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Abstract—An integrated method for generating the system’s 

periodical steady-state (PSS) conditions and the harmonic-state-

space (HSS)-based impedance model is presented, referred to as 

the automatic-model-generation (AMG) method. This method is 

efficient for parametric impedance-based analysis (e.g. stability 

analysis) since it can precisely take the varying PSS into account 

and the algorithm of which can be readily implemented by the 

frequency-domain iteration. Application of this AMG method to 

the impedance acquisition and stability analysis of a single-phase 

grid-tied voltage-source-converter (VSC) along with experimental 

verifications is presented as an example. The presented results 

demonstrate how the AMG method can facilitate parametric 

stability assessments (e.g., under varying control parameters) in 

an efficient and accurate manner.  

Index Terms— converter, impedance, stability, periodical 

steady-state, Nyquist criterion 

I. INTRODUCTION 

OLTAGE SOURCE CONVERTERS (VSCS) are becoming 

ubiquitous in power systems for which the small-signal 

stability analysis is of significant importance. In this respect, 

the impedance-based method [1] is an effective tool for such 

analyses and is gaining popularity. However, impedance 

modeling for systems that cannot be readily represented by a 

time-invariant equivalent (e.g. the dq-model) is challenging, 

and this usually happens to systems with periodical steady-state 

(PSS) [2]. Since the PSS conditions are an essential part of the 

impedance modeling, they need to be calculated in accordance 

with operating conditions. This procedure is commonly 

fulfilled by time-domain simulations which is practical if the 

analysis is merely concerned with few specified conditions. As 

for parametric studies, impedance modeling using the simulated 

PSS conditions will become cumbersome and thus significantly 

compromises its efficiency in such analyses. 

To address this issue, this letter presents an integrated 

approach for calculating the PSS conditions and the harmonic-

state-space (HSS)-based impedance model, referred to as the 

Automatic Model Generation (AMG) method. Formulation and 

application of this method is presented in section II and III. 

Section IV draws the main conclusions. 
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II. FORMULATION OF THE AMG METHOD  

In principle, a nonlinear time-invariant system  

( ),=x f x u         (1) 

with constant input u can be solved iteratively for the steady-

state operating point xss by the Newton-Raphson method: 
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According to (2), the solution is updated at each step using 

k+1 k k= + x x x , and this iterative process will be ended if the 

change of states is within a defined tolerance, i.e.  

ss k+1 k,    x x x .  

For periodic input u , since all the state-variables will be 

periodically time-varying at steady-state, i.e. PSS, the condition

ss 0=x  for deriving the iterative solution (2) is no longer valid. 

Although equivalent time-invariant steady-state solutions are 

achievable for some specific systems by applying multiple Park 

transformations [3], the modeling process is complicated and is 

usually associated with model reductions.  

To overcome this issue, the frequency-domain iteration [4] is 

adopted for better accuracy and the process of which is 

explained as follows.  

First, the time-domain iterative solution of (1) at step k is 
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By applying the Fourier expansions and the principle of 

harmonic balance, its frequency-domain iterative model is 

( ) ( )blk k k k blk k k

k+1 k k

,− + + − +  =

 = + 

x u 0
  (4) 

where k , ( )k k k,x u  are vectors of Fourier coefficients of  

kx  and ( ),kf x u . k  is the Toeplitz matrix of ( )k tA  and 

( )blk 1 1j ,..., ,..., jdiag N N = − I 0 I  is a diagonal matrix. 
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Based on (4), the Fourier coefficients of steady-state x (i.e.

ss ) is obtained if this condition ss k+1 k,      is 

met. Moreover, the characteristic matrix of an HSS model (i.e. 

k
) can be obtained exactly from the same iteration.  

This trait clearly indicates that the PSS conditions along with 

the HSS model can be derived in one unified algorithm, i.e. the 

frequency-domain iteration. Then, by simply inserting the 

Laplace variable s, the final HSS model with updated PSS 

conditions can be generally formulated as [2]: 

( )
1

blk ks
−

 = + −       (5) 

Next, it will demonstrate how this AMG method is applied for 

the impedance acquisition and parametric stability analysis of 

a single-phase grid-VSC system. 

III. APPLICATION OF THE AMG METHOD TO A SINGLE-PHASE 

GRID-VSC SYSTEM 

A. Calculation of the PSS conditions 

According to the configuration in Fig. 1, the state-space 

model of the evaluated single-phase VSC can be represented by 

( )c c c ax u= + x f B         (6) 

where 
c dc a dc pra prb qsga qsgb pll pll[ , , , , , , , , ]Tu i x x x x x x =x  is the state 

vector;
cB  is a constant input matrix; the output current can be 

extracted from xc by defining a constant matrix Ci = [0 1 01x7]. 

Based on the AMG method, the frequency-domain iterative 

model of (6) at the step k can be written   

( ) ( )
c,blk c,k c,k

c,blk c,k c,k c,k a,k a,k

− =

− +  + + 
    (7) 

and the frequency-domain iterative model for the Thevenin 

equivalent grid can be similarly derived as 

( ) ( )g,blk g c,k c,k g,k g,kg iL R+ +  = +    (8) 

where i  is the Toeplitz matrix of Ci.  

Combining  (7) and (8), a closed-loop frequency-domain 

iterative model can be formulated, based on which the Fourier 

coefficients c,k  can be solved iteratively. For this process, 

corresponding time-domain waveforms are obtained by 

applying the inverse Fourier transform. For illustration, the 

steady-state dc voltage and ac current waveforms obtained from 

the AMG method are compared with simulated waveforms 

from the PSCAD/EMTDC in Fig. 2. As seen from the figure, 

the AMG results are well-matched with the simulations, 

proving that the frequency-domain iteration of the AMG is 

effective and accurate. 

B. Generation of the HSS-based impedance model and its 

SISO equivalent representation 

1) Generation of the HSS-based impedance model 

Since the state-matrix 
c
 is generated in the same iteration, 

then the HSS-based VSC admittance can be derived as 

( )
( )c

1

c,blk c c aa i

s

s
−

− = − + −  I     (9) 

The HSS-based grid impedance is straightforwardly given as 

( ) ( ) ( )( )
( )

g N 0 N,..., ,...,

g

a

s

diag Z s Z s Z s− =  I   (10) 

where ( ) ( ) ( ) ( ) ( ) ( )a -N a 0 a N
[ ,..., ,..., ]T

a I s I s I s =   I , similarly for 

g a,  . If there are no independent voltage perturbations 

between the grid and VSC, then g a =  holds true.  

The above HSS-based impedance must be truncated to be 

numerically tractable. In this study, 3N =   is selected, 

however, the resulting HSS-based impedances are still of large 

dimensions which are 7x7 matrices. To make the 

  
Fig. 2 Comparison of the calculated and simulated steady states of the dc 

voltage and ac current (Iqref = -6 A, RL = 1e5 ohm) 
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Fig. 1 Schematic of a single-phase grid-VSC system 
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implementation and analysis easier, a single-input and single-

output (SISO) equivalent impedance will be further developed 

from the HSS-based impedance.  

2) Derivation of the SISO equivalent model  

The approach employed for developing the SISO equivalent 

model is based on [5]. Since the implementation is more 

complicated for a single-phase VSC which inherently exhibits 

more frequency couplings than the three-phase VSC discussed 

in [5], the procedure is briefly outlined in the following.  

As shown in Fig. 3 (a), if an independent voltage perturbation 

is applied to the VSC, it will not only present the frequency 

response to the perturbation frequency but also give rise to 

many other frequencies. These frequencies will again be 

coupled to the VSC’s inputs through the grid interaction, as 

indicated by the internal harmonic paths in Fig. 3(b). Since the 

above small-signal representation of the grid-connected VSC 

forms a closed-loop system and it is composed of 2(2N+1)+1 

number of linear equations and 2(2N+1)+2 number of 

unknowns, the relationship between any two of the unknowns 

can be found by solving those linear equations. In this analysis, 

the following relationships are found 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

SISO

ca 0 a 0

SISO

gg 0 a 0

s Y s s

s Z s s

− =  


 =  

I U

U I
     (11) 

which are the VSC-SISO admittance and grid-SISO impedance. 

Notably, since all the frequency couplings are inherently 

considered in the calculation, the resulting SISO impedances 

are essentially low-dimensional equivalents to the HSS-based 

impedances, i.e. no loss of model accuracy. 

3) VSC-SISO admittance validation 

Next, the VSC-SISO admittance obtained from the AMG 

method will be compared with simulated and experimental 

frequency scanning. For this purpose, the single-tone injection-

based method is adopted, i.e. only one frequency component is 

injected for each time interval. Then, this procedure is repeated 

to achieve the frequency scanning. Discrete Fourier analysis is 

conducted in MATLAB (with 50 kHz sampling rate and 5s data 

length) for impedance extraction. The main circuit and control 

parameters are listed in Table I. 

As shown in Fig. 4, the AMG-based results are basically 

consistent with the experimental results, although minor 

deviations are observed close to the highest frequencies. To 

alleviate the uncertainties in experiments, simulated results are 

also compared with the AMG-based results, it can be seen that 

a point-to-point match is achieved in the concerned frequency 

range, proving the validity of the AMG method. 

C. AMG-based stability assessment 

1) Example with parametric evaluations of stability margin  

Based on the AMG method, a case study for evaluating the 

impacts of current and dc voltage controller parameters 

(specifically kpc and kidc, respectively) on the overall stability 

margin is presented. The stability margin is then defined as the 

minimum distance of the eigenlocus (i.e. 

( ) ( )SISO SISO

gain g cL s Z Y s=  ) to the critical point (-1,0 j).  

The procedure of applying the AMG approach for stability 

margin assessment is illustrated in Fig. 5 (a), and the 

corresponding results are plotted in Fig. 5 (b). As can be seen 

from the figure, the stability margin is decreased (i.e. smaller 

value of the minimum distance) when the proportional gain kpc 

of the current controller is reduced. Under a specified current 

controller gain, the increase of the dc voltage controller integral 

gain kidc will decrease the stability margin. And, this negative 

impact of kidc is more evident for low values of kpc. 

This example clearly demonstrates the advantage of this 

AMG-based method in facilitating a systematic stability 

assessment, since the stability margin and the stability trends 

can be easily assessed by these curves.  

2) Experimental verification on the prediction of the 

marginally unstable condition using AMG 

This section presents an experimental stability test focusing 

on the marginally unstable condition to consolidate the 

effectiveness of the AMG method on stability analysis. The 
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(b) Harmonic domain block diagram of the perturbed grid-VSC system
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Fig. 3 Illustration of the harmonic interactions of the single-phase 

grid-VSC system from a closed-loop perspective 

TABLE I MAIN CIRCUIT AND CONTROL PARAMETERS  

Circuit parameters Control parameters 

UN = 200 V(rms) Lg = 6.6 mH HPLL: kppll = 0.1, kipll = 100 

IN = 7 A (rms) Rg = 0.258 ohm HPR:  kpc = 20, kic = 628 

Lf = 3.3 mH Ccap = 200 uF Hdc: kpdc = 5*10-5, kidc = 2.5*10-4   

Rf = 0.129 ohm VdcN = 320 V kQSG = 5.0  

fsw = 10 kHz  fsample = 50 kHz Td = 50 us 

 

Fig. 4 VSC-SISO admittance validation (Iqref = -6 A, RL = 1e5 ohm) 
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applied procedure can be explained as follows: i) AMG-based 

stability analysis is performed to generate the Nyquist plot; ii) 

The VSC control parameters for a marginally unstable 

condition are identified (in this study, kpc = 1 is found and other 

parameters in Table I remains unchanged); iii) This identified 

kpc is applied to the experimental system to check if the 

predicted unstable phenomenon will occur or not.  

Based on the above procedure, the Nyquist plot from the 

AMG is first given in Fig. 6 (a), it can be seen that the grid-VSC 

system will be marginally unstable under kpc = 1. This identified 

current controller gain is applied to the experimental system at 

t = 5 s, and the resulting dc voltage and ac current waveforms 

are shown in Fig. 6 (b). Indeed, the results show how the VSC 

system is becoming marginally unstable as predicted when 

imposing the identified value of the control parameter. This 

stability test again justifies the effectiveness and accuracy of the 

AMG method. 

IV. CONCLUSIONS  

This letter proposes an integrated method for generating 

the VSCs’ PSS conditions and the HSS-based impedance 

model and is referred to as the AMG method. The main 

features and novelties of this method are: 

1) The PSS conditions along with the HSS-based 

impedance can be automatically and simultaneously 

generated by one unified algorithm. 

2) Based on the trait of 1), this method can enable a 

systematic and accurate impedance-based stability 

assessment, avoiding the need of utilizing lengthy time-

domain simulations to obtain the PSS conditions. 

3) This AMG method is easily programmable and 

implementable in software, e.g.  MATLAB. 

4)  Although this letter only presents the application of this 

method on the impedance acquisition and stability 

assessment of a single-phase grid-VSC system, it is directly 

applicable to other systems exhibiting PSS, aiming for an 

accurate and efficient impedance-based analysis. 
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(a) Flow chart of the calculation process     

 
(b) Result of parametric stability margin analysis 

Fig. 5 AMG-based parametric evaluation of stability margin 

 
(a) Nyquist plot 

 
(b) Experimental waveforms 

Fig. 6 AMG-based stability analysis and experimental verification  
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