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ABSTRACT

This paper examines a set of value-at-risk (VaR) models and their ability to appro-
priately describe and capture price-change risk in the European energy market. We
make in-sample, one-day-ahead VaR forecasts using one simple parametric model,
one historical simulation model and one quantile regression (QR) model. We apply
our models to nine different energy futures: Brent crude oil, API2 coal, UK natural
gas, and three German and Nordic power futures in the period 2007-17. The models
are tested at both long and short positions. Our research suggests that the QR model is
easy to implement and offers accurate VaR forecasts in the European energy market.
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1 INTRODUCTION

This paper aims to investigate the accuracy of univariate risk models in energy mar-
kets, more specifically the European energy futures markets. Companies and other
actors that include energy futures in their portfolios or otherwise conduct business
in energy markets rely on proper financial risk management to avoid unexpected
losses. For example, an oil refinery must manage the risk arising from volatile crude
oil prices as a buyer and the risk arising from volatile gasoline prices as a seller.
Some energy commodities such as oil may even have an asymmetric affect on eco-
nomic activity, as described by Sadorsky (1999). Other studies have also documented
the impact oil has on different economies, such as China (see Zhen-xin et al 2011)
and Canada (see Rahman and Serletis 2012). Commodity trading is also affected by
global economic events, such as the financial crisis in 2007. European coal and oil
prices increased sharply after the turmoil of the crisis, before dropping massively in
the last part of 2008. Clearly, investors in energy markets should be wary of how
energy commodities behave and should have a plan for how to handle risk.

Since the development of financial futures in the 1970s, traders have increasingly
used future contracts to hedge against risk or to speculate on price fluctuations in
different financial markets. The correlation between commodity futures and stocks
and bonds is typically low, as one can, for example, diversify a portfolio of stocks
and bonds by including commodity futures to reduce its risk, as described in Anson
(2004). By including a derivative such as an energy future in a portfolio, one must be
able to manage the risks that come with its use. In the 1990s, JP Morgan developed
RiskMetrics (see JP Morgan 1996), a method for calculating risk. This method intro-
duced value-at-risk (VaR) as a risk measure, which, since then, has been a popular
choice for calculating and managing the risk of financial portfolios. VaR is the loss
we will not exceed with a certain probability of a financial asset over a given period.
Another popular risk methodology is expected shortfall (ES), which also measures
the potential average losses, given that a loss occurs. However, the focus of this paper
is solely on VaR models.

Energy futures have varying risk characteristics compared with other assets, such
as stocks, and traditional commodities, such as gold or copper. Commodities are
driven by a specific supply-and-demand relationship; they are usually more volatile

than assets and show high positive price extremes. Energy commodities such as coal

and gas can be stored but others such as electric power cannot. This leads to a vari-
ety of risk characteristics across energy futures. For example, coal futures does not
share the same volatility or skewness as power futures. It is also important to note
that commodity reserves exist in different areas of the planet and thus face different
risks related to location. The differences in risk characteristics can be found in the
distribution of price returns as seen in volatility, skewness, excess kurtosis and fat
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tails. The futures used in this study are all from Germany, the United Kingdom and
the Nordic countries. This paper therefore offers valuable information for anyone
interested in managing risk with regard to futures traded in these countries.
Conducting risk management using VaR models is very popular. In the European
energy market, however, the literature is somewhat scarce when it comes to studies
on employing VaR as a risk measure. We wish to contribute to this literature by
providing a study that compares the accuracy of different types of VaR models used
to manage risk in the European energy market. Our analysis consists of comparing
a RiskMetrics-inspired parametric model, a historical simulation (HS) model and a

quantile regression (QR) model, inspired by Steen et al (2015). We have adjusted our
HS method using a volatility weighting technique similar to that proposed by Hull
and White (1998). Previous studies have shown that electricity markets are volatile
(Chan and Gray 2006; Westgaard et al 2014). Models that are suitable for other
financial markets might not be suitable for power markets. With this in mind, we
hope to find a VaR model suitable for investors trading energy futures in the European
energy markets.

The rest of this paper is structured as follows. Section 2 is a review of the litera-
ture regarding VaR models, and more specifically risk assessment in energy markets.
Section 3 describes the VaR models used in our study as well as backtesting method-
ologies. Section 4 describes and presents the data we have used in our analysis, how
it was gathered and any adjustments that have been made to it. Section 5 presents the
empirical results found in our analysis while Section 6 summarizes and concludes
our findings.

2 LITERATURE REVIEW

To the best of our knowledge, there are few empirical studies on modeling VaR
in the European energy market. In this section, we will discuss findings that are
important and relevant to our study. We have found that the energy commodity
most frequently used in studies on VaR is West Texas Intermediate (WTI) crude oil.
Giot and Laurent (2003), who compare the efficiency of several VaR models in dif-
ferent commodity markets, include Brent crude oil and WTI crude oil in their study.
This finds that, over a five-year out-of-sample testing period, VaR forecasts based on

a skewed Student asymmetric power generalized autoregressive conditional hetero-
scedasticity (APARCH) model perform best. Andriosopoulos and Nomikos (2015)
discuss several suitable VaR models appropriate for capturing the dynamics in energy
prices traded at the NYMEX and spot energy index, including, among others, WTI
crude oil and heating oil. Here, a hybrid Monte Carlo model and a Monte Carlo
simulation model are described as the more prevailing models. Hung et al (2008)
estimate the VaRs for energy commodities, including WTI crude oil, Brent crude
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oil and gasoline prices. These authors use fat-tailed generalized ARCH (GARCH)
models and find that one-day-ahead forecasts generated by the heavy-tailed GARCH
model introduced by Politis (2004) give good estimates at both high and low con-
fidence levels. Some studies, such as that of Marimoutou et al (2009), also apply
certain aspects of extreme value theory (EVT) to manage risk in oil markets, namely
Brent crude oil and WTTI crude oil. In that paper, the authors find that a conditional
generalized Pareto distribution (GPD) VaR model along with a filtered HS model
(FHS) offer major improvements to VaR estimation compared with more traditional
methods.

Although scarce, there are some studies that address risk management in elec-
tricity spot and futures markets. Chan and Gray (2006) examine daily aggregated
electricity spot prices from five different power markets, including NordPool elec-
tricity spot prices. This study compares its own proposed EVT-based VaR model
with more conventional parametric and nonparametric models. It reveals that its pro-
posed EVT-based model performs well in forecasting out-of-sample VaR compared
with conventional models. Westgaard et al (2014) present a quite extensive piece of  changes o sentence Ok?

research regarding risk characteristics in the European energy markets. There, it is
found that risk measured in standard deviation is much higher for Nordic electricity
and natural gas markets than it is for more traditional assets such as stocks and bonds.
Another result of importance for our own study is that tail behavior varies for dif-
ferent energy futures, which can affect which risk model one should choose for each
energy future contract. Bystrém (2005) propose an EVT approach to investigate the
tails of the return distribution of electricity prices traded at the NordPool exchange.
Accurate estimates and forecasts of extreme quantiles of the price change distribution
are made using a GPD. That study emphasizes the benefits of EVT for risk managers
and portfolio managers in electricity markets. Nowotarski and Weron (2018) give
a thorough tutorial on probabilistic electricity price forecasting (EPF). The authors
present guidelines for the use of methods, measures and tests in probabilistic EPF,
but they argue that their study is also general enough for wind and solar power fore-
casting. Veka et al (2012) provide one of very few studies on the correlation between
Nordic electricity derivatives and electricity contracts traded at the European Energy
Exchange (EEX) and the Intercontinental Exchange (ICE). By using multivariate
GARCH models, they find a significant time-varying correlation between the energy
commodities from the three different exchanges used in the analysis, except with
oil. Therefore, they argue that pricing models based on constant correlation may be
misleading. Another important finding in this study for investors in the European
energy market is that the strongest correlation to Nordic electricity futures was with
the energy futures traded at the EEX, and this relationship increased with longer
maturity contracts in all the markets.
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Previous studies on using QR in various financial markets include, among others,
those of Steen et al (2015) and Haugom et al (2016). Steen et al (2015) compare
the efficiency of VaR forecasts using twenty different commodities and three dif-
ferent VaR models, among them a QR approach. They find that the QR approach
outperforms the HS method as well as the standard RiskMetrics approach. Hau-
gom et al (2016) use a similar QR approach to that of Steen et al (2015). In their
paper, the authors employ a parsimonious QR model to forecast one-day-ahead VaR
in both commodity markets and more traditional financial assets. The novel result
here is that their QR approach gives a similar performance to more complicated
VaR models, such as the skewed ¢ APARCH model and the conditional autoregres-
sive VaR (CAViaR) model subjected to coverage tests for out-of-sample VaR pre-
dictions. Another paper that investigates the usage of QR in commodity markets is
by Kuralbayeva and Malone (2012). Here, the authors use a QR model to explain
extreme movements in commodity prices. They investigate how various global and
commodity-specific determinants explain these price movements and find that, espe-
cially since the turn of the millennium, global demand factors play a major role in
explaining commodity price changes compared with commodity specific factors such
as open interest.

There are several studies that compare the efficiency of VaR models based on
an HS numerical approach with VaR models based on a parametric approach. Fiiss
et al (2010) compare the in- and out-of-sample performance of conventional VaR,
Cornish-Fisher VaR, GARCH-type VaR and semi-parametric CAViaR models for
commodity futures investments. They find that the choice of VaR model depends
strongly on the underlying return series, but in general they find that the CAViaR and
GARCH models outperform the others because of their ability to capture volatility
clustering. Cabedo and Moya (2003) did a study on estimating oil price VaR in 2003.
They analyzed three different VaR approaches, namely a standard HS approach, an
HS approach with autoregressive moving average (HSAF) forecasts and a variance—
covariance method based on ARCH model volatility forecasts. They found that the
HSAF methodology provided flexible VaR estimation, fitting to the continuous oil
price movements and offering efficient risk quantification. Further, Costello et al
(2008) compare the ARMA HS VaR used by Cabedo and Moya (2003) with the semi-
parametric GARCH model proposed by (Barone-Adesi et al 1999). Costello et al
(2008) find that VaR forecasts based on semi-parametric GARCH models exceed
the quality of those from ARMA forecasts, indicating the former is more effective
as an HS technique. They argue that Cabedo and Moya’s conclusion is driven by
their normal distributional assumption being imposed on the future risk structure
in the GARCH model. Lux et al (2016) study crude oil price volatility and VaR.
They compare the forecasting performances of several GARCH-type models with a
Markov-switching multifractal (MSM) model. Their study proves the superiority of
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the new MSM model regarding both volatility forecasting and VaR. In addition to
these articles and studies, there are several useful textbooks that cover topics such
as VaR and other relevant risk metrics: Alexander (2008), Jorion (2000) and Hull
(2012).

3 THEORY AND METHODOLOGY

This section outlines the relevant theory and methods used in our analysis. We outline
the techniques used to compute the VaR estimates before discussing the validation
methods, eg, backtesting methods.

3.1 VaR estimation

VaR is defined as the maximum loss that will be incurred on a portfolio with a given
level of confidence for a specified period. The literature mainly describes three ways
of estimating VaR (see Alexander 2008; Hull 2012). These are parametric VaR, his-
torical method and Monte Carlo simulation. Let X! denote the return of commodity
i at time 7, defined by X! = In(P}/P}_,), where P; denotes the price of the com-
modity at time ¢, and Pt"_1 denotes the price the previous day. Then, VaR is given
by

VaRy o = & Y1 —a)op — pa. 3.1
If zero mean is assumed:

VaR;,, = @' (1 — a)oy, (3.2)

where @~1(1 — «) is the inverse of the standard normal distribution, « is a quantile
value describing the prescribed significance level, and pj and oy, are the estimated
mean and the volatility over the time horizon /. The parametric method of calculating
VaR is a simple and therefore popular approach to use as a benchmark estimate.
Even so, it has several drawbacks due to its simplicity. The approach assumes that
the returns are normal in addition to being identically and independently distributed
(iid). This is often not the case. The distributions of returns of commodity futures
often have leptokurtic and skewed shapes as well as fat tails. Not accounting for this
will lead to an underestimation of risk. Moreover, using a constant volatility estimate
in (3.1) does not factor in the effect of volatility clustering. One can adjust for this by
using the exponentially weighted moving average (EWMA) or the ARCH proposed
by Engle (1982), which was further developed into the GARCH by Bollerslev (1986).
The ARCH model is a popular choice for modeling volatility because it is able to
capture the clustering effect often seen in financial markets.
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3.2 Parametric approach

In our parametric model, we use the EWMA to model volatility, with the one-day-
ahead forecast given by

VaR, 11 = Z71(0,04,1 — @), (3.3)

where Z ! (0,0¢,1 — @) is the inverse of a normal distribution at « quantile, with
zero mean and standard deviation described by the EWMA:

o0y = \/(1 — M, + Ao, (3.4)

where rtz_1 is the square of the previous day’s log return and A is the smoothing

parameter that describes how the previous observations will affect the forecast of the
next day’s volatility. In this model, returns are assumed to be distributed normally
and the smoothing parameter is set at 0.94, which is a typical assigned value.

3.3 FHS

HS is a nonparametric approach for calculating VaR and does not assume an analyt-
ical distribution of the returns. Instead, an empirical distribution of returns is used to
calculate VaR. New returns are simulated by drawing randomly from past observa-
tions in order to predict tomorrow’s return. However, deciding on how many returns
to select from past returns to predict tomorrow’s returns is problematic. One must
select enough to make sure the empirical distribution is correct.

The reason for this method’s popularity is that it automatically captures the fat-
tailed, skewness and leptokurtic effects often seen in commodity returns. It is rel-
atively easy to implement but can be computationally challenging compared with
parametric methods because it requires many simulations in order to generate accu-
rate results. In order for this method to be suitable, an adequate number of observa-
tions is needed. Alexander (2008) advises acquiring at least 2000 observations. The
number of simulations is also important: we have used 10000 simulations to make
sure the model is accurate.

When using HS, one can use volatility adjustments to improve the VaR forecast
by capturing time-varying volatility movements. Hull and White (1998) suggest a
volatility weighing approach. We have used a bootstrap method, in which we adjust
the returns in the empirical distribution using a GARCH(1,1) volatility model. This
enables us to capture the volatility clustering effect. Our adjusted HS one-day-ahead
forecast is described by

Ot

(1/Ne) ).

VaR;11 = Percentile (S(rg) * - .o, N), 3.5)
t=t] Ot
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where VaR; is the one-day-ahead forecast using N simulations. S(rg) is a sample
function that draws randomly from the empirical data set §2 of the observed returns
from start date ¢; until current date #, (today). « is the desired quantile or VaR level
(for example, 5%) and o, is the volatility at time ¢, calculated using a vanilla GARCH
model. GARCH fits the sample returns as follows:

Oy = \/a)garch + (Olgarch)‘g%—l + ﬂgaIChatz—]' (3.6)

Here, Wgarch, Ogarch and Bgarch are the positive GARCH parameters, 0garch + Boarch < 1
ensures the unconditional variance is finite and positive, 5%—1 is the previous period’s

squared return and 67, is the previous time step’s volatility.

3.4 QR

QR, introduced by Koenker and Bassett (1978), has proven useful in forecasting elec-
tricity prices (Bunn et al 2016) and modeling risk in commodity markets (Steen et al
2015); see also Alexander (2008) on how to apply QR for financial risk management
and Koenker (2005) for a full introduction to QR. The following is a simple linear
QR model:

re = a4+ flo, + &, (3.7

where r; is the dependent variable, o; is the independent variable, e? is the error
assumed to be iid and with a given distribution, and g € (0, 1) is the quantile of
the error £7. The QR methodology we have used to forecast a one-day-ahead VaR is
inspired by that introduced by Steen et al (2015):

VaR,H = af + ﬂqO't + 8?. (38)

The parameters a? and 2 need to be estimated by the optimization problem

T
min > (@ = lr<aspo)(ri — (@ + Boy)). (3.9)

where
1 ifrt §0l+,80't,

1,< = (3.10)
rsethor 0 otherwise.

In the optimization problem, the X; is replaced by o, which is calculated using the
EWMA, as in our parametric approach (see (3.4)).
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3.5 Model validation

A backtest looks at how the actual VaR level observed compares with the VaR pre-
dicted in the forecasted model. When comparing predicted VaR with actual VaR, the
first indicator of whether your model is correct is the frequency of violations. By
frequency of violations, we mean how often the observed VaR exceeds the VaR fore-
casts made by the model over a time horizon. The number of violations over a time
horizon can be summed up or counted, and the frequency of occurrence, then, is the
number of observed violations divided by how many days there are in the sample
period. For example, if we look at a time horizon of 2000 days and our specified VaR
level is 5%, then the number of observed violations should be approximately 100.
Mathematically, one can describe this accuracy with a hit function:

1 ifr; < VaR(w),
F(t,a) = (3.11)
0 ifr, > VaR(a),

where 7; is the observed log return and VaR(«) is the forecasted VaR for the o quan-
tile, with the accuracy of the model now described by the sum of violations divided
by the number of days in the sample. Kupiec (1995) introduced an unconditional cov-

erage test to check whether the probability of observing a hit is consistent with the
probability imposed by the VaR quantile. This test uses the likelihood ratio statistic

p(1—p)N=7 )
(f/N)T A= (f/N)YN=T ]

where LRyc is the unconditional likelihood ratio, f is the number of hits over the

LRyc = —2log ( (3.12)

time horizon, N is the total number of observations in the time horizon and p is
the failure rate given by the VaR level (eg, 5%). The test statistic is asymptotically
distributed as a chi-square variable with one degree of freedom; see Tables 3-5 for
critical values. The null hypothesis of an accurate model is rejected if the LRyc
statistic exceeds the chi-square value at a given confidence level.

Christoffersen (1998) introduced a conditional coverage test to see if the occur-
rence of a hit was conditional on the previous day having a hit or not. In the null
hypothesis of the Christoffersen test, it is assumed that the occurrences are indepen-
dent, meaning that the probability of a hit today is independent of whether yesterday
had a hit or not. The likelihood ratio is given by

(1 — p)footfio(pyfort+su )
(1= po)/o0 pi®' (1 = pp)fo it

where LR is the conditional coverage likelihood ratio, p is the expected number
of hits during a time horizon and f;; € [0, 1] is the number of observations where

LRcc = —210g( (3.13)
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an event I at time t — 1 is followed by an event j at time ¢. pg is described by
fo1/(fo1 + foo) and p; is described by f11/(f11 + fi0)- These ratios show how
often a nonfollowing hit occurs and how often a following hit occurs. The conditional
coverage test statistic is asymptotically distributed as a chi-square variable with two
degrees of freedom; see Tables 3—5 for critical values. As for the Kupiec test, the
null hypothesis of the Christoffersen test (that the model is accurate) is rejected if the
LR statistic exceeds the chi-square value at a given level of confidence.

4 DATA DESCRIPTION AND PRELIMINARY ANALYSIS

The data set used in our analysis consists of nine time series of daily prices for
these energy futures: Brent crude oil, API2 coal, UK natural gas, German power
futures and Nordic power futures. We have gathered first-month position, second-
month position and third-month position contracts for both the German and Nordic
power contracts as well as first-month position contracts for Brent crude oil, API2
coal and UK natural gas. The German and Nordic power futures are traded at the
EEX and Nasdaq NordPool, respectively, while the other three are traded at the ICE.
The series are downloaded using Montel’s databases (Montel.no). The data is gath-
ered from the period September 2007—September 2017, spanning approximately ten
years and a total of 2600 trading days. Figure 1 displays the development of the
prices of the futures.

4.1 Data cleansing

Roll-over returns are those that arise from holding a futures contract over the closing
date. When a futures contract expires, a new one is created that replaces the old
one in the set of available futures contracts. Sometimes, one can experience a price
shock when a new futures position replaces the expired one. We have to shift from
an expired first-month contract to a new first-month contract. This can lead to jumps
in the returns series, and these jumps will induce a false volatility. This shift from a
one-month position to a two-month position contract is not matched by cash changes
in the margin account by the future brokerage. The holder of this futures contract
does not receive the return between expired contracts and new ones; therefore, the
roll-over returns must be deleted from the series. In addition, observations that are not
shared are deleted. On December 24, for example, some futures — such as Brent crude
oil — do trade, whereas German power futures do not. Thus, our data set is reduced
from 2600 observations to 2399 observations. The roll-over returns can be found
on the homepages of the exchanges where these futures are traded (www.theice.org,
www.EEX.com and www.nasdaqgomx.com). The roll-over returns for the futures in
our data set are between the last and first day of the month. The cleansing of the data
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FIGURE 1 Price of energy futures (price unit in key) for Brent crude oil; API2 coal; UK
natural gas; German power positions 1, 2 and 3; and Nordic power positions 1, 2 and 3.

Brent crude (US$/bbl) German power 3 (€/MWh)
German power 1 (€/MWh) UK gas (pence/tonne)
Nordic power 2 (€/MWh) German power 2 (€/MWh)
Coal (US$/tonne) Nordic power 3 (€/MWh)
Nordic power 1 (€/MWh)

250

200

150

100

50

o_

Jul 1, Jan 1, Jul 1, Jan 1, Jul 1,
2007 2010 2012 2015 2017

Data collected by Montel.no through the ICE, EEX and Nasdaq OMX, following the period September 4, 2007—
September 19, 2017, for a total of 2399 observations.

may change the mean of the returns, but it also reduces the standard deviation and
the tail distribution or fat-tailed effect. Figure 2 displays the log returns for all nine
contracts.

4.2 Statistics

Figure 1 shows that oil and coal prices rose for a time following the financial cri-
sis of 2007-8 before experiencing a large drop and a subsequent recovery until
roughly 2012, before again decreasing in 2015. Whereas API2 coal and Brent crude
oil depend on global economy conditions, power futures and natural gas tend to be
more spiky in their behavior and depend more on local supply-and-demand condi-
tions. They also exhibited high volatility after the financial crisis of 2007-8. Table 1
displays the general statistics of the log returns of the data set used in this paper.
Figures 2 and 3 describe the log returns over the time horizon and the distribution of
the log returns, respectively. As can be seen in Figure 3, all of the energy commodi-
ties exhibit the typical leptokurtic shape of the distribution of returns as well as fat

www.risk.net/journals Journal of Risk Model Validation

11

Please check changed
wording of (a)-(i) part labels
—all OK? I tried to ensure
consistency with later use in
tables.

Changes to sentence OK?



12

S. Westgaard et al

FIGURE 2 Returns (log of price changes) of energy futures.
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(a) Brent crude first-month contract. (b) API2 coal first-month contract. (c) UK natural gas first-month contract.
(d) German power first-month contract. (e) German power second-month contract. (f) German power third-month
contract. (g) Nordic power first-month contract. (h) Nordic power second-month contract. (i) Nordic power third-
month contract. Data collected by Montel.no through the ICE, EEX and Nasdag OMX, following the period
September 5, 2007-September 19, 2017, for a total of 2398 observations.

tails. All of the commodities reject the null hypothesis of the Jarque—Bera normal-
ity test. The mean of the distributions of all futures is centered around zero, which
is expected, while the daily volatility varies across the futures. It is evident that oil
and coal have a volatility clustering around 2009, when the turmoil of the financial
crisis hit Europe the hardest, as well as around 2016, when the dollar rose and the
Organization of the Petroleum Exporting Countries (OPEC) responded with an over-
supply. The gas and power futures show further spiky trends, with some very extreme
returns, eg, when the German power futures spiked on March 15, 2011. This might
be because it was announced on this date that Angela Merkel would be shutting down
seven of Germany’s power plants (see Harding 2011). Gas and power prices tend to
exhibit clustering around supply-and-demand shocks; Westgaard et al (2014) show
similar findings.

All of the series are more or less symmetrical when it comes to maximum/
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minimum returns, with the exception of the Nordic power first-month position and

the German power third-month position. These have absolute positive returns that are  changes o sentence ok
larger than their negative returns. The only future that has a higher negative tail risk is

coal. All of the futures are positively skewed except for the coal futures, which have

the largest skewness in absolute terms. In addition, all of the futures show leptokur-

tic shapes but their magnitude varies, with the German power second-month position

having the largest. Table 1 shows that the daily volatility of the energy futures ranges

from 1.26% to 2.96%, or approximately 19-47% on an annual basis. Natural gas and

Nordic power futures are the most volatile, so care should be taken when handling

these futures; adequate risk management is very important here.

It is also important to take time-varying risk characteristics into account when one
develops risk models. Table 2 lets us investigate how the distributions of various
energy futures change over time. We have split our data set into four equally sized
sample periods: September 5, 2007— March 18, 2010; March 19, 2010-September
17, 2012; September 17, 2012— March 26, 2015; and March 27, 2015— September
26, 2017. One can see from Table 2 that all of the futures have their highest stan-
dard deviations during the period including the financial crisis (2007-8). The Nordic
power first-month position also has a very high daily standard deviation over all
the periods studied. It is interesting to see that the kurtosis for the German power
futures changes drastically in period 2. This is due to the mentioned spike in prices,
which took place on March 15, 2015. This also skews the distribution positively in
this period. Regarding volatility, one can see that Brent crude oil is more affected
by global activities (the financial crisis in period 1 and the OPEC oil oversupply in
period 4) than the German power futures, which have a more even distribution across
the four periods. It is also worth mentioning that the tail behavior also changes over
time. One can see that the difference between the maximum and minimum is high-
est in period 1 for all of the energy futures except for the Nordic power first-month
future, which has the highest gap in period 4, and the German power third-month
future, which has the highest gap in period 2.

Our examination of the empirical risk characteristics of European energy markets
from the ICE, EEX and Nasdag OMX can be summarized as follows. Risk mea-
sured in volatility is highest for the Nordic power market and the natural gas market;
thus, our findings are similar to those of Westgaard et al (2014). The skewness and
kurtosis vary over time, and the German power market is prone to national political
decisions. The tail risk is positive for all futures with the exception of coal, which has  changes tosentence ok
a higher negative tail risk. All futures are more or less symmetrical, but the German
and Nordic power markets tend to have greater positive tail risk. Volatility clustering
is evident for all energy futures, but particularly in oil and coal, while the power and
gas markets tend to be more spiky in terms of their behavior. The distributions also
vary a lot over time for all of the futures.

Journal of Risk Model Validation www.risk.net/journals
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TABLE 2 Summary statistics of energy futures over time. [Table continues on next page.]

(a) Period 1

SD Min. Max. Skewness Kurtosis

Brent crude oll 284 —1095 11.13 —0.02 1.63
API2 coal 239 —-10.82 832 —0.71 2.94
UK natural gas 299 —11.28 14.04 0.12 1.68
Germanpower 1 2.26 —14.61 12.98 —0.24 5.51
Nordic power 1 3.27 —12.10 12.74 0.10 1.32
German power2 1.86 —14.23 7.77 —0.46 6.95
Nordic power 2 3.07 -9.58 12.71 0.17 1.24
German power3 157 -578 5.17 —0.21 1.26
Nordic power 3 299 —11.28 14.04 0.12 1.68
(b) Period 2

SD Min. Max. Skewness Kurtosis

Brent crude oll 1.68 —8.96 6.81 —0.42 2.28
API2 coal 1.07 —-4.50 5.55 0.47 2.36
UK natural gas 220 -9.32 8.83 0.02 1.38
German power1 151 -5.07 16.27 2.31 23.66
Nordic power 1 3.17 —16.71 1222 —0.16 2.55
Germanpower2 1.32 —4.21 14.89 2.83 28.19
Nordic power 2 2.41 —10.59 10.08 0.09 1.62
Germanpower3 1.16 -3.24 12.61 2.61 23.95
Nordic power 3 220 -9.32 8.83 0.02 1.38
(c) Period 3

SD Min. Max. Skewness Kurtosis

Brent crude oil 1.54 -6.88 7.56 0.08 4.42
API2 coal 096 —4.10 3.8 0.06 1.50
UK natural gas 1.52 -587 6.16 —0.07 0.84
Germanpower 1 148 —1220 4.83 —1.41 10.69
Nordic power 1 203 -885 7.51 —-0.17 1.27
German power2 0.87 -3.83 2.78 —0.04 0.77
Nordic power 2 1.63 —-6.57 4.94 —0.08 0.67
Germanpower3 0.76 —-2.62 3.19 0.16 0.78
Nordic power 3 152 -587 6.16 —0.07 0.84
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TABLE 2 Continued.

(d) Period 4

SD Min. Max. Skewness Kurtosis

Brent crude oll 242 -811 1042 0.35 1.59
API2 coal 1.44 —-6.74 5.68 0.21 2.31
UK natural gas 2.34 -8.31 9.61 0.08 1.41
German power1  1.80 —7.41 8.90 0.27 2.83
Nordic power 1 3.18 —14.59 21.51 0.67 6.59
German power2 1.49 —6.07 5.74 0.28 1.80
Nordic power 2 260 -859 10.80 0.23 2.21
German power3 1.40 -5.30 5.88 0.25 2.55
Nordic power 3 2.34 -8.31 9.61 0.08 1.41

This table lists descriptive statistics for Brent crude oil; API2 coal; UK natural gas; German power positions 1, 2 and
3; and Nordic power positions 1, 2 and 3. The table displays time-changing statistics for four periods: September
5, 2007-March 18, 2010; March 19, 2010-September 17, 2012; September 17, 2012—-March 26, 2015; and March
27, 2015-September 26, 2017. The data is adjusted for roll-over returns and nonsharing dates, such as December
24,

5 EMPIRICAL RESULTS

Figure 1 displays the price development of the futures prices for all of the energy
commodities. The figure displays the large price fluctuations of 2007-8 as well as
price development until September 2017. We calculate the log returns of the prices
of the energy commodities and plot them in Figure 2. The price fluctuation can also
be seen in these plots.

To evaluate the accuracy of our VaR models, we use the methodology described
in Section 3 to make in-sample one-day-ahead VaR forecasts over the entire sample
period. We evaluate our models on both long and short positions, with three different
VaR levels on each side, and with a total of six confidence levels at 99%, 95%,
90%, 10%, 5% and 1%. The log returns are then compared with the VaR forecasts,
and the Kupiec and Christoffersen test statistics are calculated. The null hypothesis
is rejected if the test statistic is higher than a given value; this implies a wrongly
specified model. The critical values are gathered in the final row of Tables 3-5. The
critical values for the Kupiec and Christoffersen tests are, respectively, 6.63 and 9.21
for 99% VaR, 3.84 and 5.99 for 95% VaR, and 2.71 and 4.61 for 90% VaR. This is
also the case for short positions.

Table 3 displays the test statistics for the Kupiec and Christoffersen tests on the
VaR forecast with the parametric model, while Table 4 and Table 5 offer those for the
FHS and QR forecasts. The models that fail the tests at the given confidence level are
marked with bold text, whereas those that pass are left unmarked (normal text). From
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FIGURE 3 Histograms of distribution of log returns of (a) Brent crude, (b) API2 coal,
(c) UK natural gas, (d) German power 1, (e) German power 2, (f) German power 3,
(9) Nordic power 1, (h) Nordic power 2 and (i) Nordic power 3.
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Tables 3-5, it can be seen that at the 1% and 99% significance levels there is at least
one model that is correctly specified for all energy futures concerning unconditional
and conditional coverage. We can also see that the most difficult future to assign a
VaR model to is the coal future; here, the QR model prevails as the most accurate in
terms of both conditional and unconditional coverage.

It can be seen from Table 7 that the parametric VaR model fails the null hypothesis
of Kupiec’s test at the 1% VaR level for both long and short positions (eg, VaR 99%)
quite often. This comes as no surprise due to its assumption of a normal distribu-
tion of returns. This means that the expected number of violations is not close to the
actual number of violations, eg, the number of times the actual returns exceed the
VaR forecast is not reflective of how many times the returns are expected to exceed
the forecast. This leads to a belief that the parametric model is not very suitable to
accurately describe risk at the ends of the tails of the return distribution. However,
it is quite accurate at the 10% VaR level for long positions as well as at the 5%
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FIGURE 4 ICE Brent crude oil with 2398 observations of returns (blue line), including the
financial crisis of 2007-8.
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This figure also includes the 5% left-tail (red line) and 5% right-tail (green line) estimations using the QR VaR model.
Violations occur when the blue observations cross the red line. The model responds well to the volatile period of the
financial crisis. In this figure, the model cannot be rejected using the Kupiec test at either tail for either confidence
level.

VaR level for short positions. One should be careful when using the RiskMetrics
approach, because — even though it adjusts for volatility clustering — the assumption
of normally distributed returns is incorrect and will lead to wrong VaR forecasts.
It was shown in Table 2 and Table 1 that the returns are skewed and have excess
kurtosis, and thus the assumption of a normal distribution is a simplification. The
parametric VaR model can be improved if one finds a more suitable analytical dis-
tribution that better fits the actual returns. One could try a Student ¢ distribution, as
seen, for example, in the work of Marimoutou et al (2009). One can see in Table 6
that the conditional coverage of the parametric VaR model is by no means obtained.
Looking at Table 3, the model fails most often at the leftmost and rightmost VaR lev-
els; however, a large portion of failures also occur within the first- and second-month
positions of the German and Nordic power futures at the 10% and 5% VaR levels for
short positions (the right-hand tail). One can see in Table 5 that the total violations of
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conditional coverage for the parametric VaR model are twenty-four out of fifty-four.
This means that in twenty-four test statistics the observed violations tend not to be
independent. The parametric VaR model is not able to obtain adequate conditional
coverage and unconditional coverage. The results regarding the parametric model
are consistent with the findings of Steen et al (2015). The unconditional coverage
failures occur a bit more on the left-hand tail than on the right-hand tail, and the
conditional coverage failures occur more on the right-hand tail than on the left-hand
tail.

Overall, the FHS VaR model performs better than the parametric VaR model. It
obtains better conditional and unconditional coverage, as can be seen in Tables 6
and 7. It can also be seen that while the parametric model performs poorly near the
tails, the FHS model performs relatively well. This is because the distribution is not
assumed to be normal but is drawn empirically instead, as described in Section 3.
Still, the FHS model also has higher failure rates at extreme tail VaR levels (1% and
99%). It can also be seen that the futures that have these failures are coal and the
German power futures. In Section 4, we described the data and noted that the spike
found in the German power series drives up the kurtosis and positive skewness of the
German power futures. It is possible that somehow this spike renders the forecasts
made from the empirical distribution inaccurate. Another reason why the FHS VaR
model is not more accurate at the tails is because we have only 2398 observations
(approximately). This means we have only about twenty-four observations at the 1%
extreme. Table 4 shows that the FHS model exhibits Kupiec test violations in seven
out of eighteen cases at the 1% VaR level, and in two out of eighteen cases at the 5%
and 10% VaR levels. Meanwhile, the Christoffersen test is violated in eight out of
eighteen cases at the 1% VaR level, five out of eighteen cases at the 5% VaR level and
six out of eighteen cases at the 10% VaR level. A total failure of conditional coverage
for the FHS VaR model is seen in nineteen out of fifty-four cases, which is only
five better than the parametric VaR model. The unconditional coverage measured by
Kupiec’s test is better, as it only fails in twelve cases. As was seen for the parametric
method, the conditional coverage failures occur more on the right-hand tail than on
the left-hand tail, while the unconditional coverage failures occur symmetrically on
the left- and right-hand tails.

VaR forecasts made by the QR model provide better conditional and unconditional
coverage than forecasts made by either the parametric model or the FHS VaR model.
The unconditional coverage has zero violations, which means that the expected num-
ber of violations is correct compared with the actual number of violations. The reason
the QR model is so accurate when it comes to unconditional coverage is that it is able
to capture volatility clustering effects and time-varying volatility as well as the cor-
rect distribution of returns. The QR model also has the most conditional coverage. It
experiences no failures at the 1% VaR level, either long or short. The right-hand tail
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has more conditional coverage failures than the left-hand tail, as was the case both
for the parametric model and for the FHS model. The total conditional and uncondi-
tional coverage failures (see Table 6) are 13 and O, which is the best of all the VaR
models.

The empirical results and their implications can be summarized as follows.

The forecasts made by the parametric VaR model are poor. The model fails in
approximately half of the cases over all the confidence levels with regard to
conditional coverage, and in roughly 32% of the cases with regard to uncon-
ditional coverage. This is to be expected due to the underlying assumption of
normal distributed returns, although we do not recommend using this simple
VaR model when accurate VaR measures are needed.

The FHS approach is better than the parametric approach. The model gives a
quite accurate VaR forecast at the 10% and 5% VaR levels, but this forecast is
not quite so accurate when the tail values are extreme. This is believed to be
because there is not enough data to describe the extreme tail values.

The QR VaR model performs superiorly to both the parametric and the FHS
VaR models with regard to both conditional and unconditional coverage. The
QR model is the only model that gives an accurate unconditional VaR forecast
at all specified confidence levels.

There is at least one VaR model at all the confidence levels that possesses
unconditional coverage. This is not, however, the case when it comes to con-
ditional coverage for all energy futures at all confidence levels. At the 1% VaR
level for long and short positions, there is at least one model that has both
conditional coverage and unconditional coverage for all energy futures.

The right-hand tail is the most difficult to model. Most failures occur on the
right-hand tails of the return distributions for all energy futures. This means
that the risk models are more adequate for investors with portfolios including
long positions in the European energy futures markets.

Coal is the most difficult future to model. The Nordic power third-month posi-
tion and oil are the easiest to model. The coal futures have the most violations
of any model in terms of both conditional and unconditional coverage. Oil and
the Nordic power third-month position have the fewest.

The conditional coverage is affected by the clustering of occurrence. The
observed occurrence of violations is not independent for many of the futures
contracts. Models should be improved concerning this issue.
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TABLE 6 Accuracy of VaR models: Christoffersen test.

Parametric FHS QR
VaR VaR VaR

Total failures (54) 24 1
Failures at 1% long position (9)
Failures at 5% long position (9)
Failures at 10% long position (9)
Failures at 10% short position (9)
Failures at 5% short position (9)
Failures at 1% short position (9)

1
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This table presents the total accuracy of each model with regard to conditional coverage. This table also lists the
accuracy of conditional coverage for all confidence levels, long and short, for all VaR models. The values represent
how many of the test variables were rejected. The values in parentheses represent the total number of test variables.

TABLE 7 Accuracy of VaR models: Kupiec test.

Parametric FHS QR
VaR VaR VaR

Total failures (54) 1
Failures at 1% long position (9)

Failures at 5% long position (9)
Failures at 10% long position (9)
Failures at 10% short position (9)
Failures at 5% short position (9)
Failures at 1% short position (9)

1
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This table presents the total accuracy of each model with regard to unconditional coverage. This table also lists the
accuracy of conditional coverage for all confidence levels, long and short, for all VaR models. The values represent
how many of the test variables were rejected. The values in parentheses represent the total number of test variables.

6 CONCLUSIONS

In this paper, we have examined risk in the European energy markets, more precisely
future contracts traded at the ICE, EEX and Nasdaq OMX (NordPool). Energy mar-
kets are a special class of commodity markets. Due to the difficulties involved in  changes o sentence ok
storing energy, one often sees very volatile behavior in price return distributions. We
investigate risk for both short and long positions at the 1%, 5% and 10% confidence
levels for crude oil, coal, natural gas and the German and Nordic power commodi-
ties. Risk, measured in terms of volatility, is generally highest for the Nordic power  changes o sentence ox?
and natural gas market, and lowest for coal. It is evident that the empirical distribu-
tion is time dependent. Oil and coal show typical volatility clustering behavior, while
natural gas and the power futures exhibit behavior that is more spiky. Our findings
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with regard to statistical risk characteristics in this paper are similar to those found
by Westgaard et al (2014)

Energy commodities are a nonhomogeneous asset class with nonnormal price
return distributions. It is therefore important to be careful when selecting which risk
model one wishes to use to manage risk. To help answer this, we have made use of
three different VaR models — a simple parametric model, an HS model and a QR
model — in order to make one-day-ahead VaR forecasts. These forecasts are then
evaluated by two backtesting methods, namely Kupiec’s unconditional coverage test
and Christoffersen’s conditional coverage test.

We are able to accurately predict in-sample one-day-ahead VaR forecasts for each
commodity at all specified confidence levels for both short and long positions in
the period 2007-17. We are not able to obtain complete conditional coverage for
all commodities at all confidence intervals due to clustering effects when violations
occur. The parametric model shows clear weaknesses because of the assumption of
normal distributed price change returns. The HS model is the better performer of
the two, but because there is not enough sample data describing extreme tails, it is
thought that VaR forecasts at extreme tails are somewhat inaccurate. The QR-based
VaR model provides accurate VaR forecasts for all futures at all confidence intervals.
This method is able to capture the empirical distribution of price change returns as
well as volatility clustering through an EWMA. Even so, the model is not perfect
because it does not obtain complete conditional coverage.

Energy futures are a challenging asset class. One should be careful when selecting
a risk model for a portfolio consisting of such assets. Investors should bear in mind
that the risk characteristics of energy futures change over time and are also different
for long and short positions. In future, risk models should be applied to assess out-of-
sample VaR. Other risk metrics should also be applied, such as ES. Our VaR models
should also be improved to lessen clustering effects from occurring.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the
content and writing of the paper.

REFERENCES

Alexander, C. (2008). Value-at-Risk Models. Wiley.

Andriosopoulos, K., and Nomikos, N. (2015). Risk management in the energy markets
and value-at-risk modelling: a hybrid approach. European Journal of Finance 21(7),
548-574 (https:/doi.org/10.1080/1351847X.2013.862173).

Anson, M. (2004). Managing downside risk in return distributions using hedge funds,
managed futures and commodity futures.

www.risk.net/journals Journal of Risk Model Validation

25

Changes to sentence OK?

Change OK?

Details?



26

S. Westgaard et al

Barone-Adesi, G., Giannopoulos, K., and Vosper, L. (1999). VaR without correlations for
portfolio of derivative securities. Technical Report, Universita della Svizzera Italiana
(https:/doi.org/10.1002/(SICI1)1096-9934(199908)19:5<583::AID-FUT5>3.0.CO;2-S).

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics 31(3), 307-327 (https:/doi.org/10.1016/0304-4076(86)90063-1).

Bunn, D., Andresen, A., Chen, D., and Westgaard, S. (2016). Analysis and forecasting
of electricity price risks with quantile factor models. Quarterly Journal of the IAEE’s
Energy Economics Education Foundation 37(1), 101-122 (https:/doi.org/10.5547/
01956574.37.1.dbun).

Bystrém, H. N. (2005). Extreme value theory and extremely large electricity price changes.
International Review of Economics and Finance 14(1), 41-55 (https:/doi.org/10.1016/
S$1059-0560(03)00032-7).

Cabedo, J. D., and Moya, . (2003). Estimating oil price “value at risk” using the histor-
ical simulation approach. Energy Economics 25(3), 239—253 (https:/doi.org/10.1016/
S0140-9883(02)00111-1).

Chan, K. F,, and Gray, P. (2006). Using extreme value theory to measure value-at-risk for
daily electricity spot prices. International Journal of Forecasting 22(2), 283-300 (https:/
doi.org/10.1016/j.ijforecast.2005.10.002).

Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review
39(4), 841-862 (https:/doi.org/10.2307/2527341).

Costello, A., Asem, E., and Gardner, E. (2008). Comparison of historically simulated VaR:
evidence from oil prices. Energy Economics 30(5), 2154—2166 (https:/doi.org/10.1016/
j-eneco.2008.01.011).

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society
50(4), 9871007 (https:/doi.org/10.2307/1912773).

Fiss, R., Adams, Z., and Kaiser, D. G. (2010). The predictive power of value-at-risk
models in commodity futures markets. Journal of Asset Management 11(4), 261-285
(https:/doi.org/10.1057/jam.2009.21).

Giot, P, and Laurent, S. (2003). Market risk in commodity markets: a VaR approach.
Energy Economics 25(5), 435—457 (https:/doi.org/10.1016/S0140-9883(03)00052-5).

Harding, L. (2011). Angela Merkel switches off seven nuclear power plants.

Haugom, E., Ray, R., Ullrich, C. J., Veka, S., and Westgaard, S. (2016). A parsimo-
nious quantile regression model to forecast day-ahead value-at-risk. Finance Research
Letters 16, 196—207 (https:/doi.org/10.1016/j.fr.2015.12.006).

Hull, J. (2012). Risk Management and Financial Institutions, Volume 733. Wiley.

Hull, J., and White, A. (1998). Incorporating volatility updating into the historical simula-
tion method for value-at-risk. The Journal of Risk 1(1), 5-19 (https:/doi.org/10.21314/
JOR.1998.001).

Hung, J.-C., Lee, M.-C., and Liu, H.-C. (2008). Estimation of value-at-risk for energy com-
modities via fat-tailed GARCH models. Energy Economics 30(3), 1173—1191 (https:/
doi.org/10.1016/j.enec0.2007.11.004).

Jorion, P. (2000). Value at Risk, 2nd edn. McGraw-Hill.

JP Morgan (1996). Riskmetrics: Technical Document. Morgan Guaranty Trust Company

of New York.

Journal of Risk Model Validation www.risk.net/journals

Details?

Changes to bibliography
entry OK?



VaR in the European energy market

Koenker, R. (2005). Quantile Regression. Cambridge University Press (https:/doi.org/
10.1017/CB0O9780511754098).

Koenker, R., and Bassett, G., Jr. (1978). Regression quantiles. Econometrica: Journal of
the Econometric Society 46(1), 33—50 (https:/doi.org/10.2307/1913643).

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models.
Journal of Derivatives 3(2), 73—84 (https:/doi.org/10.3905/jod.1995.407942).

Kuralbayeva, K., and Malone, S. W. (2012). The determinants of extreme commod-
ity prices. 2012 Annual Meetings Paper, Midwest Finance Association (https:/doi.org/
10.2139/ssrn.1929043).

Lux, T., Segnon, M., and Gupta, R. (2016). Forecasting crude oil price volatility and
value-at-risk: evidence from historical and recent data. Energy Economics 56, 117—-133
(https:/doi.org/10.1016/j.enec0.2016.03.008).

Marimoutou, V., Raggad, B., and Trabelsi, A. (2009). Extreme value theory and value
at risk: application to oil market. Energy Economics 31(4), 519-530 (https:/doi.org/
10.1016/j.enec0.2009.02.005).

Nowotarski, J., and Weron, R. (2018). Recent advances in electricity price forecasting:
a review of probabilistic forecasting. In Renewable and Sustainable Energy Reviews,
Volume 81, Part 1, pp. 1548-1568 (https:/doi.org/10.1016/j.rser.2017.05.234).

Politis, D. N. (2004). A heavy-tailed distribution for ARCH residuals with application to
volatility prediction.

Rahman, S., and Serletis, A. (2012). Oil price uncertainty and the Canadian economy: evi-
dence from a VARMA, GARCH-in-mean, asymmetric BEKK model. Energy Economics
34(2), 603-610 (https:/doi.org/10.1016/j.eneco.2011.08.014).

Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics 21(5),
449-469 (https:/doi.org/10.1016/S0140-9883(99)00020-1).

Steen, M., Westgaard, S., and Gjolberg, O. (2015). Commodity value-at-risk modeling:
comparing RiskMetrics, historic simulation and quantile regression. The Journal of Risk
Model Validation 9(2), 49—78 (https:/doi.org/10.21314/JRMV.2015.146).

Veka, S., Lien, G., Westgaard, S., and Higgs, H. (2012). Time-varying dependency in
European energy markets: an analysis of Nord Pool, European Energy Exchange and
Intercontinental Exchange energy commodities. The Journal of Energy Markets 5(2),
3-32 (https:/doi.org/10.21314/JEM.2012.072).

Westgaard, S., Veka, S., Haugom, E., and Lien, G. (2014). A note on the risk characteris-
tics of european energy futures markets. Beta 28(1), 6—19.

Zhen-xin, W., Bing, X., and Shu-ping, W. (2011). The impact of oil price volatility on China’s
economy based on VaR model. Chinese Journal of Management Science 19(1), 21-28.

www.risk.net/journals Journal of Risk Model Validation

27

Details?



