
Preventing Data Poisoning Attacks By Using
Generative Models

Merve Aladag
Computer Science and Engineering

Istanbul Sehir University
Istanbul, Turkey

Email: mervealadag@std.sehir.edu.tr

Ferhat Ozgur Catak
Information Security and Communication Technology

NTNU Norwegian University of Science and Technology
Gjøvik, Norway

Email: ferhat.o.catak@ntnu.no

Ensar Gul
Computer Science and Engineering

Istanbul Sehir University
Istanbul, Turkey

Email: ensargul@sehir.edu.tr

Abstract—At the present time, machine learning methods
have been becoming popular and the usage areas of these
methods have also increased with this popularity. The
machine learning methods are expected to increase in the
cyber security components like firewalls, antivirus software
etc. Nowadays, the use of this type of machine learning
methods brings with it various risks. Attackers develop
different methods to manipulate different systems, not
only cyber security components, but also image detection
systems. Therefore, securing machine learning models has
become critical. In this paper, we demonstrate a data
poisoning attack towards classification method of machine
learning models and we also proposed a defense algorithm
which makes machine learning models more robust against
data poisoning attacks. In this study, we have conducted
data poisoning attacks on MNIST, a widely used character
detection data set. Using the poisoned MNIST dataset,
we built classification models more reliable by using a
generative model such as AutoEncoder.

Keywords—Data Poisoning, Support Vector Machine,
Machine Learning, Optimization

I. INTRODUCTION

In recent years, with the rapid advances in technology,
there has been a tremendous increase in the usage of
systems and the data produced by these systems [1].
With this increase in the rate of produced data, the data
can now be accessed by the systems directly and the
systems are able to use these produced data without
being programmed in detail. Systems are able to provide
meaningful results by learning the data on their own
and they are provided by machine learning methods
which are an artificial intelligence application and these
methods are now used in cyber security areas [2].

Moreover, with the increase in cybercrime, machine
learning methods are used to detect malicious behavior in
systems, malware, and malicious traffic on the network
[3]. These and similar machine learning solutions in the
field of cyber security are also being used in commer-
cial products. Some of these products are; Exabeam,

Fortscale, E8 Security. Attackers have begun to use
adversarial machine learning methods to avoid such
detection methods and to violate the security of relevant
areas by using gaps in machine learning techniques.

The adversarial machine learning has been used to
describe the technique employed in the field of machine
learning which attempts to fool models through mali-
cious input in either training time or decision time. The
methods of adversarial machine learning are divided into
two according to the time of the attack:

• Data Poisoning Before Model Training: The at-
tacker changes some labels of training data set
before the model learns.

• Data Preparation According to Trained Model: The
attacker enforces model to produce inverse of true
output data after model is trained.

Both types of attacks are extremely dangerous consid-
ering the consequences and effects. When we examine
commercial machine learning products, it is seen that
data poisoning attacks creates a greater threat. Almost
all commercial products require the training data set
from the installation organization itself. For attackers,
poisoning these datasets can be quite easy.

In the scope of this study, we first proposed an
algorithm that acknowledges that the attacker has access
to data, and he conducts a data poisoning attack prior
to model training. Before model training, the attacker
manipulates data by changing the labels of the malicious
samples with labels of normal samples, and he shows
malicious samples as normal samples. Then, the attacker
adds these manipulated data samples in the training data
set, so that he manipulates the data before the model
is trained. On the other hand, we proposed a defense
mechanism to reduce the impact of this data poisoning
attack and to make the model robust to these types of
attacks.

The rest of the paper is organized as follows: The
related work is presented in Section II. Section III gives
brief preliminary information. Section IV presents our
system model in details. Our model evaluation and real
system test results are presented in Section V. The
concluding remarks are given in Section VI.

II. RELATED WORK

By controlling several devices, attackers are able to
manipulate the data that is created for machine learning
applications [4]. Within the scope of such attacks,
Biggio et al. performed the first systematic poisoning
attack against the linear regression model and proposed
the TRIM algorithm, which is a stronger algorithm than
the classical models used for the detection of poisoning
points on the training data [4].

Khalid et al. identified potential machine learning
threats and presented examples of training data
poisoning and adversarial machine learning attacks from
these threats. They also recommended a training data
poisoning attack that has less impact on accuracy [1].

Paudice et al. proposed a data poisoning attack that
changed the labels of labeled data and influences the
ability to classify classification method from machine
learning algorithms. They then proposed a defense
mechanism based on the K-NN algorithm to ensure
label clearance against this attack that aimed to identify
data labels which are manipulated by the attacker [5].

In the Internet of Things (IoT) area, products collect
data dynamically and they learn these data online [6].
Therefore, products in the IoT area are particularly
vulnerable to data poisoning attacks. In their study,
Nathalie et al. presented a new methodology for
identifying and filtering malicious data to train a
supervised learning model in the IoT field [6].

III. PRELIMINARY INFORMATION

In this section, we will briefly describe the methods
we have used in the context of our study.

A. Data Poisoning Attack

There is a need for a data set that has reached a certain
volume and a machine learning model suitable for this
data set to use learning methods in a system, device
or product. For this reason, in commercial products,
the model is created according to the customer data, so
there is no ready model for each type of data. Thus,
when a product which uses machine learning methods is
sold to a customer, the data structure of the customer is
monitored at a certain time interval in order to generate
a model according to the customer data and needs. With
this way, the usual structure of the data is profiled by

the product.

In this study, we assume that the attacker has access to
the data and he can manipulate instances where normal
behavior is learned and he shows abnormal behavior
data as normal behavioral data. In this way, the attacker
enables the machine learning algorithms to perform the
learning function on the manipulated data.

B. Auto-Encoder

Auto-encoder is a generative model of the artificial
neural network that reproduces the data by learning the
structure of the data with no labels. The structure and
features of the data are learned with this model and
the data is tried to be re-created. Figure 1 shows an
auto-encoder model. Details of an auto-encoder model
is given at Figure 1.

Fig. 1. Auto-Encoder model

C. Support Vector Machines

Support Vector Machines (SVM) is a supervised ma-
chine learning algorithm which can be used for both
classification and regression problems. In this study, we
have used the classification version of SVM algorithm.
This algorithm is used for binary classification problems
which are consisting of two different classes of the target
value (i.e. yi ∈ {−1,+1}) [7].

Consider a data set (x1, y1), (x2, y2) · · · (xn, yn) into
two different classes, where input instances are n-
dimensional feature vectors xi ∈ Rn and yi ∈ {−1,+1}.
If the input data set with two classes can be separated by
a linear hyperplane w ·x+ b = 0. After solving optimal
values of w and b using Lagrange multipliers, then the
classifier hypothesis becomes

f(x) = sign

(
m∑
i=1

αiyiK(xi,x) + b

)
(1)

where αi and b are calculated by using an SVM algo-
rithm.

IV. SYSTEM MODEL

In this research, firstly labeled data was obtained.
Then, an optimization-based data poisoning attack
was performed on the data set. After that, with the
auto-encoder model, a defense mechanism against this
attack was proposed. The general steps of the study are
shown in Figure 2.

Fig. 2. General steps of the study

This study was prepared using Python programming
language and included the Python libraries Keras, Scikit-
learn, Scipy, Numpy and Mathplotlib.

A. Manipulated Data

In this study MNIST data set is used. The MNIST data
set contains 28×28 pixel image of handwritten instances
from 0 to 9. Figure 3 shows an example of MNIST data .

Fig. 3. Example of MNIST data image

The number of features is 784 (d = 28× 28 = 784).
In this research, each feature (pixel value) is normalized
by dividing 255, because of gray-scale representation.
In addition, we need to create a data set where the
target value was composed of two different classes and
these classes were determined as −1, 1. Because SVM
classification algorithm builds only binary models. In
order to convert the MNIST data set to the binary data
set where the target (class) values are labeled as −1,+1,
number 5 is selected as the target and the labels which
are equal to 5 are labeled as +1, and all remaining
values which are 0, 1, 2, 3, 4, 6, 7, 8, 9 labeled as −1. By
using this conversion, the multi-class MNIST dataset has
been transformed into the detection of a single number
for the purpose of using the binary classification
problem. Eventually, 92 of 1000 input instances
are equal to 5, therefore they are labeled as +1, and
remaining 908 of 1000 input instances are labeled as −1.

The solution speed of the optimization problems on
large volume data is directly proportional to the hardware
capabilities. For this reason, in our study, we have se-
lected only 1000 input instances containing all numbers

from 0 to 9 with their labels from MNIST data set
according to our hardware capacity, and we have divided
these 1000 samples into 2 parts and marked 600 samples
as training data and the remaining 400 samples as test
data set for our experiments.

B. Capability of The Attacker

We assumed that the main purpose of the attacker
is to manipulate the data collection phase to poison
the training data set. After manipulating the collected
data, the attacker can convert some abnormal behavioral
samples as normal behavioral samples. Therefore, the
classification model learns abnormal behavioral samples
as normal behavioral samples. For this purpose, the
attacker replaces the abnormally behaved data label of
the test data set with the normal behaved data label, and
poisons the data by adding the manipulated data to the
training data set before the model is in training step.

However, in order to prevent this manipulation from
being noticed, an optimization problem occurs for the
attacker to decide which of the abnormally behaved
data must be changed. By solving this optimization
problem, the attacker aims to reduce the classification
performance on the manipulated data as much as
possible while increasing the classification performance
on the manipulated data that the product has.

In order to solve this optimization problem; the cost
function of the true data is minimized and the cost
function of the manipulated data is maximized. Equation
is as follows;

argmin
w

 ∑
xi∈D(1)

l(yi, f(xi))−
∑

xi∈D(2)

l(yi, f(xi))


(2)

The total data set consists of two different sets,
D = {D(1) ∪ D(2)} . The D(1) data set consists of
samples whose class label is not modified. The attacker
changes the label of samples with +1 to −1 in the D(2)

data set. But the attacker can do this operation within
a budget, B. Accordingly, the cost of each sample (xi)
which the class label is changed is bi. If bi is 0, it shows
that the class label of the relevant example has not been
changed; If bi = 1, it shows that the class label of the
corresponding example has been changed. Therefore, the
constraint of the attacker’s optimization problem can not
exceed this budget. The new optimization problem using

this constraint is as follows;

argmin
B

 ∑
xi∈D(1)

l(yi, f(xi))−
∑

xi∈D(2)

l(yi, f(xi))


s.t.

i=|D(2)|∑
i=1

bi ≤ B

(3)

With the solution of this optimization problem, the attack
is successfully accomplished by finding the poisoning
points to reduce the classification performance on the
manipulated data, which improve the classification per-
formance of the security product on the manipulated
data.

C. Creation of Auto-Encoder Model

The auto-encoders derive the identity function,
hw(x) ≈ x, which will produce very similar results,
x̂ ∈ Rm, to the input vector, x ∈ Rm. The binary
cross entropy function is used as the loss function when
creating the auto-encoder model. With this function,
the loss calculated for each vector component is not
affected by other components. The formulation of the
corresponding function is as follows;

l =

C′=2∑
i=1

tilog(f(si))

= −t1log (f(s1)) + (1− t1)log (1− f(s1))

(4)

s1 and t1 are the score and basic reality tag for C1

class respectively. In this study, the compression ratio of
the auto-encoder model was fixed to 0.8 and 4 differ-
ent activation functions were used separately and their
effects on the model were investigated. The activation
functions used are Sigmoid, ReLu, Tanh and Softsign.
The results obtained with the usage of different activation
functions are given in Experimental Results section.
Furthermore, the effect of the difference in compression
ratios on the model was measured while the auto-encoder
model was created. In this respect, activation function
was fixed as sigmoid and 10 {0.1, 0.2, 0.3...., 1}, differ-
ent compression ratios were tried. The related results are
given in the Experimental Results section.

V. EXPERIMENTAL RESULTS

Firstly, the data set was trained by using the Support
Vector Machines algorithm and the accuracy on the test
data set was observed as 1.0. Then, the data poisoning at-
tack on the test data set was performed and the poisoned
data (changed labels) were added to the training data set.
In the context of this study, we proposed a mechanism
for the data poisoning attack and we passed the training

data set to the auto-encoder model regardless of when
the attack was carried out in the scope of the proposed
mechanism. In this way, we enabled the auto-encoder
model to learn the natural structure of true data.

After the natural data was learned by the auto-encoder
model, the structure of the poisoned data was estimated
by the auto-encoder model. Then, the accuracy of the
poisoned data set with the data set estimated by the
auto-encoder model was measured and the result was
found as 0.40. As it can be seen from these two values,
although the attack was successfully carried out, the
auto-encoder model marked 0.60 of the data as different
from the poisoned data. Which means that the negative
(normal behavior) values of 0.60 were predicted as
positive (abnormal behavior) by auto-encoder model.

In addition, the performance of this defense
mechanism against the attack was monitored in
accordance with the activation and compression ratios
in the auto-encoder model. Figure 4 shows the training
histories of different activation functions and the loss
values of each auto-encoder model are measured
according to the activation function. When the related
results are examined, it can be seen that the loss value
of SoftSign activation function is converged faster than
other activation functions.

Figure 5 shows the training history of the different
compression ratios and the accuracy of the auto-coder
model in each epoch. In this way, the value that the auto-
coder model predicts the closest to the original data was
measured. It was observed that compression ratio which
gives the best accuracy rate was 1.0.

0 50 100 150 200 250
Epoch

0.3

0.4

0.5

0.6

0.7

Lo
ss

train
test

(a) Sigmoid

0 50 100 150 200 250
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

train
test

(b) ReLu

0 50 100 150 200 250
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

train
test

(c) Tanh

0 50 100 150 200 250
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

train
test

(d) SoftSign

Fig. 4. Training history of different activation function

VI. CONCLUSION AND FUTURE WORKS

With this study, we performed an optimization based
data poisoning attack which manipulated the training

0 50 100 150 200 250
Epoch

0.804

0.806

0.808

0.810

0.812

0.814

Ac
cu

ra
cy

train
test

(a) Compression ratio:0.1

0 50 100 150 200 250
Epoch

0.804

0.806

0.808

0.810

0.812

0.814

Ac
cu

ra
cy

train
test

(b) Compression ratio:0.2

0 50 100 150 200 250
Epoch

0.804

0.806

0.808

0.810

0.812

0.814

Ac
cu

ra
cy

train
test

(c) Compression ratio:0.3

0 50 100 150 200 250
Epoch

0.800

0.802

0.804

0.806

0.808

0.810

0.812

0.814

0.816

Ac
cu

ra
cy

train
test

(d) Compression ratio:0.4

0 50 100 150 200 250
Epoch

0.800

0.802

0.804

0.806

0.808

0.810

0.812

0.814

0.816

Ac
cu

ra
cy

train
test

(e) Compression ratio:0.5

0 50 100 150 200 250
Epoch

0.800

0.802

0.804

0.806

0.808

0.810

0.812

0.814

0.816

Ac
cu

ra
cy

train
test

(f) Compression ratio:0.6

0 50 100 150 200 250
Epoch

0.804

0.806

0.808

0.810

0.812

0.814

0.816

Ac
cu

ra
cy

train
test

(g) Compression ratio:0.7

0 50 100 150 200 250
Epoch

0.8000

0.8025

0.8050

0.8075

0.8100

0.8125

0.8150

Ac
cu

ra
cy

train
test

(h) Compression ratio:0.8

0 50 100 150 200 250
Epoch

0.802

0.804

0.806

0.808

0.810

0.812

0.814

0.816

Ac
cu

ra
cy

train
test

(i) Compression ratio:0.9

0 50 100 150 200 250
Epoch

0.8000

0.8025

0.8050

0.8075

0.8100

0.8125

0.8150

0.8175

Ac
cu

ra
cy

train
test

(j) Compression ratio:1.0

Fig. 5. Training history of different compression ratio

stage of the classification method from machine learning
models. Before the training phase of the classification
model, we were able to add manipulated data on the
true data so that the model could learn the manipulated
data as well. We then proposed the auto-encoder model
to make the classification models more robust to such
attacks, and by observing the classification performance,
we showed that the model marked the manipulated data
as it should be. In future studies, we suggest that auto-
encoder model diversity and gradient-based optimization
can be studied.

REFERENCES

[1] F. Khalid, M. A. Hanif, S. Rehman, and M. Shafique, “Security for
machine learning-based systems: Attacks and challenges during
training and inference,” CoRR, vol. abs/1811.01463, 2018.

[2] I. Amit, J. Matherly, W. Hewlett, Z. Xu, Y. Meshi, and Y. Wein-
berger, “Machine learning in cyber-security - problems, challenges
and data sets,” arXiv e-prints, p. arXiv:1812.07858, Dec. 2018.

[3] M. H. B. R, V. R, and S. K. P, “A short review on applications
of deep learning for cyber security,” CoRR, vol. abs/1812.06292,
2018.

[4] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru,
and B. Li, “Manipulating machine learning: Poisoning at-
tacks and countermeasures for regression learning,” CoRR, vol.
abs/1804.00308, 2018.

[5] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label saniti-
zation against label flipping poisoning attacks,” arXiv e-prints, p.
arXiv:1803.00992, Mar. 2018.

[6] N. Baracaldo, B. Chen, H. Ludwig, A. Safavi, and R. Zhang,
“Detecting poisoning attacks on machine learning in iot environ-
ments,” in 2018 IEEE International Congress on Internet of Things
(ICIOT), July 2018, pp. 57–64.

[7] W. Chu, S. S. Keerthi, and C. J. Ong, “A general formulation for
support vector machines,” in Proceedings of the 9th International
Conference on Neural Information Processing, 2002. ICONIP ’02.,
vol. 5, Nov 2002, pp. 2522–2526 vol.5.

