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Abstract

In this chapter we examine, from a tramp ship operator’s point of view, how

potential CO2 emission reduction measures impact the operational decisions and their

economic and environmental consequences. Two market-based measures (MBMs) are

discussed, the bunker levy scheme and the emission trading scheme, and we show

that both can be incorporated in a similar way into a typical tramp ship routing and

scheduling model. We also demonstrate with a computational study the environmental

benefits of these CO2 reduction schemes.

Abbreviations:
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LNG Liquefied natural gas

M Nautical mile
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1 Introduction

Traditionally for ship operators, the reduction of maritime greenhouse gas (GHG) emis-

sions might just be a “happy side-effect” of the increasing global competition in the ship-

ping industry. While the thin profit margin generates the need to reduce bunker fuel con-

sumption, through, e.g., better design of ship hulls, energy-saving engines, “slow steaming”

(significantly reducing ship speed in response to depressed market conditions and/or high

fuel prices, see Maersk, 2011) and more efficient deployment and operation of the fleet; it

also contributes to less GHG produced, especially carbon dioxide (CO2) emissions since

they are directly proportional to fuel consumed.

However, as we marched into the second decade of the new millennium there had been

much discussion of stricter and more direct regulations on CO2 emissions in the shipping

sector (Buhaug et al., 2009; Shi, 2016), due to the urgency of combating global warming

and meeting the “two-degrees goal” (Rajamani, 2011). Among those proposed regulations

are the so-called market-based measures (MBMs), including bunker levy, emission trading

and a variety of other schemes. We refer the readers to Chapter 11 for a discussion of

MBMs in the shipping sector. A bunker levy scheme collects revenue from the sector

in the form of a tax on fuel use, which may then be used to establish an international

fund that invests in environmental causes. An emission trading scheme (ETS) sets a

maximum quantity (cap) on emissions from the shipping sector, and employs a trading

mechanism to facilitate emission reductions. Although the effectiveness of any of these

schemes has been controversial and the assessment and comparison of different MBMs are

far from completion (Psaraftis, 2012), it is useful to study how ship operators may react

to different types of CO2 emission reduction schemes.

In this chapter we examine, from a tramp ship operator’s point of view, how potential

CO2 emission reduction schemes impact the operational decisions and their economic and

environmental consequences. To the best of our knowledge, this is the first study in the

literature that approaches this issue from an operations research perspective and in the

tramp shipping context. We start by presenting the classic tramp routing and scheduling

model in maritime transportation, and extend the model to incorporate CO2 reduction

aspects under two scenarios: a bunker levy scenario and an ETS scenario. A computational

study is then conducted on typical tramp shipping instances to show the effects of imposing

these CO2 reduction schemes.

The rest of this chapter is organized as follows. Section 2 introduces the tramp ship

routing and scheduling problem and its mathematical models. Section 3 discusses the

model extensions for incorporating two versions of CO2 emission reduction scheme. Section

4 presents the computational study and we conclude in Section 5.
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2 Tramp Ship Routing and Scheduling

This section introduces the tramp ship routing and scheduling problem and its mathe-

matical models. We start in Section 2.1 by discussing the operational characteristics of

tramp shipping that distinguish itself as an important sector in maritime transportation.

We then state the problem and present its mathematical models in Section 2.2.

2.1 Operational characteristics of tramp shipping

In maritime transportation, ships are said to operate in the tramp mode if they do not

have a fixed schedule or itinerary and do not expect repetition of voyages as a normal

part of their operations. This is in contrast to the liner shipping business, characterized

primarily by container shipping, which constitutes the provision of scheduled services with

a fixed frequency over a pre-determined route.

In tramp shipping, the sailings of a vessel follow the cargo commitments that vary with

the vessel’s employment (like taxicabs), usually catering to both mandatory contractual

cargoes and optional spot ones. The mandatory cargoes are usually based on long-term

agreements between the ship operator and cargo owners, or contracts of affreightment

(COAs) in shipping parlance, where the ship operator is obliged to transport specified

quantities of cargo between specified ports during a specified time period. Some contracts

(in, e.g., oil trades) also demand repetitious voyages at a certain frequency, but unlike

liner shipping, such voyages are usually not actively advertised and the schedules are

less strict. In addition to the mandatory contractual cargoes, a tramp operator often

seeks optional cargoes from the spot market to better utilize their ship capacity and

increase their revenue. Therefore, when planning for the routes and schedules of tramp

ships in pursuit of maximized profits, the decisions regarding which optional cargoes to

accept/reject are also non-trivial to the ship operator.

For the past two decades, there has been much work done in the operations research

(OR) community towards the development of decision support tools in tramp shipping,

where optimization theories and techniques are applied to achieve such as better routes

and schedules, optimized speeds and improved composition of fleet. We refer the readers

to Christiansen et al. (2004) and Christiansen et al. (2013) for surveys in ship routing and

scheduling problems, and to Christiansen and Fagerholt (2014) for a review on tramp ship

routing and scheduling in particular.

While it is common to distinguish between liner, industrial and tramp (Lawrence,

1972) when describing the mode of operation in maritime transportation, the line between

the industrial and tramp shipping modes is narrow. A traditional industrial ship operator

is considered to control its own “private” fleet that only provides transportation for its

own cargoes. The recent trend, however, has been the shift from industrial to tramp
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shipping, as many companies previously involved in industrial shipping have outsourced

their transportation, while others have become more engaged in the spot market during

the process of industrial shipping operations being transformed from “cost centers” into

“profit centers”. From an OR perspective, the boundary between industrial and tramp

shipping is even more obscure: essentially they are both defined around the principle of

“following the available cargoes”. While an industrial operator minimizes the cost of a

somewhat closed system with a given number of ships and cargoes, the tramp ship routing

and scheduling problem may be seen as a generalization of its industrial counterpart,

where optional cargoes are also considered to generate additional revenue and the objective

becomes profit maximization. Together, industrial and tramp shipping are responsible for

the transportation of most of the bulk cargoes in global trades, including wet (oil and

gas, chemicals, etc.) and dry bulk products (iron ore, coal, grain, etc.). In 2016, these

products account for over 60% of the total weight transported at sea (UNCTAD, 2017).

2.2 The tramp ship routing and scheduling problem

In tramp shipping, as previously mentioned, the cargoes are the source of revenue and the

demands for transporting cargoes in a timely and efficient fashion are the main drivers for

addressing tramp ship routing and scheduling problems. A cargo, mandatory or optional,

represents the demand of a specified amount of product(s) to be loaded (picked up) at a

specified origin port, transported, and unloaded (delivered) at a specified destination port.

There usually is a time window associated with the pickup of each cargo during which the

loading operations of the cargo must start. There sometimes are similar time windows for

the delivery of the cargoes, but more often they are relatively wide (if any). Each optional

cargo has a specified freight income rate that determines the revenue the ship operator

will receive if the cargo is transported. The revenues from carrying the mandatory cargoes

are also specified.

The ship operator controls a fleet of ships to service the cargoes. Such fleet is typ-

ically heterogeneous, in the sense that: (a) the ships can be of different load capacity,

speed range, fuel efficiency and physical dimension (length, draft, etc.); and (b), more

importantly, the initial locations of the ships are different, some ships may be at sea and

others may be at dock in various sea areas and ports. A ship can sometimes carry multiple

cargoes on board depending on the cargo sizes, although in several contexts, e.g., trans-

porting major bulk commodities, a cargo is usually a full shipload. For various reasons

there may also be compatibility constraints between ships and cargoes. For example, a

small ship may not carry a cargo that is too heavy, and a large ship with deep draft may

not carry a cargo because one of the associated ports of this cargo is too shallow.

In short, a typical tramp ship routing and scheduling problem is characterized by the

simultaneous determination of acceptance/rejection of optional cargoes to service, assign-
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ment of cargoes to specific ships, the sequence and times of port calls for all ships and, if

variable speeds are applicable, the sailing speed during each voyage. The objective is to

provide timely transportation services for all mandatory and accepted optional cargoes,

while maximizing profit which is computed as the revenue from all serviced cargoes sub-

tracted by the variable transportation costs. These costs mainly consist of: fuel costs,

associated with sailing the ships; port and canal fees, dependent on the type and size

of the ship when visiting a port and passing a canal; and sometimes also costs for spot

charters (i.e., voyage/space charters from the spot market to service given cargoes).

The tramp ship routing and scheduling problem has many similarities with the so-

called multiple-vehicle one-to-one pickup and delivery problem with time windows that

arises in road-based transportation (Battarra et al., 2014). In the context of passenger

transportation, it is often called the Dial-a-Ride problem (Doerner and Salazar-González,

2014). In these land-based problems each customer request also consists of transporting a

load (goods or people) from one pickup vertex to one destination vertex. The differences

are, however, equally significant. In tramp shipping the fleet is usually heterogeneous

(even if the ships are of similar physical characteristics), the ships have different initial

positions and they generally do not have a common depot. In addition, since the transport

distance is generally longer at sea than on land, the ships operate around the clock and

their voyages span days or weeks.

In the following we first give the mathematical formulation of a classic tramp ship

routing and scheduling problem in Section 2.2.1, in which the sailing speed between a

pair of ports for a given ship is fixed, and the fuel consumption is not dependent on ship

payload. The model takes the form of a mixed integer linear programming problem. We

then show in Section 2.2.2 the non-linear extension of the model that incorporates variable

speeds and the dependency of fuel consumption on ship speed and payload. These models

are based on Norstad et al. (2011) and Christiansen and Fagerholt (2014).

2.2.1 The basic linear model

Let there be n cargoes that might be transported during the planning horizon. Let each

of the n cargoes be represented by an index i. Associate to cargo i a loading port node

i and an unloading port node n + i. Note that different nodes may correspond to the

same physical port. Let NP = {1, 2, . . . , n} denote the set of pickup nodes, and ND =

{n + 1, n + 2, . . . , 2n} the set of delivery nodes. The set of pickup nodes is partitioned

into two subsets, NC and NO, where NC is the set of pickup nodes for the mandatory

contracted cargoes and NO is the set of pickup nodes for the optional cargoes.

Let V be the set of ships. A network (Nv, Av) is associated with each ship v. Here,

Nv is the set of nodes that can be visited by ship v, including the origin and an artificial

destination for ship v, o(v) and d(v), respectively. Geographically, the origin can be either
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a port or a point at sea, while the artificial destination is the last planned unloading port

for ship v. If the ship is not used, d(v) will represent the same location as o(v). From this,

we can extract the sets NP
v = NP ∩Nv and ND

v = ND ∩Nv consisting of the pickup and

delivery nodes that ship v may visit, respectively. The set Av contains all feasible arcs for

ship v, which is a subset of Nv ×Nv.

For each ship v ∈ V and each arc (i, j) ∈ Av, let TS
ijv be the sailing time from node i to

node j, while TP
iv represents the service time in port at node i with ship v. The variable

transportation costs Cijv consist of the sum of the sailing costs from node i to node j

and the port costs of node i for ship v. It is also assumed that a (contractual) cargo i

can be serviced by a ship chartered from the spot market at a given cost, CS
i . Further,

let [T iv, T iv] denote the time window for ship v associated with node i, where T iv is the

earliest time for start of service and T iv is the latest. Each cargo i has a quantity Qi and

generates a revenue Ri per unit if it is transported. Let Kv be the capacity of ship v.

We also define the following decision variables. Let binary variable xijv be equal to 1 if

ship v sails directly from node i to node j, and 0 otherwise. Let tiv represents the time for

start of service for ship v at node i, and liv the load (weight) on board ship v when leaving

node i. To ease the reading of the model, we assume that each ship is empty when leaving

the origin and when arriving at the artificial destination, i.e., lo(v)v = ld(v)v = 0. Let

binary variable zi be equal to 1 if cargo i is serviced by a ship from the spot market, and

0 otherwise. Finally, let binary variable yi be equal to 1 if optional cargo i is transported,

and 0 otherwise.

The basic tramp ship routing and scheduling problem can now be formulated as follows:

max
∑
i∈NC

RiQi +
∑
i∈NO

RiQiyi −
∑
v∈V

∑
(i,j)∈Av

Cijvxijv −
∑
i∈NC

CS
i zi (1)
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subject to∑
v∈V

∑
j∈Nv

xijv + zi = 1, i ∈ NC , (2)

∑
v∈V

∑
j∈Nv

xijv − yi = 0, i ∈ NO, (3)

∑
j∈Nv

xo(v)jv = 1, v ∈ V, (4)

∑
j∈Nv

xijv −
∑
j∈Nv

xjiv = 0, v ∈ V, i ∈ Nv \ {o(v), d(v)}, (5)

∑
i∈Nv

xid(v)v = 1, v ∈ V, (6)

liv +Qj − ljv −Kv(1− xijv) ≤ 0, v ∈ V, (i, j) ∈ Av|j ∈ NP
v , (7)

liv −Qj − ln+j,v −Kv(1− xi,n+j,v) ≤ 0, v ∈ V, (i, n+ j) ∈ Av|j ∈ NP
v , (8)∑

j∈Nv

Qixijv ≤ liv ≤
∑
j∈Nv

Kvxijv, v ∈ V, i ∈ NP
v , (9)

0 ≤ ln+i,v ≤
∑
j∈Nv

(Kv −Qi)xn+i,jv, v ∈ V, i ∈ NP
v , (10)

tiv + TP
iv + TS

ijv − tjv −Mijv(1− xijv) ≤ 0, v ∈ V, (i, j) ∈ Av, (11)∑
j∈Nv

xijv −
∑
j∈Nv

xn+i,jv = 0, v ∈ V, i ∈ NP
v , (12)

tiv + TP
iv + TS

i,n+i,v − tn+i,v ≤ 0, v ∈ V, i ∈ NP
v , (13)

T iv ≤ tiv ≤ T iv, v ∈ V, i ∈ Nv, (14)

liv ≥ 0, v ∈ V, i ∈ Nv, (15)

xijv ∈ {0, 1}, v ∈ V, (i, j) ∈ Av, (16)

yi ∈ {0, 1}, i ∈ NO, (17)

zi ∈ {0, 1}, i ∈ NC . (18)

The objective function (1) maximizes the profit from operating the fleet. The four

terms are: the revenue gained by transporting the mandatory contracted cargoes, the

revenue from transporting the optional cargoes, the variable transportation costs, and the

cost of using spot charters. The fixed revenue for the contracted cargoes can be omitted,

but is included here to obtain a more complete picture of the profit. Constraints (2) state

that all mandatory contract cargoes are transported, either by a ship in the fleet or by

a spot charter. The corresponding requirements for the optional cargoes are given by

constraints (3). Constraints (4) - (6) describe the flow along the sailing route used by ship

v. Constraints (7) and (8) keep track of the load on board at the pickup and delivery

nodes, respectively. Constraints (9) and (10) represent the ship capacity constraints at

the loading and discharging nodes, respectively. Constraints (11) ensure that the time
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of starting service at node j must be greater than or equal to the departure time from

the previous node i, plus the sailing time between the nodes. The big M coefficient in

constraints (11) can be calculated as Mijv = max(0, T iv+TP
iv +TS

ijv−T jv). Constraints (12)

ensure that the same ship v visits both loading node i and the corresponding discharging

node n+ i. Constraints (13) force node i to be visited before node n+ i, while constraints

(14) define the time window within which service must start. If ship v is not visiting node i,

we will get an artificial starting time within the time windows for that (i, v)-combination.

The non-negativity requirements for the load on board the ship are given by constraints

(15). Constraints (16), (17) and (18) impose the binary requirements on the flow, optional

cargo and spot charter variables, respectively.

Note that in the industrial shipping context (which may be seen as a special case

of tramp shipping as discussed earlier), the objective will be to minimize the variable

transportation costs, which correspond to the third and fourth terms in objective function

(1), while constraints (3) and variable yi are no longer required since in industrial shipping

all cargoes are mandatory.

2.2.2 The extended non-linear model with speed optimization

Most of the earlier studies in the tramp ship routing and scheduling literature, e.g., Brown

et al. (1987), Korsvik et al. (2010), Malliappi et al. (2011) and Lin and Liu (2011) among

others, assume a fixed and known speed for every ship in the fleet, which usually is the

service speed traditionally used when the shipping company makes its planning. In reality,

the ship can of course sail at other speeds as well. Normally, a ship has a minimum and a

maximum cruising speed which define the range of speeds at which it can actually travel.

The option of speeding up affords the ship operator operational flexibility to absorb delays

at ports and handle schedule disruptions. On the other hand, the shipping industry has

seen significant economic savings by prevailing the practice of slow steaming in almost

every commercial ship sector.

As shown by Ronen (1982), a cubic function provides a good estimation of the rela-

tionship between fuel consumption per time unit and speed for cargo ships. The impact of

a change in ship speed on both fuel costs and emissions can therefore be quite dramatic.

In fact, as a response to the growing awareness of the economic and environmental ben-

efits brought by planning with variable speeds, in recent years many studies have been

dedicated on speed optmization on given routes or have included speeds as decision vari-

ables in their routing and scheduling models (Psaraftis and Kontovas, 2013, 2014). Some

examples are Fagerholt et al. (2010), Gatica and Miranda (2011), Norstad et al. (2011)

and Hvattum et al. (2013).

Another important but often overlooked consideration when determining the fuel costs

along a ship route is that the payload of the ship varies, especially in pickup and delivery
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situations, and that the fuel consumption, other than being a non-linear function of speed,

is also a function of ship payload (Psaraftis, 2017). According to Barrass (2004), a common

approximation is that for a given speed, fuel consumption is proportional to (l + L)2/3,

where l is the payload and L is the lightship weight of the ship. Also as suggested in

Psaraftis and Kontovas (2016), the difference between laden and ballast fuel consumption

at the same speed for a specific ship type can be as high as 40%. It is therefore inspiring

to see that, recently, some studies have taken payload dependency into account (only for

laden and ballast conditions in some case) in the tramp routing and scheduling context,

e.g., Wen et al. (2016) and Vilhelmsen et al. (2017), and in other contexts too, e.g.,

Andersson et al. (2015) and Wen et al. (2017).

In the following we show that the basic model presented above in Section 2.2.1 can be

modified to incorporate speed optimization, where the fuel consumption rate of each ship

can be a specific function of its speed and payload. Let Dij be the sailing distance from

node i to node j. The variable sijv defines the speed of travel from node i to node j with

ship v. Thus the time it takes to sail along arc (i, j) can be computed by Dij/sijv. The

non-linear function Cv(s, l), defined on the speed interval [Sv, Sv], represents the variable

transportation costs per unit of distance for ship v sailing at speed s with load l on board.

The cost of sailing an arc (i, j) with ship v departing node i with load liv at speed sijv is

then DijCv(sijv, liv).

The model for the basic tramp ship routing and scheduling problem (1) – (18) can now

be adjusted as follows:

max
∑
i∈NC

RiQi +
∑
i∈NO

RiQiyi −
∑
v∈V

∑
(i,j)∈Av

DijCv(sijv, liv)xijv −
∑
i∈NC

CS
i zi, (19)

subject to (2) – (10),(12), (14) – (18) and

tiv + TP
iv +Dij/sijv − tjv −Mijv(1− xijv) ≤ 0, v ∈ V, (i, j) ∈ Av, (20)

tiv + TP
iv +Di,n+i/si,n+i,v − tn+i,v ≤ 0, v ∈ V, i ∈ NP

v , (21)

Sv ≤ sijv ≤ Sv, v ∈ V, (i, j) ∈ Av. (22)

The objective function (19) has now become a non-linear function because of the

non-linear relationships between fuel consumption and speed and payload. Constraints

(20) and (21) correspond to constraints (11) and (13) in the original formulation. These

constraints are also non-linear because the sailing time depends on the speed variable.

The new constraints (22) define the lower and upper bounds for the speed variables.

9



3 Modeling the Emission Reduction Schemes

In this section we present and discuss the model extensions for incorporating two ver-

sions of CO2 emission mitigation strategy: a bunker levy scheme in Section 3.1; and an

Emission Trading Scheme (ETS) in Section 3.2. The bunker levy and ETS proposals are

both market-based measures (MBMs) that can potentially help meet global climate goals

through a more flexible approach than the traditional regulatory measures (“command-

and-control”, where public authorities mandate the performance to be achieved or the

technologies to be used). On the one hand, the MBMs can be used to establish an inter-

national fund to invest into emission reduction projects outside the marine sector. They

are also economic (or “price-based”) instruments that, on the other hand, potentially

provide the required incentives to ship owners for enhancing their energy efficiency and

reducing “in-sector” emissions, through the adoption of long-term technological measures

(e.g., more efficient engines or ships) and short-term logistical measures (e.g., slow steam-

ing, optimal fleet management).

3.1 Model with bunker levy

Bunker levy, or “carbon tax”, is a measure of collecting revenue from the shipping sector

in the form of a tax on fuel use. The scheme may also be enforced as a percentage on fuel

price. The bunker levy scheme has gained much favor with researchers compared with

other emission mitigation solutions (European speed limit, ETS, etc.), mainly because it

is easy to implement and provides price certainty in terms of increase in fuel costs to which

shipping companies can respond proactively (Cariou and Cheaitou, 2012; Psaraftis, 2012;

Kapetanis et al., 2014). There are also concerns on the resulting modal shifts and that

the extra costs will only be passed along the supply chain (GSF, 2012).

In a tramp ship routing and scheduling problem, the bunker levy scheme can be mod-

eled as an extra charge on every tonne of fuel consumed. In terms of mathematical formu-

lation, the model incorporating a bunker levy requires the following modifications. Similar

to the non-linear function Cv(s, l) in Section 2.2.2., we let Fv(s, l) denote the amount of

fuel consumed (in tonnes) per unit of distance for ship v sailing at speed s with load l.

The total fuel consumption, represented by FUEL, can then be written as

FUEL =
∑
v∈V

∑
(i,j)∈Av

DijFv(sijv, liv)xijv. (23)

Let LEVY be the tax imposed on every tonne of fuel consumed. The objective function

(19) is then modified as follows to account for the extra fuel costs:
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max
∑
i∈NC

RiQi +
∑
i∈NO

RiQiyi −
∑
v∈V

∑
(i,j)∈Av

DijCv(sijv, liv)xijv −
∑
i∈NC

CS
i zi

− LEVY× FUEL.

(24)

3.2 The Emission Trading Scheme

To provide a basis for considering a potential ETS in our model on tramp shipping, we

look at the European Union Emissions Trading System (EU ETS) for some details of the

mechanism. The EU ETS has been in operation from 2005 and was the first large GHG

emission trading scheme in the world. The scheme now covers more than 11,000 factories,

power stations, and other installations in 31 countries – all 28 EU member states plus

Iceland, Norway, and Liechtenstein. In 2012, the EU ETS was extended to the airline

industry. In November 2017 the European Parliament and EU member states agreed on

a revision of the EU ETS that excludes shipping for the time being, but “will include

shipping in the trading system from 2023 if IMO progress in a CO2 strategy is considered

insufficient” (The Maritime Executive, 2017).

The ETS functions under the “cap and trade” principle, where a maximum (cap) is

set on the total amount of CO2 that can be emitted by all participants in the system.

“Allowances” for emissions are created equal to the size of the cap, which are measured

in units where one unit corresponds to the right to emit one tonne of carbon dioxide

equivalent (CO2e). The allowances are allocated for free or auctioned off to the emitters,

and can subsequently be traded among them. If emission exceeds what is permitted by

its allowances, an emitter must purchase allowances from others. Conversely, if an emitter

has performed well at reducing its emissions, it can sell its leftover allowances. This

potentially allows the participants of the system to find the most cost-effective ways of

reducing emissions without significant government intervention.

To include an ETS mechanism in the model, we make the following modifications to

the model presented in Section 2.2.2. Let H be the amount of CO2 allowance (in tonnes)

acquired by the shipping company from public authorities or auctions at price PC per

tonne (which may be zero or non-zero). Let PS be the spot price of one tonne of CO2

allowance trading in the secondary market, same for buying and selling. Note that H

and PC are input to our model, since the tramp ship routing and scheduling problem

we address in this chapter typically focuses on decisions on the operational/tactical level.

Also note that, the assumption regarding CO2 allowance trading price PS in the spot

market is based on the viewpoint of a single tramp shipping company, therefore such spot

price is assumed to be exogenous and constant during our planning horizon.

As in Section 3.1, we use Fv(s, l) and FUEL to represent the amount of fuel consumed

for every unit of distance sailed by ship v at speed s with load l, and the total fuel
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consumption, respectively. There is a linear relationship between fuel burned and CO2

produced, with the proportionality constant being known as the emissions factor. The

third IMO GHG study (Smith et al., 2015) indicates that such factor is between 3.11

and 3.21 (tonnes of CO2 per tonne of fuel) independent of fuel type (for most common

fuel types; emissions factor for marine LNG is 2.75). Therefore, the total amount of CO2

emitted can be expressed by 3.2× FUEL, using 3.2 as the emissions factor.

The objective function (19) is then changed to:

max
∑
i∈NC

RiQi +
∑
i∈NO

RiQiyi −
∑
v∈V

∑
(i,j)∈Av

DijCv(sijv, liv)xijv −
∑
i∈NC

CS
i zi

−
[
PCH + PS(3.2× FUEL−H)

] (25)

where the expression in the brackets [·] represents the total costs for CO2 emissions,

including the costs of acquiring the initial CO2 allowances H and the costs of buying

additional allowances from the spot market (or the revenue of selling leftover allowances if

the actual amount emitted is lower than H). The constraints remain unchanged compared

with the model presented in Section 2.2.2.

Notice that by separating out terms that are constant values, we may rewrite the

expression for total emission costs, i.e., the expression inside [·] in Eq. (25), into

PS × 3.2× FUEL + (PC − PS)H (26)

in which the first term is the amount of total CO2 emissions multiplied by the spot CO2

allowance price PS , and the second term is a constant value independent of any decision

variable in the model. Therefore, the maximization of objective function (25) is equivalent

to solving

max
∑
i∈NC

RiQi +
∑
i∈NO

RiQiyi −
∑
v∈V

∑
(i,j)∈Av

DijCv(sijv, liv)xijv −
∑
i∈NC

CS
i zi

− PS × 3.2× FUEL .

(27)

Therefore, compared with objective function (19) in the original model, incorporating

an ETS implicates adding an extra charge PS × 3.2 on every tonne of fuel consumed

independent of the amount and price of the CO2 allowances initially received (provided

that the amount and price of the initial allowance are both input), and such charge depends

on the trading price of CO2 allowance in a spot market. Also note that this objective

function is analogous to objective function (24) in the bunker levy case.

It is important to emphasize again the caveats of this conclusion, and that the under-

lying assumptions be comprehended. First, as mentioned earlier the amount of allocated

CO2 allowances H and the average unit cost of acquiring these allowances PC are input
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to our model due to the scope of a typical tramp shipping problem. These initial costs

are therefore “sunk” and will not affect the ship routing, scheduling or optional cargo se-

lection decisions. In reality, H may also be a decision variable when the initial allowances

held by the shipping company are acquired in part (or all) from auctions. In EU ETS,

for example, over 50% of the total amount of allowances over the period 2013–2020 will

be auctioned in the primary market (on average over all sectors covered by EU ETS; in

the aviation industry the proportion of auctioned allowances is 15%), while the remaining

allowances are granted free and allocated to companies based on their historical emissions

(European Commission, 2015). Therefore, for those companies with expected allowance

demand higher than their allocated amount, H is also a decision to be made as the com-

pany may buy allowances through auctioning (at prices usually comparable to the spot

price at the time of auctioning) to avoid having to fulfill its obligations from a secondary

market later where the spot price may fluctuate widely.

Second, the additional costs resulted from an emission reduction scheme may have large

effects on many tactical/strategic decisions. For example, if the amount of free allowances

received from public authorities is little, and the expected costs to fulfill its obligations

through either allowance auctioning or the secondary market are significant, the shipping

company might cut back on long-term contracts or reduce the size of its fleet which are

all incentives for modal shifts that take cargoes off seaways (e.g., from short sea shipping

to land-based transportation, which may also be a source of “carbon leakage” into sectors

with less stringent climate policy). These are outside the scope of a typical tramp ship

routing and scheduling problem, but are significant issues that need further exploration.

Third, since the model is based on the viewpoint of one tramp shipping company,

the trading price of CO2 allowance in the spot market (PS) is assumed to be exogenous

and constant. In reality the spot market may exhibit an increasing marginal purchasing

costs, i.e., the buying price of one unit of CO2 allowance may increase when purchasing

more, especially if the market is thin and if the shipping company is a major player in the

business.

4 Computational Study

In this section we present a computational study to demonstrate the effects of implement-

ing an emission reduction scheme in the form of a bunker levy. We only discuss the bunker

levy scenario as in the previous section we have shown that the imposition of an ETS also

implicates an extra charge on fuel use (from the viewpoint of a typical tramp operator).

We use 16 test instances taken from the benchmark instances for industrial and tramp

routing and scheduling problems (Hemmati et al., 2014). The tests are performed based

on the model with variable speeds presented in Section 2.2.2, where we increase the input

13



fuel price to imitate the implementation of a bunker levy. By doing so we can examine

the impact of a bunker levy on the tramp operator’s operational decisions and its total

fuel consumption (and hence emissions).

The problems are solved on the commercial ship routing decision support system Tur-

boRouter (Fagerholt, 2004; Fagerholt and Lindstad, 2007) from SINTEF Ocean, using the

multi-start local-search heuristic method presented in Brønmo et al. (2007) and Norstad

et al. (2011). Note that the particular algorithm used for solving the fixed-route speed

optimization problems (which are subproblems in the multi-start heuristic) is based on

the discretization arrival times at each route node (Fagerholt et al., 2010); the alternative

“recursive smoothing algorithm”, although shown to be more efficient in the case where

fuel consumption depends only on speed, cannot be used here because of our inclusion of

payload dependency (see discussions in Norstad et al., 2011).

4.1 Input data and test instances

To represent realistic situations faced in tramp shipping, the test instances we use have

characteristics combining two geographical settings, short sea and deep sea shipping, and

two cargo settings, full load and mixed load cargoes. In deep sea shipping, the cargoes

are transported long distances and across at least one of the big oceans, for example from

Liverpool to Yokohama. In short sea shipping, the cargo movements are within Europe,

for example from Gdansk to Dunkirk. For full load instances, the cargo sizes are such that

a cargo is a full shipload. And in mixed load cases, some of the cargoes are of smaller size

and the ship capacity may accommodate several cargoes simultaneously.

We use four instances for each such combination of the above geographical and cargo

settings, i.e., “Deep-Full”, “Deep-Mix”, “Short-Full” and “Short-Mix”, which amount to

16 instances in total. Each instance is referred to in the format setting-Cx-Vy-z, where

setting is the combination of geographical and cargo settings, x is the number of cargoes,

y is the number of ships and z is the z-th instance with the same setting and size. The

complete list of instances is shown in Table 2, and these instances may be downloaded

from: http://home.himolde.no/ hvattum/benchmarks/.

Recall that in the model presented in Section 2.2.2, we use a non-linear function

Cv(s, l), defined on the speed interval [Sv, Sv], to represent the variable transportation

costs per unit of distance for ship v sailing at speed s with load l on board. To describe

such a function well one must have a good approximation of the relationship between the

ship’s fuel consumption rate and its speed and payload, since the fuel costs make up most

of the variable transportation costs.

For every specific ship, the fuel consumption rate FC is in tonnes (t) per traveled

nautical mile (M) which is a function of speed s (knots) and payload ρ (% of total capacity).

We use the following empirical function, FC = (As2+Bs+C)×(0.8+0.2ρ), where s is within
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Figure 1: Fuel consumption characteristics for a Handymax bulk carrier.

the ship’s feasible speed range and ρ takes its value between 0% (ballast) and 100% (fully

loaded). The parameters A, B and C are ship specific and obtained based on empirical

fuel consumption values for each ship. The function also implies a linear relationship

between payload and fuel consumption at a given speed, instead of a more sophisticated

non-linear version (see Section 2.2.2), but it gives an acceptable approximation of the fuel

consumption between ballast and fully-loaded (laden) states based on real data of these

ships. Figure 1 depicts the fuel consumption characteristics for one of the ships used in the

test instances, a Handymax bulk carrier of 56800 deadweight tonnes (dwt) capacity. The

fuel consumption function in this case is FC = (0.0019s2− 0.045s+ 0.3739)× (0.8 + 0.2ρ),

where the feasible speed range of s is between 10 and 20 knots. The fuel consumption

curves for ballast, half-loaded, and fully-loaded are shown in Figure 1, which correspond

to ρ = 0%, 50% and 100%, respectively.

4.2 Computational results

We first use one instance, Deep-Full-C50-V20-1, as an illustrative example to demonstrate

the impact of an increase in fuel price on the tramp operator’s operational decisions and

its fuel consumption and CO2 emissions. This instance considers 50 cargoes, 20 ships and

has the characteristics of deep sea shipping and full load cargoes.

Table 1 shows the results for instance Deep-Full-C50-V20-1 when altering the fuel price

from $200 to $600 per tonne. It is clearly visible that as the fuel price goes up, the profit

of the company decreases. The number of cargoes served also decreases from 46, when

fuel price is $400 and below, to 43 and 37, when fuel price is as high as $500 and $600
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Table 1: Comparison under different fuel prices for instance Deep-Full-C50-V20.

Fuel Price /tonne $200 $300 $400 $500 $600

# Total Cargoes 50 50 50 50 50

# Served Cargoes 46 46 46 43 37

Income (mill $) 34.51 34.21 34.39 32.37 28.71

Profit (mill $) 24.57 20.54 17.05 13.58 10.66

Total Days at Sea 1594 1591 1611 1489 1285

Total Mileage 425,947 423,724 425,950 381,135 314,651

Avg Speed (knots) 11.14 11.09 11.02 10.67 10.20

Fuel Consump.(t) 49,674 45,548 43,329 37,574 30,088

CO2 emissions (t) 158,957 145,754 138,653 120,236 96,281

Tonne-Miles 13,073 13,073 13,068 12,129 10,370

(mill t-M)

CO2/Tonne-Mile 0.0122 0.0111 0.0106 0.0099 0.0093

(10−3 t/t-M)

respectively. This is because the operator is rejecting more optional cargoes when fuel is

expensive, so as to reduce its fuel consumption, see the “Fuel Consump.(t)” row.

One may notice that the number of cargoes served remains 46 for the first three

columns, while fuel consumption in the low fuel price case is significantly higher. This is

because when the fuel price is low, the operator sails the ships at faster speed to chase

cargoes with higher income. Take $200 fuel price for example, compared to the $300 case,

only one cargo is different while the other 45 cargoes are identical. When fuel is $200 per

tonne, the ship operator takes the cargo with higher income, but also needs to operate

a ship at a much higher speed to be able to serve this cargo within its stipulated time

windows. The fuel consumption increases accordingly, but the ship operator can afford

it because of low fuel price in this case. In fact, we see this trend across Table 1 when

the fuel price increases from $200 to $600, namely the ship operator gradually gives up

those optional cargoes that are “harder” to service, so that ships can sail at lower speed

and save more on fuel. This can be seen from the decreasing speed values from the “Avg

Speed (knots)” row, which shows the average sailing speed of all ships in the fleet.

We also show the amounts of CO2 emissions in Table 1, calculated from multiplying

the fuel consumption by the emissions factor 3.2 (tonnes of CO2 per tonne fuel). We then

compute the total tonne-miles of all cargoes in each case. It can be seen that when the fuel

price goes up, the amount of CO2 emissions per tonne-mile of cargo transported decreases,

meaning the ships are operated in a more “CO2 efficient” way. However, this is achieved

by giving up the “hard” optional cargoes, such as the ones with demanding time windows
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or at difficult locations that require long ballast sailings.

Table 2 shows the comparison under two fuel prices, $300 and $600 per tonne, for all

16 instances. Increasing the fuel price from $300 to $600 per tonne implies a bunker levy

of 100%, which is not realistic in the near future. In addition, higher fuel prices due to

taxation probably would also result in increased freight rates (and thus higher revenues

from the same cargoes, since shipping companies cannot bear all the increased costs),

while the rates in our study are assumed constant. Therefore, the results are intended,

only for illustrative purposes, to show the effects of a bunker levy on a tramp operator’s

economic and environmental performances.

In Table 2 we summarize, for each instance and under two fuel prices, five important

attributes, including the number of cargoes served, profit, average speed of the fleet, total

amount of CO2 emissions and the amount of CO2 emitted per tonne-mile. The “%∆”

columns indicate the relative changes when increasing the fuel price from $300 to $600.

We observe that these changes are in general consistent with the trend found based on

Table 1: when the fuel becomes expensive because of a levy, the tramp operator accepts

fewer cargoes to transport, especially those that need ships sailing faster to meet their

time windows. There are a few exceptions, e.g., for instance Short-Full-C25-V7-2 the

average fleet speed is increased by 4.5% is spite of expensive fuel. In this instance, the

single cargo being dropped by the $600 solution (compared to its $300 counterpart) is

relatively poorly paid and has a long transporting distance. In addition this cargo has an

“easy” time window that allows the ship servicing it to sail a slow voyage which brings

the average speed of the fleet down. When fuel becomes expensive, this slow and long

voyage is dropped due to the low income of the corresponding cargo, leading to an overall

increase in the fleet’s average speed.

On average across all 16 instances, we observe in Table 2 that as a consequence of the

high levy on fuel, the tramp operator accepts around 10% fewer cargoes, and sails its fleet

3.5% slower. In addition, the ship operator’s total profits are 38.5% lower, whereas its

fuel consumption and hence CO2 emissions are reduced by 17.8%. Moreover, the average

“CO2/Tonne-Mile” measure decreases by 6.3% when fuel is expensive, indicating that the

ships are operated more efficiently in terms of CO2 emitted for every tonne-mile of cargo

transported. As was discussed earlier, such efficiency is achieved by dropping the “hard”

optional cargoes, such as the ones with difficult time windows (e.g., loading needed rather

soon, or requiring fast transport) that demand high sailing speed or at difficult locations

that require long ballast sailings. These potentially “inefficient” cargoes (from the single

tramp operator’s perspective) are accepted when fuel price is low, but when fuel becomes

too expensive with added levy, the “hard” optional cargoes no longer make worthwhile

contribution to the total profits. At a broader level, these cargoes may still find their

way to their respective destinations in any case, perhaps by other shipping companies.
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However, the imposition of a levy may help the players in the market increase their CO2

efficiency as a whole by redistributing the cargoes to their appropriate carriers.

5 Conclusion

This chapter has presented the typical tramp ship routing and scheduling model and

discussed how market-based CO2 reduction measures, including the bunker levy and ETS

schemes, can be incorporated into the model. It has been shown that from the viewpoint of

a tramp ship operator on the operational level, the implementation of an ETS implicates

the addition of an extra charge on every tonne of fuel consumed, which is similar to

a bunker levy. Such conclusion was obtained when assuming that the CO2 allowances

initially acquired are sunk costs. This assumption is consistent with the typical context

of a tramp ship routing and scheduling problem, but the effects of an emission reduction

scheme on a ship operator’s tactical decisions need to be addressed and further studied.

For example, the shipping company might cut back on long-term contracts or reduce the

size of its fleet if the extra costs for CO2 reduction are too expensive. These may lead to

modal shifts from (short sea) shipping to land-based transportation modes and potential

carbon leakage.

A computational study on 16 benchmark instances has been done to demonstrate the

effects of implementing a bunker levy in the form of a tax based on fuel price. It has been

shown that in response to a largely elevated fuel price, the ship operator will accept fewer

optional cargoes, slow down the ships, and operate the fleet in a more “CO2 efficient” way,

i.e., emit less per tonne-mile of cargo transported.

Many perspectives remain open with respect to this study. First, we focused on de-

cisions made by a tramp ship operator on a operational/tactical level. This scope can

be expanded to include some important and directly relevant tactical/strategic decisions

such as the composition of the fleet, i.e., to determine if the size and mix of the fleet need

changing to adapt to new environmental regulations. Second, similar analysis from this

work can also be done in other shipping sectors, such as container shipping.
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