
An exact solution method for the capacitated
item-sharing and crowdshipping problem

Moritz Behrenda,˚, Frank Meisela, Kjetil Fagerholtb, Henrik Anderssonb

aSchool of Economics and Business, Kiel University, Germany
bDepartment of Industrial Economics and Technology Management, Norwegian University of Science and

Technology, Trondheim, Norway

Abstract

The item-sharing and crowdshipping problem combines two concepts of the sharing economy,

namely item-sharing and crowdshipping. Item-sharing is about renting items among mem-

bers of a sharing community. Crowdshipping addresses the transportation of these items

through private people on trips they make anyway. The considered problem is to decide (1.)

which request for an item to fulfill through which of the supplied items and (2.) who is doing

the transport of rented items from the supply-locations to the request-locations. We gener-

alize this problem with regard to crowdshippers’ capacity, meaning that each crowdshipper

can transport a given number of items along his/her intended route. This results in a detour

routing problem, where crowdshippers are routed through intermediate locations on the way

from their actual origin location to their intended destination. We propose an exact solution

method based on a set packing formulation for which a label setting procedure generates

feasible crowdshipper routes a priori. We also describe how to derive a heuristic from the

exact approach. Our experiments identify to what extend higher capacities of crowdship-

pers lead to more profitable routes and under which conditions a heuristic reduction of the

method is required to cope with the complexity of the problem. We also show that the new

exact method clearly outperforms procedures that were developed earlier for a setting where

each crowdshipper can transport at most one single item.
Keywords: Sharing Economy, Item-sharing, Crowdshipping, Capacity, Label Setting

June 3, 2019

1. Introduction

Item-sharing and crowdshipping are two concepts of the sharing economy. Item-sharing

refers to a need-based exchange of requested items among members of a sharing platform

like Erento (2019) or Zilok (2019). It offers consumers temporary access to items they do

not own and it provides them with the economic advantage of pay-per-use instead of taking

the financial risk of ownership. So far, it lies within the consumer’s responsibility to get

access to the requested item, meaning that he/she must pick up the desired item from the

location where it is supplied and must bring it to the location where it is needed. A more

service-oriented approach is if the platform performs the transportation of items so that the

items are accessible directly at the requesting locations. However, this results in frequent

transfers of the same items between (distant) consumer locations which is labor-intensive

and time-consuming. In fact, the improved service of delivering items to consumers resem-

bles the often addressed ’last-mile delivery’ that is known to be very costly (Cleophas et al.,

2019). Item-sharing therefore faces the dilemma of meeting consumer expectations of a

fast delivery at low costs. Crowdshipping is a promising approach to provide such fast and

cost-efficient deliveries (Archetti et al., 2016). Here, companies outsource delivery jobs to

private drivers in return for a small compensation, see the platforms of Amazon Flex (2019),

Postmates (2019), and Deliv (2019). Crowdshipping is particularly efficient if private drivers

execute delivery jobs along their intended trips as this allows to utilize transportation ca-

pacity that exists anyway. For example, Nimber (2019) allows to filter for shipments that

have the same origin and destination as the crowdshipper and Jade Zabiore (2019) addi-

tionally allows crowdshippers to announce their planned trips in order to receive delivery

suggestions. Crowdshipping has recently received much attention from research because of

its potential benefits but also because of the challenges of managing a large pool of private

drivers (Archetti et al., 2016; Punel and Stathopoulos, 2017).

˚corresponding author, tel.: +49 431 880-1532, address: Kiel University, School of Economics and Busi-
ness, Olshausenstr. 40, 24098 Kiel, Germany

Email addresses: moritz.behrend@bwl.uni-kiel.de (Moritz Behrend), meisel@bwl.uni-kiel.de
(Frank Meisel), kjetil.fagerholt@ntnu.no (Kjetil Fagerholt), henrik.andersson@ntnu.no (Henrik
Andersson)

2

Using crowdshipping for fulfilling the transportation needs induced by item-sharing has

been investigated recently by Behrend and Meisel (2018). They propose the idea of an inte-

grated item-sharing and crowdshipping platform, where supplies of items, requests for items,

and crowdshipping trips are all announced on the same platform. The platform then needs to

decide which requests to satisfy using which supplies (so-called supply-request matching) and

which crowdshippers to assign the job to execute the deliveries along their trips (so-called

trip-delivery matching). The joint decision making allows to align the supply-request assign-

ment with the available crowdshipper trips and, thus, to execute delivery jobs efficiently with

only minor detours from the intended trips. The computational experiments showed that

such a platform is more profitable and that it achieves a higher level of service compared with

a pure item-sharing platform where consumers need to do the transportation all by them-

selves (so-called self-sourcing). Behrend and Meisel (2018) make a conservative assumption

where each crowdshipper accepts at most one delivery job such that the above-mentioned

matching decisions become easy-to-solve assignment problems. However, the willingness to

execute delivery jobs is highly individual and private drivers may be interested in doing

more than one delivery to increase their received compensation. In this paper, we therefore

extend the problem investigated by Behrend and Meisel (2018) and consider crowdshippers

that also accept more than one delivery job, i.e. that have a carrying capacity of more than

one item. Larger capacities allow a platform to transfer more items through crowdshipping

and, by that, to satisfy additional item-sharing requests. Furthermore, transportation costs

may decrease if several delivery jobs can be executed by a same crowdshipper on one route

with only little overall detour. However, if crowdshippers can get assigned several delivery

jobs, the sharing platform has to solve routing problems instead of assignment problems.

The main contributions of this paper are summarized as follows:

• We generalize the item-sharing and crowdshipping problem with regard to crowdship-

pers’ capacity. This requires to jointly address the assignment of supplies to requests

and a corresponding detour-routing of crowdshippers, which is not supported by the

previously proposed integrated item-sharing and crowdshipping approaches.

3

• We propose an exact solution approach for the resulting problem, which is based on a

set packing problem and a label setting algorithm. A heuristic is derived by restricting

the algorithm’s search procedure.

• We conduct extensive experiments and show (i) that the new solution approach de-

livers exact solutions for the special case of capacity one in significantly less time in

comparison to previous approaches, (ii) that the platform’s profitability increases sub-

stantially with higher crowdshipping capacity, and (iii) that there is a considerable

potential for incentivizing crowdshippers to accept multiple deliveries.

• We furthermore analyze by experiment to what extent the integration of item-sharing

and crowdshipping on a single platform is useful. To this end, we compare different

platform concepts and show how the profit of such platforms depends on the degree

of collaboration.

The remainder of the paper is organized as follows. In Section 2, we point out the gap

in the related literature. A detailed problem description and the set packing problem for-

mulation is provided in Section 3. In Section 4, we describe the label setting algorithm

to generate the columns for the set packing problem. The numerical experiments are the

subject of Section 5. Section 6 concludes the paper.

2. Related literature

The two pillars of crowdshipping are private drivers that offer transportation services and

senders that ask for non-professionals to fulfill tasks for shipping goods. Numerous empirical

studies have shown that a majority of people interviewed are positive about getting involved

in crowdshipping for various reasons (Barnes and Mattsson, 2016; Böcker and Meelen, 2017;

Marcucci et al., 2017; Miller et al., 2017; Paloheimo et al., 2015). The most relevant reasons

are to be (partially) compensated for travel related expenses, to serve the community, or

to mitigate the environmental footprint of their individual traveling. The motivations of

senders for using crowdshipping are analyzed in Punel and Stathopoulos (2017) and Punel

4

et al. (2018). A relevant driver is the expectation for a transportation at low cost whereas a

strong inhibitor is the concern that an anonymous crowd cannot provide a reliable service.

One approach to overcome this shortcoming is to build up trust in the service through trac-

ing technology, direct communication to drivers, or peer-controlled systems that intend to

prevent misconduct by publishing each driver’s track record (Botsman and Rogers, 2011).

Alternatively, Devari et al. (2017) propose to leverage social networks for assigning crowd-

shipping tasks such that friends or acquaintances conduct the transportation. Eventually,

trust in crowdshipping arises from a good expectations management where liabilities and

rights but also prospective rewards are clearly communicated between the involved parties,

following well-known guidelines from reward management in behavioral research (Armstrong

and Murlis, 2007). The operational planning is crucial in this regard to generate offers for

senders that comply with crowdshippers’ expected extent of involvement, thereby increasing

the service’s reliability. Our paper contributes to this by focusing on the operational plan-

ning with respect to crowdshippers’ offered capabilities and compensation-based incentives,

which is expected to motivate them to participate in such platforms.

The routing of crowdshippers that is part of the investigated problem links our research

to the large body of literature on pick-up and delivery problems (Berbeglia et al., 2007,

2010; Parragh et al., 2008) and to dial-a-ride problems (Cordeau and Laporte, 2007; Ho

et al., 2018). Despite close similarities between these problems and the planning context

considered here, the key difference is that the decision making of the considered sharing

platform does not involve creating new routes from the scratch. Instead, a detour routing is

required that determines the sequence of visited pick-up and drop-off locations along existing

routes with given origins and destinations with respect to the additional time a crowdshipper

is willing to spend on transportation activities.

The only two papers related to detour routing for the transportation of goods seem to

be the recent publications on crowdshipping by Arslan et al. (2019) and Chen et al. (2018).

The planning problem of Arslan et al. (2019) is to assign a given set of delivery jobs to either

crowdshippers or dedicated drivers. The authors’ solution approach is to precompute possi-

ble routes and then solve a matching problem with side constraints to select those routes that
5

constitute an optimal solution. The subproblem of precomputing the routes is formulated

as a traveling salesman problem with precedence constraints and time windows. It is solved

with an exact recursive algorithm in which feasible crowdshipper-specific combinations of de-

livery jobs are successively extended by inserting new jobs. A heuristic is proposed, as well,

where non-promising delivery jobs and routes are neglected at an early stage in the proce-

dure. Crowdshippers’ capacity is defined as their willingness for additional stops along their

route, the so-called stop willingness. The results show that an increasing stop willingness

leads to a more cost efficient execution of delivery jobs. Furthermore, less crowdshippers are

involved in transportation activities as multiple jobs can be assigned to a same crowdship-

per. The planning problem of Chen et al. (2018) is similar to that of Arslan et al. (2019). Its

most salient additional aspect is that parcels can be transshipped between crowdshippers.

To this end, the crowdshipping trips must be synchronized as parcels cannot be left unat-

tended during the handover. The solution approach solves a network flow model to match

crowdshippers to parcels as well as to obtain their corresponding paths and time schedules.

The solution space is reduced by precomputing all edges along which a crowdshipper can

travel between his/her origin and destination with respect to the accepted travel time in-

crease due to deliveries. The authors also propose two heuristics, one heuristic with frequent

feasibility checks for time compatibility and capacities, and a more efficient time expanded

graph heuristic. The results suggest positive effects in terms of cost savings and reduced

parcel-miles for a shipping company if crowdshippers offer higher capacities and if the opera-

tional planning can utilize this capacity. The integration of item-sharing, i.e. the assignment

of supplies to requests, is neither considered in Arslan et al. (2019) nor in Chen et al. (2018).

Detour routing for the transportation of people on existing traffic flows is known from

the ride-sharing literature, see Agatz et al. (2012) and Furuhata et al. (2013) for literature

surveys. Related papers are those of Kamar and Horvitz (2009) and Herbawi and Weber

(2012). Kamar and Horvitz (2009) consider a ride-sharing setting in which every agent can

be either a driver that offers rides or a rider. Feasible ride-share matches are precomputed.

A set covering problem is solved to determine those matches that lead to the highest cu-

mulative objective value. Herbawi and Weber (2012) formulate the ride-sharing problem as
6

a network flow problem. Here, it is not required to precompute routes because constraints

of the flow model ensure that picked-up passengers are taken to their destination with the

same vehicle. The authors also propose a genetic algorithm to solve the model. The men-

tioned approaches allow for simultaneous transportation where a crowdshipper can execute

multiple delivery jobs and a driver can carry multiple riders at a same time.

Further approaches in the context of crowdshipping and ride-sharing but without detour

routing are investigated in a few papers. Kafle et al. (2017) investigate a two-echelon ur-

ban delivery and collection system in which crowdshippers perform the last-mile delivery

of freight between relay points and customers, or vice versa. Each crowdshipper starts and

ends its route at the same location. Crowdshipping routes are precomputed by enumerating

all combinations of customers a crowdshipper can serve in one round trip and then solve

the undirected traveling salesman problem for every such combination. An upper travel

distance, a maximum number of visited customers, and a total parcel weight limit are re-

spected. A two-echelon urban delivery system is also addressed by Qi et al. (2018). Here, an

open vehicle routing problem formulation is used to describe the crowdshipping routes for

the transportation of packages between relay points and customers. The authors solve this

routing problem together with determining the size of the service zones in which crowdship-

pers perform the last-mile delivery, the locations of the relay points, and the route of the

truck to supply the relay points with goods from a single depot. Furthermore, it is assumed

that crowdshippers need to be attracted from the ride-share market so that the availability

of shared mobility in the service zones is subject to the offered compensations. In Štiglic

et al. (2015), riders with different origins and destinations are grouped and jointly picked up

and dropped-off by drivers. To this end, the riders are assigned to so-called meeting point

arcs each of which connects a common pick-up point with a common drop-off point. The

riders are consequently expected to move from their origin to the pick-up point before their

ride and also to move from the drop-off point to their destination afterwards. The problem is

modeled as a weighted bipartite matching where the creation of rider combinations and the

selection of appropriate meeting points is a precomputed input. Wang et al. (2016) consider

a crowdshipping setting in which crowdshippers accept multiple delivery jobs irrespective of
7

the total route length that is required for their execution. As a consequence, the authors

solve an assignment problem instead of a routing problem. The underlying assumptions are

that the transportation distances are small due to nearby origin and destination locations

and that the crowdshippers do the routing themselves.

The integration of crowdshipping with item-sharing on a single platform was first in-

troduced by Behrend and Meisel (2018). Their results show that such a platform is more

profitable and also provides a higher level of service compared with a pure item-sharing

platform where consumers pick up items themselves without the support of crowdshippers.

To support the operational planning of such an integrated platform, the authors formulate

a three-dimensional assignment problem in which each crowdshipper can maximum be as-

signed one delivery job. Therefore, this formulation is only applicable to the special case

with a crowdshipper capacity of one item, which does not require a detour route planning.

It is, however, not applicable to the generalized problem addressed in this paper in which

crowdshippers can accept multiple deliveries and therefore need to be routed.

We conclude from this literature review that capacities of crowdshippers have not been

investigated in an integrated item-sharing and crowdshipping setting so far. However, we

know from the literature on pure crowdshipping and pure ride-sharing that the matching

rate and overall solution quality increases with such a problem generalization. When crowd-

shipping is integrated with item-sharing, an even better outcome is expected as supplies and

requests can be matched such that the resulting delivery jobs are more likely to be accepted

by crowdshippers. This paper therefore proposes a corresponding problem formulation and

a new solution method that is based on a label setting algorithm and a set packing problem

for solving the generalized item-sharing and crowdshipping problem where crowdshippers

have given capacities.

3. The capacitated item-sharing and crowdshipping problem

3.1. Problem definition

The considered problem addresses the operational planning of an integrated platform that

consolidates information from an item-sharing platform and a crowdshipping platform. To
8

this end, we assume that members of an item-sharing community announce their supplies of

items and their requests for items to the same platform to which members of a crowdshipping

community announce their planned trips to in order to receive delivery jobs. The platform

collects the incoming announcements over one period. It then (1.) assigns the supplied

items to compatible requests and (2.) coordinates the transfer of items between locations

through either consumers or crowdshippers before it responds the announcements at the

beginning of the next period. This requires that users of the platform need to wait for a

response but, eventually, improves their experience with it since more supplies, requests,

and trips can be matched. Consequently, the platform does not need to respond in real-time

but, of course, a fast, scalable, and high quality decision making is needed for operating

the platform. We further assume that the benefit of a need-based item access is closely

linked to the effort that is required to eventually use an item. Consumers are therefore

service-oriented. They clearly prefer having their requested items delivered to their homes

compared with sourcing them themselves from the supply location, despite a small extra

charge for the increased service. The exact timing of an item handover is organized by the

involved parties and implies a certain degree of flexibility with regard to time. This is even

more so as tight delivery schedules would put a burden on private drivers and may deter

them from participating in crowdshipping in the first place. The lack of urgency is essential

for item-sharing just as it is for all other concepts of the sharing economy.

For a formal description, let Sply denote the set of supplied items. Every item i P Sply

is associated with its current location. Let Req denote the set of requests for items. Every

request j P Req is associated with the location at which the corresponding consumer wants

the item to be delivered to. Despite the wide variety of different product types that are

usually exchanged between consumers on such platforms, we consider full compatibility

between supplies and requests here, meaning that every supply can satisfy every request. We

hereby address the most challenging but also the most profitable scenario as it provides the

operator of a platform maximum flexibility in assigning supplies to requests. Heterogeneity

of items could easily be incorporated into our models and algorithms but is omitted here for

reasons of simplicity. Let K denote the set of all trips announced by crowdshippers. Every
9

trip k P K is defined by its origin opkq, its destination dpkq, and the travel time tk to get

from opkq to dpkq on the fastest route. Note that we use the term ’crowdshipper k’ to refer to

the crowdshipper on trip k. Likewise, we use the term ’consumer j’ to refer to the consumer

behind request j. Contrasting Behrend and Meisel (2018), crowdshippers agree to execute

more than one delivery job in the setting considered here. We denote by ζ the capacity of

each single crowdshipper. It corresponds to the number of requests that can maximum be

served per trip. We assume that all crowdshippers offer the same capacity ζ.

We consider three transfer modes self-sourcing, home delivery, and neighborhood delivery

to transport supplied items from their current locations to their assigned request locations.

Self-sourcing means that a consumer j P Req picks up an item i P Sply from its current

location by himself/herself. A home delivery and a neighborhood delivery involve a crowd-

shipper k P K who detours from the direct route between opkq and dpkq to execute delivery

jobs. In a home delivery, crowdshipper k picks up an item at its supply location and delivers

it directly to the assigned request location j. In a neighborhood delivery, crowdshipper k

drops off previously picked-up items at his/her own destination dpkq, from where they are

self-sourced by the assigned consumers.

We demonstrate the three transfer modes using the exemplary problem setting in Fig-

ure 1a. The example is composed of three supplied items Sply “ ti1, i2, i3u (symbols ‘), four

requestsReq “ tj1, j2, j3, j4u (symbolsa), and two tripsK “ tk1, k2u (connected rectangles).

Figure 1b provides an example for self-sourcing. The platform assigns item i2 to request j1

and consumer j1 picks up the item himself/herself in a round trip (route j1-i2-j1). Figures 1c

and 1d provide examples for home deliveries. In Figure 1c, the platform assigns i2 to j1 and

it assigns crowdshipper k1 the task to execute the resulting delivery job. The crowdshipper

then travels along the route opk1q-i2-j1-dpk1q to pick up the item at i2, does a home delivery at

the location of request j1, and then goes to the destination dpk1q. Assuming a crowdshipping

capacity ζ “ 1 in this example solution, k1 can only execute one delivery job. In contrast, if

the crowdshipping capacity is ζ “ 2, the platform can assign k1 the task to execute two deliv-

ery jobs, see Figure 1d. The route opk1q-i1-j3-i2-j1-dpk1q depicted in Figure 1d expresses one

out of multiple routes that could be carried out for fulfilling the assigned tasks. For example,
10

(a) An exemplary problem setting (b) Self-sourcing

(c) Home delivery, ζ “ 1 (d) Home delivery, ζ “ 2

(e) Neighborhood delivery, ζ “ 1 (f) Neighborhood delivery, ζ “ 2

Figure 1: Illustration of the three transfer modes for different capacities pζ “ 1 and ζ “ 2q.

picking up both items first and then dropping them off at their assigned locations (route

opk1q-i1-i2-j3-j1-dpk1q) is conceivable too. Figures 1e and 1f provide examples for neighbor-

hood deliveries with a capacity of ζ “ 1 and ζ “ 2, respectively. Here, crowdshipper k1 picks

up the assigned items, either item i2 (Figure 1e) or items i1 and i2 (Figure 1f), and takes

them to destination dpk1q from where the respective consumers self-source them. Thus, the

crowdshipper and the consumers collaboratively coordinate the transport. Again, in the case

of ζ “ 2 alternative crowdshipping routes exist. In contrast to the depicted crowdshipping

route opk1q-i1-i2-dpk1q, item i2 could also be picked up before item i1. Note that a crowd-
11

shipper with ζ ą 1 can also execute a mix of home deliveries and neighborhood deliveries.

Executing delivery jobs asks for some flexibility from the community members to spend

extra time on traveling. For this, let tpq be the travel time of the direct route between two

locations p, q P Sply Y Req Y topkq | k P Ku Y tdpkq | k P Ku. The maximum time a

consumer j P Req accepts to spend on self-sourcing an item is expressed by the self-sourcing

flexibility f ssrc
j . Thus, a request j can be satisfied through self-sourcing an item i P Sply

only if the round trip travel time is less or equal to the consumer’s self-sourcing flexibility,

i.e. if tji ` tij ď f ssrc
j . Likewise, request j can only be satisfied through a neighborhood

delivery if picking up an item at dpkq is within this flexibility, i.e. if tj,dpkq ` tdpkq,j ď f ssrc
j .

The maximum additional travel time by which a crowdshipper k accepts to extend the travel

time tk of his/her intended trip is called detour flexibility fdtr
k . Detouring for picking up and

dropping off items is accepted as long as the overall travel time does not exceed tk`fdtr
k . The

self-sourcing flexibility of consumers and the detour flexibility of crowdshippers is submitted

to the platform along with their announcements.

The platform receives revenues for satisfying requests. Let rssrc denote the revenue if the

consumer behind a request needs to self-source an assigned item, be it a direct self-sourcing

from a supply location i P Sply or a collaborative self-sourcing from a location dpkq in a

neighborhood delivery. In contrast, a higher service is provided by a home delivery if the

requested item is delivered directly to the location where it is needed. We denote the corre-

sponding revenue for a successful home delivery by rhome with rhome ě rssrc. The platform’s

costs arise from compensating crowdshippers for their detouring. We denote by cdtr the

compensation rate per time unit a crowdshipper k travels in excess of tk. Note that these

parameters can be individualized in order to reflect specific preferences of consumers and/or

crowdshippers. For example, a price-sensitive consumer j1 who is not willing to pay extra

for a home delivery could be modeled by parameters rssrc
1 “ rhome

1 . On the contrary, a service

sensitive consumer j2 may not be interested in self-sourcing at all, i.e. rssrc
2 “ ´8. Such

individual revenue and cost parameters are, however, not considered in the following for

reasons of simplicity. Eventually, the revenue of a platform reflects the number of satisfied

consumers and the service provided. Conversely, the cost of a platform reflects the required
12

Table 1: Notation used to model the integrated item-sharing and crowdshipping problem.

Sets:
Sply Set of supplied items
Req Set of requests for items
K Set of trips of crowdshippers
Parameters:
opkq Origin of crowdshipper k
dpkq Destination of crowdshipper k
tpq Travel time on the direct route between locations p and q
ζ Capacity per trip
f ssrc
j Self-sourcing flexibility of consumer j
fdtr
k Detour flexibility of crowdshipper k
rssrc Revenue if self-sourcing is involved
rhome Revenue for a home delivery
cdtr Compensation rate for crowdshippers

detouring of crowdshippers. Since a high consumer satisfaction and an efficient transfer of

items are both goals to strive for, the platform’s objective is to maximize profit.

To summarize, the planning problem involves simultaneously assigning supplies to re-

quests to trips together with the routing for crowdshippers who execute multiple delivery

jobs. Within the problem, it is also decided on the transfer mode for each supply-request

assignment, respecting the detour flexibility of crowdshippers and the self-sourcing flexibility

of consumers. A summary of the notation used is provided in Table 1.

3.2. Model formulation

While Behrend and Meisel (2018) formulated the integrated item-sharing and crowdshipping

problem as an assignment problem (due to the crowdshipper capacity of one), we propose

here a new formulation that can handle the capacitated version of this problem (ζ ą 1) with

respect to the detour routing for crowdshippers. More precisely, we formulate the integrated

item-sharing and crowdshipping problem as a set packing problem, where a column defines

the set of items that are picked up, the set of requests that are satisfied, and the crowdshipper

that does the transportation of these items. We associate a weight with each column that

corresponds to the marginal profit of the platform if this column is selected as part of the

overall solution. The columns and the associated profits are generated in a preprocessing

phase. Eventually, we solve a weighted set packing problem to select a subset of columns
13

that maximizes a platform’s profit. The whole solution procedure that is founded on the set

packing problem formulation is denoted by [spp] in the following.

The columns that are generated in the preprocessing phase form the set C. Let the binary

parameter αic indicate whether supplied item i P Sply is assigned to a request in column

c P C. Accordingly, let binary parameter βjc indicate whether request j P Req is satisfied in

column c and let binary parameter γkc indicate whether or not crowdshipper k P K carries

out the transportation in column c. The parameters are defined as

αic “

$

’

&

’

%

1, if item i is assigned to any request in c

0, else
@i P Sply, c P C, (1)

βjc “

$

’

&

’

%

1, if request j is satisfied in c

0, else
@j P Req, c P C, (2)

γkc “

$

’

&

’

%

1, if crowdshipper k carries out the transportation in c

0, else
@k P K, c P C. (3)

We refer to Figure 1d for an example. Since i1 and i2 are assigned to a request whereas i3
is not, the corresponding α values of a column c are α1c “ 1, α2c “ 1, and α3c “ 0. Moreover,

requests j1 and j3 are satisfied (β1c “ β3c “ 1, β2c “ β4c “ 0) and the transportation is

carried out by crowdshipper k1 (γ1c “ 1, γ2c “ 0).

The profit associated with a column c is denoted pc. It is composed of the collected

revenue that reflects in which transfer modes the requests are satisfied minus the costs that

arise from compensating the crowdshipper for his/her detouring. Since both the transfer

modes and the crowdshipper’s route cannot be inferred from the parameters α, β, and γ,

profit pc contains extra information that is computed at the time the column is created.

Let the binary variable xc indicate whether column c P C is part of the overall solution

(xc “ 1) or not (xc “ 0). The weighted set packing problem then is

maxÑ P “
ÿ

cPC
pc ¨ xc (4)

subject to

14

ÿ

cPC
αic ¨ xc ď1 @i P Sply (5)

ÿ

cPC
βjc ¨ xc ď1 @j P Req (6)

ÿ

cPC
γkc ¨ xc ď1 @k P K (7)

xc P t0, 1u @c P C. (8)

Objective (4) expresses the profit maximization of the platform. Constraints (5), (6), and

(7) ensure that the same item, the same request, or the same crowdshipper cannot appear

in more than one selected column of the final solution, respectively. The domain of the

decision variables is defined in Constraints (8).

3.3. Generating columns for self-sourcing

Generating those columns in the set packing problem that respect self-sourcing opportu-

nities is straight forward as there is only one supply and one request per column and no

crowdshipper. Let A be the set of all supply-request matchings that are feasible through

self-sourcing, i.e.

A “ tpi, jq P Sply ˆReq | tji ` tij ď f ssrc
j u. (9)

Every element in A is a feasible self-sourcing option where the consumer behind request j

picks up the assigned item i himself/herself. We therefore create for every tuple pi, jq P A a

column c with αic “ 1, βjc “ 1, a profit pc “ rssrc, and all other parameters in that column

being set to zero, i.e.

αi1c “ 0 @i1 P Sply, i1 ‰ i, (10)

βj1c “ 0 @j1 P Req, j1 ‰ j, and (11)

γkc “ 0 @k P K. (12)

Generating the crowdshipping columns in the set packing problem is less straight for-

ward. On the one hand, multiple requests can be involved in the same crowdshipping trip.

This requires solving a detour routing problem to determine the compensation, respectively

profit pc, that results from this route subject to detour flexibility constraints. On the other

hand, crowdshippers can serve requests either through a home delivery or a neighborhood
15

delivery. The service is selected for each request individually and it affects a column’s profit

as both revenue and a crowdshipper’s compensation are subject to it. Note that it cannot

be determined in a preprocessing phase whether a home delivery or a neighborhood delivery

is more profitable for a particular request as it depends on the location of available sup-

plies and the crowdshipping route itself. Therefore, we discuss the procedure to generate

crowdshipping columns in the separate Section 4.

4. A label setting algorithm for routing crowdshippers

This section introduces a label setting algorithm that generates crowdshipping columns for

the set packing problem. The labels (respectively paths) are generated such that they respect

the limited detour flexibilities of crowdshippers. For a thorough description of shortest path

problems with resource constraints, see Irnich and Desaulniers (2005). In the following, we

first define a label and its data, explain how to extend it and how labels can be dominated,

and then provide an outline of the algorithm. Since a label is not equivalent to a column

in the set packing problem, a post-processing is required to convert labels into columns.

The description of the post-processing follows in a separate subsection. The combination of

label generation and post-processing is then demonstrated through an illustrative example.

Finally, we derive heuristic solution approaches from the exact method.

4.1. Generating labels

The label setting algorithm creates labels for each crowdshipper k P K, one-by-one. Let

l be a label of k. A label describes one possible crowdshipping route that starts at opkq

and ends at dpkq, and for each label, the following data is stored. The travel time of the

route is denoted τl. All locations that are visited along the route form the set Vl and the

route’s penultimate location, i.e. the location that is visited right before dpkq, is denoted

δl. Furthermore, ϑl describes the number of items that crowdshipper k carries to his/her

destination dpkq to satisfy requests through a neighborhood delivery. The used notation is

summarized in Table 2. For a label l that describes the route of crowdshipper k1 in Figure

1f, we have Vl “ topk1q, i1, i2, dpk1qu, δl “ i2, and ϑl “ 2.
16

Table 2: Notation for defining a label l.

τl Travel time of that route
Vl Set of locations visited on that route
δl Penultimate location on that route
ϑl Number of items the crowdshipper takes to its destination

Since the algorithm is an iterative procedure that creates new labels by extending existing

ones, we observe predecessor-successor relations between labels. For the description of the

procedure, let l´ denote the unique predecessor label of a label l and let l` denote one out of

many successor labels of label l. A new label l` is created from a label l by inserting exactly

one additional location after the current penultimate position into l’s route, i.e. right before

dpkq. Label extensions are valid if the detouring required to visit the newly inserted penul-

timate location does not violate crowdshipper k’s detour flexibility. If the newly inserted

location is a supply location, a further criterion for validity is whether crowdshipper k’s

capacity allows for another pick-up. Those supply locations that are eligible for extending

label l form the set Sopen
l . The set is defined by

Sopen
l “ ti P SplyzVl | τl ´ tδl,dpkq ` tδl,i ` ti,dpkq ď tk ` f

dtr
k u. (13)

The set of eligible request locations is denoted Ropen
l and defined by

Ropen
l “ tj P ReqzVl | τl ´ tδl,dpkq ` tδl,j ` tj,dpkq ď tk ` f

dtr
k u. (14)

Extending a label l by a supply location increases the value of ϑl by one and extending it

by a request location decreases the value by one. More formally,

ϑl` “

$

’

&

’

%

ϑl ` 1, if δl` P Sopen
l

ϑl ´ 1, if δl` P Ropen
l

. (15)

Referring to the example in Figure 2, label l´ (route opk1q ´ i1 ´ dpk1q, dashed line)

is the predecessor label of label l (route opk1q ´ i1 ´ i2 ´ dpk1q, solid line), from which l

was derived by inserting i2 after the penultimate position of l´. In contrast, label l` (route

opk1q´ i1´ i2´ j3´dpk1q, dotted line) is a successor label of label l as it extends l’s route by

the new penultimate location j3. On the route described by l´, the crowdshipper k1 picks up

one item without delivering it to a request location (ϑl´ “ 1). Since l extends l´ by another

17

Figure 2: Alternative crowdshipping routes of k1, represented by the labels l´, l, and l`.

supply location, two items are delivered to dpkq, i.e. ϑl “ 2. Finally, since label l` extends l

by the request location j3, the crowdshipper drops off an item there so that ϑl` “ 1 again.

The data of the extended label l` is computed through the following resource extension

functions. The total travel time of a route is propagated from one label to another by

τl` “ τl ´ tδl,dpkq ` tδl,δl`
` tδl` ,dpkq

. (16)

The set of visited locations Vl` is composed of the newly inserted penultimate location δl`

and the set of locations already visited in l, i.e.

Vl` “ δl` Y Vl . (17)

The penultimate location, the set of visited vertices, and a label’s travel time are used to

express a dominance relation between any two labels l and l1 by

l ą l1 ô δl “ δl1 ^ Vl “ Vl1 ^ τl ă τl1 . (18)

Referring to Equation (18), l dominates l1 if the route of l has the same penultimate location

and also includes the same locations as the route of l1 but its travel time τl is less than the

travel time τl1 . In other words, a crowdshipper visits the same locations on both routes and

both routes can be extended in the same way but the visiting sequence of l results in less

detouring. The platform therefore yields higher profits by choosing the crowdshipping route

l over l1 as the same revenue is obtained but less compensation is required.

4.2. Outline of the procedure

The label setting algorithm is outlined in Algorithm 1. It takes a problem instance defined by

the sets Sply, Req, andK as an input, computes a set of non-dominated labels L, and, finally,

18

Algorithm 1: The label setting algorithm for routing crowdshippers.

Input: A problem instance defined by Sply, Req, and K;
Output: A set Ccrowd of crowdshipping columns for the set packing problem;

1 LÐ tu ; // set of non-dominated labels generated by the procedure
2 for k P K do
3 initialize label l0 ; // initial label
4 τl0 “ tk;
5 Vl0 “ topkq, dpkqu;
6 δl0 “ opkq;
7 ϑl0 “ 0;
8 L` Ð tl0u;

9 while L` ‰ ∅ do
10 lÐ l P L`;
11 L` Ð L`ztlu ;
12 if El1 P L, l1 ą l then // extend l only if it is non-dominated
13 LÐ tlu Y pLztl1 P L | l1 ă luq; // add l and remove dominated l1

// update sets of eligible locations for a route extension
14 Sopen

l Ð ti P SplyzVl | τl ´ tδl,dpkq ` tδl,i ` ti,dpkq ď tk ` f
dtr
k u;

15 Ropen
l Ð tj P ReqzVl | τL ´ tδl,dpkq ` tδl,j ` tj,dpkq ď tk ` f

dtr
k u;

16 if |Vl X Sply| ă ζ then // add supply location
17 foreach i P Sopen

l do
18 initialize label l` ; // new label
19 τl` “ τl ´ tδl,dpkq ` tδl,i ` ti,dpkq;
20 Vl` Ð tiu Y Vl;
21 δl` “ i;
22 ϑl` “ ϑl ` 1;
23 L` Ð tl`u Y L`;

24 if ϑl ą 0 then // add request location
25 foreach j P Ropen

l do
26 initialize label l` ; // new label
27 τl` “ τl ´ tδl,dpkq ` tδl,j ` tj,dpkq;
28 Vl` Ð tju Y Vl;
29 δl` “ j;
30 ϑl` “ ϑl ´ 1;
31 L` Ð tl`u Y L`;

32 Ccrowd Ð post-processing (L);
33 return Ccrowd ;

19

derives a set of crowdshipping columns Ccrowd for the set packing problem. The algorithm

is an iterative procedure in which we create and extend labels for each crowdshipper, one-

by-one. Newly created labels temporarily form the set L` of successor labels until they

are extended themselves. Only non-dominated labels from set L` are taken up in set L.

Having created labels for all crowdshippers, the procedure terminates and a post-processing

translates the labels in L into columns in Ccrowd for the set packing problem. This step is

afterwards described in Subsection 4.3.

The initial label l0 of a crowdshipper k corresponds to the direct route from the origin

opkq to the destination dpkq. Its travel time is tk, the visited vertices are opkq and dpkq, its

penultimate location is opkq, and the crowdshipper carries no items (see lines 3–7). So far,

it is the only label in the temporary set L`, meaning that the label is yet to be extended,

but further are about to follow. Each of these labels then passes through the procedure

described below. It is first removed from the temporary set L` (line 11) and must pass the

dominance test (line 12). If the test is passed, there is no other label l1 P L that allows to

satisfy the same requests with the same supplies more efficiently. We therefore include l in

the set L and remove all those labels from set L that are in turn dominated by l (line 13).

If l does not pass the dominance test, we discard l and move on with the next label.

We next identify the supply and request locations that can be used for extending l, see

lines 14 and 15 of Algorithm 1. Referring to Equations (13) and (14), only those locations

are considered eligible for which a route extension does not exceed k’s detour flexibility.

The extension of l by an additional supply location is done in lines 17–24 of Algorithm 1.

Such an extension is done only if the crowdshipper’s capacity allows for another pick-up. If

this holds, we create one new label l` per reachable supply location. To this end, we prop-

agate the travel time, update the set of visited locations, define the penultimate location of

the new route, and increase the number of carried items by one. Afterwards, the new label

l` is included in the set L`. Extending l by a request location is done likewise (see lines

25–32) under the condition that the crowdshipper already carries at least one item. We then

create one new label l` per reachable request location. Since the crowdshipper performs a

home-delivery at the visited request location, he/she drops-off one item there and the num-
20

ber of carried items decreases by one. Eventually, the algorithm calls the post-processing

that converts labels in L into columns in Ccrowd as described in the next subsection.

4.3. Deriving columns from labels in a post-processing

A label is an incomplete partial solution since we only determine a route at this moment but

we do not decide which picked-up item is assigned to which request. More precisely, if the

crowdshipper visits a request location, we decrease the quantity of ϑl by one but it is not

decided which of the carried (homogeneous) items he/she drops off in particular. Moreover,

if a crowdshipper carries items to dpkq for a neighborhood delivery (ϑl ą 0), we cannot infer

from the label which requests these items finally fulfill. For example, it is not clear for label

l` in Figure 2 which of the picked-up items i1 and i2 is dropped off at j3 and which is taken

to dpk1q. It is also not decided which of the yet unsatisfied requests j1 and j2 is assigned

the item that is brought to dpk1q if both consumers can self-source an item from dpk1q. To

resolve this ambiguity, we derive (multiple) columns from a label l. We distinguish two

cases: ϑl “ 0, i.e. the crowdshipper home-delivers all items along the route, and ϑl ą 0, i.e.

the crowdshipper takes at least one item to dpkq for a neighborhood delivery.

In case of ϑl “ 0, all picked-up items are dropped-off along the route. We can infer

any supply-request matching from the routing since we consider full compatibility between

supplies and requests and we know from the visited locations which supplies are picked up

and which requests are satisfied. Therefore, for every label l P tL | ϑl “ 0u we create one

column c whose parameters are defined as follows:

αic “

$

’

&

’

%

1, if i P Vl

0, else
@i P Sply, (19)

βjc “

$

’

&

’

%

1, if j P Vl

0, else
@j P Req, (20)

γkc “

$

’

&

’

%

1, if opkq, dpkq P Vl

0, else
@k P K. (21)

21

An item i P Sply is assigned to a request and a request j P Req is satisfied in column c if

the associated locations are visited. A crowdshipper k P K carries out the transportation if

it is the same crowdshipper for which label l was created for.

In case of ϑl ą 0, a matching is required where we assign the available items at dpkq to

the requests that can be satisfied through a neighborhood delivery. To this end, let N open
l be

the set of yet unsatisfied requests whose consumers can self-source the items from dpkq, i.e

N open
l “ tj P ReqzVl | tj,dpkq ` tdpkq,j ď f ssrc

j u. (22)

According to Equation (22), we consider only those requests ReqzVl whose locations have

not been visited so far and whose consumers can reach the destination of a trip within their

self-sourcing flexibility. The matching is conducted by creating all possible subsets of size

ϑl from set N open
l . Each such subset indicates one option for distributing the ϑl items to

consumers in N open
l . Note that the cardinality of the subsets must be exactly ϑl so that the

resulting column is neither invalid (more requests are satisfied than items are available) nor

inefficient (less requests are satisfied than items are available). The post-processing enumer-

ates all these subsets to cover all assignment alternatives and then creates a column for the

set packing problem for each of them. The number of combinations is equal to the binomial

coefficient
ˆ

|N open
l |
ϑl

˙

“
|N open

l |!
p|N open

l |´ ϑlq! ¨ ϑl!
. (23)

More formally, let Ml denote the resulting set of subsets that are derived from a label l.

We then create a new column c for every subset m P Ml. Through this column, all those

requests are satisfied whose locations are visited along l’s route (home deliveries) or which

are assigned an item at dpkq and are therefore an element inm (neighborhood deliveries), i.e.

βjc “

$

’

&

’

%

1, if j P Vl Ym

0, else
@j P Req. (24)

The parameters αic and γic are identical for all columns derived from a same label and set

according to (19) and (21).

The platform’s profit from choosing column c can then be computed as

pc “ |Vl XReq| ¨ rhome
` ϑl ¨ r

ssrc
´ pτl ´ tkq ¨ c

dtr (25)

22

where all requests visited en route indicate successful home deliveries with revenue rhome,

all items carried to dpkq result in successful neighborhood deliveries with revenue rssrc, and

the crowdshipper’s compensation corresponds to his/her detour travel time.

Note that the separation of label generation by the label setting algorithm and column

generation by the post-processing improves the performance of the overall solution process

as the computationally challenging part of extending labels in the algorithm is reduced

without loss of optimality. This is because the algorithm can ignore the explicit supply-

request matching which means that it does not have to extend equally profitable labels that

involve the same supplies, the same requests, and the same crowdshipper. It further reduces

the number of created labels by postponing the decision on which requests to satisfy through

a neighborhood delivery. This is possible since for each column that is derived from a same

label, the same supplies are picked up (αic) and the same crowdshipper executes the job (γkc).

Even the profit is the same (pc) as the crowdshipper takes the same route under each such

partial solution (yielding the same revenue for home deliveries and the same compensation

for the crowdshipper) and the revenue from each of the successful neighborhood deliveries

is a constant rssrc. Only the requests that are satisfied (βjc) differ from one another, which

can be resolved through post-processing as described above.

4.4. An illustrative example

The procedure of the label setting algorithm and the corresponding post-processing of la-

bels into columns are illustrated in Figure 3, based on the exemplary problem instance in

Figure 1a. We focus in this example on crowdshipper k1. The crowdshipping routes for

crowdshipper k2 are created accordingly. Note that the locations i3 and j4 are ignored here

to keep the example brief. Also, it is assumed that there is sufficient detour flexibility to

visit all locations except for request j2 and that the self-sourcing flexibilities of the requests

j1 and j2 allow for neighborhood deliveries.

The algorithm starts with the initial label l0 (see Figure 3a). This label represents a route

that begins at opk1q and ends at dpk1q. It is therefore equivalent to the unmodified route in

Figure 1a. No items are delivered to dpk1q (i.e. ϑl0 “ 0) and no requests are satisfied.

23

Label propagation Search tree New
label

Route ϑl Satisfied
requests
per column(s)

a) l0 opk1q-dpk1q 0 ∅

b) l1 opk1q-i1-dpk1q 1 tj1u, tj2u
l2 opk1q-i2-dpk1q 1 tj1u, tj2u

c) l3 opk1q-i1-i2-dpk1q 2 tj1, j2u
l4 opk1q-i1-j1-dpk1q 0 tj1u
l5 opk1q-i1-j3-dpk1q 0 tj3u

d) l6 opk1q-i1-i2-j1-dpk1q 1 tj1, j2u
l7 opk1q-i1-i2-j3-dpk1q 1 tj1, j3u, tj2, j3u

Figure 3: An example for propagating labels.

The route of l0 can only be extended by inserting one of the two pick-up locations i1 and

i2 (Sopen
l0 “ ti1, i2u) and, therefore, two new labels l1 and l2 are created (see Figure 3b). This

results in a search tree, with label l0 as root. Label l1 corresponds to the route opk1q-i1-dpk1q

and label l2 corresponds to the route opk1q-i2-dpk1q. One item is picked up on both routes

and may be taken to dpk1q for a neighborhood delivery (ϑl1 “ ϑl2 “ 1).

Label l1 can be further extended by a supply location (Sopen
l1 “ ti2u) or a request location

(Ropenl1 “ tj1, j3u) leading to three new labels l3, l4, and l5 (see Figure 3c). If label l1 is

extended by a supply location, we obtain label l3, where crowdshipper k1 takes two items

to dpk1q for neighborhood deliveries (ϑl3 “ 2). If label l1 is extended by request location j1,

24

crowdshipper k1 performs a home delivery by dropping off the picked-up item i1 there, see

label l4. If label l1 is extended by doing a home delivery at j3, we obtain label l5. In both

cases, no items are taken to dpk1q (ϑl4 “ ϑl5 “ 0).

From further extending label l3, we obtain the labels l6 and l7 which are shown in

Figure 3d. These labels describe routes on which crowdshipper k1 performs a home delivery

and a neighborhood delivery together. On the route described by label l6, one of the picked-

up items is dropped off at request j1 and the other is self-sourced from dpk1q by consumer j2.

Label l7 describes a route on which one item is home-delivered to request j3 and the other is

taken to dpk1q to satisfy one out of the two yet unsatisfied requests j1 and j2. The algorithm

would furthermore extend the not yet processed labels l2, l4, and l5, but we omit this in our

example for reasons of simplicity.

The right-hand side of Figure 3 shows the results of the post-processing. We indicate

here which subset of requests is satisfied by the corresponding columns in the set packing

problem. This set is empty for label l0 since no requests are satisfied, see Figure 3a. Referring

to label l1 in Figure 3b and Equation (23), N open
l1 “ tj1, j2u and ϑl1 “ 1 so that we derive

two columns from l1: One in which j1 is satisfied through a neighborhood delivery using

item i1 and another in which j2 is satisfied through a neighborhood delivery using item i1.

The resulting subsets of satisfied requests per column are tj1u and tj2u, respectively. The

columns for the remaining labels are derived likewise.

4.5. Heuristic reductions

The [spp] can be turned into a heuristic in various ways by restricting the label setting al-

gorithm in generating labels. This results in fewer crowdshipping columns in the set packing

problem and allows for a faster decision making at the expense of a (potentially weaker)

solution quality. One of the novel features of our approach is to consider crowdshipper ca-

pacities ζ ą 1 that allow to assign multiple items to a crowdshipper. Clearly, the capacity

parameter ζ restricts the number of deliveries that is maximum assigned to a crowdshipper,

see line 16 in Algorithm 1. Therefore, by restricting ζ we can control the depth of the search

tree through fathoming branches of possible route extensions, which creates less labels and

25

yields a heuristic reduction of the search process. We refer to this implementation as [spp]ζ .

For example, the search tree of the label setting algorithm for a crowdshipper with [spp]ζ“1

can maximum reach two levels in depth. The first level corresponds to a pick-up location

and the second to a drop-off location. Referring to Figures 3c and 3d, the labels l4 and l5
would be created but the labels l3, l6 and l7 would not. In contrast, the search tree for a

crowdshipper with [spp]ζ“2 can reach up to four levels in depth if all picked-up items are

home-delivered. Labels l3, l6 and l7 would be created here, as well. Thus, if we solve a

setting with [spp]ζ“1 instead of [spp]ζ“2, we truncate the search tree and therefore speed

up the algorithm. We do this, however, at the expense of solution quality as less labels

are created, regardless of whether they contribute to a profit increase of the platform or

not. Note that the heuristic reduction with crowdshipper capacities of ζ “ 1 resembles the

problem setting investigated in Behrend and Meisel (2018).

Another heuristic solution approach is to limit the number of successor labels a single

label can be extended to. This resembles the idea of beam search, see Sabuncuoĝlu and

Bayiz (1999). To this end, we introduce the integer parameter η. It defines how many

reachable supply locations and how many reachable request locations are considered for a

label extension, which controls the width of the label setting algorithm’s search tree. This

variant of the [spp] is referred to as [spp]η. For example, consider a crowdshipper who

carries one item and whose route can be extended by three alternative locations, one supply

location and two request locations (see l3, l4, and l5 in Figure 3c). With [spp]η“1, only

two out of the three possible labels are created, one label for a route extension to a supply

location and one label for the route extension to one request location. If only a subset of

possible extensions is considered, a selection mechanism is required. We choose a greedy

approach here and select a route extension that results in minimum travel time. This effects

a minimum additional compensation for the crowdshipper. It also allows for higher revenues

as more locations can be visited within the given detour flexibility if less detouring is required

for a single route extension.

Another idea is to restrict the types of transfer modes to consider in a problem set-

ting. Recall that the post-processing after the label setting algorithm creates crowdshipping
26

columns to satisfy requests through home deliveries and neighborhood deliveries. In case

the problem setting only considers home deliveries, we simply set N open
l “ ∅ for all l P L.

We refer to this variant as [spp]home.

The mentioned modifications can be applied in combination. We therefore use the nota-

tions [spp]ζ,η and [spp]homeζ,η in the following to refer to the different variants of the [spp].

5. Numerical experiments

We first test our solution method against benchmark results to analyze its potentials. We

also study the capabilities of the integrated sharing platform in varied settings. In par-

ticular, we focus on different aspects of crowdshipper motivation. We assume intrinsically

motivated crowdshippers, that are merely compensated for their detouring, in Section 5.3

and discuss the extent by which a platform would benefit from higher capacities or longer

detours. In Section 5.4, we investigate by how much a platform’s profit increases from higher

crowdshipping capacity, which reveals a potential for further (financial) incentives to mo-

tivate crowdshippers to participate. In the last Section 5.5, we compare the profitabilities

of an integrated platform, a pure item-sharing platform, and cooperating item-sharing and

crowdshipping platforms that can draw on each others’ services.

5.1. Experimental setting

Our experiments are based on the problem setting used by Behrend and Meisel (2018).

It refers to a 30 ˆ 30 km area centered in the city center of Atlanta in the US state of

Georgia. The distribution of supply and request locations in the considered area is based on

the population density. Origin and destination locations of trips are distributed according

to information that is provided by the Atlanta Regional Commission (2019). Behrend and

Meisel (2018) created ten test instances with sets of 200 supplies, 200 requests, and 200 trips

each. Instances of smaller density are derived from this by only considering the first 10, 25,

50, 75, 100, and 150 supplies, requests in each set. Fastest routes between two locations

are generated by the Open Source Routing Machine (Geofabrik GmbH, 2018; Open Source

Routing Machine, 2019). Routes and travel times are consequently based on the real road
27

network of Atlanta. The average travel time of the unmodified trips is 15.2 min, with a

standard deviation of 5.5 min. We refer to this original problem set from Behrend and

Meisel (2018) as setting 1.

We further generate instances for a setting 2 that differs from setting 1 only in the

way in which supply and request locations of community members as well as origin and

destination locations of trips are distributed in the same area. In setting 2, these locations

are distributed uniformly. Travel times and routes are still taken from the Atlanta road

network. We include setting 2 for a baseline comparison in which we ignore agglomerations

of supplies and requests in certain residential areas of Atlanta. Furthermore, the distribution

of trips is independent from the survey of the Atlanta Regional Commission that included

high travel activity between busy places such as the city center and the Atlanta airport.

The trip duration in setting 2 is on average 23.5 min, with a standard deviation of 9.3 min.

The default values of the further parameters are adopted from Behrend and Meisel (2018)

and identical for settings 1 and 2. A self-sourcing flexibility of f ssrc
j “ 10 min is assumed for

every consumer and the crowdshippers’ relative detour flexibility is ∆ “ 20% of the direct

trip’s duration, i.e. a crowdshipper k accepts to extent his/her travel time by fdtr
k “ tk ¨ 0.2.

The revenue from a served consumer is rssrc “ $10 if the consumer needs to self-source the

item. It is rhome “ $15 if the item is delivered directly to the consumer. The compensation

rate for crowdshippers is set to cdtr “ $30 per hour.

We conduct our computations on a 3.4 GHz machine with four cores and 16 GB RAM.

The solution framework is implemented in Java 8. Gurobi 7.5 is used for solving the opti-

mization models. All test instances and solutions of the central experiments are available

at http://dx.doi.org/10.17632/d9zc7knxdz.1.

5.2. Performance comparison with previous solution approach

The first experiment is a performance comparison between the new [spp] approach presented

in this paper and those methods that were previously proposed by Behrend and Meisel

(2018). Since the methods of Behrend and Meisel (2018) can only handle a capacity of

ζ “ 1, we consider here the [spp]ζ“1 reduction in order to conduct a comparison of the

28

http://dx.doi.org/10.17632/d9zc7knxdz.1

different approaches. More precisely, Behrend and Meisel (2018) formulated two three-

dimensional assignment problems, namely [home] and [nbrhd], and they solve them to

optimality using Gurobi. [home] serves as a benchmark for the [spp] variant [spp]home
ζ“1

since self-sourcing and home deliveries are the only allowed transfer modes in these two

methods. In contrast, [nbrhd] includes self-sourcing, home delivery, and neighborhood

delivery and therefore represents the benchmark for [spp]ζ“1. The potentials of capacities

ζ ą 1, which can only be exploited using our new [spp] method, are analyzed in the later

experiments.

(a) Setting 1

Density [home] [nbrhd] [spp]homeζ“1 [spp]ζ“1

Profit [$] CPU [s] Profit [$] CPU [s] Profit [$] CPU [s] Profit [$] CPU [s]
10 15 0.01 15 0.01 15 0.01 15 0.01
25 74 0.02 80 0.05 74 0.01 80 0.01
50 220 0.23 233 0.54 220 0.01 233 0.01
75 402 0.90 419 1.97 402 0.01 419 0.01
100 611 2.08 633 4.69 611 0.01 633 0.02
150 1117 7.39 1138 24.61 1117 0.03 1138 0.06
200 1614 45.10 1649 455.83 1614 0.06 1649 0.13
∅ 579 7.96 595 69.67 579 0.02 595 0.04

(b) Setting 2

Density [home] [nbrhd] [spp]homeζ“1 [spp]ζ“1

Profit [$] CPU [s] Profit [$] CPU [s] Profit [$] CPU [s] Profit [$] CPU [s]
10 15 0.01 16 0.01 15 0.01 16 0.01
25 100 0.05 105 0.09 100 0.01 105 0.01
50 328 0.35 348 0.73 328 0.02 348 0.02
75 601 1.10 623 2.25 601 0.04 623 0.04
100 896 2.53 920 5.79 896 0.09 920 0.11
150 1531 13.12 1551 33.20 1531 0.47 1551 0.64
200 2207 30.68 2229 770.67 2207 1.68 2229 2.41
∅ 811 6.83 827 116.11 811 0.33 827 0.46

Table 3: Comparison of the new solution approaches with benchmarks for capacity ζ “ 1.

Tables 3a and 3b show the profits and solution times of all methods for settings 1 and 2,

respectively. The reported values are averages over the ten instances per density. The CPU

values reported for the [spp]-variants include the time needed for label setting (column gen-

eration) and solving the set packing problem. Looking at the profits, we see that [home]

and [spp]home
ζ“1 as well as [nbrhd] and [spp]ζ“1 deliver the same optimal profits. These

results are expected as all methods deliver optimal solutions under the considered combina-

29

tion of transfer modes and the fixed capacity of ζ “ 1. However, we see that the new [spp]

method solves all instances within negligible solution times whereas the assignment problem

formulations of Behrend and Meisel (2018) require substantial CPU times, especially for the

larger instances. For example, the most challenging problem in setting 1, with density 200

and all three transfer modes included, is solved in over 400 seconds with [nbrhd] whereas

[spp]ζ“1 requires just about one tenth of a second, see Table 3a. For setting 2, we observe

slightly higher runtimes for the [spp]. This increase can be attributed to a higher absolute

detour willingness of crowdshippers in setting 2 (4.7 min vs. 3.0 min on average) and more

evenly distributed trips, supplies, and requests, which requires to evaluate more alternative

combinations (longer runtimes) but also allows for a better coverage (higher profits). Still,

our new method clearly outperforms all competing methods with respect to runtime, even

for the most challenging setting.

The [spp] approach is also more efficient when it comes to including neighborhood

deliveries into the planning. The runtime increase due to a switch from [home] to [nbrhd]

is several minutes whereas it is less than a second if we solve [spp]ζ“1 instead of [spp]home
ζ“1 .

We conclude that the [spp] is a much faster solution approach compared with the methods

proposed in Behrend and Meisel (2018).

5.3. Analysis of crowdshippers’ capabilities and heuristic reductions

Crowdshipper’s capabilities are described by their capacity and their detour flexibility. With

high capabilities, crowdshippers accept multiple deliveries and long detours and are therefore

very useful in supporting item exchanges. We conduct an extensive experimental study in

the following to quantify the benefit that stems from higher capabilities.

The experiments are based on setting 2, instances with a moderate density of 100, and all

three transfer modes allowed. We consider capacities of up to ζ “ 3 for all crowdshippers and

we range the relative detour flexibility between ∆ “ 20% and ∆ “ 80%. Since both capacities

and detour flexibilities are increased compared to the previous experiment, the problems

considered here are more challenging for the algorithm and it may become necessary to

restrict the search tree to obtain a solution. Recall that ζ controls the depth of the search

30

Table 4: Profits and solution times for setting 2 and density 100.
Detour flexibility (∆)
and capacity (ζ)

η “ 100 (optimal) η “ 50 η “ 20 η “ 10 η “ 5 η “ 1
Profit CPU [s] Profit CPU [s] Profit CPU [s] Profit CPU [s] Profit CPU [s] Profit CPU [s]

∆ “ 20 % ζ “ 1 $920 0.13 0.00% 0.13 ´0.45% 0.12 ´3.22% 0.06 ´8.01% 0.03 ´30.16% 0.01
ζ “ 2 1.17% 0.65 1.17% 0.54 0.83% 0.51 ´1.74% 0.37 ´6.19% 0.13 ´29.06% 0.01
ζ “ 3 1.24% 1.01 1.24% 0.96 0.85% 0.87 ´1.69% 0.59 ´6.12% 0.17 ´29.06% 0.01

∆ “ 30 % ζ “ 1 11.92% 0.41 11.85% 0.35 10.39% 0.24 6.11% 0.18 ´0.76% 0.06 ´28.23% 0.01
ζ “ 2 15.13% 5.25 15.09% 5.22 13.84% 3.49 9.97% 1.39 3.36% 0.39 ´25.96% 0.01
ζ “ 3 15.20% 27.41 15.16% 26.07 13.90% 15.24 10.07% 4.69 3.53% 1.02 ´25.92% 0.01

∆ “ 40 % ζ “ 1 17.03% 0.76 16.90% 0.80 15.09% 0.45 10.52% 0.15 3.21% 0.07 ´26.80% 0.01
ζ “ 2 22.13% 32.70 22.04% 29.33 20.32% 15.24 16.15% 4.63 9.79% 0.78 ´23.53% 0.02
ζ “ 3 n/a n/a n/a n/a 20.64% 136.37 16.44% 26.71 10.17% 3.09 ´23.05% 0.03

∆ “ 60 % ζ “ 1 20.02% 2.00 19.94% 1.67 18.56% 0.67 14.61% 0.30 6.57% 0.11 ´25.42% 0.01
ζ “ 2 n/a n/a 26.77% 406.27 25.35% 85.20 22.34% 18.30 16.07% 2.39 ´20.07% 0.03
ζ “ 3 n/a n/a n/a n/a n/a n/a 23.11% 232.06 17.10% 19.43 ´19.21% 0.03

∆ “ 80 % ζ “ 1 20.49% 4.49 20.46% 2.98 19.21% 1.04 15.89% 0.35 8.03% 0.13 ´24.99% 0.02
ζ “ 2 n/a n/a n/a n/a 26.64% 209.90 24.10% 27.22 18.67% 4.13 ´18.34% 0.03
ζ “ 3 n/a n/a n/a n/a n/a n/a n/a n/a 20.90% 37.88 ´16.50% 0.05

tree as it restricts the length of the route. η controls the width of the search tree by

restricting route extensions to promising locations. For this purpose, η ranges between 100

and 1, where 100 refers to the unmodified width of the search tree and therefore corresponds

to the exact method that produces optimal solutions. The search tree thins out with smaller

values of η, meaning that an increasing amount of feasible matchings is ignored.

Table 4 shows the relative improvement of profits due to a variation of parameters and

the corresponding runtime in seconds, both averaged over 10 instances. The reference value

for the profits is the optimal profit of $920 for setting 2 with the limited capacity ζ “ 1 and

the default detour flexibility of ∆ “ 20%, see Table 3b. Positive percentage values in Table 4

indicate a relative improvement of profits whereas negative values indicate a loss of profit.

Entries ’n/a’ indicate out-of-memory situations due to a too large search tree in which case

the problem cannot be solved by the [spp] approach. The arrangement of values allows for

various ceteris paribus analyses. Row-wise comparisons reflect the change in solution quality

and runtime when crowdshippers offer higher capacities. This effect can be analyzed for

different levels of detour flexibility. Column-wise comparisons address the trade-off between

lower profits and runtime improvements due to an increasingly restricted search tree.

The results of Table 4 confirm the expectations that a platform is more profitable if

crowdshippers offer higher capacities. The magnitude of the benefit does, however, strongly

31

Table 5: Number of generated columns and generation time for setting 2 and density 100.
Detour flexibility (∆)
and capacity (ζ)

η “ 100 (optimal) η “ 50 η “ 20 η “ 10 η “ 5 η “ 1
Columns CPU [s] Columns CPU [s] Columns CPU [s] Columns CPU [s] Columns CPU [s] Columns CPU [s]

∆ “ 20 % ζ “ 1 3239 0.02 3227 0.02 2838 0.02 2025 0.01 1141 0.01 242 0.01
ζ “ 2 11451 0.09 11431 0.08 10216 0.06 6941 0.04 3322 0.02 314 0.01
ζ “ 3 17317 0.16 17297 0.15 15663 0.12 10478 0.07 4558 0.03 328 0.01

∆ “ 30 % ζ “ 1 9883 0.10 9574 0.07 6798 0.05 3742 0.03 1691 0.01 264 0.01
ζ “ 2 83149 0.57 81658 0.69 58217 0.39 28015 0.18 8907 0.05 384 0.01
ζ “ 3 221992 5.53 219608 5.39 157336 1.92 71027 0.58 18356 0.14 427 0.01

∆ “ 40 % ζ “ 1 21390 0.20 19773 0.16 11317 0.10 5234 0.04 2068 0.03 274 0.01
ζ “ 2 382701 3.97 360943 3.29 198274 2.06 71530 0.49 16837 0.11 434 0.01
ζ “ 3 n/a n/a n/a n/a 948624 21.54 306223 3.05 52863 0.41 507 0.01

∆ “ 60 % ζ “ 1 58130 0.70 47312 0.55 19450 0.22 7375 0.10 2536 0.04 283 0.01
ζ “ 2 n/a n/a 2733364 139.93 939439 8.68 224425 1.76 36989 0.36 517 0.02
ζ “ 3 n/a n/a n/a n/a n/a n/a 2179454 32.41 216502 2.05 666 0.01

∆ “ 80 % ζ “ 1 104933 1.88 76925 1.11 25588 0.39 8715 0.14 2777 0.08 287 0.01
ζ “ 2 n/a n/a n/a n/a 2412261 32.24 438604 4.70 57837 0.64 568 0.01
ζ “ 3 n/a n/a n/a n/a n/a n/a n/a n/a 532566 6.67 799 0.02

depend on the detour flexibility of crowdshippers. Referring to the optimal values (column

η “ 100), a higher capacity of ζ “ 2 results in a profit increase of only 1.17 percentage

points under the default detour flexibility of ∆ “ 20% but of 5.10 percentage points under

∆ “ 40% (17.03% for ζ “ 1 vs. 22.13% for ζ “ 2). Crowdshippers’ detour flexibility must

consequently be sufficiently large to exploit higher capacities.

When crowdshippers offer larger capacities and accept long detours, it results in higher

profits but it also significantly increases the planning complexity. With capacity ζ “ 1, we

obtain optimal solutions in a reasonable amount of time, irrespective of the detour flexibility

(see the CPU times in rows belonging to ’ζ “ 1’ under η “ 100 in Table 4). If we solve

the same instances with capacity ζ “ 2, the computation times grow much faster and we

even run out of memory for detour flexibilities of ∆ “ 60% and above (see n/a entries

under η “ 100 in Table 4). This is in line with Table 5 which shows the strong increase

of the number of generated columns and the corresponding CPU times of the label setting

with increasing capacity and detour flexibility. The platform consequently faces a trade-off

between what crowdshippers offer to do and what the decision making is capable to handle.

An alternative approach is to obtain heuristic solutions by restricting the width of the

algorithm’s search tree using parameter η. We observe from Table 4 that decreasing η speeds

up the solution process drastically at the cost of a decrease of solution quality. It also helps

to solve instances feasibly for which the exact solution approach ([spp] with η “ 100) runs

32

out of memory. For example, referring to a setting with a detour flexibility of ∆ “ 60%

and capacity ζ “ 2, we obtain a feasible solution with η “ 50 and below. Note that the

associated profit increase of 26.77% is larger than what the platform could optimally obtain

if less capacity (20.02%) or less detour flexibility (22.13%) is considered instead. Turning

the [spp] into a heuristic by decreasing η can consequently help to increase the achieved

solution quality. It should be noted, however, that the results are sensitive to changes of η,

especially if η is very small. Then, the solution quality may be less than what could have

been obtained by considering smaller capacities or less detour flexibility but higher values

of η. This becomes obvious in the column for η “ 1 of Table 4, where the profit obtained

from the heuristic is consistently lower than the reference value, despite higher capabilities.

We conclude from this analysis that a platform’s profitability benefits from high capaci-

ties and large detour flexibilities of crowdshippers. However, this results in a more complex

problem that may be very challenging to solve to optimality. In such cases, the [spp]

approach allows to heuristically obtain a solution by considering less capacity, less detour

flexibility, or fewer feasible matchings. The highest profit increase of 26.77% in Table 4 is

obtained with a combination of all three (detour flexibility of ∆ “ 60%, capacity of ζ “ 2,

and η “ 50). Thus, the option to turn the [spp] into a heuristic in three different ways

makes it versatile applicable and, therefore, powerful.

5.4. Incentivizing high crowdshipping capacity

The fulfillment of more than one delivery on a single trip requires additional effort from

the crowdshipper as more stops and coordination with consumers are required. However,

crowdshippers are not compensated for this effort in the compensation scheme that is con-

sidered here so that offering higher capacities only pays off if the fulfillment of additional

deliveries results in more detouring. In contrast, the platform benefits from higher capacities

in terms of additional profit and, therefore, may have an interest in further incentivizing

crowdshippers to make multiple deliveries.

Against this background, we analyze the marginal profit due to higher capacities as this

profit could be shared among the platform and the crowdshippers to foster win-win situa-

33

Table 6: Scope for incentivizing crowdshippers based on marginal profit per extra capacity.

Number of
crowdshippers (|K|)
and capacity (ζ)

Transfer modes Marginal profit per extra
capacity unit used [$]Self-

sourcings
Home
deliveries

Neighborhood
deliveries

ř

|K| “ 0 46.9 0.0 0.0 46.9 0.0
|K| “ 25 ζ “ 1 40.9 19.9 1.4 62.2 0.0

ζ “ 2 35.4 26.0 3.7 65.1 4.9
ζ “ 3 35.0 26.2 4.3 65.5 4.9

|K| “ 50 ζ “ 1 33.7 39.3 3.1 76.1 0.0
ζ “ 2 25.6 48.1 5.0 78.7 4.2
ζ “ 3 24.5 48.3 6.0 78.8 4.1

|K| “ 100 ζ “ 1 15.6 70.5 3.6 89.7 0.0
ζ “ 2 10.9 75.6 3.9 90.4 2.1
ζ “ 3 10.6 75.5 4.3 90.4 2.0

|K| “ 150 ζ “ 1 6.4 86.3 2.3 95.0 0.0
ζ “ 2 4.2 88.3 2.7 95.2 1.5
ζ “ 3 3.9 88.7 2.6 95.2 1.5

|K| “ 200 ζ “ 1 1.9 93.3 1.6 96.8 0.0
ζ “ 2 1.8 93.4 1.8 97.0 1.0
ζ “ 3 1.7 93.5 1.8 97.0 1.0

tions. We compute such marginal profits as follows. For capacity ζ “ 2, we subtract from

the profit obtained from [spp]ζ“2 the profit obtained from [spp]ζ“1 and divide this value

by the number of items that are delivered using the second capacity unit of a crowdshipper.

For example, if the profit is $100 under capacity ζ “ 1 and $145 under capacity ζ “ 2 where

9 crowdshippers deliver two items each (i.e. 9 items exploit the second capacity unit), the

marginal profit is p$145´$100q{9 “ $5 per extra capacity unit used. For capacity ζ “ 3, we

use the profit obtained from [spp]ζ“3 and count all those items that are carried using the

second or third capacity unit of a crowdshipper for computing the marginal profit rate.

Table 6 shows results for setting 2, density 100, and detour flexibility of 30% under varied

numbers of crowdshippers of |K| “ 0 to |K| “ 200 as well as varied capacities of ζ “ 1 to

ζ “ 3. The table shows the frequency of selected transfer modes in the profit maximizing

solutions and the marginal profit per extra capacity unit used.

We see that the platform’s scope for incentivizing multiple deliveries is especially high if

crowdshippers are scarce. For example, if there are only |K| “ 25 crowdshippers but each

of them offers capacity ζ “ 2, the platform could pay up to $4.9 to every crowdshipper who

executes two deliveries without being worse off than under ζ “ 1. Such a compensation is

equivalent to almost 10 minutes of detouring with the employed compensation scheme. The

34

considerable potential for incentivizing crowdshippers stems from new options to replace

self-sourcings with home deliveries, to conduct crowdshipping more efficiently, and to serve

so far unserved requests, see the split of transfer modes in Table 6. If crowdshippers are less

scarce, the marginal profit rate decreases as expected. However, it remains above zero even

under |K| “ 200 as it is still profitable to have at least some crowdshippers execute two or

more deliveries. We observe that the marginal profit rates for a given value |K| are almost

identical for ζ “ 2 and ζ “ 3 meaning that the platform could pay a crowdshipper almost

the same for the second and third capacity unit used.

The frequency of selected transfer modes in Table 6 suggests a shift from self-sourcings to

home deliveries as more crowdshippers become available. If no crowdshippers are available

at all (|K| “ 0), self-sourcing is the only option where less than half of all requests can

be satisfied. In contrast, in the scenario with 200 crowdshippers, 97% of requests can be

satisfied, where less than 2% are self-sourcings and 95% are served by crowdshippers. We see

that home deliveries are the predominant transfer mode for crowdshipping. The platform

prefers home deliveries because of high revenues and small compensations as a result of a

good fit between trips and delivery jobs. Neighborhood deliveries are the least profitable

mode and are only used to enable further matchings that cannot be established otherwise. A

capacity increase to ζ “ 2 is particularly useful when only few crowdshippers are available.

For instance, roughly 6 additional home deliveries and 2 additional neighborhood deliveries

are possible if 25 crowdshippers are willing to conduct two deliveries instead of just one. This

benefit fades out with more crowdshippers being available where additional crowdshipping

capacity is rarely required anymore. A capacity increase to ζ “ 3 still allows for further

item exchanges through crowdshipping. However, the overall margin is low since either the

limited detour flexibility makes it difficult to fulfill three deliveries per trip or the extra

capacity is not required if there are sufficiently many other crowdshippers.

5.5. Item-sharing and crowdshipping on separate platforms

Item-sharing and crowdshipping are so far dealt with in practice on separate platforms that

operate in complete isolation. An intermediate step between the status quo and our proposed

35

concept of a fully integrated platform is a partial interaction (cooperation) of item-sharing

and crowdshipping platforms. We analyze in the following the potential of two such in-

teracting platforms based on a conceivable cooperation scheme that could be implemented

in practice relatively easily. More precisely, we assume that an item-sharing platform first

conducts a supply-request matching and then announces the resulting delivery jobs on a

crowdshipping platform. The crowdshipping platform then searches for profitable home de-

livery opportunities by matching the announced delivery jobs to the available crowdshipping

trips. We assume that neighborhood deliveries are not supported here as this transfer mode

requires coordination of a consumer and a crowdshipper who, in this setting, belong to dif-

ferent platforms. Finally, the item-sharing platform decides on the transfer mode that is

eventually used per transaction based on revenues and compensation. Clearly, many alter-

native coordination schemes are conceivable but we restrict ourselves to this single scheme

for reasons of brevity.

More technically, we implement such an interaction in three steps. First, the item-sharing

platform matches supplies and requests only based on self-sourcing with the objective to

maximize profit. To do so, we generate self-sourcing columns as described in Subsection 3.3

and solve the set packing problem. Feasible matches directly translate into delivery jobs.

Furthermore, the item-sharing platform matches remaining supplies and requests such that

the transportation distance is minimized. These matches cannot be fulfilled in self-sourcing

but they are promising opportunities for crowdshipping with low compensation costs. This

problem is a simple two-dimensional assignment problem that is solved here using the exact

Kuhn-Munkres algorithm (Kuhn, 1955). Next, the crowdshipping platform attempts to find

for each of the delivery jobs an eligible crowdshipper, which is done here by creating columns

for all feasible trip-delivery combinations and solving the set packing problem. Eventually,

the item-sharing platform solves a further set packing problem to determine for each re-

quest whether to use self-sourcing or the home delivery option offered by the crowdshipping

platform.

Table 7 shows the profits and frequencies of used transfer modes in the considered plat-

form concepts at different density levels. These results are for setting 2, the default relative
36

Table 7: Comparison of different platform concepts.

Density Isolated item-sharing Interacting platforms Fully integrated platform
Profit [$] Self-

sourcings
Rel. profit
increase

Self-
sourcings

Home
deliveries

Rel. profit
increase

Self-
sourcings

Home
deliveries

Neighborh.
deliveries

10 10 1.0 40.00% 0.9 0.4 60.00% 0.8 0.5 0.2
25 49 4.9 46.94% 3.2 3.3 114.29% 2.6 5.8 0.7
50 169 16.9 38.46% 7.5 12.5 105.92% 8.6 18.2 3.8
75 302 30.2 35.10% 12.6 21.9 106.29% 14.3 33.9 6.1
100 469 46.9 36.46% 18.7 35.3 96.16% 21.9 50.7 6.9
150 846 84.6 33.81% 29.1 65.4 83.33% 31.7 89.4 10.6
200 1286 128.6 31.96% 39.4 100.6 73.33% 38.8 135.9 10.5

detour flexibility of 20%, and the default capacity ζ “ 1. The columns labeled ’Isolated

item-sharing’ refer to a pure item-sharing platform that does not rely on a crowdshipping

platform at all. This concept serves as a benchmark for the other platform concepts. The

columns ’Interacting platforms’ refer to a cooperation of an item-sharing and a crowdship-

ping platform using the procedure that was described before. The columns ’Fully integrated

platform’ refers to the concept that was investigated throughout this paper. The results

reported for this concept stem from our [spp]-method.

We observe that the isolated item-sharing platform can use self-sourcing only, which dras-

tically limits its profitability. If the item-sharing platform interacts with a crowdshipping

platform, the profit can be increased consistently by about 30% to 50%. The outsourcing

of delivery jobs to crowdshippers is very effective here. In almost all densities, the num-

ber of home deliveries is substantially higher than the number of remaining self-sourcings.

This increases profits as home deliveries have higher revenues than self-sourcings and be-

cause additional requests can be satisfied if the item-sharing platform cooperates with a

crowdshipping platform. For instance, the item-sharing platform satisfies 128.6 requests at

density 200 through self-sourcing. If it interacts with a crowdshipping platform, merely 39.4

of these requests are still self-sourcings whereas another 100.6 requests are home-delivered.

The overall number of satisfied requests increases from 128.6 to 140, meaning that 11.4 ad-

ditional requests are satisfied because of the cooperation of the platforms. However, if we

consider the performance of the fully integrated platform, we see even higher profits as this

platform takes more advantage of crowdshipping. Such a platform can obtain profits that

are about 60% to 106% higher than the profits of the isolated item-sharing platform, which

37

clearly outperforms the concept of interacting platforms too.

6. Conclusions

We have presented a new exact solution procedure for the capacitated item-sharing and

crowdshipping problem, where each crowdshipper can transport a given number of items.

The decisions in this problem address the supply-request matching that is part of the item-

sharing together with the transportation planning for the shared items. For the latter, we

consider self-sourcing of items through the requesting consumers as well as home-deliveries

and neighborhood-deliveries through crowdshippers. We have formulated a corresponding

set packing problem where columns represent feasible self-sourcings and crowdshipper routes.

While it is trivial to generate the self-sourcing columns, the columns for crowdshipper routes

demand a dedicated label setting procedure. We have described this procedure in detail,

including the label setting itself as well as a post-processing that derives columns from the

labels. We also described how to restrict the depth and width of the label setting search

process to obtain a scalable heuristic procedure.

We have conducted extensive experiments based on a problem setting for the region of

Atlanta, Georgia, that uses travel data surveyed by the Atlanta Regional Commission. A

second problem setting has been generated using artificial travel data. Our results show that

the profitability of the sharing platform can improve if crowdshippers offer to transport more

than one item on their trips. Anyhow, high detour flexibilities of crowdshippers are even

more important for the profitability than high capacities. This finding holds for all settings

analyzed in our experiments. Since higher capacities and higher detour flexibilities make

the label setting more difficult, the proposed heuristic mechanisms have to be applied if the

search space becomes too large. Our experiments show that the heuristic can be very well

adapted through the included control parameters. We have also shown that our new exact

method is significantly faster than other exact methods that have been proposed in previous

research for a simpler problem where each crowdshipper can transport at most one item.

Finally, a series of experiments shows that a fully integrated platform clearly outperforms a

less deep cooperation of independent item-sharing and crowdshipping platforms. Only then
38

can crowdshippers’ capabilities be used to the full extent and, for example, higher incentives

can be paid for conducting multiple delivery jobs on their trips. This provides practitioners

guidance for the design of such a platform. We therefore recommend to strive for a deepest

possible collaboration among item-sharing and crowdshipping platforms to achieve a highest

possible profitability.

Future research might transfer the problem into a multi-period version where items are

handed over from one request location to the next or where returns of items to the supply-

locations are captured too. Furthermore, the analysis of the environmental impact of such

sharing systems could also be handled.

Acknowledgments

We are grateful for the comments of two anonymous reviewers that helped us to considerably

improve the quality of the paper.

Bibliography

Agatz, N., Erera, A., Savelsbergh, M., Wang, X., 2012. Optimization for dynamic ride-sharing: A review.
European Journal of Operational Research 223, 295–303.

Amazon Flex, 2019. https://flex.amazon.com (Last accessed on 2019-03-04).
Archetti, C., Savelsbergh, M., Speranza, M., 2016. The vehicle routing problem with occasional drivers.

European Journal of Operational Research 254, 472–480.
Armstrong, M., Murlis, H., 2007. Reward Management: A Handbook of Remuneration Strategy and Prac-

tice. Kogan Page.
Arslan, A. M., Agatz, N., Kroon, L., Zuidwijk, R., 2019. Crowdsourced delivery – a dynamic pickup and

delivery problem with ad hoc drivers. Transportation Science 53, 222–235.
Atlanta Regional Commission, 2019. http://atlantaregional.org (As of 2017-09-27, last accessed on

2019-03-04).
Barnes, B. J., Mattsson, J., 2016. Understanding current and future issues in collaborative consumption: A

four-stage delphi study. Technological Forecasting and Social Change 104, 200–211.
Böcker, L., Meelen, T., 2017. Sharing for people, planet or profit? Analysing motivations for intended

sharing economy participation. Environmental Innovation and Societal Transitions 23, 28–39.
Behrend, M., Meisel, F., 2018. The integration of item-sharing and crowdshipping: Can collaborative con-

sumption be pushed by delivering through the crowd? Transportation Research Part B: Methodological
111, 227 – 243.

39

https://flex.amazon.com
http://atlantaregional.org

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery problems: A
classification scheme and survey. TOP 15, 1–31.

Berbeglia, G., Cordeau, J.-F., Laporte, G., 2010. Dynamic pickup and delivery problems. European Journal
of Operational Research 202, 8–15.

Botsman, R., Rogers, R., 2011. What’s Mine Is Yours. HarperBusiness, USA.
Chen, W., Mes, M., Schutten, M., Sep 2018. Multi-hop driver-parcel matching problem with time windows.

Flexible Services and Manufacturing Journal 30, 517–553.
Cleophas, C., Cottrill, C., Ehmke, J. F., Tierney, K., 2019. Collaborative urban transportation: Recent

advances in theory and practice. European Journal of Operational Research 273, 801–816.
Cordeau, J.-F., Laporte, G., 2007. The dial-a-ride problem: Models and algorithms. Annals of Operations

Research 153, 29–46.
Deliv, 2019. https://www.deliv.co (Last accessed on 2019-03-04).
Devari, A., Nikolaev, A. G., He, Q., 2017. Crowdsourcing the last mile delivery of online orders by ex-

ploiting the social networks of retail store customers. Transportation Research Part E: Logistics and
Transportation Review 105, 105–122.

Erento, 2019. http://www.erento.com (Last accessed on 2019-03-04).
Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E., Wang, X., Koenig, S., 2013. Ridesharing: The

state-of-the-art and future directions. Transportation Research Part B: Methodological 57, 28–46.
Geofabrik GmbH, 2018. Openstreetmap data extracts. http://download.geofabrik.de (As of 2017-02-16,

last accessed on 2019-03-04).
Herbawi, W., Weber, M., 2012. The ridematching problem with time windows in dynamic ridesharing: A

model and a genetic algorithm. In: IEEE Congress on Evolutionary Computation. IEEE, pp. 1–8.
Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., Tou, T. W., 2018. A survey of dial-a-ride

problems: Literature review and recent developments. Transportation Research Part B: Methodological
111, 395 – 421.

Irnich, S., Desaulniers, G., 2005. Shortest path problems with resource constraints. In: Desaulniers, G.,
Desrosiers, J., Solomon, M. M. (Eds.), Column Generation. Springer US, Boston, MA, pp. 33–65.

Jade Zabiore, 2019. https://jadezabiore.pl/en (Last accessed on 2019-03-04).
Kafle, N., Zou, B., Lin, J., 2017. Design and modeling of a crowdsource-enabled system for urban parcel

relay and delivery. Transportation Research Part B: Methodological 99, 62–82.
Kamar, E., Horvitz, E., 2009. Collaboration and shared plans in the open world: Studies of ridesharing.

In: Proceedings of the 21st International Jont Conference on Artifical Intelligence. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp. 187–194.

Kuhn, H. W., 1955. The hungarian method for the assignment problem. Naval Research Logistics Quarterly
2, 83–97.

Marcucci, E., Pira, M. L., Carrocci, C. S., Gatta, V., Pieralice, E., 2017. Connected shared mobility for
passengers and freight: Investigating the potential of crowdshipping in urban areas. In: 5th IEEE Inter-

40

https://www.deliv.co
http://www.erento.com
http://download.geofabrik.de
https://jadezabiore.pl/en

national Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE,
pp. 839–843.

Miller, J., Nie, Y. M., Stathopoulos, A., 2017. Crowdsourced urban package delivery: Modeling traveler
willingness to work as crowdshippers. Transportation Research Record: Journal of the Transportation
Research Board 2610, 67–75.

Nimber, 2019. https://www.nimber.com (Last accessed on 2019-03-04).
Open Source Routing Machine, 2019. http://project-osrm.org (As of 2017-02-17, last accessed on 2019-

03-04).
Paloheimo, H., Lettenmeier, M., Waris, H., 2015. Transport reduction by crowdsourced deliveries – a library

case in Finland. Journal of Cleaner Production 132, 240–251.
Parragh, S., Doerner, K., Hartl, R., 2008. A survey on pickup and delivery problems. Management Review

Quarterly 58, 81–117.
Postmates, 2019. https://postmates.com (Last accessed on 2019-03-04).
Punel, A., Ermagun, A., Stathopoulos, A., 2018. Studying determinants of crowd-shipping use. Travel

Behaviour and Society 12, 30–40.
Punel, A., Stathopoulos, A., 2017. Modeling the acceptability of crowdsourced goods deliveries: Role of

context and experience effects. Transportation Research Part E: Logistics and Transportation Review
105, 18–38.

Qi, W., Li, L., Liu, S., Shen, Z.-J. M., 2018. Shared mobility for last-mile delivery: Design, operational
prescriptions, and environmental impact. Manufacturing & Service Operations Management 20, 737–751.

Sabuncuoĝlu, I., Bayiz, M., 1999. Job shop scheduling with beam search. European Journal of Operational
Research 118, 390 – 412.

Štiglic, M., Agatz, N., Savelsbergh, M., Gradišar, M., 2015. The benefits of meeting points in ride-sharing
systems. Transportation Research Part B: Methodological 82, 36–53.

Wang, Y., Zhang, D., Liu, Q., Shen, F., Lee, L. H., 2016. Towards enhancing the last-mile delivery: An
effective crowd-tasking model with scalable solutions. Transportation Research Part E: Logistics and
Transportation Review 93, 279–293.

Zilok, 2019. http://us.zilok.com (Last accessed on 2019-03-04).

41

https://www.nimber.com
http://project-osrm.org
https://postmates.com
http://us.zilok.com

	Introduction
	Related literature
	The capacitated item-sharing and crowdshipping problem
	Problem definition
	Model formulation
	Generating columns for self-sourcing

	A label setting algorithm for routing crowdshippers
	Generating labels
	Outline of the procedure
	Deriving columns from labels in a post-processing
	An illustrative example
	Heuristic reductions

	Numerical experiments
	Experimental setting
	Performance comparison with previous solution approach
	Analysis of crowdshippers' capabilities and heuristic reductions
	Incentivizing high crowdshipping capacity
	Item-sharing and crowdshipping on separate platforms

	Conclusions

