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Abstract

For an electric power mix subject to uncertainty, the stochastic unit-commitment problem
finds short-term optimal generation schedules that satisfy several system-wide constraints.
In regulated electricity markets, this very practical and important problem is used by the
system operator to decide when each unit is to be started or stopped, and to define how
to generate enough energy to meet the load. For hydro-dominated systems, an accurate
description of the hydro-production function involves non-convex relations. This feature,
combined with the fine time discretization needed to represent uncertainty of renewable
generation, yields a large-scale mathematical optimization model that is nonlinear and has
mixed-integer variables. To make the problem tractable, a novel solution strategy, based on
multi-horizon scenario trees, is proposed. The approach deals in a first level with the integer
decision variables representing whether units are on or off. Once units are committed, the
expected operational cost is minimized by solving a continuous second-level problem, which
is separable by scenarios. The coordination between the two decision levels is done by means
of a bundle-like variant of Benders decomposition that proves very efficient for the considered
setting. To assess the quality of the optimal commitment on out-of-sample scenarios, a new
simulation technique, based on certain sustainable pseudo-distance is proposed. For the
numerical experiments, a mix of hydro, thermal, and wind power plants extracted from
the Brazilian power system is considered. The results confirm the interest of the approach,
particularly regarding a more efficient management of hydro-plants, because non-convex
operational regions are considered by the model.
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1 Introduction and motivation

The unit-commitment (UC) problem determines the optimal scheduling of generating units
over a short-term horizon, typically ranging between 24 and 168 hours, [WSL08; SF94]. In re-
sponse to the increasing penetration of renewable energy, a variety of stochastic unit-commitment
(SUC) models has been proposed in the literature, we refer to [Tah+15] for a thorough review.
Most of the considered models handle uncertainty by scenario representation in a two-stage
setting. For instance, in [PO13] the deterministic formulation [SS09] is extended so that in the
first stage slow generators are committed; subsequently, once uncertainty in net demand and in
availability of units and lines is revealed, the second-stage subproblems solve a dispatch problem
to find optimal fast generator commitments and production schedules for each scenario; see also
[PO12]. The more recent work [ZCS17] combines day-ahead UC decisions in the first stage with
real-time dispatch and market-balancing decisions in the second stage.

The references above formulate the SUC problem in a deregulated market framework, with
market-clearing constraints. We are interested in the Brazilian power system, with an indepen-
dent system operator centralizing the decisions on generation, transmission and distribution of
energy for the whole country. Accordingly, Brazil’s SUC model minimizes the expected cost
of a very large hydro-dominated configuration, with water travel times of one week in some
regions. In this context wind farms and run-of-river plants, with their intermittent generation,
significantly complicate the optimization problem. The reason lies in the disparity between the
fine time discretization needed for the uncertainty and the long time horizon (at least one week)
that must be considered to take into account coupling constraints involving hydro-valleys.

The hydro-production function (HPF), that converts turbined outflow into energy, compli-
cates even more the optimization problem. Namely, a satisfactory model of the HPF introduces
a non-convex equality in the feasible set, see Sections 2.1 and 5.1. Given that the SUC models
are run every day, providing an output in less than 90-120 minutes for operational purposes, the
Brazilian SUC problem constitutes a true challenge from the solution point of view.

In such a setting, integrating renewable power and its uncertainty in a manner that is sound
and accurate is crucial. A multi-stage stochastic programming model for large-scale mixed-
integer non-convex problems is out of reach with the current computational capabilities. On the
other hand, the two-stage paradigm has some drawbacks; for instance, in some situations it is
not sufficient to look at just one stage ahead, as it happens when uncertainty is revealed all at
once, for the whole week (two-stage UC models cannot adapt generation schedules and dispatch
to hourly uncertainty realizations). We propose a novel model based on the concept of multi-
horizon scenario tree. The idea is to work with two separate groups of variables, called strategic
and operational. The strategic group, corresponding to the first level decision, includes variables
with a slow dynamic, like the on/off status of the units, which can change at most twice or thrice
a day. The operational group, in turn, deals with continuous variables such as generation levels,
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reservoir volumes, and network flows, that need to adapt to a fast dynamic (water inflow and
wind). All 0-1 decisions are taken in the first level; in the second decision level, the 0-1 variables
related to UC are fixed. Decision levels are coordinated by means of a bundle-like regularized
Benders approach which maintains the 0-1 linear structure of the master program, but provides
better bounds and, hence, converges faster than a classical Benders decomposition method.

The contribution of this work is three-fold. On the modeling side, differently from the
two-stage paradigm in [PO13; PO12; ZCS17], multi-horizon trees make it possible to consider
uncertainty in both decision levels. However, multi-horizon trees, as introduced in [Kau+14],
are not applicable straightforwardly because our SUC problem has ramp constraints and water
balance equations coupling several time steps (the problem structure in [Kau+14] does not
present any temporal coupling). Instead, we combine a tree on the strategic decision level with
a fan of independent scenarios in the operational level. The advantage over classical two-stage
models is that the on/off status of the units can change and react to variations in the demand
throughout the day. This flexibility, crucial to reduce costs, is closer to real-time operation
conditions, and is best exploited when the system under consideration has many units with fast
operational dynamics, such as hydro-units and some thermal gas turbines. Furthermore, being
an intermediate representation between two- and multi-stage formulations, the multi-horizon
paradigm does not suffer from the dimensionality curse typical of multi-stage scenario trees.

The second area of contribution of this work is on the methodological side. Our regularized
method stabilizes the pure Benders algorithm, preventing oscillations and tailing-off effects that
slow down the iterative process and sometimes impair convergence. Our bundle-like decompo-
sition method, could be seen as an enhancement of [LTB11], which is based on the Generalized
Benders Decomposition (GBD) [Geo72]. To ensure convergence, such decomposition methods
solve a master program and slave problems to define lower and upper bounds that are refined
along iterations. Since there are non-convex constraints in the slave problems, the upper bound
computes global solutions to nonlinear programs, a process which [LTB11] reports to take 90%
of the total running time. An interesting feature regarding UC is that, unlike methods based on
Lagrangian relaxation, Benders’-like algorithms output feasible schedules directly, without any
need of a posteriori heuristic phases to recover primal feasibility, even with a non-convex HPF.

Finally, the third contribution refers to how the quality of the SUC solution is assessed, a
crucial feature in stochastic programming. We introduce a new simulation procedure that, given
the optimal commitment for the in-sample scenarios and a set of out-of-sample scenarios, finds
the closest commitment in terms of certain sustainable pseudo-distance similar to the well-known
Fortet-Mourier distance, but weighed so that wind energy is best used.

The work is organized as follows. The problem to be solved is formulated in Section 2;
subsections 2.1 and 2.2 therein present, respectively, the structure of the UC problem under
consideration and several concepts associated with multi-horizon scenario trees. Section 3 ex-
plains the main elements of the solution methodology, combining the non-convex Generalized
Benders decomposition with a bundle-like regularization. Section 4 provides several imple-
mentational issues, such as the approximation procedure of the HPF and the new simulation
technique. Section 5 details the SUC formulation for a hydro-thermal configuration extracted
from the Brazilian power system and assesses the numerical performance of our proposal under
different conditions. A final section with the main conclusions ends the paper.
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Notation. All vectors are considered column vectors. Given two vectors x, x̃, their Euclidean
inner product is 〈x, x̃〉 = x>x̃. Time steps are denoted by a subindex t ∈ {1, 2, . . . ,T}, where
T is the time horizon. The rest of the notation is introduced gradually, starting with the SUC
problem description in the next section.

2 Problem formulation

To ease the presentation, the main elements of the problem are given first for a deterministic
model. Uncertainty is taken into account later on, when explaining the multi-horizon trees in
subsection 2.2.

2.1 The unit-commitment model

Decision variables are split into two vectors, x and y, respectively with 0-1 and continuous
components. If the ith unit is on at time t, the variable xit is set to 1 , otherwise is equal
to 0. Scalars yit correspond to decisions related to operation: turbined outflow, spillage, unit
generation, line flows, and voltage angles. Transmission in the electrical system is represented
by DC affine relations between buses and lines. Operational decision variables of all the units at
time t are denoted by yt. In particular, an important subvector is the energy generated by the
whole system at time t, denoted by gt, with values ranging in the (multi-dimensional) interval
[γ,Γ], the same for all t. When a unit is switched on or immediately before it is switched off,
it is assumed to generate the minimum power γ.Ramps have up and down-rates δ+ and δ−,
defining the parameters ρ+ := δ+ − γ and ρ− := δ− − γ. Decisions on commitment (operation)
are taken at the beginning (end) of a time period.

The abstract formulation below gives the general structure of the UC problem, the rightmost
text, between parentheses, explains the meaning of each set of constraints.

min
T∑
t=1

(
〈Ft, xt〉+ ft(yt)

)
s.t. xit ∈ {0, 1} , yit ≥ 0 for all i, t

A0
t yt−1 +A1

t yt = at for all t (water balance)
Btyt = bt for all t (power balance on each bus)
Ctyt ≤ ct for all t (transmission lines)

gt−1 − gt ≤ γ + ρ−xt for all t (down-ramp)
gt − gt−1 ≤ γ + ρ+xt−1 for all t (up-ramp)

xt γ ≤ gt ≤ xt Γ for all t (generate only for switched-on units)
Egt = hp(yt) for all t (hydro-production function) .

(1)

In the objective function, the linear commitment costs Ft are related to the cost incurred when
starting up and shutting down a unit. Operational costs are represented by the function ft, which
can be linear, piecewise-linear or quadratic convex. Typically, thermal generation has linear or
quadratic convex costs, and the cost of hydro-generation is given by a piecewise-linear function.
Matrices and vectors in the feasible set have suitable dimensions. An observation regarding the
water balance constraint is in order. At first sight, its formulation does not appear to take into
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account the water travel time between two hydro-plants in cascade. When the time that takes for
outflows upstream to reach the reservoir downstream is longer than one discretized unit of time,
the water balance constraint couples variables from times earlier than t−1. Notwithstanding, the
format presented in (1) remains valid, simply by adding auxiliary non-negative variables that
accumulate consecutive portions of the water travel time (incidentally, such auxiliary variables
must satisfy relations akin to the one given for the water balance, that is, coupling t− 1 and t).

A more compact problem formulation, handy for explaining both the multi-horizon trees and
the decomposition method, makes use of the sets

Yt :=
{
yt ∈ R | A0

t yt−1 +A1
t yt = at , D

0
t yt−1 +D1

t yt ≤ dt
}

(2)

which couple decisions on consecutive time steps, and the static constraint sets,

Xt := {xt ∈ {0, 1}} , and St := {yt ≥ 0 | Btyt = dt , Egt = hp(yt)} , (3)

to be satisfied separately by x or y, only for components with sub-index t.
With this notation, problem (1) writes down as follows

min 〈F , x〉+ f(y)
s.t. xt ∈ Xt , yt ∈ St ∩ Yt for all t

Tx+Wy ≤ h ,
(4)

where the inequality constraint represents the ramps and the bounds on capacity xt γ ≤ gt ≤
xt Γ, coupling some components of x and y at each time step.

2.2 Information structure, uncertainty and decisions

In problem (4), uncertainty appears in the right-hand side terms b and d to represent the
impact of unknown inflows and wind generation on, respectively, the water and power balance
equations. Letting the corresponding random data process be ξt, its history up to time t is
denoted by ξ[t], assuming that ξ1 is deterministic. Regarding (4), we now have that St = St(ξt)
depends only on the t-th realization. By contrast, the sets

Xt = Xt(ξ[t]) and Yt = Yt(ξ[t]) (5)

depend on the whole history, because the ramps couple xt−1 and xt with yt−1 and yt. This
is an important issue, that prevents a straightforward application of the multi-horizon trees in
[Kau+14]. In these work the feasible sets are stagewise independent. By contrast, with our
setting decision variables become a function of the uncertainty history, for each t

x := (x1, x2(ξ[2]), . . . , xT(ξ[T])) and, similarly for the operational constraints .

A risk-neutral multi-stage stochastic programming version of the problem is
min Eξ [〈F , x(ξ)〉+ f(y(ξ))]
s.t. xt(ξ[t]) ∈ Xt(ξ[t]) for a.e. ξ , for all t

yt(ξ[t]) ∈ St(ξt) ∩ Yt(ξt) for a.e. ξ , for all t

Tx(ξ[T]) +Wy(ξ[T]) ≤ h for a.e. ξ .

(6)
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Suppose the data process distribution is finite, given by scenarios ξ1
[T] , ξ

2
[T] , ξ

3
[T] , . . .. With a

multi-horizon tree structure, the process attached to the strategic variable x can be handled dif-
ferently from the one attached to the operational variable y. For this reason, we write separately
the uncertainty for x and y, as follows:

min Eω [〈F , x(ω)〉] + Eξ [f(y(ξ))]
s.t. xt(ω[t]) ∈ Xt(ω[t]) for all t

yt(ξ[t]) ∈ St(ξt) ∩ Yt(ξt) for all t

Tx(ω[T]) +Wy(ξ[T]) ≤ h ,

where the relations hold for almost every ω and ξ. Clearly, if ωt = ξt for all t, the problem
above is equivalent to (6). Notwithstanding, nothing prevents from choosing different scenarios
for each data process, to the extent that the strategic tree, representing ω, can branch at time
steps that are different from those in the operational tree, representing ξ. Such a distinction is
well suited to our setting: as changes in commitment (x) have a slow dynamic, it is sound to
branch in blocks of a few hours (i.e., 4, 8, etc.), to modify the unit status at most a given number
of times a day. Operation decisions (y), by contrast, should adapt to the fast dynamic of wind
realizations and branching every hour makes better sense. In this case, strategic scenarios have
length |T|x while operational ones have length |T|y.

In a traditional scenario tree for multi-stage recourse problems [KW94], combining a slow
dynamic for x with a fast dynamic for y rapidly grows out of hand and is bound to the well-known
dimensionality curse. Two-stage approaches, on the other hand, are not sufficiently flexible in
terms of recourse, particularly when it comes to switch on and off units to adapt generation
(and ramps) to wind power changes.

There is one important issue that arises at this point, related to the use of separate time
scales. When branching at different paces in both trees, the coupling constraint

Tx(ω[Tx]) +Wy(ξ[Ty ]) ≤ h ,

needs to be defined by suitably linking scenarios in both trees. This is done by means of an
application denoted by ν, linking nodes in the strategic and operational trees. The constraint
is then replaced by

Tx(ω[ν(Ty ,ξ)]) +Wy(ξ[Ty ]) ≤ h .

In order to better explain how nodes in the trees are connected, we illustrate in Figures 1, 2
and 3 some situations that may arise, assuming that at most two realizations can occur for the
data processes. Circles and squares are used in the figures to represent scenario nodes generated
for the distribution of ω and ξ, respectively.

The two multi-stage trees in Figure 1 have the same time scale |T|x = |T|y = 4. The strategic
tree for the decision variable x on the left has nodes represented as circles. On the right-hand
side tree the square nodes correspond to the operational variable, y. There is clear a one-to-one
relation; the corresponding mapping ν is represented by the (dash and dash-dot) lines joining
circles and squares in the figure.

The situation changes when using different time scales. Suppose the strategic tree (with slow
dynamic) does not branch at t = 2, as in the left tree in Figure 2, where |T|x = 3 and |T|y = 4.
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Figure 1: One-to-one link for multi-horizon trees with same time scales.
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Lacking nodes for t = 2 on the left tree, the operational variables in nodes for t = 2 (squares
labelled ξ1

2 and ξ2
2) are linked with the on/off status defined at t = 1 (circle labelled ω1

1). In
particular, for ξ[2] = (ξ1

1 , ξ
1
2) in the figure,

the capacity constraint x2(ω[2]) γ ≤ g2(ξ[2]) ≤ x2(ω[2]) Γ

is replaced by x1 γ ≤ g2(ξ[2]) ≤ x1 Γ .

and similarly for ξ[2] = (ξ1
1 , ξ

1
2).

Figure 2: Many-to-many link for multi-horizon trees with different time scales.
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Defining a nonanticipativity replacement for the ramp constraints

gt−1(ξ[t−1])− gt(ξ[t]) ≤ γ + ρ−xt(ω[t]) and gt(ξ[t])− gt−1(ξ[t−1]) ≤ γ + ρ+xt−1(ω[t−1])

is more complicated. The property of nonanticipativity states that, in multi-stage trees, de-
cisions sharing same uncertainty history must be the same. In the multi-horizon formulation
[Kau+14] linking two time scales is simple, because therein constraints involving the two trees
are not coupled in time and consistency is preserved in a straightforward manner. This is not
the case for SUC problems with ramp constraints. To understand the difficulty, note that in
Figure 2, nonanticipativity means that the strategic scenario (ω1

1, ω
1
3, ω

1
4) is associated with the

four leftmost operational scenarios

ξ1
[4] := (ξ1

1 , ξ
1
2 , ξ

1
3 , ξ

1
4) , ξ2

[4] := (ξ1
1 , ξ

1
2 , ξ

1
3 , ξ

2
4) , ξ3

[4] := (ξ1
1 , ξ

1
2 , ξ

2
3 , ξ

3
4) , and ξ4

[4] := (ξ1
1 , ξ

1
2 , ξ

2
3 , ξ

4
4) .

(7)
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Since one component of the operational uncertainty refers to inflows, the operational scenarios (7)
can be thought of as representing four different reservoir dynamics, which are in turn associated
with four different generation levels. On the strategic tree, scenarios represent different system
configurations (commitments), determining the ramps and the generation capacity for each unit
in the system. The inconsistency arises at t = 5, because the same four operational scenarios (7)
are associated with the strategic scenario (ω1

1, ω
1
3, ω

2
4). Since the realizations ω1

4 and ω2
4 are not

the same, the corresponding different system configurations should lead to different generation
decisions and yield different reservoir dynamics on the operational nodes after t = 5. Having
different reservoir dynamics is clearly not possible on the same operational tree. On the other
hand, if each strategic scenario had attached its own operational tree, the involved computational
effort would make the model unpractical. For this reason, instead of representing operational
uncertainty by a multi-stage tree, we drop the nonanticipativity requirement on the operational
side and employ a fan of independent scenarios, as in Figure 3.

Figure 3: Multi-stage tree and fan of independent scenarios using different time scales.
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When using a fan of independent scenarios for the operational uncertainty the generation
decisions are taken separately for each scenario. This introduces an inconsistency in the decision
process, because often scenarios are sampled so that they have a common history of realizations.
To understand this issue, suppose the fan in Figure 3 has two inflow scenarios that coincide for
the first three time steps. The corresponding generation decisions will be different, when in fact
they should be the same for the first three time steps. This inconsistency in the operational level
is the price to pay to have the possibility of representing uncertainty in the strategic variables.
For the problem of interest, the most important output of the model is the commitment. The
generation levels can be adjusted in real time by the operator, according to the realization of
uncertainty. Once a unit is on, it is acceptable to modify slightly its generation. By contrast,
especially in the presence of ramping constraints, it is crucial to make sure that a given unit
is not switched-off at times close to peak demand or when there is a high probability of losing
a significant amount of wind generation. These considerations are the main motivation for our
modeling choice.
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3 Decomposition method

Similarly to Section 2, to explain the methodology without carrying on a heavy notation, we
consider the deterministic problem (4) with feasible sets from (2) and (3):

min 〈F , x〉+ f(y)
s.t. xt ∈ Xt , yt ∈ St ∩ Yt for all t

Tx+Wy ≤ h .

Recall that the only non-convex relation appears in the HPF constraint Egt = hp(yt), included
in the set with static constraints, St. The first two subsections below describe the main ingre-
dients of our decomposition method, namely how to handle non-convexity and the bundle-like
regularization. In the final subsection, we explain how the approach is applied to the SUC when
the multi-horizon formulation represented in Figure 3 is employed.

3.1 Generalized Benders decomposition for non-convex problems

Non-convexity is dealt with as in [LTB11], taking advantage of the fact that HPFs have
been considered in convex and non-convex formulations [GH05; DM08; SZ13; KCW18; FFM19].
More precisely, suppose the following approximation of the HPF is available:

∃H such that hp(yt) ≤ H(yt) for all yt, with H concave. (8)

The proposal in [LTB11] is to replace the non-convex constraint Egt = hp(yt) by the convex
constraint Egt ≤ H(yt), and perform a Benders decomposition on the convexified problem. Since
(8) ensures that the convex feasible set is larger than the original one, solving the convexified
problem provides a lower bound for the non-convex optimal value. Upper bounds are found by
solving the non-convex problem (4) only on the continuous variables, with fixed commitment x.
The pseudo-code for the method in [LTB11] is given in Algorithm 1.

Some comments regarding Algorithm 1 are in order. First, to generate Benders cuts the
non-convex static sets St are replaced by the convex variant

Rt := {yt ≥ 0 | Btyt = bt , Egt ≤ H(yt)} . (13)

As customary in energy management problems, an artificial generating unit with high cost
and infinite capacity is considered in each bus. Since nonanticipativity constraints are relaxed,
feasibility of the slave problems (9) is therefore ensured (the SUC satisfies the property of relative
complete recourse).This is why line 2 of the algorithm generates optimality cuts (10) only.

In line 3, the upper bound calculation takes into account that the solver employed to com-
pute ovk may not be a global optimization one, and provide only a local solution. The work
[LTB11] uses a global optimization solver and sets directly ubk = ovk. We use the NLP solver
Ipopt [WB06], so the solution found may correspond to a local minimum. The upper bound
definition is changed to keep a record of the smallest value found throughout iterations.

Since the master problems (12) have linear objective and constraints with 0-1 variables and
the slave problems (9) are convex, the process that iterates between lines 2 and 4 converges.
More precisely, by [Geo72, Theorem 2.4], the process has finite termination because the master
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Algorithm 1: Non-convex GBD [LTB11]

Data: starting point x0 and a tolerance ε ≥ 0 for termination.
Set the iteration counter k = 0.

1 repeat
2 Slave solution: Given xk, find yk solving the convex program

min f(y)
s.t. yt ∈ Rt ∩ Yt for all t

Wy ≤ h− Txk .
(9)

Let πk be the optimal multiplier corresponding to the affine constraint above.
Define the optimality cut

Ck(x) :=
〈
πk, h− Tx

〉
. (10)

3 Upper bound: Solve the nonlinear programming (NLP) problem
min f(y)
s.t. yt ∈ St ∩ Yt for all t

Wy ≤ h− Txk ,
(11)

and let ovk be the optimal value. If k = 0, set ub0 := min(f(y0), ov0). If k > 0, set
ubk = min(f(yk), ubk−1, ovk).

4 Master problem: Find (xk+1, αk+1) solution to the 0-1 linear problem
min 〈F , x〉+ α
s.t. xt ∈ Xt for all t

α ≥ C`(x) for ` = 0, . . . , k ,
(12)

and let lbk+1 be the optimal value.
5 Update: Set k = k + 1.

6 until the gap is sufficiently small: ubk − lbk ≤ εmax(1, |lbk|) for k > 0 .

feasible sets Xt are discrete. We note also that the performance of the non-convex GBD depends
on the ability of (globally) solving fast the NLP problem (11) (line 3 in Algorithm 1). In practice,
it is common to assign a time budget to each block of Algorithm 1. We set a time limit for solving
the master problem (12), as suggested by [BCF19].

3.2 Regularization à la level-bundle

Benders decomposition can be slow to converge, particularly for large-scale problems. Al-
ready in [GG74] poor performance was observed in some circumstances; see also [MW81]. Es-
sentially, the lower bound of the method tends to stall and oscillate when getting closer to a
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solution. This “zig-zagging” phenomenon is well-known in nonsmooth optimization and is re-
lated to the cutting-plane approximation done by means of the variable α in (12); see [Bon+06,
Example 9.7]. Attempts to tackle such weakness are numerous in the literature and essentially
fall into two categories. Acceleration is obtained either by saving on the computational cost
per iteration, or by reducing the total number of iterations. Regarding the former, we mention
[MD77] and [ZPR00], respectively solving approximately the master and the slaves to accelerate
the procedure. The second group of research aims at generating “deeper” cuts, as in [FSZ10],
[Cad10], or at stabilizing the oscillations in the master program by means of some regularization,
along the lines of bundle methods [Bon+06, Chapter 10]. For two-stage stochastic problems the
quadratic regularizations introduced in [Rus86] were explored later on for tackling inexact in-
formation provided by the slave problems in [OSS11; OS14]; see also [Fáb+15]. In the context
of Benders decomposition for mixed-integer problems the first proposal we found is [ZM14],
followed up by [MOZ17]. Our method, Algorithm 2 given in pseudo-code below, falls into this
last line of works, and is close to the proximal level bundle method [Kiw95] with the important
difference that in that work decision variables are continuous.

The stabilization mechanism deviced by bundle methods keeps track along iterations of
certain records x̂k, called serious iterates, that provide sufficient descent towards the minimum
(cf. the descent test in Algorithm 2, line 4). The master problem (12) is then modified to
prevent the next iterate to move “too far away” from the record, depending on a parameter.
For instance, a penalized-bundle formulation of (12) defines

min 〈F , x〉+ α+
1

2
µk‖x− x̂k‖2

s.t. xt ∈ Xt for all t
α ≥ C`(x) for ` = 0, . . . , k ,

for a parameter µk > 0. In a level-bundle formulation, instead of adding a penalization in the
objective function, the master program projects the record onto certain level set depending on
a parameter denoted by Lk: 

min
1

2
‖x− x̂k‖2

s.t. xt ∈ Xt for all t
α ≥ C`(x) for ` = 0, . . . , k
〈F , x〉+ α ≤ Lk .

If the parameter Lk is too low (for instance smaller than the desired optimal value), the problem
above can be infeasible. In this case, the level-bundle method increases the parameter and solves
a new master problem. To converge, Lk is adjusted using lower and upper bounds (denoted fklo
and fkup below) that “sandwich” the optimal value, as long as iterates remain in a compact set
(compactness is automatic in our case, because each Xt is contained in a hypercube).

An important feature of bundle methods is that, unlike the Benders’ master program (12),
they generate a monotone subsequence of iterates (the “serious steps” in line 4 below). The
corresponding lower bounds are superior to the ones obtained with Algorithm 1.

Our stabilized master problem (14) uses so-called proximal level variant [Kiw95], that allows
for compressing the bundle information (and, therefore, can reduce the number of cuts while
maintaining the convergence properties of the method).
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At first sight, when dealing with mixed-0-1 decision variables, inserting a proximal, quadratic,
stabilization is not practical, because the master program becomes a quadratic programming
problem with mixed 0-1 variables. For this reason, [Oli16] considers only polyhedral norms. In
our setting, however, the fact that the master program has only binary variables enables regu-
larizations in the Euclidean norm, simply because quadratic terms involving only 0-1 variables
are in fact linear:

given x̂k ∈ {0, 1} a parameter,
1

2
(x− x̂k)2 =

1

2
(x+ x̂k)− xx̂k for all x ∈ {0, 1} .

As a result, in line 13 of Algorithm 2 at the kth iteration the objective function in (14) coincides
with 1

2‖x − x̂
k‖2, making the master program a projection of the reference point x̂k onto the

level set, as usual in level bundle methods.

Algorithm 2: Non-convex GBD with Proximal Level Bundle Stabilization

Data: starting point x0, parameters m,κ ∈ (0, 1), and a tolerance ε ≥ 0.
Set the iteration counter k = 0, and f0

up = +∞, ∆0 := 0.

1 repeat
2 Slave solution: Given xk, find yk solving the convex program (9) and define the kth

optimality cut (10). Let vk denote the optimal value.
3 Upper bound: Compute ovk the optimal value of (11). If k = 0, set

ub0 := min(v0, ov0). If k > 0, set ubk = min(vk, ubk−1, ovk).
4 Level-bundle descent test

Compute fklo the optimal value of (12), and the bundle gap ∆k := fkup − fklo.

If
〈
F , xk

〉
+ vk ≤ fkup −m∆k, then

{
x̂k = xk

fkup = min(fkup,
〈
F , xk

〉
+ vk)

[serious step]

Otherwise, set x̂k = x̂k−1 and fkup = fk−1
up [null step].

5 Master problem: Given x̂k∈ {0, 1}Nx, find (xk+1, αk+1) solving the 0-1 linear
problem 

min

Nx∑
n=1

(
1

2
(xn + x̂kn)− xnx̂kn

)
s.t. xt ∈ Xt for all t

α ≥ C`(x) for ` = 0, 1, . . . , k
〈F , x〉+ α ≤ κfklo + (1− κ)fkup .

(14)

Feasibility check: If (14) is feasible, let lbk+1 = fk+1
up . Otherwise, if problem (14) is

infeasible, increase fklo = κfklo + (1− κ)fkup and loop to line 5.

6 Update: Set k = k + 1.

7 until the gap is sufficiently small: ubk − lbk ≤ εmax(1, |lbk|) for k > 0 .

Although not defined explicitly, in Algorithm 2 the level parameter is Lk := κfklo +(1−κ)fkup.

The extra calculation to compute fklo in line 4 can be skipped, we refer [OS14] for details. As
with Algorithm 1, we impose a time budget for solving the master problem (14) at each iteration.
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3.3 The full SUC solver

Table 1 contains some notation useful to explain how to incorporate the stochastic ingredients
in Algorithm 2 when there is a finite number of strategic scenarios (process ω) and an operational
fan (process ξ), defined at different time scales.

Table 1: Uncertainty discretization: some notation.
Data process One realization Probability Time set Scenario set Links
Strategic ωit pit Tx I iν(t,j)

Operational ξjt p̃jt Ty J jν(t,i)

The connection between nodes in the two sets is given by means of a linking mapping ν,
which depends on t and on the considered scenario. Namely, given an operational realization ξjt ,

its corresponding commitment realization is ω
iν(t,j)
t and similarly in the reverse direction, noting

that the mapping may be empty, a singleton or a set. To illustrate these concepts, consider the
example in Figure 3. The time and scenario index sets therein are

Tx = {1, 3, 4} ,Ty = {1, 2, 3, 4} and I = {1, 2, 3, 4} , J = {1, 2, . . . , 8} .

The first strategic scenario (ω1
1, ω

1
3, ω

1
4) in the figure has scenario index i = 1 and the links are

for t = 1 : iν(t,j) = 1 for j = 1, . . . , 8 and jν(t,1) ∈ {1, . . . , 8}
for t = 2 : iν(t,j) = 1 for j = 1, . . . , 4 and jν(t,1) = ∅
for t = 3 , 4 : iν(t,j) = 1 for j = 1, . . . , 4 and jν(t,1) ∈ {1, . . . , 4} .

With this notation, the commitment associated with each operational decision is

x
iν(ty,j)
tx ↔ yjty for all tx ∈ Tx , ty ∈ Ty , and j ∈ J ,

and, to take into account only operational decisions linked with each commitment, we define

pi,jt :=

{
pitp̃

j
t if j ∈ jν(t,i)

0 otherwise.

The SUC problem to be solved has the form
min

∑
i∈I

∑
t∈Tx

pit
〈
Ft, xit

〉
+
∑
j∈J

∑
t∈Ty

pijt ft(y
j
t )

s.t. xit ∈ Xt(ωi[t]) for all t ∈ Tx , and i ∈ I
yjt ∈ St(ξ

j
t ) ∩ Yt(ξ

j
t ) for all t ∈ Ty , and j ∈ J

Txi +Wyj ≤ h where i ∈
{
iν(ty ,j) | tx ∈ Tx , ty ∈ Ty

}
for all j ∈ J .

The full SUC solver presented as Algorithm 4 in the appendix modifies Algorithm 2 to deal with
a larger master problem, with variables xit for t ∈ Tx and i ∈ I. The variable α in (14) now
represents a cutting-plane approximation of an expected value function, obtained by averaging
cuts (10) while looping over the suitable portion of the operational fan, to solve the corresponding
slave problems. Optimal values and bounds are also taken in average. See Appendix A for details.
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4 Implementational considerations

Algorithm 2 performance depends on how its main blocks are implemented. We review some
key issues, relative how to define the convexified set Rt from (13), so that (8) holds numerically,
and to how to build a good initial point when (globally) solving the the NLP problem (11)
(line 3 in Algorithm 1 and line 5 in Algorithm 4).

4.1 Approximating the non-concave hydro-production function

As mentioned, when (8) holds, that is when H is a concave function that overestimates the
hydro-production function hp over the set Z, problem (9) is a convex relaxation of the the NLP
problem (11).

The convex relaxation is defined for each unit of each hydro-power plant, whose HPF depends
on the turbined outflow q of the unit, spillage s, volume v of the reservoir, and the sum Q of the
turbined outflow of all units of the hydro-power plant. Given lower and upper bounds lq, ls, lv
and uq, us, uv, by the nature of these variables, it suffices to satisfy (8) over the set

Z :=
{
z := (q, s, v,Q)> ∈ R4 | lq ≤ q ≤ uq, ls ≤ s ≤ us, lv ≤ v ≤ uv, q ≤ Q ≤ uQ

}
,

where uQ :=
∑

q uq. We build a concave quadratic function H that satisfies (8) only over points
in a given finite set Z ⊂ Z. The approximation has the expression

H(z) := 〈z,M∗z〉+ 〈m∗, z〉+ µ∗,

where the matrix, vector and number (M∗,m∗, µ∗) solve the convex semidefinite problem
min

∑
zi∈Z

(
〈zi,Mzi〉+ 〈m, zi〉+ µ

)
s.t. M ∈ R4×4,m ∈ R4, µ ∈ R, with M 4 0 ,

hp(zi) ≤ 〈zi,Mzi〉+ 〈m, zi〉+ µ for all zi ∈ Z.

(15)

The choice of the objective function is meant to make the approximation tight. In our experi-
ments, the set Z has 160,000 points and we used the package SDPT3 version 4.0 [TTT03] for
solving problem (15).

4.2 Initial point for the non-convex problem

For ensuring good performance, it is important to provide a good starting point when solving
the non-convex problem (11) providing upper bounds. In a manner similar to the construction
of the concave quadratic function H in Section 4.1, we build a concave quadratic function Hu

that underestimates the hydro-production function hp over the same set Z by letting

Hu(z) := 〈z,Mu∗z〉+ 〈mu∗, z〉+ µu∗,

where the matrix, vector and number (Mu∗,mu∗, µu∗) solve a convex semidefinite problem like
(15), with the inequality constraint reversed, that is

hp(zi) ≥ 〈zi,Mzi〉+ 〈m, zi〉+ µ for all zi ∈ Z.
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We then define the set Ut := {yt ≥ 0 | Btyt = bt , Egt ≤ Hu(yt)} and consider the problem
min f(y)
s.t. yt ∈ Ut ∩ Yt for all t

Wy ≤ h− Txk ,
(16)

which is, in some sense, a convex approximation of problem (11).The solution yk of problem (16)
is employed to construct a good feasible initial point for (globally) solving the NLP problem (11)
(line 3 in Algorithm 1 and line 5 in Algorithm 4). The procedure is given in Algorithm 3 below.
Therein, the thermal and hydro-generation are denoted by gT and gH , the turbined outflow
by q, the spillage by sp, the reservoir volume by v, the voltage angles by θ. The generation of
the artificial thermal unit with infinite capacity is g∞.

Algorithm 3: Starting point for the non-convex minimization problem

Data: α ∈ (0, 1) and yk solving (16).
Initialize gT , q, sp, v, θ, and g∞ with the corresponding components in yk.
Set fix water balance← false.

1 foreach hydro-plant h, unit u, and time t do
Compute the value gHthu of the non-convex HPF hp.
if gHthu > Γthu then

Reduce qthu by letting qthu ← αqthu. Let fix water balance← true. Go to 1
2 end

3 end
if fix water balance = true then

4 foreach hydro-plant h and time t do
Compute the values of vth and spth so that the water balance constraint is
satisfied. Let fix water balance← false. Go to 1

5 end

6 end
7 foreach bus b and time t do

Compute the value of g∞tb so that the power balance constraint is satisfied.
8 end

Inside the loop defined in line 4 of Algorithm 3, we recompute the values of vth and spth since
the associated water balance constraint cannot be satisfied if the outflow qthu of some unit u of
hydro-plant h has been reduced within the loop defined in line 1. In order to satisfy the water
balance constraint, the amount of water that is no longer flowing through the units is put back
into the reservoir. If this amount exceeds the maximum capacity of the reservoir, the excess of
water is added to the spillage spth.

4.3 Measuring proximity between scenarios: the sustainable pseudo-distance

The output of the SUC solution using Algorithm 2 is a policy with optimal commitments
and operational decisions, for the considered strategic scenario tree and operational fan, with
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components linked by the mapping ν in Table 1:

x̄itxfor i ∈ I , tx ∈ Tx and ȳjty for j ∈ J , ty ∈ Ty .

In order to assess the quality of the obtained solution, we put in place a simulation phase
that mimics the system operation for a large fan of out-of-sample operational scenarios, say

Oy :=
{
ξo[Ty ] | o = 1, . . . , 10, 000

}
.

Given an out-of-sample scenario in Oy with index o, suppose we are given the index jo ∈ J
of the closest in-sample operational scenario, ξjo[Ty ]. Then the NLP problem

min
∑
t∈Ty

ft(yt)

s.t. yt ∈ St(ξot ) ∩ Yt(ξot ) for all t ∈ Ty
T z̄jo +Wy ≤ h
z̄jo :=

(
x̄
iν(ty,o)
tx | tx ∈ Tx , ty ∈ Ty

)
simulates the operation of the system under the considered scenario realization.

To define the closest in-sample-scenario we modify the pseudo-distance introduced in [Oli+10],
successfully applied in mid-term power planning problems, to take the most advantage of wind
power, thus justifying the naming “sustainable”.

Suppose scenarios are N -dimensional and let each component be denoted by ξj[Ty ](n) for

n = 1, . . . , N . Let ψt(n) denote the n-th component of the uncertain right-hand side terms at
and bt in (1), respectively corresponding to the inflows and bus loads (the latter vary with the
uncertain wind).

Given a reference scenario, ξo[Ty ], to find the scenario that is closest the notion of distance
and proximity needs to be precised. Each scenario has Ty components that are N -dimensional.
The well-known `∞ and `1-distances between those two scenarios are, respectively,

max
n≤N

max
t≤Ty

∣∣∣ξjt (n)− ξot (n)
∣∣∣ and

∑
n≤N

Ty∑
t=1

∣∣∣ξjt (n)− ξot (n)
∣∣∣ .

An in-between distance, `∞ on the n-components and `1 on the t-components would be

max
n≤N

Ty∑
t=1

∣∣∣ξjt (n)− ξot (n)
∣∣∣ ,

We use the proximity measure above, scaled, as follows:

d̆(ξj[Ty ], ξ
o
[Ty ]) := max

n≤N

Ty∑
t=1

dnt

∣∣∣ξjt (n)− ξot (n)
∣∣∣ . (17)

In order to better capture extreme scenarios without losing the proximity to the mean, we
employ the scaling factor

dnt :=
√
ψt(n) max

{
1, ψt(n)(ξjt (n))2, ψt(n)(ξot (n))2

}
.
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We refer to [Oli+10], where a similar notion was successfully employed for selecting inflow
scenarios in the Brazilian power system. The closest scenario minimizes d̆ over all j ∈ J.

Because of the use of an absolute value, the proximity notion above is indifferent to the sign
of the term ξjt (n)− ξot (n). This may result in choosing as closest scenario ξjot one having more
wind power than the considered out-of-sample scenario, with index o. A system configuration
with more wind power is not cost-efficient if there is not enough wind (as with ξo[Ty ]), and can
even result in load shedding. For this reason, we redefine the pseudo-distance

Dn
t

(
ξj[Ty ], ξ

o
[Ty ]

)
:=
√
ψt(n)χt(n)(ξjt (n)− ξot (n)) max

{
1, ψt(n)(ξjt (n))2, ψt(n)(ξot (n))2

}
,

with χt(n) = 1 if n corresponds to a component of demand on a bus, and is set to -1 otherwise.
The closest scenario is chosen as follows. If the optimal value of the problem below is non-
negative,  min

Ty∑
t=1

Dn
t

(
ξj[Ty ], ξ

o
[Ty ]

)
s.t. j ∈ J , n = 1, . . . , N ,

then jo is the index of the minimizing scenario. Otherwise, jo is the index of the scenario solving
the problem below 

min max
n≤N

Ty∑
t=1

Dn
t

(
ξj[Ty ], ξ

o
[Ty ]

)
s.t. j ∈ J satisfies Dn

t D
n
t

(
ξj[Ty ], ξ

o
[Ty ]

)
≤ 0 .

5 Numerical results

The numerical assessment was done with a hydro-thermal configuration based on a reduced
variant of the southern Brazilian system, described below. The results are organized as follows:
first, we present several (convex) instances comparing the Generalized Benders Decomposition
with the Proximal Level Bundle variant, in which only the convex strategic subproblems are
considered. Then we compare the performance of the proximity measures on an out-of-sample
simulation for the non-convex commitment obtained when running Algorithm 4. Finally, we
present different indicators that confirm the superiority of the non-convex model over the convex
one, both in-sample and out-of-sample-wise.

5.1 The hydro-thermal system

There are 21 units (12 hydro-units (ghi) located in three reservoirs, 7 thermal units (gti), and
2 wind farms (gwi)). The transmission system has 6 lines (fi) and 5 buses ( i©) and connects
the generating units to 4 load demands (Li). Figure 4 depicts the system, where the hydro
gh1 is upstream to gh2 and has one-hour water travel time. The total installed capacity of the
hydro-generation is 4270 MW and the thermal generation is 1447 MW. We consider a 24-hour
planning horizon, where the minimum and maximum values of the total demand in the system
is 3411 MW and 3515 MW, respectively. The inflows and the wind generation are considered
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the random variables, both modeled as lag-one autoregressive models with different parameters
obtained from historical data. More details about the system can be found in Appendix B.

Figure 4: Schematic diagram of the hydro-thermal system.

The HPF is defined as in [FS13]. The power generation (hp) of a single hydro-unit that
belongs to a specific hydro-plant and period is given by hp = 9.81 · 10−3ηhq where η, h, and
q are the efficiency, net head, and turbined outflow of the unit, respectively. However, only
q is a decision variable in a hydro-plant. The efficiency is a function of h and q; in turn,
the net head depends on the volume of the reservoir (v), turbined outflow (q), and spillage
(s) of the plant. Thus, the control variables in a hydro-plant are q and s, and the volume
is a state variable. Thus, h := h(q, s, v), η := η(q, s, v), and the following expression must
be included in (1) to represent the HPF: h =

∑4
i=0Div

i −
∑4

i=0Ei(Q + s)i − Gq2 and η =
F0 + F1q + F2h + F3qh + F4q

2 + F5h
2, where Q is the total discharge through all turbines of

the hydro-plant, and D0, . . . , D4, E0, . . . , E4, F0, . . . , F5 and G are peculiar constants of each
hydro-plant and generating unit. As a result, the HPF of a single unit is a high-order non-convex
function. The main data related to the HPF of the units of the system can be found in Table 2.

Plant G D0 D1 D2 D3 D4

1 5.603× 10−6 431.694 0.0146766 0 0 0
2 1.9× 10−5 331.649 0.0075202 0 0 0
3 1.107× 10−5 681.949 0.0110377 0 0 0

Plant E0 E1 E2 E3 E4

1 371.936 0.00151449 0 0 0
2 261 0.00301 −5.64× 10−7 6.79× 10−11 −3.03× 10−15

3 601.886 0.00175726 0 0 0

Plant F0 F1 F2 F3 F4 F5

1 0.3587 0.0024 0.0036 8.13× 10−6 −4.91× 10−6 −3.12× 10−5

2 0.2519 0.0029 0.0065 1.86× 10−5 −9.19× 10−6 −5.65× 105

3 0.3587 0.003 0.0026 7.37× 10−6 −7.77× 10−6 −1.62× 10−5

Table 2: Values of the constants for each hydro-plant.

Units in a hydro-plant are identical, but differ among different hydro-plants.
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The quadratic convex approximations for the HPF in Section 4.1 are built considering for
each hydro-plant a set Z with 160,000 points. The quality of the approximations is summarized
by the results in Table 3, measuring the distance between the non-convex HPF and the convex
approximations, over one million points uniformly distributed over the domain of the function.
As the convex approximation is not an exact overestimator of the non-convex HPF, it is lower
than the non-convex HPF on some points. Columns 2 and 3 of Table 3 show, respectively,
the average and maximum violations (distance between the values of the functions on points in
which the convex approximation is lower than the HPF) for each approximation. Columns 4
and 5 show, respectively, the average and maximum distances of the values of the functions on
points in which the convex approximation indeed overestimates the HPF.

Plant
Average Maximum Average Maximum
violation violation distance distance

1 1.4× 10−7 0.1975 37.1094 65.9753
2 3.7× 10−8 0.1989 16.9369 34.2568
3 1.4× 10−7 0.1911 28.6733 54.4695

Table 3: Violations and distances (in MW) between the non-convex HPF and its convex ap-
proximations over one million points.

Figure 5 illustrates the non-convex HPF and the convex approximation for one unit of hydro-
plant 2, where q = Q ∈ [lq, uq], v ∈ [lv, uv] (only one operating unit) and s = 0 (there is no
spillage). Views for the non-convex (respectively convex) HPF approximations are shown in
Figures 5(a) and 5(c) (respectively, Figures 5(b) and 5(d)).

Figure 5: Non-convex HPF function (left) and quadratic convex approximation (right).

(a) (b)

(c) (d)
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The computational results were performed on a 3.4GHz Intel Core i7-3770 machine with
16GB RAM memory and Ubuntu 16.04 (GNU/Linux 4.4.0-59-generic x86 64) operating system.
Algorithms 1 and 4 are coded in C++ and compiled with GCC 5.4.0, with the -O3 option enabled.
All MILPs were solved using CPLEX [IBM11] version 12.6.3 on a single thread and adjusted
with 10−4 optimality gap tolerance. The Benders decomposition method stops when the relative
optimality gap falls below 5 × 10−4. For the non-convex subproblems, we used Ipopt [WB06]
version 3.12.6 with convergence tolerance set to 10−4. In all instances, we consider a MILP
master problem with a 63-node scenario-tree structure associated with the strategic decisions.
In turn, there are 64 continuous subproblems related to the operational decisions.

Full details on the system can be found in Appendix B. Figure 6 illustrates the system
demand and the average wind power. Notice in particular that demand peaks at hour 20.

Figure 6: Demand (left) and average wind power (right).

0 5 10 15 20
Hour

3500 3500

3750 3750

4000 4000

4250 4250

4500 4500

4750 4750

5000 5000

5250 5250

De
m

an
d 

(M
W

)

0 5 10 15 20
Hour

420 420

440 440

460 460

480 480

500 500

520 520

540 540

560 560

W
in

d 
po

we
r (

M
W

)

5.2 Bundle method performance

We start by benchmarking the performance of the stochastic version of Algorithm 1 and
Algorithm 4 on the convex formulation of the problem. This means that at each iteration of
Algorithms 1 and 4, we solve problem (9) but not problem (11). We considered 100 randomly
generated scenario trees for this experiment.

The time budget, setting a time limit of 10 seconds to solve the master problem at each
iteration, appears to be fundamental for Algorithm 4 to perform efficiently. We compare the
algorithms in two different versions, one considering a time limit for solving the master problem
((12) or (18)), and the other without time limit. Algorithms with a time limit for solving the
master problem are indicated by the superscript TL.

Algorithm 1 and Algorithm 4TL were able to solve all instances, requiring at most 31 itera-
tions; while Algorithm 1TL could not solve 7 instances within the maximum number of iterations,
set to 100 for all solvers. If the time limit to solve the master problem is reached, there is no
guarantee that the returned solution is optimal and, therefore, it cannot be used to improve the
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Average Minimum Maximum Minimum Maximum
time (s) time (s) time (s) # iterations # iterations

Algorithm 1 1515 101 11807 12 31
Algorithm 1TL 487 121 2016 12 100
Algorithm 4TL 206 120 498 11 29

Table 4: Performance of the algorithms when solving the 100 considered instances.

lower bound. This may require a higher number of iterations for the method to close the gap,
which is one of the reasons why Algorithm 1TL could not solve all instances within 100 itera-
tions (this is also the reason for including in the table results for Algorithm 1 without any time
budget). Table 4 shows the average, minimum, and maximum time (in seconds) for solving an
instance of the problem, as well as the minimum and maximum number of iterations required.
Notice that Algorithm 4TL has the lowest average time for solving an instance. On average,
Algorithm 4TL is 7.35 times faster than Algorithm 1 and 2.36 times faster than Algorithm 1TL.
Algorithm 4TL was faster than Algorithm 1 and Algorithm 1TL for 88 and 80 instances, respec-
tively. Moreover, the stabilized version provided an average reduction of the running time of
51% and a maximum reduction of 98% in comparison with Algorithm 1. In comparison with
Algorithm 1TL, those figures are 31% and 92%, respectively.

The performance profile in Figure 7, illustrating graphically the behaviour of the three
solvers, confirms the superiority of the bundle-like Algorithm 4TL. Incidentally, the difference
between the two bottom lines, corresponding to Algorithm 1 with and without a time limit,
confirm the interest of using time budgets in the master solution.

Figure 7: Performance profile for Algorithm 1, Algorithm 1TL, and Algorithm 4TL.

1 2 3 4 5 6 7 8

Hour

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

P
ro

b
le

m
s

so
lv

ed
(%

)

Algorithm 1

Algorithm 1TL

Algorithm 4TL

21



5.3 Output of the convex and non-convex optimization problems

Consider Algorithm 4. Let k1 be the iteration number in which problem (9) attains its
lowest value and k2 be the iteration number in which problem (11) attains its lowest value.
When k1 = k2, there is no reason to solve problem (11), thus making the solution process a
lot faster. In what follows, we compare the commitment associated with the best solution of
the convex subproblem (9), xk1 , with the commitment associated with the best solution of the
non-convex subproblem (11), xk2 . We call the former the convex commitment and the latter the
non-convex commitment. We define the cost of a commitment as the sum of the optimal value
of problem (11) associated with that commitment and the cost of starting up and shutting down
units in this commitment. We have considered 100 instances of the problem and solved each of
them with Algorithm 4TL. We set a time limit of 10 seconds to solve the master problem (14)
at each iteration, as this version provided better results as shown in Section 5.2. In mean, each
run was completed in 2h03m.

Among the 100 scenario-tree instances, the convex and non-convex commitments are different
in 67 instances. Considering only those instances whose convex and non-convex commitments
differ, the cost of the non-convex commitment is always lower than that of the convex commit-
ment. On average, the cost of the non-convex commitment is 0.18% lower than that incurred by
the convex commitment, having the maximum cost reduction of 0.60% for one of the instances.
Barring the future cost of water, considering only the immediate cost (start-up, shut-down,
and unit variable costs), then the non-convex commitment is 2.10% lower on average and, for
one of the instances, it is 8.84% lower. This gives an indication that it is worth solving the
non-convex subproblems if the extra computational effort required for this task can be afforded.
This observation is supported by the out-of-sample simulation presented below.

5.4 Out-of-Sample simulation

To assess the commitment decisions in scenarios that are different from the ones employed
for solving the SUC problem, we employ the two measures introduced in Section 4.3.

For each out-of-sample scenario, the closest in-sample strategic scenario is found by con-
sidering the pseudo-distance (17) and the sustainable measure defined in Section 4.3. The
corresponding optimal commitment is then fixed and the non-convex NLP problem (11) (line 3
in Algorithm 1 and line 5 in Algorithm 4) is (globally) solved, for 1000 out-of-sample scenar-
ios. The process was repeated for 100 randomly generated scenario trees, hence solving up to
optimality 100 SUC problems with time limit of 10 seconds for the master program solution,
as in Section 5.3. Each scenario tree was used in a convex and non-convex formulations of
the SUC problem, solved with Algorithm 4TL. In both cases, the output corresponds to the
commitment found at the iteration with the lowest cost. As a result, for the non-convex and
convex models, and for both the pseudo and sustainable measures of proximity, there is a total
of 1000× 100 = 100,000 simulations.

In order to determine if there is a clear winner among the selection strategies, we analyze the
simulation thermal costs on the non-convex model for different hours of the day. Figure 8 shows
histograms for times in {13, 18, 19, 20, 21, 22}h, in blue (dark color) for the pseudo-distance, and
in yellow (light color) for the sustainable proximity measure.
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Figure 8: Cost distribution for pseudo (blue) and sustainable (yellow) measures.

The histogram ordinate displays the probability of occurrence of the cost values given in
the abscissa. In particular, the middle bottom graph, corresponding to 21h, is shifted more
to the right, when compared to the top middle graph, corresponding to 18h. This reflects the
fact that operational costs are higher near peak times (21h). Note, in addition, that at 21h
there is practically no blue or yellow in the graph, because both distributions almost coincide.
The remaining five graphs exhibit some yellow or blue bars whose meaning is the following.
At 13h, the top left graph, the yellow bar indicates that with probability larger than 0.6 the
sustainable simulation resulted in an operational cost of about 2× 105. By contrast, the pseudo
simulation probability of having the same cost is 0.4. The situation is inverted for the next
bar, corresponding to the higher cost 2.5× 105: the pseudo simulation probability is larger than
0.3, while with the sustainable measure the probability is smaller than 0.1. For the hour 13,
simulating with the pseudo distance is likely to result in higher costs. A similar analysis can be
done on the other hours, as in each histogram blue bars are higher (more likely) than the yellow
ones, and generally shifted towards the right (the region with higher costs). As the probability
distributions for the hours that are not displayed in Figure 8 were almost identical with both
approaches, the sustainable proximity measure appears as a preferable criterion to determine
the closest scenario in simulations.

Having determined the best simulation technique to be employed, we now compare several
performance indicators of the convex and non-convex commitments using the sustainable prox-
imity measure. Figure 9 plots the mix of power obtained when using the non-convex and convex
formulations. The values are displayed as a percentage of the total generation, taking the mean
of over the 100,000 (sustainable) simulations. At first sight, both approaches yield a similar
power mix. However, when inspecting closely the output, some important differences arise. The
most significant ones refer to the amount of load shedded and the available thermal power near
peak times, illustrated in Figure 10.

The left graph in Figure 10, showing the average amount of unsatisfied load as a percentage
of the demand, exhibits a jump near the hour 20. The deficit of the convex model almost doubles
the non-convex one. This phenomenon is explained by the right graph, displaying the maximum
thermal capacity that is available with each model: with the convex approach the system has less
thermal power available than the non-convex one. With the optimistic convex approximation
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Figure 9: Non-convex (left) and convex (right) average power mix.
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of the HPF, turbined outflows appear as if providing more energy than what they actually do
at simulation (employing the non-convex HPF). Because of the ramp constraints, the convex
model does not switch on enough thermal plants in time and incurs in a deficit near the peak.

Figure 10: Non-convex and convex average deficit (left) and available thermal power (right).
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The proof-of-concept numerical experience in this section shows that the non-convex SUC
model provides results that are better than those of the convex model, in a reasonable computa-
tional time (2h in average). Larger systems and larger trees require computational enhancements
such as parallelization, warm starts and cut selection procedures. Those specialized techniques
are beyond the scope of this work, and are left for future work.
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6 Final considerations

We proposed a solution strategy for the stochastic non-convex hydro-thermal unit-commitment
based on multi-horizon trees.

By combining a tree on the strategic decision level with a fan of independent scenarios in
the operational level, we were able to consider uncertainty in both strategic and operational
decision levels. Representing uncertainty in the strategic level is particularly suited for flexible
thermal units that can change its on/off-status over the day, to respond fast to variations in
the wind generation. To deal with thermal units with slow dynamics, like coal-fired plants, the
generation ramps should be chosen so that changes in the on/off status occur along longer time
periods (this feature reduces the number of 0-1 variables in the problem).

For solving the problem, we introduced a bundle-like regularization method that stabilizes the
Generalized Benders decomposition. Results showed that the stabilized version is much faster
than the original Generalized Benders decomposition. We also introduced a new simulation
technique to assess the quality of the stochastic solution. On the considered instances, the
non-convex model provides a commitment that reduces costs (and deficit). Finally, the out-of-
sample simulation confirms that the non-convex formulation, combined with the new sustainable
proximity measure, is a sound strategy to deal with the SUC problem.
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Appendix

Details for the stochastic unit commitment solver and the test system are given below,
respectively in Sections A and B.

A Algorithm with the full SUC solver

In Algorithm 4 below, the probability of operational scenario j, conditioned to the strategic
scenario i is denoted by pij .

Algorithm 4: Stochastic unit-commitment solver (in two pages)

Data: scenario sets I , J, starting points x0i for i ∈ I, m,κ ∈ (0, 1), and ε ≥ 0.
Set the iteration counter k = 0, and f0

up = +∞, ∆0 := 0.

1 repeat
2 foreach i ∈ I do
3 Given xkitx , tx ∈ Tx, foreach j ∈ J | j ∈ jν(tx,i) do

4 Slave solution: find ykij solving the convex program
min

∑
t∈Ty

ft(yt)

s.t. yt ∈ Rjt ∩ Y
j
t for all t ∈ Ty

Wy ≤ h− Txki ,

with optimal (affine constraint) multiplier πkij .
5 Upper bound: Globally solve the NLP that results from replacing Rjt above

by Sjt . Let Ykij denote the minimizer.
6 end

7 end
8 Averaging procedure Define the mean optimal values

vk :=
∑

i∈I ,t∈Ty ,j∈J
pijt ft(y

kij
t ) , and ovk :=

∑
i∈I ,t∈Ty ,j∈J

pijt ft(Y
kij
t ) ,

as well as the mean optimality cut Ck(x) :=

〈 ∑
i∈I ,j∈J

pijπkij , h− Tx

〉
.

Let Fvk :=
∑
i∈I

∑
t∈Tx

pit

〈
Ft, xkit

〉
+ vk.

9 Bounds If k = 0, set ub0 := min
(
v0, ov0

)
. If k > 0, set

ubk = min
(
vk, ubk−1, ovk

)
.

10 until . . . (continues next page)
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Algorithm 4: Stochastic unit-commitment solver (continuation)

10 repeat
11 Level-bundle descent test

Compute fklo the optimal value of the 0-1 linear problem
min

∑
i∈I

∑
t∈Tx

pit
〈
Ft, xit

〉
+ α

s.t. xit ∈ Xt(ωi[t]) for all t ∈ Tx , and i ∈ I
α ≥ C`(x) for ` = 0, . . . , k ,

and the bundle gap ∆k := fkup − fklo.

12 If Fvk ≤ fkup −m∆k, then

{
x̂k = xk

fkup = min(fkup, Fv
k)

[serious step]

Otherwise, set x̂k = x̂k−1 and fkup = fk−1
up [null step].

13 Master problem: Given x̂k ∈ {0, 1}Nx, find (xk+1, αk+1) solving
min

Nx∑
n=1

(
1

2
(xn + x̂kn)− xnx̂kn

)
s.t. xit ∈ Xt(ωi[t]) for all t ∈ Tx , and i ∈ I

α ≥ C`(x) for ` = 0, . . . , k ,∑
i∈I
∑

t∈Tx p
i
t

〈
Ft, xit

〉
+ α ≤ κfklo + (1− κ)fkup .

(18)

Feasibility check: If the problem above is feasible, let lbk+1 = fk+1
up . Otherwise,

increase fklo = κfklo + (1− κ)fkup and loop line 13 to solve again the Master program.

14 Update: Set k = k + 1.

15 until the gap is sufficiently small: ubk − lbk ≤ εmax(1, |lbk|) for k > 0 .

B System details

Below we provide the details about the system considered in the experiments presented in
Section 5. As shown in Figure 4, the system has three hydro-plants, each of which having water
a reservoir. Table 5 presents the initial, minimum, and maximum volume of the reservoirs of the
hydro-plants, and the maximum volume of water spilled per hour. All volumes are in hm3. The
hydro-plants numbered 1, 2, and 3 have 3, 5, and 4 units, respectively. Units belonging to the
same hydro-plant are identical. Table 6 shows the characteristics of the units of each hydro-plant.
The second column shows the maximum number of times each unit can be switched on within
the time horizon; the third and fourth columns present the minimum and maximum generation
of each unit (in MW); and the fifth and sixth columns show the minimum and maximum outflow
of each unit (in hm3). Hydro-plant number 1 is upstream to hydro-plant number number 2 and
has one-hour water travel time.
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Plant
Initial Minimum Maximum Maximum
volume volume volume spillage

1 3129 2283 3340 28600
2 4940 4300 5100 7400
3 5018 1974 5779 6100

Table 5: Characteristics of each hydro-plant.

Plant
Maximum # Minimum Maximum Minimum Maximum
of start-ups generation generation outflow outflow

1 2 0 380 0 437
2 2 0 290 0 320
3 2 0 420 0 344

Table 6: Characteristics of each individual unit of each hydro-plant.

The system has seven thermal units. The details about each thermal unit are displayed
in Tables 7 and 8. The first column of each time shows the unit numbers. In Table 7, the
second column shows the buses in which the units are located (see Figure 4); the third column
presents the start-up costs; the fourth and fifth columns show the minimum and maximum
power generation (in MW) of each unit when they are on; the sixth and seventh columns exhibit
the ramp-up and -down rates (in MW). In Table 8, the second and third columns show the
minimum time (in hours) the units must be on (after they are switched on) and off (after they
are switched off), respectively; the fourth column indicates whether the units are on or off at
the beginning; while the fifth column informs how long (in hours) they are in that state; and,
finally, the last column shows the generation (in MW) of the units at the beginning.

Thermal
Bus

Start-up Generation Ramp rates
unit cost Minimum Maximum Up (δ+) Down (δ−)

1 1 10500 150 485 180 180
2 4 20000 150 470 150 150
3 3 11000 30 130 60 60
4 2 13500 50 170 100 100
5 2 18000 35 87 45 45
6 2 16500 15 50 30 30
7 2 1000 18 55 30 30

Table 7: Characteristics of each thermal unit.

As shown in Figure 4, there are four load demands, located at buses 1, 2, 3, and 4. We have
considered the same demand for each scenario. Table 9 presents the demand for each time step
at each bus.

The water inflow at time t in plant h is given by

ξinflow
th = ξinflow

t−1,h max(0, ζ + φ)
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Thermal Minimum Minimum Initial Time on Previous
unit up time down time status prev. status generation

1 6 9 on 12 150
2 4 6 on 12 150
3 3 8 off 0 0
4 3 3 on 12 50
5 4 6 off 0 0
6 3 8 off 0 0
7 1 1 off 0 0

Table 8: Characteristics of each thermal unit (continuation).

Time Bus Time Bus
step 1 2 3 4 step 1 2 3 4

1 571 2520 630 337 13 501 3515 584 373
2 529 2333 583 311 14 490 3546 615 334
3 494 2177 545 291 15 463 3334 646 311
4 480 2118 530 283 16 478 2908 675 291
5 497 2191 495 292 17 488 2803 748 260
6 519 2294 485 306 18 624 2721 771 249
7 568 2440 455 334 19 687 2938 792 374
8 605 2568 445 356 20 709 3189 835 438
9 648 2859 442 381 21 669 3323 863 460
10 658 3337 479 417 22 605 3235 876 418
11 626 3442 493 411 23 583 2895 843 374
12 584 3494 501 393 24 551 2807 780 333

Table 9: Demand (MW) at each bus.

where the random variable ζ has a normal distribution with mean 1 and standard deviation
0.025, φ has a uniform distribution on the interval [−0.1, 0.1], and ξinflow

0,1 = 151, ξinflow
0,2 = 229,

and ξinflow
0,3 = 260. The wind power produced at time t in bus b is given by

ξwind
tb =

{
min(0.1ϑ, ξwind

t−1,b + 0.05ϑβ), if this quantity is non-negative,

ξwind
t−1,b(1 + %), otherwise,

where ϑ is the average of the total demand, ξwind
0,b = 0.05ϑ, β has a uniform distribution on the

interval [−1, 1], and % has a uniform distribution on the interval [1, 2].
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