter. At every
time-step any track not currently associated with a truth
and any divergent track take part in the assignment process.
Divergence is described in section IV-C2. For every track the
track-truth Euclidean distance is calculated to all current truths,
if this distance is below a set threshold, 15m, the association is
valid. This threshold was set relatively large to compensate for
potential GPS inaccuracies. If several track-truth associations
meet this threshold the association minimizing track-truth
distance is selected. Equation 15 describes this assignment as
an optimization problem where xik and x̂jk are respectively the
positions of the ith truth and jth track at time-step k. Each
track can only be associated with a single truth, however a
truth can be associated with multiple tracks.

min
i
||xik − x̂jk|| s.t. ||xik − x̂jk|| ≤ 15m (15)

B. Track management metrics

Track management plays a vital part in the performance
of a tracking system. Good track management can provide
better track initializations, reduce the effect of false tracks
and eliminate potential redundancies. This section presents a
number of metrics designed to evaluate the track management
performance of the tracking system.

1) Establishment length: The establishment length metric
evaluates the number of time-steps required to establish a
valid track-truth association measured from the start of the
dataset. This metric is calculated for each truth across all the
evaluated datasets and then summed. As a final step this sum
is normalized by the total number of samples to compensate
for the varying number of samples across sensors/sensor
combinations. An example calculation for a 210 sample dataset
with two targets present follows. Target one has a track
established after 15 samples, yielding an establishment length



of 15. Target two has a track established after 20 samples, thus
the establishment length is 20. To compute the establishment
length metric these are summed and then normalized by the
total number of samples:

Est.L. =
15 + 20

210
= 0.167. (16)

2) False tracks: A false track is a track not associated with
a truth, originating from clutter and false detections. In this
evaluation a false track is defined as a track that was never
associated with a truth during its lifetime. This number, F.T.,
is reported as a sum across all datasets. In addition, the lengths
of the false tracks are also recorded and reported as false track
length, F.T.L. This number is the sum of the lengths of all the
false tracks, normalized by the total number of time-steps for
the given sensors.

3) Truth breaks: A truth break occurs when a truth becomes
unassociated with a track, either due to track death or the track
has associated with another truth. The number of breaks is
summed across all datasets for every truth. In addition, the
length of the breaks is also summed across all datasets and
truths and then normalized according to the total number of
updates.

C. Track accuracy

Another area of key interest in evaluating tracking perfor-
mance is the accuracy of the tracking results. Good track
management can be of little consequence if the resulting
accuracy of the tracks are poor. Safe, autonomous maneuvering
requires an accurate estimate of the current world state to avoid
potential collisions with other objects. This section presents
metrics designed to evaluate the accuracy of the tracking result
decoupled from track management.

1) Position accuracy: Perhaps the most basic metric for
track accuracy, the position accuracy is a measure of the
difference between the actual position of a target and its
corresponding track. Position accuracy is evaluated according
to RMS error. RMS, or root-mean-square, error is calculated
for a single target-track pair according to

PosRMS =

√∑k
i=1(x̂i − xi)2

k
, (17)

where k is the total number of updates, x̂i and xi the track and
truth position. RMS position error is calculated for both targets
across all datasets and is reported per truth. These values are
then averaged to provide a metric influenced by all available
datasets.

2) Divergence: Mentioned in several of the metrics above,
track-truth divergence occurs when the Euclidean distance
between a track-truth assignment exceeds the assignment
threshold of 15m, that is

||xik − x̂jk|| > 15m. (18)

Divergence is reported as two separate metrics. The divergence
count, Div, reports the number of times a track entered a
divergent state across all datasets. A second metric known

as divergence length, DivL, reports the number of updates a
track was in a divergent state summed across all datasets. This
value is normalized by the total number of samples.

D. Filter consistency

Since experimental data are used, filter consistency is
evaluated with the Average Normalized Innovation Squared
(ANIS). Strictly speaking both ANIS and ANEES are metrics
of filter consistency, ANEES does however rely on the
true target position. In experimental data, a reliable truth is
not necessarily available, and ANEES can be misleading.
Therefore, for real data, ANIS is often used instead [20].

For a single target Kalman filter ANIS is given by

ANIS =
1

N

N∑
k=1

VTk S−1k Vk, (19)

where Vk is the innovation at time k and Sk the innovation
covariance. In a JPDA or JIPDA tracker multiple weighted
Kalman filter updates can be used to update track states.
In these cases the NIS calculation for target t is weighted
according to the marginal association probabilities:

NIStk =

∑mk

j=1 β
t,j
k (Vt,jk )T (Stk)−1V

t,j
k∑mk

j=1 β
t,j
k

, (20)

where βt,jk is the marginal association probability of track t
with measurement j and mk the number of measurements.
This metric is calculated for all tracks, valid or false, across all
time steps and averaged to produce the reported ANIS metric.

V. SENSORS AND EXPERIMENT SETUP

The NEPTEC Opal 3 lidar used in this work relies on
rotating prisms to scan the scene using only a single laser
beam and a pair of rotating prisms. Compared to most
array-based lidars which use multiple laser beams scanning
along fixed lines, this approach allows for greater spatial
resolution. This can, however, come at the cost of lower
temporal resolution due to scan pattern movements. The lidar
used in this experiment has a specified range of 1000m and
a field of view (FOV) of 120° [21].

Radar data are provided by a SIMRAD Broadband 4G
radar [22]. This is a frequency modulated continuous wave
radar with a built-in detection system. Radar beam width is
5.2° but can be adjusted. An AXIS P5514-E [23] camera
provides electro-optical (EO) images. This camera is capable
of pan, tilt and zoom operations and has a resolution of
1280 × 720 pixels. Sensor data is provided in the form of
a MJPEG stream which is sampled at 1Hz. Infrared images
are provided by a FLIR M232 camera [24]. It features a
VOx microbolometer sensor with a resolution of 320 × 240
pixels and a FOV of 24°. The AXIS camera was zoomed to
match this. Images are provided as an H.264 stream which is
sampled at 1Hz.



The tracking performance of the various sensor combinations
was evaluated on a dataset recorded on a sensor rig provided
by DNV GL. Several datasets were recorded at DNV GL
Høvik during the summer of 2018 using all sensors in various
lighting conditions. The sensor rig was mounted on land.
Fig. 2 shows the experiment area and an approximate field of
view for the cameras.

Fig. 2: Experiment area, image provided by Google Maps.

The datasets contain two reference objects, one small
aluminium boat, target 1, and a kayak, target 2, in addition
to general boating activity. The kayak was fitted with a radar
reflector and can be seen in Fig. 4. Several maneuvers were
performed at ranges from 100-500m with increments of
100m. This includes turns and crossing of objects in addition
to straight line crossings of the experiment area. During
recordings the sensor rig was positioned at the waterfront at
an elevation of roughly 2m above sea level. This was done to
simulate smaller vessels were sensors must be mounted closer
to sea level. Data were recorded in two different lighting
conditions, cloudy weather (24kLux) and at night (0-7 Lux),
illustrated in Fig. 1 and Fig. 3. Weather conditions were clear
in all scenarios with no precipitation and low wave heights. A
minor amount of general boating activity was present during
the recording of the cloudy dataset, these would be assumed
to be false tracks in the implemented evaluation system due
to the lack of ground truths. A single non-reference vessel
was present during parts of the night dataset recording. A
summary of testing conditions can be seen in TABLE I.

Dataset 1 Dataset 2
Light[LUX] 24k-28k 0-7
Rain[mm] 0 0
Douglas Sea state 1-2 1

TABLE I: Testing conditions

VI. RESULTS

In this section the results of the evaluation of the various
sensors and sensor combinations are presented using the

(a) IR camera output, nighttime

(b) EO camera output, nighttime

Fig. 3: Nighttime camera outputs.

(a) Kayak (b) Small motor vessel

Fig. 4: Reference targets

metrics and datasets presented in sections IV and V. Results
are presented for both active fusion and active-passive fusion,
referring to the nature of the sensors involved.

A. Active fusion

Active fusion refers to the fusion of measurements from
active sensors, in this case lidar and radar. This section presents
the tracking results of the active sensors, both individually
and in fusion. These sensors are evaluated using the tracking
metrics defined in section IV to provide an insight into the
strengths and weaknesses of the sensors in a target tracking
system.

1) Track management: In terms of track management,
TABLE II, the lidar has some glaring weaknesses. The number
of false tracks is an order of magnitude higher than the radar.
Filtering out all detections at less than 100m, necessitating
the removal of these datasets from the evaluation, reduces
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Fig. 5: Example of merged radar measurement

the number of false tracks significantly from 369 to only 20
which is a more acceptable number. This also suggests that
improvements in the detector and elevation based filtering of
the point cloud could result in a significant reduction in false
tracks by eliminating most of the short range false detections.

In contrast, the radar provides 21 false tracks which is
a significantly lower amount compared to the lidar. The radar
did however yield establishment lengths 2.5 times greater
than the lidar, suggesting that track initialization could be
improved by sensor fusion. Readers should be aware that
while the radar does contain a built-in filtration system
that removes false echoes, it is unknown whether the lidar
performs a similar operation.

The track break metrics are slightly better for the radar.
One possible explanation is the performance decrease the
lidar experiences at longer ranges could cause valid tracks to
die due to a series of missed detections. The radar would not
suffer from this due to its excellent performance at all ranges.

Fusing radar and lidar measurements provide some notable
improvements over both sensors. Track establishment is
improved resulting in valid tracks being formed faster. The
unreliability of lidar detections at longer ranges could cause
an object to only be detected in one of two consequent
measurement vectors, resulting in no track being formed. A
combination of the reliability of the radar with the fast update
rate of the lidar could be the cause of this increase. The
number of track breaks does rise but without a significant
increase in break length. Similarly the number of false tracks
increases, however the total length of the false tracks is
reduced.

2) Track accuracy: In terms of track accuracy, TABLE III,
the lidar shows it strengths over the radar. While the number
of divergences is nearly identical the combined divergence
length is an order of magnitude lower for the lidar. Manual
inspection of the dataset revealed that the radar suffers from
merged measurements when targets are close. This merged

measurement is positioned somewhere between the two
targets, Fig. 5, and could cause both tracks to diverge for as
long as the merged measurement persists. RMS position error
is improved by roughly 3m for both targets by using the lidar
over radar, again possibly due to merged measurements.

Fusing radar and lidar measurements provide some
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(a) Lidar
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(b) Lidar-Radar fusion

Fig. 6: Lidar and lidar-radar fusion at night, 500m range

marked improvements in track accuracy but is not without
its drawbacks. Fig. 6 shows how merged measurements from
the radar can result in only a single track for close targets. In
addition, the number of divergences is increased but the total
length is lower. If each sensor experiences divergences at
different times one sensor could cause a divergence that the
other sensor rapidly corrects. This implies that divergences
persist over some time, suggesting they are not independent
events. Combining lidar and radar improves RMS position
error compared to both sensors, sensor fusion can thus yield
a system better than its individual parts.

3) Filter consistency: Radar only results in ANIS very
close to a 95% confidence interval. Minor tuning of the filter



parameters should push this into the accepted range of values.
For both lidar and lidar-radar fusion ANIS is below the given
confidence interval. This results in greater position fluctuations
and could originate from several causes. Filter tuning could
improve performance, but might come at the expense of radar
performance. Another possible cause is the high amount of
false tracks at shorter ranges. Point cloud density at longer
ranges could also adversely affect ANIS.

B. Active-passive fusion

Adding passive sensors to a sensor fusion can give rise
to many interesting effects. The passive detection system
provides only a bearing measurement but was found to be very
good at detection up to ranges of 400m. Fusing these bearing
measurements with the active position measurements could
thus result in improved performance. This section evaluates
active-passive fusion using the same setup as the active fusion
section.

1) Track management: In terms of establishment length
the combination of lidar, radar and electro-optical camera
reigns supreme. The combinations of lidar, radar, IR and
lidar, radar, EO, IR come close but are in the end unable
to match the track establishment performance of a fusion of
lidar, radar and EO. This result is somewhat surprising, the
EO camera performs poorly in low-light conditions, Fig 7,
which make up half of the datasets. This should suggest that
fusing IR measurements would be better, which is not the case.

Two possible explanations present themselves. Either
the EO cameras daylight performance is so much better
compared to the IR camera that it outweighs the lack of
low-light detections or the IR camera actually worsens track
establishment when fused with radar and lidar measurements.
Track establishment lengths for only radar and lidar, found
in TABLE II, seem to support this. Track establishment
lengths are lower when only lidar and radar is used compared
to the addition of IR measurements. This degradation in
performance is not observed for fusion of lidar with IR but is
present for all the other fusions of a single active and passive
sensor.

One area where active-passive fusion always results in
better performance is track breaks. Adding a passive sensor
reduces both the number of track breaks and their lengths
regardless of which active and passive sensor is used. Passive
fusion can allow the tracking system to keep valid tracks alive
when no active measurements are available. Fusing lidar with
IR and EO reduces break length by roughly 20% compared
to lidar alone. Radar tracking experiences an even greater
reduction of 30% when it is fused with IR. A degradation
in position accuracy is expected in these cases, the passive
sensors only measure a targets bearing, but the tracks remain
alive and the position divergence was observed to be minor
in most cases. This trade-off seems to be worthwhile in most
cases. A valid and alive track can still be used for navigation
purposes even when the position estimates are less accurate.

-40 -35 -30 -25 -20 -15 -10 -5

(m)

70

75

80

85

90

95

100

105

(m
)

Radar_EO     100m_night     k = 45     t = 42.8854

GPS

EO

Track Hist.

Conf. Track

(a) Radar-EO fusion

-40 -35 -30 -25 -20 -15 -10 -5

(m)

70

75

80

85

90

95

100

105

(m
)

Radar_IR     100m_night     k = 52     t = 43.5442

GPS

IR

Track Hist.

Conf. Track

(b) Radar-IR fusion

Fig. 7: Comparison of IR and EO fusion at night, 100m range

Based on TABLE II IR fusion seems to offer superior
performance over EO fusion when considering only track
breaks. Compared to EO fusion IR fusion offers lower track
breaks and track lengths, likely due to its superior low-light
detection performance. Adding EO measurements to a fusion
already containing IR measurements can actually worsen
performance when only fused with radar measurements.
When lidar measurements are part of the fusion system
adding EO measurements reduce break lengths but increase
the number of breaks.

False tracks are again an issue for sensor combinations
including the lidar. The high amount of false detections at
shorter ranges massively increases the number of false tracks
and the combined false track length. One trend observed
across most sensor combinations is an increase in false tracks
when more sensors are used. Every sensor brings with it a
certain number of false detections. These detections seems to
result in a compound effect adversely affecting the number of
false tracks. Evaluating the fusion of all sensors but without
the data recorded at a range of 100m reduces the number of



Sensors Est.L. Breaks Break lengths NumSamples
L 0.1511 48 0.7467 4501
R 0.3795 34 0.5956 361
L,R 0.1337 58 0.7649 4862
L,IR 0.1489 39 0.6147 5238
L,EO 0.1590 47 0.6922 5039
L,IR,EO 0.1584 44 0.5985 5776
L,R,IR 0.1390 38 0.6148 5599
L,R,EO 0.1300 53 0.7144 5400
L,R,IR,EO 0.1351 41 0.5982 6137
R,IR 0.4454 30 0.4180 1098
R,EO 0.4905 33 0.5273 899
R,IR,EO 0.4847 36 0.4230 1636
Sensors False Tracks False Track Length
L 373 2.2731
R 21 0.3241
L,R 387 2.1421
L,IR 396 2.0682
L,EO 388 2.1478
L,IR,EO 407 1.9778
L,R,IR 409 1.9664
L,R,EO 399 2.0352
L,R,IR,EO 419 1.8882
R,IR 60 0.1712
R,EO 62 0.1591
R,IR,EO 60 0.1351

TABLE II: Track metrics

false tracks to 25 and the false track length to 0.2902, a very
significant improvement. The number of track breaks is also
halved along with a reduction of redundant tracks to 9. This
highlights the importance of detector performance in target
tracking. Introducing a range-dependent false alarm rate as
was done with detection performance could potentially reduce
the number of false tracks along with more advanced track
initialization methods.

2) Track accuracy: Adding passive sensors to the sensor
fusion system provides some interesting effects on track
divergence. With a few exceptions both the number of
divergences and their lengths have increased. Lidar alone had
30 divergences with a length of 0.0573. Fusing lidar with
IR increased divergences to 31 with a length of 0.0878. A
fusion of radar and EO is the only combination that actually
improves performance across all divergence metrics, reducing
divergences from 29 to 27 and their lengths from 0.1745 to
0.1035. Replacing EO with IR actually worsens performance
even though both sensors provide similar performance. Active
sensors, either lidar alone or in fusion with radar, remains
the best choice for reducing divergence lengths. A likely
explanation is that the addition of bearing measurements to
the position estimates could provide longer divergences when
targets are maneuvering. Bearings only tracking relies much
more on model predictions, thus accuracy will suffer when
the constant velocity assumption of the model is violated,
e.g. during maneuvering.

The root mean square position error is, with a few exceptions,
actually improved with the addition of a passive sensor.
Both IR, EO and their combination slightly reduce the RMS
position error when fused with lidar. The same effect is

Sensors ANIS Divergence lengths RMS
L 0.5364 0.0573 [10.7; 8.4]
R 2.3886 0.1745 [13.6;11.2]
L,R 0.6012 0.0527 [7.5;7.9]
L,IR 0.5441 0.0878 [12.3; 8.3]
L,EO 0.7121 0.0929 [8.4;9.8]
L,IR,EO 0.6926 0.0966 [ 8.8;8.7]
L,R,IR 0.6190 0.1062 [14.9; 8.2]
L,R,EO 0.7749 0.1100 [8.2;8.9]
L,R,IR,EO 0.7562 0.1480 [9.5;9.3]
R,IR 1.6601 0.2031 [11.0;11.2]
R,EO 2.2429 0.1035 [9.8;8.8]
R,IR,EO 1.7980 0.1712 [9.2;10.8]

TABLE III: Track metrics. RMS is given per target

observed when fused with radar. Manual inspection of the
datasets revealed that the lidar often struggled with reliably
detecting targets at longer ranges. Consecutive measurements
of a target could therefore arrive with some interval,
potentially reducing accuracy. The detection reliability of the
passive sensors could be the cause of this improvement, even
though they only provide target bearings.

While this explanation could explain the improvements of
lidar-based tracking, the radar was evaluated to be extremely
reliable. The improvements to radar-based tracking must
therefore have a different cause. As mentioned previously the
radar did in some cases suffer from merged measurements.
In effect, the radar would generate only a single, merged
detection when two targets where sufficiently close to each
other. This would undoubtedly reduce the accuracy of any
position estimate based on this measurement, hence the
increased RMS position error. No such effect was ever
observed for any of the passive sensors. Accordingly, a fusion
of radar with passive sensors might help mitigate the effects
of merged measurements. It should be noted that most sensor
combinations are very close in terms of RMS position error.
Any variances between these sensor combinations could in
practice be caused by GPS inaccuracies, not the superiority
of a particular sensor or sensor combination.

3) Filter consistency: Similarly to active fusion the filter
consistency metrics for active-passive fusion are better than
the position accuracy metrics. Sensor combinations containing
the lidar seem to result in ANIS values grouped around 0.6
while radar fusions are grouped around 2. A fusion of radar
and EO or radar and IR results in ANIS values barely outside
the confidence intervals, slightly improving the results of radar
only tracking. Fusions containing the lidar experience far
greater gaps to the confidence interval bounds. This suggests
further filter tuning is required, especially for the lidar.

VII. CONCLUSION

This work demonstrates a working implementation of
measurement level sensor fusion for the purpose of detection
and tracking of objects at sea. Four different types of active
and passive sensors were used to evaluate sensor fusion: lidar,
radar, infra-red camera and electro-optical camera. A detection
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system taking inputs of raw sensor data from all sensors
and outputting vectors of measurements was implemented in
the Robot Operating System using state-of-the-art methods.
Using a JIPDA tracker the performance of sensors and sensor
fusions was then evaluated from a tracking perspective.

Radar alone was very reliable for already initialized
tracks but often struggled with track birth due to merged
measurements. This also caused longer divergences between
tracks and targets and a higher position error. Lidar provides
better track initialization, but the low probability of detection
at longer ranges caused tracks to die prematurely resulting in
longer track breaks. A combination of lidar and radar yields
lower establishment lengths, fewer divergences and a higher
position accuracy.

Adding passive sensors can improve tracking results
further. Fusing IR measurements did always provide some
sort of positive effect. Reliable detections at longer ranges
required radar, preferably in fusion with lidar to mitigate
merged measurements. Adding the IR camera to this mix
provided a significant improvement in the track break metrics
and yielded low establishment lengths. A combination of
radar, lidar and IR camera is therefore, in the author’s
opinion, the most robust sensor combination for this dataset
among those evaluated in this paper. This conclusion is based
on establishment lengths and track divergence in addition
to manual inspection of tracking results. Future research
includes testing other methods (e.g. PMBM, MHT) as well
as sensors more similar in cost, this work pairs an expensive
lidar with a low cost radar.
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