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Abstract

The liner shipping network design problem is an important problem within liner shipping since a good
network can reduce costs and increase profits. Given sets of ports, vessel classes and demands between the
ports, the problem is to design a network of cyclic routes and assign a vessel class to each route so that all
demand can flow through the network at minimal cost. In this paper we analyze a new formulation of the
liner shipping network design problem based on a two layer network structure. The formulation takes into
account the cost of transshipment and allows for complex service structures. Valid inequalities and a novel
approach of inner representations of low dimensional polyhedra are proposed. A new set of small instances
with up to twelve ports has been developed and the formulation has been tested on these instances. Instances
with up to ten ports are solved to optimality, but largest instances are not, confirming that the liner shipping
network design problem is a very complex problem. The proposed improvements of the formulation are
also shown to have a positive effect.

Keywords: Liner shipping; network design; complex route structures

1. Introduction

Maritime shipping represents the most important source of transportation in international trade,
and its share of the total global trade in volume has been estimated to lie around 85% (Drewry,
2014). Basically, seaborne shipping has a monopoly on transporting large quantities of goods
between continents. Acquisitions of new vessels represent a huge capital investment, and thus it is
crucial for shipping companies to utilize their fleets in the best possible way. Most companies rely
on manual planning of fleet schedules, which usually works reasonably well due to experienced
planners. However, in the last decades there have been many mergers and acquisitions with the
result that fleets have become larger and the scheduling more complex. Thus, optimization based
methods might have a great potential for improving fleet routing and scheduling.

There are generally three modes of operations in shipping: industrial, tramp, and liner
(Lawrence, 1972). Industrial shipping is characterized by cargo owner also owning the vessels.
Tramp vessels are like taxis as they follow the available cargo and liners are operated somewhat
like bus lines with a published itinerary and schedule (Christiansen et al., 2004, 2012).

Liner shipping is characterized by cyclic routes repeatedly sailed during a scheduled horizon
and transshipment of cargo in hub ports. Liner vessels have huge capacities which makes the
transportation very efficient. Liner shipping companies publish their service routes, with fixed
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sequences of ports of call at a regular service frequency, to attract cargo. The combination of all
services constitute a liner shipping network.

The liner shipping industry has contributed to advances in the standard of living for most of
the world’s population in the last 35 years, as the gains from trade through advancing global
commerce were enabled by a reliable, efficient and relatively low-cost transportation provided by
the industry (Insight, 2009). According to the World Shipping Council (WSC) there are approxi-
mately 400 liner services in operation today, most providing weekly departures from all the ports
that each service calls.

An efficient liner shipping network is of great importance both economically and environmen-
tally. The process of designing the service routes of a liner shipping company is thus essential for
the competitiveness of the company and its ability to sustain its share of the global containerized
freight market. The problem of determining the structure of the services of the network is often re-
ferred to as the liner shipping network design problem (LSNDP). An introduction to liner shipping
is given by (Brouer et al., 2014a), where a benchmark suite for the LSNDP, called LINER-LIB-
2012, is also presented. Since the seminal paper by Agarwal and Ergun (2008), a rich literature
on different aspects of liner shipping network design has arisen. (Agarwal and Ergun, 2008) for-
mulate the problem over a space-time network and incorporate a heterogeneous fleet, a weekly
service frequency, multiple vessel routes, and cargo transshipment operations, but transshipment
costs are not considered in the network design stage. Multiple visits to the same port are allowed,
as long as they happen on different week days. Reinhardt and Pisinger (2011) argue that trans-
shipment of goods is frequently occurring in liner shipping and the associated cost should not be
ignored when designing the network. They present a flow-based model and propose a branch-and-
cut algorithm to solve it. The formulation allows butterfly routes where at most one port is visited
at most twice and are able to solve small instances to optimality. Later, Plum et al. (2014) pro-
pose a compact formulation where artificial service nodes are introduced that allows non-simple
cycles with any number of calls to one or more ports. The model is solved using commercial
software and tested on two feeder networks from LINER-LIB-2012, see Brouer et al. (2014a). In
Thun et al. (2017), the effect of allowing complex service structures when designing the network
is investigated. The analysis shows that complex service structures can create more cost-efficient
networks. Recently, Santini et al. (2018) study the special case of feeder network design without
transshipments, where one port serves as origin or destination for all demand. A path-flow formu-
lation and a branch-and-price algorithm is proposed and different versions of two instances from
LINER-LIB-2012 are solved.

Besides these exact algorithms, a number of heuristic approaches has been proposed. Alvarez
(2009) combine tabu search and column generation into a heuristic that also handles different
speed options. The algorithm cannot handle butterfly routes and transshipments in a satisfactory
way. (Brouer et al., 2014a) later extend the work of Alvarez (2009) to correctly handle trans-
shipments. The effect of combining fleet composition, vessel scheduling and cargo routing is
investigated by Mulder and Dekker (2014). A key element in the proposed matheuristic is the
aggregation of ports into cluster, where each cluster is served by a feeder network. Aggregation
is also used by Jepsen et al. (2011), where demand is aggregated and defined between regions
instead of between ports. A branch-and-price algorithm is proposed, but it did not perform well
in practice. Brouer et al. (2014b) develop a matheuristic where integer programming is used to
select a set of improving port insertions and removals on each service. A computational study on
LINER-LIB 2012 shows promising results. A broader discussion of recent research on strategic,
tactical, and operational problems within container shipping is found in Meng et al. (2014), while
Tran and Haasis (2015) and Brouer et al. (2017) are two recent survey article focusing on network
design in liner shipping and optimization in liner shipping respectively.

This paper presents a new formulation of the LSNDP that allows for most route structures that
are seen in today’s liner shipping networks. The main contributions of this paper are:

– A flow-based formulation of the liner shipping network design problem that takes into account



the cost of transshipment and allows for complex route structures.
– A novel technique to strengthen the formulation using inner representation of low-dimensional

polyhedra.

The rest of the paper is organized as follows. Section 2 contains the problem description to-
gether with the mathematical formulation and different ways to strengthen the formulation. Sec-
tion 3 provides a computational study, and Section 4 gives some concluding remarks.

2. Problem description and mathematical formulation

To describe the liner shipping network design problem (LSNDP), we define a set of ports, a set of
demands, a set of vessel classes and a distance matrix with all port to port distances. Each demand
is defined by an origin, a destination and a quantity and each vessel class is defined by the number
of vessels belonging to the class, the capacity and operational parameters such as speed interval
and fuel consumption. The LSNDP is then the problem of designing a set of services that allow
all demands to be served. A service is a cyclic route visiting a subset of ports. A demand can be
served either by one service visiting both the origin and destination of the demand and providing
enough capacity or the demand can be transshipped between services. This means that the demand
follows one service from the origin to an intermediate destination and then another service to the
destination or another intermediate destination. A demand can be split between different options.
Each service is operated by a single vessel class, and multiple vessels are deployed to the service
sailing one week apart to allow for a weekly frequency of port calls.

There is no standard mathematical formulation of the LSNDP since each liner service has
specific constraints based on strategic decisions (Reinhardt and Pisinger, 2011). This has given
rise to different formulations including various assumptions. To allow for complex route structures
and transshipments, we propose an arc-flow formulation on a two layer network. The formulation
allows for services visiting all ports twice except for two ports where the service can change
layers. This enables butterfly routes, see (Reinhardt and Pisinger, 2011), as well as pendulum
routes, see Tran and Haasis (2015). The formulation can create more complex route structures
than (Reinhardt and Pisinger, 2011) and generalizes the subproblem in Thun et al. (2017) to
handle multiple routes and the interaction between them. A drawback with the formulation is that
it bounds the number of times each port can be visited by a route, but this can be remedied by
introducing more layers. It is therefore slightly less flexible than the formulation in Plum et al.
(2014), but there the flexibility comes at the prize of a much more complex formulation. In practice
though, more than two visits to the same port are very rare.

Figure 1 shows different route structures that are allowed in the proposed arc-flow formulation.
To the left is a simple route where no ports are visited more than once. In the middle a butterfly
route is shown where the gray port is visited twice. The right network shows a complex route
structure, several ports are visited more than once.

Let P denote the number of ports. We define the problem on a graph G = (N ,A) where N
is the set of nodes and A is the set of arcs. The network has two layers and the nodes N =
{1, . . . , 2P} are divided into an upper layer NU = {1, . . . , P} and a lower layer NL = {P +
1, . . . , 2P}.

Each port p is represented by both node p and node P + p. The arc set is defined as A =
{(i, j)|i, j ∈ NU} ∪ {(i, j)|i, j ∈ NL} ∪ {(i, P + i)|i ∈ NU} ∪ {(P + i, i)|i ∈ NU}, i.e. it
is only possible to change layers by going from a node in one layer to the node representing the
same port in the other layer. Figure 2 shows an example of a route in a two layer network. To the
left is the route and a possible seqeunce of the arcs. The dark gray nodes in the right figure areNU

and the white nodes are NL. The port that is visited twice does not have a connection between
the layers, this makes it impossible to transship without paying the transshipment cost.

There is a set of demands D and each demand is denoted (o, d) where o is the origin port of the
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Fig. 1. Three different route structures. To the left is a simple route, in the middle a butterfly route where one port
(marked gray) is visited twice on the route. To the right is a complex route structure where several ports are visited

twice (marked gray). The number on each arc gives a possible sequence order.

demand and d is the destination port. The weekly demand from port o to port d is denoted Dod. If
a demand is transshipped at port p, there is a per unit transshipment cost CT

p associated with this.
The fleet available is heterogeneous but divided into a set of vessel classes K. The capacity and
number of vessels of class k is denoted Qk and Nk respectively. The port fee for a vessel of class
k visiting port p is CP

pk, and the sailing cost per week and fixed cost of using a vessel of class k is
denoted CS

k and CV
k respectively. Also, let Tijk denote the sailing time from port i to port j by a

vessel of class k. All routes
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Fig. 2. The two layer network. To the left is a butterfly route where one port (marked gray) is visited twice on the
route. To the right is the same route in the two layer network. Each port is duplicated and the network consists of two
layers (slightly shifted and marked dark gray and white respectively). Note that the route changes layers between arcs

3 and 4 (marked by a double line) and between arcs 6 and 7.

The model is an arc-flow formulation and thus it is going to construct the routes, i.e. it does not
have a set of predefined routes to choose from. Even though neither the number nor the compo-
sition of the routes in the optimal solution are known beforehand, the model still needs a way of
referring to a specific route. This is resolved by introducing the set of routes Rk for each vessel
class k and a binary variable ykr that is 1 if route r is sailed by a vessel of class k. We also in-
troduce the variable xijkr which is 1 if a vessel of class k sailing route r is using arc (i, j) and
0 otherwise. The continuous variable fijodkr represents the flow of the demand (o, d) transported
by a vessel of class k on arc (i, j) on route r and tiodkr is the quantity of the demand (o, d) that
is transshipped in port i onto a vessel of class k sailing route r. The demands and capacities are
all integers, and all flows are therefore naturally integer. The number of vessels of class k sailing
route r is denoted wkr. To only allow routes to travel between regions once, there is an upper
bound T on the duration of each route, which also specify the maximum number of vessels that
can be assigned to each route. To enhance readability, the constraints are grouped and each group



is presented separately. The arc-flow model of the problem may then be formulated as follows:

min
∑
k∈K

∑
r∈Rk

CV
k wkr +

∑
i∈N

∑
j∈N

∑
k∈K

∑
r∈Rk

CS
k Tijkxijkr+∑

i∈NU

∑
j∈NU

∑
k∈K

∑
r∈Rk

CP
ik(xijkr + xP+i,P+j,kr)+∑

i∈NU

∑
(o,d)∈D

∑
k∈K

∑
r∈Rk

CT
i (tiodkr + tP+i,odkr)

(1)

The objective function (1) minimizes total cost. The cost function of the LSNDP consists of
the fixed cost of using vessels, the sailing costs of the vessels assigned to routes, port fees and
transshipment costs.

Route constraints∑
i∈NU

∑
j∈NU

2(xijkr + xP+i,P+j,kr)

+
∑
i∈NU

(xi,P+i,kr + xP+i,ikr)− 6ykr ≥ 0 k ∈ K, r ∈ Rk (2)∑
i∈N

xijkr − ykr ≤ 0 j ∈ N , k ∈ K, r ∈ Rk (3)∑
i∈N

xijkr −
∑
i∈N

xjikr = 0 j ∈ N , k ∈ K, r ∈ Rk (4)

Constraints (2) force ykr to 0 if no arcs for route r are used. The formulation does not allow a
route to use both arc (i, j) and (j, i) and the shortest route only using arcs from the upper layer
therefore visits three ports, while the route from port i to port j and back again uses one arc
from the upper and lower layer respectively and two arcs between the layers. Therefore, the arc
weights differ between the different arcs. Each node can only be visited at most once, as stated in
constraints (3). The node balances of the routes are handled in constraints (4).

Flow constraints∑
i∈NU

∑
k∈K

∑
r∈Rk

(fijodkr + fP+i,P+j,odkr − fjiodkr − fP+j,P+i,odkr) = 0

j ∈ NU , (o, d) ∈ D, j 6= o, j 6= d, (5)∑
j∈NU

∑
k∈K

∑
r∈Rk

(fojodkr + fP+o,P+j,odkr) = Dod

(o, d) ∈ D, (6)∑
i∈NU

∑
k∈K

∑
r∈Rk

(fidodkr + fP+i,P+o,odkr) = Dod

(o, d) ∈ D, (7)∑
(o,d)∈D

fijodkr ≤ Qkxijkr

(i, j) ∈ A, k ∈ K, r ∈ Rk (8)

Constraints (5) are demand flow conservation constraints in the transition ports, i.e. the ports that



are neither origin or destination of the given demand. Constraints (6)-(7) state that all cargoes are
loaded and unloaded in their origin and destination ports, respectively. Constraints (8) ensure that
the vessel capacity is always a bound on the total flow of demand on an arc.

Transshipment constraints∑
j∈N

(fijodkr − fjiodkr) ≤ tiodkr i ∈ N , (o, d) ∈ D, i 6= o, i 6= d, k ∈ K, r ∈ Rk (9)

Constraints (9) set the value of the transshipment variable in the transition ports for demand (o, d)
on route r. The transshipment is thus associated with the route that picks up the cargo at the port.

Fleet constraints

wkr ≥
∑
i∈NU

∑
j∈NU

Tijk(xijkr + xP+i,P+j,kr) k ∈ K, r ∈ Rk (10)

∑
r∈Rk

wkr ≤ Nk k ∈ K (11)

Constraints (10) calculate the number of vessels of vessel class k that are needed on route r and
constraints (11) make sure that the number of vessels used does not exceed the number of available
vessels for each vessel class.

Subtours, i.e. two or more disjoint routes having the same route index, is a problem in the
formulation. To avoid subtours we introduce a variable sikr representing the sequence number of
node i in route r of vessel class k counted from an artificial depot and a variable dikr which is 1
if port i is the artificial depot of route r of vessel class k and 0 otherwise. By imposing that the
sequence numbering starts at the artificial depot and must increase along a route, we ensure that
there are no subtours. This resemble the Miller-Tucker-Zemlin (MTZ) constraints, (Miller et al.,
1960), for the traveling salesman problem, but with the strengthening proposed by Desrochers and
Laporte (1991) and a modification for the depot.

Subtour elimination constraints∑
i∈N

dikr = ykr k ∈ K, r ∈ Rk (12)

sikr − sjkr + (|N | − 1)xijkr

+(|N | − 3)xjikr ≤ |N | − 2 + |N |djkr i ∈ N , j ∈ N , k ∈ K, r ∈ Rk (13)

Constraints (12) force each route that is used to have exactly one artificial depot. The depot serves
as a reference point for the ordering of all the nodes in a route to ensure that they are connected.
Constraints (13) give each node in a route a number according to its order in the sequence starting
from the depot. This numbering is essential to avoid subtours, since it ensures that all nodes must
be connected to the depot through the variable sikr, and since there is only one depot in each route
it will not be possible with more than one route for each route index.

Variable restrictions

xijkr ∈ {0, 1} (i, j) ∈ A, k ∈ K, r ∈ Rk (14)
ykr ∈ {0, 1} k ∈ K, r ∈ Rk (15)
dikr ∈ {0, 1} i ∈ N , k ∈ K, r ∈ Rk (16)



wkr ∈ {0, 1, . . . , T} k ∈ K, r ∈ Rk (17)
fijodkr ≥ 0 (i, j) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (18)
tiodkr ≥ 0 i ∈ N , (o, d) ∈ D, k ∈ K, r ∈ Rk (19)
sikr ≥ 0 i ∈ N , k ∈ K, r ∈ Rk (20)

2.1. Calculating the number of routes for each vessel class

The maximum number of routes that can be used by each vessel class k, i.e. |Rk|, must be decided
a priori. This can be done by setting |Rk| to a large number for each k. Since the size of the
problem in terms of constraints and variables is highly correlated with |Rk| we have developed a
heuristic to calculate the maximum number of routes needed.

To estimate the upper bound on the number of routes we use one heuristic for hub-and-spoke
networks and one for the feeder networks. A feeder network typically has one port, called the hub,
where all demand either has its origin or destination and other ports in the region surrounding it,
see Figure 3. Hubs and their surrounding regions are then connected through interregional routes
in a hub-and-spoke network, see Figure 4.

Fig. 3. Feeder network with three routes, the
black node is the hub.

Fig. 4. Hub-and-spoke network with two regions, one hub in each
region, one interregional route (solid line), three feeder routes in the
left region (dashed lines) and two feeder routes in the right (dashed

lines).

In the feeder cases we use a heuristic inspired by the sweep heuristic for vehicle routing prob-
lems, see for example Laporte et al. (2000). The ports are sorted according to the angle between
the line from the port to the hub and the horizontal line. A route starts at the hub and then visits
the other ports in order until the total demand from the hub to the visited ports or the total demand
from the visited ports to the hub is higher than the capacity of the vessel class. The route then
returns to the hub and a new route starts. When all ports are included in a route, the number of
routes generated is divided by two and rounded up. This is then the maximum number of routes
for that vessel class. The heuristic is repeated for all vessel classes.

An assumption used by the heuristic for the hub-and-spoke cases is that only the largest vessel
class is used for interregional travels. Because of economies of scale, this is a valid assumption
in most cases. Given this, the number of routes for the largest vessel class is calculated as the
maximum sum of interregional demands divided by the vessel class capacity rounded up. For
the smaller vessel classes, the number of routes in each region is estimated and the sum is the
maximum number of routes for the vessel class. The estimate is based on transport work, i.e.
quantity on board times distance. First the intraregional transportation work is calculated, i.e.
demand between two ports in the same region times the distance. Then, the minimum transport
work needed if one port in the region is the hub and all interregional demand is handled through
that port is calculated. The transportation work a vessel can perform is given by its capacity
and speed, and the number of vessels needed to do all transportation work defines the maximum



number of routes for the vessel class within the region. The sum for the regions then gives the
maximum number of routes for the vessel class.

2.2. Strengthening the formulation

Symmetry breaking constraints
Symmetry is a common problem in many combinatorial problems. Symmetrical solutions are
different mathematical solutions that represent the same practical solutions. One way of dealing
with symmetry is to add constraints that eliminate symmetric solutions (Margot, 2010). These
constraints cut away feasible solutions but guarantee to keep at least one symmetric optimal fea-
sible solution.

The symmetry induced by the two layer network is reduced by the following constraints:∑
i∈NU

dikr = ykr k ∈ K, r ∈ Rk (21)∑
i∈NU

∑
j∈NU

xijkr −
∑
i∈NL

∑
j∈NL

xijkr ≥ 0 k ∈ K, r ∈ Rk (22)

dikr + xi,P+i,kr ≤ 1 i ∈ NU , k ∈ K, r ∈ Rk (23)

Constraints (21) state that the artificial depot must be a node in the upper layer and replace (12)
together with dikr = 0, i ∈ NL, k ∈ K, r ∈ Rk. The number of arcs in the upper layer must be at
least as high as the number of arcs in the lower layer, this is handled in (22). We force all routes
to use an arc in the upper layer when leaving the depot in constraints (23).

The sequence numbers sikr used in the subtour elimination constraints (12) and (13) cause
symmetry, and constraints (24) are therefore added to force the artificial depot of a route to have
route index 0.

(|N | − 1)(1− dikr) ≥ sikr i ∈ N , k ∈ K, r ∈ Rk (24)

The set of routes for each vessel class k,Rk, also induces symmetry. To reduce this symmetry,
constraints (25) and (26) are added to force the time duration and utilization of the first route to
be at least as high as the second and so forth.∑

(i,j)∈A

Tijk(xijkr − xijk,r−1) ≤ 0 k ∈ K, r ∈ Rk, r > 1 (25)

ykr − yk,r−1 ≤ 0 k ∈ K, r ∈ Rk, r > 1 (26)

The choice of depot is arbitrary given the subtour elimination constraints (12), (13), and (24). By
adding∑

i∈N
i · dikr ≤ |N | − (|N | − j)

∑
l∈N

xjlkr j ∈ N , k ∈ Kr ∈ Rk (27)

the visited node with the lowest index is the depot.

Valid inequalities
The transportation work inequalities stated in (28) with Fij being the distance between nodes
i and j force the transportation work done by the fleet to be at least as high as the minimum



transportation work needed to transport all demands directly from origin to destination.

∑
(i,j)∈A

∑
k∈K

∑
r∈Rk

QkFijxijkr ≥
∑

(o,d)∈D

DodFod (28)

Valid capacity inequalities including flows between subsets of ports are given by constraints
(29). The set of nodes is divided into two disjoint subsets N S and N S in such a way that the
nodes representing the same ports are never in different subsets. Corresponding sets of arcsAS =

{(i, j)|i ∈ N S , j ∈ N S} ∪ {(P + i, P + j)|i ∈ N S , j ∈ N S} and AS
= {(i, j)|(j, i) ∈ AS} are

created where AS are all arcs starting in N S and ending in N S while AS are all arcs starting in
N S and ending in N S . The flow from N S to N S is then used as a lower bound on the capacity
assigned to routes using arcs in AS . The right side of (29) is the demand with origin in N S

and destination in N S , the flow of the same demand leaving N S and the extra flow that leaves
the subset. This flow is the flow leaving N S with destination in N S and the flow leaving N S

with both origin and destination in N S . The set of demands fulfilling this is denoted DS , i.e.
DS = {(o, d) ∈ D|d ∈ N S ∨ (o ∈ N S ∧ d ∈ N S

)}

∑
(i,j)∈AS

∑
k∈K

∑
r∈Rk

Qkxijkr ≥
∑
o∈NS

∑
d∈NS

Dod+

∑
(i,j)∈AS

∑
o∈NS

∑
d∈NS

∑
k∈K

∑
r∈Rk

fijodkr +
∑

(i,j)∈AS

∑
(o,d)∈DS

∑
k∈K

∑
r∈Rk

fijodkr N S ⊂ N (29)

A version of the valid capacity inequalities without the flow variables are introduced and
strengthened using the l-Gomory procedure, see Wolsey (1998). These constraints are shown in
(30). By changing α, different valid inequalities can be generated.

∑
(i,j)∈AS

∑
k∈K

∑
r∈Rk

⌈
Qk

α

⌉
xijkr ≥


∑
o∈NS

∑
d∈NS

Dod

α

 N S ⊂ N (30)

Disaggregated capacity constraints
The connection between the route and flow variable expressed in (8) can be strengthened by
instead using the disaggregated capacity constraints in (31).

fijodkr ≤ min{Dod, Qk}xijkr (i, j) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (31)

Instead of substituting (8) with (31), disaggregated capacity constraints directly from the origin or
directly to the destination can be added to the formulation. This is stated in constraints (32) and
(35).

fojodkr ≤ min{Dod, Qk}xojkr (o, j) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (32)
fP+o,jodkr ≤ min{Dod, Qk}xP+o,jkr (P + o, j) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (33)

fidodkr ≤ min{Dod, Qk}xidkr (i, d) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (34)
fi,P+d,odkr ≤ min{Dod, Qk}xi,P+d,kr (i, P + d) ∈ A, (o, d) ∈ D, k ∈ K, r ∈ Rk (35)



Strengthening the subtour elimination constraints
The following constraints are added to put an upper bound on the sequence variables and to force
the sequence number to zero if a node is not visited

sikr ≤
∑

(l,j)∈A

xljkr i ∈ N , k ∈ K, r ∈ Rk (36)

sikr ≤ (|N | − 1)
∑
j∈N

xijkr i ∈ N , k ∈ K, r ∈ Rk (37)

Inner representation of low dimensional polyhedra
Instead of deriving valid inequalities from capacity constraints using the 1-Gomory procedure
as in (30), the convex hull of the feasible region of each capacity constraint can be described
using an inner representation. Using the setsN S ,N S andAS and introducing an integer variable
χS
k =

∑
(i,j)∈AS

∑
r∈Rk

xijkr denoting the number of times a vessel of class k leaves N S , valid
capacity inequalities can be written as∑

k∈K
Qkχ

S
k ≥

∑
o∈NS

∑
d∈NS

Dod N S ⊂ N (38)

If the number of vessel classes, |K|, is small, the set of feasible extreme points of the convex
hull of the sets defined by constraints (38) intersected with X = {χS

k ∈ Z≥, k ∈ K} can easily
be generated. For the given set associated withN S , denote its extreme points χ(p), p = 1, . . . ,ΛS

where ΛS is the number of such extreme points. Given this, the valid inequalities (30) associated
with N S can be replaced by the inner representation

χS
k =

ΛS∑
p=1

χ(p)λSp

ΛS∑
p=1

λSp ≥ 1 λSp ≥ 0, p = 1, . . . ,ΛS (39)

To illustrate this, consider the case where we have two vessel classes with Q1 = 16 and
Q2 = 9 respectively. For a given partition of the nodes into N S and N S , assume that∑

o∈NS

∑
d∈NS Dod = 26. Plugging this into (30) gives⌈

16

α

⌉
χS

1 +

⌈
9

α

⌉
χS

2 ≥
⌈

26

α

⌉
(40)

The total number of valid inequalities that can be generated for α ≥ 1 is 49, starting from
(16, 9, 26) and going to (1, 1, 1) decreasing one number one unit each time, but since 2 is a com-
mon divisor of 26 and 16, only 48 of these are generated. There are two copies, which means that
there are in total 46 different valid inequalities. Only two of these are non-dominated

5χS
1 + 3χS

2 ≥ 9 (41)

χS
1 + χS

2 ≥ 2 (42)

Figure 5 captures the difference between the 1-Gomory procedure and the inner representation.
The dashed line corresponds to the original capacity constraint (38), the solid lines are the two
non-dominated valid inequalities (41) and (42), and the dotted line marks the boundary of the
convex hull. The yellow area is cut away by (41) and (42), and the green area is further cut away
by the inner representation (39).

The convex hull can be represented by the constraints

3χS
1 + 2χS

2 ≥ 6, χS
1 ≥ 0, χS

2 ≥ 0 (43)



The set of extreme points in this case is ΛS = {(2, 0), (0, 3)} and we can thus replace (30) with

χS
1 = 2λS1 + 0λS2 χS

2 = 0λS1 + 3λS2

ΛS∑
p=1

λSp ≥ 1 λSp ≥ 0, p = 1, . . . ,ΛS (44)

The feasible solution χS
1 = 1, χS

2 = 2 corresponds to λS1 = 0.5 and λS2 = 2/3.

Fig. 5. The feasible region of a capacity set. The dashed line defines the convex hull of the capacity inequalities (38)
together with non-negativity constraints. The yellow area is cut away if the non-dominated valid inequalities (41) and
(42) (solid lines) generated by the 1-Gomory procedure are added. Using the inner representation (44), the green area

is also cut away. The dotted line marks the boundary of the convex hull when the inner representation is used. The gray
area is the convex hull of the integer set defined by (38)

3. Computational study

This section presents the results from the computational study performed to test the formulation
presented in the paper. The test instances used are presented in Section 3.1. The results from
preliminary testing where different settings are tested are given in Section 3.2. The best settings
are then used on a larger set of instances and the results from these tests are presented in Section
3.3. All models were implemented in Xpress ver 8.0.4 with default settings. The computational
study was performed on a computer with an Intel E5-2670v3 - 12 core, 2 × 2.3 GHz processor
with 64 GB of RAM.

3.1. Test instances

The instances used in this computational study are randomly created to reflect two network struc-
tures, feeder networks and hub-and-spoke networks. In the feeder network cases, one port, called
the hub, is centered and the other ports are generated in a circular sector around it, see Figure 6.
All demands either originates or are destined for the hub. The hub-and-spoke networks are gen-
erated by having two regions with ports, see Figure 7. Most of the demands are interregional but
some are also between ports in the same region. The number of ports in each region is the same.

To find appropriate distributions, information about demands, vessels, and costs are gathered
from the LINER-LIB-2012 benchmark suite, Brouer et al. (2014a). We have extracted data from
the Baltic and WorldLarge instances to get appropriate distributions for demand sizes, port fees,
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and transshipment costs. These distributions are then used to generate the instances used in this
study. We use two vessel classes in the feeder instances and three in the hub-and-spoke instances.
General data about the instances are presented in Table 1. The two numbers for average demand
size for the hub-and-spoke network reflect intra-regional and inter-regional demands respectively.

Table 1
General data about the instances

Characteristics Feeder Hub-and-spoke

Avg. demand size 250 250 / 1000
# vessel classes 2 3
Fixed vessel cost 35’ / 56’ 35’ / 56’ / 147’
Capacity 450 / 800 450 / 800 / 2400
Speed (nm/h) 12 / 14 12 / 14 / 16
Consumption (tons/day) 18.8 / 23.7 18.8 / 23.7 / 57.4
Avg. port fee 26’ / 27’ 26’ / 27’ / 69’
Avg. transshipment cost 130 130

Each generated instance is characterized by the structure of the network, the number of ports,
and the number of demands. The instances are named S P D, where S = F means a feeder
network and S = H means a hub-and-spoke network. P is the number of ports and D is the
number of demands. Note that in a feeder network, D = 2(P − 1) since all demands either
originates or are destined for the hub. This means that the instance H 6 10 is a hub-and-spoke
network with six ports and ten demands.

3.2. Preliminary testing

We have selected a subset of all instances for the preliminary testing. The goal is to analyze the
performance of the different strategies to strengthen the formulation in order to come up with
a preferable setting for the computational study. We have chosen two indicators to evaluate the
settings, the optimal value of the linear relaxation and the lower bound found after one hour of
running time. Studying the optimal value of the linear relaxation is useful when comparing dif-
ferent valid inequalities, but it is not useful when assessing the symmetry breaking constraints
since these usually do not affect the optimal value of the linear relaxation. The reason for study-
ing the lower bound after one hour is twofold. First, adding valid inequalities to strengthen the
formulation improves the root node bound but may also slow down the solution of each node in



the branch-and-bound tree. Analyzing the the lower bound after one hour can give insight into the
total effect of the inequalities. Second, the gap depends on both the upper and lower bounds and
the upper bound is in many cases found by a heuristic. Comparing the lower bounds is therefore
clearer.

In all instances tested we allow up to four routes for each vessel class and each route has a
maximum duration of four weeks. The total number of vessels of each class is not binding. The
settings tested are presented in Table 2. When testing the valid inequalities (29), (30) and (38), the
maximum size of N S is four, i.e. |N S | ≤ 4.

Table 2
An overview of the tested settings

Name Constraints included

Basic (2)-(11), (13)-(20), (21)-(24)
SB:I Basic + (25)-(26)
SB:II Basic + (27)
VI:I Basic + (28)
VI:II Basic + (29)
VI:III Basic + (30)
VI:IV Basic + (31)
VI:V Basic + (32)-(35)
VI:VI Basic + (36)-(37)
VI:VII Basic + (38)-(39)

The results from these preliminary tests are shown in Table 3. For each of the instances tested,
the relative gaps between the linear relaxation and lower bound after one hour and the best solution
found are presented. The average gaps are then presented in the last two columns. The relative gap
between the linear relaxation and the best solution is defined as LP = 100 · (zIP − zLP )/(zIP −
zBASIC
LP ), where zLP is the objective value of the linear relaxation, zBASIC

LP is the objective value
of linear relaxation of the original formulation, and zIP is the best objective value found for all
settings presented in Table 3. Likewise, the relative gap between the lower bound after one hour
and the best solution found is defined as LB = 100 · (zIP − zLB)/(zIP − zBASIC

LP ), where zLB
is the lower bound after one hour.

Table 3
Results from testing the initial settings

F 4 6 F 8 14 F 12 22 H 4 6 H 6 8 H 8 10 Avg
Setting LP LB LP LB LP LB LP LB LP LB LP LB LP LB

Basic 100 0 100 4 100 31 100 0 100 0 100 29 100 10
SB:I 100 0 100 0 100 30 100 0 100 0 100 29 100 10
SB:II 100 0 100 0 100 30 100 0 100 0 100 34 100 11
VI:I 100 0 100 0 100 31 100 0 100 0 100 27 100 10
VI:II 55 0 100 0 100 31 100 0 100 0 100 31 92 10
VI:III 28 0 30 3 41 32 76 0 63 0 72 50 52 14
VI:IV 53 0 26 18 28 28 66 0 57 0 54 50 48 16
VI:V 53 0 26 20 29 28 66 0 57 0 54 46 48 16
VI:VI 100 0 100 20 100 30 100 0 100 0 100 32 100 14
VI:VII 28 0 30 0 38 29 44 0 35 0 52 28 38 9

The symmetry breaking constraints do not affect the lower bound after one hour much, but for
the instances that are solved to optimality SB:I and SB:II only use 25% and 36% of the solution
time of Basic, respectively. It is clear that the inner representation of small polyhedra, VI:VII,
really strengthens the formulation and also produces good lower bounds after one hour. Based
on the results in Table 3, a large set of combinations of symmetry breaking constraints and valid
inequalities have also been tested. Table 4 shows the combinations that scores best with respect
to the criteria: the highest sum of objective values from the linear relaxation, the highest sum
of objective values from the lower bounds after one hour, the shortest total computational time,



and the fewest number of nodes for the instances solved to optimality. For the criteria highest
sum of objective values from the linear relaxation, several combinations gains the same sum. The
common denominator of these are that they include the disaggregated capacity constraints VI:IV
and the inner representation of low dimensional polyhedra VI:VII; the other valid inequalities did
not affect the sum, this is marked with ’-’.

Table 4
Best combinations according to the four criteria

Criteria SB:I SB:II VI:I VI:II VI:III VI:IV VI:V VI:VI VI:VII

LP - - - - - 1 - - 1
LB 1 0 0 0 1 0 1 0 1
Time 1 0 0 0 0 0 0 0 1
Nodes 1 0 0 0 0 0 0 0 1

Considering the results presented in Table 4 and the sum of the rankings for each criteria for the
different combinations, some conclusions can be drawn. SB:I and VI:VII are included in all the
best scoring and has a sum of rankings of 10 + 2 + 1 + 1 = 14, i.e. this combination has the 10th

highest sum of objective values from the linear relaxation, the second highest sum of objective
values from the lower bounds after one hour, the shortest total computational time, and the fewest
number of nodes for the instances solved to optimality. The second best combination has a sum
of rankings of 24, and the combination SB:I and VI:VII is therefore chosen.

3.3. Computational results

The best setting found in the preliminary testing have been used to solve all instances generated.
The computational time is set to ten hours. In all instances tested we allow up to four routes for
each vessel class and each route has a maximum duration of four weeks. The total number of
vessels of each class is not binding.

The results from these tests are presented in Table 5. The table shows the name of the instance,
the root node gap calculated as LP = 100 · (zIP − zLP )/zIP , the final gap calculated as LB =
100 · (zIP − zLB)/zIP and the computational time. Instances that are solved to proven optimality
are marked with a 0 in the LB column. Columns 5 and 6 show the number of routes used and the
number of transshipments performed. The number of routes used is presented with the smallest
vessel class to the left.

The smaller instances are all solved to proven optimality, but it is clear from Table 5 that the
larger instances are very hard to solve. The number of routes used is low compared with |Rk|. We
have tested the heuristic described in Section 2.1 to see how the formulation performs based on
the maximum number of routes allowed.

The results from using the heuristics together with the best settings are presented in Table 6.
The table shows the name of the instance, the root node gap, the final gap and the computational
time. The gaps are calculated as in Table 5. Columns 5 - 7 show the maximum number of routes
allowed for each vessel class calculated by the heuristic, the number of routes used, and the num-
ber of transshipments performed. The number of routes used and the maximum number of routes
allowed are presented with the smallest vessel class to the left. Instances that are solved to proven
optimality are marked with a 0 in the LB column.

Table 6 shows a clear improvement in the results. Two more instances are solved to proven
optimality and the total solution time of the instances that are solved to proven optimality has
decreased by 27%. It is also clear that the heuristic used to calculate the maximum number of
routes for each vessel class mostly works as intended. For all instances solved to proven optimality
without the use of the heuristic, the heuristic produces a maximum number of routes that is equal
to or higher than the number of routes in the optimal solution. Since the heuristic calculates the
maximum number of routes for each vessel class individually, it overestimates the number which



Table 5
Results on all instances using the best setting

Inst. LP LB Time #Routes #Ts

F 4 6 12.8 0 3 0/1 0
F 6 10 5.2 0 14 0/1 0
F 8 14 14.4 0 544 0/2 0
F 10 18 14.5 5.4 36000 1/3 0
F 12 22 23.3 17.4 36000 2/2 0
H 4 4 11.2 0 4 2/1/0 0
H 4 6 13.6 0 8 1/0/2 1
H 4 8 13.5 0 9 0/2/1 0
H 6 6 12.5 0 84 1/1/1 0
H 6 8 11.4 0 89 1/2/1 1
H 6 10 12.0 0 61 1/1/1 1
H 6 12 16.0 0 3340 1/1/2 1
H 6 14 20.8 0 2500 0/0/2 2
H 6 16 14.9 0 2923 0/2/2 1
H 8 8 21.3 0 13141 0/2/1 0
H 8 10 18.5 0 20874 1/2/1 0
H 8 12 23.0 8.7 36000 1/0/2 2
H 8 14 17.4 2.0 36000 0/1/2 3
H 8 16 23.2 13.8 36000 1/0/3 5
H 10 10 18.8 4.5 36000 0/1/2 3
H 10 12 30.0 19.8 36000 0/1/2 3
H 10 14 23.7 13.9 36000 0/2/2 5
H 10 16 26.9 19.1 36000 0/1/3 4

Table 6
Results on all instances using the best setting

Inst. LP LB Time Heur |Rk| #Routes #Ts

F 4 6 12.8 0 1 2/1 0/1 0
F 6 10 5.2 0 3 2/1 0/1 0
F 8 14 14.4 0 1006 3/2 0/2 0
F 10 18 14.4 4.6 36000 3/2 1/2 0
F 12 22 26.2 21.6 36000 4/2 2/2 0
H 4 4 11.2 0 1 2/2/1 2/1/0 0
H 4 6 13.6 0 3 2/2/2 1/0/2 1
H 4 8 13.5 0 4 2/2/2 0/2/1 0
H 6 6 12.5 0 43 2/2/2 1/1/1 0
H 6 8 11.4 0 62 3/2/2 1/2/1 1
H 6 10 12.0 0 22 2/2/2 1/1/1 1
H 6 12 16.0 0 2801 3/2/3 1/1/2 1
H 6 14 20.8 0 1237 4/2/2 0/0/2 2
H 6 16 14.9 0 2593 4/2/3 0/2/2 1
H 8 8 21.3 0 7817 3/2/2 0/2/1 0
H 8 10 18.5 0 16044 3/2/2 1/2/1 0
H 8 12 21.9 4.7 36000 3/2/3 1/0/2 2
H 8 14 17.4 0 33592 4/2/3 0/1/2 3
H 8 16 22.5 12.6 36000 4/3/3 1/0/3 2
H 10 10 18.8 0 21416 3/2/2 0/1/2 3
H 10 12 26.9 15.5 36000 4/3/3 1/0/2 1
H 10 14 25.7 17.1 36000 7/4/3 0/2/2 5
H 10 16 25.2 16.6 36000 4/2/3 0/0/3 4

is clearly seen on the larger instances.
All solutions for the feeder networks contain at least one butterfly route, where the hub is visited

twice on a route. For the hub-and-spoke networks, about one third of all solutions contain routes
that visit at least one port twice; all of these are found in solutions that are proven optimal.



Only considering the instances that are solved to proven optimality in Table 6, the model has
been run with a single layer to make a comparison between simple and more complex service
structures similar to the analysis in Thun et al. (2017). The results are presented in Table 7. The
table shows the name of the instance, the relative increase in optimal objective value calculated
as QL = 100 · z1

IP /z
2
IP where zlIP is the optimal objective value of the model with l layers and

the relative time used calculated as TR = 100 ·T 1/T 2 where T l is the solution time of the model
with l layers. In 10 out of 16 instances, the optimal objective value is better when using two layers.
The difference in optimal objective value ranges between 0 and 31%, with an average increase of
4%. Weighting the difference with the absolute objective values gives an average increase of 2%,
indicating that the saving from using two layers decreases on the larger instances tested. The
advantage with the single layer model is the solution time. On the instances that are solved to
proven optimality, the solution time is less than 3% of the time for the two layers, and three more
instances are solved to proven optimality.

Table 7
Comparing the single layer and two layer models

Inst. QL TR Inst. QL TR
F 4 6 113.0 22.7 H 6 10 104.5 42.9
F 6 10 131.2 77.4 H 6 12 100.8 1.5
F 8 14 112.9 9.7 H 6 14 100.6 1.6
H 4 4 100.9 83.3 H 6 16 100.0 4.9
H 4 6 101.8 43.9 H 8 8 100.0 5.1
H 4 8 100.0 41.8 H 8 10 100.3 0.9
H 6 6 100.0 22.6 H 8 14 101.9 1.3
H 6 8 102.1 19.1 H 10 10 100.0 2.8

The instance H 8 14 can serve as a case for a detailed analysis. Three routes are used in the
optimal solution to the two layer model, one route is assigned middle sized vessels and two are
assigned large vessels. The route for the middle sized vessels is 2 → 3 → 4 → 7 → 6 → 7 →
3 → 2. We see that ports 3 and 7 are visited twice and the route changes layers at port 6 and 2.
Both routes for the large vessels are simple cycles. There are in total 304 containers transshipped
at three different ports. The model has also been run with a single layer to make a comparison
between simple and more complex service structures. The optimal solution in the one layer case
needs four routes; a route assigned to the smallest vessels is also needed. The cost increases
by about 2% and there are 878 containers transshipped at four different ports. Even though the
difference in cost is not big, the savings by using more complex service structures can turn a red
bottom line black in an industry with small margins.

As a final comparison we converted the Baltic instance in the LINER-LIB-2012 benchmark
suite to an instance for this problem. The instance was run using the design speed of the vessels.
The Baltic instance is similar in size to the F 12 22, and the root node gap and the final gap
are 22.6% and 17.9% respectively. This corresponds well with the gaps for the F 12 22 instance
and indicates that the instances generated here are roughly as complex as the instances in the
LINER-LIB-2012 benchmark suite.

4. Conclusions

We have proposed a new formulation of the liner shipping network design problem based on a two
layer network structure. The formulation takes into account the cost of transshipment and allows
for complex service structures. A new set of small instances with up to twelve ports based on
information from the LINER-LIB-2012 benchmark suite has been developed and the formulation
has been tested on these instances. The computational study confirms that the liner shipping net-
work design problem is a very complex problem. The proposed improvements of the formulation
are shown to have a positive effect. Instances with up to 10 ports are solved to proven optimality.
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