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Abstract 43 

Movement-related theta oscillations in rodent hippocampus coordinate ‘forward sweeps’ of 44 

location-specific neural activity that could be used to evaluate spatial trajectories online. This 45 

raises the possibility that increases in human hippocampal theta power accompany the 46 

evaluation of upcoming spatial choices. To test this hypothesis, we measured neural 47 

oscillations during a spatial planning task that closely resembles a perceptual decision-making 48 

paradigm. In this task, participants searched visually for the shortest path between a start and 49 

goal location in novel mazes that contained multiple choice points, and were subsequently 50 

asked to make a spatial decision at one of those choice points. We observed ~4-8 Hz 51 

hippocampal/medial temporal lobe theta power increases specific to sequential planning that 52 

were negatively correlated with subsequent decision speed, where decision speed was 53 

inversely correlated with choice accuracy. These results implicate the hippocampal theta 54 

rhythm in decision tree search during planning in novel environments. 55 

 56 
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Introduction 57 

Recent evidence has linked the hippocampus with planning in rodents (Miller et al., 58 

2017) and humans (Kaplan et al., 2017a). Moreover, changes in hippocampal theta power 59 

(approx. 4-8Hz in humans) have been observed during memory-guided decision-making in 60 

well-learned environments in both species (Guitart-Masip et al., 2013; Schmidt et al., 2013; 61 

Belchior et al., 2014). However, it remains unclear whether changes in hippocampal theta 62 

power are associated with planning in novel environments. Notably, rodent type I 63 

hippocampal theta oscillations generated by exploratory movement (Vanderwolf, 1969) are 64 

linked to sweeps of place cell activity produced by hippocampal theta phase precession 65 

(O’Keefe & Recce, 1993). It has been hypothesized that these ‘theta sweeps’ could serve as a 66 

mechanism to plan trajectories online (Johnson & Redish, 2007). This raises the possibility 67 

that similar increases in human hippocampal theta power are induced by the planning of 68 

forward trajectories.  69 

To investigate the role of the hippocampal theta rhythm in online spatial planning 70 

(i.e., the search of decision trees), we created a spatial task that required little to no learning, 71 

in which participants could draw upon their experience in the physical world (Kaplan et al., 72 

2017a).  We tested human participants on this task using non-invasive whole-head 73 

magnetoencephalography (MEG). Participants were instructed to visually search for the 74 

shortest path between a start and goal in novel mazes that afforded multiple paths. 75 

Participants were then asked which direction they would take from one of two choice points 76 

along the shortest path (Fig. 1). 77 



 4 

 78 
Fig 1. Task. A. Each trial (i.e., visually presented maze) began with an inter-trial interval 79 
(ITI) of 1.5s. Next, during a 3.25s planning phase, participants had to infer the shortest path 80 
from a start point (red square) to a goal location (green square) and remember the chosen 81 
direction for each choice point along the shortest path. A choice point was subsequently 82 
highlighted (choice highlight) for 250ms. This was either the initial (i.e. first) or second (i.e. 83 
subsequent) choice point along the shortest path. Participants were then asked which direction 84 
(e.g., left or forward) they would take at that choice point during a choice period that was 85 
cued by a first-person viewpoint of the highlighted location. Participants had a maximum of 86 
1.5s to make their choice using a button box. B. Overhead view (not shown during the 87 
experiment) of the maze in A, indicating which path lengths contribute to initial and second 88 
choice point demands (black line represents shortest path). C. Left: Example sequential 89 
planning trial with a small path length difference (demanding) at the red square/initial choice 90 
point and large (less demanding) path length difference at the second choice point. Right: 91 
Example trial with a large (less demanding) path length difference at the red square/initial 92 
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choice point and small (demanding) path length difference at the second choice point. D. Left: 93 
Example non-sequential (control) trial with a small path length difference (demanding). 94 
Right: Example non-sequential (control) trial with a large path length difference (less 95 
demanding). 96 

  97 

Crucially, the mazes were designed to induce forward planning in terms of a two-98 

level tree search, where participants needed to maintain the decisions they made at each 99 

choice point. At both choice points, there was a small, medium, or large path length 100 

difference – creating a total of (3x3) nine conditions allowing us to test the effect of planning 101 

demands at each choice point depth (i.e., initial or second). In parallel, our task also contained 102 

a non-sequential control condition, where participants were presented with mazes containing 103 

only one choice point (Fig. 1D). In either case, we associate a smaller path difference with 104 

greater ambiguity and processing demands. Importantly, in any trial, participants were only 105 

prompted to make one choice after seeing the full maze; however, until the choice point was 106 

highlighted, they did not know which decision would be probed in sequential planning trials 107 

(Fig. 1). After planning their route, participants were asked to choose—at a specified choice 108 

point—the direction of the shortest path to the goal location (Fig. 1). This provided a measure 109 

(reaction time, RT) with which to quantify their (subjective) uncertainty to complement the 110 

(objective) difference in path lengths. This design allowed us to ask whether hippocampal 111 

theta power relates to successful sequential spatial planning. 112 

 113 

Methods 114 

Participants 115 

MEG 116 

Twenty-four participants (14 female: mean age 23.5 yrs; SD of 3.49 years) gave 117 

written consent and were compensated for performing the experimental task, as approved by 118 

the local research ethics committee at University College London in accordance with 119 

Declaration of Helsinki protocols. All participants had normal or corrected-to-normal vision 120 

and reported to be in good health with no prior history of neurological disease. Due to 121 
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technical difficulties, two participants were removed from our sample, leaving twenty-two 122 

participants in the behavioral and MEG analyses presented here. 123 

iEEG   124 

Pre-surgical EEG recordings from 2 patients with pharmacoresistant focal-onset 125 

seizures and hippocampal depth electrodes gave written consent, as approved by the local 126 

ethics committee at Hospital del Mar and in accordance with Declaration of Helsinki 127 

protocols. One patient was removed from analyses, because of visual difficulties due to an 128 

inferior occipital lesion, leaving one patient with normal vision presented in the current 129 

analysis. A summary of the patient’s characteristics is given in Table 1.  130 

 131 

Experimental Design 132 

During MEG scanning, stimuli were presented via a digital LCD projector on a 133 

screen (height, 32 cm; width, 42 cm; distance from participant, ~70 cm) inside a magnetically 134 

shielded room using the Cogent (http://www.vislab.ucl.ac.uk/cogent.php) toolbox running in 135 

MATLAB (Mathworks, Natick, MA, USA). Instead of a projector, iEEG patients completed 136 

the task on a laptop in their hospital bed. There were no other differences with the MEG 137 

experiment unless mentioned otherwise. Over the course of 220 trials, participants viewed 138 

220 different mazes from a slightly tilted (overhead) viewpoint and later chose from first-139 

person viewpoints within mazes generated using Blender (http://www.blender.org). All mazes 140 

had a starting location (a red square) towards the bottom of the maze and a goal location (a 141 

green square) further into the maze (Kaplan et al., 2017a). Mazes differed by hierarchical 142 

depth (number of paths to a goal location): there were 110 mazes with four possible routes 143 

(sequential mazes) and a further 110 non-sequential control mazes with two possible routes 144 

(control mazes). In the scanner, participants were first presented with pictures of novel mazes 145 

(Fig. 1) of varying difficulty (from an overhead viewpoint) and then asked to determine the 146 

shortest path from a starting location (a red square) at the bottom of the screen to the goal 147 

location (a green square). The overhead view appeared on the screen for 3.25 s, after which a 148 

location (choice point) along the path was highlighted briefly for 250 ms with an orange 149 
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circle. The choice point location could either be the initial choice point or a second 150 

(subsequent) choice point. Crucially, participants would only have to make a decision about 151 

one choice point for each trial.  152 

At either choice point, it was necessary to choose between two possible directions, 153 

which could be left, forward, or right, with an additional option to select equal, if both routes 154 

were the same distance. The second choice point always fell on the optimal path from the 155 

starting location to the goal(Kaplan et al., 2017a). After the choice point was highlighted, a 156 

“zoomed in” viewpoint of this location (always one square back and facing the same direction 157 

as the overhead viewpoint) was presented. Participants had less than 1.5s (2s for the iEEG 158 

patient) to decide whether to go left, forward, right, or decide that all directions were 159 

equidistant to the goal. If no button press was made within the allotted duration, the trial 160 

counted as an incorrect trial and the experiment moved on to the 1.5s inter-trial interval (ITI) 161 

phase. Participants repeated this trial sequence 110 times per session, for a total of two 162 

sessions. Sessions lasted approximately 10–15 min.  163 

All participants completed a brief practice session consisting of 40 mazes/trials before 164 

the experiment (on a laptop outside of the scanner). Sequential mazes contained two 165 

branch/choice points between routes further in the maze, and the path lengths from the initial 166 

choice point to either of the second choice points were always equal. In sequential mazes, we 167 

used a 3x3 factorial design. Path length differences were split between 2 (small difference), 4 168 

(medium difference), or 6 (large difference) squares (for an example, see square tiles in the 169 

mazes presented in Fig 1) for the two paths at the starting location and a path length 170 

difference of 2, 4, or 6 squares at the optimal choice point in the maze. There was one catch 171 

trial for sequential and control mazes in each session, each containing all equal path lengths 172 

(path length differences of 0). In sum, sequential maze trials could be 2, 2; 2, 4; 2, 6; 4, 2; 4, 173 

4; 4, 6; 6, 2; 6, 4; 6, 6; (e.g. 4, 2 would have a medium path length difference of 4 at the 174 

starting location, whereas the second choice point would have a small path length difference 175 

of 2). Half of the trials in the experiment were control/non-sequential mazes, which only 176 
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contained one choice point at the red starting square. For these mazes, path length differences 177 

were split between 2, 4, and 6, with one catch trial per session having equal path lengths. 178 

 179 

iEEG recordings and artifact detection 180 

All iEEG recordings were performed using a standard clinical EEG system (XLTEK, 181 

subsidiary of Natus Medical, Pleasanton, CA) with a 500 Hz sampling rate. A unilateral 182 

implantation in the right hemisphere was performed accordingly, using 15 intracerebral 183 

electrodes (Dixi Médical, Besançon, France; diameter: 0.8 mm; 5 to 15 contacts, 2 mm long, 184 

1.5 mm apart) that were stereotactically inserted using robotic guidance (ROSA, Medtech 185 

Surgical, New York, NY). 186 

Intracranial EEG signals were processed in a monopolar referencing montage because 187 

it has been found to be more sensitive than other montages in capturing hippocampal 188 

electrophysiological signals (Vila-Vidal et al., 2019). Still, it is important to note that 189 

monopolar referencing yields data that can be contaminated by volume conduction and 190 

remote field effects. All recordings were subjected to a zero phase, 400th order finite impulse 191 

response (FIR) band-pass filter to focus on our frequency range of interest (0.5-48 Hz) and 192 

remove the effect of alternating current. Audio triggers produced by the stimulus presentation 193 

laptop were recorded on the monitoring system, which allowed for the EEG to be aligned 194 

with trial onset information sampled at 25 Hz.  195 

Although patients were consistently engaged by the task, all trials that included 196 

interictal spikes (IIS) or other artifacts, either within the period of interest or during the 197 

padding windows, were excluded from all analyses presented here after manual inspection (4 198 

trials removed). A 500 ms padding window was used at either end of planning period time 199 

series to minimize edge effects in subsequent analyses. 200 

 201 

iEEG Time-Frequency Analysis  202 

Estimates of dynamic oscillatory power during periods of interest were obtained by 203 

convolving the EEG signal with a Morlet wavelet and squaring the absolute value of the 204 
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convolved signal. The wavelet transform was preferred to the Fourier transform here since the 205 

analysis was focused on preserving temporal information about when power changes 206 

happened, which is in contrast with MEG analyses that were more focused on source 207 

localization. To perform baseline correction on time–frequency data for display purposes, 208 

power values were averaged across ITI periods for each frequency band, and those average 209 

values were subtracted from the power values at each time point in the planning period. To 210 

assess correlations among oscillatory power in each trial with RT, oscillatory power at each 211 

time point and frequency of interest was correlated with trial-by-trial RTs. These values were 212 

then averaged across the deepest contacts in both anterior (x:34, y:-13, z:-23) and posterior 213 

(x:33, y:-31, z:-9) right hippocampal electrodes to provide a single value at each time and 214 

frequency point for the patient. 215 

MEG recording and preprocessing   216 

Data were recorded continuously from 274 axial gradiometers using a CTF Omega 217 

whole-head system at a sampling rate of 600 Hz in third-order gradient configuration. 218 

Participants were also fitted with four electroculogram (EOG) electrodes to measure vertical 219 

and horizontal eye movements. MEG data analyses made use of custom made Matlab scripts, 220 

SPM8 &12 (Wellcome Centre for Human Neuroimaging, London; Litvak et al., 2011), and 221 

Fieldtrip (Oostenveld et al., 2011).  For preprocessing, MEG data was epoched into 2s 222 

baseline periods prior to the planning phase for each of the nine sequential planning 223 

conditions of interest and the three non-sequential planning control conditions. Trials were 224 

visually inspected, with any trial featuring head movement or muscular artefacts being 225 

removed (mean trials removed per participant=3.45). 226 

 227 

MEG Source Reconstruction   228 

The linearly constrained minimum variance (LCMV) scalar beamformer spatial filter 229 

algorithm was used to generate source activity maps in a 10-mm grid (Barnes et al., 2003). 230 

Coregistration to MNI coordinates was based on nasion, left and right preauricular fiducial 231 
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points. The forward model was derived from a single-shell model (Nolte, 2003) fit to the 232 

inner skull surface of the inverse normalized SPM template. The beamformer source 233 

reconstruction algorithm consists of two stages: first, based on the data covariance and lead 234 

field structure, weights are calculated which linearly map sensor data to each source location; 235 

and second, a summary statistic based on the mean oscillatory power between experimental 236 

conditions is calculated for each voxel. Focusing on the specifics of power estimation, sensor 237 

data have a Hann window applied and are then subject to a Fast Fourier transform (FFT) to 238 

estimate power at each frequency across the whole signal. FFT data from each sensor is then 239 

multiplied by the beamformer weights to estimate power in each source.  240 

We wished to control for any possible influence of EOG muscular artefacts during the 241 

planning period on estimates of oscillatory power and therefore computed the variance of two 242 

simultaneously recorded EOG signals across each planning phase and removed any 243 

covariance between these EOG variance values and oscillatory power measurements across 244 

voxels by linear regression (Kaplan et al., 2014, 2017c). This left ‘residual’ oscillatory power 245 

measurements for all trials whose variance could not be accounted for by changes in the EOG 246 

signal between trials, and these residual values were used as summary images for subsequent 247 

analyses. RT was included as an additional nuisance regressor for the theta power source 248 

analysis investigating the effect of path length differences at different choice points. Including 249 

RT as a nuisance regressor specifically for this analysis helped determine whether there were 250 

any residual hippocampal theta power effects related to choice point demands during the 251 

planning period.  252 

 253 

MEG Sensor-level Analyses 254 

 For visualization purposes, scalp power plots were estimated by averaging Morlet 255 

wavelet transforms over the entire 3.25s planning period and 4-8Hz frequency window of 256 

interest. The sensor-level analysis followed the same EOG variance nuisance regression 257 

procedure as source analyses. Subsequently, the linear relationship between trial-by-trial RT 258 
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and residual 4-8Hz planning period oscillatory power values at each sensor was calculated for 259 

every participant.  260 

 261 

MEG Statistical Analyses 262 

There were two main periods of interest, the 1.5s ITI and 3.25s planning phase. For 263 

each of the 9 sequential planning regressors of interest (i.e., maze with a small, medium, or 264 

large path length at the second and initial points), we constructed parametric regressors based 265 

on RT and accuracy (i.e. whether the response was correct). Inferences about these effects 266 

were based upon t- and F-tests using the standard summary statistic approach for second level 267 

random effects analysis. 268 

A peak voxel significance threshold of p<0.05 FWE corrected for multiple 269 

comparisons was used for MEG source analyses. Given the previously hypothesized role of 270 

the hippocampus theta rhythm in planning, we report whether peak-voxels in that frequency 271 

band and these regions survive small-volume correction for multiple comparisons (p < 0.05) 272 

based on a bilateral ROI of the hippocampus (mask created using Neurosynth, Yarkoni et al., 273 

2011). All images are displayed at the p<0.001 uncorrected threshold for illustrative purposes. 274 

Additionally, only sources containing a significant peak voxel are displayed. 275 

Post hoc statistical analyses were conducted using 10-mm radius spheres around the 276 

respective peak voxel specified in the GLM analysis. This allowed us to compare the effects 277 

of different regressors of interest, while ensuring we did not make any biased inferences in 278 

our post hoc analyses. 279 

 280 

Results 281 

Behavioral Performance 282 

Twenty-two participants in the MEG study made correct choices on 87.9 ± 6.13% of 283 

sequential planning trials (mean ± SD; non-sequential control trials: 86.4 ± 4.95%), with an 284 

average reaction time (RT) of 469 ± 99ms (non-sequential control trials: 363 ± 112ms). 285 

Paired t-tests showed that  RTs were significantly higher for sequential than non-sequential 286 
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(i.e. control) trials (t(21)=9.55; p<.001), without any difference in accuracy (t(21)=1.42; 287 

p=.171). In addition, RTs were strongly inversely correlated with accuracy across MEG 288 

participants in both sequential (t(21)=-5.72; p<0.001) and non-sequential control trials 289 

(t(21)=-5.72; p<.001). After accounting for planning demands induced by the path length 290 

differences at each choice point (mean path length differences at the two choice points), RTs 291 

were still negatively correlated with accuracy in both sequential (t(21)=-5.25; p<.001) and 292 

non-sequential control trials (t(21)=-5.14; p<.001). In other words, participants responded 293 

faster when they made accurate choices. Moreover, these results demonstrate that RTs 294 

directly relate to accurate performance on the spatial planning task.  295 

We then asked whether accuracy and RT were specifically influenced by path length 296 

differences and choice point depth, with the aim of disentangling the effects of first/initial 297 

versus second/subsequent choice point demands on planning accuracy and RT. Using a 298 

repeated measures ANOVA, we looked for an effect of path length difference and choice 299 

point depth on accuracy and RTs in MEG participants. We observed a main effect of path 300 

length difference on both accuracy (F(2,20)=9.09; p=.002; Fig. 2A) and RTs 301 

(F(2,20)=5.06;p=.017; Fig. 2B), driven by higher accuracy and faster RTs for larger path 302 

length differences; as well as a significant interaction between initial (i.e. first) and second 303 

(i.e. subsequent) choice points and path length differences on both accuracy (F(4,18)=11.0; 304 

p<0.001) and RTs (F(4,18)=4.75; p=0.009). Post-hoc t-tests revealed that this interaction 305 

resulted from medium path length differences being significantly less demanding (i.e. 306 

producing higher accuracy and faster RTs) when they were at the initial, as opposed to the 307 

second, choice point (Accuracy: t(21)=3.62; p=.002; RT: t(21)=-4.17; p<.001).   308 
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 309 
Figure 2: Behavior A. Accuracy. Left: Significant main effect (p=0.002) of path length 310 
differences (small, medium, and large) on choice accuracy, collapsed across initial and second 311 
choice points. B. Reaction time. Significant main effect (p=0.017) of path length differences 312 
(small, medium, and large) on reaction times, collapsed across initial and second choice 313 
points. All error bars show ± SEM. 314 
 315 
MEG Analyses 316 

Using MEG source reconstruction, we asked whether 4-8 Hz theta power changes 317 

anywhere in the brain were related to differences in spatial planning. As a control to ascertain 318 

whether effects were specific to the theta frequency band, we also report power changes in 319 

four other canonical frequency bands (delta / low theta: 1-3 Hz, alpha: 9-12Hz, beta: 13-320 

30Hz, and gamma: 30-80Hz). Focusing on RTs, we found a significant negative correlation 321 

between 4-8Hz theta power during the sequential planning phase and subsequent RTs in a left 322 

hippocampal source (x:-36, y:-20, z:-20, t(21)=-4.28; small volume corrected (SVC) peak-323 

voxel p=.011; Fig. 3A-B). Specifically, increased hippocampal theta power during planning 324 

periods preceded faster decisions – an effect that was also visible at the scalp level (Fig. 3C). 325 

Notably, we did not observe any correlation between theta power and trial-by-trial choice 326 

accuracy anywhere in the brain, although this may be due to a relatively small number of 327 

errors. 328 

In addition, we found a significant negative correlation between theta power and RTs 329 

in the right ventral temporal lobe (x:36, y:-42, z:-26; t(21)=-5.92; family wise error (FWE) 330 

corrected peak-voxel p=.012; Fig. S1), which extended into posterior parahippocampal 331 

cortex. We did not observe a significant positive correlation between 4-8Hz planning period 332 
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theta power and subsequent RTs anywhere in the brain. Elsewhere, we observed 9-12Hz 333 

alpha power changes in the right occipital lobe/cerebellum that negatively correlated with RT 334 

(x:28, y:-70, z:-22; t(21)=-5.99; FWE corrected peak-voxel p=.014; Fig. S1). However, we 335 

observed no other significant correlations between oscillatory power and RT in any other 336 

brain regions or frequency band.  337 

To assess whether significant power changes related specifically to sequential 338 

planning, we tested whether each correlation described above was stronger for sequential 339 

planning trials versus non-sequential/control trials. Using a 10mm sphere around the 340 

respective peak voxels, we directly compared sequential versus non-sequential planning 341 

correlations with RT and observed that hippocampal RT theta effects selectively 342 

corresponded to sequential planning (t(21)=-2.33; p=.03; Fig. 3D). On the other hand, right 343 

ventral temporal/parahippocampal theta (t(21)=-1.38; p=.181; Fig. S1) and 344 

occipital/cerebellar alpha effects did not show any significant differences(t(21)=-1.74; 345 

p=.095; Fig. S1). We did not observe any significant correlation between alpha or theta power 346 

and RT in any brain region during non-sequential control trials.  347 

We then asked whether sequential spatial planning was associated with a general 348 

increase in left hippocampal theta power. Again, using a 10mm sphere around the left 349 

hippocampal peak, we observed a significant increase in 4-8Hz hippocampal theta power in 350 

this region during the sequential planning period versus ITI (t(21)=3.74; p=.001; Fig. 3E). 351 

Conducting the same sequential planning versus ITI analysis in the other areas exhibiting RT 352 

effects, we observed significant increases in both ventral temporal lobe theta (t(21)=2.79; 353 

p=.011) and occipital alpha (t(21)=4.44; p<.001) power during sequential planning (Fig. S1). 354 
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 355 
Fig. 3 Reaction time correlation with MEG theta power.  356 
A. Linearly Constrained Minimum Variance (LCMV) beamformer source reconstruction 357 
image showing significant 4-8 Hz left hippocampal theta power source negative correlation 358 
with RT (x:-36, y:-20, z:-20) in 22 healthy participants. Images displayed at the statistical 359 
threshold of p<0.001 uncorrected for visualization purposes. B. Beta value spectrum from 1 to 360 
15 Hz for hippocampal RT theta power effect showing peak negative correlation in the 4-8 Hz 361 
theta band. C. Negative 4-8 Hz theta power correlation with RT shown at the scalp level for 362 
22 healthy participants. D. Data from a 10 mm sphere around left hippocampal peak voxel 363 
from RT contrast showing a significant difference (t(21)=-2.33; p=.03) between sequential 364 
and non-sequential planning trials. E. Data from a 10 mm sphere around left hippocampal 365 
peak voxel from RT contrast showing increased theta power (t(21)=3.74; p=.001) during 366 
planning phase versus the ITI period. All error bars show ± SEM. 367 
 368 
 369 
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Finally, isolating hippocampal theta power changes, we tested for the effects of 370 

processing demands (path length differences) at initial and second choice points (e.g., quicker 371 

RT for mazes with less demanding initial choice points). Using a repeated measures ANOVA 372 

(path length difference by choice point depth), we tested whether the left hippocampal region 373 

(exhibiting a theta power correlation with RT) also showed an effect of path length 374 

differences at initial versus second choice points related to RT. We did not observe any 375 

significant effect of path length difference by choice point depth in the left hippocampus 376 

(F(4,18)=1.79; p=.175), or any other brain region.  377 

 378 

Hippocampal iEEG recordings 379 

Next, to corroborate our source reconstructed MEG effects, we examined changes in 380 

low frequency oscillatory power during the 3.25s sequential planning period using 381 

intracranial electroencephalography (iEEG) recordings from hippocampal depth electrodes 382 

(Fig. 4A) of a single high performing pre-surgical epilepsy patient (95.5% accuracy; mean 383 

RT: 423 ± 123ms). We asked whether iEEG 4-8Hz hippocampal theta power during 384 

sequential planning correlated with the patient’s subsequent RT. Paralleling the MEG data 385 

described above, we observed a negative correlation between ~4-8 Hz hippocampal theta 386 

power during the entire 3.25s planning phase and subsequent RT (r=-0.202; p=.035; Fig. 4B). 387 

This result should be interpreted with caution given the relatively small number of 388 

measurements, the presence of an epileptic focus in the same hemisphere, lack of electrode 389 

coverage over adequate control regions, and presence of similar correlations at other 390 

frequencies. Overall, we observed hippocampal theta (along with alpha and beta) power 391 

correlations with RT during the sequential planning period that paralleled the theta effect we 392 

observed in the MEG dataset.  393 
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 394 

Fig. 4 Intracranial EEG data from hippocampal depth electrodes A. Image of electrode 395 
locations in the patient overlaid on 3D brain template. Right hippocampal depth electrodes 396 
with contacts used in the present analyses are highlighted in orange. B. Time-frequency plot 397 
showing a negative correlation over trials between subsequent reaction time (RT) and 4-8 Hz 398 
theta power during entire sequential planning period averaged across both hippocampal 399 
contacts.  400 
 401 
General Discussion 402 

We examined how the human hippocampal theta rhythm relates to planning 403 

sequential decisions in novel environments. Linking hippocampal theta to participants’ 404 

performance on a spatial planning task, theta power during the planning phase correlated with 405 

faster subsequent spatial decisions. Furthermore, decision speed correlated with choice 406 

accuracy, regardless of path length differences. Linking the human hippocampal theta rhythm 407 

to processing demands, we found that hippocampal theta power selectively corresponded to 408 

planning performance in mazes containing multiple choice points during the MEG task.  409 

Our observation of increased hippocampal theta power during spatial decision-410 

making adds to an emerging literature investigating the role of the hippocampal theta rhythm 411 

during decision-making in rodents (Johnson & Redish, 2007; Schmidt et al., 2013; Belchior et 412 

al., 2014; Wikenheiser & Redish, 2015; Pezzulo et al., 2017) and humans (Guitart-Masip et 413 

al., 2013). Yet, the specific role of the hippocampal theta rhythm in planning has remained 414 

unclear; despite recent evidence relating the rodent (Miller et al., 2017) and human 415 

hippocampus (Kaplan et al., 2017a) to planning. Additional support for a hippocampal role in 416 

planning comes from evidence that hippocampal neurons code the distance to goal locations 417 

(Ekstrom et al., 2003; Villette et al., 2015; Sarel et al., 2017; Watrous et al., 2018). 418 

Furthermore, Wikenheiser and Redish (2015) found that firing of place cell sequences 419 
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coupled to the hippocampal theta rhythm extended further on journeys to distal goal locations. 420 

We parallel these findings by showing that hippocampal theta power was selectively related 421 

to efficient sequential planning.  422 

Differing from previous MEG/iEEG hippocampal theta studies that observe power 423 

increases related generally to enhanced long- or short-term memory performance (Lega et al., 424 

2012; Guitart-Masip et al., 2013; Olsen et al., 2013; Backus et al., 2016), we find 425 

hippocampal theta power effects associated with planning behavior in sequential, but not 426 

simpler mazes, during a task requiring little to no learning. Given the known relationship 427 

between the hippocampal theta rhythm and spatial trajectories, these findings may relate to 428 

sequential spatial decision-making that focuses on signifying a ‘location’ update within a 429 

sequence of choices. Supporting this explanation, recent work has suggested that the 430 

hippocampus can suppress noise in our everyday environment to focus on sub-goals during 431 

multi-step planning (Botvinick & Weinstein, 2014) and biophysical models predict that the 432 

hippocampal theta rhythm can underlie this type of ‘sub-goaling’ (Kaplan & Friston, 2018). 433 

Still, several aspects of our results remain unclear. For instance, an alternative 434 

explanation for not observing right hemisphere or non-sequential hippocampal theta power 435 

spatial planning effects could be that there are multiple theta sources (e.g., anterior right vs 436 

posterior left hippocampus) corresponding to sequential and non-sequential RT effects (Miller 437 

et al., 2018), which MEG does not have adequate spatial resolution to resolve. Additionally, 438 

using eye movements as a nuisance regressor in our MEG data (and not measuring eye 439 

movements in our iEEG dataset) prevented us from examining the role of saccadic eye 440 

movements in this type of planning, which we have shown in a previous simulation to be a 441 

crucial component of our planning task (Kaplan & Friston, 2018). Despite finding 442 

hippocampal theta power selectivity to sequential planning, it is important to note that we 443 

didn’t observe any hypothesized change in theta power related to path length differences at 444 

the different choice points. One potential explanation for this null result is that hippocampal 445 

distance to goal coding is primarily related to single units, not oscillations (Ekstrom et al., 446 

2003; Villette et al., 2015; Sarel et al., 2017; Watrous et al., 2018). Further evidence 447 
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supporting this explanation is needed since the direct relationship between behaviorally 448 

relevant hippocampal theta power changes and the reactivation of place cell sequences has yet 449 

to be characterized during sequential planning. Moving towards this characterization, 450 

Watrous and colleagues (2018) recently observed that human hippocampal single units 451 

exhibit phase-locking to the theta rhythm and that this phase-locking encoded information 452 

about goal locations during virtual navigation.  453 

We studied multi-step planning in an explicitly spatial domain, but it isn’t known 454 

whether updating our ‘location’ to subsequent choice points relates more to the overhead 455 

visual searches of the maze or a more abstract decision space (Kaplan et al., 2017b). On one 456 

hand, there is mounting evidence of the type I movement-related rodent hippocampal theta 457 

rhythm extending to virtual (Ekstrom et al., 2003, 2005; Watrous et al., 2011; Kaplan et al., 458 

2012; Bush et al, 2017) and real-life navigation in humans (Aghajan et al., 2017; Bohbot et 459 

al., 2017). However, evidence from non-spatial domains is lacking. Future work exploring the 460 

role of the hippocampal theta rhythm in both perceptual exploration and abstract sequential 461 

decisions can determine how generalizable spatial planning-related hippocampal theta effects 462 

are to decision-making in other domains. 463 

 464 
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 595 

 596 
Fig. S1 Additional reaction time correlations with MEG theta and alpha power 597 
A. Linearly Constrained Minimum Variance (LCMV) beamformer source reconstruction 598 
images. Left: Shows significant 4-8 Hz right ventral temporal cortex theta power source 599 
negative correlation with RT (x:36, y:-42, z:-26) in 22 healthy participants. Right: Shows 600 
significant 9-12 Hz right occipital/cerebellar cortex alpha power source negative correlation 601 
with RT (x:28, y:-70, z:-22). Images displayed at the threshold of p<0.001 uncorrected for 602 
visualization purposes. B. Left: Data from a 10 mm sphere around right ventral temporal peak 603 
voxel from RT contrast for both sequential and non-sequential/control planning trials. Right: 604 
Data from a 10 mm sphere around right occipital peak voxel from RT contrast for both 605 
sequential and non-sequential/control planning trials. C. Left: Data from a 10 mm sphere 606 
around right ventral temporal peak voxel from RT contrast showing increased theta power 607 
during planning phase versus the ITI period. Right: Data from a 10 mm sphere around right 608 
occipital peak voxel from RT contrast showing increased theta power during planning phase 609 
versus the ITI period.  All error bars show ± SEM. 610 
 611 
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