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Abstract In this paper, we present bounds for multi-horizon stochastic op-
timization problems, a class of problems introduced in [16] relevant in many
industry-life applications tipically involving strategic and operational decisions
on two different time scales.

After providing three general mathematical formulations of a multi-horizon
stochastic program, we extend the definition of the traditional Expected Value
problem and Wait-and-See problem from stochastic programming in a multi-
horizon framework. New measures are introduced allowing to quantify the im-
portance of the uncertainty at both strategic and operational levels. Relations
among the solution approaches are then determined and chain of inequalities
provided. Numerical experiments based on an energy planning application are
finally presented.
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1 Introduction

Many real-life problems of industries with large capital investments and in-
frastructure planning, need to combine decisions at long and short-term time
scales, which are both typically affected by uncertainty. Long-term uncertainty
includes for example costs for infrastructure elements with time horizons of
many years. Short-term uncertainty comprises for instance daily variations in
demand or prices. In optimization models, this uncertainty can be handled by
applying stochastic programming methodology, where the uncertain param-
eters are represented by discrete values in scenario trees for possible future
realizations of the parameters. Computational tractability is usually of great
concern in such models, because variables and constraints are duplicated for
each scenario in the scenario tree. If all short-term variations are to be in-
cluded, the scenario tree and, the optimization model will become intractable
due to the exponential growth in problem size.

In order to cope with this issue, an alternative formulation of the prob-
lem that combines the two time scales has been introduced in [10,16] using
the so-called multi-horizon approach. Partitioning the corresponding decision
variables in strategic and operational, the authors showed that the new ap-
proach drastically reduces the model size compared to the traditional formula-
tion. This is based on the observation that strategic decisions typically do not
depend directly on a particular operational scenario, bur rather on the overall
operational performance between two subsequent strategic stages. The multi-
horizon approach has been successfully adopted in the literature in order to
address real life problems involving different time scales. In particular in [32],
it has been adopted for the European power system to handle the challenges
related to intermittent energy production and stochastic energy demand in a
long-term investment model, avoiding the curse of dimensionality of the tra-
ditional stochastic approaches. In [34] a multi-stage multi-horizon stochastic
equilibrium model of multi-fuel energy markets has been developed for analyz-
ing energy markets, with particular attention to infrastructure development
and renewable energy policies in perfect and imperfect market structures. By
decoupling short-term operational decisions feedback from long-term strategic
investment decisions, the authors show that the multi-horizon approach allows
to consider long-term and short-term uncertainties while maintaining favor-
able computational complexity. In [35] properties of the risk measures such
as time consistency in multi-horizon scenario trees has been investigated and
illustrated with a stylized example. Other papers in the literature considering
aspects related to handling both time scales in one model are given by [31]
who include short-term variations in a strategic model for the Norvegian meat
industry, [33] analyze strategic investment decisions in liquefied natural gas
transport and discuss the impact of using a stochastic model at the opera-
tional level showing that also operational flexibility is important in order to
cope with short-term variations and has a significant impact on profitability.
In [1,2] the multi-horizon modeling approach has been applied to a complex
pumped storage hydro power plant in a liberalized market environment in or-
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der to give decision support for its scheduling. In [28] the authors analyze the
short-term uncertainty in long-term energy system models considering a wind
power case-study in Denmark and in [29] they consider the impact of policy
actions and future energy prices on the cost-optimal development of the energy
system in Norway and Sweden.

Clearly, due to the large number of decision variables involved in both
the decision scales, approximation techniques which provide lower and upper
bounds to the optimal value for multi-horizon problems can be very useful
in practice. In this situation easy-to-compute bounds and approximations, by
solving much smaller problems instead of the big one associated to the large
discrete multi-horizon scenario tree are desirable.

Several bounding techniques are proposed for the traditional two-stage and
multistage stochastic programs with expectation. In the two-stage case, some
of them (see for instance [8,9,11,12,21]) generalize Jensen’s inequality [15] for
lower bounding and the Edmundson-Madansky [7,19,20] inequality for upper
bounding. An alternative method is to aggregate constraints and variables in
the extensive-form and solve the resulting problem [5,26]. Other bounds were
introduced in [4] by solving pairs of sub-problems which are much less complex
than the general recourse problem and then extended in [27] by considering an
alternative way of forming the group sub-problems and merging their results.
Notice that scenario grouping approach have been also applied in [6] for chance
constrained programs.

Bounds for multistage linear stochastic programs were for the first time
proposed in [22], by solving pair sub-problems, by measuring the quality of
the deterministic solution and by introducing rolling horizon measures. In
[23] the authors extends the bounding approach of [4,22,27], for stochastic
multistage mixed integer linear programs, solving a sequence of group sub-
problems made by a subset of reference scenarios, and a subset of scenarios
from the finite support. Besides, in [24] bounds for multistage convex problems
with concave risk functionals as objective are provided. In [18] the author
elaborates an approximation scheme which integrates stage-aggregation and
discretization through coarsening of sigma-algebras to ensure computational
tractability, while providing deterministic error bounds.

An alternative approach is to construct two approximating trees, a lower
tree and an upper tree, the solution of which lead to upper and lower bounds
for the optimal value of the original continuous problem. The advantage of
this approach is that it generates intervals in which the optimal value lies
under guarantee. Results in this direction were for the first time obtained by
Frauendorfer [13], followed by [14,17]. In [17] barycentric discretizations are
adopted in a more general setting investigating convex multistage stochastic
programs with a generalized non-convex dependence on the random variables.
In [25], the authors generalize the bounding ideas of [13,14,17] to not neces-
sarily Markovian scenario processes and derive valid lower and upper bounds
for the convex case. They construct new discrete probability measures directly
from the simulated data of the whole scenario process.
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In this paper we provide three general mathematical formulations for the
Multi-Horizon Stochastic Program, MHSP , and new lower and upper bounds
from traditional stochastic programs to multi-horizon stochastic formulation.
Clearly the strategic and operational decision variables distinction, implies the
need of new methods and measures which allow to quantify the importance
of the uncertainty at both the decision levels. In particular we extend the
definition of the traditional Expected Value Problem EV , by introducing the
Multi-Horizon Expected Value problem, MHEV , and the new concept Multi-
Horizon Operative Expected Value problem, MHOEV , obtained by replac-
ing operational uncertain parameters with their expected values. Moreover,
the Multi-Horizon Wait-and-See, MHWS, and the Multi-Horizon Strategic
Wait-and-See, MHSWS, which is obtained by relaxing the nonanticipativ-
ity constraints of the strategic decision variables, are proposed. MHEV and
MHOEV are compared to MHSP , through the Value of Strategic Decision,
V SD and Value of Strategic and Operational Decision, V SOD allowing to
quantify the importance of the uncertainty at both strategic and operational
levels. Relations among the solution approaches are then determined and ana-
lytically proved. Finally, numerical experiments on an application from energy
planning inspired from [16] are presented.

The paper is organized as follows: Section 2 introduces the notation and ba-
sic definitions. Section 3 introduces the new bounds for multi-horizon stochas-
tic programs and chain of inequalities among them. Section 4 reports numerical
results on an energy planning problem. Conclusions follows.

2 Multi-horizons stochastic programs

In this section we propose a general model of multi-horizon stochastic pro-
grams introduced in [16]. To the best of our knowledge, this is the first general
mathematical formulation for this class of problems.

Let H = {1, . . . ,H} be the set of strategic stages and Tt = {1, . . . , Ot}, be
the set of operational stages at strategic time t ∈ H. The following definition
provides the nested formulation of a multi-horizon linear stochastic program in
which a decision maker has to take a sequence of strategic decisions x1, . . . , xH
for long-term planning, and operational decisions y1t , . . . , y

Ot
t , t ∈ H, for short-

term planning, to minimize expected costs.

We assume that:

– strategic uncertainty is independent of the operational uncertainty of pre-
vious time periods;

– strategic decisions are independent of earlier operational decisions;
– there is no connection between operational uncertainty of two consecutive

strategic nodes.
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Definition 2.1 A Multi-Horizon Stochastic Program, MHSP, is defined as
follows:

MHSP := min
x,y

EξH−1,η
O1
1 ,...,ηOHH

z(x,y, ξH−1,η
O1
1 , . . . ,ηOHH ) = (1)

min
x1

c1x1 + Eη11
[

min
y11

q11(η1
1)y11(η1

1) + · · ·+ E
η
O1
1

[
min
y
O1
1

qO1
1 (ηO1

1 )yO1
1 (ηO1

1 )
]]

+

Eξ1

[
min
x2

c2(ξ1)x2(ξ1)+Eη12
[
min
y12

q12(η1
2)y12(η1

2)+. . .+E
η
O2
2

[
min
y
O2
2

qO2
2 (ηO2

2 )yO2
2 (ηO2

2 )
]]

+ · · ·+ EξH−1

[
min
xH

cH(ξH−1)xH
(
ξH−1

)
+

Eη1H
[

min
y1H

q1H(η1
H)y1H(η1

H) + · · ·+ E
η
OH
H

[
min
y
OH
H

qOHH (ηOHH )yOHH (ηOHH )
]]]]

s.t. Ax1 = h1,

T2(ξ1)x1 +W2(ξ1)x2(ξ1) = h2(ξ1),

Tt(ξt−1)xt−1(ξt−2) +Wt(ξt−1)xt(ξt−1) = ht(ξt−1), t ∈ H\{1, 2} ,
T 1
1 (η1

1)x1 +W 1
1 (η1

1)y11(η1
1) = h11(η1

1),

T 1
t (η1

t )xt(ξt−1) +W 1
t (η1

t )y
1
t (η1

t ) = h1t (η
1
t ), t ∈ H\{1} ,

T τt (ητt )yτ−1t (ητ−1t ) +W τ
t (ητt )yτt (ητt ) = hτt (ητt ), τ ∈ Tt\ {1} , t ∈ H,

xt ∈ Rnt+ , t ∈ H,

yτt ∈ Rn
τ
t

+ , t ∈ H, τ ∈ Tt,

where strategic parameters c1 ∈ Rn1 , h1 ∈ Rm1 and the matrix A ∈ Rm1×n1

are known. Additionally, let us denote the uncertain strategic parameters
vectors and matrices at strategic time t ∈ H\{1}: ct ∈ Rnt , ht ∈ Rmt ,
Tt ∈ Rmt×nt−1 , Wt ∈ Rmt×nt . We assume that T1 = A and W1 = 0 (i.e. the
null matrix). ξH−1 = (ξ1, . . . , ξH−1) describes the strategic uncertainty defined

on a probability space (Ξ,A, p), where Ξ = XH−1t=1 Ξt and A = (A1, . . . ,AH−1)
is the filtration generated by projections of Ξ onto Xti=1Ξi for each t. With
ξt := (ξ1, . . . , ξt), t = 1, . . . ,H − 1 we denote the history of the process up to
time t and Eξt denotes the expectation with respect to ξt.

In general we have ct = ct(ξt−1), ht = ht(ξt−1), Tt = Tt(ξt−1), Wt =
Wt(ξt−1), for t ∈ H\{1}.

The operational uncertainty after the strategic decision at time t ∈ H is
taken, is described by the random process ητt , τ = 1, . . . , Ot, revealed gradually
in Ot operational periods. With ητt := (η1t , . . . , η

τ
t ), τ = 1, . . . , Ot we denote

the history of the process up to time τ at strategic time t ∈ H. Notice that
ητt+1 is independent by ητt , τ ∈ Tt t ∈ H . From a mathematical perspective,
problem (1) involving the expectation in the objective function, satisfies the
superposition property of the strategic uncertainty process over the operational
one.

Let us denote the uncertain operational parameters vectors and matrices
at operational stage τ ∈ Tt, t ∈ H, with qτt ∈ Rnτt , hτt ∈ Rmτt , T 1

t ∈ Rm1
t×nt ,
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T τt ∈ Rmτt×n
τ−1
t , and W τ

t ∈ Rmτt×nτt . In general we have qτt = qτt (ητt ), hτt =
hτt (ητt ), T τt = T τt (ητt ), W τ

t (ητt ), τ ∈ Tt, t ∈ H.
The decisions variables are partitioned as follows:

1. x := {xt|t ∈ H}: strategic decision variables, with xt ∈ Rnt+ , t ∈ H.

2. y := {yτt |τ ∈ Tt, t ∈ H}: operational decision variables with yτt ∈ Rn
τ
t

+ , τ ∈
Tt, t ∈ H.

The decision processes xt, y
τ
t , τ ∈ Tt, t ∈ H, are both nonanticipative, which

means they depend on the information respectively up to time t and up to
times t and τ .

The problem expressed in (1) can be formulated through the correspond-
ing dynamic programming equations (see [30]). This formulation takes into
account that at the last operational and strategic stage, the values of all the
problem data ξH−1 and ηOHH are already known and the values of the earlier

strategic decisions x1, x2, . . . , xH and operational ones y1t , x
2
t , . . . , y

H−1
t , t ∈ H,

have been already chosen. The problem therefore becomes

QOHH (yOH−1H , ηOHH ) := (2)

min
y
OH
H

qOHH (ηOHH )yOHH (ηOHH )

s.t. TOHH (ηOHH )yOH−1H (ηOH−1H ) +WOH
H (ηOHH )yOHH (ηOHH ) = hOHH (ηOHH ) ,

yOHH (ηOHH ) ∈ Rn
OH
H

+ .

The solution value of problem (2), depends on the operational decision yOH−1H

at the previous stage and on the realization of the operational data process
ηOHH . Problem (1) is then solved recursively computing the operational cost-
to-go functions QτH(yτ−1H ,ητH), going backward in the operational stages. At
stage t = H and τ = 2, . . . , OH − 1 the operational problem is formulated as
follows:

QτH(yτ−1H ,ητH) := (3)

min
yτH

qτH(ητH)yτH(ητH) + Eητ+1
H

[Qτ+1
H (yτH ,η

τ+1
H )]

s.t. T τH(ητH)yτ−1H (ητ−1H ) +W τ
H(ητH)yτH(ητH) = hτH(ητH), τ = 2, . . . , OH − 1,

yτH(ητH) ∈ Rn
τ
H

+ τ = 2, . . . , OH − 1.

When t = H and τ = 1 we have:

Q1
H(xH ,η

1
H) := min

y1H

q1H(η1
H)y1H(η1

H) + Eη2H [Q2
H(y1H ,η

2
H)] (4)

s.t. T 1
H(η1

H)xH(ξH−1) +W 1
H(η1

H)y1H(η1
H) = h1H(η1

H),

xH ∈ RnH+ ,

y1H ∈ Rn
1
H

+ ,
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and then the strategic cost-to-go function at t = H becomes:

QH(xH−1, ξH−1) := min
xH

cH(ξH−1)xH(ξH−1) + Eη1H [Q1
H(xH ,η

1
H)] (5)

s.t. TH(ξH−1)xH−1(ξH−2) +WH(ξH−1)xH(ξH−1) = hH(ξH−1),

xH ∈ RnH+ .

Similarly when t = 2, . . . ,H − 1 and τ = 1, problem (4) becomes

Q1
t (xt,η

1
t ) := min

y1t

q1t (η1
t )y

1
t (η1

t ) + Eη2t [Q2
t (y

1
t ,η

2
t )] (6)

s.t. T 1
t (η1

t )xt(ξt−1) +W 1
t (η1

t )y
1
t (η1

t ) = h1t (η
1
t ),

xt ∈ Rnt+ ,

y1t ∈ Rn
1
t

+ ,

where

Q2
t (y

1
t ,η

2
t ) := min

y2t

q2t (η2
t )y

2
t (η2

t ) + Eη3t [Q3
t (y

2
t ,η

3
t )] (7)

s.t. T 2
t (η2

t )y
1
t (η1

t ) +W 2
t (η2

t )y
2
t (η2

t ) = h2t (η
2
t ),

y2t (η2
t ) ∈ Rn

2
t

+ ,

and then the strategic cost-to-go function at stage t = 2, . . . ,H − 1 becomes:

Qt(xt−1, ξt−1) := min
xt

ct(ξt−1)xt(ξt−1) + Eη1t [Q1
t (xt,η

1
t )] (8)

s.t. Tt(ξt−1)xt−1(ξt−2) +Wt(ξt−1)xt(ξt−1) = ht(ξt−1),

xt ∈ Rnt+ .

On top of all these problems we have to find the first decision variable x1, as
the solution of the model

min
x1

c1x1 + Eη11
[
Q1

1(x1, η
1
1)
]

+ Eξ1 [Q2(x1, ξ1)] (9)

s.t. Ax1 = h1 ,

x1 ∈ Rn1
+ .

where Q1
1(x1, η

1
1) is the same of (7) with t = 1 and τ = 1.

2.1 Scenario tree approximations for multi-horizon stochastic programs

In general, multi-horizon stochastic programs (MHPS) (1) are formulated on
the basis of continuous distributions describing both the strategic and oper-
ational uncertainties. Such “infinite” problems are practically impossible to
solve as they are formulated, and in order to proceed with numerical compu-
tations finite tree approximations of the underlying stochastic processes should
be used as proxies.
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This is obtained by considering a finite number of realizations of the
random strategic process ξ1, . . . , ξH−1 and operational processes η1t , . . . , η

Ot
t ,

t ∈ H.
The information structure at both the strategic and operational levels can

be described in the form of a multi-horizon scenario tree T where at each
strategic stage t ∈ H there is a discrete number of strategic nodes where a spe-
cific realization of the uncertain parameters at strategic level takes place. Let

Nt be the set of ordered strategic nodes at stage t = 1, . . . ,H and N =
H⋃
t=1
Nt.

In order to identify the operational uncertainty we now consider proper op-
erational sub-trees in each strategic node ` ∈ Nt: let S be the set of possible
operational scenarios. Examples of multi-horizons scenario trees with different
operational sub-models for each strategic node are showed in Figure 1 where
strategic nodes are represented with squares and operational nodes with cir-
cles.

Another formulation of the Multi-Horizon Stochastic Program 1, based on
a multi-horizon scenario tree (see Figure 1(d)) and node notation, is given as
follows:

MHSP := min
x,y

H∑
t=1

∑
`∈Nt

π`(c`x` +
∑
s∈St

ws`
∑
τ∈Tt

qs,τ` ys,τ` ) (10)

s.t. Ax` = h`, ` ∈ N1,

T`xa(`) +W`x` = h`, ` ∈ Nt, t ∈ H\{1} ,
T s,1` x` +W s,1

` ys,1` = hs,1` , ` ∈ Nt, s ∈ St, t ∈ H,
T s,τ` ys,τ−1` +W s,τ

` ys,τ` = hs,τ` , ` ∈ Nt, τ ∈ Tt\ {1} , s ∈ St, t ∈ H,
x` ∈ Rnt+ , ` ∈ Nt, t ∈ H,

ys,τ` ∈ Rn
τ
t

+ , ` ∈ Nt, τ ∈ Tt, s ∈ St, t ∈ H,

where c` ∈ Rnt , h` ∈ Rmt , T` ∈ Rmt×nt−1 , W` ∈ Rmt×nt be vectors and
matrices at strategic node ` ∈ Nt, t ∈ H\{1}. If ` ∈ N1 we assume T` = A,
W` = 0 (i.e., the null matrix), c` ∈ Rn1 and h` ∈ Rm1 be known vectors.

Each strategic node at stage t, except the root, is connected to a unique
node at stage t−1 called ancestor and to nodes at stage t+1 called successors.
For each strategic node `, we denote its ancestor with a(`), with π` the proba-
bility of node ` at strategic stage t and with πa(`),` the conditional probability
of the random process in node ` given its history up to the ancestor node `.
We have

∑
`∈Nt

π` = 1, t ∈ H.

Operational vectors and matrices at operational stage τ , in operational
scenario s derived by node ` ∈ Nt, t ∈ H, are then given by qs,τ` ∈ Rnτt ,

hs,τ` ∈ Rmτt , and T s,τ` ∈ Rmτt×n
τ−1
t , W s,τ

` ∈ Rmτt×nτt . When τ = 1 we have

T s,1` ∈ Rm1
t×nt . We indicate with ws` the probability of operational scenario s

derived by node `. Moreover
∑
s∈St

ws` = 1, ` ∈ Nt, t ∈ H. The strategic decision

variable is given by x := {x` | ` ∈ Nt, t ∈ H}, with x` ∈ Rnt+ . The operational
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(a) Multi-Horizon Expected
Value (MHEV ) scenario.

(b) Multi-Horizon scenario
tree structure with one op-
erational scenario for each
strategic node. This is the
tree structure associated to
the Multi-Horizon Operative
Expected Value (MHOEV ).

(c) Multi-Horizon scenario tree structure with two operational scenarios for each
strategic node.

(d) Multi-Horizon scenario tree structure with proper multi-stage stochastic programming operational
model for each strategic node. This is the typical tree structure associated to the Multi-Horizon
Stochastic Program (MHSP ).

Fig. 1 Examples of multi-horizons scenario trees (strategic nodes are represented with
squares and operational nodes with circles).
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decision variable is y := {ys,τ` | ` ∈ Nt, τ ∈ Tt, s ∈ St, t ∈ H}, with ys,τ` ∈ Rn
τ
t

+ .
In the following, for a simpler presentation, the feasibility condition on x and
y will be omitted even if assumed to be satisfied.

We now introduce a second multi-horizon scenario tree notation of prob-
lem (1) based on strategic and operational scenarios: let S the set of strategic
scenarios, denoting with T s

t and W s
t respectively the matrices T` and W`,

operational parameters (qs,τ` , hs,τ` , T s,τ` ,W s,τ
` ) with

(
qs,τs,t , h

s,τ
s,t , T

s,τ
s,t ,W

s,τ
s,t

)
, the

strategic decision variables x` with xst , the operational decision variables ys,τ`
with ys,τs,t , the probability ws` with wss,t in strategic scenario s ∈ S , and the
probability of the strategic scenario s with πs, the multi-horizon linear stochas-
tic program (10) can be expressed as follows:

MHSP := min
x,y

H∑
t=1

∑
s∈S

πs(cstx
s
t +

∑
s∈St

wss,t
∑
τ∈Tt

qs,τs,t y
s,τ
s,t ) (11)

s.t. Ax1 = h1 ,

T s
t x

s
t−1 +W s

t x
s
t = hst , s ∈ S , t ∈ H\{1} ,

T s,1s,t x
s
t +W s,1

s,t y
s,1
s,t = hs,1s,t , s ∈ S , s ∈ St, t ∈ H,

T s,τs,t y
s,τ−1
s,t +W s,τ

s,t y
s,τ
s,t = hs,τs,t , s ∈ S , s ∈ St, τ ∈ Tt\ {1} , t ∈ H,

xs
′

t = xs
′′

t , ∀s′, s′′ ∈ S for which s′ = s′′up to strategic stage t

ys
′,τ

s,t = ys
′′,τ

s,t , ∀s′, s′′ ∈ St for which s′ = s′′up to operational stage τ,

where the nonanticipativity of strategic and operational decision variables is
enforced by the last two constraints.

3 Bounds for multi-horizon stochastic programs

In this section we introduce new bounds for the multi-horizon stochastic pro-
gram (1). For simplicity we adopt the scenario tree notation introduced before.

A sequence of upper bounds can be obtained by inserting feasible solutions
from other problems. This is the case for the solutions obtained by the following
problem:

Definition 3.1 The Multi-Horizon Expected Value problem, MHEV, is ob-
tained by replacing both strategic uncertain parameters (c`, h`, T`,W`), and
operational uncertain parameters (qs,τ` , hs,τ` , T s,τ` ,W s,τ

` ) in problem (10) with
their expected values(∑
`∈Nt

π`c`,
∑
`∈Nt

π`h`,
∑
`∈Nt

π`T`,
∑

`∈N−t

π`W`

)
:=
(
c̄t, h̄t, T̄t, W̄t

)
, t ∈ H\{1} ,

and(∑
s∈St

ws`q
s,τ
` ,

∑
s∈St

ws`h
s,τ
` ,

∑
s∈St

ws`T
s,τ
` ,

∑
s∈St

ws`W
s,τ
`

)
:=
(
q̄τt , h̄

τ
t , T̄

τ
t , W̄

τ
t

)
, τ ∈ Tt, t ∈ H,
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and solving the deterministic program:

MHEV := min
x,y

H∑
t=1

(c̄txt +
∑
τ∈Tt

q̄τt y
τ
t ) (12)

s.t. Ax1 = h̄1,

T̄txt−1 + W̄txt = h̄t, t ∈ H\{1} ,
T̄ 1
t xt + W̄ 1

t y
1
t = h̄1t , t ∈ H,

T̄ τt y
τ−1
t + W̄ τ

t y
τ
t = h̄τt , τ ∈ Tt\ {1} , t ∈ H.

See Figure 1(a) for an example of scenario tree structure for problem MHEV .
The optimal strategic solution of problemMHEV is denoted with x̄ = (x̄1, . . . , x̄H)
and the optimal operational solution is denoted with ȳ = (ȳτ1 , . . . , ȳ

τ
H), where

ȳτt , τ ∈ Tt is the set of all deterministic operational solution derived at strategic
stage t ∈ H.

Definition 3.2 The Multi-Horizon Operative Expected Value problem, MHOEV,
is obtained by replacing operational uncertain parameters (qs,τ` , hs,τ` , T s,τ` ,W s,τ

` )
in problem (10) with their expected values

(
q̄τ` , h̄

τ
` , T̄

τ
` , W̄

τ
`

)
, τ ∈ Tt, ` ∈ Nt,

t ∈ H, and solving the stochastic program:

MHOEV := min
x,y

H∑
t=1

∑
`∈Nt

π`(c`x` +
∑
τ∈Tt

q̄τ` y
τ
` ) (13)

s.t. Ax` = h`, ` ∈ N1,

T`xa(`) +W`x` = h`, ` ∈ Nt, t ∈ H\{1} ,
T̄ 1
` x` + W̄ 1

` y
1
` = h̄1` , ` ∈ Nt, t ∈ H

T̄ τ` y
τ−1
` + W̄ τ

` y
τ
` = h̄τ` , ` ∈ Nt, t ∈ H, τ ∈ Tt\ {1} .

which equivalently, using scenario notation, can be expressed as follows:

MHOEV :=

H∑
t=1

∑
s∈S

πs min
x,y

(cstx
s
t +

∑
τ∈Tt

q̄τs,ty
τ
s,t) (14)

s.t. Ax
1

= h
1
,

T s
t x

s
t−1 +W s

t x
s
t = hst , s ∈ S , t ∈ H\{1} ,

T̄ 1
s,tx

s
t + W̄ 1

s,ty
1
s,t = h̄1s,t, s ∈ S , t ∈ H,

T̄ τs,ty
τ−1
s,t + W̄ τ

s,ty
τ
s,t = h̄τs,t, s ∈ S , τ ∈ Tt\ {1} , t ∈ H,

where

(
∑
s∈St

wss,tq
s,τ
s,t ,

∑
s∈St

wss,th
s,τ
s,t ,

∑
s∈St

wss,tT
s,τ
s,t ,

∑
s∈St

wss,tW
s,τ
s,t ) :=

(
q̄τs,t, h̄

τ
s,t, T̄

τ
s,t, W̄

τ
s,t

)
,

for s ∈ S , τ ∈ Tt, t ∈ H.
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See Figure 1(b) for an example of scenario tree structure for problemMHOEV .
Relaxing the nonanticipativity constraints on the strategic and operational de-
cision variables in formulation (11), we obtain the Multi-Horizon Wait-and-See
Program defined as follows:

Definition 3.3 A Multi-Horizon Wait-and-See Program, MHWS, is as fol-
lows:

MHWS :=

H∑
t=1

∑
s∈S

πs min
x,y

(cstx
s
t +

∑
s∈St

wss,t
∑
τ∈Tt

qs,τs,t y
s,τ
s,t ) (15)

s.t. Ax1 = h1 ,

T s
t x

s
t−1 +W s

t x
s
t = hst , s ∈ S , t ∈ H\{1} ,

T s,1s,t x
s
t +W s,1

s,t y
s,1
s,t = hs,1s,t , s ∈ S , s ∈ St, t ∈ H,

T s,τs,t y
s,τ−1
s,t +W s,τ

s,t y
s,τ
s,t = hs,τs,t , s ∈ S , s ∈ St, τ ∈ Tt\ {1} , t ∈ H.

Relaxing the nonanticipativity constraints only on the strategic decision vari-
ables in formulation (11) we obtain the Multi-Horizon Strategic Wait-and-See
Program defined as follows:

Definition 3.4 A Multi-Horizon Strategic Wait-and-See Program, MHSWS,
is defined as follows:

MHSWS :=

H∑
t=1

∑
s∈S

πs min
x,y

(cstx
s
t +

∑
s∈St

wss,t
∑
τ∈Tt

qs,τs,t y
s,τ
s,t ) (16)

s.t. Ax
1

= h
1
,

T s
t x

s
t−1 +W s

t x
s
t = hst , s ∈ S , t ∈ H\{1} ,

T s,1s,t x
s
t +W s,1

s,t y
s,1
s,t = hs,1s,t , s ∈ S , s ∈ St, t ∈ H,

T s,τs,t y
s,τ−1
s,t +W s,τ

s,t y
s,τ
s,t = hs,τs,t , s ∈ S , s ∈ St, τ ∈ Tt\ {1} , t ∈ H,

ys
′,τ

s,t = ys
′′,τ

s,t , ∀s′, s′′ ∈ St for which s′ = s′′up to operational stage τ.

Definition 3.5 The Multi-Horizon Expected result of Strategic Decision, MHEES,
is defined as the solution value of problem (1), having the strategic decision
variables x̄ fixed at the optimal values obtained by problem (12).

Proposition 3.1 Given a Multi-Horizon Stochastic program (1), the follow-
ing inequality is satisfied:

MHSP ≤MHEES.

Proof Any feasible solution of problem MHEES is also a solution of problem
MHSP , since the former is more restricted than the latter, and the relation
holds true. If MHEES =∞, the inequality is automatically satisfied. ut
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Definition 3.6 The Value of Strategic Decision, V SD, is defined as

V SD := MHEES −MHSP ≥ 0.

Notice that MHEES could be infeasible since too many variables are fixed
from the expected value solutions. For this reason we define the following
measures:

Definition 3.7 The Multi-Horizon Expected result of Strategic Decision at
strategic stage t, MHEESt t ∈ H, is defined as the solution value of prob-
lem (1), having the strategic decision variables x̄ fixed at the optimal values
obtained by problem (12) up to stage t.

Definition 3.8 The Value of Strategic Decision at strategic stage t, V SDt, is
then defined as follows

V SDt := MHEESt −MHSP ≥ 0, t ∈ H.

Similarly other upper bounds can be obtained by fixing both the strategic
and operational decisions:

Definition 3.9 The Multi-Horizon Expected result of Strategic and Opera-
tional Decision at strategic stage t and operational stage τ , MHEESOτt ,
τ ∈ Tt, t ∈ H\{H}, is defined as the solution value of problem (1), hav-
ing both the strategic and operational decision variables fixed at the optimal
values (x̄1, . . . , x̄t) and (ȳτ1 , . . . , ȳ

τ
t ) obtained by problem (12) up to strategic

stage t and operational stage τ .

Definition 3.10 The Value of Strategic and Operational Decision at strategic
stage t and operational stage τ , V SODτ

t , is defined as follows:

V SODτ
t := MHEESOτt −MHSP ≥ 0, τ ∈ Tt, t ∈ H\{H} .

Proposition 3.2 The following chains of inequalities hold true:

– MHSP ≤MHEES1 ≤MHEES2 ≤ . . . ≤MHEESH−1;
– MHSP ≤MHEESOτ1 ≤MHEESOτ2 ≤ . . . ≤MHEESOτH−1, τ ∈ Tt;
– MHEESt ≤MHEESOτt , τ ∈ Tt, t ∈ H\{H}.

Proof See the proof of property 3.1. ut

Proposition 3.3 Given the Multi-Horizon Stochastic program MHSP , the
Multi-Horizon Strategic Wait-and-See Program, MHSWS, and the Multi-
Horizon Wait-and-See Program, MHWS the following relation holds true

MHWS ≤MHSWS ≤MHSP. (17)
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Proof For every strategic scenario s ∈ S and operational scenario s ∈ St,
t ∈ H in problem (11), denoting with x̄ss an optimal solution under these
specific scenarios s and s, with x̄s an optimal solution under the strategic
scenario s, with x∗ an optimal solution to the multi-horizon stochastic problem
(11), and with z the total cost, the following relation holds true:

z(x̄ss) ≤ z(x̄s) ≤ z(x∗). (18)

The thesis is obtained taking the expectation of all the sides of (18). ut

Proposition 3.4 Given the Multi-Horizon Wait-and-See Program, MHWS,
and the Multi-Horizon Expected Value problem, MHEV with fixed objective
function coefficients and recourse matrix, the following relation holds true

MHEV ≤MHWS. (19)

Proof From (9) we have:

min
x,y

EξH−1,η
O1
1 ,...,ηOHH

z(x,y, ξH−1,η
O1
1 , . . . ,ηOHH ) = (20)

min
x1

c1x1 + Eη11
[
Q1

1(x1, η
1
1)
]

+ Eξ1
[
Q2(x1, ξ

1)
]

s.t. Ax1 = h1 ,

x1 ∈ Rn1
+ ,

with Q1
1(x1, η

1
1) and Q2(x1, ξ1) defined in section 2. We note that, due to the

assumptions of fixed objective function coefficients and recourse matrices, we
can write
ξH−1 = (h2, T2, . . . , hH , TH) and

(ηO1
1 ; . . . ;ηOHH ) = (h11, T

1
1 , . . . , h

O1
1 , TO1

1 ; . . . ;h1H , T
1
H , . . . , h

OH
H , TOHH ) and we

denote ψ := (ξH−1,η
O1
1 , . . . ,ηOHH ).

We note that

z(x,y,ψ) = c1x1 +Q1
1(x1, η

1
1) +Q2(x1, ξ

1) +

δ(x1|Ax1 = h1, x1 ∈ Rn1
+ ),

where

δ(x|X) =

{
0 if x ∈ X
∞ otherwise,

is the indicator function of the point x for the set X, jointly convex in x1,
η11 and ξ1. Notice also that Qt, t = 2 . . . , H and Qτt , τ ∈ Tt, t ∈ H are
convex in x and y: by induction because QOHH is convex for all ηOHH , so is

E
η
OH
H

[
QOHH (yOH−1H , ηOHH )

]
. We can then carry this back to each τ < OH and

t < H and the convexity in the decision variables x,y follows. To show that
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f(ψ) := minx,y z(x,y,ψ) is convex in ψ we proceed as follows: consider ψ′

and ψ′′ where z(x,y,ψ′) = f(ψ′) and z(x,y,ψ′′) = f(ψ′′), then:

λf(ψ′) + (1− λ)f(ψ′′) = λz(x,y,ψ′) + (1− λ)z(x,y,ψ′′)

≥ z(x,y, λψ′ + (1− λ)ψ′′)

≥ min
x,y

z(x,y, λψ′ + (1− λ)ψ′′)

= f(λψ′ + (1− λ)ψ′′),

which establishes convexity of f(ψ). The thesis follows from Jensen’s inequality
[15], which states that for any convex function f(ψ) of ψ, Eψf(ψ) ≥ f(Eψ).

ut
From the traditional Expected Value of Information EV PI [20], the following
two definitions can be given:

Definition 3.11 The Multi-Horizon Expected Value of Perfect Strategic In-
formation, MHEV PSI, is defined as

MHEV PSI := MHSP −MHSWS ≥ 0.

Definition 3.12 The Multi-Horizon Expected Value of Perfect Information,
MHEV PI, is defined as

MHEV PI := MHSP −MHWS ≥ 0.

Notice that from Proposition 3.3 we trivially have MHEV PI ≥MHEV PSI.

Proposition 3.5 Given the Multi-Horizon Expected Value problem, MHEV ,
and the Multi-Horizon Operative Expected Value problem, MHOEV with fixed
objective function coefficients and recourse matrix, the following relation holds:

MHEV ≤MHOEV. (21)

Proof We observe that MHEV corresponds to the expected value problem
of MHOEV , which is a traditional stochastic program having only one level
of uncertainty (strategic). The relation then follows from EV ≤ WS ≤ RP
[3], where the first inequality holds true for standard stochastic optimization
problems with fixed objective function coefficients and recourse matrix. ut
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4 Numerical Results

4.1 Problem Description

In this section we report a multi-horizon stochastic optimization problem taken
from [16] to test the bounds introduced before. The problem is inspired by the
EnRiMa model Energy Efficiency and Risk Management in Public Buildings
for installing photovoltaic panels on a building with the aim to determine the
quantity of capacity to install and when. The value of the panels is provided
by how they can cover the electricity demand Ds,τ

` [kWh] in strategic node `
of the set of ordered strategic nodes Nt, profile s ∈ St and operational time
τ ∈ Tt, t ∈ H, taking into account of a factor Rs,τ` specifying what percentage
of the nominal capacity the panel actually produce in a given hour τ and
scenario s. ∆s,τ

` is the duration of the operational periods (1 hour) in node `,
scenario s and operational time τ . As in [16] we consider strategic periods one
year long and three profiles: summer, winter and the rest of the year. Given
the installation cost CI` [e/kW], the cost of energy at time t in scenario s
CEs,τ` [e/kW] and ws` the probability of scenario (or profile) s derived from
the node `, the problem is to determine the capacity to be installed x` [kW]
and the total installed capacity u` [kW] in each strategic node ` ∈ Nt, t ∈ H,
while at the operational level the amount of purchased electricity ys,τ` [kWh]
at time τ ∈ Tt in scenario (profile) s ∈ St, t ∈ H, to minimize the expected
cost. We assume the following notation based on a multi-horizon scenario tree
and node notation as in model (10).

Sets:

H = {t | t = 1, . . . ,H} , set of strategic stages;

Nt = {` | ` = 1, . . . , `t} , set of ordered nodes of the strategic tree

at stage t ∈ H;

Tt = {τ | τ = 1, . . . , Ot} , set of operational stages at strategic time t ∈ H
St = {s | s = 1, . . . , St} , set of operational scenarios (or profiles) at strategic time t ∈ H.

Stategic Stochastic Parameters:

CI` [e/kW] , the PV installation cost at strategic node ` ∈ Nt, t ∈ H;

a(`) , ancestor of the node ` ∈ Nt, t ∈ H\{1}
in the strategic scenario tree;

π` , probability of strategic node ` ∈ Nt, t ∈ H.
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Operational Stochastic Parameters:

CEs,τ` [e/kW] , the cost of energy at time τ ∈ Tt in scenario s ∈ St
derived from strategic node ` ∈ Nt, t ∈ H;

∆s,τ
` , the duration of the operational periods

in node ` ∈ Nt, scenario s ∈ St and operational time τ ∈ Tt, t ∈ H;

Rs,τ` , percentage of the nominal capacity the panel

actually produce in a given hour τ ∈ Tt, and scenario s ∈ St, t ∈ H;

Ds,τ
` [kWh] , electricity demand in a given hour τ ∈ Tt, and scenario s ∈ St, t ∈ H;

ws` , the probability of scenario (or profile) s ∈ St, t ∈ H.
Strategic Variables:

x` [kW] , the capacity to be installed in each

strategic node ` ∈ Nt, t ∈ H;

u` [kW] , the total installed capacity in each

strategic node ` ∈ Nt, t ∈ H.
Operational Variables:

ys,τ` [kWh] , amount of purchased electricity at time

τ ∈ Tt, in scenario (profile) s ∈ St, t ∈ H.
We note that the assumptions made in Section 2 are verified, in particular:

– the strategic uncertainty CI`, ` ∈ Nt, t ∈ H is independent of the opera-
tional uncertainty CEs,τ` , ∆s,τ

` , Rs,τ` , Ds,τ
` , ` ∈ Nt′ , of previous time periods

t′ = 1, . . . , t− 1;
– strategic decisions x` and u` are independent of earlier operational decisions
ys,τ` , ` ∈ Nt′ , t′ = 1, . . . , t− 1;

– there is no connection between operational uncertainties CEs,τ` , ∆s,τ
` , Rs,τ` , Ds,τ

` ,
and CEs,τ`′ , ∆

s,τ
`′ , R

s,τ
`′ , D

s,τ
`′ , of two consecutive strategic nodes ` ∈ Nt,

`′ ∈ Nt+1.

The multi-horizon stochastic programming problem derived for this problem
is formulated as follows:

min
x,u,y

H∑
t=1

∑
`∈Nt

π`(CI`x` +
∑
s∈St

ws`
∑
τ∈Tt

CEs,τ` ys,τ` ) (22)

t.c. u` = ua(`) + x`, ` ∈ Nt, t ∈ H\{1} ,
∆s,τ
` Rs,τ` u` + ys,τ` ≥ Ds,τ

` , ` ∈ Nt, τ ∈ Tt, s ∈ St, t ∈ H.
The first sum in the objective function of problem (22) takes into account the
expected installation cost while the second sum represents the expected cost
derived by buying electricity in period τ and profile s. The first constraint keep
track of the installed capacity u`, at node ` ∈ Nt, in strategic stage t ∈ H.
Finally the last constraint ensures that we have enough power to satisfy the
demand Ds,τ

` , in node ` ∈ Nt, period τ ∈ Tt, profile s ∈ St at stategic time
t ∈ H.
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4.2 The data

In order to keep the model as simple as possible, for the sake of illustration, we
consider a multi-horizon scenario tree defined by the user with strategic tree
given by 3 strategic stages with 2 branches from the root, and 2 from each of
the second-stage nodes resulting in 4 strategic scenarios and 7 strategic nodes
(see Figure 2). One strategic period is one year long. The Table reported in
Figure 2 describes the strategic scenario tree structure characteristics with the
ancestor a(`) of node `, its probability π` and the values of the PV installation
costs CI`, ` ∈ Nt, t ∈ H. Last column refers to an additional parameter SCE`
modeling the long-term averages of the price.

(a) (b)

Fig. 2 (a)Strategic scenario tree structure. (b) Strategic scenario tree structure, values of
strategic parameters CI` and SCE`, ` ∈ Nt, t ∈ H.

The operational uncertainty is described by scenario trees with the follow-
ing characteristics: the number of operational periods in the trees derived by
each strategic node ` ∈ Nt, t ∈ H, is 24 (the number of hours in a day) with
weight ws` = 0.246575, with s = 1 (winter), s = 2 (summer) and ws` = 0.506849
with s = 3 (the rest of the year) derived by taking into account the number
of days in a year respectively of winter and summer (90 days) and for the rest
(185 days). All the operational sub-trees can be classified as two-stage trees
plus 23 extra-periods.

The operational parameters sitting on the nodes of the operational trees
are then derived as follows:

– the duration of the operational periods ∆s,τ
` is the same over all periods

and profiles and is one hour long;
– The cost of energy can be obtained as CEs,τ` = SCE` × ICEs,τ , where
ICEs,τ are dimensionless multipliers modeling the daily price profiles for
each s ∈ St t ∈ H. We assume in summer it is equal to 0.7, in winter 1.5
and in the rest of the year 0.9 and constant over operational periods.

– For the electricity demand Ds,τ
` we simplify the situation by assuming that

the long-term development is deterministic. Consequently the operational
values are given by Ds,τ

` = SD` × IDs,τ , where SD` = 10 kWh represents
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the average demand and IDs,τ denotes the multipliers from the operational
profiles. Their values are reported in Figure 3(a). From the figure we can
observe that the demand varies throughout the day.

– The PV-production factors Rs,τ` are assumed to be constant in the long
term, i.e. Rs,τ` = Rs,τ and their profiles are presented in Figure 3(b).
The values correspond to Bergen, Norway, as provided by the PVWatts
calculator.1

(a) (b)

Fig. 3 (a) Input demand profiles IDs,τ , given as relative values normalizing with respect
to SD`. (b) Profile for the fraction of PV production Rs,τ .

We observe that the assumptions on independence of strategic and opera-
tional processes listed before are verified.

4.3 Computational tests

This section presents computational tests on the bounds introduced in Section
3 applied to the problem (22). We use Ampl environment along with the
callable library of CPLEX 12.5.1.0 to solve the linear problem derived from
our case study. All the computations have been done on a 64-bit machine
with 12 GB of RAM and a 2.90 GHz processor. CPLEX solves the MHSP
problem with the scenario tree structure described before in 198 dual simplex
iterations with a CPU time of 0.03125 seconds (see Table 3). After eliminating
238 constraints, the adjusted problem is composed by 518 linear variables, and
273 linear constraints of which 7 equality and 266 inequality constraints. We
use it as a benchmark to evaluate the cost of optimal solutions obtained using
the other reduced multi-horizon scenario trees.

The results are presented in Table 1 which reports total costs, optimal
strategic solution values x` and u`, ` ∈ T , t ∈ H, of problems MHSP ,
MHOEV and MHEV . Results show that a better description of the opera-
tional stochasticity of model MHSP compared to MHOEV , leads to splitting
the installation capacity among strategic stages, with a lower quantity at the
first one and a consequently larger total cost due to the larger amount of
purchased electricity at each operational time and profile. Lower costs are ob-
tained by the deterministic model MHEV with deterministic parameters in

1 See https://pvwatts.nrel.gov/
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both strategic and operational stages. However, since the objective function
coefficients and recourse matrix are not fixed, Proposition 3.5 relating MHEV
and MHOEV is not verified. The case of fixed objective function coefficients
and recourse matrix will be addressed in Section 4.4.

Table 1 Optimal total cost and optimal strategic solution values of problems MHSP ,
MHOEV and MHEV over nodes and strategic stages.

MHSP MHOEV

total cost 6373.512 4499.2669

t ` x` u` x` u`

1 1 15.1515 15.1515 45.7374 45.7374

2 2 34.8485 50 6.4232 52.1606

2 3 0.9775 16.129 0 45.7374

3 4 0 50 0 52.1606

3 5 5.5556 55.5556 0.9784 53.1389

3 6 17.2043 33.3333 4.4344 50.1718

3 7 33.871 50 6.4231 52.1606

MHEV

total cost 4504.7396

t ` x̄ ū

1 1 45.7374 45.7374

2 2 4.4344 50.1718

3 3 1.9887 52.1606

Moreover, the total costs from the three models, MHSP , MHOEV and
MHEV are not directly comparable because they refer to different multi-
horizon scenario trees. The optimal solutions are then compared on the multi-
horizon scenario tree associated to problem MHSP that is used as a bench-
mark. First of all we evaluate the optimal solutions of the MHEV model by
fixing the quantity of installed capacity x`, ` = 1, 2, 3 until stage t (t = 1, 2, 3),
in the multi-horizon stochastic framework by means of MHEES1, MHEES2

and MHEES3 = MHEES (see Table 2). The associated chain

V SD1 = 213.4495 < V SD2 = 223.854 < V SD = 230.3545 ,

shows we can save about 3.5% of the cost by installing the electricity capacity
suggested by the stochastic model, compared to the deterministic one (see
Table 1). The chain above verifies Proposition 3.1 and the first inequality of
Proposition 3.2.

By fixing both the strategic and operational variables from the expected
value solution at t = τ = 1, i.e. by installing the same electricity capacity at
strategic level and buying the same amount of electricity at operational level,
we get MHEESO1

1 = ∞ (and consequently V SOD1
1 = ∞) showing that the

inappropriateness of the deterministic solution in a multi-horizon stochastic
setting. The second and third inequalities of Proposition 3.2 are then verified.

We then compute the Multi-Horizon Wait-and-See Program, MHWS ob-
tained by relaxing the nonanticipativity constraints on the strategic and oper-
ational decision variables and the Multi-Horizon Strategic Wait-and-See Pro-
gram, MHSWS by relaxing the nonanticipativity constraints only on the
strategic variables. The measure MHEV PSI = 0.7119 (see Definition 3.11)
allows to quantify the value of knowing in advance the PV installation cost,
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Table 2 Optimal Strategic Solution Values of problem MHEES1, MHEES2 and
MHEES over nodes and strategic stages.

MHEES1 MHEES2 MHEES

total cost 6586.9615 6597.366 6603.8665

t ` x` u` x` u` x` u`

1 1 45.7374 45.7374 45.7374 45.7374 45.7374 45.7374

2 2 4.2626 50 4.4344 50.1718 4.4344 50.1718

2 3 0 45.7374 4.4344 50.1718 4.4344 50.1718

3 4 0 50 0 50.1718 1.9887 52.1605

3 5 5.5556 55.5556 5.3838 55.5556 1.9887 52.1605

3 6 0 45.7374 0 50.1718 1.9887 52.1605

3 7 4.2626 50 0 50.1718 1.9887 52.1605

Table 3 Values and CPU time (in seconds) of MHSP and other bounds

model total cost CPU time (seconds)

MHSP 6373.512 0.03125

MHEV 4504.7396 0.01615

MHOEV 4499.2669 0.01823

MHEES1 6586.9615 0.01979

MHEES2 6597.366 0.01667

MHEES3 = MHEES 6603.8665 0.01510

MHEESO1
1 ∞ 0

MHSWS 6372.8001 0.02396

MHWS 6001.3994 0.01979

while MHEV PI = 372.1126 (see Definition 3.12) to quantify the value of
knowing in advance the PV installation cost, the cost of energy and the demand
at each operational time. By comparing the values of the different approaches
we have:

MHWS = 6001.3994 < MHSWS = 6372.8001 < MHSP = 6373.512,

which verifies Proposition 3.3. Results show that, in the considered instance, it
is more important to know in advance the values of operational parameters like
PV-production factors, electricity demand and cost than the PV installation
cost.

All the aforementioned bounds are summarized in Table 3 with their CPU
time expressed in seconds (average results over 30 runs). As expected all
the proposed bounds allow to save computing time with respect to original
MHSP . The best lower bound is MHSWS with a CPU time a little larger
than the one of MHWS, while the best upper bound is given MHEES1 which
also requires a reduced CPU effort compared to MHSP .

Notice that for the problem considered, Proposition 3.5 is not verified since the
objective function coefficients and recourse matrix are not fixed; thus we have:
MHEV = 4504.7396 > MHOEV = 4499.2669. In order to verify Proposition
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3.5, in the following section we will assume fixed objective function coefficients
and recourse matrix.

4.4 Case of fixed recourse and objective function coefficients

In this section we consider the case in which objective function coefficients and
recourse matrix are fixed. Strategic parameters CI` and SCE`, are defined as
in Table 4, and operational parameters as follows: the dimensionless multipliers
modeling the daily price profiles are assumed constant over days and profiles
ICEs,τ = 0.998631, s ∈ St, τ ∈ Tt, t ∈ H and the fraction of PV production
IRs,τ = IR

τ
:=
∑
s∈St w

s
`IR

s,τ ` ∈ Nt, t ∈ H.

Table 4 Strategic scenario tree structure, values of strategic parameters CI` and SCE`,
` ∈ Nt, t ∈ H in case of fixed recourse and objective function coefficients.

t ` a(`) π` CI` SCE`

1 1 - 1 50 0.05

2 2 1 0.5 27.5 0.05

3 3 1 0.5 27.5 0.05

3 4 2 0.25 12.5 0.045

3 5 2 0.25 12.5 0.045

3 6 3 0.25 12.5 0.045

3 7 3 0.25 12.5 0.045

Table 5 Values and CPU time (in seconds) of MHSP , MHEV , MHOEV under fixed
objective function coefficients and recourse matrices.

model total cost CPU time (seconds)

MHSP 4782.759 0.03125

MHEV 4504.7396 0.01822

MHOEV 4504.7396 0.01822

MHWS 4524.6039 0.02656

MHSWS 4782.7587 0.02239

Results are reported in Table 5 which reports the total costs of problems
MHSP , MHEV , MHOEV , MHWS and MHSWS with their CPU times
(average results over 30 runs). All the proposed bounds allow to save com-
puting time with respect to original MHSP . The tightest lower bound is
MHSWS with a CPU time a little larger than the one of MHWS. The val-
ues obtained show that:

MHEV = 4504.7396 ≤ MHWS = 4524.6039,

MHEV = 4504.7396 = MHOEV = 4504.7396,
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verifying propositions 3.5 and 3.4. Also in this instance, results confirm that it
is more important to know in advance the values of operational parameters like
PV-production factors, electricity demand and cost than the PV installation
cost. All the other inequalities are also verified.

5 Conclusions

In this paper, we have developed lower and upper bounds for multi-horizon
stochastic optimization programs [16]. The structure of such a kind of problems
allows to model and solve problems that need to combine strategic (long-
term) and operational (short-term) uncertainty, without the computational
intractability that would follow from using a standard multistage stochastic
model.

Three general mathematical formulations, the definitions of the expected
value problem and wait-and-see problem from stochastic programming, have
been introduced and discussed for a multi-horizon framework.

New measures and bounds have been defined, allowing to quantify the
importance of the uncertainty at both strategic and operational levels and the
systematic error done by most stochastic programs, including either short-run
or long-run uncertainty, replacing the other type with expectation.

Relations among the solution approaches are then determined and chain
of inequalities provided and proved. For illustration, numerical results based
on an energy planning application [16] have been presented.

Future works will consider hierarchy of bounds based on solving smaller
multi-horizon problems based on partitions of the strategic and operational
scenario sets. Other possible bounds worth to be investigated in the future
are the ones in the case of dependency between strategic and operational
uncertainties.
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