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EFFICIENT GENERATION, RANKING AND UNRANKING

OF (k,m)-ARY TREES IN B-ORDER

M. AMANI AND A. NOWZARI-DALINI ∗

Abstract. In this paper, we present a new generation algorithm with
corresponding ranking and unranking algorithms for (k,m)-ary trees in
B-order. (k,m)-ary tree is introduced by Du and Liu. A (k,m)-ary tree
is a generalization of k-ary tree whose every node of even level of the
tree has degree k and odd level of the tree has degree 0 or m. Up to our
knowledge no generation, ranking or unranking algorithms are given in
the literature for this family of trees. We use Zaks’ encoding for repre-
senting (k,m)-ary trees, and to generate them in B-order. We also prove
that, to generate (k,m)-ary trees in B-order using this encoding, the
corresponding codewords should be generated in reverse-lexicographical
ordering. The presented generation algorithm has a constant average
time and O(n) time complexity in the worst case. Due to the given
encoding, both ranking and unranking algorithms are also presented
taking O(n) and O(n logn) time complexity, respectively.
Keywords: (k,m)-ary trees, Tree Generation, Ranking, Unranking.
MSC(2010): Primary: 05c05; Secondary: 68w32, 05c85.

1. Introduction

Exhaustive generation of certain combinatorial objects has always been of
great interest for computer scientists [16, 24, 26, 31]. In general, generation
of combinatorial structure problem is to construct all possible combinato-
rial structures of a particular kind in a certain order [14]. The problem of
generating trees, as one of the most important combinatorial objects, has
been thoroughly investigated in the literature and many papers have been
published which deal with the generation of these objects. For example,
we can mention the generation of binary trees in [2, 3, 28, 29], k-ary trees
in [4, 11, 13, 20, 21, 22, 31],trees with n nodes and m leaves in [17, 23],
neuronal trees in [5, 6, 18, 27], non-regular trees in [30], bounded ordered
trees in [7], Fibonacci-isomorphic trees in [8], and AVL trees in [15].

In most of tree generation algorithms, a tree is represented by an integer
or alphabet sequence called codeword, hence all possible sequences of this
representation are generated. This operation is called tree encoding, and
the reverse of it, construction of tree from its code, is called tree decoding.
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Basically, the uniqueness of encoding, the length of the encoding, and the
capability of decoding, are essential considerations in the design of the tree
encoding schema.

Any generation algorithm imposes an ordering on the set of trees. In
general, on any class of trees, we can define a variety of ordering for the set of
trees. When tree codewords are generated with a certain order, consequently
their corresponding trees are also generated in a specific order. Classical
orderings on trees are A-order and B-order [28, 27, 31], and on sequences
(codewords) are lexicographical [31], cool-lex [10], and Gray code [12, 13,
22, 19, 31].

Besides the generation algorithm for trees, ranking and unranking algo-
rithms are also important in the concept of tree generation [1, 22, 30, 31].
For a given class of trees, the position of a given tree T among all trees in
that class with respect to a given ordering is called rank; the ranking func-
tion determines the rank of T . An unranking function returns the tree T
having a specified rank. Thus, ranking and unranking can be considered as
inverse operations.

One of the best algorithms for generating k-ary trees in B-order is pre-
sented by Zaks [31]. He introduced z-sequences for representing k-ary trees
and presented a generation algorithm for generating these sequences. This
algorithm generates each z-sequence in constant average time O(1), and
O(n) time complexity in the worst case. He also presented two ranking
and unranking algorithms for z-sequences. Both of these algorithms have
time complexity O(kn) using a precomputed table. In this paper, we con-
sider (k,m)-ary trees. A (k,m)-ary tree is a generalization of k-ary tree.
In (k,m)-ary tree every node of even levels of the tree has degree k and
odd levels of the tree has degree 0 or m. A (k,m)-ary tree of order n has
exactly n nodes of degree m on odd levels. This class of trees is first intro-
duced by Du and Liu [9]. They proved that the total number of (k,m)-ary
trees of order n is equal to Ck,m(n) which is called (k,m)-Catalan number
of order n, then they studied basic combinatorial properties of (k,m)-ary
trees or (k,m)-Catalan number. But, up to our knowledge, no generation,
ranking or unranking algorithms have been proposed for this class of trees.
We use Zaks’ encoding [31] to encode (k,m)-ary trees, so we present a new
generation algorithm to generate them in B-order. The generating algo-
rithm has constant average time and O(n) time complexity in the worst
case. Corresponding ranking and unranking algorithms are also designed
with O(n) and O(n log n) time complexities, respectively. These algorithms
use a precomputed table where takes O(kn) time.

The remaining of this paper is organized as follows. Section 2 introduces
the definitions and notions that is used further. The Zaks’ encoding [31]
and our new generation generation algorithm for (k,m)-ary trees in B-order
are presented in Section 3. Based on the generation algorithm, the corre-
sponding ranking and unranking algorithms are given in Section 4. Finally,
in Section 5, concluding remarks and future works are discussed.
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2. Definitions

A tree is rooted if one of its internal nodes is distinguished from the others
as the root. Let T be a tree with root r. For each node v of T , we say that v
is on level j if the unique path from r to v has length j, and the root is said
to be on the level 0. A rooted tree where the children of each node have a
designated order is called ordered tree. An external node (or a leaf node) is a
node that has no children, and the other nodes are known as internal nodes.
A k-regular tree is a rooted tree in which each internal node has exactly k
children. To construct a k-regular tree from a rooted tree with maximum
degree k, all nodes are considered as internal nodes and to every node which
has q < k children, k − q special nodes are added as its children and these
nodes are considered as external nodes. A k-ary tree is an ordered k-regular
tree (every internal node has exactly k ordered children).

A (k,m)-ary tree is a generalization of k-ary tree which the degree of
every internal node is determined based on the level of the node. This class
of trees is first introduced by Du and Liu [9].

More precisely, (k,m)-ary tree of order n can be defined as follows [9].

Definition 2.1. For k,m ≥ 1 and n ≥ 0, a (k,m)-ary tree of order n is an
ordered tree such that:

• All nodes in even levels have degree k (root is on the level 0).
• All nodes in odd levels have degree m or 0, and there are exactly n

nodes of degree m in odd levels.

An example of a (2, 3)-ary tree of order 4 is shown in Figure 1. In this
figure, the shaded nodes are the internal nodes in even levels so they all
have degree 2 and the gray nodes are the internal nodes in odd levels with
degree 3.

The set of k-ary trees with n internal nodes is shown by Tk(n) and the
set of (k,m)-ary trees of order n is shown by Tk,m(n). It is well known that
the number of t-ary trees with n internal nodes is counted by generalized
Catalan number [25], i.e. for the set of k-ary trees we have:

|Tk(n)| = Ck(n) =
1

kn + 1

(
kn + 1

n

)
.

Du and Liu [9] defined (k,m)-Catalan number of order n shown by Ck,m(n),
and proved that:

Ck,m(n) =
1

mn + 1

(
(mn + 1)k

n

)
.

They also had shown that the total number of (k,m)-ary trees of order n is
equal to Ck,m(n), i.e. |Tk,m(n)| = Ck,m(n).

As mentioned, any generation algorithm imposes an ordering on the set
of generated trees; such an orderings is B-order [28, 27, 31] which is defined
as follows.
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Figure 1. A (2, 3)-ary tree of order 4 with 39 nodes.

Definition 2.2. Let T and T ′ be two trees and k = max{deg(T ), deg(T ′)},
we say that T is less than T ′ in B-order (T ≺B T ′), iff

• deg(T ) < deg(T ′), or
• deg(T ) = deg(T ′) and for some 1 ≤ i ≤ k, Tj =B T ′j for all j =

1, 2, . . . , i− 1, and Ti ≺B T ′i .

Where deg(T ) is defined as the degree of root of the tree T , and Ti and T ′i
show the ith subtree of T and T ′, respectively.

B-order is also referred to as local order, because in this ordering, we
compare the characters of the concurrent nodes (whether they are internal
nodes or leaves).

In most generation algorithms, trees are encoded as integer sequences and
these sequences are generated in specific order such that their corresponding
trees are in predefined order (e.g. B-order). One of the most well-known
ordering on sequences is lexicographical ordering [12, 22, 31], which is defined
as follows.

Definition 2.3. The two integer sequence v = (v1, v2, · · · , vn) and v′ =
(v′1, v

′
2, · · · , v′m) are in lexicographical order (denoted by v ≺lex v′ or v < v′),

if there exists i ∈ [1,min(n,m)] such that
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(1) vj = v′j for all j ∈ [1, i− 1],

(2) vi < v′i.

In this paper, our generation algorithm, which is given in next section,
generates the tree corresponding codewords in reverse-lexicographical order-
ing, meaning the reverse manner of lexicographical ordering, such that their
corresponding trees are in B-order.

3. Encoding and Generation algorithm

The main point in generating trees is to choose a suitable encoding to
represent them, and generate their corresponding codewords instead. In
this section, we use the Zaks’ encoding [31] on trees and propose a new
generation algorithm using this encoding to generate (k,m)-ary tree in B-
order.

In 1980, Zaks investigated the trees generation problem in some details,
and presented a nice method for encoding k-ary trees [31]. In this encoding,
each internal node of tree T is labeled with 1 and each external node with
0. By traversing the tree T in preorder and omitting the last zero, a 0-1
sequence (or bit sequence) of n 1’s and (k − 1)n 0’s is obtained. This 0-1
sequence is called x-sequence and is denoted by x(T ) = (xi)

kn
1 . But since

there are many zeros in the bit sequence representation of t-ary trees, it is
common that the position of the ones are often listed. Therefore, a sequence
z(T ) = (zi)

n
1 from x(T ) can be built, such that zi is the position of ith 1 in x.

This sequence is called z-sequence. He also proved that for given trees T and
T ′, and the corresponding sequences x(T ), x(T ′), z(T ), and z(T ′); T ≺B T ′

iff x(T ) ≺lex x(T ′) and z(T ′) ≺lex z(T ).
To encode (k,m)-ary trees, we use Zaks’ definition of x-sequence and

z-sequence with a slight change on which nodes would contribute in the
labeling. For this matter, the following lemma presents some basic properties
of Tk,m(n).

Lemma 3.1. Let T ∈ Tk,m(n), then:

(1) The total number of nodes in odd levels of T is equal to kmn + k.
(2) The total number of nodes in even levels of T is equal to nm + 1.
(3) The number of leaves of T is equal to n(km− 1) + k.
(4) The total number of nodes (size) of T is equal to (k + 1)(nm + 1).

Proof. The proof comes immediately by counting the number of nodes or
leaves below each internal node of odd levels and root as follows.

(1) The root of T which is in level 0, has k children which are in odd
level (level 1), and for each of n internal nodes in odd levels of T ,
there are exactly m children in even levels which any of them has k
children in odd levels. Therefore the total number of nodes in odd
levels is nmk + k.
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(2) Root lies in an even level and for each of n internal nodes in odd
levels of T , there are exactly m children in even levels, therefore the
total number of nodes in even levels is nm + 1.

(3) By definition, all leaves are in odd levels and the total number of
nodes in odd levels is kmn + k which n of them are internal nodes.
Therefore the total number of leaves is kmn+k−n = n(km−1)+k.

(4) By summing up the number of nodes in odd levels and even levels
we obtain the total number of nodes which is kmn + k + nm + 1 =
(k + 1)(nm + 1).

�

Regarding properties of (k,m)-ary trees, our new encoding is presented as
follows. For any (k,m)-ary tree T of order n, the internal nodes in even levels
(including root) are ignored, the internal nodes of odd levels are labeled by
1 and the external nodes by 0, then by a preorder traversal of T , we obtain
the x-sequence codeword x(T ). The z-sequence of T is z(T ) = (zi)

n
1 such

that zi is position of ith 1 in x(T ). Since the internal nodes of odd levels
of T which have been labeled by 1, represent the order of the tree, we call
them order-internal nodes.

For example, the x-sequence and z-sequence codewords of the (2, 3)-ary
of Figure 1 are x = (10000001001100000000000000) and z = (1, 8, 11, 12).

The x-sequence and z-sequence codewords corresponding to the first (k,m)-
ary tree of order n in B-order are

“0k−110km−11 . . . 10km = 0k−11(0km−11)n−10km”

and “k, k + mk, k + 2mk, . . . , k + nmk”, respectively. These sequences and
corresponding trees are shown in Figure 2. Also, the x-sequence and z-
sequence codewords corresponding to the last (k,m)-ary tree of order n in

B-order are “1n0n(km−1)+k” and “1, 2, 3, 4, . . . , n”, respectively.
An integer sequence is said to be feasible regarding a (k,m)-ary tree

encoding scheme, if it represents a valid (k,m)-ary tree. In the following
definition and theorems we study the necessary and sufficient condition for
x-sequences and z-sequences to be feasible.

A x-sequence x is said to have the (k,m)-dominating property if in any
prefix of x with p 0’s, the number of 1’s is at least:

d p− k

km− 1
e,

where die means the smallest integer greater than or equal to i. In other
words, if any prefix of the sequence contains q 1’s, then it contains at most
(km−1)q+k 0’s. A z-sequence is said to have the (k,m)-dominating property
if its corresponding x-sequence has (k,m)-dominating property.

Theorem 3.2. For the class of trees Tk,m(n), a x-sequence codeword x =

(xi)
j
1 is feasible iff:
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Figure 2. The first (k,m)-ary tree of order n in B-order
with corresponding x-sequences and z-sequences.

(1) j = kmn + k (j is the number of elements in x), and the number of
1’s is n and the number of 0’s is (km− 1)n + k.

(2) It has the (k,m)-dominating property.

Proof. If x is feasible, then:

(1) It corresponds to a (k,m)-ary tree, and by Lemma 3.1, it should
has kmn + k nodes in odd levels consist of n internal nodes and
(km − 1)n + k leaves, hence j = kmn + k and the number of 1’s is
n and the number of 0’s is (km− 1)n + k.

(2) By adding some probable missing 0’s to the end of any prefix of x,
we obtain an x-sequence corresponds to a (k,m)-ary tree, and by
Lemma 3.1, we know that in any (k,m)-ary tree with p external
nodes (= number of 0’s), the number of internal nodes of odd lev-

els (= number of 1’s) is p−k
km−1 , hence (k,m)-dominating property is

satisfied.

These two conditions are also sufficient, this can be proved by an induction
on the length of x. Let x be a sequence obtained in the above manner.
Initially, for a sequence of length k (a (k,m)-ary tree of order 0 which is just
a root with k leaves as its children), the proof is trivial. Assume that each
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sequence smaller than x obtained in the above manner encodes a unique
(k,m)-ary tree, for the sequence x, the first element represents the first
child of the root (which its subtree is also a (k,m)-ary tree) followed by the
corresponding subsequence of its subtree with above conditions, then the
next element represents the second child again followed by its corresponding
subsequence of its subtree and so on. By putting all these subsequences
together, it can be easily seen that the (k,m)-dominating condition still
holds.

�

Corollary 3.3. For a tree T ∈ Tk,m(n) and a z-sequence z = (zi)
n
1 (note

that the length of z is n), the following terms are equivalent:

• z is feasible.
• z has the (k,m)-dominating property.
• 0 < z1 < z2 < . . . < zn and zi ≤ (i− 1)km + k.

Proof. By the definition of x-sequence, z-sequence, Lemma 3.1 and Theo-
rem 3.2. �

The following theorem and corollary show the reverse relation between
(k,m)-ary trees in B-order and their corresponding codewords in lexico-
graphic ordering.

Theorem 3.4. Let T and T ′ be two (k,m)-ary trees of order n, and let x
and z be the x-sequences and z-sequences corresponding to T , and x′ and z′

be the x-sequences and z-sequences corresponding to T ′. The following terms
are equivalent:

(1) T ≺B T ′.
(2) x ≺lex x′.
(3) z �lex z′ (means z′ ≺lex z).

Proof. T ≺B T ′ iff there is an i such that all first i− 1 order-internal nodes
(internal nodes in odd levels) in preorder traversal of T and T ′ are the same
but the ith one in T is a leaf while in T ′ is an internal node. This is equivalent
to say that the first i − 1 elements of x and x′ are the same while the ith

element of x is less than the ith element of x′. So x ≺lex x′. On the other
hand by definition of x-sequence and z-sequence it is clear that if x ≺lex x′,
then z �lex z′. Therefore all the three terms are equivalent. �

Corollary 3.5. Given two (k,m)-ary trees T and T ′, T is less than T ′ in
B-order (T ≺B T ′), iff their x-sequences are in lexicographic ordering and
their z-sequences are in reverse-lexicographic ordering.

Proof. Immediately from the previous theorem. �

Based on the above theorem, the generation of z-sequences in reverse-
lexicographic ordering corresponds to the generation of (k,m)-ary trees in
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Function kmNextBorder(k, m, n: integer):boolean;
begin

kmNextBorder:=true; i := n;
while ( (Z[i− 1] = (Z[i]− 1)) & (i > 1) ) do i:=i− 1;
if ( (i = 1) & (Z[i] = 1) ) then

kmNextBorder := false
else begin

Z[i]:=Z[i]− 1;
for j := i + 1 to n do

Z[j]:= (j − 1)× k ×m + k;
end;

end;

Figure 3. Algorithm kmNextBorder for generating Tk,m(n)
trees in B-order.

B-order. The algorithm given in Figure 3 effectively generates reverse-
lexicographically all codewords of (k,m)-ary trees of order n. Thus (k,m)-
ary trees are generated in B-order.

This generation algorithm returns the successor of a given z-sequence
z = {z1, z2, · · · , zn} stored in array Z with length n. This global array Z
will be used both as input and then as output when it has been updated
to the successive z-sequence. In this algorithm, array Z is scanned from
right to left, and the first element which can be decreased is obtained and
decremented (if there is no such an element, then this codeword corresponds
to the last codeword and there is no successor), then all the elements in the
right side of the decremented element will be replaced with their maximum
possible value regarding Lemma 3.1 and Corollary 3.3.

Theorem 3.6. The generation algorithm presented in Algorithm 3 has a
worst case time complexity of O(n) and an average time complexity of O(1)
(n is the order of the given (k,m)-ary tree which is the number of nodes of
degree m in odd levels).

Proof. Worst case time complexity of this algorithm is O(n) because the
codeword is scanned just once. For computing the average time, first notice
that since k and m are fixed, for big values of n we can say k = O(1) and

m = O(1). Now, consider generation of all Ck,m(n) = 1
mn+1

(
(mn+1)k

n

)
trees

of Tk,m(n), and let Fi be the number of times that in the generation process
the array Z is scanned up to the position i, then Z[i] is decremented and
the right side of Z[i] is updated. Therefore the average cost will be equal
to: ∑n

i=1 FiO(n− i)

Ck,m(n)
,
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since Z should be scanned from the end to the ith position. On the other
hand, for the first tree of Tk,m(n) in B-order, Z[1] = k as it has been shown
in Figure 2.a. Therefore, F1 = k (because Z[1] = k for the first tree and then
decrements by one each time the algorithm reaches Z[1]). Let us show by
vZ[i] the node of the tree which has been labeled by Z[i]. During the process
of the generation of all Tk,m(n) trees, every time Z[1] is decremented, km
grandchildren of vZ[1] will be recreated in the tree which every one of them
has a potential to be vZ[2] in the successive generated trees, until Z[1] is
decremented again. This means F2 ≥ F1 × km. In the same manner for
every 2 ≤ i ≤ n, Fi ≥ Fi−1 × km.

This is equivalent to say that Fi increases at least exponentially, therefore:∑n
i=1 FiO(n− i)

Ck,m(n)
=

O(Fn)

Ck,m(n)
< O(

Ck,m(n)

Ck,m(n)
) = O(1).

Which means the average cost is constant. �

While in this section we have presented the feasible encoding of Tk,m(n)
with an efficient and simple algorithm to generate them in B-order, in the
next section we study the corresponding ranking and unranking algorithms.

4. Ranking and Unranking algorithms

As mentioned before, the rank of a tree T ∈ Tk,m(n) with respect to B-order
is the number of trees T ′ ∈ Tk,m(n) that come before it in B-order, and the
unranking algorithm determines the (k,m)-ary tree (i.e. the corresponding
z-sequence) having a particular rank. In this section, ranking and unranking
algorithms for (k,m)-ary trees in B-order are given.

To propose our ranking and unranking algorithms, we consider k and
m as fixed and constant values. For designing the ranking and unranking
algorithms, we need the following theorems and definitions.

Let us define extended-(k,m, d)-ary trees of oder n as (k,m)-ary trees
where the root has degree d instead of k (i.e. besides the degree of the root,

the rest of the tree has the same structure). Let Bk,m
n,d be the number of

extended-(k,m, d)-ary trees of order n. For the sake of simplicity, since we

fixed k and m, we denote Bk,m
n,d by Bn,d. Note that by definition, Bn,k =

Ck,m(n).

Theorem 4.1. Bn,d can be computed as follows.

Bn,d =


1 if n = 0

d if n = 1

Bn−1,km if d = 1

Bn,d−1 +
∑n−1

i=1 (Bi,km ×Bn−1−i,d−1) if n, d > 1

Proof. The initial cases for n = 0 are n = 1 are trivial. If d = 1, the root has
only one child which is an order-internal node. Therefore, if we remove all
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the nodes on the two levels bellow the root and connect directly the root to
the km nodes on the third level (i.e. remove the root’s unique child and its
m grandchildren and connecting the km great-grandchildren to the root),
we obtain an extended-(k,m, km)-ary tree of order n − 1 which is counted
by Bn−1,km.

If both n and d are greater than 1, then, let T be an extended-(k,m, d)-
ary tree of oder n, and let the first subtree of T be T1. The root of T1 is
either a leaf or an order-internal node.

• If the root of T1 is a leaf, then just remove it from the tree, what
remains is an extended-(k,m, d − 1)-ary tree of order n which is
counted by Bn,d−1.
• If the root of T1 is an order-internal node, let us assume that T1 has
i order-internal nodes (excluding T1’s root). Then, by removing in
T1 all the children of its root and connecting its root to all grandchil-
dren, T1 becomes an extended-(k,m, km)-ary tree of order i which
is counted by Bi,km. Moreover, by removing the entire T1, we are
left with another extended-(k,m, d − 1)-ary tree of order n − 1 − i
which is counted by Bn−1−i,d−1. Since i ∈ [1, n− 1], in this case the
number of possible trees is:

n−1∑
i=1

(Bi,km ×Bn−1−i,d−1).

Putting all together, in the case of both n and d are greater than 1, the total
number of possible trees is counted by

Bn,d−1 +
n−1∑
i=1

(Bi,km ×Bn−1−i,d−1).

Hence, the proof is complete. �

The following theorem also shows another recursive formula to compute
Bn,d.

Theorem 4.2. Bn,d can also be computed as follows.

Bn,d =


1 if n = 0

d if n = 1

Bn,d−1 + Bn−1,km+d−1 if n > 1

Proof. As in Theorem 4.1, the initial cases for n = 0 and n = 1 are trivial.
If n > 1, then, again let T be an extended-(k,m, d)-ary tree of oder n, and
let the first subtree of T be T1. T1 is either a leaf or an order-internal node.

• If the root of T1 is a leaf then just remove it from the tree, and
obtain an extended-(k,m, d−1)-ary tree of order n which is counted
by Bn,d−1.
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FunctionZseqBorderRank(k, m, n:integer):integer;
begin

NegR := 0;
for i := 1 to n do
begin

NegR := NegR + Bn+1−i,k+(i−1)km−Z[i];
end;
ZseqBorderRank:= Bn,k −NegR;

end;

Figure 4. Ranking algorithm for (k,m)-ary trees in B-order.

• If the root of T1 is an order-internal node, by removing in T1 all the
children of its root and connecting its root to all grandchildren, we
are left with an extended-(k,m, km + d− 1)-ary tree of order n− 1
which is counted by Bn−1,km+d−1.

Hence, the proof is complete. �

For the ranking and unranking algorithms we need to compute Bn,k in
advance. This can be computed either by Theorems 4.1 or 4.2; in either
cases these computations can be performed in time O(kn).

Now, with regard to the above theorems and definitions, in Figure 4 we
present the algorithm to compute the rank. In this algorithm, at first, we
compute the rank for any given codeword in lexicographic ordering, then we
subtract the result from the total number of trees in Tk,m(n) to get the rank
in reverse-lexicographic ordering. This will be equivalent to the rank of the
corresponding tree in B-order. In this algorithm, array Z is the codeword
(z-sequence), and NegR is a variable which stores the number of codewords
less than Z in lexicographic ordering.

For computing the rank of a tree T with a z-sequence stored in the array
Z, we have to enumerate trees generated before T . Since these trees, in
B-order, have codewords which are in reverse-lexicographic ordering, we
enumerate the codewords less than T ’s corresponding codeword and then
we subtract it from Ck,m(n) = Bn,k.

The number of codewords whose first element is greater than Z[1] is equal
to the number of all codewords starting with a value between Z[1] + 1 and
k. Let us assume that Z[1] corresponds to the ith subtree Ti of T (i is
not necessarily equal to 1). Obviously all the left siblings of Ti (if any)
are leaves (because Z[1] corresponds to the first order-internal node), and
they should remain leaves also in the successive codewords. So for counting
the successive codewords, if just ignore (remove) the node corresponding
to Z[1] and all its left siblings (which are leaves), then we are left with an
extended-(k,m, k − Z[1])-ary tree of order n which is counted by Bn,k−Z[1].

Now, the number of codewords with the first element equal to Z[1] and
the second element greater than Z[2] is equal to Bn−1,k+km−Z[2]; since by
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Procedure ZseqBOrderUnRank(k, m, n, R: integer);
Var NegR: integer;
begin

NegR := Bn,k + 1−NegR;
for i := 1 to n do
begin

j := { max d | Bn+1−i,d < R};
Z[i] := k + (i− 1)km− j;
NegR := NegR−Bn−i+1,j ;

end;
end;

Figure 5. Unranking algorithm for (k,m)-ary trees in B-
order. .

removing the node corresponding to Z[1] and its children and connecting all
its grandchildren to the root of the tree we obtain another tree with degree
of root k + km and in that tree, as in the previous case, all the left siblings
of the node corresponding to Z[2] are leaves which again by removing them
we are left with an extended-(k,m, k + km − Z[2])-ary tree of order n − 1
which is counted by Bn−1,k+km−Z[2]. Similarly the number of codewords

whose first (j − 1) elements are equal to Z[1], Z[2], . . . , Z[j − 1] and the jth

element is greater than Z[j] is equal to: Bn+1−j,k+(j−1)km−Z[j].
We now discuss the time complexity of this algorithm. Obviously the time

complexity of an algorithm for computing Bn,k is O(kn), but this algorithm
is executed just once before calling the ranking algorithm. So we can assume
Bn,k values are already available in a two dimensional array. Therefore with
this assumption, it is easy to see that the ranking algorithm given in Figure 4
is O(n) since the input codeword is scanned just once.

To design an unranking algorithm, for a given rank R, we have to find a
z-sequence and store it in an array Z corresponding to the given rank. In
this case, since for (k,m)-ary trees in B-order, the corresponding codewords
(z-sequences) are in reverse-lexicographic ordering, we convert this rank (R)
to the corresponding lexicographic ordering rank, and we denote it by NegR.
This can be easily done as follows:

NegR = Ck,m(n)−R + 1 = Bn,k + 1−R.

The main idea of the rest of the unranking algorithm is doing reversely
what we did in the ranking algorithm, applying the same arguments. Here,
in the unranking algorithm, for i from 1 to n, at any iteration we find
the maximum j > 0 such that Bn+1−i,j < R and by subtracting it from
k+(i−1)km we calculate Z[i], then we subtract Bn,j from the current rank
NegR to update the rank and continue to the next element until the whole
codeword is built. This unranking algorithm is given with more details in
Figure 5. In this algorithm R is the input and NegR is the corresponding
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rank in lexicographic ordering. The generated z-sequence is stored in the
array Z.

As mentioned before, it is assumed that the array Bn,k is computed in
advance. Since any iteration of the main loop of unranking algorithm can
be performed in time O(log n) by using a simple binary search, the overall
cost of the unranking algorithm is O(n log n).

5. Conclusion

(k,m)-ary trees is first introduced by Du and Liu [9]. They proved that
the total number of (k,m)-ary trees of order n is equal to Ck,m(n) which
is called (k,m)-Catalan number of order n. In this work, we used an en-
coding similar to Zaks’ encoding [31] for representing the class of (k,m)-ary
trees of order n (denoted as Tk,m(n)). This encoding is used for generat-
ing (k,m)-ary trees in B-order in which the corresponding codewords are
generated in reverse-lexicographic ordering (reverse manner of lexicographic
ordering). Generating algorithm has constant average time and O(n) time
complexity in the worst case. Also new ranking and unranking algorithms
were presented with time complexities of O(n) and O(n log n), receptively.
We emphasize that in Tk,m(n) trees, n is the number of none-zero degree
nodes in odd levels which is much more less than the total number of nodes
in tree ((k + 1)(nm + 1)). For the future work, designing the generation,
ranking and unranking algorithms for this class of trees in A-order and also
in Minimal change ordering are suggested.
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