
ISBN 978-82-326-4602-9 (printed ver.)
ISBN 978-82-326-4603-6 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2020:127

Liu Yang

Finite Degradation Structures

A Unified Framework of Combinatorial
Models in Probabilistic Risk/Safety
Assessment

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:127
Liu Yang

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g

Liu Yang

Finite Degradation Structures

A Unified Framework of Combinatorial Models in
Probabilistic Risk/Safety Assessment

Thesis for the Degree of Philosophiae Doctor

Trondheim, June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Mechanical and Industrial Engineering

© Liu Yang

ISBN 978-82-326-4602-9 (printed ver.)
ISBN 978-82-326-4603-6 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2020:127

Printed by NTNU Grafisk senter

Preface

On 26th November 2016, the very beginning of my PhD life, my supervisor Pro-

fessor Antoine Rauzy sent me an email. In this email, he wrote down some tips

of developing software. Although we have exchanged hundreds of emails in these

three years, I still remember that one. Now, I would like to quote some sentences

from it and share my understandings after these three years.

1. “You may need to develop your own software, which is probably a few thou-
sands of lines of Python code with a few dozens of classes. It is not very big, but is
sufficiently big to require the application of software engineering principles.”

2. “Architecting a software is extremely difficult. Don’t expect to get the right
architecture at the first attempt. Don’t hesitate to spend a lot of time in refactoring
your code. Refactoring is the key.”

3. “Don’t waste your time in commenting your code.”

4. “Small functions are easier to test than large ones. Specialized functions are
easier to test than (too) generic ones. The KISS principle: Keep It Simple Stupid.”

5. “Make it work, then make it fast if and only if it is necessary.”

These sentences are talking about software development, but they are also my

guidance during the whole PhD period. I rewrite them as follows:

1. Make your work complete even it is small; 2. refactoring is the key of pro-
gressing your work, never stop or hesitate; 3. always focus on the main objectives,
don’t waste time in useless details; 4. simplicity brings efficiency; 5. make it work
first and then optimize.

iii

iv

The PhD period is only a small part of my life. It is not very big, but is sufficiently

big to require the quality of being a good researcher. I hope that the modeling

framework proposed this thesis, which is not very big, but is sufficiently big to

become a unified framework of combinatorial models in probabilistic risk/safety

assessment.

Liu Yang

Trondheim, 24th November 2019

Acknowledgement

First and foremost, I would like to thank my main supervisor, Professor Antoine

Rauzy, for his tireless guidance and professional supervision during the last three

years. I would say that without his guidance, I could never be able to accomplish

such a PhD thesis. I would also thank him for opening many new worlds for me,

from abstract maths to practical use cases, thank him for leading me crossing the

border of my knowledge and ability, and thank him for teaching me how to become

a real researcher.

I would like to thank Professor Cecilia Haskins and Professor Mary Ann Lun-

dteigen for sharing their thoughts on topics of this work. Also thanks to my col-

leagues, Xue, Lei, Juntao, Yun, Shenae, Renny, Himanshu, Xiaopeng, Xingheng

and many others, for the joys and laughs we had together.

I would like to thank for administrative staff of department of Mechanical and

Industrial Engineering for the friendly work environment.

Last but not least, I would like to thank my family and friends, who support me

from the beginning to the end. Especially, thanks to my father Professor Weiming

Yang, my mother Professor Ning Chen, and my grandfather Professor Zitian Yang,

for being my spiritual leaders who encouraged me to become a researcher.

v

vi

Abstract

This PhD thesis presents a new modeling framework, called finite degradation

structures (FDSs), which can be used as a unified framework of combinatorial

models in probabilistic risk/safety assessment.

The so-called combinatorial models refer to those models where the behavior of

the system is described as the combination of behaviors of its components. The

Boolean combinatorial models have been well mastered by practitioners, such as

fault trees, reliability block diagrams and their alternatives. However, when the

state of component/system becomes multi-valued, such Boolean models become

less applicable. Although more powerful modeling formalisms exist, e.g. Markov

chains, Petri nets and guarded transition systems, their computational complexity

increases dramatically when leaving the combinatorial realm.

A good compromise is to stay in the combinatorial realm while allow the state of

component/system to be multi-valued. This provides the original motivation of

this PhD thesis.

Technically, the modeling framework proposed this thesis extends formally all the

concepts defined in fault tree analysis from Boolean systems into multistate sys-

tems. The most highlighted part of this work is the use of partially ordered set as

state space of multistate component/system. Thanks to this partial order, we are

able to define minimal cut/path sets for multistate systems. In our framework, the

notion of minimal cutsets is covered by the notion of minimal (degraded) scen-

arios, which characterizes the minimal paths that the system degrades from an op-

eration state into an undesired state, and the notion of minimal path sets is covered

by the notion of maximal (degraded) scenarios, which characterizes the maximal

ability that the system remains in a good state. The probabilistic indicators are also

included in the proposed modeling framework, e.g. state probabilities, conditional

vii

viii

probabilities, sensitivity factors, etc.

The models built on the framework of FDSs are called finite degradation mod-

els (FDMs). FDMs generalize both the syntax and the semantics of fault trees to

multistate cases. The decision diagrams are used to implement the required cal-

culation of scenarios and probabilistic indicators of FDMs. We adjusted the data

structure and the algorithms that have been applied on binary decision diagrams

to fit FDMs. Moreover, we also developed a software to realize the computerized

modeling and assessment of FDMs. As experimental results, we show the full

analysis of a safety instrumented system made of sensors, logic solvers and valves

and a simple train control system made of hot-standby subsystems.

Contents

List of Tables xvi

List of Figures xx

Abbreviations xxi

List of Symbols xxiii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Research approaches and work process 3

1.4 Structure of thesis . 4

1.5 Academic publications . 6

I State of the Art 9

2 Review of Combinatorial Models in System Reliability Theory 11

2.1 Taxonomy of reliability models 11

ix

x CONTENTS

2.2 Combinatorial models . 13

2.2.1 Overview . 13

2.2.2 Fault tree methodology and limitations 13

2.2.3 Existing solutions of extending fault tree analysis to multistate

systems . 15

2.2.4 Need for new modeling framework 18

2.3 Illustrative case study: a safety instrumented system (SIS) 20

2.3.1 System description . 20

2.3.2 Failure modes . 21

2.3.3 Assumptions and parameters 21

2.3.4 Failure mechanism and modeling questions 22

II Theoretical Development 25

3 Algebraic Framework of Finite Degradation Structures 27

3.1 Partially ordered sets . 28

3.2 Finite degradation structures (FDSs) 31

3.2.1 Definitions . 31

3.2.2 Typical examples . 32

3.2.3 The FDS for SIS . 34

3.3 Operations on FDSs . 35

3.3.1 Monoidal product . 36

3.3.2 Abstractions . 38

3.3.3 Operations . 40

3.3.4 The operations for SIS 43

4 Finite degradation models: a unified formalism of combinatorial reli-
ability models 47

CONTENTS xi

4.1 Syntax: the structure of a model 47

4.1.1 Well-formed formulas 47

4.1.2 Finite degradation models (FDMs) 48

4.1.3 Graphical representation: expression tree 49

4.2 Semantics: the meaning of a model 51

4.2.1 Interpretation of formulas 51

4.2.2 Interpretation of FDMs 51

4.3 The model of SIS . 54

4.3.1 Fault tree like model . 54

4.3.2 Reliability block diagram like model 56

5 Assessment of Finite Degradation Models 59

5.1 Scenarios analysis . 60

5.1.1 Scenarios . 60

5.1.2 Conditional scenarios . 61

5.1.3 Critical scenarios . 63

5.2 Probabilistic calculations . 68

5.2.1 State probabilities . 68

5.2.2 Conditional probability 69

5.2.3 Sensitivity analysis . 71

5.2.4 Approximation of probability by critical scenarios 73

5.3 Decision diagram based assessment 73

5.3.1 Decision diagrams . 73

5.3.2 Construction of decision diagrams 75

5.3.3 Calculation of scenarios 79

5.3.4 Calculation of probabilistic indicators 82

xii CONTENTS

III Application 85

6 Implementation and Experiments 87

6.1 LatticeX: object-oriented implementation of FDMs 87

6.1.1 Software architecture . 87

6.1.2 Modeling language FDS-ML 88

6.1.3 Construction of expression trees 92

6.2 Modeling library . 93

6.2.1 Boolean logic operators 93

6.2.2 Meet and join . 93

6.2.3 k-out-of-n . 95

6.2.4 Dependent components 95

6.3 Experiments . 99

6.3.1 Safety instrumented system 99

6.3.2 A simplified train control system 107

7 Modeling Epistemic Space of Degradation Processes 111

7.1 Problem statement . 111

7.1.1 Incomplete knowledge on states 111

7.1.2 Epistemic space . 113

7.2 FDSs in epistemic space . 114

7.2.1 Degradation orders among epistemic states 114

7.2.2 Basic belief assignment of epistemic states 118

7.2.3 Transformation of FDSs 119

7.3 FDMs in epistemic space . 121

7.3.1 Transformation of operations 122

7.3.2 Reinterpretation of FDMs: a case study 126

CONTENTS xiii

7.3.3 Uncertainty analysis . 129

8 Summary of main results and future work 135

8.1 Summary of main results . 135

8.1.1 Modeling framework of finite degradation structures . . . 135

8.1.2 Calculation algorithms 138

8.1.3 Software and modeling language 140

8.2 Recommendations for future work 140

8.3 Closing remarks . 143

References 153

A Appendices 155

A.1 Attributes of the classes in LatticeX 155

A.2 Grammar of FDS-ML defined by EBNF 156

A.3 Textual model of the safety instrumented system 159

A.4 Sensitivity results of the safety instrumented system 159

B Article on Model Synthesis 167

xiv CONTENTS

List of Tables

2.1 Comparison of existing multistate combinatorial models. 19

2.2 TA4 Reliability parameters . 22

3.1 Typical FDSs applied in reliability and safety analyses. 32

3.2 The valuation of φ : WF2 � WDF. 42

3.3 Valuation of � and ‖. 43

4.1 Interpretation of the expression tree in Figure 4.1. 50

6.1 Number of scenarios and critical scenarios for safety channel 1. . . 100

6.2 Number of scenarios and critical scenarios for safety channel 2. . . 100

6.3 Average probabilities for pSC1 and pSC2 within 8760 hours. . . . 102

6.4 Number of scenarios and critical scenarios for System. 102

6.5 Number of scenarios and critical scenarios for System satisfying

Eq.(6.4). 103

6.6 Average probabilities of Pr{System = y|CS} and Pr{System =
y|CS

′} within 8760 hours. 104

6.7 Definitions of acronyms . 107

6.8 Failure and repair rates of each hot-standby subsystem. 108

xv

xvi LIST OF TABLES

6.9 Valuation of ∨TCC : WF2 � WDF 109

6.10 Number of scenarios and critical scenarios for TCC. 109

7.1 Number of uncertain states and the required new valuations for ♦. 113

7.2 Allocation example of p(s) in m(X) where Θ = {W,D,F}. . . . 121

7.3 Comparison of FDSs in state space and in epistemic space. 122

7.4 Definitions of acronyms . 127

7.5 The valuation of �XOR : WF2 � WF. 128

7.6 Numbers of scenarios and critical scenariosforM1 andM2. . . . 129

7.7 Probability measure in the domain WF of state variables without

uncertainty. 131

7.8 Mass assignment in the domain (WF)u of state variables with

uncertainty. 131

7.9 Results of Bel, Pl, Best and Worst in the domain of Attack_OR
and Attack_XOR forM1 andM2. 133

A.1 The constructs in EBNF and their meanings. 158

List of Figures

1.1 Outline of the structure of thesis. 5

2.1 Reliability models, assessment techniques and indicators. 12

2.2 Safety instrumented system in TA4 of ISO/TR 12489 20

3.1 Hasse diagram example. 28

3.2 Poset without greatest and least element. 29

3.3 Example of (a) join-semi-lattices and (b) meet-semi-lattice. 30

3.4 Classification of posets. 30

3.5 Hasse diagram of WF, WDF, SWF, WFdFu and WFdFs. . 32

3.6 The structure of n and WnF. 33

3.7 The FDS SIS. 34

3.8 The probability measures for sensors, logic solvers and valves. . . 36

3.9 WF2, WF⊗WDF, WDF⊗WF and WDF2. 37

3.10 Examples of abstraction. 38

3.11 Examples of disordered abstraction. 39

3.12 A coherent but not strictly order-preserving abstraction. 39

xvii

xviii LIST OF FIGURES

3.13 Strongly-coherent abstractions ϕ1, ϕ2 and weakly-coherent ab-

straction ϕ3. 40

3.14 Illustration of φ : WF2 � WDF. 42

3.15 The block-diagram-like representations of � and ‖. 43

3.16 The illustration of � and ‖. 46

4.1 The expression tree of the model in Eq.(4.2). 50

4.2 The two channels of the SIS in Figure 2.2. 55

4.3 The expression tree representation of the model in Eq.(4.10). . . . 55

5.1 The three sets of scenarios Sce(w = W), Sce(w = D) and

Sce(w = F) for w defined by the meet operation ∧ : WDF2 �
WDF. 61

5.2 A simple fault tree where w = a.b+ c. 64

5.3 Valuation of �M� : WF3 � WF and relevant sets of scenarios. . 65

5.4 Order-similarity when dom(w) = WF. 66

5.5 Order-similarity when dom(w) = WDF and dom(w) = W2F. . 67

5.6 The decision diagram DD(v) with dom(v) = {s1, s2, ..., sm}. . . 74

5.7 DD(v) where dom(v) is respectively WF, WDF, SWF, WFdFu
and WFdFs. 74

5.8 DD(♦(u, v)). 75

5.9 Algorithm of BuildDD. 76

5.10 Algorithm of Combine. 77

5.11 Algorithm of Hook. 77

5.12 Expression tree example. 78

5.13 The results of BuildDD(n3), BuildDD(n4) and BuildDD(n5). 78

5.14 The results of BuildDD(n1) and BuildDD(n2). 79

5.15 The result of BuildDD(n0). 79

5.16 Algorithm of Scenario. 80

LIST OF FIGURES xix

5.17 The three sets of scenarios Sce(w = W), Sce(w = D) and

Sce(w = F) determined by DD(fw). 80

5.18 Algorithm of ConditionalScenario. 81

5.19 Algorithms of MinimalScenarios and MaximalScenarios. 81

5.20 Algorithm of Probability_DD. 82

5.21 Algorithm of Probability_Sce. 82

6.1 Functional architecture of LatticeX. 88

6.2 UML class diagram of the classes in LatticeX. 89

6.3 The fault tree in Figure 5.2 written in FDS-ML. 89

6.4 The declaration of WF, WDF, SWF, WFdFu and WFdFs
in FDS-ML. 90

6.5 Generic form of textual FDM. 91

6.6 Illustration of the logic operations ∧, ∨ and ¬. 93

6.7 Illustration of the valuation of ∧ and ∨ applied on the ternary FDS

WDF. 94

6.8 Illustration of O1
3, O2

3 and O3
3. 96

6.9 Idea of taking into account stochastically dependent components

in FDMs. 97

6.10 A hot-standby system consisting of a master unit A, a standby unit

B and a perfect switch S. 97

6.11 The procedure of abstracting a hot-standby system in FDMs. . . . 98

6.12 State probabilities for SC1 and SC2. 101

6.13 State probabilities for System satisfying the conditions in Eq.(6.3)

and Eq.(6.4). 105

6.14 A train control system. 107

6.15 State probabilities for TCC within 8760 hours. 110

7.1 The epistemic space built over WF, WDF and W2F. 115

xx LIST OF FIGURES

7.2 The left- and right-transformation of the Boolean join and meet

operators. 123

7.3 The inner-transformation of the Boolean join and meet operators. . 124

7.4 The coherent abstraction αWF : (WF ⊗WF)u � (WF)u ⊗
(WF)u. 125

7.5 Case study in (Misuri et al. 2018), where the premises of the stor-

age farm are outlined in white; the two intrusion paths considered,

‘Via Ground’ and ‘Via Water’ are reported as white arrows. 126

7.6 The mass assignment m in the domain of Attack_OR and Attack_XOR
forM1 andM2. 132

8.1 Comparison of the algebraic framework between fault trees and

FDSs. 136

8.2 Comparison between fault trees and FDMs. 137

8.3 The binary decision diagrams and the extended decision diagrams

for FDMs. 139

A.1 The attributes of the classes related to FDS. 156

A.2 The attributes of the classes related to Formula. 157

A.3 Definition of identifier in FDS-ML. 158

A.4 Definition of domain in FDS-ML 158

A.5 Definition of operator in FDS-ML 159

A.6 Definition of block in FDS-ML 160

A.7 The textual model of system in Figure 2.2 written in FDS-ML. . . 161

A.8 Sensitivity Sen(System = W, v = c), ∀v ∈ S, ∀c ∈ SIS. 162

A.9 Sensitivity Sen(System = Fs, v = c), ∀v ∈ S, ∀c ∈ SIS. 163

A.10 Sensitivity Sen(System = Fdd, v = c), ∀v ∈ S, ∀c ∈ SIS. . . . 164

A.11 Sensitivity Sen(System = Fdu, v = c), ∀v ∈ S, ∀c ∈ SIS. . . . 165

Abbreviations

BDD Binary decision diagram

DFT Dynamic fault tree

EUC Equipment under control

FDS Finite degradation structure

FDS-ML Finite Degradation Structure Modeling Language

FDM Finite degradation model

FT Fault tree

MBSA Model Based Safety Analysis

MBSE Model Based Systems Engineering

MDD Multi-valued decision diagram

MMDD Multistate multi-valued decision diagram

MSS Multi-state systems

MVL Multi-valued logic

UGF Universal Generating Function

OOP Object-oriented programming

OBDD Ordered binary decision diagram

POP Procedure-oriented programming

PRA/PSA Probabilistic Risk/Safety Analyses

RBD Reliability block diagram

SIS Safety instrumented system

UML Unified Modeling Language

ZBDD Zero-suppressed binary decision diagram

xxi

xxii Abbreviations

List of Symbols

FDS The set of all finite degradation structures.

⊗ Monoidal product of finite degradation structures.

Φ The set of abstractions between finite degradation structures.

〈FDS,⊗,Φ〉 The algebraic framework of finite degradation structures.

B The Boolean set of truth values with B = {0, 1}.
∨ The conjunction or join operator.

∧ The disjunction or meet operator.

¬ The negation operator.

� Partial order interpreted as degradation order.

∼ Incomparable relation with respect to the order �.
∼= Equal up to isomorphism.

⊥ Least element of a poset.

� Greatest element of a poset.

p Probability measure.

p⊗ Probability measure in the result domain of a product ⊗.

〈D,�〉 Partially ordered set.

〈D,�,⊥〉 Meet-semi-lattice.

〈D,�,�〉 Join-semi-lattice.

〈D,�,⊥, p〉 Finite degradation structure.

W Working state

S Standby state

D Degraded state

F Failed state

Fd Failed-detected state

Fu Failed-undetected state

Fdang Failed-dangerously state

Fsafe Failed-safely state

WF Finite degradation structure with states W and F .

WDF Finite degradation structure with states W , D and F .

xxiii

xxiv List of Symbols

SWF Finite degradation structure with states S, W and F .

WFdFu Finite degradation structure with states W , Fd and Fu.

WFdFs Finite degradation structure with states W , Fdang and Fsafe.

SIS The FDS for the component in safety instrumented system.

Fs Failed safely state in SIS.

Fdd Failed dangerous detected state in SIS.

Fdu Failed dangerous undetected state in SIS.

n Linearly ordered FDS with n ∈ N+ states.

WnF FDS with one least element and n maximal elements.

Ln The product of n FDS L.

1 The identity FDS of the product ⊗.

ϕ : S � T Abstraction ϕ from S to T .

dom(ϕ) The domain of ϕ.

codom(ϕ) The codomain of ϕ.

� The series composition in the safety instrumented system.

‖ The parallel composition in the safety instrumented system.

U A set of FDSs.

O The set of operators (or operations).

N The set of natural numbers.

α The arity of operator.

V The set of variables.

S The set of state variables.

F The set of flow variables.

f, f1, ..., fn Well-formed and well-typed formulas.

♦ Example of operator.

w ..= f Equation that defines w by f .

E The set of equations.

M Finite degradation model.

dom(v) The valuation domain of a variable v.

var(f) The set of variables appearing in the formula f .

〈♦, nl, nr〉 Internal node of a formula tree, labeled with ♦ and pointing to

the left-child node nl and right-child node nr.

〈v, /, /〉 Terminal node of a formula tree labeled with variable v.

/ nil.

fw The syntactic solution of w.

�.� The interpretation of a symbol.

σ The partial valuation of state variables.

�σ The total valuation of variables.

�w�(σ) The valuation of w under σ.

�M�w The semantic solution of w inM.

xxv

w = y The observer indicating that the valuation of w is y.

w �= y The observer indicating that the valuation of w is not y.

w ∈ Y The observer indicating that the valuation of w is in Y .

w /∈ Y The observer indicating that the valuation of w is not in Y .

v A state vector or a scenario in
⊗

v∈S dom(v).
Sce(o) The set of scenarios satisfying the observer o.

MinSce(o) The set of minimal scenarios satisfying the observer o.

MaxSce(o) The set of maximal scenarios satisfying the observer o.

Sce(w = y|v =
c)

The set of conditional scenarios satisfying the observer w = y
and the valuation σ(v) = c.

CS The conditions made on state variables.

CF The conditions made on flow variables.

IS The index set of variables appearing in CS.

IF The index set of variables appearing in CF.

Sce(CF|CS) The set of conditional scenarios satisfying the conditions in CS

and CF.

pi Probability measure in dom(vi).
Pr{v} The scenario probability of v.

pw(y) The state probability of y in dom(w).
Pr{w = y|vj = c} The probability that �M�w(σ) = y under the condition that

σ(vj) = c.
Pr{CF|CS} The conditional probability satisfying the conditions in CS and

CF.

Sen(w = y, vj =
c)

The sensitivity of pw(y) with respect to pj(c).

αj(x, c) The sensitivity coefficient of x by c for pj .
Aj The sensitivity matrix for pj .
DD(f) The decision diagram encoding the valuation of f .

(s, v, n1, n2) Internal node of a decision diagram, labeled by state constant

s, variable constant v, and pointing to the then-child n1 and the

else-child n2.

(s, /, /, /) Terminal node of a decision diagram labeled with state constant

s.

≺ The variable ordering on state variables.

Ok
n The k-out-of-n operator for Boolean systems.

∧HS The operation between the main unit and the standby unit in a

hot-standby system.

Θ A finite set of states.

Ω The epistemic space built over the set Θ.

Ω/≡ The quotient set of Ω by ≡.

xxvi List of Symbols

m Mass assignment.

Bel(X) The belief of X .

Pl(X) The plausibility of X .

Com(X) The commonality of X .

(L)u The transformation of the FDS L into the epistemic space.

Best(s) The belief that the degradation level is in the best case to be s.

Worst(s) The belief that the degradation level is in the worst case to be s.

φL The left-transformation of an operation φ.

φR The right-transformation of an operation φ.

φu The inner-transformation of an operation φ.

φu The outer-transformation of an operation φ.

Chapter 1

Introduction

1.1 Background
Probabilistic risk/safety assessment (PRA/PSA) is aimed at evaluating the risk of

a system using a probabilistic method: a comprehensive structured approach for

identifying failure scenarios, constituting a conceptual and a mathematical tool

for deriving numerical estimates of risk (Verma et al. 2010). The PRA/PSA is

currently being widely applied in many fields, viz., chemical and process plants,

nuclear facilities, aerospace, and even financial management.

The general procedure of PRA/PSA consists of six steps: 1) a thorough under-

standing of the system; 2) hazard identification (of initiate events); 3) accident

sequence modeling; 4) system modeling (i.e. quantification of failure probabilit-

ies and accident sequence frequencies); 5) consequence analysis; 6) risk manage-

ment, including risk estimation, risk evaluation and decision-making. Regarding

these six steps, this PhD thesis aims at contributing to step 4), i.e. to propose more

concise and convenient models for PRA/PSA.

Since models are built to simulate reality, simplifications and idealizations are in-

evitable in the modeling process, which may influence the accuracy of PRA/PSA

in decision-making. It is thus of high importance to choose appropriate models or

modeling approaches to balance the trade-off between the accuracy of results and

the complexity of calculation.

Since 1960s, a variety of modeling methodologies has been put forward, such as

fault trees, reliability block diagrams, etc. These models belong to the category

of combinatorial models, i.e. where the system’s state is modeled by the combin-

ation of the states of its components. Fault trees and reliability block diagrams

1

2 Introduction

are Boolean (combinatorial) models, where the state of component/system is as-

sumed to be either working or failed. In spite of their great success in the last

century, these traditional modeling approaches are now challenging by the rapidly

expanding complexity of systems. Although a lot of software has been developed

to facilitate the modeling process, these methods, which are highly relied on their

graphical representations, are still limited by the size of either computer screens

or drawing papers. Moreover, models written in those formalism encode coarse

approximations of the system’s behavior under study. They make actually strong

assumptions — stochastic independence and binary assumption — and for this

reason are unable to represent faithfully cold redundancies, time dependencies,

resource sharing, reconfiguration, and mutistate systems.

As of today, more powerful modeling formalisms exist, e.g. Markov chains and

stochastic Petri nets. These models belong to the category of state/transition mod-

els (technically finite state automata), which are different in essence from com-

binatorial models. When leaving the combinatorial realm, the computational com-

plexity increases dramatically because those models mainly use stochastic simula-

tions to calculate the required indicators.

A good compromise is to stay in the combinatorial realm while allow the state

of component/system to be multi-valued. This provides with the motivation of

this PhD thesis to contribute in developing more suitable and convenient modeling

framework for PRA/PSA.

1.2 Objectives
The main objective of this PhD thesis is to develop a unified modeling frameworks

of combinatorial reliability models. To realize this objective, the following tasks

are identified:

1. Have a broad literature review of (industrial and academic) modeling form-

alisms of combinatorial reliability models.

2. Propose possible complementary analysis tools for existing combinatorial

reliability models.

3. Make a summary of existing combinatorial reliability models and draw the

blueprint of the new modeling framework.

4. Establish both theoretical and algorithmic foundations of the objective mod-

eling framework.

1.3. Research approaches and work process 3

5. Make experiments and evaluations of the objective modeling framework and

suggest its possible future industrial applications.

1.3 Research approaches and work process
The PhD work follows the way of defining the problem, developing mathematical

foundations, designing computer algorithms and implementing experiments. The

work process consists of 6 stages with their respective research approaches.

Stage 1: Literature review This PhD project starts by fundamental PhD courses

and state-of-the-art literature review. For literature review, we first classify existing

reliability models into several categories. Then, we summarize their (a) common-

alities/differences and (b) advantages/deficiencies. Based on the results of (a), we

identify the minimal set of concepts that should be included in the objective mod-

eling framework and based on the results of (b), we decide the most appropriate

theories and technologies that can be used to build the objective modeling frame-

work. The result of literature review is now updated and given in Part I of this

thesis.

Stage 2: Development of fault tree synthesis tool Before start to work on the new

modeling framework, we developed a small complementary tool for fault tree ana-

lysis and published a paper on this subject, see Yang and Rauzy (2019b). This pa-

per is also attached in Appendices B of this thesis. The main objective at this stage

is to prepare the knowledge on Boolean expression diagrams and the algorithms

on binary decision diagrams. These two techniques are the technical foundations

in the implementation of the new modeling framework of this thesis.

Stage 3: Establishment of theoretical foundations The theoretical foundations of

our new framework are established based on the literature review results of stage

1. The main task is to theoretically extend all the concepts used in fault tree ana-

lysis from Boolean systems into multistate systems. The objective at this stage is

to make the proposed modeling framework logically self-consistent and mathem-

atically correct. At this stage, we published several conference papers to present

the modeling methodology of our new framework, see Yang et al. (2018), Yang

and Rauzy (2018), Yang et al. (2019).

Stage 4: Implementation in Python In order to benefit from the efficiency of auto-

matic calculation by computers, we developed a software called LatticeX in Py-

thon as a full computer-based implementation of the proposed modeling frame-

work. At this stage, we focus on the design of data structures and algorithms.

4 Introduction

During the development of LatticeX, we perform both unit and functional tests

to verify its correctness. The latest version of algorithms can be found in our paper

Rauzy and Yang (2019). To facilitate the modeling process, we designed a specific

modeling language called FDS-ML to allow writing models in text files as input

of LatticeX. The introduction of FDS-ML can be found in our paper Yang and

Rauzy (2019a).

Stage 5: Practical case studies In order to illustrate the practical interest of the

proposed modeling framework, we look for suitable case studies in existing literat-

ure and apply our modeling methodology to these case studies to make comparison

with their original modeling approaches. We started from the simplest cases, i.e.

that the systems are modeled by fault trees, reliability block diagrams, etc. Some

results are presented in our paper Yang and Rauzy (2018). Then, after our soft-

ware has been developed, we are able to deal with more complex systems, which

may have more states, more components and more types of interrelations. Some

results are presented in Section 6.3. Moreover, inspired by these case studies, we

recognized that it is necessary to integrate a modeling library in our framework

(and finally in our software), so that some commonly used models and operators

can be stored and reused. The current progress is presented Section 6.2.

Stage 6: Looking for potential applications In addition to traditional reliability

and safety analyses, we also look for other fields of applications of our new mod-

eling framework. Up to now, we have made some progresses on two applications.

The first is the modeling of epistemic uncertainties in combinatorial reliability and

safety models. The current results are presented in Chapter 7. We also submitted

a paper related to this subject entitled “epistemic space of degradation processes”.

The second application is to use the proposed modeling framework as a formal

interface between the Model-Based System Engineering (MBSE) and the Model-

Based Safety Assessment (MBSA) to support their structural and behavioral syn-

chronizations. This idea is presented in our paper Yang et al. (2018).

1.4 Structure of thesis
The structure of this thesis is pictured Figure 1.1. In this figure, we also indicate

where the results of the 6 stages mentioned above can be found.

The thesis is divided into three parts.

• Part I

This part synthesizes the results of the literature review. In Chapter 2, we

1.4. Structure of thesis 5

Figure 1.1: Outline of the structure of thesis.

first present the taxonomy of reliability and safety models and then summar-

ize the existing combinatorial models. Based on the literature review, we

pinpoint the need of new modeling framework. At the end of this chapter,

we present the case study of a safety instrumented system, which will be

used throughout the entire thesis to illustrate our modeling methodology.

• Part II

This part focuses on the theoretical development of the proposed model-

ing framework. Chapter 3 presents the notion of finite degradation struc-

tures and the operations that can be applied on finite degradation structures.

Chapter 4 defines both of the syntax and the semantics of the models built

on finite degradation structures. Chapter 5 introduces the two types of as-

sessments of finite degradation models, i.e. the scenarios analysis and the

probabilistic calculation. The decision diagram based algorithms that are

used to perform the required assessments are also included in this chapter.

• Part III

This part introduces the implementation and the applications of finite de-

gradation models. Chapter 6 presents the software we have developed to

6 Introduction

support the computer-based implementation of finite degradation models.

The functional architecture of the software, the modeling language FDS-ML

and the experimental results are given this chapter. Chapter 7 introduces the

methodology of modeling the epistemic uncertainty using finite degradation

models. Finally, Chapter 8 summarizes this PhD thesis and discusses the

future work.

1.5 Academic publications
The academic publications during the PhD period are listed as follows:

1. (Conference paper)

Reliability modeling using finite degradation structures
Liu Yang and Antoine Rauzy

3rd International Conference on System Reliability and Safety (ICSRS 2018),
Barcelona, November 2018

Note: In this paper, we present the first version of the theoretical frame-

work of finite degradation structures. We also show the modeling and the

assessment of several simple multistate systems.

2. (Conference paper)

Finite degradation structures: a formal framework to support the in-
terface between MBSE and MBSA
Liu Yang, Antoine Rauzy and Cecilia Haskins

2018 IEEE International Systems Engineering Symposium (ISSE), Rome,
October 2018

Note: In this paper, we discuss the role of finite degradation structures of

being the interface between the Model-Based System Engineering and the

Model-Based Safety Assessment to support their structural and behavioral

synchronizations.

3. (Conference paper)

Reliability assessment of phased-mission systems with AltaRica 3.0
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy and Liu Yang

3rd International Conference on System Reliability and Safety (ICSRS 2018),
Barcelona, November 2018

Note: This paper presents a modeling pattern of phased-mission systems

using the high-level modeling language AltaRica 3.0.

4. (Conference paper)

Finite degradation analysis of multiple safety instrumented systems

1.5. Academic publications 7

Liu Yang, Antoine Rauzy and Mary Ann Lundteigen

29th European Safety and Reliability Conference (ESREL 2019), Hanover,
September 2019

Note: In this paper, we present the modeling and the assessment of multiple

safety instrumented systems using finite degradation structures. This work

is now improved. The results are updated in Section 6.3.1.

5. (Conference paper)

FDS-ML: a new modeling formalism for probabilistic risk and safety
analyses
Liu Yang and Antoine Rauzy

6th International Symposium on Model-Based Safety and Assessment (IM-
BSA 2019), Thessaloniki, October 2019

Note: In this paper, we present the modeling language FDS-ML, which is

designed to describe finite degradation models in text files.

6. (Journal paper)

Model synthesis using Boolean expression diagrams
Liu Yang and Antoine Rauzy

Reliability Engineering & System Safety, 2019.

Note: In this paper, we present a fault tree synthesis tool called model syn-

thesis, which is used to reshape large automatically generated fault trees to

make them more informative for reliability and safety analyses.

7. (Journal paper)

Finite degradation structures
Antoine Rauzy and Liu Yang

Accepted and under publication by Journal of Applied Logic, November
2019.

Note: In this paper, we complete the theoretical framework of finite degrad-

ation structures, where the formal definitions and the mathematical demon-

strations can be found.

8. (Journal paper)

Decision diagram algorithms to extract minimal cutsets of finite degrad-
ation models
Antoine Rauzy and Liu Yang

Information, November 2019.

Note: In this paper, we report our newest algorithms of extracting minimal

cutsets of finite degradation models.

8 Introduction

9. (Journal paper, under review)

Epistemic space of degradation processes
Liu Yang and Antoine Rauzy

Under review by Journal of Applied Non-Classical Logics, submitted in July
2019.

Note: In this paper, we present the modeling of epistemic uncertainty us-

ing finite degradation models. The results of this work are now updated in

Chapter 7.

Part I

State of the Art

9

Chapter 2

Review of Combinatorial Models
in System Reliability Theory

Probabilistic risk/safety analyses (PRA/PSA) are used in virtually all industries to

assess whether the risk of operating complex technical systems (aircraft, nuclear

power plants, offshore platforms...) is low enough to be socially acceptable. The

WASH1400 report (Rasmussen 1975), which followed the Three Mile Island nuc-

lear accident, is usually considered as the historical starting point of their world-

wide, cross-industry adoption.

PRA/PSA models describe how systems may degrade and eventually fail under the

occurrence of random events such as failures of mechanical components, sudden

changes of environmental conditions or human errors.

In this chapter, we will give a short review of the combinatorial models applied

in PRA/PSA and explain the motivation of proposing the modeling framework of

finite degradation structures. At the end, a case study extracted from the standard

ISO/TR 12489 is presented. This case study will be used throughout the thesis to

illustrate the proposed modeling methodology.

2.1 Taxonomy of reliability models
To start, consider the process of analyzing system reliability pictured Figure 2.1.

The process is divided into 4 steps: system identification, construction of reliability

models, assessment of models and analysis of resultant indicators.

In this process, we separate PRA/PSA models (step 2) with their assessment tech-

11

12 Review of Combinatorial Models in System Reliability Theory

Figure 2.1: Reliability models, assessment techniques and indicators.

niques (step 3). For the former, we concern on their expressive power of describing

reliability and safety behaviors, while for the latter, we concern on their computa-

tional accuracy and efficiency. It is worth noting that there isn’t a strict one-to-one

correspondence between the model and its assessment technique. For instance, the

Monte-Carlo simulation technique can be applied to many models, such as Markov

chains, Petri nets, guarded transition systems and fuzzy fault trees.

The PRA/PSA models can be splitted into 3 nested categories (Rauzy 2018), which

are (probabilized) Boolean formulas, (stochastic) finite state automata and (stochastic)

process algebras.

In Figure 2.1, we only list the first two categories that are related to this thesis:

– Combinatorial models, where the system’s behavior is modeled by the

combination of the components’ behavior according to certain rules. This

category includes the models like fault trees, event trees, reliability block

diagrams and the so-called multistate systems.

– State/transition models (i.e. finite state automata), where the system’s be-

havior is modeled by transitions (triggered by events) between states. This

category includes the models like Markov chains, Petri nets (Marsan et al.

2.2. Combinatorial models 13

1995), guarded transition systems (Rauzy 2008) and dynamic fault trees.

In this thesis, we are focusing on the category of combinatorial models. But some-

times it is also useful to embed state/transition models in combinatorial models.

This will be briefly presented Section 6.2.4.

In the following section, we will give a short review of the existing combinatorial

reliability models. Their advantages and deficiencies are discussed in details. Fi-

nally, we will pinpoint the motivation of proposing the new modeling framework.

2.2 Combinatorial models

2.2.1 Overview

The word “combinatorial” refers to the property that the model of a system can be

constructed by successively composing submodels of its constituent subsystems

according to certain combination rules.

The advantages of using combinatorial models are twofold. First, thanks to this

compositionality, we can decompose large complex systems into independent parts,

model and analyze them separately, and finally use combination rules to compose

them to analyze the behavior of the whole system. It avoids modeling of the entire

system at once and also facilitates the validation and verification of the model.

The second advantage is that such decomposition/composition process exhibits

implicitly a hierarchical structure. Through this structure, we can either top-down

trace the causes of failure or bottom-up propagate failure probabilities to calculate

probabilistic indicators of higher abstraction level objects.

2.2.2 Fault tree methodology and limitations

In reliability and safety analysis, the widest applied combinatorial models are fault

trees. Fault tree analysis was first conceived by Watson et al. (1961) to study

the Minuteman Launch Control System. Now, it is one of the most prominent

techniques used by a wide range of industries (Kumamoto 1996, Andrews 2002).

Textbooks of fault tree analysis can be seen in e.g. Rausand (2004), Ruijters and

Stoelinga (2015).

Fault trees have been well mastered by practitioners. Safety standards such as IEC

61508 (IEC61508 2010) (safety systems), ISO 26262 (Standard 2011) (automotive

industry), or ARP 4761 (International 1996) (avionic industry) recommend their

use.

14 Review of Combinatorial Models in System Reliability Theory

Event trees and reliability block diagrams are fault tree alternatives, which are also

widely used in PRA/PSA. Many other modeling formalisms are also related to fault

trees, e.g. Go-Flows (Matsuoka and Kobayashi 1988) and HiP-HOPS (Papado-

poulos and McDermid 1999, Adachi et al. 2011).

Strictly speaking, fault trees, event trees and reliability block diagrams are graph-

ical representations of (probabilized) Boolean formulas. As graphical representa-

tions, they visualize the logical relationships between events and causes that lead

to the failure of the system. Such logic diagrams facilitate the process of identi-

fying failures and possible interactions. They also create a visual aid for system

analysis and management.

However, the graphical representations are not the main concern of this thesis. In

the following sections, when we discuss limitations, advantages and deficiencies

of a modeling approach, we refer to its mathematical or theoretical framework not

the graphical representation.

According to Fussell (1975), the limitations of fault tree methodology fall into

two categories: limitations occurring during implementation and limitations in the

theory. After the literature review, we summarize these limitations as follows:

– Limitation 1 (practical): the computational complexity of extracting (min-

imal) cutsets out of large models, due to the exponential blow-up of the

number of state combinations.

– Limitation 2 (theoretical): the assumption that components are stochastic-

ally independent. Accordingly, dynamic behaviors such as cold standby,

repairs and resource sharing cannot be captured.

– Limitation 3 (theoretical): the binary assumption, i.e. components can only

be either working or failed. Accordingly, degraded performances cannot be

considered.

This thesis aims at solving the limitation 3, i.e. to fully extend the fault tree ana-

lysis into multistate realm. For this reason, a more detailed literature review of

existing solutions for limitation 3 is given next section. As for limitation 1 and 2,

we address some typical solutions below.

Solutions for limitation 1 This limitation comes from the computational complex-

ity of combinatorial problems. It exists in both Boolean and multistate combinator-

ial models. For Boolean models, the widely applied algorithms of extracting (min-

imal) cutsets are MOCUS (Fussell 1972) and the algorithms on Binary Decision

2.2. Combinatorial models 15

Diagrams (BDDs) (Akers 1978, Lee 1959). Now, the latter become more prevail-

ing than the former for being more efficient. Many researches have been dedicated

to improve the computation efficiency of BDD algorithms, e.g. OBDDs (Bry-

ant 1986), ZBDDs (Minato 1993) and advanced algorithms, see e.g. Brace et al.

(1991), Minato (1993), Rauzy (2001), Jung et al. (2004), Rauzy (2012). Moreover,

since the calculation efficiency of OBDD strongly depends on its variable order-

ing, a lot of ordering heuristics have been invented to improve the efficiency, see

e.g. Bouissou et al. (1997), Ibañez-Llano and Rauzy (2008), Mo et al. (2013).

Solutions for limitation 2 The main direction of solving this limitation is to ap-

ply state/transition models to model the dynamic dependencies. The dynamic

fault trees (DFTs) (Dugan et al. 1990; 1992) are extension of fault trees where

the temporal sequencing information are modeled by additional dynamic gates.

Many researches have contributed to DFTs, see e.g. Tang and Dugan (2004),

Walker and Papadopoulos (2009), Merle et al. (2010), Zhang et al. (2011), Rauzy

(2011), Chaux et al. (2013). DFTs can also link to other state/transition models,

e.g. Petri nets (Codetta-Raiteri 2005) and Markov chains (Boudali et al. 2007b;a).

These models exhibit the trend of combining fault trees and state/transition mod-

els, such as Boolean logic driven Markov processes (Bouissou and Bon 2003,

Piriou et al. 2017), reliability block diagrams driven Petri nets (Signoret et al.

2013) and state/event fault trees (Kaiser et al. 2007). In these hybrid models, fault

trees are used at higher abstraction level to structure the state/transition models.

More powerful formalisms also exist to structure state/transition models, e.g. high-

level modeling language AltaRica 3.0 (Prosvirnova 2014, Batteux et al. 2013) and

SAML (Gudemann and Ortmeier 2010).

2.2.3 Existing solutions of extending fault tree analysis to multistate sys-
tems

Under the binary assumption, systems and components are assumed to be either

working or failed. However, in practice, the performance level of systems and

their components may vary from perfect operation to complete failure. To be

able to model the intermediate states between working and failed, the notion of

multistate systems was introduced in the context of cannibalization (Hirsch et al.

1968, Hochberg 1973).

In this section, we classify existing combinatorial models related to this notion

of multistate systems into five categories and discuss whether they fully extend

the fault tree analysis to multistate systems or not. It is worth reminding that the

results of fault tree analysis are of two types: qualitative results (e.g. (minimal)

cut/path sets) and quantitative results (e.g. probabilistic indicators like probability

16 Review of Combinatorial Models in System Reliability Theory

of failure, mean time between failures and importance measures). These results are

used as criteria to judge the advantages and deficiencies of the following modeling

approaches.

(1) Models with totally ordered state space

In these models, the state space of multistate component/system is assumed to be

totally ordered, i.e. the valuation set of a multistate component/system that has

m states is {0, 1, ...,m} with the total ordering 0 < 1 < ... < m. Denote the

valuation set of the system by M and the valuation set of its ith component by Mi.

Then, the structure function of a system consisting of n components is treated as a

discrete function from
∏n

i=1Mi to M (Murchland 1975, Janan 1985, Wood 1985).

Most of the researches related to this subject target on coherent systems, see e.g.

Griffith (1980), El-Neweihi et al. (1978), Barlow and Wu (1978). Thanks to this

total ordering among states, the notion of minimal cut/path sets can be defined as

the minimal upper vectors or the maximal lower vectors with respect to different

degradation levels, see e.g. Huang (1984), Janan (1985). Recent researches can be

found in e.g. Ohi (2010), Zaitseva and Levashenko (2013), Liu et al. (2015) and

Kvassay et al. (2016).

Advantage This approach is suitable for modeling linear degradation or linear

performance levels between the ideal operating state and the complete failed state.

As results, both qualitative and quantitative results can be obtained.

Deficiency It cannot be applied if there are pairs of incomparable states.

(2) Models with partially ordered state space

Yu et al. (1994) indicated that “the degradation process of components may fall
into separate directions, so that the states cannot always be totally ordered by a
reasonable degradation relation”. Therefore, a good solution is to use partially

ordered set to model the state space of multistate component/system. Ohi (2013)

stated that “a basic problem of reliability theory is to explain the algebraic and
stochastic relationship between a product partially ordered set and a partially
ordered set through an increasing mapping from the former to the latter”. Ex-

cept for the work of Yu et al. (1994) and Ohi (2013), there are however not many

researches related to this subject. In Yu et al. (1994) and Ohi (2013), the definition

and the calculation of minimal cut/path sets and probabilistic indicators are well

established. The stochastic analyses of such systems can be found in e.g. Langseth

and Lindqvist (1998), Lindqvist (2003) and Ohi (2016).

2.2. Combinatorial models 17

Advantage Comparing to the models in category (1), the incomparable states are

taken into account. As results, both qualitative and quantitative results can be

obtained.

Deficiency In all existing literature related to this subject that the author has re-

viewed, the operations used to model the system are limited to the two universal

operations — supremum and infimum — for partially ordered sets. However, to

model reliability and safety behaviors, these two operations seem to be lack of

versatility.

(3) Extended fault trees

Buchacker (Buchacker et al. 1999, Buchacker 2000) introduced the notion of ex-

tended fault trees to deal with multistate components. In such fault trees, each

non-working state (i.e. degradation or failed state) is modeled by an individual

basic event. Their interrelations are modeled by specifically designed multivalued

logic gates. Related researches can be found in e.g. Portinale and Codetta-Raiteri

(2011).

Advantage This approach is easy to understand and use. As results, probabilistic

indicators of the top event can be calculated.

Deficiency To the best of the author’s knowledge, the minimal cut/path sets haven’t

been formally defined in such models yet.

(4) Multi-valued logic or decision diagram based models

As extension of BDD, the notion of multiple-valued decision diagram (MDD) was

introduced by Miller (1993) to graphically represent multi-valued logic functions.

Then, Xing (2007), Xing and Dai (2009) proposed the notion of multistate mul-

tivalued decision diagrams (MMDD) based on the work of Zang et al. (2003).

Applications of MMDD or MDD can be found in e.g. Shrestha et al. (2010), Zait-

seva and Levashenko (2013), Li et al. (2014; 2017), Mo et al. (2018), Zhao et al.

(2019).

Advantage This approach is a direct extension of BDD in multistate cases. As

results, probabilistic indicators can be calculated.

Deficiency In most of the cases, the structure function of combinatorial models is

a certain type of logic functions. Therefore, it is very appropriate to use decision

diagrams to represent its valuation. But in other words, decision diagrams are

just graphical representations of logic functions, while the determination of the

structure function represented by the decision diagram should be done by other

18 Review of Combinatorial Models in System Reliability Theory

approaches. For example, in the work of Zang et al. (2003), Xing (2007), Xing and

Dai (2009), they use multistate fault trees to define the required structure function.

For this reason, in Figure 2.1 we prefer to regard those approaches by which we can

define structure functions as PRA/PSA models, while regard the decision diagrams

as assessment technique of PRA/PSA models. Accordingly, whether the minimal

cut/path sets can be calculated or not doesn’t depend on the decision diagram, but

depends on the approach by which its structure function is defined.

(5) Universal Generating Function

The Universal Generating Function (UGF) techniques have been applied to model

the performance distribution of multistate systems using algebraic procedures (Levitin

2005). Mathematically, the UGF of a random variable X is defined as uX(z) =∑k
j=1 pjz

xj . The UGF of a random variable Y such that Y = f(X1, X2, ..., Xn)
is calculated as follows:

uY (z) =

k1∑
j1=1

k2∑
j2=1

· · ·
kn∑

jn=1

(p1j1p2j2 · · · pnjn)zf(x1j1
,x2j2

,...,xnjn)

In the above formula, Xi = (xi1, xi2, ..., xiki) is the state vector of the ith compon-

ent, piji is the corresponding probability of state xiji and f is the structure function

that models the relation between X1, ..., Xn and Y . This method was introduced

by Ushakov (1986; 1988) and then developed by a burst of research papers, e.g.

Levitin (2004), Lisnianski (2003; 2007), Lisnianski et al. (2010).

Advantage The calculation of probabilistic indicators of Y from Xi is easy to be

implemented. The computation algorithms are comparatively easier than those of

decision diagrams.

Deficiency To the best of the author’s knowledge, the structure function f in such

model should be a real function, which means that the states of X1, ..., Xn and Y
are modeled by real numbers. If f is a discrete logic function, the complexity of

this approach is equivalent (in theory) to those decision diagram based methods

in (4). Moreover, the (minimal) cut/path sets — in the view of fault tree analysis

not the reachability problem of networks — haven’t been included in the UGF

methodology yet.

2.2.4 Need for new modeling framework

We summarize the aforementioned five categories of models in Table 2.1, compar-

ing their valuation set of multistate component/system, operations used to model

the interrelations and accessible assessment results.

2.2. Combinatorial models 19

Table 2.1: Comparison of existing multistate combinatorial models.

Valuation set Operations Results

Finite Ordered Values (op.) PI* MC(P)S*

(1) TOSP* Yes Yes N min & max, MVL op. Yes Yes

(2) POSP* Yes Yes Symbols inf & sup** Yes Yes

(3) EFTs* Yes No Symbols MVL op. Yes No

(4) MVL/DD*models Yes No Symbols MVL op. Yes No

(5) UGF* Yes No R Arithmetic op. Yes No

(new) FDSs* Yes Yes Symbols MVL op. Yes Yes

* TOSP: totally ordered state space; POSP: partially ordered state space; EFTs: extended fault

trees; MVL: multi-valued logic; DD: decision diagram; UGF: universal generating function; PI:

probabilistic indicators; MC(P)S: minimal cut/path sets; FDSs: finite degradation structures.
** infimum and supremum.

From this table, we can conclude that:

• The valuation set of multistate component/system is always finite.

• The elements in the valuation set can be ordered or not. The difference is

that if they are ordered, the notion of minimal cut/path sets can be defined

with respect to this order.

• The elements in the valuation set can be either numerical or symbolic. They

should be consistent with the operations that are used to define the structure

function of the system, i.e. arithmetic operations for numerical values and

logic operations for symbolical values.

• All the five types of models support the calculation of probabilistic indicat-

ors, but only those models whose valuation set is an ordered set can support

the calculation of minimal cut/path sets.

Th new modeling framework proposed this thesis is called finite degradation struc-

tures (FDSs). According to the conclusions above, we can draw the blueprint of

FDSs:

• The valuation set should be finite and partially ordered. The elements

in this set represent the states of multistate component/system. To be more

informative in reliability and safety analyses, these elements should be sym-
bolic, e.g. Working, Degraded, Failed, Safe, Dangerous, Normal, etc.

• The structure function of the system is constructed by multi-valued logic
operations. Based on these operations, we can express the failure logic of

the system in terms of different combinations of its components’ states.

20 Review of Combinatorial Models in System Reliability Theory

• Under the framework of FDSs, we should be able to calculate probabil-

istic indicators and minimal cut/path sets (as those in fault tree analysis) for

multistate systems.

The algebraic framework of FDSs satisfying the above requirements is presented

Chapter 3. To complete the 4 steps illustrated Figure 2.1, we should then define the

models built on FDSs (step 2), choose appropriate assessment technique (step 3)

and determine the accessible results (step 4). These will be presented respectively

Chapter 4 and Chapter 5.

2.3 Illustrative case study: a safety instrumented system (SIS)

2.3.1 System description

Safety instrumented systems (SISs) are designed to keep an equipment under con-

trol in a safe state when some abnormal conditions occur. As illustrative use case,

the TA4 system of ISO/TR 12489 (ISO12489 2013) is pictured Figure 2.2.

Figure 2.2: Safety instrumented system in TA4 of ISO/TR 12489

This system is designed to protect a pipe section from the overpressure that may

damage the equipment located downstream. It works on demand, i.e. the system

is activated when an overpressure occurs in the pipe (due to the irregular flow of

oil, gas and water extracted from wells).

The system is made of three types of elements: sensors (S1, S2 and S3) in charge

of detecting overpressure, logic solvers (LS1 and LS2) in charge of making the

decision and the two isolation valves V1 and V2 which can be closed to release

the pressure. The logic solver LS2 works according to a 1-out-of-2 logic, i.e. that

2.3. Illustrative case study: a safety instrumented system (SIS) 21

it sends the command to close the valves if at least one out of two sensors S2 and

S3 detects an overpressure.

2.3.2 Failure modes

According to the standard IEC 61508 (IEC61508 2010), the failure modes of the

components of a safety instrumented system can be classified along two directions:

safe versus dangerous failure modes and detected versus undetected failure modes.

These two directions can also be combined. According to what precedes, we shall

consider three failure modes: safe-failure (Fs), dangerous-detected-failure (Fdd)

and dangerous-undetected-failure (Fdu).

The definitions of failure modes can be found in IEC 61508 Part 4. Particularly,

we quote the definitions of safe-failure and dangerous-failure below.

– Safe-failure: a failure of an element and/or subsystem and/or system that

plays a part in implementing the safety function that a) results in the spurious

operation of the safety function to put the EUC (or part thereof) into a safe

state or maintain a safe state; or b) increases the probability of the spurious

operation of the safety function to put the EUC (or part thereof) into a safe

state or maintain a safe state.

– Dangerous-failure: a failure of an element and/or subsystem and/or system

that plays a part in implementing the safety function that a) prevents a safety

function from operating when required (demand mode) or causes a safety

function to fail (continuous mode) such that the EUC is put into a hazardous

or potentially hazardous state; or b) decreases the probability that the safety

function operates correctly when required.

In this case study, we should clarify that the safe failures are those who contribute

to closing the isolation valves, even though there is no overpressure (i.e. spurious

triggers). Reversely, the dangerous failures are those who contribute to keeping

the isolation valves open, even though there is an overpressure.

2.3.3 Assumptions and parameters

ISO/TR 12489 makes the additional following assumptions.

– The three solenoid valves (SV1, SV2 and SV3) are perfectly reliable so

that they are not considered in the analysis. All other components may fail

(independently). Their probabilities of failure follow negative exponential

distributions. The parameters of these distributions are given Table. 2.2.

22 Review of Combinatorial Models in System Reliability Theory

– Fs is always detected.

– Logic solvers embed autotest facilities so that their dangerous failures are

immediately detected. On the contrary, dangerous failures of valves remain

undetected between two maintenance interventions. Dangerous failures of

sensors may be detected or not.

– The system is maintained once a year (once in 8760 hours). The production

is stopped during the maintenance. Components are as good as new after the

maintenance.

Table 2.2: TA4 Reliability parameters

Failure rates Sensor Logic solver Isolation valve

λFs 3.0× 10−5 h−1 3.0× 10−5 h−1 2.9× 10−4

λFdd
3.0× 10−5 h−1 6.0× 10−7 h−1 NA

λFdu
3.0× 10−7 h−1 NA 2.9× 10−6 h−1

2.3.4 Failure mechanism and modeling questions

In ISO/TR 12489, this system is modeled by fault trees. Since fault trees are

Boolean models, safe failures and dangerous failures can only be analyzed separ-

ately, i.e. one fault tree for Fs and another fault tree for Fdd and Fdu.

To the best of the author’s knowledge, the combinations of Fs with Fdd and Fdu

have not been formally analyzed neither in the standard nor in other previous work.

However, such combinations may happen in reality, e.g. a sensor rises a false alarm

(i.e. Fs) while the relevant valve is failed to close (i.e. Fdu). In such case, the

effect of the false alarm seems to be neutralized by the failure of the valve. But

such scenario is often ignored because its probability — the probability of having

two failures simultaneously — is much lower than the probability of having one

failure.

Here, our first question is that:

“Does the importance of a scenario depend only on its occurrence probability?”

The answer is obvious no. The importance of a scenario should depend not only

on its occurrence probability but also on its criticality.

Take the fault tree analysis as example. The minimal cutsets of a fault tree are the

critical scenarios, representing the minimal combinations of components’ failure

that can lead to the system’s failure. In probabilistic aspect, minimal cutsets are

also the scenarios whose occurrence probabilities are significant if the components

2.3. Illustrative case study: a safety instrumented system (SIS) 23

in the system are reliable (i.e. the probability of working is much greater than its

probability of failure.). However, the criticality of minimal cutsets is not determ-

ined by their occurrence probabilities. Instead, it is defined by the logic function

represented by the fault tree. In other words, we can still calculate minimal cutsets

and use them to analyze the qualitative behavior of the system even though the

probabilities of basic events are not provided.

To be more generic, the combinatorial models in PRA/PSA always have two per-

spectives: the logical perspective and the probabilistic perspective. Regarding

these two perspectives, we shall make a distinction between “critical scenarios”

and “significant scenarios”. The former refer to those scenarios that are critical

to characterize the change of behavior of the system. The latter refer to those

scenarios whose occurrence probabilities are significant comparing to the others.

However, there isn’t a direct relation between critical scenarios and significant

scenarios, i.e. a scenario is critical doesn’t mean that it has a high occurrence

probability, and vice versa. Ignoring non-significant scenarios before modeling

may leave out critical scenarios that are important in determining the system’s

safety/risk performance.

As stated in the beginning of this subsection, the simultaneous occurrence of Fs

with Fdd and Fdu is ignored in the fault tree models of this safety instrumented

system. It means that we can never obtain the cutsets containing those combina-

tions of failures, while these cutsets may be helpful in real-time analysis especially

when some of the failures have already happened.

Now, the second question is that:

“What are the difficulties in modeling such combination of failures using existing
modeling approaches?”

In Section 2.2.3, we have discussed the advantages and deficiencies of the five

categories of models. In the following part, we will show concretely their modeling

difficulties when applied to this safety instrumented system.

First, if we want to calculate the minimal cut/path sets containing those combin-

ations of failures, only the models in category (1) and category (2) can be used

according to Table 2.1. However, the models in category (1) seem to be inappro-

priate because we cannot linearly order the four states W , Fs, Fdd and Fdu in the

state space of components in this safety instrumented system. The models in cat-

egory (2) seem also to be inappropriate because we cannot use only the infimum

and the supremum to describe the failure logic of this system.

If we compromise that the calculation of minimal cut/path sets is not necessary,

24 Review of Combinatorial Models in System Reliability Theory

then the models in categories (3), (4) and (5) are theoretically applicable. However,

they still have practical difficulties. For the extended fault trees in category (3),

if each non-working state is modeled by an individual basic event, then in this

case, there are totally 33 × 24 = 432 basic events (i.e. 3 states for each sensor

and 2 states for each logic solver and valve). The construction of a fault tree

with 432 basic events is a time-consuming and error-prone work. The MMDD

techniques in category (4) will meet the same problem if they also use multistate

fault trees to define the structure function of the system. As for category (5), the

UGF technique requires to use real numbers to represent the states of multistate

component/system, while states of components in this system are symbolic, i.e.

W , Fs, Fdd and Fdu.

These modeling difficulties motivate us to propose the framework of finite degrada-

tion structures, which is supposed to become a unified framework of combinatorial

models in PRA/PSA. In the following chapters, we will provide a detail explana-

tion of the modeling and the analysis of this safety instrumented system under the

framework of finite degradation structures.

Part II

Theoretical Development

25

Chapter 3

Algebraic Framework of Finite
Degradation Structures

This chapter defines formally the algebraic framework of finite degradation struc-

tures (FDSs). Theoretically, an algebra is a pair 〈A,O〉 comprised by a set A
with a collection O of finitary operations on A. The elements in A are indivisible

objects (or symbols) and the operations in O define the relations of the elements

in A. Given an algebra 〈A,O〉, models can be built on it, i.e. as interpretations

satisfying the rules in 〈A,O〉.

The algebraic framework of Boolean combinatorial models, e.g. fault trees and

reliability block diagrams, is the Boolean algebra, which can be denoted by the

quadruple 〈B,∨,∧,¬〉, where B = {0, 1} and ∨,∧,¬ are the logic operations—

conjunction, disjunction and negation—defined on B. The algebraic framework

of FDSs is denoted by the triple 〈FDS,⊗,Φ〉, where FDS stands for the set

of FDSs and ⊗,Φ are the two main operations — the monoidal product and the

abstractions — defined on FDS. Mathematically, the set FDS is closed under

these two operations ⊗ and Φ. In this chapter, we will define all the mathematical

concepts in the framework 〈FDS,⊗,Φ〉. The models built over 〈FDS,⊗,Φ〉 will

be presented Chapter 4.

The reminder of this chapter is as follows. Section 3.1 reviews the concepts related

to partially ordered sets. Section 3.2 defines FDSs and provides a set of examples.

Section 3.3 defines the operations on FDSs.

27

28 Algebraic Framework of Finite Degradation Structures

3.1 Partially ordered sets
Definition 3.1.1 (Poset). Let D be a set and� be an order over D. The pair 〈D,�〉
is a partially ordered set (poset) if the following axioms hold, i.e. ∀a, b, c ∈ D:

– a � a (Reflexivity);

– if a � b and b � c, then a � c (Transitivity);

– if a � b and b � a, then a = b (Antisymmetry).

The order � satisfying the above axioms is called a partial order.

For any two elements a, b in D, if either a � b or b � a holds, a and b are

comparable. Otherwise, a and b are incomparable, denoted by a ∼ b. Particularly,

if every pair of elements a, b in D is comparable, the poset 〈D,�〉 is a totally
ordered set and � is a total order or linear order.

A poset can be visualized through its Hasse diagram. In such diagram, the ele-

ments of the poset are represented as vertices and each order relation x � y is

drawn as a line segment that goes upward from x to y. An example is given Fig-

ure 3.1. In this example, the partial orders are defined by the inclusion of sets, i.e.

∀X,Y ⊆ {x, y, z}, X � Y ⇔ X ⊆ Y .

Figure 3.1: Hasse diagram example.

Definition 3.1.2 (Extrema). An element � in 〈D,�〉 is a greatest element if ∀a ∈
D, a � �. An element ⊥ in 〈D,�〉 is a least element if ∀a ∈ D,⊥ � a.

For instance, the greatest element of the poset in Figure 3.1 is {x, y, z} and its least

element is ∅.

3.1. Partially ordered sets 29

It is easy to verify that a poset with finite elements can have at most one greatest

or least element. Assume for a contradiction that D has two least elements⊥1 and

⊥2, then we have both ⊥1 � ⊥2 and ⊥2 � ⊥1, which by antisymmetry means

that ⊥1 = ⊥2. The proof of the uniqueness of the greatest elements can be done

in a same way.

Definition 3.1.3 (Maximal and minimal elements). The set of maximal elements

and the set of minimal elements of a poset L, denoted respectively by max(L) and

min(L), are defined as follows:

max(L) def
= {g ∈ L|�x ∈ L, g � x}

min(L) def
= {l ∈ L|�x ∈ L, x � l}

(3.1)

Take the poset in Figure 3.2 as an example. In this case, the greatest element and

the least element are removed. According to the above definition, the maximal

elements are {x, y}, {x, z}, {y, z} and the minimal elements are {x}, {y}, {z}.
These maximal and minimal elements characterize not the extreme of a poset but

the upper and lower bounds of a poset.

Figure 3.2: Poset without greatest and least element.

It is worth mentioning here that the notion of maximal and minimal elements is the

key to generalize the notion of minimal cut/path sets from fault trees to multistate

models.

Definition 3.1.4 (Semi-lattice). A meet-semi-lattice, denoted by 〈D,�,⊥〉, is a

poset 〈D,�〉 that has a least element ⊥ ∈ D. A join-semi-lattice, denoted by

〈D,�,�〉, is a poset 〈D,�〉 that has a greatest element � ∈ D.

Typically, if a poset has both the greatest element and the least element, it is called

a lattice. For instance, the poset in Figure 3.1 is a lattice. If we remove one of its

extreme elements, we obtain the semi-lattices, e.g. Figure 3.3 (a) is a join-semi-

lattice and (b) is a meet-semi-lattice.

In abstract algebra, the Boolean algebra is a complemented distributive lattice,

which captures in essence properties of both set operations and logic operations.

30 Algebraic Framework of Finite Degradation Structures

Figure 3.3: Example of (a) join-semi-lattices and (b) meet-semi-lattice.

As pictured Figure 3.4, the finite degradation structures (FDSs) proposed this

thesis are meet-semi-lattices, which have a larger coverage than the set of lattices

that lays the foundation of Boolean algebra. For this reason, FDSs can be seen as

a more generalized algebraic framework compared to the Boolean algebra and the

binary assumption is thus eliminated in FDSs. Consequently, the logic operations

that are used to model the reliability and safety behavior of Boolean systems can

be natually extended in multistate cases using FDSs.

Figure 3.4: Classification of posets.

3.2. Finite degradation structures (FDSs) 31

3.2 Finite degradation structures (FDSs)

3.2.1 Definitions

Definition 3.2.1 (FDS). A finite degradation structure (FDS) is defined as a quad-

ruple 〈D,�,⊥, p〉, where D is a finite set, 〈D,�,⊥〉 forms a meet-semi-lattice

and p : D → [0, 1] is a probability measure on D satisfying that
∑

s∈D p(s) = 1.

Practically, a FDS is an atomic model of an individual object of the system under

study. This individual object can be either a component, a subsystem (i.e. a group

of components) or the system itself as a whole. Let L : 〈D,�,⊥, p〉 be the model

of an object A, then the interpretation of L is explained as follows:

– The elements in D represent the states of A, which discretize the perform-

ance that we want to model from A. These states are named symbolically,

e.g. Working, Degraded, Failed, 0.5, 1, 4.7, x, y, etc. To define the probab-

ility measure p on D, these states should be stochastically independent (i.e.

mutually exclusive) and complete (i.e. collectively exhaustive).

– The partial order � is interpreted as the degradation order, which scales

the degradation level between each pair of states. The relation x � y is

interpreted as “x is less degraded than y”. The degradation order is a par-

tial order for allowing having incomparable states. In reliability and safety

models, states are not always comparable because they may correspond to

different types of degradation, e.g. safe failure and dangerous failure, and it

is not necessary or not even possible to order their degradation levels.

– The least element ⊥ is the least degraded state of A. In other words, it

represents the (intact) ideal operating state in which theA is as good as new.

The intuition behind this definition is that the state of a component cannot

be less degraded than when it is new. This uniqueness of the least degraded

state ⊥ makes the poset D be a meet-semi-lattice.

– The probability measure p is embedded in L to perform the probabilistic
calculations. These calculations will be presented Chapter 5. Moreover, p
can also be time-variant, i.e. p : D × R+ → [0, 1], where ∀s ∈ D, p(s, t)
represents the probability of being in state s at time t.

In the name of FDS, “finite” indicates that D is a finite set; “degradation” means

that the partial order � is interpreted as the degradation order; and “structure”

emphasizes that D is not a simple set but a set that embeds an order structure.

32 Algebraic Framework of Finite Degradation Structures

3.2.2 Typical examples

Five typical examples of FDSs are defined Table 3.1. Their Hasse diagrams are

given Figure 3.5.

Table 3.1: Typical FDSs applied in reliability and safety analyses.

Name States Orders Bottom (⊥)

WF {W,F} W � F W
WDF {W,D,F} W � D � F W
SWF {S,W,F} S � W � F S

WFdFu {W,Fd, Fu} W � Fd,W � Fu W
WFdFs {W,Fdang, Fsafe} W � Fdang,W � Fsafe W

Figure 3.5: Hasse diagram of WF, WDF, SWF, WFdFu and WFdFs.

– WF is a binary FDS with the two classical states: working and failed. The

degradation order in this FDS is obviously W � F . This ordering is consist-

ent with the ordering 0 < 1 in Boolean algebra. Therefore, the systems that

can be modeled by fault trees (or reliability block diagrams) can be modeled

in the framework of FDSs using WF.

– WDF is a ternary FDS with an intermediate degraded state D between W
and F . In this case, the degradation order is the linear order W � D � F .

– SWF is also a ternary FDS with an additional standby state S for standby

components. In this FDS, the standby state S is the least degraded state

because we may consider that the component cannot fail in standby state but

can fail in working state.

– WFdFu and WFdFs are the ternary FDSs where there are two failure

modes, i.e. the detected/undetected failures and the safe/dangerous failures.

3.2. Finite degradation structures (FDSs) 33

In algebraic point of view, we can see that the degradation orders in WDF and

SWF and the degradation orders in WFdFu and WFdFs are similar. In math-

ematics, this similarity is called order isomorphic.

Definition 3.2.2 (Equal up to isomorphism). Two posets 〈D1,�〉 and 〈D2,�〉 are

equal up to isomorphism (or isomorphic), denoted by 〈D1,�〉 ∼= 〈D2,�〉, if there

exist an isomorphism α : D1 → D2 such that ∀x, y ∈ D1, x � y ⇔ α(x) � α(y).

Whenever two posets are order isomorphic, they can be considered to be “essen-

tially the same” in the sense that one of the orders can be obtained from the other

just by renaming the elements.

In this sense, we generalize the above five FDSs into two types of FDSs: n and

WnF.

Definition 3.2.3 (n). We denote the linearly ordered FDSs by n, where n ∈ N+

stands for the number of states inside.

Definition 3.2.4 (WnF). We denote the FDS that has one least state W and n(n ≥
1) maximal states F1, ..., Fn with the degradation orders W � Fi, ∀i = 1, ..., n
and Fi ∼ Fj , i �= j by WnF.

The Hasse diagrams of n and WnF are pictured Figure 3.6.

Figure 3.6: The structure of n and WnF.

Practically, n is used to model the component that experiences a linear degrada-

tion and WnF is used to model the component that has one working state and n
incomparable exclusive failure modes.

34 Algebraic Framework of Finite Degradation Structures

Accordingly, we have the following order isomorphisms:

WF ∼= 2

WDF ∼= SWF ∼= 3

WFdFu ∼= WFdFs ∼= W2F

The order isomorphism is also used to define the commutativity, associativity and

distributivity of the operations on FDSs. This will be presented Section 3.3.

Instead of the two types of FDSs n and WnF, analysts can also design other

appropriate FDSs for specific systems. In the following section, we will show

a specific FDS that is used to model the safety instrumented system presented

Section 2.3.

3.2.3 The FDS for SIS

For the safety instrumented system presented Section 2.3, we specifically design

a FDS, named as SIS, to model the state space of the components (i.e. sensors,

logic solvers and valves) in this system.

The Hasse diagram of SIS is pictured Figure 3.7.

Figure 3.7: The FDS SIS.

There are four states in SIS: a working state W , a failed-safely state Fs, a failed-

dangerously-detected state Fdd and a failed-dangerously-undetected state Fdu. The

degradation orders in SIS are explained as follows:

– W � Fs and W � Fdd, since the working state is always less degraded than

a failed state.

– Fdd � Fdu, since Fdu is not revealed when it occurs so that the system has a

high potential to be in a more hazardous situation, while Fdd can be noticed

3.3. Operations on FDSs 35

so that mitigating reactions can be carried out before resulting in hazardous

consequences.

– Fs ∼ Fdd and Fs ∼ Fdu, since the risk represented by safe failures and

dangerous failures, both in terms of frequency of occurrence and severity

of consequences, are very different. On the one hand, spurious triggers of

SIS have a strong economic impact, but indeed no impact on safety. On

the other hand, dangerous failures have an impact on safety. If they remain

undetected, they may lead to a catastrophic accident. Therefore, safe failures

and dangerous failures are considered in this case to be incomparable.

According to the assumptions made in ISO/TR 12489, the probability of failure of

each component follows negative exponential distribution. Denote the failure rate

of Fs, Fdd and Fdu by λFs , λFdd
and λFdu

. Then, the probability measure in the

FDS SIS of each component can be defined analytically as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(W, t) = e−λW t

p(Fdu, t) =
λFdu
λW

(1− e−λW t)

p(Fdd, t) =
λFdd
λW

(1− e−λW t)

p(Fs, t) =
λFs
λW

(1− e−λW t)

(3.2)

where λW = λFdu
+ λFdd

+ λFs .

According to the parameters in Table 2.2, we calculate the probability measure

for each type of components. The results are pictured Figure 3.8. Particularly,

since the dangerous failure of logic solvers (LS) are always detected and the dan-

gerous failure of valves (V) are always undetected, then pLS(Fdu, t) = 0 and

pV (Fdd, t) = 0, ∀t ≥ 0.

The probability measures of components (i.e. at bottom-level of the model) are

treated as inputs of the model. Similar to fault tree analysis, these probabilities can

propagate to higher-level objects through the well-defined logic operations.

3.3 Operations on FDSs
Denote the set of FDSs by FDS. Then, FDS is closed under two (collections

of) operations: the monoidal product ⊗ and the abstractions in Φ. These two

operations together form the algebraic framework 〈FDS,⊗,Φ〉.

36 Algebraic Framework of Finite Degradation Structures

Figure 3.8: The probability measures for sensors, logic solvers and valves.

3.3.1 Monoidal product

Definition 3.3.1 (Product). The monoidal product (or product for short) on FDSs

is defined as the bifunctor ⊗ : FDS×FDS→ FDS such that for any two FDSs

L1 : 〈D1,�,⊥1, p1〉,L2 : 〈D2,�,⊥2, p2〉,

L1 ⊗ L2
def
= 〈D⊗,�,⊥⊗, p⊗〉

where:

– D⊗ = D1 ×D2.

3.3. Operations on FDSs 37

– ∀(x1, x2), (y1, y2) ∈ D⊗, (x1, x2) � (y1, y2)⇔ x1 � y1 ∧ x2 � y2.

– ⊥⊗ = (⊥1,⊥2).

– ∀(x, y) ∈ D⊗, p⊗(x, y) = p1(x) · p2(y), if p1, p2 are independent.

It is easy to prove that L1 ⊗ L2 is also a FDS. First, D⊗ is a finite set since D1

and D2 are finite. Then, � is a partial order on D⊗ since it satisfies the axioms in

Definition 3.1.1. ⊥⊗ is the least element in D⊗ since ∀x1 ∈ D1, ∀x2 ∈ D2, ⊥1 �
x2,⊥2 � x2 ⇔ (⊥1,⊥2) = ⊥⊗ � (x1, x2) ∈ D⊗. Finally, p⊗ is a probability

measure on D⊗ since
∑

(x,y)∈D⊗ p⊗(x, y) = (
∑

x∈D1
p1(x)) · (

∑
y∈D2

p2(y)) =
1.

Therefore, FDS is closed under the monoidal product ⊗.

Figure 3.9 (a) - (d) illustrate respectively the Hasse diagram of the product WF2,

WF⊗WDF, WDF⊗WF and WDF2, where Ln stands for the product of n
L.

Figure 3.9: WF2, WF⊗WDF, WDF⊗WF and WDF2.

Proposition 3.3.1 (Properties). ∀A,B, C ∈ FDS, the following equalities hold:

– A⊗ B ∼= B ⊗A (Commutativity)

– A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C (Associativity)

– 1⊗A ∼= A⊗ 1 ∼= A (Identity), where 1 : 〈{⊥},�,⊥, p〉 is the unary FDS

that contains only one element ⊥ with the order ⊥ � ⊥ and p(⊥) = 1.

38 Algebraic Framework of Finite Degradation Structures

The monoidal product ⊗ on FDSs can be seen as the analogue of the Cartesian

product on finite sets. The existence of such monoidal product⊗makes it possible

to define — both algebraically and stochastically — the combination of states of

components in combinatorial models.

3.3.2 Abstractions

Definition 3.3.2 (Abstraction). Let S : 〈DS ,�,⊥S , pS〉, T : 〈DT ,�,⊥T , pT 〉
be two FDSs. An abstraction from S to T is defined as a surjective mapping

ϕ : S � T such that:

– ∀y ∈ T , ∃x ∈ S, ϕ(x) = y.

– ϕ(⊥S) = ⊥T .

– ∀y ∈ T , pT (y) =
∑

x∈ϕ−1[y] pS(x).

S is called the codomain of ϕ, denoted by codom(ϕ), and T is called the domain
of ϕ, denoted by dom(ϕ). The symbol � is used for abstractions.

Figure 3.10 gives two examples of the abstractions. The abstraction in (a) abstracts

the two degraded states (type 1 and 2) into one degraded state. The abstraction in

(b) abstracts the Working state and the Standby state into the Normal state and

abstracts the two failed states (type 1 and 2) into the Abnormal state.

Figure 3.10: Examples of abstraction.

From reliability and safety point of view, these two abstractions are reasonable

because they abstract the state space from a more complicated structure into a

simpler one while keeping the degradation orders coherent.

3.3. Operations on FDSs 39

Definition 3.3.3 (Weak-coherency). An abstraction ϕ : S � T is weakly-coherent
(or coherent for short) if ∀x, y ∈ S , x � y ⇒ ϕ(x) � ϕ(y).

We can verify that the two abstractions in Figure 3.10 are both weakly-coherent.

If we modify the two abstractions in Figure 3.10 into the ones in Figure 3.11, then

according to Definition 3.3.3, the abstraction in Figure 3.11 (a) is still coherent,

but the abstraction in Figure 3.11 (b) is not. For the latter, some degradation orders

in the codomain of the abstraction are reversed.

Figure 3.11: Examples of disordered abstraction.

Now, consider the abstraction ϕ : W2F � 3 pictured Figure 3.12. According to

Definition 3.3.3, ϕ is coherent, but the degradation orders are not strictly preserved,

i.e. the states y and z are incomparable (i.e. y ∼ z) in dom(ϕ) while their images

are comparable (i.e. ϕ(z) � ϕ(y)) in codom(ϕ).

Figure 3.12: A coherent but not strictly order-preserving abstraction.

Therefore, to judge the order-preserving property of incomparable states, we in-

troduce the notion of strong-coherency, which is mathematically defined below.

Definition 3.3.4 (Strong-coherency). An abstraction ϕ : S � T is strongly-
coherent if it is coherent and ∀x, y ∈ S such that x ∼ y, one of the following

conditions holds:

40 Algebraic Framework of Finite Degradation Structures

– ϕ(x) ∼ ϕ(y);

– ϕ(x) = ϕ(y);

– ϕ(x) � ϕ(y) if ∃y′ ∈ S, x � y′∧ϕ(y) = ϕ(y′) or ∃x′ ∈ S, x′ � y∧ϕ(x) =
ϕ(x′).

As comparison, three coherent abstractions are pictured Figure 3.13, where ϕ1 and

ϕ2 are strongly-coherent and ϕ3 is weakly-coherent.

Figure 3.13: Strongly-coherent abstractions ϕ1, ϕ2 and weakly-coherent abstraction ϕ3.

The set of all abstractions between FDSs is denoted by Φ : FDS � FDS. The

set FDS is closed under the abstractions in Φ.

3.3.3 Operations

Definition 3.3.5 (Operation). An operation under the framework 〈FDS,⊗,Φ〉 is

an abstraction φ ∈ Φ in the following form:

φ :

n⊗
i=1

Si � T (3.3)

where n(n ≥ 1) is the number of inputs called the arity of the operation, T is the

codomain of the operation, i.e. T = codom(φ), and Si ∈ FDS, i = 1, ..., n are

domains of the n input arguements of the operation.

The operation φ defines the mapping between the state combinations in
⊗n

i=1 Si
and the states in T .

Denote the probability measure in Si by pi, and assume that pi’s are independent.

Then, ∀(s1, ..., sn) ∈
⊗n

i=1 Si, the product measure p⊗ is calculated according to

3.3. Operations on FDSs 41

Definition 3.3.1 as follows:

p⊗(s1, ..., sn) =
n∏

i=1

pi(si) (3.4)

Then, ∀y ∈ T , the state probability pT (y) in T is calculated according to Defini-

tion 3.3.2 as follows:

pT (y) =
∑

(s1,...,sn)∈φ−1[y]

p⊗(s1, ..., sn) (3.5)

where φ−1[y] stands for the set of preimages of y under φ.

Finally, we have:

pT (y) =
∑

(s1,...,sn)∈φ−1[y]

(
n∏

i=1

pi(si)

)
(3.6)

Eq.(3.6) quantifies the propagation of probabilities from Si to T through the oper-

ation φ.

The operations on FDSs are multi-valued logic functions. They are used to model

the interrelationship between components and compose the behavior of compon-

ents to map the behavior of the system. In 〈FDS,⊗,Φ〉, the operations are not

limited to the Boolean logic conjunction, disjunction and negation. Instead, they

can be fully customized according to needs.

Example 3.3.1. Let’s take a concrete example. A system S is made of two com-

ponents A and B. The states of these components are either working or failed. The

failure mechanism of S is described as follows:

– If both components are working, then S is working;

– If both components are failed, then S is failed;

– If only one of the two components is failed, then S is degraded.

To model the failure mechanism of S, we can use an operation φ : WF2 � WDF
with the valuation rules defined Table 3.2. The graphical representation of this

operation is pictured Figure 3.14.

From Figure 3.14, we can easily verify that φ is strong-coherent. Let u, v, w be the

variables represent respectively the state of A, B and S. Then, the definition of w
is written as w ..= φ(u, v).

42 Algebraic Framework of Finite Degradation Structures

Table 3.2: The valuation of φ : WF2 � WDF.

φ(u, v)
v

W F

u
W W D
F D F

Figure 3.14: Illustration of φ : WF2 � WDF.

For probabilities, assume that for both A and B, the probability that the component

is working is p and the probability that the component is failed is q. Then, if A and

B are stochastically independent, the product measure p⊗ in WF2 are calculated

as follows: ⎧⎪⎪⎨
⎪⎪⎩

p⊗(W,W) = pA(W) · pB(W) = p2

p⊗(W,F) = pA(W) · pB(F) = pq
p⊗(F,W) = pA(F) · pB(W) = pq
p⊗(F, F) = pA(F) · pB(F) = q2

(3.7)

As results, the probability measure pS in WDF through φ is calculated as follows:⎧⎨
⎩

pS(W) = p⊗(W,W) = p2

pS(D) = p⊗(W,F) + p⊗(F,W) = 2pq
pS(F) = p⊗(F, F) = p2

(3.8)

which means that the probability that S is working is p2, the probability that S is

degraded is 2pq and the probability that S is failed is q2.

Proposition 3.3.2 (Composition of operations). Let φ :
⊗n

i=1 Si � T be an

operation. Then, for all j = 1, ..., n, if there exists an operation ϕj : A� Si, then

3.3. Operations on FDSs 43

φ and ϕj can be composed to one operation φ′ : S1⊗· · ·⊗Sj−1⊗A⊗Sj+1⊗· · ·⊗
Sn � T such that ∀si ∈ Si, i �= j and ∀x ∈ A, φ′(s1, ..., sj−1, x, sj+1, ..., sn) =
φ(s1, ..., sj−1, ϕj(x), sj+1, ..., sn).

When system gets large and complex, it is not possible to use only one single oper-

ation to model its behavior. As stated Section 2.2.1, the key reason of using com-

binatorial models is that they allow to decompose large system into independent

parts, create submodels of those parts and then compose the submodels following

certain rules. Here, these rules refer to the operations on FDSs. The composition-

ality of operation is the mathematical basis of the compositionality of models built

on FDSs.

3.3.4 The operations for SIS

For the safety instrumented system presented Section 2.3, two operations are con-

sidered, i.e. the series composition and the parallel composition of components.

The series composition of two components is denoted by � : SIS2 � SIS and

parallel composition of two components is denoted by ‖: SIS2 � SIS. The

block-diagram-like representation of � and ‖ is pictured Figure 3.15.

Figure 3.15: The block-diagram-like representations of � and ‖.

The valuation of � and ‖ is given Table 3.3. We shall explain them one by one as

follows.

Table 3.3: Valuation of � and ‖.

�(u, v)
v

W Fs Fdd Fdu

u

W W Fs Fdd Fdu

Fs Fs Fs Fdd Fdd

Fdd Fdd Fs Fdd Fdd

Fdu Fdu Fs Fdd Fdu

‖ (u, v) v
W Fs Fdd Fdu

u

W W Fs W W
Fs Fs Fs Fs Fs

Fdd W Fs Fdd Fdu

Fdu W Fs Fdu Fdu

44 Algebraic Framework of Finite Degradation Structures

For the series composition �(u, v):

– This operation is not symmetric. u represents the state of the upstream com-

ponent while v represents the state of the downstream component. The dir-

ection is defined as: sensors→ logic solvers→ valves, which is the direction

of information flow or reaction flow of the safety instrumented system.

– The only case that the output of the operation is working is that both com-

ponents are working, i.e. �(W,W) = W .

– If the downstream component is working, the output of the operation only

depends on the state of the upstream component, i.e. ∀s ∈ SIS, �(s,W) =
s.

– ∀s ∈ SIS, �(s, Fs) = Fs, because the safe failure (or spurious trip) of the

downstream component cannot be corrected or mitigated by the upstream

component. Similarly, ∀s ∈ SIS, �(s, Fdd) = Fdd, because the danger-

ous detected failure of the downstream component cannot be corrected or

mitigated by the upstream component.

– The reason of �(Fs, Fdu) = Fdd is twofold. First, since Fs is assumed to

be detected, the result of �(Fs, Fdu) should also be detected. Second, since

the dangerous undetected failure of the downstream component cannot be

corrected or mitigated by the upstream component, the result of �(Fs, Fdu)
should be a dangerous failure. Therefore, the result of �(Fs, Fdu) is the

dangerous-detected failure Fdd. The reason of�(Fdd, Fdu) = Fdd is similar.

For the parallel composition ‖ (u, v):

– ∀s ∈ SIS, �(s, Fs) = Fs and �(Fs, s) = Fs, because the safe failure (or

spurious trip) of any of the two components in parallel composition cannot

be corrected or mitigated by the other component.

– ∀s ∈ SIS, s �= Fs, �(s,W) = W and �(W, s) = W , because the parallel

composition is considered as a 1-out-of-2 logic, i.e. the result is working if

at least one component is working.

– �(Fdu, Fdu) = �(Fdu, Fdd) = �(Fdd, Fdu) = Fdu and �(Fdd, Fdd) =
Fdd because for dangerous failures, only when the failures of both compon-

ents are detected, the result is detected.

3.3. Operations on FDSs 45

It is easy to verify that � is not commutative but associative and ‖ is commutative

and associative. The following equalities hold for all x, y, z ∈ SIS:

�(�(x, y), z) = �(x,�(y, z))
‖ (‖ (x, y), z) = ‖ (x, ‖ (y, z))

‖ (x, y) = ‖ (y, x)
(3.9)

Moreover, � and ‖ are also distributive, i.e. the following equalities hold for all

x, y, z ∈ SIS:
�(x, ‖ (y, z)) = ‖ (�(x, y),�(x, z))
�(‖ (x, y), z) = ‖ (�(x, z),�(y, z))
‖ (�(x, y), z) = �(‖ (x, z), ‖ (y, z))

(3.10)

Figure 3.16 illustrates the valuation of � and ‖ in Hasse diagrams. From this

figure, we can easily verify that ‖ is strong-coherent while � is not coherent.

The strong-coherency of ‖ indicates that there is an order-similarity between SIS2

and SIS under ‖. The order-similarity will be further discussed in Section 5.1.3.

46 Algebraic Framework of Finite Degradation Structures

Figure 3.16: The illustration of � and ‖.

Chapter 4

Finite degradation models: a
unified formalism of
combinatorial reliability models

The models built on the framework 〈FDS,⊗,Φ〉 are named as finite degradation

models (FDMs). A model (of a theory) is an interpretation satisfying the sentences

in a formal language (of that theory). When it comes to a (formal) language, there

is always a set of symbols (called the language’s alphabet), rules governing the

structure of sentences (i.e. the syntax of the language) and meanings assigned to

syntactically valid sentences in a language (i.e. the semantics of the language). For

FDM, its syntax is defined by well-formed formulas and its semantics is determ-

ined by operations on FDSs.

The remainder of this chapter is as follows. Section 4.1 defines the syntax of

FDMs. Section 4.2 gives the interpretation of FDMs. Finally, Section 4.3 shows

the modeling of the safety instrumented system presented Section 2.3.

4.1 Syntax: the structure of a model

4.1.1 Well-formed formulas

Let U be a finite set of FDSs, V be a finite set of variables, O be a finite set of

operators on U and α : O→ N be the arity of operators.

Each variable v of V is assumed to take its value in the support set of one of the

FDSs of U. This FDS is called the domain of v and is denoted by dom(v).

47

48 Finite degradation models: a unified formalism of combinatorial reliability models

Definition 4.1.1 (Formulas). The set of formulas built over U, V and O is the

smallest set such that:

– Constants, i.e. elements of FDSs in U, are formulas.

– Variables of V are formulas.

– If ♦ is an operator of O with α(♦) = n and f1, ..., fn are formulas, then

♦(f1, ..., fn) is a formula.

A formula is well-formed if it is syntactically correct according to Definition 4.1.1.

A formula is well-typed, if each operator in it has the correct number of inputs and

each input is of the correct type. In the sequel, we shall say simply formula instead

of well-formed well-typed formula.

4.1.2 Finite degradation models (FDMs)

The syntactic structure of a finite degradation model is obtained by lifting up fault

tree constructions to 〈FDS,⊗,Φ〉.

Definition 4.1.2 (FDM). A finite degradation model (FDM) M is a pair 〈V =
S � F, E〉 written in the following form:

M :

⎧⎪⎪⎨
⎪⎪⎩

w1
..= f1

w2
..= f2

... ...
wm

..= fm

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where:

– S = {v1, ..., vm},m ≥ 1, is a finite set of state variables;

– F = {w1, ..., wn}, n ≥ 1, is a finite set of flow variables;

– E = {w1
..= f1, ..., wn

..= fn} is a set of equations such that for any wi ∈ F,

there is exactly one equation wi
..= fi ∈ E whose left-hand side member is

wi and fi is a formula built over the given sets of constants, variables and

operators. We say that this equation defines wi and that fi is the definition

of wi.

The flow variables in F are variables that appear in the left-hand side member of

the equations in E , while the state variables in S are variables that only appear

4.1. Syntax: the structure of a model 49

in the right-hand side member of the equations in E . Accordingly, V is divided

into two disjoint sets, i.e. V = S � F. The terms “state” and “flow” comes from

guarded transition systems (Rauzy 2008).

Denote the set of variables appearing in the formula f by var(f).

Definition 4.1.3. Given that w ..= f , we say that w depends on a variable u if

either u ∈ var(f) or there exits a variable u′ ∈ var(f) that depends on u.

The FDM M is looped if there exists a flow variable that depends on itself. It

is loop-free or data-flow otherwise. From now, we shall consider only data-flow

models.

A root variable ofM is a flow variable that occurs in none of the right members

of equations. M is uniquely rooted if it has only one root variable. This unique

root ofM represents in general the state of the system as a whole.

It is easy to see that FDMs generalize fault trees: state and flow variables play

respectively the role of basic and internal events; the equations play the role of

intermediate gates and the root variable plays the role of top event.

4.1.3 Graphical representation: expression tree

IfM is loop-free, the syntactic structure ofM can be represented graphically by

an expression tree.

Assume that the operators in O are binary. Then, the expression tree representing

M is a binary expression tree where:

– Each internal node is an operator node, denoted by the triple 〈♦, nl, nr〉,
which is labeled with an operator ♦ and pointing to the two child-nodes nl

(left-child) and nr (right-child).

– Each terminal node is a variable node, denoted by 〈v, /, /〉, which is only

labeled with a state variable v ∈ S and has no child-node. The symbol /

stands for nil.

Each node of this expression tree encodes a formula. This formula can be obtained

recursively as follows:

– The formula encoded by the terminal node 〈v, /, /〉 is v.

– The formula encoded by the internal node 〈♦, nl, nr〉 is ♦(fl, fr), where

fl, fr are the two formulas respectively encoded by nl and nr.

50 Finite degradation models: a unified formalism of combinatorial reliability models

Example 4.1.1. Take the following FDM as an example:

M :

{
w1

..= ♦1(v1, v2)
w2

..= ♦2(w1, v3)

}
(4.2)

The expression tree representing this model is pictured Figure 4.1.

Figure 4.1: The expression tree of the model in Eq.(4.2).

The node definitions of the expression tree in Figure 4.1 are given Table 4.1. Flow

variables do not appear explicitly in the expression tree. Instead, each flow variable

is associated to the operator node encoding its definition formula.

Table 4.1: Interpretation of the expression tree in Figure 4.1.

Node Definition Formula Assocated variables

n1 〈v1, /, /〉 v1 v1
n2 〈v2, /, /〉 v2 v2
n3 〈v3, /, /〉 v3 v3
n4 〈♦1, n1, n2〉 ♦1(v1, v2) w1

n5 〈♦2, n4, n5〉 ♦2(♦1(v1, v2), v3) w2

Definition 4.1.4 (Syntactic solution). Given M, the syntactic solution of a flow

variable w inM, denoted by fw, is defined as the formula encoded by the operator

node in the expression tree ofM that is associated to w.

Take the FDM in Eq.(4.2) as example. The syntactic solutions of w1 and w2 are

respectively the formulas encoded by the two nodes n4 and n5, i.e.{
fw1 = ♦1(v1, v2)
fw2 = ♦2(fw1 , v3) = ♦2(♦1(v1, v2), v3)

(4.3)

It is worth mentioning that in the assessment of FDMs, we don’t write the syntactic

solutions like in Eq.(4.3), because whenM gets large, the syntactic solution may

4.2. Semantics: the meaning of a model 51

be too long to write. Instead, the assessment algorithm is directed implemented

from the expression tree, see Section 5.3. This expression tree is the data structure

used in our software to encode FDMs.

The notion of syntactic solution is only defined as a concept to compare with the

semantic solution defined next section. Moreover, let w be a flow variable defined

by w ..= f . The variables in its syntactic solution fw are all state variables (i.e.

var(fw) ⊆ S), while the variables in f can be state variables or flow variables.

4.2 Semantics: the meaning of a model
Defining the semantics of a model means to assign meaning to each symbol written

in the model. The meaning of a symbol is called its interpretation, denoted by �.�.

4.2.1 Interpretation of formulas

Let f be a formula written over U, V and O. Then, a variable valuation of f is a

mapping σ : var(f) → ∏
v∈var(f) dom(v), which associates with each variable a

value from its domain.

Denote the interpretation of f under the variable valuation σ by �f�(σ). Then,

�f�(σ) can be defined recursively as follows:

– If f is reduced to a constant c, then �f�(σ) = c.

– If f is reduced to a variable v, then �f�(σ) = �v�(σ) = σ(v), which is a

valuation of v in its supporting domain, i.e. σ(v) ∈ dom(v) ∈ U.

– If f is in the form of♦(f1, ..., fn), then �f�(σ) = �♦�(�f1�(σ), ..., �fn�(σ)),
where �♦� is interpreted as the following operation:

�♦� :
n⊗

i=1

Si � T (4.4)

such that,

– S1, ...,Sn ∈ U are the domains of the n input arguments.

– T is the domain of f , i.e. dom(f) = codom(�♦�) = T .

4.2.2 Interpretation of FDMs

A FDMM is well-typed if dom(f) = dom(w) for each equation w ..= f inM.

From now, we shall only consider well-typed models.

52 Finite degradation models: a unified formalism of combinatorial reliability models

Let σ be a partial variable valuation that only assigns values to state variables in S:

σ : S→
∏
v∈S

dom(v) (4.5)

A variable valuation σ is admissible inM if �w�(σ) = �f�(σ) for each equation

w ..= f inM.

Proposition 4.2.1 (Unicity of admissible variable valuations). LetM be a FDM

and σ be a partial variable valuation. There is a unique way to extend σ into an

admissible total valuation �σ of variables ofM:

�σ : V→
∏
v∈V

dom(v) (4.6)

Since there is indeed a one-to-one-correspondence between variable valuations and

elements of
∏

v∈V dom(v), we shall thus make no distinction between them in the

sequel.

Definition 4.2.1 (Interpretation of FDMs). Given a FDMM : 〈V = S � F, E〉,
the interpretation ofM is the following abstraction:

�M� :
⊗
v∈S

dom(v) �
⊗
w∈F

dom(w) (4.7)

which assigns values to flow variables according to the valuation of state variables.

Definition 4.2.2 (Semantic solution). Given M, the semantic solution of a flow

variable w is the following operation:

�M�w :
⊗
v∈S

dom(v) � dom(w) (4.8)

such that �w�(�σ) = �M�w(σ), where �σ is the unique extension of σ in Eq.(4.6).

Now, let’s make a comparison between the syntactic solution and the semantic

solution of a flow variable w.

As defined Definition 4.1.4, the syntactic solution of w is a formula fw written

over the state variables in var(fw). Therefore, it can be interpreted as the following

operation:

�fw� :
⊗

v∈var(fw)

dom(v) � dom(w) (4.9)

4.2. Semantics: the meaning of a model 53

Proposition 4.2.2. According to Eq.(4.8) and Eq.(4.9), we can deduce that:

– If var(fw) = S, then �M�w = �fw�.

– If var(fw) ⊂ S, then ∀(x1, ..., xk) ∈
⊗

v∈var(fw) dom(v) and ∀(y1, ..., yl) ∈⊗
v∈S\var(fw) dom(v), �M�w(x1, ..., xk, y1, ..., yl) = �fw�(x1, ..., xk).

In other words, the domain of �fw� only contains the state variables that w depends

on, while the domain of �M�w is the complete state space of state variables inM.

Example 4.2.1. Take again the modelM in Eq.(4.2) as example. In this case, the

partial valuation of state variables is:

σ : S→
3⊗

i=1

dom(vi)

The syntactic solutions fw1 and fw1 are interpreted as follows:

�fw1� : dom(v1)⊗ dom(v2) � dom(w1)

�fw2� :
3⊗

i=1

dom(vi) � dom(w2)

such that ∀x ∈ dom(v1), ∀y ∈ dom(v2), ∀z ∈ dom(v3),

�fw1�(x, y) = �♦1�(x, y)

�fw2�(x, y, z) = �♦2�(�♦1�(x, y), z)

Therefore, the semantic solutions �M�w1 and �M�w1 are the following operations:

�M�w1 :

3⊗
i=1

dom(vi) � dom(w1)

�M�w2 :
3⊗

i=1

dom(vi) � dom(w2)

such that ∀σ(v1, v2, v3) = (x, y, z) ∈⊗3
i=1 dom(vi),

�M�w1(σ) = �fw1�(x, y)

�M�w2(σ) = �fw2�(x, y, z)

54 Finite degradation models: a unified formalism of combinatorial reliability models

Finally, �M� is the following abstraction:

�M� :
3⊗

i=1

dom(vi) �
2⊗

j=1

dom(wj)

such that ∀σ(v1, v2, v3) = (x, y, z) ∈⊗3
i=1 dom(vi),

�M�(σ)
def
= (�M�w1(σ), �M�w2(σ))
= (�fw1�(x, y), �fw2�(x, y, z))
= (�♦1�(x, y), �♦2�(�♦1�(x, y), z))

4.3 The model of SIS
In this section, we shall use the two operations — � and ‖ (see Section 3.3.4) —

to construct the FDM of the safety instrumented system presented Section 2.3. To

be comparative, two equivalent ways of constructing FDMs are presented.

4.3.1 Fault tree like model

The first way is similar to the construction of fault trees, i.e. either by top-down

decomposing system or by bottom-up grouping components according the given

operations.

The functional decomposition of the safety instrumented system is pictured Fig-

ure 4.2. The system is first decomposed into two safety channels SC1 and SC2.

SC1 is comprised by one sensor S1, one logic solver LS1 and one valve V 1. SC2
is comprised by two sensors S2 and S3, one logic solver LS2 and two valves V 1
and V 2. The safety channel SC2 is further decomposed to a group of sensors GS,

a group of valves GV with the single logic solver LS2.

According to this decomposition, the FDM of such system can be written as fol-

lows:

M1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

System ..= ‖ (SC1, SC2)
SC1 ..= �(�(S1, LS1), V 1)
SC2 ..= �(�(GS,LS2), GV)
GS ..= ‖ (S2, S3)
GV ..= ‖ (V 1, V 2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.10)

where,

– O = {�, ‖};

4.3. The model of SIS 55

Figure 4.2: The two channels of the SIS in Figure 2.2.

– S = {S1, S2, S3, LS1, LS2, V 1, V 2};

– F = {SC1, SC2, GS,GV, System}.

The expression tree of M1 is pictured Figure 4.3. In this figure, we use dashed

arrows to show the association of flow variables to their corresponding operator

nodes.

Figure 4.3: The expression tree representation of the model in Eq.(4.10).

From this expression tree, we can thus deduce the syntactic solutions of the 5 flow

56 Finite degradation models: a unified formalism of combinatorial reliability models

variables. The results are given below:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fGS = ‖ (S2, S3)
fGV = ‖ (V 1, V 2)
fSC1 = �(�(S1, LS1), V 1)
fSC2 = �(�(‖ (S2, S3), LS2), ‖ (V 1, V 2))
fSystem = ‖ (�(�(S1, LS1), V 1),�(�(‖ (S2, S3), LS2), ‖ (V 1, V 2)))

(4.11)

Therefore, the modelM1 in Eq.(4.10) is interpreted as:

�M1� : SIS
7 � SIS5 (4.12)

such that ∀σ(S) = (s1, ls1, v1, s2, s3, ls2, v2) ∈ SIS7:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�M1�GS(σ) = �fGS�σ =‖ (s2, s3)
�M1�GV (σ) = �fGV �σ =‖ (v1, v2)
�M1�SC1(σ) = �fSC1�σ = �(�(s1, ls1), v1)
�M1�SC2(σ) = �fSC2�σ = �(�(�fGS�σ, ls2), �fGV �σ)

= �(�(‖ (s2, s3), ls2), ‖ (v1, v2))
�M1�System(σ) = �fSystem�σ =‖ (�fSC1�σ, �fSC2�σ)

= ‖ (�(�(s1, ls1), v1),�(�(‖ (s2, s3), ls2), ‖ (v1, v2)))

Remark here again that in the assessment of FDMs (see Chapter 5), we never calcu-

late or write the syntactic solutions and the semantic solutions like above. Those

formulas are just given here to show what means mathematically the concept of

syntactic/semantic solutions. In the assessment, the former are encoded by expres-

sion trees and the latter are encoded by decision diagrams.

4.3.2 Reliability block diagram like model

The second way of constructing FDMs is similar to the construction of reliability

block diagrams, i.e. components are successively “connected” by concatenating

their inputs and outputs.

The input and the output of each unit are marked by small black rectangles in

Figure 4.2. The input and the output of the whole system is denoted by in and out.
The input and the output of a component X is denoted by X.in and X.out.

The FDM constructed following such idea of concatenating inputs and outputs can

4.3. The model of SIS 57

be written as follows:

M2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1.in ..= in
S1.out ..= �(S1.in, S1)
S2.in ..= in
S2.out ..= �(S2.in, S2)
S3.in ..= in
S3.out ..= �(S3.in, S3)
LS1.in ..= S1.out
LS1.out ..= �(LS1.in, LS1)
LS2.in ..= ‖ (S2.out, S3.out)
LS2.out ..= �(LS2.in, LS2)

V 1.in ..= LS1.out
V 1.out ..= �(V 1.in, V 1)
V 1′.in ..= LS2.out
V 1′.out ..= �(V 1′.in, V 1)
V 2.in ..= LS2.out
V 2.out ..= �(V 2.in, V 2)

SC2.out ..= ‖ (V 1′.out, V 2.out)
out ..= ‖ (V 1.out, SC2.out)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)

Since the component V 1 is shared in different the safety channels, we use V 1.in
and V 1.out for its input and output in safety channel 1, while use V 1′.in and

V 1′.out for its input and output in safety channel 2.

From Eq.(4.10) and Eq.(4.13), we can see that the syntactic structure ofM1 and

M2 are different. But we can prove that �M1�System = �M2�out when in = W
is satisfied inM2.

First, according to the distributivity of � and ‖ presented Section 3.2.3, we can

deduce that the definition formula of SC2.out inM2 can be reformed as follows:

‖ (V 1′.out, V 2.out) = ‖ (�(LS2.out, V 1),�(LS2.out, V 2))
= �(LS2.out, ‖ (V 1, V 2))

Then, if in = W , we can verify that:

fout = ‖ (�(LS2.out, V 1), ‖ (V 1′.out, V 2.out))
= ‖ (V 1.out,�(LS2.out, ‖ (V 1, V 2)))
= ‖ (�(�(S1, LS1), V 1),�(�(‖ (S2, S3), LS2), ‖ (V 1, V 2)))
= fSystem

Therefore, ∀σ ∈ SIS7, �M1�System(σ) = �M2�out(σ) when in = W inM2.

58 Finite degradation models: a unified formalism of combinatorial reliability models

To summarize, the ways of constructing FDM for a given system is generally not

unique. This section presents two ways, i.e. the fault tree like and the reliabil-

ity block diagram like constructions. The former is somehow more compact and

more abstract than the latter. Although the syntactic structure of the two models

are different, the valuation of their root variables is equivalent under appropriate

conditions.

We can also discover that the role of flow variables in a FDM is twofold. On the

one hand, flow variables can be used to structure the model and sometimes the

addition of intermediate flow variables may facilitate the modeling process. On

the other hand, flow variables also declare the “observable” points of the model,

i.e. on which we can observe how the valuation of components’ states influences

the system’s state. For this reason, flow variables are used to define the observers

in the assessment of FDMs, see next chapter.

Chapter 5

Assessment of Finite Degradation
Models

Similar to fault tree analysis, the assessment of FDMs includes also a qualitative

part and a quantitative part.

• The qualitative assessment of FDMs is the scenarios analysis, which can

be seen as the formal extension of the cutsets analysis from fault trees to

FDMs. As results, we define and calculate the set of scenarios, critical (max-

imal/minimal) scenarios and conditional scenarios.

• The quantitative assessment of FDMs is the probabilistic calculation of prob-

abilistic reliability and safety indicators, such as state probabilities, condi-

tional probabilities and sensitivity factors.

The assessment technique used for FDMs is also the decision diagram technique.

We modify the structure of classical binary decision diagram to fit FDMs and

provide new algorithms to calculate the required scenarios and probabilistic in-

dicators.

The remainder of this chapter is as follows. Section 5.1 introduces the scenarios

analysis for FDMs. Section 5.2 introduces the probabilistic calculations for FDMs.

Finally, Section 5.3 presents the decision diagrams and the algorithms to support

the required calculations.

59

60 Assessment of Finite Degradation Models

5.1 Scenarios analysis

5.1.1 Scenarios

Definition 5.1.1 (Observer). An observer of a FDM M : 〈V = S � F, E〉 is a

predicate on the valuation of a flow variable in F.

Let w be a flow variable of M, y be a state in dom(w) and Y be a subset of

dom(w). Then, an observer of w can be: w = y, w �= y, w ∈ Y or w /∈ Y .

The observers are used to indicate the objective behavior that should be analyzed

in the current assessment. In fault tree analysis, the observer is the occurrence of

the TOP event. In FDMs, such notion is generalized to fit multistate systems, i.e.

any flow variable and any state (or subset of states) of its valuation domain can be

selected as the target of the assessment.

Definition 5.1.2 (Set of scenarios). Given an observer w = y, we define the set of

scenarios satisfying w = y, denoted by Sce(w = y), as follows:

Sce(w = y)
def
= {v|v ∈

⊗
v∈S

dom(v), �M�w(v) = y} (5.1)

v is called a state vector or a scenario ofM.

�M�w is the semantic solution of w (see Definition 4.2.2). The set of scenarios

Sce(w = y) is thus the set of preimages of y under �M�w, i.e. Sce(w = y) =
(�M�w)

−1[y].

Moreover, we can deduce that ∀y, z ∈ dom(w),

y �= z ⇒ Sce(w = y) ∩ Sce(w = z) = ∅

Therefore, the other sets of scenarios Sce(w �= y), Sce(w ∈ Y) and Sce(w /∈ Y)
can be calculated from Sce(w = y) by the following formulas:

Sce(w ∈ Y) =
⊎

y∈Y Sce(w = y)

Sce(w �= y) =
⊎

z∈dom(w),z �=y Sce(w = z)

Sce(w /∈ Y) =
⊎

z∈dom(w),z /∈Y Sce(w = z)

(5.2)

where � stands for the disjoint union of sets.

Example 5.1.1. Take the following model as an example, where ∧ is the meet

operator (see Section 6.2.2) and dom(u) = dom(v) = WDF.

M :
{

w ..= ∧(u, v)
}

(5.3)

5.1. Scenarios analysis 61

Figure 5.1: The three sets of scenarios Sce(w = W), Sce(w = D) and Sce(w = F) for

w defined by the meet operation ∧ : WDF2 � WDF.

The valuation of ∧ is pictured Figure 5.1.

In this figure, we also illustrate the three sets of scenarios Sce(w = W), Sce(w =
D) and Sce(w = F):

⎧⎨
⎩

Sce(w = W) = {(W,W), (W,D), (D,W), (W,F), (F,W)}
Sce(w = D) = {(D,D), (F,D), (D,F)}
Sce(w = F) = {(F, F)}

(5.4)

We can see that the domain WDF2 is partitioned into three zones with respect to

the three observers w = W , w = D and s = F .

5.1.2 Conditional scenarios

In the previous section, the set of scenarios are selected by a given valuation of

flow variable. However, it might also be useful to select scenarios by the valuation

of state variables.

Let v be a state variable ofM and σ be a partial variable valuation of states vari-

ables.

Definition 5.1.3. Given Sce(w = y), the set of conditional scenarios Sce(w =
y|v = c) is defined as follows:

Sce(w = y|v = c)
def
= {v|v ∈ Sce(w = y), σ(v) = c} (5.5)

62 Assessment of Finite Degradation Models

Sce(w = y|v = c) is a subset of Sce(w = y), in which the valuation of the state

variable v is limited to be c.

Example 5.1.2. Take the model in Eq.(5.4) as an example. Then, ∀y ∈WDF, ∀c ∈
WDF, the conditional scenarios are listed below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sce(w = W |u = W) = {(W,W), (W,D), (W,F)}
Sce(w = W |u = D) = {(D,W)}
Sce(w = W |u = F) = {(F,W)}

Sce(w = D|u = W) = ∅
Sce(w = D|u = D) = {(D,D), (D,F)}
Sce(w = D|u = F) = {(F,D)}

Sce(w = F |u = W) = ∅
Sce(w = F |u = D) = ∅
Sce(w = F |u = F) = {(F, F)}

(5.6)

We can also deduce that ∀c, d ∈ dom(v),

c �= d⇒ Sce(w = y|v = c) ∩ Sce(w = y|v = d) = ∅ (5.7)

Proposition 5.1.1. The set of scenarios Sce(w = y) can be decomposed into the

sum of disjoint sets of conditional scenarios Sce(w = y|v = c):

Sce(w = y) =
⊎

c∈dom(v)

Sce(w = y|v = c) (5.8)

To be more generic, denote respectively the set of conditions made on the valuation

of state variables and made on the valuation offlow variables by CS and CF, such

that: {
CS =

⋃
k∈IS{vk = ck}, vk ∈ S, ck ∈ dom(vk)

CF =
⋃

l∈IF{wl = yl}, wl ∈ F, yl ∈ dom(wl)
(5.9)

where IS, IF are respectively the index sets of variables appearing in CS and CF.

Proposition 5.1.2. The set of conditional scenarios Sce(CF|CS) satisfying the

conditions in both CS and CF can be calculated as follows:

Sce(CF|CS) =
⋂
l∈IF

⋂
k∈IS

Sce(wl = yl|vk = ck) (5.10)

5.1. Scenarios analysis 63

Sce(CF|CS) is the extension of the notion of cutsets from fault trees to FDMs.

In fault trees, a cutset is defined as the combination of components’ failures that

causes the system (or top event) failure. In FDMs, Sce(CF|CS) is the set of

scenarios satisfying the conditions in both CF and CS.

The reason of separating the conditions made for flow variables and state vari-

ables is twofold. First, regarding the interpretation of the model �M� (see Defini-

tion 4.2.1), the target zones of the conditions in CF and CS are different in math-

ematical sense, i.e. the former is in codom(�M�) while the latter is in dom(�M�).
Second, in practical sense, the valuation of flow variables often indicates the res-

ultant behaviors, while the valuation of state variables often indicates the causes

leading to those results. The conditions made on the former reflect the scope of

the target results that we want to analyze, while the conditions made on the latter

reflect the scope of the given information that we have on its causes.

5.1.3 Critical scenarios

Let Sce(o) be the set of scenarios with a given observer o. To be generic, such

observer can also be CS and CF.

Definition 5.1.4. Given a set of scenarios Sce(o), we define its sets of min-
imal scenarios and maximal scenarios, denoted respectively by MinSce(o) and

MaxSce(o), as follows:

MinSce(o)
def
= min(Sce(o))
= {v ∈ Sce(o)|�u ∈ Sce(o),u � v}

MaxSce(o)
def
= max(Sce(o))
= {v ∈ Sce(o)|�u ∈ Sce(o),v � u}

(5.11)

Example 5.1.3. Take the model in Figure 5.1 as an example. Following the above

definition, the minimal and the maximal scenarios of Sce(w = W), Sce(w = D)
and Sce(w = F) are listed below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

MinSce(w = W) = {(W,W)}}
MinSce(w = D) = {(D,D)}}
MinSce(w = F) = {(F, F)}}

MaxSce(w = W) = {(W,F), (F,W)}}
MaxSce(w = D) = {(D,F), (F,D)}}
MaxSce(w = F) = {(F, F)}}

(5.12)

From Figure 5.1, we can see that the above minimal and maximal scenarios locate

exactly in the boundary of Sce(w = W), Sce(w = D) and Sce(w = F).

64 Assessment of Finite Degradation Models

These scenarios are also called critical scenarios, since they characterize the crit-

ical situations in which the value of the observer is about to change.

Critical scenarios versus minimal cut/path sets

In fault tree analysis, a cut set is defined a set of basic events whose (simultaneous)

occurrence ensures that the TOP event occurs. A cutset is said to be minimal if the

set cannot be reduced without loosing its status as a cutset. A path set is defined as

a set of basic events whose nonoccurrence (simultaneously) ensures that the TOP

event does not occur. A path set is said to be minimal if the set cannot be reduced

without loosing its status as a path set (Rausand 2004):

Take the fault tree in Figure 5.2 as an concrete example. The TOP event w is

modeled by the Boolean formula w = a.b+ c.

Figure 5.2: A simple fault tree where w = a.b+ c.

According to the definitions in Rausand (2004), the set of cutsets of this fault tree

is {abc, ab, ac, bc, c}, where the minimal cutsets are {ab, c}. The set of path sets

of this fault tree is {āc̄, b̄c̄, āb̄c̄}, where the minimal path sets are {āc̄, b̄c̄}.

This fault tree can be easily transformed in FDMs using the operators ∨ and ∧
defined in Section 6.2.1. Its equivalent FDM is given below:

M :
{

w ..= ∨(∧(a, b), c)
}

(5.13)

In this case, the domain of the state variables a, b, c is the binary FDS WF. The

valuation of �M� : WF3 � WF is pictured Figure 5.3.

In this figure, we also partition the two sets of scenarios Sce(w = W) and

Sce(w = F). Comparing the scenarios in Sce(w = W) and Sce(w = F)
with the cut sets and path sets, we can see that:

– There is a one-to-one-correspondence between the scenarios in Sce(w =
W) with the path sets and a one-to-one-correspondence between the max-

5.1. Scenarios analysis 65

Figure 5.3: Valuation of �M� : WF3 � WF and relevant sets of scenarios.

imal scenarios in MaxSce(w = W) with the minimal path sets, i.e.

Sce(w = W) =

⎧⎨
⎩

(W,W,W) � āb̄c̄
(F,W,W) � b̄c̄
(W,F,W) � āc̄

⎫⎬
⎭ = path sets

MaxSce(w = W) =

{
(F,W,W) � b̄c̄
(W,F,W) � āc̄

}
= minimal path sets

– There is also a one-to-one-correspondence between the scenarios in Sce(w =
F) with the cutsets and a one-to-one-correspondence between the miniimal

scenarios in MinSce(w = F) with the minimal cutsets, i.e.

Sce(w = F) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(W,W,F) � c
(F, F,W) � ab
(F,W,F) � ac
(W,F, F) � bc
(F, F, F) � abc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= cutsets

MinSce(w = F) =

{
(W,W,F) � c
(F, F,W) � ab

}
= minimal cutsets

These correspondences are validated not only in the fault tree of Figure 5.2. In

stead, for any fault tree, the results of cut/path sets and minimal cut/path sets are

one-to-one correspondent to the scenarios and minimal/maximal scenarios of the

observers TOP = W and TOP = F in its equivalent FDMs.

66 Assessment of Finite Degradation Models

Scenarios analysis for multistate coherent systems

An operator is coherent if its interpreted operation is a coherent abstraction (see

Definition 3.3.3).

A (loop-free uniquely-rooted) modelM is coherent if �M� is a coherent abstrac-

tion. Moreover, if the operators inM are all coherent, thenM is coherent.

IfM is coherent, then for any flow variable w inM, �M�w is coherent. The coher-

ency of �M�w indicates that there exists an order-similarity between dom(�M�w)
and dom(w).

Mathematically, if �M�w is coherent, then ∀y, z ∈ dom(w), ∀u ∈ Sce(w =
y), ∀v ∈ Sce(w = z):

y � z ⇒ u � v
y ∼ z ⇒ u ∼ v

(5.14)

In the sequel, we shall use three typical FDSs: WF, WDF and W2F, to illustrate

such order-similarity.

First, let dom(w) = WF. The order-similarity in this case is pictured Figure 5.4.

In this figure, we use a inverted choanoid to represent the domain
⊗

v∈S dom(v),
since is an arbitrary FDS with the least element ⊥.

Figure 5.4: Order-similarity when dom(w) = WF.

From this figure, we can see that the domain
⊗

v∈S dom(v) is partitioned into

5.1. Scenarios analysis 67

two zones: Sce(w = W) and Sce(w = F). If �M�w is coherent, then accord-

ing to the order-similarity listed Eq.(5.14), we can deduce that the entire zone of

Sce(w = F) should locate more upward than the zone of Sce(w = W).

In the rectangle area of Figure 5.4, we zoom in the boundary between Sce(w =
W) and Sce(w = F). This boundary is theoretically defined by the fmaximal

scenarios of MaxSce(w = W) and the minimal scenarios of MinSce(w = F).
From this rectangle area, we can see that:

– The two scenarios Y 1, Y 3 in MaxSce(w = W) are critical for w = W
because any degradation (i.e. moving upwards in the diagram) will directly

degrade the valuation of w from W into F . However, Y 2 is not critical since

if it degrades to Y 3, the valuation of w remains to be W .

– Symmetrically, the three scenarios X1, X2, X3 in MinSce(w = F) are

critical for w = F because any improvement (i.e. moving downwards in

the diagram) will directly improve the valuation of w from F into W . How-

ever, X4, X5 are not critical since none of their improvements improves the

valuation of w.

When dom(w) = WDF and dom(w) = W2F, the order-similarity between the

domain
⊗

v∈S dom(v) and dom(w) is illustrated in the same way in Figure 5.5.

Figure 5.5: Order-similarity when dom(w) = WDF and dom(w) = W2F.

To summarize, if �M�w is coherent, then:

– ∀v ∈ MinSce(w = y), if ∃u ∈ ⊗
v∈S dom(v) such that u � v, then

u � Sce(w = y). It means that the valuation of w will be immediately

improved if v is improved to u.

68 Assessment of Finite Degradation Models

– ∀v ∈ MaxSce(w = y), if ∃u ∈ ⊗
v∈S dom(v) such that v � u, then

Sce(w = y) � u. It means that the valuation of w will be immediately

degraded if v is degraded to u.

The scenarios analysis of coherent systems can be reduced to the analysis of critical

scenarios. These scenarios characterize the extreme conditions that the state of the

observer is about to change. The advantage of this reduction is that it can make

the analysis more efficient since the critical scenarios only account for a small

proportion of the total scenarios.

Moreover, by comparing the current situation with the critical scenarios, we can

know qualitatively that “how many steps the system may enter into an undesired

state from the current state”. This qualitative information can be used therefore to

forewarn potential risks in real-time analysis.

5.2 Probabilistic calculations

5.2.1 State probabilities

Assume that there are n state variables in S, i.e. S = {v1, v2, ..., vn}. Denote the

probability measure in dom(vi) by pi and assume that pi’s are independent.

Let σ : S → ⊗n
i=1 dom(vi) be the partial valuation of state variables. Then, for

each scenario v = σ(v1, v2, ..., vn) = (σ(v1), σ(v2), ..., σ(vn)) ∈
⊗n

i=1 dom(vi),
the scenario probability p⊗(v) is calculated (see Eq.(3.4)) as follows:

p⊗(v) =
n∏

i=1

pi(σ(vi)) (5.15)

Given an observer w = y, the state probability pw(y) is the probability that the

valuation of w is y, i.e. �M�w = y. It can be calculated by definition (see Defini-

tion 3.3.2) as follows:

pw(y) =
∑

v∈�M�−1
w [y]

p⊗(v) (5.16)

According to the definition of Sce(w = y), we can deduce that:

pw(y) =
∑

v∈Sce(w=y)

p⊗(v) (5.17)

Example 5.2.1. Take again the modelM in Eq.(5.3) as example. The state prob-

abilities pw(W), pw(D) and pw(F) can thus be calculated according to the sets of

5.2. Probabilistic calculations 69

scenarios in Eq.(5.4) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pw(W) =
∑

(x,y)∈Sce(w=W) pu(x)pv(y)

= pu(W)pv(W) + pu(W)pv(D) + pu(D)pv(W) + pu(W)pv(F)
+pu(F)pv(W)

pw(D) =
∑

(x,y)∈Sce(w=D) pu(x)pv(y)

= pu(D)pv(D) + pu(D)pv(F) + pu(F)pv(D)
pw(F) =

∑
(x,y)∈Sce(w=F) pu(x)pv(y)

= pu(F)pv(F)
(5.18)

5.2.2 Conditional probability

In probability theory, the conditional probability of an event A given an event B is

defined as the quotient of the probability of the joint of A and B and the probability

of B (Kolmogorov 1950), i.e.

Pr{A|B} = Pr{A ∩B}
Pr{B} (5.19)

Let v = σ(v1, v2, ..., vn) = (σ(v1), σ(v2), ..., σ(vn)) be a scenario.

For any state variable vj ∈ S and for any value c ∈ dom(vj), denote the probability

that v occurs given that σ(vj) = c by Pr{v|vj = c}. Then, Pr{v|vj = c} can be

calculated according to Eq.(5.19) as follows:

Pr{v|vj = c} =
{

0, if σ(vj) �= c.
p⊗(v)/pj(c), if σ(vj) = c.

(5.20)

Denote the probability that w = y under the condition that σ(vj) = c by Pr{w =
y|vj = c}. Then, Pr{w = y|vj = c} can be calculated according to Eq.(5.17) as

follows:

Pr{w = y|vj = c} =
∑

v∈Sce(w=y)

Pr{v|vj = c} (5.21)

Combining the above two formulas, we can deduce that:

Pr{w = y|vj = c} =
{

0, if σ(vj) �= c.∑
v∈Sce(w=y) p⊗(v)/pj(c), if σ(vj) = c.

(5.22)

According to the definition of Sce(w = y|vj = c), if σ(vj) �= c, then Sce(w =
y|vj = c) = ∅ and accordingly Pr{w = y|vj = c} = 0.

70 Assessment of Finite Degradation Models

If Sce(w = y|vj = c) �= ∅, then:

Pr{w = y|vj = c} =
∑

v∈Sce(w=y|vj=c)

⎛
⎝ n∏

i=1,i �=j

pi(σ(vi))

⎞
⎠ (5.23)

Example 5.2.2. Take again the modelM in Eq.(5.3) as example. The conditional

probabilities Pr{w = y|u = c} can be calculated according to the conditional

scenarios in Eq.(5.6) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr{w = W |u = W} = pv(W) + pv(D) + pv(F)
Pr{w = W |u = D} = pv(W)
Pr{w = W |u = F} = pv(W)

Pr{w = D|u = W} = 0
Pr{w = D|u = D} = pv(D) + pv(F)
Pr{w = D|u = F} = pv(D)

Pr{w = F |u = W} = 0
Pr{w = F |u = D} = 0
Pr{w = F |u = F} = pv(F)

(5.24)

To be more generic, denote the conditional probability satisfying the conditions in

CS and CF (see Eq.(5.9)) by Pr{CF|CS}. Similar to Eq.(5.23), if Sce(CF|CS) =
∅, then Pr{CF|CS} = 0. If Sce(CF|CS) �= ∅, Pr{CF|CS} is thus calculated as

follows:

Pr{CF|CS} =
∑

v∈Sce(CF|CS)

⎛
⎝ n∏

i=1,i/∈IS

pi(σ(vi))

⎞
⎠ (5.25)

where IS is the index set of state variables appearing in CS.

Pr{CF|CS} is the extension of the notion of TOP event probability from fault

trees to FDMs. For multistate systems, it is more convenient to use Pr{CF|CS}
as probabilistic indicator since it can represent not only the probability of failed

states but also the probability of other non-failed states.

Proposition 5.2.1. For any state variable vj ∈ S, the state probability pw(y) can

be decomposed according to the valuations of vj as follows:

pw(y) =
∑

c∈dom(vj)

pj(c) · Pr{w = y|vj = c} (5.26)

where pj is the probability measure in dom(vj).

5.2. Probabilistic calculations 71

Example 5.2.3. Take again the modelM in Eq.(5.3) as example. We can decom-

pose the state probabilities pw(W), pw(D) and pw(F) according to the valuations

of u as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pw(W) = pu(W) · Pr{w = W |u = W}
+ pu(D) · Pr{w = W |u = D}
+ pu(F) · Pr{w = W |u = F}

pw(D) = pu(W) · Pr{w = D|u = W}
+ pu(D) · Pr{w = D|u = D}
+ pu(D) · Pr{w = D|u = F}

pw(F) = pu(W) · Pr{w = F |u = W}
+ pu(D) · Pr{w = F |u = D}
+ pu(F) · Pr{w = F |u = F}

(5.27)

5.2.3 Sensitivity analysis

Definition 5.2.1. Denote the sensitivity of pw(y) with respect to pj(c) (pj(c) �= 0)

by Sen(w = y, vj = c). It is defined as the following partial derivative:

Sen(w = y, vj = c)
def
=

∂pw(y)

∂pj(c)
(5.28)

Mathematically, Sen(w = y, vj = c) quantifies the robustness of pw(y) under the

variation of pj(c). If Sen(w = y, vj = c) is large, it means that a small change of

pj(c) will lead to a comparatively large change of pw(y).

According to the decomposition of pw(y) in Eq.(5.26), we can deduce that:

∂pw(y)

∂pj(c)
=

∑
x∈dom(vj)

(
∂pj(x)

∂pj(c)
· Pr{w = y|vj = x}+ pj(x) ·

∂Pr{w = y|vj = x}
∂pj(c)

)

From Eq.(5.22), we can see that Pr{w = y|vj = x} is independent to pj , i.e.

∀c ∈ dom(vj):
∂Pr{w = y|vj = x}

∂pj(c)
= 0

Then,

Sen(w = y, vj = c) =
∑

x∈dom(vj)

∂pj(x)

∂pj(c)
· Pr{w = y|vj = x} (5.29)

72 Assessment of Finite Degradation Models

For the sake of simplicity, denote the quotient
∂pj(x)
∂pj(c)

by αj(x, c), which we call

the sensitivity coefficient of x by c for pj . αj(x, c) quantifies the variation of pj(x)
with respect to the variation of pj(c), where c, x are the two states in dom(vj).

The following equalities should hold for all αj :⎧⎨
⎩

αj(c, x) · αj(x, c) = 1
αj(c, c) = 1∑

c∈dom(vj)
αj(c, x) = 0

(5.30)

For the sake of simplicity, we use a matrix Aj (similar to the Jacobian matrix) to

denote the sensitivity coefficients:

Aj,kl = αj(ck, cl) =
∂pj(ck)

∂pj(cl)
(5.31)

where k, l = 1, 2, ..., |dom(vj)| and ck, cl ∈ dom(vj).

Finally,

Sen(w = y, vj = cl) =
∑
k

Aj,kl · Pr{w = y|vj = ck} (5.32)

Example 5.2.4. Take the Boolean domain as an example, i.e. dom(vj) = WF.

Since pj(W) = 1 − pj(F), the sensitivity coefficient matrix AWF
j for vj is as

follows:

AWF
j =

[
1 −1
−1 1

]
(5.33)

We also found that the sensitivity factor can be related to the importance measures,

for instance, the Birnbaum importance measure.

Denote the Birnbaum importance measure of the jth component by IB(j). The

classical meaning of IB(j) is the probability that the system is in a state where the

jth component is critical (which means that if the jth component fails, the system

will fail). Mathematically,

IB(j)
def
= Pr{w = W |vj = W} − Pr{w = W |vj = F}

where vj is the state variable of the jth component.

According to Eq.(5.32), we can verify that

IB(j) = AWF
j ·

[
Pr{w = W |vj = W}
Pr{w = W |vj = F}

]
= Sen(w = W, vj = W)

The other importance measures will be included in our future work for FDMs.

5.3. Decision diagram based assessment 73

5.2.4 Approximation of probability by critical scenarios

Let v be a state variable. The component modeled by v is reliable means that the

magnitude of the probability measure pv in dom(v) satisfies the following condi-

tion:

∀x, y ∈ dom(v), x � y ⇒ pv(x)� pv(y) (5.34)

If all components are reliable, i.e. the above condition holds for all state vari-

ables, then the scenario probability p⊗(v) is concentrated in the minimal scenarios.

Then, pw(y) can be approximated as follows:

pw(y) ≈
∑

v∈MinSce(w=y)

p⊗(v) (5.35)

Example 5.2.5. Take again the modelM in Eq.(5.3) as example. If the probab-

ility measures pu and pv satisfy that pu(W) � pu(D) � pu(F) and pv(W) �
pv(D) � pv(F), then the state probabilities pw(W), pw(D) and pw(F) can be

approximated according to the sets of minimal scenarios in Eq.(5.12) as follows:⎧⎪⎨
⎪⎩

pw(W) ≈ ∑
(x,y)∈MinSce(w=W) pu(x)pv(y) = pu(W)pv(W)

pw(D) ≈ ∑
(x,y)∈MinSce(w=D) pu(x)pv(y) = pu(D)pv(D)

pw(F) ≈ ∑
(x,y)∈MinSce(w=F) pu(x)pv(y) = pu(F)pv(F)

(5.36)

5.3 Decision diagram based assessment

5.3.1 Decision diagrams

Decision diagrams are graphical representations of logic functions. For fault tree

analysis, Binary Decision Diagrams (BDDs) are used to encode the valuation of

Boolean functions. For FDMs assessment, decision diagrams are used to encode

the valuation of the syntactic solution of flow variable.

The decision diagram used in this thesis can be seen as an extension of BDDs in

multistate cases. The two types of nodes in the decision diagram are defined as

follows:

– Each internal node is denoted by the quadruple (s, v, n1, n2), which is labeled

by a state constant s and a variable constant v and has two out-edges pointing

respectively to the child-nodes n1 and n2. n1 and n2 are called respectively

the then-child and the else-child.

– Each terminal node is denoted by (s, /, /, /), which is only labeled with a

state constant s and has no child node.

74 Assessment of Finite Degradation Models

Denote the decision diagram that encodes the valuation of a formula f by DD(f).
According to the definition of �f� presented Section 4.2.1, the decision diagram

DD(f) is interpreted as follows.

First, if f is reduced to a constant c, then DD(f) is made of only one terminal node

(c, /, /, /), meaning that �f�(σ) = c, ∀σ.

Second, if f is reduced to a variable v, then DD(f) is in the form of Figure 5.6.

It encodes the valuation �f�(σ) = σ(v) ∈ dom(v). It is worth mentioning that

in DD(v), we introduce a secondary ordering (different from the main variable

ordering), which is the ordering of the state labels s1, s2, ..., sm in the chain of

the variable nodes in DD(v). This secondary ordering can be used to improve the

computational efficiency. But in the algorithms presented this thesis, this second-

ary ordering is arbitrary. More advanced algorithms can be found in our paper

Rauzy and Yang (2019).

Figure 5.6: The decision diagram DD(v) with dom(v) = {s1, s2, ..., sm}.

Figure 5.7 shows the DD(v), where dom(v) is respectively the FDS WF, WDF,

SWF, WFdFu and WFdFs.

Figure 5.7: DD(v) where dom(v) is respectively WF, WDF, SWF, WFdFu and

WFdFs.

5.3. Decision diagram based assessment 75

Finally, if f is in the form of ♦(f1, ..., fn), then DD(f) encodes the valuation

�f�(σ) = �♦�(�f1�(σ), ..., �fn�(σ)). Consequently, DD(f) is constructed recurs-

ively based on the sub-diagrams DD(f1),...,DD(fn) and the operation �♦�. The

construction algorithm will be given Section 5.3.2.

Figure 5.8 shows the decision diagram of the formula f = ♦(u, v). Assume that

dom(u) = {t1, t2, ..., tn} and dom(v) = {s1, s2, ..., sm}.

Figure 5.8: DD(♦(u, v)).

In this decision diagram, the edges that go down the diagram (i.e. through the then-

child of each internal node) form the valuation paths. A valuation path represents

a possible valuation σ(u, v) = (ti, sj), 1 ≤ i ≤ n, 1 ≤ j ≤ m. The terminal

node (♦(ti, sj), /, /, /) at the end of this path represents the valuation result of the

formula f = ♦(u, v), which is ♦(ti, sj).

The ordering of variables in each valuation path is called the variable ordering of

the decision diagram. In the sequel, we shall use the symbol ≺ for this variable

ordering. For example, the variable ordering of the decision diagram in Figure 5.8

is u ≺ v.

In this thesis, we suggest to use the depth-first-left-most (DFLM) traversal on the

expression tree of f to automatically obtain the variable ordering of DD(f). In

DFLM traversal of an expression tree, v1 ≺ v2 means that the variable node

labeled with v1 locates in the down-side and left-side branch of the variable node

labeled with v2. For instance, the variable ordering obtained from the expression

tree in Figure 4.1 is v1 ≺ v2 ≺ v3.

5.3.2 Construction of decision diagrams

The algorithm of constructing decision diagram from an expression tree node f is

given Figure 5.9. The function BuildDD(f) returns the root node of the required

decision diagram.

76 Assessment of Finite Degradation Models

1 function BuildDD(f)
2 if IsVariableNode(f):
3 return BuildDDForVariable(f)
4 else: //f is operator node
5 m = BuildDD(f.leftChild)
6 n = BuildDD(f.rightChild)
7 return Combine(f.operator,m,n)

Figure 5.9: Algorithm of BuildDD.

If f is a variable (terminal) node, i.e. f = 〈v, /, /〉, then BuildDD(f) returns

the decision diagram DD(v) in the form of Figure 5.6.

If f is an operator node, i.e.

f = 〈f.operator,f.leftChild,f.rightChild〉,

then we first construct the decision diagrams — m and n — for the two child-nodes

f.leftChild and f.rightChild, and then combine m and n according to

the valuation of f.operator through the function Combine.

The algorithm of the function Combine is given Figure 5.10. This algorithm

should be self-explanatory.

The algorithm of Hook is given Figure 5.11. The function Hook is applied to

organize the internal node layers, i.e. to decide which internal node should locate

more upward than another one according to the variable ordering ≺.

Example 5.3.1. Take the expression tree in Figure 5.12 as a concrete example.

The variable ordering obtained by the DFLM traversal of this expression tree is

u ≺ v ≺ w. The decision diagram of this expression tree is constructed by imple-

menting the function BuildDD(n0).

According to the algorithm given Figure 5.9, BuildDD(n0) is proceeded as fol-

lows:

1. First, since n0 = 〈♦1, n1, n2〉 is an internal node, the result of BuildDD(n0)
is obtained by:

BuildDD(n0)← Combine(♦1,BuildDD(n1),BuildDD(n2))

2. Since n1 = 〈♦2, n3, n4〉 and n2 = 〈♦3, n3, n5〉 are also internal nodes,

then:

BuildDD(n1)← Combine(♦2,BuildDD(n3),BuildDD(n4))

5.3. Decision diagram based assessment 77

1 function Combine(operator,m,n)
2 if m==nil or n==nil:
3 return nil
4 if IsInternalNode(m):
5 if IsInternalNode(n):
6 return Hook(operator,m,n)
7 else: //n is a terminal node
8 s = m.state
9 v = m.variable

10 n1 = Combine(operator,m.thenChild,n)
11 n2 = Combine(operator,m.elseChild,n)
12 return NewInternalNode(s,v,n1,n2)
13

14 else: //m is a terminal node
15 if IsInternalNode(n):
16 s = n.state
17 v = n.variable
18 n1 = Combine(operator,m,n.thenChild)
19 n2 = Combine(operator,m,n.elseChild)
20 return NewInternalNode(s,v,n1,n2)
21 else: //n is a terminal node
22 return AssignValue(operator,m,n)

Figure 5.10: Algorithm of Combine.

1 function Hook(operator,m,n) // m, n are both internal nodes
2 if m.variable.order <= n.variable.order:
3 s = m.state
4 v = m.variable
5 if m.variable.order == n.variable.order:
6 n1 = Combine(operator,m.thenChild,n.thenChild)
7 else:
8 n1 = Combine(operator,m.thenChild,n)
9 n2 = Combine(operator,m.elseChild,n)

10 return NewInternalNode(s,v,n1,n2)
11 else:
12 return Hook(operator,n,m)

Figure 5.11: Algorithm of Hook.

BuildDD(n2)← Combine(♦3,BuildDD(n3),BuildDD(n5))

3. Since n3 = 〈u, /, /〉, n4 = 〈v, /, /〉 and n5 = 〈w, /, /〉 are terminal nodes,

78 Assessment of Finite Degradation Models

Figure 5.12: Expression tree example.

the results of BuildDD(n3), BuildDD(n4) and BuildDD(n5) are the

decision diagrams DD(u), DD(v) and DD(w) (see Figure 5.13) constructed

by the function BuildDDForVariable. In this case, we assume that

dom(u) = {x1, ..., xm}, dom(v) = {y1, ..., yn} and dom(w) = {z1, ..., zl}.

Figure 5.13: The results of BuildDD(n3), BuildDD(n4) and BuildDD(n5).

4. According to the results of BuildDD(n3), BuildDD(n4) and BuildDD(n5),

BuildDD(n1) and BuildDD(n2) (in step 2) can be constructed through

the function Combine. The results are given Figure 5.14. The states labeled

in the terminal nodes are:

aij = ♦2(xi, yj)

bik = ♦3(xi, zk)

where i = 1, ...,m, j = 1, ..., n and k = 1, ..., l.

5. Finally, BuildDD(n0) is constructed through the function Combine. The

result is given Figure 5.15. The state labeled in the terminal node of the

valuation path σ(u, v, w) = (xi, yj , zk) is:

cijk = ♦1(aij , bik)

5.3. Decision diagram based assessment 79

Figure 5.14: The results of BuildDD(n1) and BuildDD(n2).

Figure 5.15: The result of BuildDD(n0).

Once the decision diagram is constructed, it can be used to calculate the set of

scenarios and probabilistic indicators.

5.3.3 Calculation of scenarios

Given an observer w = y, the set of scenarios Sce(w = y) can be obtained by

the decision diagram DD(fw), where fw is the syntactic solution of w. It is worth

noticing that the scenarios obtained by DD(fw) contains only the valuation of state

variables that w depends on.

The algorithm of calculating Sce(w = y) is given Figure 5.16. n is a node in

DD(fw), y is the target state in the observer w = y, path is the valuation path

formed by the valuation of the state variables that have been already passed and

80 Assessment of Finite Degradation Models

Sce is the result set of scenarios. The calculation of Sce(w = y) should start

with Scenarios(r,y,(),{}), where r is the root node of DD(fw), () is the

empty path and {} is the empty set.

1 function Scenarios(n,y,path,Sce)
2 if IsTerminalNode(n):
3 if y==n.state:
4 add path to Sce
5 return Sce
6 else: # n is internal node
7 add n.state to path
8 Sce = Scenarios(n.downChild,y,path,Sce)
9 if n.rightChild!=None:

10 Sce = Scenarios(n.rightChild,y,Copy(path),Sce)
11 return Sce

Figure 5.16: Algorithm of Scenario.

Example 5.3.2. Take the model in Eq.(5.3) as an example. The decision diagram

DD(fw) is pictured Figure 5.17. The valuation paths that end in different terminal

nodes are marked in different colors. These paths finally form the scenarios in

Sce(w = W), Sce(w = D) and Sce(w = F).

Figure 5.17: The three sets of scenarios Sce(w = W), Sce(w = D) and Sce(w = F)
determined by DD(fw).

The conditional scenarios Sce(w = y|vj = c) can be easily calculated from

Sce(w = y) according to its definition (see Definition 5.1.2). The algorithm is

given Figure 5.18.

In ConditionalScenario(Sce,j,c), Sce stands for the original set of

scenarios Sce(w = y), j is the index/order of vj and c is the target state in vj = c.

5.3. Decision diagram based assessment 81

1 function ConditionalScenario(Sce,j,c)
2 ConditionSce = {}
3 for v in Sce:
4 if v[j]==c:
5 add v to ConditionSce
6 return ConditionSce

Figure 5.18: Algorithm of ConditionalScenario.

Given a set of scenarios Sce, its minimal and maximal scenarios can also be easily

calculated according to their definition (see Definition 5.1.4). The algorithms are

given Figure 5.19.

1 function MinimalScenarios(Sce)
2 MinSce = {}
3 for u in Sce:
4 IsMinimal = true
5 for v in Sce:
6 if IsLessDegraded(v,u):
7 IsMinimal = false
8 break
9 if IsMinimal:

10 add u to MinSce
11 return MinSce
12

13 function MaximalScenarios(Sce)
14 MaxSce = {}
15 for u in Sce:
16 IsMaximal = true
17 for v in Sce:
18 if IsLessDegraded(u,v):
19 IsMaximal = false
20 break
21 if IsMaximal:
22 add u to MaxSce
23 return MaxSce

Figure 5.19: Algorithms of MinimalScenarios and MaximalScenarios.

The function IsLessDegraded(u,v) is used to compare the degradation or-

der between the two scenarios u and v.

82 Assessment of Finite Degradation Models

5.3.4 Calculation of probabilistic indicators

There are two ways of calculating the state probability pw(y). First, it can be

directly calculated by DD(fw). The algorithm is given Figure 5.20.

1 function Probability_DD(n,y)
2 if IsTerminalNode(n):
3 if n.state == y:
4 return 1
5 else:
6 return 0
7 else:
8 p1 = Probability_DD(n.thenChild,y)
9 p2 = Probability_DD(n.elseChild,y)

10 p = StateProbability(n)
11 return p*p1 + p2

Figure 5.20: Algorithm of Probability_DD.

In Probability_DD(n,y), n is a node of the decision diagram and y is the

state in pw(y). The calculation should start with Probability_DD(r,y)
where r is the root node of DD(fw). If n = (s, v, n1, n2), then the function

StateProbability(n) returns the probability pv(s), i.e. the probability of s
in dom(v).

The second way of calculating pw(y) is to use the result of the set of scenarios

Sce(w = y). The algorithm is given Figure 5.21.

1 function Probability_Sce(Sce,model)
2 p_Sce = 0
3 for v in Sce:
4 p_Sce = p_Sce + Probability(v,model)
5 return p_Sce
6

7 function Probability(v,model)
8 p_v = 1
9 for i = 1:n :

10 s = v[i]
11 p_s = LookForProbability(i,s,model)
12 p_v = p_v * p_s
13 return p_v

Figure 5.21: Algorithm of Probability_Sce.

5.3. Decision diagram based assessment 83

The function Probability_Sce(Sce,model) returns the sum of probab-

ilities of the scenarios in Sce. In other words, if Sce is the set of conditional

scenarios, Probability_Sce(Sce,model) will thus return the correspond-

ing conditional probability.

To be concrete, the result of Probability_Sce(Sce,model) is:

– pw(y), if Sce = Sce(w = y).

– pj(c) · Pr{w = y|vj = c}, if Sce = Sce(w = y|vj = c) and pj is the

probability measure defined on dom(vj).

– pS · Pr{CF|CS}, if Sce = Sce(CF|CS) and pS =
∏

i∈IS pi(ci), ci is the

valuation of vi in CS and IS is the index set of state variables in CS.

The function Probability(v,model) returns the scenario probability p⊗(v)
(see Eq.(5.15). The object model is the instance of the class Model in Figure 6.2

that stores all the defined objects in the FDM, including the input probability meas-

ure in the domain of each state variable.

84 Assessment of Finite Degradation Models

Part III

Application

85

Chapter 6

Implementation and Experiments

6.1 LatticeX: object-oriented implementation of FDMs

6.1.1 Software architecture

LatticeX is a small software that we developed to implement the modeling and

the assessment of FDMs.

The functional architecture of LatticeX is given Figure 6.1. First, three main

functions are classified: the compilation of input models, the modeling of FDMs

and the assessment of FDMs.

The input of LatticeX is the FDM written in text file using the modeling language

FDS-ML. This modeling language will be presented Section 6.1.2. To translate the

textual model in LatticeX, a compiler is thus included.

Then, the software construct the FDM according to the input file. In this step, all

relevant objects — operators, variables, equations and FDSs — are created and

stored in the software. The FDM is encoded by means of expression trees.

According to the observer defined in the input file, the FDM is interpreted by

means of decision diagrams. Finally, the software implements the calculation of

required indicators following the algorithms presented Section 5.3 based on these

decision diagrams.

The first version of LatticeX is developed in Python. The technique of object-

oriented programming (OOP) is used. OOP uses classes and objects to create

models. A class is an extensible program-code-template for creating objects (i.e.

instances of class), providing initial values for member variables and implementa-

87

88 Implementation and Experiments

Figure 6.1: Functional architecture of LatticeX.

tions of member functions or methods (Bruce 2002). Comparing to the procedure-

oriented programming (POP), OOP encapsulates functions (i.e. attributes and

methods) into objects so that it is easy for developers to maintain and modify

existing code.

The main classes in LatticeX are pictured Figure 6.2 using UML class diagram.

There are in total 12 classes, classified into four categories: FDS, Formula, De-

cision Diagram and Model. The attributes of these classes can be found Ap-

pendix A.1.

6.1.2 Modeling language FDS-ML

FDS-ML is the abbreviation of Finite Degradation Structure - Modeling Language,

which is a formal language designed for writing FDMs in text files. In this section,

we will main illustrate the use of FDS-ML, while its detailed grammar can be

found Appendix A.2.

Generally, a textual FDM is made of three parts: the declaration of domains, the

6.1. LatticeX: object-oriented implementation of FDMs 89

Figure 6.2: UML class diagram of the classes in LatticeX.

declaration of operators and the model of the system.

First, take the fault tree in Figure 5.2 as an example. The textual FDM of this fault

tree is given Figure 6.3.

1 domain WF {W,F} (W<F)
2

3 operator OR(WF, WF) return WF
4 W, W -> W
5 *, F -> F
6 F, * -> F
7 end
8

9 operator AND(WF, WF) return WF
10 W, * -> W
11 *, W -> W
12 F, F -> F
13 end
14

15 block System
16 WF a (W = 0.9,F = 0.1)
17 WF b,c (W = 0.8,F = 0.2)
18 assertion
19 w := OR(AND(a,b),c)
20 observer w = W
21 end

Figure 6.3: The fault tree in Figure 5.2 written in FDS-ML.

90 Implementation and Experiments

Domain declaration The domains that should be declared individually are the

meet-semi-lattice structures of the valuation domains of state variables. The de-

claration begins with the keyword domain. There follow the name of the domain

(e.g. WF), the set of states in the domain enclosed by braces (e.g. {W,F}) and the

degradation orders enclosed by parentheses (e.g. W<F).

Figure 6.4 shows the declaration of the domains WF, WDF, SWF, WFdFu
and WFdFs.

1 domain WF {W,F} (W<F)
2 domain WDF {W,D,F} (W<D,D<F)
3 domain SWF {S,W,F} (S<W,W<F)
4 domain WFdFu {W,Fd,Fu} (W<Fd,W<Fu)
5 domain WFdFs {W,F_dang,F_safe} (W<F_dang,W<F_safe)

Figure 6.4: The declaration of WF, WDF, SWF, WFdFu and WFdFs in FDS-ML.

Operator declaration The operator declaration is exemplified in Figure 6.3 line 3

– 13. The declaration begins with the keyword operator. There follow the name

of the operator (e.g. OR), the names of the two input domains enclosed by paren-

theses (e.g. (WF,WF)) and the name of the output domain right after the keyword

return. The body of the operator declaration is a list of statements indicating

the valuation mappings of this operator. For instance, a valuation ♦(x, y) = z of

the operator ♦ is written as x,y -> z. The symbol * matches any value in the

corresponding domain.

Model The model is exemplified in Figure 6.3 line 15 – 21. It begins with the

keyword block and there follows the name of the model (e.g. System). The

lines right after are the declaration of state variables. A state variable v whose

valuation domain is named as DomainName is declared in the following form:

DomainName v (...)

The content in the parentheses is the probability measure in dom(v). The prob-

ability should be assigned state by state. In the current version of FDS-ML, we

provide two ways of assigning state probabilities. First, if the state probability is a

constant value, it can be directly written using real numbers, e.g.

WF v_1 (W = 0.99,F = 0.01)

If the state probability is time-dependent, it can be stored in CSV file and uploaded

to the software, e.g.

6.1. LatticeX: object-oriented implementation of FDMs 91

WF v_2 (W = ’ProbFile_W.csv’,F = ’ProbFile_F.csv’)

Once the state variables are declared, the equations can be written in the part of

assertion. Notice that only state variables should be declared before used in

the equations. Each equation w ..= f is written in the same form w := f. The

names of operators in f should be consistent to those declared before. Finally, the

observer is declared after the keyword observer.

Figure 6.5 shows a more generic form of the textual FDM.

1 domain A (a_1,a_2,...) (a_1<a_2,...)
2 domain B (b_1,b_2,...) (b_1<b_2,...)
3 ...
4

5 operator Op_1 (A,A) return A
6 a_1,a_1 -> a_1
7 a_1,a_2 -> a_2
8 ...
9 end

10

11 operator Op_2 (A,B) return A
12 a_1,b_1 -> a_1
13 a_1,b_2 -> a_2
14 ...
15 end
16 ...
17

18 block ModelOfSystem
19 A v_1 (a_1 = ..., a_2 = ..., ...)
20 A v_2 (a_1 = ..., a_2 = ..., ...)
21 B v_3 (b_1 = ..., b_2 = ..., ...)
22 ...
23 assertion
24 w_1 := Op_1(v_1,v_2)
25 w_2 := Op_2(w_1,v_3)
26 ...
27 observer w = d
28 end

Figure 6.5: Generic form of textual FDM.

92 Implementation and Experiments

6.1.3 Construction of expression trees

In this section, we present the method of parsing the equations written in FDS-ML

to construct the expression tree of the model.

In FDS-ML, equations are written in (quasi) Polish notation. Therefore, the con-

struction of expression tree from a given set of equations is similar to parsing

expressions in Polish notation using stacks. The parsing consists of two steps:

1. Split objects (i.e. tokens) by parentheses and comma, and put them into the

stack.

2. Pop out the tokens three-by-three each time when meet a right parenthesis

“)” to form the operator node.

Example 6.1.1. Take the equation w := OR(AND(a,b),c) in Figure 6.3 as an

example. The tokens in the stack before the first right parenthesis are given below:

b
a

AND
OR

When meet the first “)”, the three topside tokens b, a and AND are popped out,

forming the operator node n3 = 〈AND, n1, n2〉, where n1 = 〈a, /, /〉 and n2 =
〈b, /, /〉. Once we form an operator node, its label (e.g. n_3) should be put into

the stack.

Then, we continue parsing the rest expression. The tokens in the stack before the

second right parenthesis are given below:

c
n_3
OR

When meet the second “)”, these three tokens are popped out, forming the operator

node n5 = 〈OR, n3, n4〉, where n4 = 〈c, /, /〉.

Finally, when the parsing is finished, n5 is returned as the root node of this local

expression tree and associated to the flow variable w.

6.2. Modeling library 93

6.2 Modeling library
In this section, we provide a small library of typical operators that have been ap-

plied in fault trees and reliability block diagrams.

6.2.1 Boolean logic operators

In Boolean logic, we have three classical operations: conjunction, disjunction and

negation.

The conjunction of a set of operands is true if and only if all of its operands are

true. This operation is interpreted as the AND-gate in fault trees and interpreted as

the parallel composition in reliability block diagrams. In FDMs, it is interpreted

as the abstraction ∧ : WF2 � WF.

The disjunction of a set of operands is true if and only if one or more of its op-

erands is true. It is interpreted as the OR-gate in fault trees and interpreted as the

series composition in reliability block diagrams. In FDMs, it is interpreted as the

abstraction ∨ : WF2 � WF.

The negation produces a value of true when its operand is false and a value of false

when its operand is true. It is interpreted as the NOT-gate in fault trees. In FDMs,

it is interpreted as the abstraction ¬ : WF � WF.

Figure 6.6 pictures the valuation of these operations under the framework 〈FDS,⊗,Φ〉.
It is easy to verify that ∧ and ∨ are strongly-coherent, while ¬ is not coherent.

Figure 6.6: Illustration of the logic operations ∧, ∨ and ¬.

6.2.2 Meet and join

In fact, the above Boolean conjunction and disjunction operators can be gener-

alized to the meet and join operators, which are originally defined to obtain the

94 Implementation and Experiments

infimum and supremum of two elements in an ordered set.

Definition 6.2.1 (Meet and join). Let n be a linearly-ordered FDS (see Defini-

tion 3.2.3), then:

– the meet operation over n is defined as ∧ : n⊗ n � n such that ∀x, y ∈ n,

∧(x, y) = x if x � y and ∧(x, y) = y if y � x.

– the join operation over n is defined as ∨ : n ⊗ n � n such that ∀x, y ∈ n,

∨(x, y) = y if x � y and ∨(x, y) = x if y � x.

It is easy to verify that ∧ and ∨ are strongly-coherent operators. The FDMs written

over ∧ and ∨ are always coherent.

In reliability and safety models, the two operations — ∧(x, y) and ∨(x, y) —

stand respectively for the “optimistic” and the “pessimistic” viewpoint of how we

consider the state combination (x, y). For instance, consider the case that there are

two components in the system: one is failed and another is working. If we consider

that the system is still working, then we can use the meet operator, i.e. ∧(W,F) =
W . If we consider that the system is already failed, then we can use the join

operator, i.e. ∨(W,F) = F . Such optimistic and pessimistic viewpoints extend

the notion of “AND/OR” and ”parallel/series connection” in multistate cases.

Figure 6.7 pictures the valuation of ∧ and ∨ applied on the ternary FDS WDF.

Figure 6.7: Illustration of the valuation of ∧ and ∨ applied on the ternary FDS WDF.

6.2. Modeling library 95

Moreover, we can deduce that ∧ and ∨ are commutative, associative and dis-

tributive, i.e. the following equalities hold ∀x, y, z ∈ n:

∧(x, y) = ∧(y, x)
∨(x, y) = ∨(y, x)

∧(∧(x, y), z) = ∧(x,∧(y, z))
∨(∨(x, y), z) = ∨(z,∨(y, z))

∧(∨(x, y), z) = ∨(∧(x, z),∧(y, z))
∨(∧(x, y), z) = ∧(∨(x, z),∨(y, z))

(6.1)

6.2.3 k-out-of-n

A k-out-of-n configuration means that there are n Boolean components in the

system and the system is working if at least k components are working; otherwise,

the system is failed.

The k-out-of-n (koon) operator for Boolean systems can be defined recursively by

the meet ∧ and the join ∨ applied on the binary FDS WF.

Definition 6.2.2 (koon). Denote the koon operation by Ok
n : WFn � WF,

1 ≤ k ≤ n. It can be defined recursively as follows:

Ok
n(v1, ..., vn) =

⎧⎪⎪⎨
⎪⎪⎩
Ok−1

n−1(v2, ..., vn), k > 1, v1 = W
∨(v1,Ok

n−1(v2, ..., vn)), k > 1, v1 = F
∧(...(∧(v1, v2), ...), vn), k > 1, k = n
∨(...(∨(v1, v2), ...), vn), k = 1

(6.2)

The koon operator is a strongly-coherent operator since ∨ and ∧ are strongly-

coherent operators.

Figure 6.8 illustrates the koon operation in the case that n = 3. We can see in

this figure that the value of k determines where locates the boundary between the

working and the failed state of the system.

6.2.4 Dependent components

In combinatorial models, components at bottom level are assumed to be stochastic-

ally independent. For this reason, it is unable to represent faithfully cold redund-

ancies, time dependencies, resource sharing, reconfiguration, etc.

However, inspired by the Boolean logic driven Markov processes and reliability

block diagrams driven Petri nets (see Section 2.2.2), we provide a solution of

taking into account stochastically dependent components in FDMs. The idea is

pictured Figure 6.9.

96 Implementation and Experiments

Figure 6.8: Illustration of O1
3 , O2

3 and O3
3 .

In Figure 6.9, the hierarchical structure inside the triangle is the expression tree

of a FDM. The nodes at bottom level of the expression tree are the state variables

representing the states of components. If these state variables are (stochastically)

independent, probability measures can be directly assigned to their valuation do-

mains and propagate to high abstraction level objects through the operations. How-

ever, if there are state variables that are stochastically dependent, the probability

measure cannot be assigned to their valuation domains separately. Instead, it can

be assigned to the product of their domains, see Figure 6.9 red arrow. Such probab-

ility can also propagate to high abstraction level objects to support the calculation

of probabilistic indicators.

We will use a hot-standby system to illustrate the modeling idea pictured Fig-

ure 6.9.

6.2. Modeling library 97

Figure 6.9: Idea of taking into account stochastically dependent components in FDMs.

Standby or redundancy is a technique widely used to enhance system reliability

and availability. In general, there are three types in standby, i.e. cold, hot and

warm standby. Cold standby implies that the spare units cannot fail while they

are waiting. Hot standby implies that a spare unit undergoes the same operational

environment as the master unit. Warm standby corresponds to an intermediate case

and a spare unit undergoes milder operational environment than the master unit. In

different cases, the life time of the spare unit may differ from the master unit, i.e.

they are time-dependent.

A hot-standby system is pictured Figure 6.10. It consists of a master unit A, a

standby unit B and a perfect switch S. The master unit A can be in two states:

working or failed. The standby unit B can be in three states: standby, working or

failed. The system is failed only if both units are failed; otherwise, the system is

working.

Figure 6.10: A hot-standby system consisting of a master unit A, a standby unit B and a

perfect switch S.

We shall make the following assumptions:

98 Implementation and Experiments

– The switch is perfect and failure-free. It means that the failure of A can be

detected immediately and then B is activated with probability 1.

– The time to failure of both A and B is exponentially distributed with the

failure rates λA and λB .

– The repair is scheduled only if both A and B are failed. It repairs both A and

B as good as new. The time to repair is also exponentially distributed with

the repair rate μ.

The modeling procedure of such system is pictured Figure 6.11.

Figure 6.11: The procedure of abstracting a hot-standby system in FDMs.

First, the states of unit A and B are modeled respectively by the FDSs WF and

SWF. Since A and B are stochastically dependent, the probability measure should

be assigned to the product WF⊗SWF not assigned to WF and SWF separately.

To calculate the probability measure on WF ⊗ SWF, a Markov chain model is

used, which is marked in red in Figure 6.11 step 2. Moreover, since the two states

(W,W) and (F, S) are never reachable (under the assumption of perfect switch),

their probability is zero for all time.

Finally, according to the functionality of this system, the operation between A

6.3. Experiments 99

and B is defined as ∧HS : WF ⊗ SWF � WF, whose valuation is pictured

Figure 6.11.

Therefore, the hot-standby system of A and B can be modeled using the equation

HS ..= ∧HS(vA, vB), where dom(vA) = WF and dom(vB) = SWF. A case

study made of such hot-standby subsystems can be found Section 6.3.2.

Through the operation ∧HS, the state probabilities pHS(y), y ∈ dom(HS), are

calculated as follows:{
pHS(W) = p(W,S) + p(W,F) + p(F,W)
pHS(F) = p(F, F)

where p is obtained by the Markov chain pictured Figure 6.11.

6.3 Experiments

6.3.1 Safety instrumented system

In this section, we provide the full assessment of the safety instrumented system

presented Section 2.3.

According to the assumptions made in Section 2.3, the valuation of logic solvers

and valves should be restricted by the following conditions, i.e. logic solves cannot

be in Fdu state and valves cannot be in Fdd state:

CS :

⎧⎪⎪⎨
⎪⎪⎩

LS1 �= Fdu

LS2 �= Fdu

V 1 �= Fdd

V 2 �= Fdd

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

The model used in the assessment is the one in Eq.(4.10). Its textual model can be

found Appendix A.3.

Safety channel 1 and 2

First, we implement the assessment of the two safety channels in the safety instru-

mented system.

The safety channel 1 (SC1) and the safety channel 2 (SC2) are pictured Figure 4.2.

SC1 is made of a sensor S1, a logic solver LS1 and a valve V 1, and SC2 is made

of two sensors S2, S3, a logic solver LS2 and two valves V 1, V 2.

The analysis of safety channel 1 is targeted by the flow variable SC1. The observ-

ers are therefore: SC1 = W , SC1 = Fs, SC1 = Fdd and SC1 = Fdu.

100 Implementation and Experiments

Table 6.1: Number of scenarios and critical scenarios for safety channel 1.

y W Fs Fdd Fdu

|Sce(SC1 = y|CS)| 1 17 15 3

|MinSce(SC1 = y|CS)| 1 3 2 2

|MaxSce(SC1 = y|CS)| 1 4 4 1

The numbers of scenarios and critical scenarios for SC1 are given Table 6.1.

The critical scenarios are listed below:

MinSce(SC1 = W |CS) = {(W,W,W)}
MinSce(SC1 = Fs|CS) = {(Fs,W,W), (W,Fs,W), (W,W,Fs)}
MinSce(SC1 = Fdd|CS) = {(Fdd,W,W), (W,Fdd,W)}
MinSce(SC1 = Fdu|CS) = {(W,W,Fdu), (Fdu,W,W)}

MaxSce(SC1 = W |CS) = {(W,W,W)}
MaxSce(SC1 = Fs|CS) = {(Fdu, Fdd, Fs), (Fs, Fdd, Fs), (Fs, Fs, Fs), (Fdu, Fs, Fs)}
MaxSce(SC1 = Fdd|CS) = {(Fdu, Fdd, Fdu), (Fs, Fdd, Fdu), (Fs, Fs, Fdu), (Fdu, Fs, Fdu)}
MaxSce(SC1 = Fdu|CS) = {(Fdu,W, Fdu)}

For each scenario (x, y, z), the valuation order is the same with the variable order-

ing in DD(fSC1), i.e. S1 ≺ LS1 ≺ V 1, such that x = σ(S1), y = σ(LS1) and

z = σ(V 1).

The analysis of safety channel 2 is targeted by the flow variable SC2. The observ-

ers are therefore: SC2 = W , SC2 = Fs, SC2 = Fdd and SC2 = Fdu.

The numbers of scenarios and critical scenarios for SC2 are given Table 6.2.

Table 6.2: Number of scenarios and critical scenarios for safety channel 2.

y W Fs Fdd Fdu

|Sce(SC2 = y|CS)| 15 309 91 17

|MinSce(SC2 = y|CS)| 1 5 4 3

|MaxSce(SC2 = y|CS)| 4 24 8 1

The critical scenarios are listed below (for those sets whose number of scenarios

6.3. Experiments 101

is larger than four, we only list their first four scenarios):

MinSce(SC2 = W |CS) = {(W,W,W,W,W)}
MinSce(SC2 = Fs|CS) = {(W,W,W,W,Fs), (W,W,W,Fs,W),

(W,W,Fs,W,W), (W,Fs,W,W,W),
(Fs,W,W,W,W)}

MinSce(SC2 = Fdd|CS) = {(Fdd, Fdd,W,W,W), (W,W,Fdd,W,W),
(W,Fs,W, Fdu, Fdu), (Fs,W,W,Fdu, Fdu)}

MinSce(SC2 = Fdu|CS) = {(W,W,W,Fdu, Fdu), (Fdd, Fdu,W,W,W),
(Fdu, Fdd,W,W,W)}

MaxSce(SC2 = W |CS) = {(Fdu,W,W,W,Fdu), (Fdu,W,W,Fdu,W),
(W,Fdu,W,W,Fdu), (W,Fdu,W, Fdu,W)}

MaxSce(SC2 = Fs|CS) = {(Fdu, Fdu, Fdd, Fdu, Fs), (Fdu, Fdu, Fdd, Fs, Fdu),
(Fdu, Fdu, Fdd, Fs, Fs), (Fdu, Fdu, Fs, Fdu, Fs), ...}

MaxSce(SC2 = Fdd|CS) = {(Fdu, Fdu, Fdd, Fdu, Fdu), (Fdu, Fdu, Fs, Fdu, Fdu),
(Fdu, Fs, Fdd, Fdu, Fdu), (Fdu, Fs, Fs, Fdu, Fdu), ...}

MaxSce(SC2 = Fdu|CS) = {(Fdu, Fdu,W, Fdu, Fdu)}

Similarly, the valuation order of each scenario (a, b, c, d, e) is the same with the

variable ordering in DD(fSC2), i.e. S2 ≺ S3 ≺ LS2 ≺ V 1 ≺ V 2, such that

a = σ(S2), b = σ(S3), c = σ(LS2), d = σ(V 1) and e = σ(V 2).

As quantitative results, the state probabilities for SC1 and SC2 are pictured Fig-

ure 6.12. Their average probabilities with 8760 hours are given Table 6.3.

Figure 6.12: State probabilities for SC1 and SC2.

System-level analysis

The system-level analysis is targeted by the flow variable System (see Eq.(4.10).

The observers are therefore: System = W , System = Fs, System = Fdd and

System = Fdu.

102 Implementation and Experiments

Table 6.3: Average probabilities for pSC1 and pSC2 within 8760 hours.

y W Fs Fdd Fdu

pSC1,avg(y) 0.2915 0.6792 0.0251 0.0042
pSC2,avg(y) 0.1756 0.8235 8.6355× 10−4 4.0485× 10−5

Case 1 In this case, we use the conditions in Eq.(6.3) to restrict the valuation of

state variables.

The numbers of scenarios and critical scenarios for System are given Table 6.4.

Table 6.4: Number of scenarios and critical scenarios for System.

y W Fs Fdd Fdu

|Sce(System = y|CS)| 170 3958 740 316

|MinSce(System = y|CS)| 1 7 12 9

|MaxSce(System = y|CS)| 16 96 32 12

Since it is not possible to list all the critical scenarios here, we choose the first five

scenarios in MaxSce(System = W |CS) and MinSce(System = Fdd|CS) as

example and list them below:

MaxSce(System = W |CS) = {(W,W,W,Fdu, Fs, Fdd, Fdd),
(W,W,W,Fs, Fs, Fdd, Fdu),
(W,W,W,Fs, Fdu, Fdd, Fdu),
(W,W,W,Fdu, Fdu, Fdd, Fdu),
(Fdu, Fdd, Fdu,W, Fdu,W,W), ...}

MinSce(System = Fdd|CS) = {(Fdd,W,W,W,W,Fdd,W),
(Fs,W, Fdu, Fs,W,W,Fdu),
(Fdd,W,W,Fdd, Fdd,W,W),
(Fs,W, Fdu,W, Fs,W, Fdu),
(Fdd,W, Fdu, Fs,W,W,Fdu), ...}

Similar to the previous cases, the valuation order in each scenario above is the

same with the variable ordering in DD(System), i.e. S1 ≺ LS1 ≺ V 1 ≺ S2 ≺
S3 ≺ LS2 ≺ V 2.

First, we can observe that the combinations of different failure modes appear in

these critical scenarios, e.g. (W,W,W,Fdu, Fs, Fdd, Fdd) in MaxSce(System =
W |CS) and (Fs,W, Fdu, Fs,W,W,Fdu) in MinSce(System = Fdd|CS). As

mentioned Section 2.3.4, these scenarios have not been considered in the original

model of this safety instrumented system in the standard ISO/TR 12489.

6.3. Experiments 103

Second, as stated Section 2.3.4, we should always have the awareness that critical

scenarios are different from significant scenarios (i.e. those who have relative

high probability of occurrence). In FDMs, critical scenarios doesn’t need to be

significant and vice versa. Sometimes, it is practical to truncate scenarios by their

occurrence probabilities. But sometimes, it is also useful to have all the critical

scenarios at hand to foresee the coming risks in real time analysis.

Take the scenarios in MinSce(System = Fdd|CS) as example. Denote the scen-

ario (Fdd,W,W,W,W,Fdd,W) by σ1 and the scenario (Fs,W, Fdu, Fs,W,W,Fdu)
by σ2. Generally, the probability of σ2 will be much lower than the probability

of σ1 for having more failed states. But, if the system is currently in the state

(Fs,W, Fdu, Fs,W,W,W), σ2 now becomes important since it indicates that if

there is one more Fdu failure of V 2, the system will change its state from W to

Fdd. In this case, the significant scenario σ1 is useless because the system will

never enter into such scenario from its current situation.

The state probabilities for System in this case are pictured Figure 6.13. Their

average probabilities are given Table 6.6.

Case 2 In this case, we show a conditional analysis of the safety instrumented

system. We simulate a scene where it is known for some reason (e.g. a specialized

inspection) that S2 is working, LS1 is working and V 2 is working. According

to this scene, the valuation of S2, LS1 and V 2 is restricted using the new set of

conditions CS
′ below:

CS
′ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S2 = W
LS1 = W
LS2 �= Fdu

V 1 �= Fdd

V 2 = W

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.4)

The results of the conditional scenarios analysis are given Table 6.5. Compare to

Table 6.4, we can see that the number of scenarios decreases since the valuation

range of state variables is narrowed in CS
′.

Table 6.5: Number of scenarios and critical scenarios for System satisfying Eq.(6.4).

y W Fs Fdd Fdu

|Sce(System = y|CS
′)| 25 95 12 12

|MinSce(System = y|CS
′)| 1 4 1 2

|MaxSce(System = y|CS
′)| 4 12 4 2

To be concrete, we list (the first four) scenarios of each set of critical scenarios

104 Implementation and Experiments

below:

MinSce(System = W |CS
′) = (W,W,W,W,W,W,W)

MinSce(System = Fs|CS
′) = {(Fs,W,W,W,W,W,W),

(W,W,Fs,W,W,W,W),
(W,W,W,W,Fs,W,W),
(W,W,W,W,W,Fs,W)}

MinSce(System = Fdd|CS
′) = (Fdd,W,W,W,W,Fdd,W)

MinSce(System = Fdu|CS
′) = {(W,W,Fdu,W,W,Fdd,W),

(Fdu,W,W,W,W,Fdd,W)}

MaxSce(System = W |CS
′) = {(Fs,W, Fdu,W, Fdu,W,W),

(W,W,W,W,Fs, Fdd,W),
(W,W,W,W,Fdu, Fdd,W),
(Fdu,W, Fdu,W, Fdu,W,W)}

MaxSce(System = Fs|CS
′) = {(Fs,W, Fs,W, Fs, Fs,W),

(Fs,W, Fs,W, Fs, Fdd,W),
(Fs,W, Fs,W, Fdu,W,W),
(Fs,W, Fs,W, Fdu, Fdd,W), ...}

MaxSce(System = Fdd|CS
′) = {(Fs,W, Fdu,W, Fs, Fdd,W),

(Fs,W, Fdu,W, Fdu, Fdd,W),
(Fdd,W, Fdu,W, Fs, Fdd,W),
(Fdd,W, Fdu,W, Fdu, Fdd,W)}

MaxSce(System = Fdu|CS
′) = {(Fdu,W, Fdu,W, Fs, Fdd,W),

(Fdu,W, Fdu,W, Fdu, Fdd,W)}

We can see that the critical scenarios are also changed due to the change of valu-

ation conditions from CS to CS
′.

The state probabilities for System are pictured Figure 6.13. Their average prob-

abilities are given Table 6.6. We can see that comparing to case 1, the probability

of being in W increases while the probability of being in a failed state decreases.

Table 6.6: Average probabilities of Pr{System = y|CS} and Pr{System = y|CS
′}

within 8760 hours.

y W Fs Fdd Fdu

Pr{System = y|CS} 0.1628 0.8370 8.9081× 10−5 5.3380× 10−5

Pr{System = y|CS
′} 0.2992 0.7007 6.5952× 10−5 1.3351× 10−5

Sensitivity analysis

The observers used in the sensitivity analysis are System = W , System = Fs,

System = Fdd and System = Fdu. By default, the conditions of CS in Eq.(6.3)

are used.

6.3. Experiments 105

Figure 6.13: State probabilities for System satisfying the conditions in Eq.(6.3) and

Eq.(6.4).

The formula of calculating the sensitivity factor Sen(System = y, v = c), ∀v ∈
S, ∀c ∈ dom(v) = SIS is given Eq.(5.32).

To calculate Sen(System = y, v = c), we should first obtain the sensitivity

coefficient matrices. According to Eq.(5.31), the coefficient matrix A of a state

variable v is defined by the partial derivative of the probability measure defined

on dom(v). In this system, the domain of each state variable is the FDS SIS.

Therefore, we should first obtain the probability measure p defined on SIS.

The analytical solution of p is given Eq.(3.2). Accordingly, we can deduce that:

⎧⎪⎪⎨
⎪⎪⎩

p(Fs) =
λFs
λW

(1− p(W))

p(Fdd) =
λFdd
λW

(1− p(W))

p(Fdu) =
λFdu
λW

(1− p(W))

(6.5)

where λW = λFdu
+ λFdd

+ λFs .

Then, the sensitivity coefficient matrix A for the state variables whose domain is

106 Implementation and Experiments

SIS is defined as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂p(W)
∂p(W)

∂p(Fs)
∂p(W)

∂p(Fdd)
∂p(W)

∂p(Fdu)
∂p(W)

∂p(W)
∂p(Fs)

∂p(Fs)
∂p(Fs)

∂p(Fdd)
∂p(Fs)

∂p(Fdu)
∂p(Fs)

∂p(W)
∂p(Fdd)

∂p(Fs)
∂p(Fdd)

∂p(Fdd)
∂p(Fdd)

∂p(Fdu)
∂p(Fdd)

∂p(W)
∂p(Fdu)

∂p(Fs)
∂p(Fdu))

∂p(Fdd)
∂p(Fdu))

∂p(Fdu)
∂p(Fdu))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 −λFs
λW

−λFdd
λW

−λFdu
λW

− λW
λFs

1 −λFdd
λFs

−λFdu
λFs

− λW
λFdd

− λFs
λFdd

1 −λFdu
λFdd

− λW
λFdu

− λFs
λFdu

− λFdd
λFdu

1

⎤
⎥⎥⎥⎥⎥⎦

(6.6)

We can see that A only depends on the failure rates λFs , λFdd
and λFdu

. The value

of these parameters is given Table 2.2. For the sake of simplicity, we make the

following approximations according to Table 2.2:

– For sensors (S), λS
W ≈ (λS

Fs
+ λS

Fdd
), since λS

Fdu
! λS

Fdd
= λS

Fs
.

– For logic solvers (LS), λLS
W ≈ λLS

Fs
, since λLS

Fdd
! λLS

Fs
.

– For valves (V), λV
W ≈ λV

Fs
, since λV

Fdu
! λV

Fs
.

Therefore, the coefficient matrices AS , ALS , AV for sensors, logic solvers and

valves are given below:

AS ≈

⎡
⎢⎢⎣

1 −1
2 −1

2 0
−2 1 1 0
−2 1 1 0
0 0 0 1

⎤
⎥⎥⎦ (6.7)

ALS ≈ AV ≈

⎡
⎢⎢⎣

1 −1 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (6.8)

According to the formula in Eq.(5.32), it remains to calculate the conditional

probabilities Pr{w = y|v = d}, d ∈ dom(v), to obtain the sensitivity factor

6.3. Experiments 107

Sen(System = y, v = c). The algorithm of calculating conditional probabil-

ities is given Section 5.3.4. It is implemented by our software LatticeX.

The calculation results of Sen(System = y, v = c) are attached Appendix A.4.

These results exhibit many interesting features, which are probably resulted from

the non-coherency of the model and the valuation of the operators � and ‖. The

explanation of these results is not provided this thesis but will be included in our

future work.

6.3.2 A simplified train control system

The system used in this section is provided by Lei Jiang from his research on

the train control system. More information can be found in his paper Jiang et al.

(2018). Due to confidentiality requirement, the system is simplified and the para-

meters are slightly modified.

The objective of this section is to provide a concrete example of integrating time-

dependent components/subsystems in FDMs following the idea presented Sec-

tion 6.2.4.

System description

The system is pictured Figure 6.14. It is made of 9 hot-standby subsystems. The

acronyms are given Table 6.7.

Figure 6.14: A train control system.

Table 6.7: Definitions of acronyms

TCC Train Control Center VC Vital Computer

TC Track Circuit CTC Centralized Traffic Control

LEU Lineside Electronic Unit CBI Computer Based Interlocking

TSRS Temporary Speed Restriction Server ATCC Adjacent TCC

These hot-standby subsystems are divided into two classes.

108 Implementation and Experiments

1. The first class consists of the hot-standby subsystems VC, DY, CBI and

TSRS, whose failure will immediately cause the TCC system failure (i.e.

the TOP event in Figure 6.14).

2. The second class consists of the hot-standby subsystems PIO, TC, CTC,

LEU and ATCC, whose failure will only cause the degradation of the TCC

system if none of the subsystems in the first class is failed.

Assume that each hot-standby subsystem satisfies the conditions made in Sec-

tion 6.2.4. The failure and repair rates of each hot-standby subsystem are given

Table 6.8.

Table 6.8: Failure and repair rates of each hot-standby subsystem.

V C DY CBI TSRS PIO TC CTC LEU ATCC

λA/B(×10−4) 1.26 1.59 0.21 0.21 2.28 1.2 0.31 0.92 0.21
μ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Modeling

The FDM of the TCC system is built as follows:

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V C ..= ∧HS(AV C , BV C)
DY ..= ∧HS(ADY , BDY)
CBI ..= ∧HS(ACBI , BCBI)

TSRS ..= ∧HS(ATSRS , BTSRS)
PIO ..= ∧HS(APIO, BPIO)
TC ..= ∧HS(ATC , BTC)

CTC ..= ∧HS(ACTC , BCTC)
LEU ..= ∧HS(ALEU , BLEU)

ATCC ..= ∧HS(AATCC , BATCC)
G1 ..= ∨(∨(∨(V C,DY), CBI), TSRS)
G2 ..= ∨(∨(∨(∨(PIO, TC), CTC), LEU), ATCC)

TCC ..= ∨TCC(G1, G2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.9)

For a hot-standby subsystem X , AX and BX are respectively the state variables of

the main unit and the standby unit. The operation ∧HS is defined Section 6.2.4.

G1 and G2 are the flow variables representing respectively the state of the first

class and the second class of the hot-standby subsystems described above. ∨ and

∧ are the join and meet operators defined Section 6.2.2.

TCC is the flow variable representing the state of the whole TCC system. ∨TCC

is an operator describing the relationship between G1 and G2. The valuation of

∨TCC is given Table 6.9.

6.3. Experiments 109

Table 6.9: Valuation of ∨TCC : WF2 � WDF

∨TCC(u, v)
v

W F

u
W W D
F F F

It is easy to verify that all the operators used in this model are coherent. Therefore,

M is also coherent.

Assessment

The observers used in the assessment are TCC = W , TCC = D and TCC = F .

For scenarios analysis, it is also possible to change the granularity of scenarios.

For instance, we can calculate the scenarios at subsystem level, i.e. each scenario

(x1, x2, ..., x9) represents a valuation of the 9 flow variables of the hot-standby

subsystems, such that x1 = σ(V C), x2 = σ(DY), x3 = σ(CBI), x4 =
σ(TSRS), x5 = σ(PIO), x6 = σ(TC), x7 = σ(CTC), x8 = σ(LEU) and

x9 = σ(ATCC). The results of the number of scenarios and critical scenarios in

this case are given Table 6.10.

Table 6.10: Number of scenarios and critical scenarios for TCC.

y W D F
|Sce(TCC = y)| 1 31 480

|MinSce(TCC = y)| 1 1 4
|MaxSce(TCC = y)| 1 5 1

110 Implementation and Experiments

The critical scenarios are listed below:

MinSce(TCC = W) = {(W,W,W,W,W,W,W,W,W)}
MinSce(TCC = D) = {(W,W,W,W,W,W,W,W,F),

= (W,W,W,W,W,W,W,F,W),
= (W,W,W,W,W,W,F,W,W),
= (W,W,W,W,W,F,W,W,W),
= (W,W,W,W,F,W,W,W,W)}

MinSce(TCC = F) = {(W,W,W,F,W,W,W,W,W),
= (W,W,F,W,W,W,W,W,W),
= (W,F,W,W,W,W,W,W,W),
= (F,W,W,W,W,W,W,W,W)}

MaxSce(TCC = W) = {(W,W,W,W,W,W,W,W,W)}
MaxSce(TCC = D) = {(W,W,W,W,F, F, F, F, F)}
MaxSce(TCC = F) = {(F, F, F, F, F, F, F, F, F)}

From these critical scenarios, we can easily verify that the failure mechanism stated

in the system description is correctly modeled.

For probabilistic calculation, we should first calculate the probability measures of

the 9 hot-standby subsystems. As presented Section 6.2.4, they can be calculated

by the Markov chain pictured Figure 6.11. The required parameters are given

Table 6.8. Since this Markov chain is not complex, we solved it analytically and

calculated the required probability measures in MATLAB. The results are stored

in CSV files and uploaded to our software.

The results of the state probabilities for TCC are pictured Figure 6.15.

Figure 6.15: State probabilities for TCC within 8760 hours.

Chapter 7

Modeling Epistemic Space of
Degradation Processes

7.1 Problem statement

7.1.1 Incomplete knowledge on states

The uncertainties in reliability and safety analyses can be categorized in two ways

(Parry 1996, Helton and Burmaster 1996, Agarwal et al. 2004). First, they can be

categorized into parametric uncertainty, modeling uncertainty and completeness

uncertainty. In this categorization, parametric uncertainty addresses the uncer-

tainty in the quantification of a model; modeling uncertainty can be seen as the

uncertainty in the appropriateness of the structure or mathematical form of the

model; and completeness uncertainty concerns the degree to which the required

performances of the system are modeled or not.

Second, uncertainties can also be categorized into aleatory uncertainty and epi-

stemic uncertainty. In this categorization, the aleatory aspect of uncertainty is ad-

dressed when the occurrence of an event or a phenomenon is modeled as a random

variable in a stochastic manner. Therefore, aleatory uncertainty can be mathemat-

ically modeled using probability theory. The epistemic uncertainty is caused by the

incomplete information and the lack of knowledge. Although probabilistic meas-

ure is also used to quantify epistemic uncertainty, it is interpreted — different from

the probability of random variables — as a kind of subjective probability or belief

that measures the analysts’ confidence on a phenomenon. Therefore, the main dif-

ference between aleatory uncertainty and epistemic uncertainty is that the former

is considered to be irreducible, while the latter is reducible when the knowledge of

111

112 Modeling Epistemic Space of Degradation Processes

the system is getting more and more complete.

In this chapter, we focus on the epistemic uncertainty caused by the incomplete

knowledge on the state of component (or group of components) in the system

under study.

Generally, reliability and safety models are built under the condition that the know-

ledge on the current state of the system is complete, i.e. the state of each com-

ponent takes exactly one certain value from its valuation domain. However, such

condition may not be fulfilled all the time, i.e. that there can be some discrepancies

between the diagnostic made on the state of component and its actual state. For

instance, we may lose the state information of a component due to the failure of

its monitoring sensor. In this case, the state of component becomes uncertain, i.e.

that we don’t know whether it is working or failed.

To model such uncertainty, a classical way is to regard this uncertain state as a

new state and add it to the state space of the component. For instance, to take into

account the uncertain state of a Boolean component (which can be either work-

ing or failed), we can add a new state “unknown” to its state space. As results,

this component becomes a three-state component whose state space is {working,

failed, unknown}. In this case, “working” means that we know that the component

is working, “failed” means that we know that the component is failed and “un-

known” means that we don’t know the state of the component.

If there are n ≥ 1 states in the state space of a component, then how many un-

certain states it may have? The answer is 2n − n − 1. Take the case that n = 3.

Assume that the state space of a component is {a, b, c}. An uncertain state can be

“we don’t know completely the state of the component” or it also can be “we know

that it cannot be a, but we don’t know whether it is b or c”. We can see that an

uncertain state is a possible combination of any two or three elements in {a, b, c}.
Therefore, the uncertain states obtained from a state space with n elements are all

the k-combinations of the n elements such that 2 ≤ k ≤ n, since there should be at

least two elements in the combination to make it uncertain. Finally, the total num-

ber of uncertain states is
∑

2≤k≤n
(
n
k

)
=

∑
0≤k≤n

(
n
k

)
−
(
n
1

)
−
(
n
0

)
= 2n − n− 1.

Although this number is of exponential order, the determination of uncertain states

is still operable since the number of states n of a component is usually small.

Once new uncertain states are added to the valuation domain of a state variable, the

operations related to this variable should also be adjusted. Take the binary opera-

tion ♦(u, v) as example. Assume that there are n states in the original valuation

domain of u and v. If 2n − n − 1 new states are added to both of the domains

dom(u) and dom(v), the total number of new valuations that should be added for

7.1. Problem statement 113

♦ is (2n − n− 1)2 + 2n · (2n − n− 1).

Table 7.1 lists the number of uncertain states and the required new valuations for a

binary operation ♦(u, v) where |dom(u)| = |dom(v)| = n. We can see that when

n > 2, defining the required new valuations for a binary operation ♦ manually is

however not operable.

Table 7.1: Number of uncertain states and the required new valuations for ♦.

Number of uncertain states Number of new valuations

n 2n − n− 1 (2n − n− 1)2 + 2n · (2n − n− 1)
1 0 0

2 1 5

3 4 40

4 11 209

5 26 936

In this chapter, we present a FDM-based modeling approach to model such epi-

stemic uncertainty. The most highlighted part of this approach is that we don’t

need to manually define neither the new uncertain states nor the required new

valuations. Instead, we transform the whole FDM into the epistemic space. This

transformation can be mathematically defined. Accordingly, the uncertain states

and the required valuations are automatically generated during this transformation.

When dealing with multistate systems, this automatic generation will be more ef-

ficient, more effective and less erroneous than manual determinations.

7.1.2 Epistemic space

A proposition P is said to be epistemically possible (for an agent a) if there exists

a scenario (or an epistemically possible world) at which P is true. There are also

scenarios at which P is false. The space of all scenarios of P (at which P is either

true or false) is called the epistemic space (for an agent a) (Bjerring 2014).

Let P be the predicate “σ(v) ∈ X”, where v is a variable, σ is the valuation

assignment of v (see Section 4.2) and X ⊆ dom(v). Then, the epistemic space of

P should contain all the scenarios satisfying and falsifying σ(v) ∈ X .

Take dom(v) = WF as example. Three propositions (or predicates) can be made

in the form of σ(v) ∈ X . They are interpreted as different level of knowledge that

we have on the valuation of v:

– P1 : σ(v) ∈ {W}, i.e. it is known that the value of v is W ;

– P2 : σ(v) ∈ {F}, i.e. it is known that the value of v is F ;

114 Modeling Epistemic Space of Degradation Processes

– P3 : σ(v) ∈ {W,F}, i.e. it is known that the value of v is uncertain between

W and F .

The set {{W}, {F}, {W,F}} is regarded as the epistemic space built over the

domain WF. In this epistemic space, the scenarios — i.e. the possible valuations

of X — that either satisfy or falsify σ(v) ∈ X are all included.

The element in epistemic space is called epistemic state, representing an epistem-
ically possible valuation of v. A distinction should be made between “epistemic-

ally possible” and “possible”. A possible valuation of v is an objective value that

v can take in its valuation domain. An epistemically possible valuation of v is a

subjective value representing how much we know about the valuation of v.

In the above example, W and F are the possible valuations of v, while {W}, {F}
and {W,F} are the epistemically possible valuations of v. It is worth noting that

the epistemic state {W,F} doesn’t mean that v can take simultaneously both of

values W and F . Instead, it only means that the two values W and F are both

epistemically possible for v under our current knowledge on σ(v).

To be more generic, let dom(v) = Θ, where Θ is a non-empty finite set. An

epistemically possible valuation of v is thus a subset X ⊆ Θ. According to the

closed-world assumption, X should contain at least one value in Θ, i.e. X �= ∅.
Therefore, the epistemic space built over Θ is 2Θ\{∅}, where 2Θ is the power set

of Θ and \ stands for the difference of sets.

In the epistemic space 2Θ\{∅}, an epistemic state X is certain if |X| = 1; other-

wise, X is uncertain. If |Θ| = n, then |2Θ\{∅}| = 2n − 1. Therefore, the number

of uncertain epistemic states is 2n − n− 1, since the number of certain epistemic

states is n.

7.2 FDSs in epistemic space
In FDMs, the valuation domain of each variable is not simply a set Θ but a FDS

〈Θ,�,⊥, p〉. The epistemic space built over Θ is 2Θ\{∅}. In this section, we

will define the degradation orders among the epistemic states in 2Θ\{∅} and the

probability measures that can be assigned on 2Θ\{∅}.

7.2.1 Degradation orders among epistemic states

Definition 7.2.1. We define that the epistemic space built over a meet-semi-lattice

〈Θ,�,⊥〉 is a new meet-semi-lattice 〈Ω/≡,�, {⊥}〉, where:

7.2. FDSs in epistemic space 115

– Ω = 2Θ\{∅} is the epistemic space built over the set Θ.

– Ω/≡ is the quotient set of Ω by ≡ (equivalence). We will explain it later in

this section.

– ∀S, T ∈ Ω, S � T ⇔ (∀y ∈ T, ∃x ∈ S, x � y)∧(∀x ∈ S, ∃y ∈ T, x � y);
otherwise, S ∼ T .

The epistemic space Ω built over Θ is presented in the previous section. The

quotient set Ω/≡ will be explained later in this section. As for the degradation

order, we will use the following three examples to explain why it is defined as in

the above definition.

Figure 7.1: The epistemic space built over WF, WDF and W2F.

Example 7.2.1 (Epistemic space built over WF). The epistemic space built over

WF is pictured Figure 7.1 (a). In this case, the epistemic states are:

2{W,F}\{∅} = {{W}, {F}, {W,F}}

The degradation orders among these states are defined as:

{W} � {W,F} � {F}

Intuitively, {W} � {W,F} because comparing to {W}, {W,F} has an additional

possibility of being in a more degraded state F . Therefore, the degradation level of

{W,F} should be higher than {W}. Similarly, comparing to {F}, {W,F} has an

additional possibility to be in a less degraded state W . Therefore, the degradation

level of {W,F} should be lower than {F}, i.e. {W,F} � {F}.

116 Modeling Epistemic Space of Degradation Processes

Example 7.2.2 (Epistemic space built over WDF). The epistemic space built

over WDF is pictured Figure 7.1 (b). In this case, the epistemic states are:

2{W,D,F}\{∅} = {{W}, {D}, {F}, {W,D}, {D,F}, {W,F}, {W,D,F}}

The degradation orders among these states are defined as follows:

{W} � {W,D} � {D} � {F,D} � {F} (7.1)

{W} � {W,D} � {W,F} ≡ {W,D,F} � {F,D} � {F} (7.2)

{D} ∼ {W,F} (7.3)

{D} ∼ {W,D,F} (7.4)

First, the linear orders in Eq.(7.1) and Eq.(7.2) can be understood similarly as

Example 7.2.1. But in Eq.(7.2), there is an equivalence: {W,F} ≡ {W,D,F}.

Definition 7.2.2 (Equivalence). If ∃X,Y ∈ Ω (X �= Y) such that X � Y and

Y � X , then they are equivalent with respect to the degradation order �, denoted

by X ≡ Y .

We can deduce that the equivalence occurs when there are more than three states

that are ordered linearly in the original FDS.

Proposition 7.2.1. Let ⊥ � d1 � ... � dn � �, n ≥ 1 be a chain (i.e. a linearly

ordered subset) of a meet-semi-lattice. Denote that I = {d1, ..., dn}. Then, ∀X ⊆
I (X �= ∅), X ∈ Ω and the following relations hold according to the degradation

orders defined in Definition 7.2.1:

{⊥,�} ≡ {⊥,�} ∪X (7.5)

X ∼ {⊥,�} ∪X (7.6)

X ∼ {⊥,�} (7.7)

The equivalence in Eq.(7.5) indicates that if the two extremes⊥ and� are included

in the epistemic state {⊥,�} ∪ X , then no matter how many intermediate states

(in X) are epistemically possible, the degradation level of {⊥,�}∪X is bounded

by {⊥,�}. For instance, the equivalence in Eq.(7.2) means that the degradation

level of {W,F} is equal to the one of {W,D,F}, i.e. knowing that D is not

epistemically possible will not change the degradation level of the epistemic state

of a component.

7.2. FDSs in epistemic space 117

The incomparabilities in Eq.(7.6) and Eq.(7.7) indicates that if the two extremes⊥
and� are excluded from X , then X is incomparable with {⊥,�}∪X and {⊥,�}.
For instance, in Eq.(7.6) and Eq.(7.7), {D} ∼ {W,F} and {D} ∼ {W,D,F}.

Mathematically, the existence of ≡ makes the partial order � become a preorder

(since the antisymmetry in Definition 3.1.1 is not satisfied). In order to keep the de-

gradation order � still being a partial order in the epistemic space, we shall merge

the equivalent elements into quotients, e.g. the two epistemic states {W,D,F}
and {W,F} are considered as one element with respect to �.

Denote the quotient set of the equivalence ≡ on a set Ω by Ω/≡. Then, the epi-

stemic space 〈Ω/≡,�, {⊥}〉 in Definition 7.2.1 is still a meet-semi-lattice, since

� is a partial order over the quotients set Ω/≡ and it is easy to verify that {⊥} is

the least element in Ω/≡.

Example 7.2.3 (Epistemic space built over W2F). The epistemic space built over

W2F is pictured Figure 7.1 (c). In this case, we have two incomparable states

F1 ∼ F2 so that the degradation orders are more complex.

– First, {W} � {W,F1} and {W} � {W,F2} can be understood similarly as

Example 7.2.1.

– Then, for {W,F1} and {W,F2}, they have both the possibility of being in

W and the possibility of being in one of the two incomparable failed states

F1 and F2. Since F1 ∼ F2, then {W,F1} ∼ {W,F2}.

– {W,F1} and {W,F2} are both less degraded than {W,F1, F2} because

comparing to {W,F1} and {W,F2}, {W,F1, F2} has an additional pos-

sibility of being the another failed state. It means that in {W,F1, F2} the

possibility of being in a failed state is enlarged. Therefore, {W,F1} �
{W,F1, F2} and {W,F2} � {W,F1, F2}.

– As for {F1}, {F2} and {F1, F2}, they are all more degraded than {W,F1, F2},
since there is no possibility of being in W . However, {F1} ∼ {F2} ∼
{F1, F2}. In these three epistemic states, the component is sure to be failed

but the difference is whether the failed state is certain (i.e. {F1} or {F2}) or

not (i.e. {F1, F2}). In this case, {F1, F2} doesn’t mean that there is an addi-

tional possibility to be in another failed state comparing to {F1} and {F2}.
Instead, it only means that the failed state is uncertain. This incomparability

between {F1}, {F2} and {F1, F2} should be distinguished from the relation

between {W,F1}, {W,F2} and {W,F1, F2}.

118 Modeling Epistemic Space of Degradation Processes

7.2.2 Basic belief assignment of epistemic states

The probability measure applied in the epistemic space is not the probability of

states but a subjective belief which measures the analysts’ confidence on the oc-

currence of the epistemic states.

The belief functions are introduced by Dempster (Dempster 1967) and then rein-

forced by Shafer (Shafer 1976). In the Dempster-Shafer theory, the allocation of

belief functions to uncertain phenomena is called basic belief assignment (BBA)

or mass assignment.

Definition 7.2.3 (Mass assignment). Let Ω = 2Θ\{∅} be the epistemic space built

over a finite set Θ. The mass assignment on Ω is a function m : Ω → [0, 1] such

that ∀X ∈ Ω, m(X) is called the mass of X and
∑

X∈Ωm(X) = 1.

In Shafer’s original work, if m(∅) = 0, then m is called normalized. The mass

assignment in Definition 7.2.3 is always normalized since the empty set is removed

from the Ω. The assumption m(∅) = 0 is called the closed-world assumption,

meaning that the possibility that the true valuation of a variable is not included in

Θ is zero.

Moreover, the epistemic states in Ω are also mutually exclusive even though their

intersection may not be empty. The epistemic states should be regarded as atomic

states in Ω.

Probabilistic indicators

Let X be an epistemic state in Ω, then we can calculate the belief, the plausibility

and the commonality of X .

The belief of X is denoted by Bel(X). It quantifies the mass of evidences sup-

porting X . Mathematically, it can be calculated as follows:

Bel(X) =
∑

Y ∈Ω,Y⊆X
m(Y) (7.8)

If m is normalized, then Bel(Θ) = 1.

The plausibility Pl(X) is the amount of belief not strictly committed to the com-

plement Θ\X . It quantifies the mass potentially supports X , which can be calcu-

lated as follows:

Pl(X) =
∑

Y ∈Ω,Y ∩X �=∅
m(Y) (7.9)

If m is normalized, then Pl(X) = 1−Bel(Θ\X).

7.2. FDSs in epistemic space 119

Let p be a probability measure defined on Θ and P be a probability function such

that P (X) =
∑

s∈X p(s), ∀X ∈ Ω. Then, the belief and the the plausibility of X
can be regarded respectively as a lower bound and an upper bound of P (X), i.e.

Bel(X) ≤ P (X) =
∑
s∈X

p(s) ≤ Pl(X) (7.10)

The commonality Com(X) quantifies the mass committed to X from the epi-

stemic states Y ∈ Ω such that X ⊆ Y . It is mathematically calculated as follows:

Com(X) =
∑

X⊆Y ∈Ω
m(Y) (7.11)

Proposition 7.2.2 (Compatibility). Let p be a probability measure defined on Θ
and m be a mass function defined on Ω such that Ω = 2Θ\{∅}. Then, p is said to

be compatible with m if the following inequality holds for all s ∈ Θ:

p(s) ≤ Com({s}) (7.12)

The above inequality indicates that the true probability p(s) of being in state s is

no greater than the sum of the mass of all epistemic states Y containing s, i.e.

p(s) ≤∑
s∈Y ∈Ωm(Y).

Example 7.2.4. Assume that Θ = {W,F}. According to Eq.(7.12), p is compat-

ible with m if the following inequalities hold:{
p(W) ≤ m({W}) +m({W,F})
p(F) ≤ m({F}) +m({W,F})

7.2.3 Transformation of FDSs

Definition 7.2.4. The transformation of FDSs into the epistemic space is defined as

the unary operation (.)u : FDS � FDS such that for every FDSL : 〈Θ,�,⊥, p〉,

(L)u def
= 〈Ω/≡,�, {⊥},m〉

where,

– 〈Ω/≡,�, {⊥}〉 is the epistemic space built over the meet-semi-lattice 〈Θ,�
,⊥〉 (see Definition 7.2.1).

– m : Ω → [0, 1] is a mass assignment on Ω (see Definition 7.2.3), which is

compatible with p (see Eq.(7.12)).

120 Modeling Epistemic Space of Degradation Processes

It is worth mentioning that if the probability measure p is not defined in L, then m
can be directly assigned to Ω with appropriate values.

Since FDS is also closed under the transformation (.)u, this transformation can

thus be added to 〈FDS,⊗,Φ〉 as the third type of operations, i.e. 〈FDS,⊗,Φ, (.)u〉.

In Section 7.2.2, we present the three indicators, i.e. Bel(X), Pl(X) and Com(X),
which are defined in the evidence theory to quantify the epistemic states according

to the mass assignment m.

But it might also be useful to quantify the states in Θ according to the mass as-

signment m in Ω. In this part, we present two probabilistic indicators defined in

Θ, which are calculated by m and can be used to quantify the upper bound and the

lower bound of the degradation level of states in Θ.

Definition 7.2.5. For each state s ∈ Θ, denote the belief that the degradation level

is in the best case to be s by Best(s) and the belief that the degradation level is

in the worst case to be s by Worst(s). Then, they are defined and calculated as

follows:

Best(s)
def
=

∑
X∈Ω,{s}�X

m(X) (7.13)

Worst(s)
def
=

∑
X∈Ω,X�{s}

m(X) (7.14)

Particularly, if s is the least element ⊥ or the greatest element � of Θ, then:⎧⎪⎪⎨
⎪⎪⎩

Best(⊥) = 1
Best(�) = m({�})
Worst(⊥) = m({⊥})
Worst(�) = 1

Example 7.2.5. Take the domain WDF as example. Assume that the probability

measure p defined on Θ = {W,D,F} is as follows:⎧⎨
⎩

p(W) = 0.7
p(D) = 0.2
p(F) = 0.1

(7.15)

To obtain a compatible mass assignment m on its epistemic space Ω from p, con-

sider the following allocation method.

Denote the proportion of p(s) in m(X) by p(s)|X . If s /∈ X , p(s)|X = 0. Then,

the following equality should hold for all s ∈ Θ:

p(s) =
∑
s∈X

p(s)|X (7.16)

7.3. FDMs in epistemic space 121

If p(s)|X is determined for all s ∈ Θ and for all X ∈ Ω, the mass m(X) can be

obtained as follows:

m(X) =
∑
s∈Θ

p(s)|X (7.17)

It is easy to verify that the mass assignment m obtained by such allocation al-

ways satisfies the inequality in Eq.(7.12), since Com({s}) =
∑

s∈X m(X) =∑
s∈X

∑
t∈Θ p(t)|X = p(s) +

∑
s∈X

∑
t∈X,s �=t p(t)|X ≥ p(s).

Table 7.2 shows an example of such allocation. The probability proportions in each

line satisfy the equality in Eq.(7.16) and the mass m(X) is calculated by summing

the proportions of the column X according to Eq.(7.17).

Table 7.2: Allocation example of p(s) in m(X) where Θ = {W,D,F}.

X {W} {D} {F} {W,D} {W,F} {D,F} {W,D,F} Sum

p(W)|X 0.5 0 0 0.1 0.05 0 0.05 0.7

p(D)|X 0 0.15 0 0.03 0 0.01 0.01 0.2

p(F)|X 0 0 0.08 0 0.005 0.01 0.005 0.1

m(X) 0.5 0.15 0.08 0.13 0.055 0.02 0.065 1

According to the degradation orders pictured Figure 7.1 (b), we can thus calculate

the two indicators Best and Worst in WDF according to the mass assignment

m in Table 7.2. The results are given below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Best(W) = 1
Best(D) = m({D}) +m({W,D}) +m({W}) = 0.78
Best(F) = m({F}) = 0.1

Worst(W) = m({W}) = 0.7
Worst(D) = m({D}) +m({F,D}) +m({F}) = 0.25
Worst(F) = 1

To summarize, a short comparison of the FDSs in state space and in epistemic

space is given Table 7.3.

7.3 FDMs in epistemic space
In this section, we shall define mathematically the transformation of FDMs into its

corresponding epistemic space. Technically, this transformation relies on the four

types of transformations of the operations on FDSs.

122 Modeling Epistemic Space of Degradation Processes

Table 7.3: Comparison of FDSs in state space and in epistemic space.

State space Epistemic Space

L : 〈Θ,�,⊥, p〉 (L)u : 〈Ω/≡,�, {⊥},m〉
Elements States in Θ Epistemic states in Ω = 2Θ\{∅}

Degradation orders x � y (x, y ∈ Θ) S � T (S, T ∈ Ω/≡)

Least element ⊥ ∈ Θ {⊥} ∈ Ω

Probabilistic indicators

p : Θ→ [0, 1] m : Ω→ [0, 1]
Best : Θ→ [0, 1] Bel : Ω→ [0, 1]
Worst : Θ→ [0, 1] Pl : Ω→ [0, 1]

7.3.1 Transformation of operations

Consider the binary operation φ : A⊗B � C, whereA,B, C ∈ FDS. If the input

arguments of φ becomes uncertain, the output of φ should also be uncertain. The

uncertainty is thus propagated from the domain of φ to the codomain of φ.

To model the propagation of uncertainty through an operation φ, we propose

four transformations for φ, which are the left-transformation, right-transformation,

inner-transformation and outer-transformation.

Definition 7.3.1. The left-transformation of φ is defined as follows:

φL : (A)u ⊗ B � (C)u

such that ∀(X, y) ∈ (A)u ⊗ B,

φL(X, y) = {φ(x, y)|x ∈ X} (7.18)

Definition 7.3.2. The right-transformation of of φ is defined as follows:

φR : A⊗ (B)u � (C)u

such that ∀(x, Y) ∈ A⊗ (B)u,

φR(x, Y) = {φ(x, y)|y ∈ Y } (7.19)

The left- and right-transformation of φ model respectively the propagation of un-

certainties from the domain of the first and the second input argument into the

codomain of φ.

Example 7.3.1. Take the Boolean join ∨ and meet ∧ operators as example. The

definition of these operators can be found Section 6.2.2. Their left- and right-

transformation ∨L, ∧L, ∨R and ∧R are pictured Figure 7.2.

7.3. FDMs in epistemic space 123

Figure 7.2: The left- and right-transformation of the Boolean join and meet operators.

Definition 7.3.3. The inner-transformation of φ is defined as follows:

φu : (A)u ⊗ (B)u � (C)u

such that ∀(X,Y) ∈ (A)u ⊗ (B)u,

φu(X,Y) = {φ(x, y)|x ∈ X, y ∈ Y } (7.20)

The inner-transformation φu can be seen as a composition of φL and φR.

Example 7.3.2. Figure 7.3 shows the inner-transformation∨u and∧u of the Boolean

join ∨ and meet ∧ operators.

Comparing to Figure 7.2, the range of uncertainties in the domain of the two op-

erations in Figure 7.3 is enlarged, because the uncertainties are introduced to both

of the two input domains.

124 Modeling Epistemic Space of Degradation Processes

Figure 7.3: The inner-transformation of the Boolean join and meet operators.

Definition 7.3.4. The outer-transformation of φ is defined as follows:

φu : (A⊗ B)u � (C)u

such that ∀Z ∈ (A⊗ B)u,

φu(Z) = {ϕ(x, y)|(x, y) ∈ Z} (7.21)

The outer-transformation is applied to the case where the uncertainties are intro-

duced to the product A ⊗ B. For instance, the operation ∧HS : WF ⊗ SWF �
WF for the hot-standby system presented Section 6.2.4 can be transformed using

the outer-transformation. In this case, we can model the uncertainty that is directly

introduced to the four reachable states in the product WF⊗ SWF.

Proposition 7.3.1. ∀A,B ∈ FDS, there exists a weakly-coherent abstraction

αAB : (A⊗ B)u � (A)u ⊗ (B)u such that,

– ∀Z ∈ (A⊗ B)u, αAB(Z) = ({x|(x, y) ∈ Z}, {y|(x, y) ∈ Z}).

– ∀Z1, Z2 ∈ (A⊗ B)u, Z1 � Z2 ⇒ αAB(Z1) � αAB(Z2).

The existence of αAB indicates that the abstraction level of (A)u ⊗ (B)u is higher

than (A⊗ B)u.

Take the Boolean domain WF as example. Figure 7.4 pictures the coherent ab-

straction αWF : (WF⊗WF)u � (WF)u ⊗ (WF)u.

In this figure, we can see that the epistemic states excluded from the grey rectangle

are one-to-one mapped from (WF ⊗WF)u to (WF)u ⊗ (WF)u. The seven

7.3. FDMs in epistemic space 125

Figure 7.4: The coherent abstraction αWF : (WF⊗WF)u � (WF)u ⊗ (WF)u.

epistemic states in the grey rectangle of (WF ⊗WF)u are abstracted into only

one epistemic state ({W,F}, {W,F}) in (WF)u ⊗ (WF)u.

Proposition 7.3.2 (Coherency). If an operation φ is coherent, then its four trans-

formations φL, φR, φu and φu are also coherent.

We will prove the coherency of φL as follows. The coherency if other transforma-

tions can be proved in a similar way.

Proof. First, for all (X1, y1), (X2, y2) ∈ (A)u ⊗ B, we have:

(X1, y1) � (X2, y2)⇒ X1 � X2 ∧ y1 � y2 (7.22)

Then, according to Definition 7.2.1,

X1 � X2 ⇒ (∀x1 ∈ X1, ∃x2 ∈ X2, x1 � x2) ∧ (∀x2 ∈ X2, ∃x1 ∈ X1, x1 � x2)
(7.23)

According to Definition 7.3.1, the result of (X1, y1) and (X2, y2) under φL are

defined as follows:{
φL(X1, y1) = {φ(x1, y1)|x1 ∈ X1}
φL(X2, y2) = {φ(x2, y2)|x2 ∈ X2}

(7.24)

Then, from Eq.(7.23) and Eq.(7.24), we can deduce that:{
∀z1 ∈ φL(X1, y1), ∃z2 ∈ φL(X2, y2), z1 � z2
∀z2 ∈ φL(X2, y2), ∃z1 ∈ φL(X1, y1), z1 � z2

(7.25)

126 Modeling Epistemic Space of Degradation Processes

where z1 = φ(x1, y1) and z2 = φ(x2, y2) such that x1 � x2 (whose existence

is guaranteed by Eq.(7.23)) and y1 � y2 (which is given Eq.(7.22)). Since φ is

coherent, (x1, y1) � (x2, y2)⇒ φ(x1, y1) � φ(x2, y2), i.e. z1 � z2.

Finally, according to Eq.(7.25) and Definition 7.2.1, we obtain that φL(X1, y1) �
φL(X2, y2), i.e. φL is coherent.

7.3.2 Reinterpretation of FDMs: a case study

This case study is extracted from Misuri et al. (2018), which aims at analyzing the

security of a storage farm when an attack happens.

The system is pictured Figure 7.5. The main storage farm area (outlined in white)

is composed of eight tanks (of different volumes) and a loading dock, where ships

can charge and discharge chemicals and materials. For the sake of simplicity,

only a single attack made with improvised explosive device (IED) was considered,

which could be detonated with a remote controller. Two possible intrusion paths

were considered, i.e. via ground and via water from the area of the loading dock.

Figure 7.5: Case study in (Misuri et al. 2018), where the premises of the storage farm are

outlined in white; the two intrusion paths considered, ‘Via Ground’ and ‘Via Water’ are

reported as white arrows.

7.3. FDMs in epistemic space 127

The original FDM of such system (without uncertainty) is given below:

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Attack_OR ..= ∨(AG,AW)
Attack_XOR ..= �XOR(AG,AW)

AG ..= ∧(UIG,Exp)
AW ..= ∧(UIW,Exp)
UIG ..= ∧(∧(FSL,CCTV), SF)
UIW ..= ∧(∧(CCTV, SF), Doc)
Exp ..= ∧(IED,Reg)
FSL ..= ∧(∨(MG,FF), Pat)
Doc ..= ∧(Pat,DB)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.26)

The acronyms are given Table 7.4.

Table 7.4: Definitions of acronyms

AG Attack via Ground AW Attack via Water

UIG Undetected Intrusion from Ground UIW Undetected Intrusion from Water

Exp Explosion FSL First Security Layer

FF First Fence SF Second Fence

Pat Patrol MG Main Gate

Doc Docking DB Docking Barriers

IED Improvised Explosive Device Reg Regress

The valuation domain of each variable is the binary FDS WF. But the meanings

of W and F are different for different variables:

– For those variables representing a certain defense against the attack: W
means that the defense is working and F means that the defense is failed.

The variables belong to this kind are: Pat, DB, Doc, MG, FF , FSL,

CCTV , SF .

– For those variables representing a certain attack: W means that the attack

is failed and F means that the attack is succeeded. The variables belong

to this kind are: IED, Reg, Exp, UIG, UIW , AW , AG, Attack_OR,

Attacl_XOR.

InM, there are two root variables: Attack_OR and Attack_XOR. The former

means that the attack is succeed if at least one of the attacks AG and AW is

succeed. Therefore, we use the join operator ∨ to model Attack_OR from AG
and AW . The latter means that the attack is succeed if only one of the attacks

AG and AW is succeed. Therefore, we use the exclusive-OR operator �XOR to

128 Modeling Epistemic Space of Degradation Processes

Table 7.5: The valuation of �XOR : WF2 � WF.

�XOR(u, v)
v

W F

u
W W F
F F W

model Attack_XOR from AG and AW . The valuation of ∨ and ∧ can be found

Section 6.2.2. The valuation of �XOR is given Table 7.5.

In the sequel, two cases are presented to show the modeling of uncertain valu-

ation of state variables. In case 1, the valuation of all state variables of S =
{MG,FF, Pat,DB,CCTV, SF, IED,Reg} is considered to be uncertain. This

case is the same as the one in Misuri et al. (2018). In case 2, we assume that only

part of the state variables have uncertain valuation.

Case 1 Assume that the valuation of all state variables in S is uncertain. Then,

for every state variable v ∈ S, its valuation domain becomes dom(v) = (WF)u.

Accordingly, we should transform the operations in this model in correct forms

using the transformations defined Section 7.3.1. The resultant model is given as

follows:

M1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Attack_OR ..= ∨u(AG,AW)
Attack_XOR ..= (�XOR)u(AG,AW)

AG ..= ∧u(UIG,Exp)
AW ..= ∧u(UIW,Exp)
UIG ..= ∧u(∧u(FSL,CCTV), SF)
UIW ..= ∧u(∧u(CCTV, SF), Doc)
Exp ..= ∧u(IED,Reg)
FSL ..= ∧u(∨u(MG,FF), Pat)
Doc ..= ∧u(Pat,DB)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.27)

In this case,

�M1� : ((WF)u)8 � ((WF)u)9

Case 2 In this case, we assume that only the valuation of Pat and Reg is con-

sidered to be uncertain. As results, their valuation domains are first transformed

into the epistemic space, i.e. dom(Pat) = dom(Reg) = (WF)u. The valuation

domain of other variables is still WF. Similarly, we transform the operations in

correct forms according to the transformations defined Section 7.3.1 and the res-

7.3. FDMs in epistemic space 129

ultant model is given as follows:

M2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Attack_OR ..= ∨u(AG,AW)
Attack_XOR ..= (�XOR)u(AG,AW)

AG ..= ∧u(UIG,Exp)
AW ..= ∧u(UIW,Exp)
UIG ..= ∧L(∧L(FSL,CCTV), SF)
UIW ..= ∧R(∧(CCTV, SF), Doc)
Exp ..= ∧R(IED,Reg)
FSL ..= ∧R(∨(MG,FF), Pat)
Doc ..= ∧L(Pat,DB)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.28)

In this case,

�M2� : WF6 ⊗ ((WF)u)2 � ((WF)u)9

7.3.3 Uncertainty analysis

Theoretically, the FDMs transformed in the epistemic space are still FDMs. It

means that the scenarios analysis and the probability calculations presented Chapter 5

can also be applied to assess the FDMs in epistemic space.

Scenarios analysis

The scenarios analysis of the two modelsM1 andM2 in Eq.(7.27) and Eq.(7.28)

is implemented. The observers used in the scenarios analysis are Attack_OR =
{W}, Attack_OR = {W,F}, Attack_OR = {F}, Attack_XOR = {W},
Attack_XOR = {W,F} and Attack_XOR = {F}.

The results of the number of scenarios and critical scenarios forM1 andM2 are

given Table 7.6.

Table 7.6: Numbers of scenarios and critical scenariosforM1 andM2.

M1 M2

Y {W} {W,F} {F} {W} {W,F} {F}
|Sce(Attack_OR = Y)| 5729 813 19 548 21 7

|MinSce(Attack_OR = Y)| 1 3 3 1 3 3

|MaxSce(Attack_OR = Y)| 6 6 1 6 2 1

|Sce(Attack_XOR = Y)| 5734 821 6 551 21 4

|MinSce(Attack_XOR = Y)| 1 3 3 1 3 3

|MaxSce(Attack_XOR = Y)| 1 7 2 1 2 2

We will not list all the critical scenarios here. But, we found that the scenarios in

MinSce(Attack_OR = {W}), MaxSce(Attack_OR = {W}), MinSce(Attack_XOR =

130 Modeling Epistemic Space of Degradation Processes

{F}) and MaxSce(Attack_XOR = {F}) obtained fromM1 are equivalent to

relevant critical scenarios obtained fromM2. Moreover, we also perform the ana-

lysis of the original model M in Eq.(7.26). We finally found that those sets of

scenarios are also equivalent to the ones obtained fromM. Therefore, we draw the

conclusion that in this system, the introduction of epistemic uncertainties doesn’t

influence the critical scenarios of the observers where the valuation of Attack_OR
and Attack_XOR is certain, i.e. {W} or {F}.

To be concrete, we list the two sets of critical scenarios MaxSce(Attack_OR =
{W}) and MinSce(Attack_OR = {F}) obtained fromM1 as follows:

MaxSce(Attack_OR = {W}) = {({F}, {F}, {F}, {F}, {F}, {F}, {W}, {F}),
({F}, {F}, {F}, {F}, {F}, {W}, {F}, {F}),
({F}, {F}, {F}, {F}, {W}, {F}, {F}, {F}),
({F}, {F}, {F}, {W}, {F}, {F}, {F}, {F}),
({F}, {F}, {W}, {F}, {F}, {F}, {F}, {F}),
({W}, {W}, {F}, {F}, {F}, {F}, {F}, {W})}

MinSce(Attack_OR = {F}) = {({W}, {W}, {F}, {F}, {F}, {F}, {F}, {F}),
({W}, {F}, {F}, {F}, {F}, {F}, {F}, {W}),
({F}, {W}, {F}, {F}, {F}, {F}, {F}, {W})}

The valuation order of each scenario above is the same with the variable ordering

in DD(fAttack_OR) forM1, i.e. MG ≺ FF ≺ Pat ≺ CCTV ≺ SF ≺ IED ≺
Reg ≺ DB.

Now, consider the observer Attack_OR = {W,F}where the valuation of Attack_OR
is uncertain. Denote this observer by o.

ForM1, the critical scenarios of o are listed as follows:

MinSce(o)1 = {({W,F}, {W}, {W,F}, {W,F}, {W,F}, {W,F}, {W,F}, {W}),
({W}, {W,F}, {W,F}, {W,F}, {W,F}, {W,F}, {W,F}, {W}),
({W}, {W}, {W,F}, {W,F}, {W,F}, {W,F}, {W,F}, {W,F})}

MaxSce(o)1 = {({F}, {F}, {W,F}, {F}, {F}, {F}, {F}, {F}),
({F}, {F}, {F}, {W,F}, {F}, {F}, {F}, {F}),
({F}, {F}, {F}, {F}, {W,F}, {F}, {F}, {F}),
({F}, {F}, {F}, {F}, {F}, {W,F}, {F}, {F}),
({F}, {F}, {F}, {F}, {F}, {F}, {W,F}, {F}),
({W,F}, {W,F}, {F}, {F}, {F}, {F}, {F}, {W,F})}

(7.29)

7.3. FDMs in epistemic space 131

ForM2, the critical scenarios of o are listed as follows:

MinSce(o)2 = {(W,W, {W,F}, F, F, F, {W,F}, F),
(W,F, {W,F}, F, F, F, {W,F},W),
(F,W, {W,F}, F, F, F, {W,F},W)}

MaxSce(o)2 = {(F, F, {F}, F, F, F, {W,F}, F),
(F, F, {W,F}, F, F, F, {F}, F)}

(7.30)

Comparing the critical scenarios of o for M1 and M2, we can see that the two

scenarios in MaxSce(o)2 are included in MaxSce(o)1 and the three scenarios in

MinSce(o)1 are less degraded than the three scenarios in MinSce(o)2. To some

extent, the latter indicates qualitatively that the range of uncertain scenarios is

enlarged fromM2 toM1. This enlargement can also be observed from the number

of scenarios in MaxSce(o)1 and MaxSce(o)2.

Probabilistic indicators

As inputs, we provide both the probability measure p in the domain WF and the

mass assignment m in the domain (WF)u of each state variable, see Table 7.7 and

Table 7.8.

Table 7.7: Probability measure in the domain WF of state variables without uncertainty.

MG FF Pat DB CCTV SF IED Reg

p(W) 0.85 0.65 0.75 0.75 0.75 0.65 0.25 0.55

p(F) 0.15 0.35 0.25 0.25 0.25 0.35 0.75 0.45

Table 7.8: Mass assignment in the domain (WF)u of state variables with uncertainty.

MG FF Pat DB CCTV SF IED Reg

m({W}) 0.8 0.6 0.7 0.7 0.7 0.6 0.2 0.5

m({W,F}) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

m({F}) 0.1 0.3 0.2 0.2 0.2 0.3 0.7 0.4

In this probabilistic assessment, the observers are the same as in scenarios analysis.

The results are pictured Figure 7.6.

From Figure 7.6, we can see that the mass that the attack is failed (i.e. m({W}))
accounts for the largest proportion in the four diagrams. If we make a comparison

between the results of M1 and M2, we can see that the range of uncertainties

(i.e. m({W,F})) is reduced fromM1 toM2, while mass/belief that the attack is

certain to be succeed (i.e. m({F})) is enlarged fromM1 toM2.

Based on the results of Figure 7.6, we can calculate the other probabilistic indicat-

ors, i.e. Bel, Pl, Best and Worst. The results are given Table 7.9.

132 Modeling Epistemic Space of Degradation Processes

Figure 7.6: The mass assignment m in the domain of Attack_OR and Attack_XOR for

M1 andM2.

As future work, we plan to apply the proposed modeling method to more complex

systems, for instance the safety instrumented system presented Section 2.3.

7.3. FDMs in epistemic space 133

Table 7.9: Results of Bel, Pl, Best and Worst in the domain of Attack_OR and

Attack_XOR forM1 andM2.

M1 M2

Attack_OR Attack_XOR Attack_OR Attack_XOR
Bel({W}) 9.904× 10−1 9.906× 10−1 9.942× 10−1 9.948× 10−1

Bel({W,F}) 1.000 1.000 1.000 1.000
Bel({F}) 7.895× 10−3 1.193× 10−3 3.075× 10−3 2.487× 10−3

Pl({W}) 9.921× 10−1 9.987× 10−1 9.969× 10−1 9.975× 10−1

Pl({W,F}) 1.000 1.000 1.000 1.000
Pl({F}) 9.562× 10−3 9.918× 10−1 9.973× 10−1 9.973× 10−1

Best(W) 1.000 1.000 1.000 1.000
Best(F) 7.895× 10−3 1.193× 10−3 3.075× 10−3 2.487× 10−3

Worst(W) 9.904× 10−1 9.906× 10−1 9.942× 10−1 9.948× 10−1

Worst(F) 1.000 1.000 1.000 1.000

134 Modeling Epistemic Space of Degradation Processes

Chapter 8

Summary of main results and
future work

8.1 Summary of main results
The primary purpose of this thesis is to propose a unified framework of reliability

combinatorial models for probabilistic risk/safety analyses. A summary of the

main results under this main objective are presented as follows.

8.1.1 Modeling framework of finite degradation structures

The proposed modeling framework is called finite degradation structures (FDSs).

This framework extends formally the fault trees analysis from Boolean systems

into multistate systems.

To realize such extension, we first define mathematically the algebraic framework

of FDSs, i.e. 〈FDS,⊗,Φ〉. Figure 8.1 shows a comparison between the Boolean

algebra used for fault tree analysis and the algebraic framework of FDSs.

• Valuation domain: In fault tree analysis, the valuation domain of each vari-

able is a Boolean lattice {0, 1}. Conventionally, 1 stands for the failed state

and 0 stand for the working state. In FDSs, the valuation domain is changed

to meet-semi-lattice. This change makes FDSs in essence more generic and

more appropriate to model the state space of multistate component/system.

• Orders: The orders in the Boolean lattice {0, 1} is theoretically defined as

0 < 1. The interpretation of this order depends on its application field. For

135

136 Summary of main results and future work

Figure 8.1: Comparison of the algebraic framework between fault trees and FDSs.

reliability and safety analyses, we interpret this order as the degradation or-

der among states, i.e. 0 (working state) is less degraded than 1 (failed state).

The orders in FDSs are also interpreted as the degradation order. Mathemat-

ically, the degradation order is a partial order that allows having incompar-

able states — i.e. whose degradation level is incomparable or undecidable

— in a FDS.

• Operations: In classical fault trees, three operations can be used to model

the system, which are the Boolean logic operations, i.e. conjunction, dis-

junction and negation. In FDSs, we propose two fundamental operations,

i.e. the monoidal product ⊗ on FDSs and the abstractions Φ between FDSs.

Based on these two operations, we can interpret any multi-valued logic op-

erations into the framework of FDSs. This allows analysts to design and

customize their own operations according to needs.

The main contribution of the algebraic framework of FDSs is that it breaks theor-

etically the binary assumption in fault tree analysis.

An important remark here is that in fault tree analysis, the binary assumption re-

stricts not the probabilistic calculation but the determination of minimal cut/path

sets. Theoretically, probability measures can always be defined and calculated in

multistate systems, since there is never such a limitation that a random variable

can only take two values.

The reason why the binary assumption impacts on the determination of minimal

cut/path sets is that the notion of minimal cut/path sets in fault trees coincides with

the notion of prime implicants in Boolean logic, and moreover, they both depend

8.1. Summary of main results 137

implicitly on the order 0 < 1 in Boolean lattices. In other words, the minimality

of a cut/path set is mathematically characterized by this order.

Therefore, after a careful mathematical demonstration, we found that to determine

minimal cut/path sets in multistate systems, we should also order the states of

the multistate component/system. For PRA/PSA, this order should be recognized

as the degradation order among states. For this reason, we choose meet-semi-

lattices as valuation domains of variables and equip each of them with a probability

measure to support the probabilistic calculation in FDSs.

The second comparison is made between the models built on FDSs and the fault

trees (as models built on Boolean algebra). The models built on the framework

of FDSs are called finite degradation models (FDMs). FDMs can be seen as nat-

ural extension of fault trees in multistate realm. Figure 8.2 shows a comparison

between fault trees and FDMs.

Figure 8.2: Comparison between fault trees and FDMs.

• Syntax and semantics: Syntactically, fault trees encode Boolean formu-

las and FDMs encode well-formed formulas. The former is interpreted as

138 Summary of main results and future work

Boolean functions, while the latter is interpreted as multi-valued logic func-

tions. The basic events and the intermediate events in fault trees correspond

respectively to the state variables and the flow variables in FDMs. The gates

in fault trees correspond to the multi-valued logic operators in FDMs.

• Graphical representation: A fault tree itself is the graphical representa-

tion of the Boolean function it encodes. For FDMs, we also use a binary

expression tree to encode its syntactic structure.

• Assessment technique: The most appropriate technique to assess logic

functions is the decision diagram technique. Binary Decision Diagrams

(BDDs) are used to extract minimal cutsets from fault trees. In FDMs, we

modified the BDD to fit the multi-valued operations. A detailed comparison

of these two types of decision diagrams will be given next section.

• Assessment results: As qualitative analysis, the cutsets analysis in fault

trees can be fully covered by the scenarios analysis in FDMs. The notion of

minimal cutsets is lifted up to the notion of minimal scenarios, which rep-

resent the minimal ways that the system degrades from an operation state

to an undesired state. The notion of minimal path set is lifted up to the no-

tion of maximal scenarios, which represent the maximal capability that the

system can remain in a good state despite of the occurrence of failures. As

quantitative results, the probabilistic indicators that can be calculated in fault

trees can be calculated in FDMs. These indicators provide the mathematical

bases based on which other reliability and safety indicators can be deduced.

From Figure 8.1 and Figure 8.2, we can see that the fault tree analysis is formally

and fully extended into multistate systems. As a unified framework of combinat-

orial models in PRA/PSA, the modeling framework of FDSs can be applied in all

cases where the system’s behavior is modeled by the combination of behaviors of

its components. Moreover, FDMs can also be used to abstract other models —

e.g. state/transition models like Markov chains — to support the combinatorial

and systematic analysis of their behaviors.

8.1.2 Calculation algorithms

Similar to fault tree analysis, the decision diagrams are also used to implement the

required calculations in FDMs. A comparison between the BDDs and the extended

decision diagrams for FDMs is given Figure 8.3.

• Node definitions: In BDDs, a terminal node is a constant node valued in the

Boolean domain {0, 1} and an internal node is a variable node (v, n1, n2)

8.1. Summary of main results 139

Figure 8.3: The binary decision diagrams and the extended decision diagrams for FDMs.

labeled with a variable v and pointing to the two child-nodes n1 (then-child)

and n2 (else-child). In our extended decision diagrams, a terminal node is

a constant node valued in a FDS and an internal node is a variable node

(v, s, n1, n2) labeled with a variable v and a state constant s, and pointing

to the two child-nodes n1 (then-child) and n2 (else-child).

• Interpretation: BDDs are used to encode the valuation of Boolean func-

tions, while our extended decision diagrams are used to encode the valuation

of multi-valued logic functions.

In our extended decision diagrams, we keep the binary connection of nodes so that

existing algorithms that have been well applied in BDDs can be easily extended

to our extended decision diagrams. To fit the syntax and the semantics of FDMs,

these algorithms are well adjusted.

Here, we also want to mention that the multistate multi-valued decision diagram

(MMDD) introduced Section 2.2.3 is theoretically an alternative to assess FDMs.

But, the difference is that in our extended decision diagrams, we provide two order-

ings to organize the valuation paths. The primary ordering is the variable ordering

similar to the one in BDDs and MMDDs. This ordering defines the valuation pri-

ority of different variables in the decision diagram. The secondary ordering is the

ordering of the states in the valuation chain of a variable. We have noticed that

if the secondary ordering is consistent with the degradation orders, the calculation

efficiency can be improved considerably when the system is coherent. The use

140 Summary of main results and future work

of this secondary ordering is not included in this thesis but can be found in our

paper Rauzy and Yang (2019).

8.1.3 Software and modeling language

We developed a software called LatticeX in Python to realize the computer-

based modeling and assessment of FDMs. The input of this software is the FDMs

written in text files. As output, it can calculate the required scenarios, critical

scenarios and state probabilities for a given observer.

The modeling of FDMs is realized by writing FDMs in text files using the mod-

eling language FDS-ML. FDS-ML is an object-oriented language specifically de-

signed to describe FDMs. Using FDS-ML, analysts can define their own FDSs and

operators, assign (time-dependent) probabilities to variables and write equations to

form FDMs.

The modeling of FDMs is separated from the assessment of FDMs. The latter is

realized by a calculation engine in LatticeX. A compiler of FDS-ML is embed-

ded in LatticeX to translate the input textual FDMs to the calculation engine to

be assessed. The algorithms presented this thesis are currently used in this cal-

culation engine. The current version of LatticeX is the first version and in this

version we mainly focus on its functionality and correctness. The improvement of

computational efficiency will be included in our future work.

8.2 Recommendations for future work
The modeling framework presented this thesis is a new tool for reliability and

safety analyses. What we have done is just the first trial. The future work that can

contribute to complete the proposed modeling framework in both theoretical and

practical perspectives is summarized as follows.

Direction 1. Completing the theoretical framework

First, we want to include the determination of importance measures in FDMs. Im-

portance measures can be used to identify the weakest component of a system

and to support system improvement activities. For Boolean systems, many types

of importance measures have been put forward, such as Birnbaum importance,

risk achievement/deduction worth, criticality importance, Fussell-Vesely’s meas-

ure, etc. For multistate systems, there are also many researches dedicated to the

analysis of components’ importance, see e.g. Chang et al. (2005), Si et al. (2012),

Zaitseva et al. (2015) and Kvassay et al. (2017). Although the importance meas-

ures have not been included in FDMs yet, we have already defined the conditional

8.2. Recommendations for future work 141

probabilities and the sensitivity factors (i.e. partial derivative of probabilistic indic-

ators), which can be used as the mathematical bases to define importance measures

in FDMs.

Second, we want to put more efforts on the analyses of non-coherent systems.

As presented Section 5.1.3, the scenarios analysis for coherent systems can be

reduced to the analysis of critical scenarios, thanks to the order-similarity between

the components and the system as a whole. But for non-coherent systems, such

order-similarity doesn’t exist anymore. In this case, what can be the good indicator

to characterize the criticality of scenarios? A possible idea is to use the upper set

as a coherent hull of the set of scenarios. This idea has been presented in our

paper Rauzy and Yang (2019). Other solutions may also exist and will be included

in our future work.

Direction 2. Enlarging the modeling library

This thesis provides a small modeling library of the operators that have been ap-

plied in reliability and safety analyses. This modeling library includes currently

the logic conjunction, disjunction and negation operators; the join and meet oper-

ators; the k-out-of-n operator; the operator for hot-standby systems; and the series

and parallel operators for safety instrumented systems. For future work, we may

consider to enlarge this modeling library by adding more operators in different

fields of applications.

Direction 3. Improving the calculation algorithms

The techniques that have been dedicated to improve the computational efficiency

of algorithms on binary decision diagrams can be potentially applied to our calcu-

lation algorithms. For instance, we can use the cache technique to avoid repeated

operations; we can minimize the size of diagram by defining suitable node re-

duction rules and optimizing the variable ordering; and we can use the secondary

ordering — the ordering of states in a valuation chain of a variable — to cut off

non-critical scenarios.

Direction 4. Upgrading the software LatticeX

The current version of LatticeX is just a demonstration version, which contains

only the basic functions of the proposed modeling framework. Since the main ob-

jective of this PhD is not the software development, we didn’t put many efforts on

its improvement yet. For future improvements (if required), the following direc-

tions can be considered: (1) integrate the modeling library in LatticeX so that the

domains and the operators can be directly used in the model. (2) improve the mod-

eling language FDS-ML, increase its expressive power and possibly add graphical

142 Summary of main results and future work

user interface to visualize FDMs.

Direction 5. Supporting the synchronization of models between MBSE amd MBSA

To face the increasing complexity of technical systems, engineering disciplines

contributing to the design and the operation of these systems are more and more

relying on the so-called model-based approach. This is especially the case for

system architectures and safety analyses. These two disciplines can be seen as the

two faces of the same medal: “systems architects are in charge of describing how
the system works while safety analysts are in charge of studying how it may fail.”

For this reason, it is of primary importance to both ensure an effective communic-

ation between them and to keep their activities separated, so to avoid conflicts of

interest. Although both consider the system from a holistic perspective, these two

disciplines are of different natures and this difference reflects on the type of models

that are designed. Models designed by system architects, using typically modeling

languages such as SysML (Friedenthal et al. 2014), are pragmatic. They aim at

supporting a seamless communication between the stakeholders. Models designed

by safety analysts are formal in sense of mathematics. They aim at calculating risk

indicators (Andrews 2002). It does not mean however that they should have noth-

ing in common. Rather, their commonalities should be considered dynamically,

i.e. by understanding that models are not designed once for all but evolve iterat-

ively throughout the life cycle of systems. The problem should be thought in terms

of model synchronization, i.e. of periodical rendezvous during which models are

checked for consistency (Legendre et al. 2017).

As mentioned Section 2.2, PRA/PSA models can be roughly classified into two

categories: combinatorial models and state automata. The former abstract away

the latter by considering only states of the system not transitions between these

states. In the framework of FDSs, we make it possible to formally define condi-

tions under which a model is a correct abstraction of another one, via a suitable

coherent operation. This makes FDSs a good candidate to be the mathematical

ground on which models to synchronize behavioral descriptions for both system

architecture and safety analyses are built, i.e. to support the interface between

model-based systems engineering (MBSE) and model-based safety assessment

(MBSA). This idea is presented in our paper Yang et al. (2018). For future work,

we hope to find more practical case studies that can be used to concretely illustrate

such synchronization supported by FDSs.

8.3. Closing remarks 143

8.3 Closing remarks
In ancient times, the soldiers make weapons themselves. But now, few soldiers

do so because our society is moving towards in a direction that the division of

labour is more and more refined, i.e. there are more expertised people who make

advanced weapons for soldiers.

When the war is won, it is hard to decide whether the soldiers or the people who

made the weapons should be awarded the golden medal. In fact, they are not

competitors. They are collaborators. They won the war together and their inter-

dependence promotes both the development of advanced weapons and the training

of more skilled soldiers.

“This division of labour, from which so many advantages are derived, is not ori-
ginally the effect of any human wisdom, which foresees and intends that general
opulence to which it gives occasion.” — Adam Smith «The Wealth of Nations»

In engineering fields, there are engineers who work on the implementation of real

systems, there are analysts who design models and perform the required analysis,

and there are also researchers who design new methodology, models and tools to

facilitate the work of them both. No one is and no one should be more dominant

than the others, since they all contribute to the opulence of engineering.

The modeling framework proposed this thesis is like a new weapon for reliability

and safety analysts. We hope that on the one hand, it can be useful in practical

applications and on the other hand, it can also bring new ideas or inspirations to

other similar researches.

There is no war in science. We are all contributors with the common faith:

“Kunnskap for en bedre verden.” (Knowledge for a better world.) — NTNU vision

144 Summary of main results and future work

Bibliography

Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., and Tohdo, T. (2011). An

approach to optimization of fault tolerant architectures using hip-hops. Soft-
ware: Practice and Experience, 41(11):1303–1327.

Agarwal, H., Renaud, J. E., Preston, E. L., and Padmanabhan, D. (2004). Uncer-

tainty quantification using evidence theory in multidisciplinary design optimiz-

ation. Reliability Engineering and System Safety, 85(1):281–294.

Akers, J. (1978). Binary decision diagrams. IEEE Transactions on Computers,

C-27(6):509–516.

Andrews, J. (2002). Reliability and risk assessment.

Barlow, R. E. and Wu, A. S. (1978). Coherent systems with multi-state compon-

ents. Mathematics of operations research, 3(4):275–281.

Batteux, M., Prosvirnova, T., Rauzy, A., and Kloul, L. (2013). The altarica 3.0

project for model-based safety assessment. In 2013 11th IEEE International
Conference on Industrial Informatics (INDIN), pages 741–746. IEEE.

Bjerring, J. (2014). Problems in epistemic space. Journal of Philosophical Logic,

43(1):153–170.

Boudali, H., Crouzen, P., and Stoelinga, M. (2007a). A compositional semantics

for dynamic fault trees in terms of interactive markov chains. In International
Symposium on Automated Technology for Verification and Analysis, pages 441–

456. Springer.

Boudali, H., Crouzen, P., and Stoelinga, M. (2007b). Dynamic fault tree analysis

using input/output interactive markov chains. In 37th Annual IEEE/IFIP In-

145

146 BIBLIOGRAPHY

ternational Conference on Dependable Systems and Networks (DSN’07), pages

708–717. IEEE.

Bouissou, M. and Bon, J.-L. (2003). A new formalism that combines advantages

of fault-trees and markov models: Boolean logic driven markov processes. Re-
liability Engineering and System Safety, 82(2):149–163.

Bouissou, M., Bruyere, F., and Rauzy, A. (1997). Bdd based fault-tree processing:

A comparison of variable ordering heuristics. In Proceedings of European Safety
and Reliability Association Conference, ESREL’97.

Brace, K., Rudell, R., and Bryant, R. (1991). Efficient implementation of a bdd

package. In Proceedings of the 27th ACM/IEEE Design Automation Conference,

DAC ’90, pages 40–45. ACM.

Bruce, K. B. (2002). Foundations of object-oriented languages : types and se-

mantics.

Bryant (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691.

Buchacker, K. (2000). Modeling with extended fault trees. In Proceedings. Fifth
IEEE International Symposium on High Assurance Systems Engineering (HASE
2000), volume 2000-, pages 238–246. IEEE.

Buchacker, K. et al. (1999). Combining fault trees and petri nets to model safety-

critical systems. In High performance computing, pages 439–444. The Society

for Computer Simulation International.

Chang, Y.-R., Amari, S. V., and Kuo, S.-Y. (2005). Obdd-based evaluation of reli-

ability and importance measures for multistate systems subject to imperfect fault

coverage. IEEE Transactions on Dependable and Secure Computing, 2(4):336–

347.

Chaux, P.-Y., Roussel, J.-M., Lesage, J.-J., Deleuze, G., and Bouissou, M. (2013).

Towards a unified definition of minimal cut sequences. IFAC Proceedings
Volumes, 46(22):1–6.

Codetta-Raiteri, D. (2005). The conversion of dynamic fault trees to stochastic

petri nets, as a case of graph transformation. Electronic Notes in Theoretical
Computer Science, 127(2):45–60.

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued

mapping. The Annals of Mathematical Statistics, 38(2):325–339.

BIBLIOGRAPHY 147

Dugan, J., Bavuso, S., and Boyd, M. (1990). Fault-trees and sequence de-

pendencies. Proceedings Annual Reliability And Maintainability Symposium,

(SYM):286–293.

Dugan, J., Bavuso, S., and Boyd, M. (1992). Dynamic fault-tree models for fault-

tolerant computer systems. IEEE Transactions on Reliability, 41(3):363–377.

El-Neweihi, E., Proschan, F., and Sethuraman, J. (1978). Multistate coherent sys-

tems. Journal of Applied Probability, 15(4):675–688.

Friedenthal, S., Moore, A., and Steiner, R. (2014). A practical guide to SysML:
the systems modeling language. Morgan Kaufmann.

Fussell, J. (1972). A new methodology for obtaining cut sets for fault trees. Trans.
Am. Nucl. Soc.

Fussell, J. (1975). A review of fault tree analysis with emphasis on limitations.

IFAC Proceedings Volumes, 8(1):552–557.

Griffith, W. S. (1980). Multistate reliability models. Journal of Applied Probabil-
ity, 17(3):735–744.

Gudemann, M. and Ortmeier, F. (2010). A framework for qualitative and quant-

itative formal model-based safety analysis. In 2010 IEEE 12th International
Symposium on High Assurance Systems Engineering, pages 132–141. IEEE.

Helton, J. C. and Burmaster, D. E. (1996). Guest editorial: treatment of aleatory

and epistemic uncertainty in performance assessments for complex systems.

Hirsch, W. M., Meisner, M., and Boll, C. (1968). Cannibalization in multicompon-

ent systems and the theory of reliability. Naval Research Logistics Quarterly,

15(3):331–360.

Hochberg, M. (1973). Generalized multicomponent systems under cannibaliza-

tion. Naval Research Logistics Quarterly, 20(4):585–605.

Huang, X. (1984). The generic method of the multistate fault tree analysis. Micro-
electronics Reliability, 24(4):617–622.

Ibañez-Llano, C. and Rauzy, A. (2008). Variable ordering heuristics for bdd based

on minimal cutsets. In Proceedings of the International Probabilistic Safety
Assessment and Management Conference (PSAM 9) Hong Kong, pages 18–23.

IEC61508 (2010). International iec standard iec61508 - functional safety of

electrical/electronic/programmable safety-related systems (e/e/pe, or e/e/pes).

Standard, International Electrotechnical Commission, Geneva, Switzerland.

148 BIBLIOGRAPHY

International, S. (1996). Guidelines and methods for conducting the safety assess-
ment process on civil airborne systems and equipment. SAE International.

ISO12489 (2013). Iso/tr 12489:2013 petroleum, petrochemical and natural gas

industries – reliability modelling and calculation of safety systems. Standard,

International Organization for Standardization, Geneva, Switzerland.

Janan, X. (1985). On multistate system analysis. IEEE Transactions on Reliability,

R-34(4):329–337.

Jiang, L., Wang, X., and Liu, Y. (2018). Reliability evaluation of the chinese train

control system level 3 using a fuzzy approach. Proceedings of the Institution of
Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(9):2244–

2259.

Jung, W. S., Han, S. H., and Ha, J. (2004). A fast bdd algorithm for large coherent

fault trees analysis. Reliability Engineering and System Safety, 83(3):369–374.

Kaiser, B., Gramlich, C., and Förster, M. (2007). State/event fault trees—a safety

analysis model for software-controlled systems. Reliability Engineering and
System Safety, 92(11):1521–1537.

Kolmogorov, A. (1950). Foundations of the theory of probability.

Kumamoto, H. (1996). Probabilistic risk assessment and management for engin-

eers and scientists.

Kvassay, M., Levashenko, V., and Zaitseva, E. (2016). Analysis of minimal cut

and path sets based on direct partial boolean derivatives. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,

230(2):147–161.

Kvassay, M., Zaitseva, E., and Levashenko, V. (2017). Importance analysis of

multi-state systems based on tools of logical differential calculus. Reliability
Engineering & System Safety, 165:302–316.

Langseth, H. and Lindqvist, B. H. (1998). Uncertainty bounds for a monotone

multistate system. Probability in the Engineering and Informational Sciences,

12(2):239–260.

Lee, C.-Y. (1959). Representation of switching circuits by binary-decision pro-

grams. The Bell System Technical Journal, 38(4):985–999.

BIBLIOGRAPHY 149

Legendre, A., Lanusse, A., and Rauzy, A. (2017). Toward model synchronization

between safety analysis and system architecture design in industrial contexts.

volume 10437, pages 35–49. Springer Verlag.

Levitin, G. (2004). A universal generating function approach for the analysis of

multi-state systems with dependent elements. Reliability Engineering and Sys-
tem Safety, 84(3):285–292.

Levitin, G. (2005). The Universal Generating Function in Reliability Analysis
and Optimization. Springer Series in Reliability Engineering. Springer London,

London.

Li, S., Si, S., Dui, H., Cai, Z., and Sun, S. (2014). A novel decision diagrams

extension method. Reliability Engineering and System Safety, 126:107–115.

Li, Y. Y., Chen, Y., Yuan, Z. H., Tang, N., and Kang, R. (2017). Reliability ana-

lysis of multi-state systems subject to failure mechanism dependence based on a

combination method. Reliability Engineering and System Safety, 166:109–123.

Lindqvist, B. H. (2003). Bounds for the reliability of multistate systems with

partially ordered state spaces and stochastically monotone markov transitions.

International Journal of Reliability, Quality and Safety Engineering, 10(3):235–

248.

Lisnianski, A. (2003). Multi-state system reliability : assessment, optimization

and applications.

Lisnianski, A. (2007). Extended block diagram method for a multi-state system

reliability assessment. Reliability Engineering and System Safety, 92(12):1601–

1607.

Lisnianski, A., Frenkel, I., and Ding, Y. (2010). Multi-state system reliability

analysis and optimization for engineers and industrial managers.

Liu, C., Chen, N., and Yang, J. (2015). New method for multi-state system re-

liability analysis based on linear algebraic representation. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,

229(5):469–482.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1995).

Modelling with generalized stochastic Petri nets, volume 292. Wiley New York.

Matsuoka, T. and Kobayashi, M. (1988). Go-flow: a new reliability analysis meth-

odology. Nuclear Science and Engineering, 98(1):64–78.

150 BIBLIOGRAPHY

Merle, G., Roussel, J.-M., Lesage, J.-J., and Bobbio, A. (2010). Probabilistic

algebraic analysis of fault trees with priority dynamic gates and repeated events.

IEEE Transactions on Reliability, 59(1):250–261.

Miller, D. M. (1993). Multiple-valued logic design tools. In [1993] Proceedings
of the Twenty-Third International Symposium on Multiple-Valued Logic, pages

2–11. IEEE.

Minato, S.-I. (1993). Zero-suppressed bdds for set manipulation in combinatorial

problems. In Proceedings of the 30th international Design Automation Confer-
ence, DAC ’93, pages 272–277. ACM.

Misuri, A., Khakzad, N., Reniers, G., and Cozzani, V. (2018). Tackling uncertainty

in security assessment of critical infrastructures: Dempster-shafer theory vs.

credal sets theory. Safety Science, 107:62–76.

Mo, Y., Liu, Y., and Cui, L. (2018). Performability analysis of multi-state series-

parallel systems with heterogeneous components. Reliability Engineering and
System Safety, 171:48–56.

Mo, Y., Zhong, F., Liu, H., Yang, Q., and Cui, G. (2013). Efficient ordering

heuristics in binary decision diagram–based fault tree analysis. Quality and
Reliability Engineering International, 29(3):307–315.

Murchland, J. (1975). Fundamental concepts and relations for reliability analysis

of multi-state systems. In Reliability and fault tree analysis, pages 581–618.

Ohi, F. (2010). Multistate coherent systems. In Stochastic Reliability Modeling,
Optimization And Applications, pages 3–34. World Scientific Publishing Co.

Pte. Ltd.

Ohi, F. (2013). Lattice set theoretic treatment of multi-state coherent systems.

Reliability Engineering & System Safety, 116:86–90.

Ohi, F. (2016). Stochastic evaluation methods of a multi-state system via a modular

decomposition. Journal of Computational Science, 17:156–169.

Papadopoulos, Y. and McDermid, J. (1999). Hierarchically performed hazard ori-

gin and propagation studies. volume 1698, pages 139–152. Springer Verlag.

Parry, G. W. (1996). The characterization of uncertainty in probabilistic risk as-

sessments of complex systems. Reliability Engineering and System Safety, 54(2-

3):119–126.

BIBLIOGRAPHY 151

Piriou, P.-Y., Faure, J.-M., and Lesage, J.-J. (2017). Generalized boolean logic

driven markov processes: A powerful modeling framework for model-based

safety analysis of dynamic repairable and reconfigurable systems. Reliability
Engineering and System Safety, 163(C):57–68.

Portinale, L. and Codetta-Raiteri, D. (2011). Using dynamic decision networks

and extended fault trees for autonomous fdir. In 2011 IEEE 23rd International
Conference on Tools with Artificial Intelligence, pages 480–484. IEEE.

Prosvirnova, T. (2014). AltaRica 3.0: a model-based approach for safety analyses.

PhD thesis.

Rasmussen, N. C. (1975). Reactor safety study: An assessment of accident risks

in us commercial nuclear power plants. Technical report.

Rausand, M. (2004). System reliability theory : models, statistical methods, and

applications.

Rauzy, A. (2001). Mathematical foundations of minimal cutsets. IEEE Transac-
tions on Reliability, 50(4):389–396.

Rauzy, A. (2012). Anatomy of an efficient fault tree assessment engine. In Pro-
ceedings of international joint conference PSAM, volume 11.

Rauzy, A. (2018). Notes on computational uncertainties in probabilistic risk/safety

assessment. Entropy, 20(3):162.

Rauzy, A. and Yang, L. (2019). Decision diagram algorithms to extract minimal

cutsets of finite degradation models. Information, 10(12):368.

Rauzy, A. B. (2008). Guarded transition systems: A new states/events formalism

for reliability studies. Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, 222(4):495–505.

Rauzy, A. B. (2011). Sequence algebra, sequence decision diagrams and dynamic

fault trees. Reliability Engineering and System Safety, 96(7):785–792.

Ruijters, E. and Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-

the-art in modeling, analysis and tools. Computer Science Review, 15-16(C):29–

62.

Shafer, G. (1976). A mathematical theory of evidence.

Shrestha, A., Xing, L., and Coit, D. W. (2010). An efficient multistate multival-

ued decision diagram-based approach for multistate system sensitivity analysis.

IEEE Transactions on Reliability, 59(3):581–592.

152 BIBLIOGRAPHY

Si, S., Dui, H., Zhao, X., Zhang, S., and Sun, S. (2012). Integrated importance

measure of component states based on loss of system performance. IEEE Trans-
actions on Reliability, 61(1):192–202.

Signoret, J.-P., Dutuit, Y., Cacheux, P.-J., Folleau, C., Collas, S., and Thomas, P.

(2013). Make your petri nets understandable: Reliability block diagrams driven

petri nets.(report). Reliability Engineering and System Safety, 113:61.

Standard, I. (2011). Iso 26262 road vehicles–functional safety. Standard, Interna-

tional Organization for Standardization, Geneva, Switzerland.

Tang, Z. and Dugan, J. (2004). Minimal cut set/sequence generation for dynamic

fault trees. Annual Reliability And Maintainability Symposium, 2004 Proceed-
ings, pages 207–213.

Ushakov, I. (1986). A universal generating function. Soviet Journal of Computer
and Systems Sciences, 24(5):118–129.

Ushakov, I. A. (1988). Reliability analysis of multistate systems by means of a

modified generating function. Journal of Information Processing and Cybernet-
ics, 24(3):131–135.

Verma, A. K., Srividya, A., and Karanki, D. R. (2010). Probabilistic safety assess-

ment. Reliability and Safety Engineering, pages 323–369.

Walker, M. and Papadopoulos, Y. (2009). Qualitative temporal analysis: Towards

a full implementation of the fault tree handbook. Control Engineering Practice,

17(10):1115–1125.

Watson, H. et al. (1961). Launch control safety study. Bell labs.

Wood, A. P. (1985). Multistate block diagrams and fault trees. IEEE Transactions
on Reliability, R-34(3):236–240.

Xing, L. (2007). Efficient analysis of systems with multiple states. In 21st In-
ternational Conference on Advanced Information Networking and Applications
(AINA ’07), pages 666–672. IEEE.

Xing, L. and Dai, Y. (2009). A new decision-diagram-based method for efficient

analysis on multistate systems. IEEE Transactions on Dependable and Secure
Computing, 6(3):161–174.

Yang, L. and Rauzy, A. (2018). Reliability modeling using finite degradation struc-

tures. In 2018 3rd International Conference on System Reliability and Safety
(ICSRS), pages 168–175. IEEE.

BIBLIOGRAPHY 153

Yang, L. and Rauzy, A. (2019a). Fds-ml: A new modeling formalism for prob-

abilistic risk and safety analyses. In International Symposium on Model-Based
Safety and Assessment, pages 78–92. Springer.

Yang, L. and Rauzy, A. (2019b). Model synthesis using boolean expression dia-

grams. Reliability Engineering and System Safety, 186:78–87.

Yang, L., Rauzy, A., and Haskins, C. (2018). Finite degradation structures: a

formal framework to support the interface between mbse and mbsa. In 2018
IEEE International Systems Engineering Symposium (ISSE), pages 1–6. IEEE.

Yang, L., Rauzy, A., and Lundteigen, M. A. (2019). Finite degradation analysis of

multiple safety instrumented systems. In 2019 European Safety and Reliability
Conference (ESREL 2019).

Yu, K., Koren, I., and Guo, Y. (1994). Generalized multistate monotone coherent

systems. IEEE Transactions on Reliability, 43(2):242–250.

Zaitseva, E. and Levashenko, V. (2013). Multiple-valued logic mathematical ap-

proaches for multi-state system reliability analysis. Journal of Applied Logic,

11(3):350–362.

Zaitseva, E., Levashenko, V., and Kostolny, J. (2015). Importance analysis based

on logical differential calculus and binary decision diagram. Reliability Engin-
eering & System Safety, 138:135–144.

Zang, X., Wang, D., Sun, H., and Trivedi, K. (2003). A bdd-based algorithm for

analysis of multistate systems with multistate components. 52(12):1608–1618.

Zhang, H.-L., Zhang, C.-Y., Liu, D., and Li, R. (2011). A method of quantitative

analysis for dynamic fault tree. In 2011 Proceedings - Annual Reliability and
Maintainability Symposium, pages 1–6. IEEE.

Zhao, J., Cai, Z., Si, W., and Zhang, S. (2019). Mission success evaluation of

repairable phased-mission systems with spare parts. Computers & Industrial
Engineering, 132:248–259.

154 BIBLIOGRAPHY

Appendix A

Appendices

A.1 Attributes of the classes in LatticeX

155

156 Appendices

class State:
def __init__ (self,domain,name):

self.name=name
self.domain=domain

...

class Domain:
def __init__(self,name):

self.name=name
self.states={}
self.orders=[]
self.bottom = None

...

class Distribution:
def __init__(self,name):

self.name = name
self.datapoints = [] #(time,probability)

...
def ReaderFromCSVFile(self,filename) ...
def WriterToCSVFile(self,filename) ...
...

class ProbabilityDistribution:
def __init__(self,name):

self.name = name
self.distributions = {}

...

class FiniteDegradationStructure:
def __init__(self,name):

self.name = name
self.domain = None
self.PD = None #Probability distribution

...

Figure A.1: The attributes of the classes related to FDS.

A.2 Grammar of FDS-ML defined by EBNF
In this section, we provide the formal descriptions of the grammar of FDS-ML.

The Extended Backus - Naur Form (EBNF) constructs listed Table A.1 are used.

First, the definition of Identifier is defined Figure A.3. In a language, an

A.2. Grammar of FDS-ML defined by EBNF 157

class Variable:
def __init__(self,name,FDS):

self.FDS = FDS
self.name = name
self.order = None

...

class Operator:
def __init__(self,name,A,B,C):

self.name = name
self.leftDomain = A
self.rightDomain = B
self.resultDomain = C
self.valuations = {}

...

class FormulaNode:
def __init__(self,nodeType,formula):

self.nodeType = nodeType #’internal’ or ’terminal’
self.operator = None
self.variable = None
self.leftChild = None
self.rightChild = None
self.formula = formula
self.number = 0

...

class Formula:
def __init__(self,name,model):

self.name = name
self.variables = {}
self.operators = {}
self.root = None #Root of the formula tree
self.model = model
self.variableOrdering = [] #List of variable names
self.DD = None

...

Figure A.2: The attributes of the classes related to Formula.

identifier is a sequence of letters, digits or the underscore character, which are

used for naming various items in the language.

Then, the declaration of operator, domain and block are defined Figure A.5, Fig-

158 Appendices

Table A.1: The constructs in EBNF and their meanings.

::= definition

“ ... ” terminal symbol

(...) grouping

... ... concatenation

...* repetition (any number of times)

...+ repetition (at least once)

... | ... alternative

ure A.4 and Figure A.6. These declarations form the main body of the textual

FDM.

Identifier ::=
(Alphabet | "_") (Digit | Alphabet | "_")*

Alphabet ::=
[a-zA-Z]

Digit ::=
[0-9]

Figure A.3: Definition of identifier in FDS-ML.

DomainDeclaration ::=
"domain" Identifier "{" States "}" "(" Orders ")"

States ::=
Identifier ("," Identifier)*

Orders ::=
Order ("," Order)*

Order ::=
Identifier "<" Identifier

Figure A.4: Definition of domain in FDS-ML

A.3. Textual model of the safety instrumented system 159

OperatorDeclaration ::=
"operator" Identifier "(" Dom "," Dom ")" "return" Dom
(MappingClause)*
"end"

MappingClause ::=
StateRef "," StateRef "->" StateRef

StateRef ::=
Identifier

Dom ::=
Identifier

Figure A.5: Definition of operator in FDS-ML

A.3 Textual model of the safety instrumented system

A.4 Sensitivity results of the safety instrumented system

160 Appendices

BlockDeclaration ::=
"block" Identifier
(VariableClause)+
"assertion" (AssertionClause)+
ObserverDeclaration
"end"

VariableClause ::=
Dom Identifier "(" ProbabilityDistributions ")"

ProbabilityDistributions ::=
Distribution ("," Distribution)*

Distribution ::=
StateRef "=" Probability

Probability ::=
RealNumber
| CSVFileName

AssertionClause ::=
VariableRef ":=" Formula

VariableRef ::=
Identifier

Formula ::=
VariableRef
| OperatorRef "(" Formula "," Formula ")"

ObserverDeclaration ::=
"observer" Identifier "=" Formula

Figure A.6: Definition of block in FDS-ML

A.4. Sensitivity results of the safety instrumented system 161

1 domain SIS {W, Fs, Fdd, Fdu} (W<Fs, W<Fdd, Fdd<Fdu)
2

3 operator series(SIS, SIS) return SIS
4 *, W -> *
5 *, Fs -> Fs
6 *, Fdd -> Fdd
7 W, Fdu -> Fdu
8 Fs, Fdu -> Fdd
9 Fdd, Fdu -> Fdd

10 Fdu, Fdu -> Fdu
11 end
12

13 operator parallel(SIS, SIS) return SIS
14 W, * -> W
15 Fs, * -> Fs
16 *, Fs -> Fs
17 *, W -> W
18 Fdd, Fdd -> Fdd
19 Fdd, Fdu -> Fdu
20 Fdu, Fdd -> Fdu
21 Fdu, Fdu -> Fdu
22 end
23

24 block TA4
25 SIS S1,S2,S3 (W=’Prob_Sensor_W.csv’, Fs=..., ...)
26 SIS LS1,LS2 (W=’Prob_LogicSolver_W.csv’, Fs=..., ...)
27 SIS V1,V2 (W=’Prob_Valve_W.csv’, Fs=..., ...)
28 assertion
29 Channel_1 := series(series(S1,LS1),V1)
30 Group_S := parallel(S2,S3)
31 Group_V := parallel(V1,V2)
32 Channel_2 := series(series(Group_S,LS1),Group_V)
33 System := parallel(Channel_1,Channel_2)
34 observer output = System
35 end

Figure A.7: The textual model of system in Figure 2.2 written in FDS-ML.

162 Appendices

Figure A.8: Sensitivity Sen(System = W, v = c), ∀v ∈ S, ∀c ∈ SIS.

A.4. Sensitivity results of the safety instrumented system 163

Figure A.9: Sensitivity Sen(System = Fs, v = c), ∀v ∈ S, ∀c ∈ SIS.

164 Appendices

Figure A.10: Sensitivity Sen(System = Fdd, v = c), ∀v ∈ S, ∀c ∈ SIS.

A.4. Sensitivity results of the safety instrumented system 165

Figure A.11: Sensitivity Sen(System = Fdu, v = c), ∀v ∈ S, ∀c ∈ SIS.

166 Appendices

Appendix B

Article on Model Synthesis

167

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Model synthesis using boolean expression diagrams

Liu Yang⁎, Antoine Rauzy
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway

A R T I C L E I N F O

Keywords:
Fault tree synthesis
Boolean expression diagrams
Boolean formulas
System architecture

A B S T R A C T

In this article, we propose a new method for fault tree analysis, called model synthesis, which comes in addition
to traditional assessment techniques. It consists in rewriting the fault tree under study, or the set of minimal
cutsets extracted from this fault tree, so to make some relevant information emerge.

Our implementation of model synthesis relies on encoding Boolean formulas by means of zero-suppressed
Boolean expression diagrams. Rewriting heuristics are efficiently implemented by means of local operations on
these diagrams. A key feature of zero-suppressed Boolean expression diagrams is that they make it possible to
perform partial normalization of Boolean formulas, avoiding in this way the exponential blow-up of calculation
resources most of the other methods suffer from.

We show how to take advantage of the architecture of the systems under study to guide rewriting heuristics.
We illustrate the principles of model synthesis and of its implementation by means of examples.

1. Introduction

Fault tree analysis is one of the prominent techniques for safety and
reliability analyses [1–3]. It is applied in a wide range of industries [4].
Fault trees are classically assessed in two ways: by means of qualitative
analyses, which consists in identifying failure scenarios via the ex-
traction of minimal cutsets, and by means of quantitative analyses,
which consists in calculating probabilistic indicators such as the top
event probability, importance factors or safety integrity levels.

In this article, we propose a new assessment method, called model
synthesis, which comes in addition to classical assessment techniques. It
aims at making some relevant information emerge out of the fault tree
under study. The idea behind model synthesis is to rewrite the original
fault tree or the minimal cutsets extracted from this fault tree, into an
equivalent formula that hopefully sheds a new light on the system
under study. We use thus here the term model synthesis in a quite
different way as several other authors who focus mainly on the auto-
matic construction of fault trees either from high level models [5] or
from reliability graphs [6,7].

Model synthesis in our sense can be useful in different contexts.
First, it can be used to deal with large fault trees, like the ones involved
in probabilistic safety analyses of nuclear power plants. In this context,
model synthesis can help to better understand which parts of the model
are influencing the results the most, i.e. eventually to determine who
are the main contributors to the risk. Second, model synthesis can be
applied onto fault trees that are automatically generated from higher

level descriptions, as nowadays routinely done in avionic industry [8].
Automatically generated fault trees tend to be very different from those
an expert would design by hand. Model synthesis can be used in this
case to create more amenable models in view of certifying the system
under study. Model synthesis can finally be used in any context to
create synthetic view of failure scenarios. One can for instance factorize
minimal cutsets according to basic events related to similar components
in order to study the impact of these components on the risk as a whole
[9].

Technically, synthesizing a model means rewriting a Boolean for-
mula so to obtain a more hierarchical, compact and hopefully in-
formative representation. The method we propose here relies on zero-
suppressed Boolean expression diagrams, a variant of Boolean expres-
sion diagrams [10] to implement this rewriting process. Compared to
classical binary decision diagrams [11] or zero-suppressed binary de-
cision diagrams [12], zero-suppressed Boolean expression diagrams
make it possible to implement partial rewritings. Partial normalizations
are of a great interest in our context as the information we are seeking
for is in general concentrated onto a small fraction of the basic events.
The rewriting process can therefore be applied on these basic events
only, leaving the remaining of the model unchanged. We provide
mathematical justification for such partial normalizations as well as the
principles of an efficient implementation.

Rewriting procedures are essentially heuristics: they may or may not
give interesting results depending on where and when they are applied.
We show here that it is possible to use the architecture of the system

https://doi.org/10.1016/j.ress.2019.02.019
Received 16 August 2018; Received in revised form 5 January 2019; Accepted 12 February 2019

⁎ Corresponding author.
E-mail address: liu.yang@ntnu.no (L. Yang).

under study as guideline for these heuristics. The idea is to keep related
basic events close into the model. It ensures also that the fault tree stays
consistent with the architecture so to make it understandable by the
analyst [13].

The contribution of this article is eventually twofold. First, it pro-
poses to complement traditional fault tree analysis with a new tool,
model-synthesis. Second, it proposes an effective implementation of this
new tool based on zero-suppressed Boolean expression diagrams.

The remainder of this article is organized as follows. Section 2
presents an illustrative example of what can be achieved by means of
model synthesis. Section 3 introduces the zero-suppressed Boolean ex-
pression diagrams technology. Section 4 shows how implement model
synthesis by means of partial operations on zero-suppressed Boolean
expression diagrams. Section 5 reports the experimental results of the
scalability test of the proposed method. Finally, Section 6 concludes this
article.

2. Illustrative example

This section presents the case study we shall use throughout the
article to illustrate ideas and techniques, namely the cooling system of a
pressurized water nuclear reactor.

2.1. System description

The power of model synthesis stands primarily in its ability to make
information emerges out of large models, typically such as those used to
analyze the safety of cooling systems of nuclear power plants.
Nevertheless, we keep here the description of the system as simple as
possible, for pedagogical purposes.

Fig. 1 shows the principle of cooling systems of a pressurized water
nuclear reactor. Nuclear reactions in the reactor vessel produce heat,
heating the pressurized fluid in the primary coolant loop (in black on
the figure). The hot primary coolant is pumped into the steam gen-
erator. Heat is transferred to a lower pressure secondary coolant loop
(in dark grey on the figure) where the coolant evaporates into pres-
surized steam. The transfer of heat is accomplished without mixing the
two fluids in order to prevent the secondary coolant from becoming
radioactive. The pressurized steam is fed through a steam turbine which
drives an electrical generator connected to the electric grid for trans-
mission. After passing through the turbine the secondary coolant is
cooled down and condensed in a condenser. The condenser converts the
steam to a liquid so that it can be pumped back into the steam gen-
erator. The heat of the second loop is transferred to a third loop (in light
grey on the figure) via the condenser. This third loop is usually made of
a refrigerating tower and water which is typically pumped in a river.

We assume here that the cooling system is quadruplicate for the
sake of production and safety, i.e. they are four independent circuits,
each circuit consisting of the above three coolant loops. For technolo-
gical reasons, these four circuits are however not fully independent as
they share the same pressurizer.

To cool the nuclear reaction (and to produce electricity) the cool-
ants must circulate into each of the three loops. This circulation is en-
sured by means of pumps which need to be powered. Normally, the
pumps are powered by the power generated by the plant itself. In case
the power of the plant does not suffice, they can be powered by the
electric grid (off-site power). In case there is no off-site power, on-site
diesel generators can be temporarily used to supply the required power.

2.2. Original model of the system

The fault tree for the cooling system is built classically top-down
(see e.g. [1]), starting from the top-event LOCA (Loss of Coolant Acci-
dent). The cooling system is failed when all the four circuits are failed.
A circuit is failed when at least one of its loops (primary, secondary and
ternary) is failed. This process continues until the suitable level of

decomposition. Table 1 gives the Boolean equations describing the
original fault tree model we shall consider. Table 2 gives definitions of
acronyms that are used in this fault tree.

2.3. Model synthesis

Model synthesis consists in rewriting the original model into
equivalent formulas so to make information emerge. In other words, it
makes it possible for the analyst to create different views on the model.

View 1: Role of the pressurizer and the power supply. Both the pressurized
and the power supply have obviously a strong impact on the cooling
system safety. An idea can thus be to rewrite the model (the set of
equations given Table 1) so to visualize their role. Fig. 2 shows
graphically the result of the factorization of the top event LOCA with
respect to the two events FPR (failure of the pressurizer) and LOPS (loss
of the power supply). This diagram can be interpreted as follows.

• If the pressurizer is failed (FPR), then the top event (LOCA) is rea-
lized.

• If the pressurizer is not failed but the power supply is lost (LOPS),
then the top event is also realized.

• If neither the pressurizer is failed nor the power supply is lost, then
the remaining scenarios to realize the top event are described by the
formula f1 · f2 · f3 · f4, where = + +f FPP FSP FTP ,i i i i 1 ≤ i ≤ 4.

Note that in this decomposition FPR is a basic event, but LOPS is an
intermediate event. Note also that the choice and the order of these
events depend on the needs of the analyst.

The model pictured Fig. 2 and the original model are equivalent.
The former is indeed much more compact than the latter, but is prob-
ably not the one that the analyst would build upfront.

View 2: Role of primary pumps. The analyst may also want to study the
role of primary pumps. The idea is thus to factorize the original model
with respect to the FPPi’s events (failure of primary pump i, 1 ≤ i ≤ 4).
Fig. 3 shows a partial view of the result. It is possible to calculate an
upper bound ⌈p(σ)⌉ of the probability of a branch σ. For instance, any
scenario under the upper branch of the diagram of Fig. 3,
⌈ ⌉ = × ×p FPP FPP FPP p FPP p FPP p FPP(· ·) () () ()1 2 3 1 2 3 . This upper bound
may exceed a predefined threshold, meaning that the branch can be
discarded. In our example, the probability of the simultaneous failure of
three of the four primary pumps may be considered as too improbable
to be reasonably considered.

The branch FPP FPP FPP FPP· · ·1 2 3 4 involves only two failures of pri-
mary pumps. The analyst may want to check the formula corresponding
to this branch. This formula may be however too large to be really
informative. It can be nevertheless exploited, typically by extracting the
basic events it involves, as shown on the figure. This is of interest in

Table 1
Fault tree describing the failures of the cooling system pictured Fig. 1.

LOCA = LOCC1 · LOCC2 · LOCC3 · LOCC4

LOCCi = + +LOPC LOSC LOTCi i i
LOPCi = +LOPP FPRi
LOSCi = LOSPi
LOTCi = LOTPi
LOPPi = +FPP LOPSi
LOSPi = +FSP LOPSi
LOTPi = +FTP LOPSi
LOPS = LOIP · LOOP · FDG
LOIP = LOPG1 · LOPG2 · LOPG3 · LOPG4

LOPGi = + + ′ + ′FCG FTB LOPC LOSCi i i i
′LOPCi = +FPP FPRi

′LOSCi = FSPi

L. Yang and A. Rauzy

order to validate the model. In our case, the analyst can verify that no
basic event issued from the first and second circuits shows up in this
branch.

Note that the branches of the decision tree pictured Fig. 3 can be
expanded on demand. Some branches may be unfolded further, while
some other may be kept folded, typically because their exploration is
made less relevant, thanks to symmetry arguments.

Table 3 summarizes the size of the original fault tree (using the
number of basic and intermediate events), the size of ZBEDs (using the
number of nodes) and the running time of getting the normalized ZBED.
As comparison, View 0 gives the result of a full normalization with an
order of variables corresponding to a depth-first left-most traversal of
the model.

2.4. Discussion

In the previous section, we showed two examples of extraction of
useful information from the model. The extraction process requires to
rewrite the original model, typically by factorizing some of its basic and
intermediate events. Several factorizations are possible, providing dif-
ferent views on the model.

Performing such rewritings by hand would be tedious and error
prone. We shall show in the next sections that Zero-Suppressed
Expression Diagrams provide a suitable algorithmic framework to im-
plement them in a simple and efficient way.

3. Zero-suppressed boolean expression diagrams

3.1. Definition

Zero-suppressed Boolean expression diagrams result of ideas
stemmed from Minato’s zero-suppressed binary decision diagrams [12]

and Andersen’s Boolean expression diagrams [10]. A zero-suppressed
Boolean expression diagram (ZBED) is a directed acyclic graph with
three types of nodes:

• Constant nodes: leaves labeled with Boolean constants (1 and 0).

• Variable nodes: leaves labeled with basic events.

• Operator nodes: internal nodes with three out-edges. Such a node is
denoted by = 〈 〉t u v w, , , where u is the node pointed by the first out-
edge, called the “if-edge”, v is the node pointed by the second out-
edge, called the “then-edge”, and w is the node pointed by the third
out-edge, called the “else-edge”.

Each node of a ZBED is interpreted as a Boolean formula as follows.

• A constant node is interpreted by the constant it is labeled with.

• A variable node is interpreted by the basic event it is labeled with.

• An internal node = 〈 〉t u v w, , is interpreted by the formula +f g h· ,
where f, g and h are the respective interpretations of nodes u, v and
w.

Table 2
Definitions of acronyms.

LOCA Loss of Coolant Accident LOCCi Loss of Coolant Circuit i
LOPCi Loss of Primary Circuit i LOSCi Loss of Secondary Circuit i
LOTCi Loss of Ternary Circuit i LOPPi Loss of Primary Pump i
LOSPi Loss of Secondary Pump i LOTPi Loss of Ternary Pump i
FPR Failure of Pressurizer FPPi Failure of Primary Pump i
FSPi Failure of Secondary Pump i FTPi Failure of Ternary Pump i
LOPS Loss of Power Supply LOIP Loss of Inside (on-site) Power
LOOP Loss of Off-site Power FDG Failure of Diesel Generator
LOPGi Loss of Power Generation from circuit i FCGi Failure of Current Generator i
FTBi Failure of Turbine i

Fig. 1. A cooling system of the pressurized water nuclear reactor.

Fig. 2. View of the model obtained by factorizing events FPR and LOPS.

L. Yang and A. Rauzy

In the sequel, for the sake of the simplicity, we shall not make the
distinction between nodes and their interpretation as formulas, i.e. we
shall write simply = +t u v w· . The set of basic events showing up in the
ZBED rooted by the node t is denoted by var(t).

Any coherent Boolean formula can be easily encoded by means of
ZBED. The binary operators “ · ” (and) and “+” (or) can be written as

= 〈 〉u v u v· , , 0 and + = 〈 〉u w u w, 1, . Fig. 4 shows an example of the
ZBED whose interpretation is given in Table 4. The formula at top level

is thus written as + +A B C A B D C D((·(·)) (·(·))) (·).

3.2. Unicity of nodes

As for binary decision diagrams [11], ZBED nodes are managed in a
unique table. Each time a node needs to be created, the table is looked-
up to see whether a node with the same characteristics already exists.
This technique is at the core of the efficiency of the decision diagrams
technology.

Moreover, some simplifications are performed at node creation.
Rewriting rules for eliminating equivalent nodes are given Fig. 5. The
adjective “zero-suppressed” comes from the rule 〈u, 0, w〉→w, which
has been originally used by Minato for zero-suppressed binary decision
diagrams [12]. In the sequel, we shall assume that these simplifications
are systematically applied at node creation.

3.3. Indices

Variable nodes do not contain directly references to the variable
they are labeled with. Rather, each variable is assigned an index and
this index is used to label the node encoding this variable.

Both basic events and intermediate events are assigned an index.
Nodes encoding intermediate events are not variable nodes, as they
encode formulas. Nevertheless, as explained in the previous section, we
may want to consider them as variable nodes, typically to factorize the
ZBED. In this case, they are labeled with the index of the intermediate

Fig. 3. View of the model obtained by factorizing events FPPi’s.

Table 3
Partial normalization comparing with a full normalization with an order of variables obtained from the depth-first-left-most traversal of the architecture in Fig. 16.

of fault tree events # of ZBED nodes Running time (s)

Basic Intermediate Original Partial Full Partial Full

View 0 23 39 81 – 215 – 0.657893
View 1 23 39 51 29 76 0.0024375 0.0207086
View 2 23 39 81 253 229 0.1364435 0.8062672

Table 4
Interpretation of the ZBED of Fig. 4 in terms of Boolean formulas.

Node Definition Interpretation Formula

t1 ⟨t2, 1, t7⟩ +t t·12 7 +t t2 7
t2 ⟨t3, 1, t4⟩ +t t·13 4 +t t3 4
t3 ⟨A, t5, 0⟩ +A t· 05 A · t5
t5 ⟨B, C, 0⟩ +B C· 0 B · C
t4 ⟨A, t6, 0⟩ +A t· 06 A · t6
t6 ⟨B, D, 0⟩ +B D· 0 B ·D
t7 ⟨C, D, 0⟩ +C D· 0 C · D

Fig. 4. An example of ZBED.

Fig. 5. Rewriting rules used for node elimination.

L. Yang and A. Rauzy

event they encode. In the sequel, we shall call such nodes pseudo-
variable nodes.

Each node t embeds also the index t.leastIndex of the least variable
occurring in the ZBED rooted by t (for variable nodes and pseudo-
variables nodes, =t leastIndex t index. .).

We shall explain the reason of this labeling principle in the next

section.

3.4. Cofactors

Model synthesis relies heavily on factorization. Let f be formula and
g be subformula of f. Factorizing f with respect to g consists in rewriting
f as += =g f f· | | ,g g1 0 where =f |g c denotes the formula f in which the con-
stant c has been substituted for the subformula g. =f |g 0 and =f |g 1 are
called respectively the negative cofactor and the positive cofactor of f
with respect to g.

In model synthesis, we factorize formulas only with respect to
variable or pseudo-variable nodes. Recursive rules defining this op-
eration on ZBED are given Fig. 6. The fourth recursive equation makes
clear the interest of the leastIndex field of ZBED nodes: when t.least-
Index> E.index, we know for sure that the node E does not occur in the
ZBED rooted by the node t. We can therefore stop here the exploration
of this ZBED.

3.5. Caching

Most of operations on ZBED are defined recursively, similarly as the
cofactor operation of the previous section. They take typically one or
more ZBED as input and return a ZBED as output. The efficiency of

Fig. 6. Recursive rewriting rules defining the cofactor algorithm.

Fig. 7. Recursive rewriting rules defining the factorize algorithm.

Fig. 8. Factorized version of the ZBED in Fig. 4 with A≺B≺C≺D.

Fig. 9. Recursive rules to obtain tSoC().

L. Yang and A. Rauzy

these operations can be significantly improved by using caching: each
time the operation op must be performed on parameters p1,...pk, the
cache is looked up. If it contains an entry for op and p1,...pk, the result is
immediately returned. Otherwise, the operation is actually performed,
then cached.

It is again Bryant &. al [11] who introduced this idea in the binary
decision diagram technology.

In the sequel, we shall assume that all algorithms use such caching
technique.

3.6. Factorization and ordering

It is possible to calculate a normal form for ZBED by factorizing
them recursively with respect to basic events. A ZBED is factorized if
either it is reduced a constant or a variable node, or it is rooted by a
node 〈E, v, w〉 where E is a variable node and v and w are ZBED in
which E does not show up.

Let ≺ be a total order over variables. A factorized ZBED is ordered
with respect to ≺ if any of its node 〈E, v, w〉, any variable F showing up
in ZBED in either v or w verifies E≺F.

The recursive rules defining the algorithm that rewrite a ZBED into
an equivalent factorized and ordered one are given Fig. 7. To be more
efficient, a node is not replaced by a new one, but rather transformed
into a factorized one. In this way, all the nodes pointing to the node get
the factorized version at no additional cost. This principle has been
introduced for dynamic reordering of binary decision diagrams [14].

Fig. 8 shows the factorized version of the ZBED pictured Fig. 4 ac-
cording to the ordering A≺B≺C≺D. The fully factorized ZBED ordered
according to the order ≺ over the variables (basic events) of a formula f
is isomorphic to the reduced ordered (according to ≺) binary decision
diagram encoding f. The two diagrams differ however completely in the
way they are obtained. The binary decision diagram associated with a
formula f is built by composing the binary decision diagrams associated
with the sub-formulas of f. The spaces (data structures) of formulas and
binary decision diagrams are thus separated. With ZBED, both formulas

Fig. 10. Recursive rewriting rules defining the without algorithm.

Fig. 11. Recursive rewriting rules defining the minimize algorithm.

Fig. 12. The minimized ZBED of Fig. 8.

L. Yang and A. Rauzy

Fig. 13. Recursive rewriting rules defining the normalize algorithm.

Fig. 14. Recursive rewriting rules defining the −p normalize algorithm.

Fig. 15. Example of partially normalized ZBED.
Fig. 16. An architecture of the coolant system in Fig. 1.

L. Yang and A. Rauzy

and their normal forms are encoded within the same space.

3.7. Minimization

In general, once factorized, a ZBED becomes more compact. It is
however often possible to make it even more compact by removing non-
minimal branches. To explain this process, we shall first show how to
interpret a ZBED as a set of cutsets, or equivalently as a sum-of-pro-
ducts.

Let E be a basic event and s be a set of cutsets. We define the product
E ⊙ s as follows:

⊙ = ∈E s E π π s{ . ; }def

Let t be a factorized, ordered ZBED. tSoC() denotes the set of cutsets
interpretation of a t. Recursive rules to build tSoC() are given Fig. 9.
Consider again the ZBED pictured in Fig. 8. We have

=s A B C A B D A C D A DSoP(1) { . . , . . , . . , . }.
Note that sSoP(1) contains the non-minimal cutset A.C.D.
The method to minimize, i.e to remove non-minimal cutsets from a

factorized ordered ZBED 〈E, v, w〉 works into two steps. First, it mini-
mizes v into vmin and w into wmin. Second, it removes from vmin all the
cutsets π such that there exists a cutset ρ in wSoP() such that ρ⊆ π. This
second operation is performed by the without algorithm introduced for
zero-suppressed binary decision diagrams by one of the author in [15]
and further improved in [16].

Figs. 10 and 11 give respectively recursive rewriting rules defining

without and minimize algorithms adapted to ZBED. The minimized
version of the ZBED pictured Fig. 8 is pictured Fig. 12. Note that the
above minimization principle is similar to the one propose by Jung [17]
to calculate minimal cutsets using zero-suppressed binary decision
diagrams.

Fig. 17. Parametric model M(3, 2, 2).

Table 5
Fault tree describing the failures of M(3, 2, 2) in Fig. 17.

TOP = + +P P P1 2 3
Pi = Si1 · Si2 (i = 1,2,3)
Sij = + +P P Pij ij ij1 2 3 (j = 1,2)
Pijk = Sijk1 · Sijk2 (k = 1,2,3)
Sijkl = +C SSijkl i (l = 1,2)

Table 6
Full normalization of M(p, s, d) with order of variables corresponding to a
depth-first left-most traversal of the model.

M # of fault tree events # of ZBED nodes Running time (s)

p s d Basic Intermediate Original Fully
normalized

2 2 1 6 7 15 15 0.0005875
2 3 1 8 9 21 20 0.001016
2 4 1 10 11 27 25 0.0016374
3 2 1 9 10 22 29 0.0027617
3 3 1 12 13 31 39 0.0048888
3 4 1 15 16 40 49 0.005376
4 2 1 12 13 29 55 0.0059631
4 3 1 16 17 41 74 0.0257535
4 4 1 20 21 53 93 0.0238569
5 5 1 30 31 81 213 0.0929677
6 6 1 42 43 115 479 0.7946444
7 7 1 56 57 155 1067 8.5812105
8 8 1 72 73 201 2361 140.4506352
2 2 2 18 31 51 43 0.0105937
2 3 2 38 57 111 91 0.0275659
2 4 2 66 91 195 159 0.0564192
2 5 2 102 133 303 247 0.1878167
3 2 2 39 64 112 126 0.0375149
3 3 2 84 121 247 273 0.3376026
3 4 2 147 196 436 480 2.1421809
4 2 2 68 109 197 317 1.0885322
2 2 3 66 127 195 159 0.0922675
2 3 3 218 345 651 529 0.8691808

L. Yang and A. Rauzy

3.8. Normalization

The normalization of a ZBED performs simultaneously both factor-
ization and minimization, which is more efficient than applying one
operation after the other. The recursive rewriting rules defining the
normalization algorithm are given Fig. 13. The fully normalized ZBED
ordered according to the order ≺ over the variables (basic events) of a
formula f is isomorphic to the reduced ordered (according to ≺) zero-
suppressed binary decision diagram encoding the minimal cutsets of f.
Here again, the two diagrams differ in the way they are obtained.

4. Partial normalizations

The advantage of the ZBED technology over the (zero-suppressed)
binary decision diagram technology stands in the ability to perform
partial operations, including partial factorizations, minimizations and
normalizations, thanks to the encoding of both formulas and their
normal forms within the same data structures.

4.1. Algorithm

A ZBED can be seen as (a compact encoding of) a decision tree. As
discussed Section 2, it is often sufficient to develop only partially such
decision tree to get relevant information. More exactly, the partial de-
velopment of a decision tree involves: first, a subset � of basic and
intermediate events of interest, together with an order over these
events; and second, a probability threshold τ under which branches can
be discarded.� is called the care set. It contains the events on which is
decomposition of the ZBED will be performed.

We shall thus modify algorithms presented in the previous section
so to perform partial normalizations. This works as follows.

The first step consists in giving indices … i1, 2, , max to events of ,�
including intermediate events, according to the order in which we want
them to show up in the decision tree. The remaining basic events are
given indices + + …i i1, 2,max max . The ZBED is re-labeled according to

these indices. This operation is linear in the size of the ZBED.
The second step consists in modifying the normalize so to take into

account the set � and the threshold τ. Recursive rewriting rules defining
the −p normalize algorithm are given Fig. 14. The algorithm is initially
called with its second parameter set to 1.0. In the last two rules, if the
pivot variable E is pseudo-variable, p(E) is set to 1.0. It is possible to
take the actual probability of E (or an approximation of this probability)
only if E is a module, i.e. it shares no variable with the rest of the model.

A general representation of the partially normalized ZBED is given
Fig. 15. In the normalized part of this ZBED is essentially similar to
decision trees (or event trees) of Section 2.

4.2. Choice of the care set

In model synthesis, we suggest to use the system architecture as a
guideline to achieve informative rewritings. As exemplified in Fig. 16,
an architecture can be seen as a functional or physical decomposition of
the system, in which events (marked in rectangle) can be assigned to
their relevant functions or components. Based on such assignment,
traversal algorithms (like the depth-first-left-most algorithm) can be
implemented to order and group events automatically in the archi-
tecture.

Guiding by the system architecture, the ZBED can be rewritten in a
way that maps the architecture, which means to create similarities in
their way of decomposition between the ZBED and the architecture.
With the help of this mapping, we provide a possibility to check the
consistency between the fault tree model and the system design.

5. Experiments

In this section, we provide the scalability test of the proposed model
synthesis method. The model used to perform the test is a multilevel
parallel-series system, denoted by M(p, s, d), which is characterized by
three parameters:

Table 7
Partial normalization (factorization of SSi) comparing with a full normalization compatible with the factorization.

M # of fault tree events # of ZBED nodes Running time (s)

p s d Basic Intermediate Original Partial Full Partial Full

2 2 1 6 7 15 14 15 0.0003807 0.0005609
2 3 1 8 9 21 18 20 0.0014846 0.0010145
3 3 1 12 13 31 31 39 0.001792 0.0035515
3 4 1 15 16 40 37 49 0.0027814 0.0315186
3 5 1 18 19 49 43 59 0.0034137 0.0202382
4 5 1 24 25 65 68 112 0.009577 0.0249844
5 5 1 30 31 81 109 213 0.0198436 0.0790558
6 6 1 42 43 115 194 479 0.0564447 0.778016
7 7 1 56 57 155 347 1067 0.1532794 8.763043
8 8 1 72 73 201 632 2361 0.463898 145.5475206
2 3 2 38 57 111 78 91 0.0050992 0.0220251
2 4 2 66 91 195 134 159 0.0099643 0.0960328
2 5 2 102 133 303 206 247 0.0183755 0.130448
3 2 2 39 64 112 85 126 0.0107254 0.0507543
3 3 2 84 121 247 175 273 0.0760447 0.3209596
3 4 2 147 196 436 301 480 0.0449491 1.7469204
4 2 2 68 109 197 156 317 0.033493 1.0738509
2 2 3 66 127 195 134 159 0.0148028 0.0839745
2 3 3 218 345 651 438 529 0.043567 0.8689405
2 4 3 514 731 1539 1030 – 0.1329544 –
3 2 3 219 388 652 445 – 0.0730657 –
3 3 3 732 1093 2191 1471 – 0.3639312 –
3 4 3 1731 2356 5188 3469 – 1.193553 –
3 5 3 3378 4339 10,129 6763 – 3.7578617 –
4 2 3 516 877 1541 1052 – 0.3506644 –
4 3 3 1732 2513 5189 3484 – 2.1515793 -–
4 4 3 4100 5461 12,293 8220 – 9.837303 –
4 5 3 8004 10,105 24,005 16,028 – 31.5285081 –

L. Yang and A. Rauzy

• p: the number of parts in parallel at each layer

• s: the number of parts in series at each layer

• d: the depth of alternation

Fig. 17 gives an example ofM(3, 2, 2). The last level of the hierarchy
is made of a series of two components: a local independent component
C and a support system SS dedicated to the first parallel line. For in-
stance, the unit Sijkl (= = = =i j k l1, 2, 3; 1, 2; 1, 2, 3; 1, 2) in the last
level of the model M(3, 2, 2) is comprised by the series of Cijkl and SSi,
where SSi is dedicated to Pi.

The fault tree describing the failures of M(3, 2, 2) is exemplified in
Table 5.

Two kinds of experiments are implemented:

• A full normalization of the model with an order of variables corre-
sponding to a depth-first left-most traversal of the model, of which
the results are given in Table 6.

• A partial normalization (factorization of SSi) comparing with a full
normalization compatible with the factorization, of which the re-
sults are given in Table 7. For the last nine cases in Table 7, the full
normalization is not proceeded since the running time is more than
2000 seconds. It also shows that partial normalizations are far more
efficient when dealing with large models.

6. Conclusion

In this article, we propose a new method, called model synthesis,
which consists in rewriting the fault tree under study so to make some
relevant information emerge. The rewriting relies on an encoding of
Boolean formulas by means of zero-suppressed Boolean expression
diagrams. A key feature of zero-suppressed Boolean expression dia-
grams is that they make it possible to perform partial normalization of
Boolean formulas. To get relevant information, it is often sufficient to
develop only partially the diagram, which is also more efficient than a
full factorization. For partial normalization, analyst can choose a care
set guided by the system architecture and a probability threshold τ to
decide under which branches can be discarded. As future work, we plan
to extend this method to non-coherent systems and to support other
quantitative analyses like the calculation of importance measures [18].

References

[1] Kumamoto H, Henley EJ. Probabilistic risk assessment and management for

engineers and scientists. Piscataway, N.J., USA: IEEE Press; 1996.
978–0780360174.

[2] Andrews JD, Moss RT. Reliability and risk assessment. (2nd ed.) Materials Park,
Ohio 44073-0002, USA: ASM International; 2002. 978–0791801833.

[3] Rausand M, Arnljot H, et al. System reliability theory: models, statistical methods,
and applications. 396. John Wiley & Sons; 2004. https://doi.org/10.1002/
9780470316900.

[4] Ruijters E, Stoelinga M. Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. ComputSciRev 2015;15:29–62. https://doi.org/10.
1016/j.cosrev.2015.03.001.

[5] Xiang J, Yanoo K, Maeno Y, Tadano K. Automatic synthesis of static fault trees from
system models. IEEE Publishing978-1-4577-0780-3; 2011. p. 127–36. https://doi.
org/10.1109/SSIRI.2011.32.

[6] Camarda P, Corsi F, Trentadue A. An efficient simple algorithm for fault tree au-
tomatic synthesis from the reliability graph. Reliab IEEE Trans 1978;R-
27(3):215–21. https://doi.org/10.1109/TR.1978.5220330.

[7] Elliott M. Computer-assisted fault-tree construction using a knowledge-based ap-
proach. Reliab IEEE Trans 1994;43(1):112–20. https://doi.org/10.1109/24.
285124.

[8] Prosvirnova T, Rauzy A. Automated generation of minimal cutsets from altarica 3.0
models. Int J Crit Comput-Based Syst 2015;6(1):50–79. https://doi.org/10.1504/
IJCCBS.2015.068852.

[9] Leblond A. Synthèse de coupes minimales fonctionnelles en coupes minimales
composant. Actes du 19ième congrés Lambda-Mu. Dijon, France: Institut pour la
Maîtrise des Risques; 2014.

[10] Andersen HR, Hulgaard H. Boolean expression diagrams. Information and compu-
tation 2002;179(2):194–212. https://doi.org/10.1006/inco.2001.2948.

[11] Brace KS, Rudell RL, Bryant RS. Efficient implementation of a BDD package.
Proceedings of the 27th ACM/IEEE design automation conference. Orlando,
Florida, USA: IEEE0-89791-363-9; 1990. p. 40–5. https://doi.org/10.1145/123186.
123222.

[12] Minato S-I. Zero-suppressed BDDs for set manipulation in combinatorial problems.
Proceedings of the 30th ACM/IEEE design automation conference, DAC’93. Dallas,
Texas, USA: IEEE0-89791-577-1; 1993. p. 272–7. https://doi.org/10.1145/157485.
164890.

[13] Getir S, Van Hoorn A, Grunske L, Tichy M. Co-evolution of software architecture
and fault tree models: an explorative case study on a pick and place factory auto-
mation system. 1074. CEUR-WS; 2013. p. 32–9.

[14] Rudell RL. Dynamic variable ordering for ordered binary decision diagrams. In:
Lightner M, Jess JAG, editors. Proceedings of IEEE International Conference on
Computer Aided Design, ICCAD’93. Santa Clara, CA, USA: IEEE0-8186-4490-7;
1993. p. 42–7.

[15] Rauzy A. New algorithms for fault trees analysis. Reliab Eng Syst Saf
1993;05(59):203–11. https://doi.org/10.1016/0951-8320(93)90060-C.

[16] Rauzy A. Mathematical foundations of minimal cutsets. IEEE Trans Reliab
2001;50(4):389–96. https://doi.org/10.1109/24.983400.

[17] Jung WS, Han SH, Ha J. A fast bdd algorithm for large coherent fault trees analysis.
Reliab Eng Syst Saf 2004;83(3):369–74. https://doi.org/10.1016/j.ress.2003.10.
009.

[18] Aliee H, Borgonovo E, Glaß M, Teich J. On the boolean extension of the birnbaum
importance to non-coherent systems. Reliab Eng Syst Saf 2017;160. http://search.
proquest.com/docview/1944562495/?pq-origsite=primo

L. Yang and A. Rauzy

	109632_Innmat_00_1_PhDCover
	109632_PhD_Yang, Liu_83

