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Summary

The presented research topics were selectively chosen in an effort to fill specific
knowledge gaps within the unmanned aircraft industry. The researcher conducted
his work at the company Maritime Robotics, which is a international operator of
small unmanned aerial systems.

The overall goal of the work was to provide methods for an increased operational
envelope of fixed-wing small unmanned aircraft systems (sUAS), in an attempt
to advance the possible applications. In particular by providing the industry with
beyond-state-of-the-art methods for optimizing the in-flight performance through
intelligent path planning. Recent advancements in unmanned aerial technology
have made professional operations accessible to a wider audience, with a variety
of mission types. The methods have been applied to several typical unmanned op-
erations, including maximizing the range in A-to-B flights and cooperative Search
and Rescue (SAR) missions.

This thesis proposes and demonstrates through simulations methods for integrat-
ing relevant aircraft performance models into the path planning algorithms while
considering information on en-route meteorological information, such as horizontal
winds and potential icing conditions. Similarly, opportunities are demonstrated for
increasing the operational safety of small unmanned aircraft through path planning
optimization by utilizing redundant propulsion systems. Finally, methods for the
performance optimization of cooperative UAS is presented. The paper concludes
by providing suggestions for airframe design optimization.

The most important contribution to existing path planning models is the level of
integration of fixed-wing aircraft performance models, in conjunction with relevant
environmental parameters, such as en-route wind and icing conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the last decade small unmanned aerial vehicles (sUAS) have increasingly
found their ways into industrial applications. Unmanned aircraft are becoming
more capable and more reliable, resulting in a broader search for applications.
Reasons for applying professional unmanned aircraft vary, and include supporting
jobs that are typically dirty, dull or dangerous, such as surveillance in remote areas
or agricultural crop inspections [145]. Additionally, unmanned aircraft offer the
potential to cost savings, for example in the case of power-line inspection where
sUAS enable rapid inspections and eliminate the need for personnel to climb up
hazardous structures [146].

The industry is developing rapidly, while fundamental problems still exist that are
yet to be solved. Among these problems is the limited range of battery-powered
unmanned aircraft. Current battery-powered propulsion systems have a relatively
high power-to-weight ratio compared to traditional internal combustion engines
(ICE). This makes it particularly suitable for aerospace applications. Additionally,
battery-powered aircraft produce significantly less noise and produce no direct
exhaust fumes which are harmful to the local environment [120]. Battery-powered
aircraft also offer practical advantages, as the system requires less maintenance
[86]. For maritime, off-shore and other fire-critical applications, it is a relevant
advantage that such systems do not rely on flammable liquid fuels.

However, current commercial unmanned battery technology, typically Lithium-
based variants, have a low energy density when compared to common fossil fuels,
such as methanol and gasoline [123] [48]. Battery-powered unmanned aircraft that
are being equipped for long-range missions typically result in a high system weight.
This reduces the operational capabilities of such systems. Additionally, new tech-
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1. Introduction

nologies are being developed, such as hydrogen fuel cells that offer an increased
energy density. However, the technology has not yet matured due to obstacles in
unit-pricing and reliability [3]. More recently hybrid-electric propulsion systems
(HEPS) for manned and unmanned aircraft have received increased scientific and
industrial interest [30]. Such systems aim to combine the advantages of high-torque
found in electric propulsion with the advantages of high energy density of ICE fuels.

Regardless of the chosen propulsion method, optimization of the in-flight mission
performance of small unmanned aircraft is believed to be a fundamental exercise
in maturing the technology within industrial applications. Allowing unmanned air-
craft to fly longer, further, cheaper and safer, adds to the use case, which competes
with its manned counterpart. Considering the potential benefits of unmanned air-
craft to the industry, it is considered warranted to perform research on finding
methods that increase the in-flight performance of small unmanned aircraft.

An obstacle in the safe application of small unmanned aircraft is the potential
presence of harsh environmental conditions. Depending on geographical location
it is not uncommon for aircraft to encounter wind speeds ranging 20-50% of the
aircraft’s airspeed [8]. Depending on the wind direction in relation to the aircraft’s
trajectory this may constitute a significant positive or negative effect on the aircraft
performance. Other extreme weather conditions, such as wing icing, also induce a
substantial reduction in flight performance by reducing lift, increasing drag, weight
and resulting energy consumption [128]. Moreover, in-flight icing constitutes a large
risk for operational safety [149].

An essential component in effective path planning is optimization with a thorough
integration of these environmental effects on the aircraft performance in order to
compute an optimal trajectory. Finally, as some missions rely on in-flight commu-
nication, such as during search-and-rescue missions, it is warranted to optimize
the path of the aircraft considering aircraft performance, environment and com-
munication constraints. The research presented in this work suggests methods for
small unmanned aircraft to optimize these operational parameters that influence
the aircraft range, endurance, communication and operational safety.

The highlighted novelty of the research presented in this thesis resides in the strong
incorporation of aircraft performance models into sophisticated path planning algo-
rithms in relation to environmental conditions – and the practical value that follows
from such methods. The researcher aims to contribute to science and industry by
providing an increased understanding of the optimal use of small unmanned aircraft
that are operating in varying weather conditions. Finally, the researcher was respon-
sible for the conceptual and aerodynamic design of the battery-powered fixed-wing
sUAS PX-31, which is produced today by the company Maritime Robotics AS.

2



1.2. Structure of the Thesis and Main Contribution

1.2 Structure of the Thesis and Main Contribution

The main input for this thesis are several published and submitted papers. The
total content is divided into five parts that each contribute to the main objective of
an increased understanding and optimizing the use of fixed-wing small unmanned
aircraft in long-range missions.

Part I: Long-range Flight Performance and Environment

This part contains two chapters describing in-flight performance and path planning
methods for small unmanned aircraft considering environmental parameters such
as wind and icing conditions.

• Chapter 2 - Inclusion of horizontal wind maps in path planning
optimization of UAS: This chapter present a method for optimizing the
planned path of a small unmanned aircraft through inclusion of publicly
available horizontal wind maps. It starts off by describing and quantifying the
effects of horizontal wind on the aircraft flight performance by analysing the
power requirements with varying en-route horizontal wind speeds and wind
directions. By modelling these effects, the opportunity is created for path
planning algorithms to take such effects into account. It allows for the aircraft
to optimize its commanded airspeed and the chosen path of the aircraft.
Several optimization goals can be set, though in this chapter it was chosen
to demonstrate the methods and benefits through a simulation of a typical
A-to-B mission at fixed cruising altitude, which is set up to minimize the
total energy consumption, using Particle Swarm Optimization (PSO) path
planning techniques.

• Chapter 3 - Long range path planning using an aircraft performance
model for battery powered sUAS equipped with icing protection
system: This chapter presents a method for long range path planning op-
timization for battery-powered small unmanned aircraft that are equipped
with an icing protection system. The chapter builds on top of the methods
described in the previous chapter, and expands this to a multi-altitude opti-
mization, which also takes into account broader environmental conditions -
primarily the effects of potential in-flight icing. To achieve such an optimiza-
tion the aircraft performance model is upgraded to include climb and descent
performance, as well as including a model that quantifies the performance
degradation due to in-flight wing icing. Finally, battery discharge character-
istics are included in the performance model. Similar to the previous chapter
the benefits of such methods are demonstrated through a simulation of a

3



1. Introduction

typical A-to-B mission using PSO techniques, which is set up to minimize
the total energy consumption.

Part II: Long-range Flight Performance and Safety

Mission robustness is a prerequisite for safe operations. One method to increase the
operational robustness is to utilize available redundant propulsion systems. This
part contains one chapter addressing methods for optimizing the in-flight safety
using advanced path planning in conjunction with aircraft performance models
and en-route environmental conditions.

• Chapter 4 - Contingency path planning for hybrid-electric UAS:
This chapter presents a path planning method for optimizing the in-flight
safety of hybrid-electrically powered small unmanned aircraft. A hybrid-
electric propulsion system (HEPS) typically contains an internal combustion
engine, complemented by a battery-powered electric motor. In case of a criti-
cal engine failure, the electric motor might still be able to fly the aircraft to a
safe landing spot. By modelling the aircraft performance in conjunction with
the remaining battery capacity, paths can be calculated that guarantees the
aircraft to always remain within range of a safe landing spot. This chapter
demonstrates these advantages by simulating a typical A-to-B mission that
is set up to find a route which guarantees (or increases the time) being in
range of a safe landing spot in the event of an engine failure. Similar to the
previous chapters, the path is chosen to minimize the energy consumption,
while taking in to account en-route winds, using PSO techniques.

Part III: In-flight Performance and Airframe Design Considerations

Previous parts focused on environmental factors and path planning methods in
an effort to increase the operational envelope of small unmanned aircraft. This
assumed an airframe with pre-defined performance characteristics, including its
consequent aerodynamic model and propulsion efficiency. However, to increase the
operational envelope it is considered relevant to also explore the design of the
aircraft, and to review the opportunities to optimize the inherent aerodynamic
behaviour. This part will focus on several methods aiding in airframe design opti-
mization and efficient mission planning.

• Chapter 5 - Mission performance trade-offs of battery-powered
sUAS: This chapter provides an increased understanding of the mission
weight, flight altitude and airspeed and the penalty on the the performance
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1.2. Structure of the Thesis and Main Contribution

of battery-powered aircraft. In particular the mission range, endurance and
aircraft stall speed. This is demonstrated by performing a sensitivity study.
An additional dimension added to the research is the inclusion of battery
discharge effects, including Peukert’s effect.

Part IV: Discussion and recommendation for future work

Appendices

• Appendix A - Path planning of Multi-UAS communication relay by
decentralized MPC: A notable example application of unmanned aircraft
technology is the ability to function as airborne communication relay system.
The rapid deployment and surface-independent operations contribute to its
use case. This is especially relevant for communication relaying of moving ob-
jects, such as boats or unmanned surface vehicles (USV), which may contin-
uously reposition itself. This work demonstrates the possibilities and advan-
tages of such applications by simulating a mission where multiple unmanned
aircraft relay the communication between a moving USV and a land-based
base station. A complexity in this application is that the optimal location
of the airborne relay stations dynamically changes based on the USV’s loca-
tion in relation to the base station. Moreover, in the context of this thesis’
topic, the planned path is dynamically chosen to optimize while guarantee-
ing communication range while guaranteeing a predefined minimum level of
signal quality. This is done by taking into account the aircraft performance
(in particular maneuvering) and the influence of en-route horizontal winds.

• Appendix B - Autonomous unmanned aerial vehicles in search and
rescue missions using real-time cooperative model predictive con-
trol: This Appendix provides a work on the advantages of deploying multiple
unmanned aircraft in Search and Rescue (SAR) missions is compared to de-
ployment of a single system. The main parameter to optimize is the time it
takes to locate a missing person. This is explored by simulating SAR missions
with one, two or three cooperative airborne systems. The operational perfor-
mance of these aircraft are integrated through inclusion of the performance
model into the simulations. This includes the effects of wind. The probability
of success is examined for different operational scenarios.

• Appendix C - Survey of design considerations of optical image sta-
bilization systems for small unmanned aerial systems: This Appendix
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provides a work on increasing the insight in the design considerations of cam-
era gimbal systems, which are commonly found on small unmanned aircraft.
In context of this thesis, this chapter discusses the relevance of including
the aerodynamic considerations into the design and placement of the camera
gimbal system on the aircraft.

1.3 Publications

The findings presented in this thesis have been previously published and/or sub-
mitted to scientific outlets. These consist of scientific conferences and journals. The
following works have been included in this thesis:

• [73] A. R. Hovenburg, F. A. A. Andrade, C. D. Rodin, T. A. Johansen, and
R. Storvold. Inclusion of horizontal wind maps in path planning optimization
of UAS. In 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 513–520. IEEE, 2018.

• [70] A. R. Hovenburg, F. A. A. Andrade, R. Hann, C. D. Rodin, T. A. Jo-
hansen, and R. Storvold. Long range path planning using an aircraft per-
formance model for battery powered sUAS equipped with icing protection
system. Submitted for publication.

• [71] A. R. Hovenburg, F. A. de Alcantara Andrade, C. D. Rodin, T. A. Jo-
hansen, and R. Storvold. Contingency path planning for hybrid-electric UAS.
In 2017 Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED-UAS), pages 37–42. IEEE, 2017.

• [72] A.R. Hovenburg, T. A. Johansen and R. Storvold. Mission performance
trade-offs of battery-powered sUAS. In 2017 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 601-608. IEEE, 2017.

• [24] F. A. A. Andrade, C. D. Rodin, A. R. Hovenburg, T. A. Johansen, and
R. Storvold. Path planning of multi-UAS communication relay by decentral-
ized MPC. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO),pages
1–8. IEEE, 2018.

• [5] F. A. A. Andrade, A. R. Hovenburg, L. N. Lima, C. D. Rodin, T. A.
Johansen, R. Storvold, C. A. B. Correia, and D. B. Haddad. Autonomous
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unmanned aerial vehicles in search and rescue missions using real-time coop-
erative model predictive control. Submitted for publication.

• [114] C. D. Rodin, F. A. A. Andrade, A. R. Hovenburg, T. A. Johansen, and
R. Storvold. A survey of design considerations of optical imaging stabilization
systems for small unmanned aerial systems. Submitted for publication.
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Environment
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Chapter 2

Inclusion of Horizontal Wind Maps
in Path Planning Optimization of
UAS

Earlier studies demonstrate that en-route atmospheric winds significantly affect
the in-flight performance of unmanned aircraft. Nevertheless today the inclusion of
wind is not common practise in determining the optimal flight path. This chapter
aims to contribute with an accessible method that includes forecast horizontal
wind maps which are commonly available, and discuss the methods on how these
maps can be integrated in order to obtain the most energy efficient horizontal path
of fixed-wing aircraft. The benefits of including horizontal wind maps into the
path planning optimization are demonstrated through a simulation, which utilizes
Particle Swarm Optimization to find the optimal cost-beneficial path.

2.1 Introduction

Atmospheric winds pose constraints on the operations of unmanned aircraft. This
holds especially true for smaller aircraft, as here it is common for wind speeds to
constitute 20-50% of the airspeed [8]. This has a substantial effect on the mission
safety and the aircraft’s in-flight performance. It is therefore considered to be war-
ranted to account for atmospheric winds in the planning of the aircraft’s flight
path. As the unmanned aircraft industry is maturing, a growing scientific search
towards in-flight performance optimization is noticed. Accurate estimations of the
aircraft’s in-flight performance allow for optimal utilization of the system within
its specified mission objectives.

Early studies demonstrate the advantages of utilizing atmospheric winds in the
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2. Inclusion of Horizontal Wind Maps in Path Planning Optimization of UAS

aircraft’s route optimization [20]. More recently efforts have been made to include
the complete wind field in the optimization, such as found in [47], and more recently
in [42], which utilize the Ordered Upwind Method and the stochastic Dijkstra
algorithms, respectively, for determining the optimal flight path.

The study of path planning optimization in the context of unmanned aircraft is
relatively new but abundant. Most notably, in [102] a method is presented that
successfully incorporates wind fields in path following methods utilizing straight-
line and circular arc paths. In [117] a sophisticated method was described where
Model Predictive Control (MPC) methods were employed for path planning opti-
mization, while including the effects of wind. However, neither studies included the
effects of wind on the aircraft performance within the optimization, such as was the
case in [42], which describes a method for the incorporation of weather uncertainty
for manned aircraft in long-distance flights. In [23] the aircraft performance was
successfully included, with the assumption of a constant wind field.

More recent sophisticated wind-energy harvesting methods have received increased
scientific interest. Most notably in [54] two refined methods are described which uti-
lize updraft winds from locally observed wind-fields in order to extend the aircraft’s
range and endurance. Considering such complex wind fields offers the potential of
effective path optimization. However, the limitation of such methods in context of
the study presented in this chapter is that it relies on the availability of detailed lo-
cal wind measurements and terrain observations or maps. In practise the extraction
of lift due to vertical winds over terrain, known as orographic lift, is relatively com-
plex to obtain [97]. This is in contrast to forecast horizontal wind gradients which
are relatively well described, and are commonly obtainable through meteorological
institutions.

The study presented in this chapter positions itself in the current literature by
describing an accessible method that includes forecast horizontal wind maps, and
discuss the methods on how these maps can be integrated in order to obtain the
most energy efficient horizontal flight path of fixed-wing unmanned aircraft. To
achieve this, it specifies and includes the effects of horizontal winds on the in-flight
performance of the aircraft. In this chapter the Particle Swarm Optimization (PSO)
technique is applied, such as described in Appendix D, in order to simulate how
the inclusion of wind affects the flight performance. PSO was chosen because it is
easy to implement, there are few parameters to adjust and it uses global and local
performance, which is advantageous in this type of problem where it is expected
that the optimal solution is likely to be a relatively small deviation from the known
solution candidate - the straight path.

The goal of the developed algorithm is to find the path which minimizes the total
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2.2. Aircraft dynamic model

energy consumption from origin to destination by using a forecast wind map and by
optimizing the path and airspeed of the aircraft. Minimizing the energy consump-
tion results in a lighter aircraft as battery-powered aircraft are required to carry
fewer on-board batteries, while fuel-powered aircraft require to carry less block
fuel. Alternatively, one could consider the reduction in required fuel/batteries to
increase the cargo capacity of the aircraft, or to offer a larger safety margin through
energy reserves.

2.2 Aircraft dynamic model

The aircraft’s kinematic model is described through the North-East-Down (NED)
inertial reference frame. As the aim is to optimize the energy consumption per
distance travelled, it is necessary to describe the wind field in a similar way. Because
in this study horizontal wind maps are used, the wind field is being described in a
two-dimensional plane.

When assuming a flat, non-rotating earth then x aligns north, y aligns east, and
z is pointing down to earth as positive direction. Relating to the wind navigation
triangle, as shown in figure 2.1, the aircraft’s inertial velocity in a coordinated flight
can be described as a function of the aircraft’s ground course χ and ground speed
vg. Similarly, this can be described as a function of the true airspeed va, heading
ψ, wind speed vw and wind speed direction ψw. These relations are found through:

[
ẋ

ẏ

]
= vg

[
cosχ

sinχ

]
= va

[
cosψ

sinψ

]
+ vw

[
cosψw
sinψw

]
(2.1)

The relation between heading and course angle is conveniently described using the
law of sines, resulting in [117]:

ψ = χ− arcsin
vw
va

sin (ψw − χ) (2.2)

In aviation the wind maps and directional indications are often expressed in the
navigation representation, rather than the mathematical representation. Therefore
it is considered convenient to apply the same standards here. Here the directional
indications are related to x (true north), where the clockwise rotation is positive.
Note that wind maps commonly indicate the direction where the wind is coming
from, rather than where it is going towards.

In an attempt to more accurately determine the aircraft’s in-flight performance, one
may consider including the parallel wind speed along the aircraft’s heading vwψ‖.
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Figure 2.1: Wind Navigation Triangle in Coordinated Flight

When the wind components are decomposed as demonstrated in equation (2.1),
then the wind speed vw‖ can be found through:

vw‖ = vwx cosψ + vwy sinψ. (2.3)

2.3 Effects of wind on in-flight performance

Depending on the magnitude and direction of the wind in relation to the aircraft’s
desired ground path, the presence of wind has an effect on the in-flight performance.
In a typical mission considered in this study most in-flight time will be spend during
the cruise phase. In the context of path planning optimization it is therefore the
cruise phase that is considered most relevant. The remainder of the study shall
consider path planning optimization methods and considerations for the cruise
phase of fixed-wing unmanned aircraft.

The basis of the optimization methods presented in this chapter relies on the trade-
off between energy consumption and distance covered. To illustrate; when flying an
A-to-B mission with a fixed distance, then the optimization goal considered in this
study is to minimize the energy consumption during the execution of this mission.
It is therefore required to express the aircraft’s energy consumption as a function
of distance covered. The required power (Pr in Watts) of propeller-driven aircraft
is found through [3]:

Pr = Dva =

√
2W 3

ρ∞ S

C2
D

C3
L

(2.4)
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2.3. Effects of wind on in-flight performance

Where W is the aircraft weight in [N], CL and CD are the aircraft’s aerodynamic
lift and drag coefficients respectively, ρ∞ is the air density in [kg/m3], and S is the
aircraft’s effective wing surface in [m2].

The aircraft’s in-flight performance can be optimized for different mission scenar-
ios. The best range airspeed is found by flying at the airspeed where the energy
consumption per travelled distance is minimized. Considering that:

va =

√
2

ρ∞

(
W

S

)
1

CL
(2.5)

Then, when substituting equation (5.4) in (5.6) we find:

(
Pr
va

)
= W

(
CD
CL

)
(2.6)

This expression shows that the condition for maximum range occurs at the airspeed
where CL/CD is maximized. However, as this expression relates travelled distance
solely to airspeed rather than ground track speed, this does not necessarily hold
true in the presence of en-route winds.

The specific energy consumption SEC is defined as the consumed energy per dis-
tance travelled. This can be expressed in unit Newtons (N), Joule per meter (J/m),
or alternatively Watt-second per meter (Ws/m). Here the latter is chosen since
manufacturers of batteries often express the energy capacity in Watt-hour. By
plotting the specific energy consumption (obtained from equation 2.6) as a func-
tion of vw and ψwr (obtained from equation 2.1 and 5.6), the effects of wind on the
in-flight performance can be visualized. Here ψwr is the wind direction relative to
the aircraft’s course.

In Figure 2.2A such a plot is illustrated which holds valid for the aerodynamic
model of the P31016 unmanned aircraft, flying at a ground velocity of 28.8 meters
per second and an altitude of 1500 meters under ISA conditions. The P31016 is the
unmanned platform used in the path planning scenario, which is specified further
in section 2.4.2.
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2. Inclusion of Horizontal Wind Maps in Path Planning Optimization of UAS

Figure 2.2: A: Energy consumption of the P31016 per distance travelled as a func-
tion of wind speed, and the wind direction relative to the aircraft’s course ψwr. B:
SEC for different wind speed components, valid for ψwr of 30 degrees with fixed
ground speeds. C: Flight range for different wind speed components, valid for ψwr
of 30 degrees with fixed ground speeds. (vw > 0 is a tail wind, while vw < 0 is a
head wind)
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2.3. Effects of wind on in-flight performance

Figure 2.2B shows the performance penalty of the presence of wind at the com-
manded ground speed of 24.0 and 28.8 meters per second, for the arbitrarily chosen
ψwr of 30 degrees. This figure illustrates that for one given wind speed and direc-
tion the maximum range may be obtained by changing the commanded ground
speed accordingly. Note that without the presence of wind flying at an airspeed
of 24.0 meters per second requires less power per unit time compared to flying at
28.8 meters per second. However, as this figure illustrates the energy consumption
per unit length is found to be lower when flying at 28.8 meters per second. This
balance changes depending on the present wind. This is further demonstrated in
2.2C where the resulting obtainable in-flight range is illustrated for both ground
speeds.

Path planning optimization algorithms that are set up so that the cost-function
optimization considers the energy consumption as a function of covered ground
distance in the presence of wind will inherently optimize the commanded airspeed
to give the best range. In other cases where the cost function algorithm is set up
to command the desired airspeed independently of ground speed, methods such as
described by [61] can be applied. In [61] it is suggested that the best-range airspeed
can be approximated through:

mbr =

 2mbr ±
(
vwp

vmd

)
2mbr ± 3

(
vwp

vmd

)


1
4

(2.7)

Here vmd is the minimum drag airspeed, vwp is the wind speed along the com-
manded heading of the aircraft. By solving for mbr the ratio between the best-
range airspeed in the presence of wind, and the airspeed that gives the best-range
without the presence of wind can be found. The symbol ± indicates a head- or
tailwind, where positive values are considered a tailwind.

Missions that require the longest flight endurance, such as observation missions,
ought to optimize the airspeed so that the energy consumption per unit time is
minimized. Observing equation (2.4) it becomes clear that when the air density,
aircraft weight, and wing surface are constant, the total energy consumption be-
comes a sole function of CL and CD. The minimum power consumption, and thus
the maximum endurance, is found at the va where C3

L/C
2
D is maximized. Note

that the presence of wind does not change the optimum value for va to achieve the
maximum endurance.

Similarly, path planning optimization algorithms where the cost-function considers
the energy consumption as a function of time will inherently optimize the airspeed

17



2. Inclusion of Horizontal Wind Maps in Path Planning Optimization of UAS

to obtain the best flight time.

2.4 Path-Planning

In this section the path-planning solution with the inclusion of the horizontal wind
maps is presented. The results are shown after describing the optimization problem
formulation, the parameters of the aircraft used for this simulation and how the
wind map was obtained to perform the wind interpolation.

2.4.1 Optimization Problem Formulation

An area north of Trondheim, Norway, was chosen for this study. The objective
of the optimization is to fly from A to B while using as little energy as possible,
while taking the wind into consideration. To achieve this the mission waypoints and
the airspeed along the path are optimized using the Particle Swarm Optimization
technique, through methods as described in Appendix D.

A two-dimensional geometric approach is used in this work, where the optimization
variables represent a set of airspeed inputs V and waypoints of the path W , with
x (North) and y (East) positions in the NED reference frame. The altitude was
chosen to be 1500 meters.

As the positions of the origin [xs, ys], destination [xt, yt] and wind vectors [vw, ψw]

are given in latitude and longitude coordinates, a conversion to the NED frame is
needed. Besides, to use the result as an input for an autopilot system, it may be
required to convert the waypoints to positions expressed in latitude and longitude.
To reduce the error coming from the conversion between frames, the coordinates
of the origin of the NED frame are defined as the midpoint between the origin and
the destination.

As the path is divided into V velocity steps and W waypoints, the algorithm
needs to do an interpolation to discretize the path obtained from the W waypoints
into a path with V velocity steps. Therefore, the new path will have V + 1 new
interpolated waypoints, where [x1, y1] = [xs, ys] will be the origin of the mission,
[xV+1, yV+1] = [xt, yt] will be the destination and the other V −1 points are resulted
from the interpolation.

The cost function f is set in order to evaluate the energy consumption along the
path. Therefore, it adds the energy consumption used to travel each V step through:
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f = Lstep

V∑
n=1

Prn
vgsn

, (2.8)

where Prn is the required power (ref. equation (2.4) and vgsn is the ground speed
in meters per second for the nth velocity step. Lstep is the length of each step of
the path, given by:

Lstep =
L

V
(2.9)

where L is the total length of the path:

L =

V∑
n=1

√
(xn+1 − xn)2 + (yn+1 − yn)2 (2.10)

The domain (xmin, xmax, ymin, ymax) has to be defined taking into consideration
that the UAS may not deviate too far from the straight line path between the origin
and destination. In addition, the airspeed must be optimized within the limits of
the aircraft constrains.

To initialize the optimization algorithm, first a straight path from the origin to
the destination is generated - with waypoints distributed equally along the path,
while the airspeed along the path is set as the airspeed that would give the best
range without the presence of wind. This strategy is crucial, as usually the optimal
solution will be a deviation from this straight path. If only particles initialized with
random positions are used, they might have uncommon waypoints displacement,
causing the algorithm to take a long time to find an optimal solution or to get
stuck in a local minimum.

The other paths generated for the initialization of the optimization algorithm have
the waypoints randomly chosen following the rule that the next waypoint must be
closer to the destination than the previous one. The airspeed variables are randomly
chosen between the minimum (vamin

) and maximum (vamax
) airspeed. Figure 2.3

shows an initial guess for the paths.

2.4.2 Aircraft Platform

The P31016 (figure 2.4) is a small battery-powered aircraft that is powered by a
6.0 kilowatt brushless motor, and has a battery capacity of 977 Watt-hour. The
propulsion efficiency is assumed constant at 50% with an ideal electrical discharge
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Figure 2.3: 200 paths generated in the initial guess. The yellow square is the origin
and the green star is the destination. The red arrows are the wind vectors.

pattern. The aircraft has a wing surface of 0.81 square meters and has a typical
mission-ready mass of 17.5 kilograms. Its aerodynamic characteristics were deter-
mined through a simplified model of the aircraft in the software tool XFLR5. Here
it was found that at an altitude of 1500 meters under ISA conditions the airspeed
for maximum range occurs at 28.8 meters per second, while the airspeed for maxi-
mum endurance is found at 24.0 meters per second. The aircraft’s stall speed with
extended flaps is 14 meters per second, while the maximum speed is limited to 38
meters per second.

Figure 2.4: P31016 concept battery-powered fixed-wing unmanned aircraft
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2.4.3 Wind vector maps

The horizontal wind map used was originally obtained from the Norwegian Me-
teorological Institute (MET), and provided by the Norwegian Defence Research
Establishment (FFI). The wind map contains the amplitude and direction of the
wind for each point in the grid at a given altitude. The grid has a resolution of ap-
proximately 2.5 kilometers, and the position of the points are given as the latitude
and the longitude. Figure 2.5 illustrates a section of the wind map used.

Figure 2.5: Part of the wind map used. The arrows show the amplitude and direc-
tion of the wind for each point in the grid.

In order to obtain wind data in between the grid points in the wind map, the wind
data needs to be interpolated. Nearest neighbor interpolation could be used for fast
interpolation, and could provide sufficient accuracy for a smooth wind field. How-
ever, the discontinuity of nearest neighbor interpolation or abrupt wind changes
could cause significant errors. In order to improve this, biharmonic spline interpo-
lation [119] is used. Biharmonic spline interpolation has the benefits of creating
a smooth surface (has minimum curvature) and passes through each data point.
To obtain a sufficiently low computation time, the 16 surrounding grid points (the
smallest and second smallest squares, each containing unique grid points, and en-
closing the point to be interpolated) are selected as the data points for calculating
the interpolation function.

2.4.4 Results

The parameters chosen to set the optimization algorithm are shown in Table 2.1.
Figure 2.6 shows the optimized path (black dots) for the mission where the objec-
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tive is to fly from the yellow square (origin) to the green star (destination). The
algorithm has optimized the position of the five waypoints (blue dots) and the
airspeed at each V -step. The resulted optimized airspeed is shown in figure 2.7.
In this mission the total energy consumption calculated for the straight line path,
when flying at the no-wind best-range airspeed of 28.8 meters per second, was 691
Watt-hour. The total energy consumption of the optimized path was 662 Watt-
hour. This is a saving of 4.2% of consumed energy. This is despite the fact that
the optimized path is 3.6 kilometers longer than the straight path. An overview of
the results of the flight time, path length and energy consumption as a comparison
between the straight path and the optimized path are shown in Table 2.2.

Table 2.1: List of parameters

Name Value
Iterations 200
Particles 200
Waypoints (W ) 5
V 50
Particle Size 55
Particle velocity
constraint

0.1 x Domain

wini 1.0
wfin 0.1
xmin xs-Lmin/3
xmax xt+Lmin/3
ymin ys-Lmin/3
ymax yt+Lmin/3
vamin

18 m/s
vamax

38 m/s

Table 2.2: Simulation results

Straight Path Optimized Path
Length 141.8 km 145.4 km
Time 1h 37min 1h 29min
Consumed energy 691 Wh 662 Wh

2.5 Discussion

The wind maps used in this study represents the wind information obtained through
meteorological wind models. As the current wind map is only valid for that moment
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Figure 2.6: Final path - Accounting for en-route winds

Figure 2.7: Optimized commanded airspeed along the route

in time, for longer flights it may prove useful to include forecast wind maps valid
for future time windows. Moreover, in-situ path planning may be complemented
with real-time wind field estimations through methods such as described in [54] and
[85]. In the work described in [10] a real-time field estimation method is described
utilizing a moving horizon estimator, which may be used to identify both steady
and turbulent wind velocities.

The simulation results presented in this chapter are valid for one chosen scenario.
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Depending on the local wind field and aerodynamic characteristics of the aircraft
the obtainable savings may be higher or lower for other scenarios. It is important
to extend this research in the future with more varied scenarios, while having a
validated aerodynamic model and propulsion efficiency model of the used aircraft.
Finally, the accuracy of the simulation results are as always limited by the accuracy
of the input parameters, which to a large extend include the predicted wind field
model. As horizontal wind maps do not specify vertical wind components, these
effects are not included. It is therefore warranted that in a future research the
proposed model is verified through field tests. This is done preferably for a variety
of mission scenarios with a different wind field, altitude and terrain.

It is important to complement the proposed method with the ability to include
horizontal wind maps of different altitudes, and thereby effectively creating a quasi-
three-dimensional wind field. This allows for en-route adjustment of the cruise
altitude which has the potential to further increase the obtained flight efficiency.

2.6 Conclusion

In this chapter a method was presented for the inclusion of horizontal wind maps
into a path planning optimization algorithm. An aircraft performance model is
presented that incorporates the effects of wind on the in-flight energy consumption,
in relation to the airspeed and the resulting ground speed. It is demonstrated that
in the presence of wind the best-range airspeed is no longer found at the airspeed
associated with (CL/CD)max, thus en-route airspeed optimization is warranted. It
is described that when the goal is to maximize the flight range, an optimization
algorithm which is set up to optimize the commanded airspeed in order to minimize
the energy consumption as a function of ground distance covered, will inherently
command the optimal course and airspeed in the presence of wind.

A simulation was performed where a particle swarm optimization method was uti-
lized to determine the wind-optimized flight path, where an in-situ forecast 2D
wind field was incorporated. The performed simulation shows that when compar-
ing the wind-optimized flight path to the straight path, the length increased with
3.6 kilometers to a total of 145.4 kilometers. However, the flight time was reduced
by eight minutes and the total consumed energy was reduced by 4.2%. These sim-
ulation results are valid for the chosen scenario utilizing the P31016 unmanned
aircraft. In future work it should be particularly interesting to simulate a more di-
verse wind field. In addition it is warranted to validate the proposed model through
field experiments.
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Chapter 3

Long range path planning using an
aircraft performance model for
battery powered sUAS equipped
with icing protection system

Earlier studies demonstrate that en-route atmospheric parameters, such as winds
and icing conditions, significantly affect the safety and in-flight performance of un-
manned aerial systems. Nowadays, the inclusion of meteorological factors is not a
common practice in determining the optimal flight path. This study aims to con-
tribute with a practical method that includes meteorological forecast information in
order to obtain the most energy efficient path of a fixed-wing aircraft. The Particle
Swarm Optimization based algorithm takes into consideration the aircraft perfor-
mance, including the effects of en-route winds and the power required for active
icing protection systems to mitigate the effects of icing. As a result, the algorithm
selects a path that will use the least energy to complete the given mission. In the
scenario evaluated with real meteorological data and real aerodynamic parameters,
the battery consumption of the optimized path was 52% lower than the standard
straight path.

3.1 Introduction

Small Unmanned Aerial Systems (sUAS) have become versatile tools that can be
used in a broad spectrum of missions. The rapid growth of the use of sUAS is
justified by their endurance, reduced cost, rapid deployment and flexibility. This
flexibility is mainly due to the many types of sensors that can be mounted on sUAS,
enabling them to be used in many different applications, such as surveillance, recon-
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naissance, search and rescue, delivery, photogrammetry, inspection, among others.
In addition, they offer reduced risk for humans and impact on the environment,
when compared to manned aircraft.

A next and necessary step for the continuous evolution of sUAS technology is to
enable safe autonomous missions also in adverse weather conditions. For this to be
possible, effects of wind and icing on the aircraft performance must be addressed,
controlled and taken into consideration by the path planning algorithm to decide
if it is worth it to face the adverse weather conditions or to take a detour in order
to avoid exposing the sUAS to this.

Scientific literature on path planning of sUAS is abundant. In [68] a compara-
tive analysis of four three dimensional path planning algorithms based on geome-
try search was done. The algorithms compared were Dijkstra, Floyd, A* and Ant
Colony. Run time and path length were the two analyzed aspects. In [21], the author
used the Voronoi diagram to produce routes minimizing their detection by radar,
while in [153] the Rapidly Exploring Trees (RTTs) were used with a smoothing al-
gorithm based on cubic spiral curves for collision-free path planning. Optimization
techniques are also adopted, as Genetic Algorithms [104], MILP [112] and Particle
Swarm Optimization [90], where the author used the method to minimize the UAS
path’s length and danger based on the proximity of threats.

Atmospheric winds usually constitute 20-50% of the airspeed of sUAS [8]. There-
fore, it affects the aircraft’s in-flight performance significantly. In [117], a sophisti-
cated method was described where Model Predictive Control (MPC) was employed
for path planning optimization including the effects of uniform wind. In [1], the
author used Markov Decision Process to optimize the unmanned aerial vehicle’s
path, integrating the uncertainty of the wind field into the wind model. The goal of
the algorithm was to minimize the energy consumption and time-to-goal. A similar
approach was chosen in [77], where the Ant Colony Optimization (ACO) technique
was used to optimize the path by minimizing the travel time considering the effects
of an uniform wind.

Most of the works about path planning of sUAS that takes the wind into con-
sideration use an uniform wind distribution. This information is often used in a
simplified model when calculating the effects of the wind on the energy consump-
tion. However, in [23], an aircraft performance was successfully included, with the
assumption of a constant wind field. In recent literature a nonuniform wind dis-
tribution in addition to an aircraft performance model was used. That is the case
in [71], where the flight path was optimized so that sUAS was guaranteed to be
able to reach a pre-designated safe landing stop. This was done by continuously
calculating the remaining range considering the remaining battery capacity in case
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of an engine failure. In that study a wind map with nonuniform wind distribution
was used in the calculations of the maximum range of the sUAS. Also using a
nonuniform wind distribution, [73] proposed a two-dimensional optimization algo-
rithm to find the path between two points with the minimum energy consumption.
By being aware of the wind map valid for a given altitude, it was possible to choose
a path where the wind was used favorably for energy savings for that flight level.

One of the most important meteorological constraints for UAS mission planning
is atmospheric icing. This hazard is also called in-cloud icing and occurs when
an airframe travels through a cloud containing supercooled liquid droplets. When
these droplets collide with the airframe they freeze and result in surface icing that
grow over time into ice horns that can significantly alter the wing shape. Even small
ice accretions have been shown to be able to decrease the aerodynamic performance
of a wing dramatically [14] [93].

The icing hazard is a well-researched topic for general aviation, but little attention
has been given to this topic until the recent years for UAS – although the issue
has already been identified during the 1990s [124]. UAS icing is in many ways
similar to icing on large aircrafts, but also exhibits significant differences when it
comes to flight velocities, airframe size, mission profiles, and weight restrictions.
In particular, the small UAS typically operate at Reynolds numbers an order of
magnitude lower compared to general aviation which causes differences in the flow
regime [129].

Modeling of icing effects on UAS have shown that icing results in a degradation of
aerodynamic performance. Ice accretions on the leading edge of the lifting surfaces
can decrease lift, increase drag, and initiate earlier stall [130]. The degree of the
degradations seems strongly linked to the prevailing meteorological conditions. In
addition, icing has also shown to have detrimental effects on static and dynamic
stability. In summary, icing is a severe hazard, especially for small UAS, and it is
common practice to avoid flying in icing at all costs.

An icing protection system (IPS) can be used to mitigate this restriction of the
flight envelope. In the scope of this work an electro-thermal system designed at the
Norwegian University of Science and Technology will be investigated [127] [66]. This
system consists of heating zones on the leading edge of the lifting surfaces that are
activated when the aircraft enters an icing cloud. The IPS can run in two different
modes. In anti-icing mode, the system will continuously heat the leading edge to
inhibit the build-up of any ice. In de-icing mode, the systems operates in a cyclic
way, allowing for the accumulation of a small amount of ice over a time of 90 s,
followed by the removal of the ice by activating the heating zones for 30 s. Typically,
the de-icing mode will require lower power requirements compared to anti-icing,
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but will also results in performance degradation during the ice accumulation cycles
[49].

As weather conditions often varies for geographic location and altitude, it is im-
portant that the path planning algorithm is able to allow altitude changes in dur-
ing flight. Consequently, the terrain profile must be taken into consideration and
treated as an obstacle by the algorithm. This was previously implemented by [113],
where the PSO and Parallel GA optimization techniques were compared when used
to find the best trajectory by minimizing a cost function based on the path length
and average altitude, including a penalization in the cases when the path has parts
under the terrain.

Electric batteries have variable potential according to the remaining capacity. [138]
presented a simple model for open-circuit potential determination. With this model,
it is possible to calculate the battery potential with respect to the current being
drawn. Lately, [44] derived the model equations to calculate the rate of discharge
for a constant-power.

In this study, a path planning algorithm is proposed to find an optimal path be-
tween a chosen origin and destination allowing both changes in course and altitude.
This optimization is performed by an unique algorithm that simultaneously process
several factors, some of which are novel and others that are normally individually
studied by the literature. These factors include: the icing protection system usage,
which is a very novel solution that enables sUAS to fly under icing conditions;
horizontal wind, that is a major issue on sUAS operations and has only recently
been studied; terrain profile, that is a fundamental factor that has already been
included in many studies; the aircraft performance model, which brings more re-
alistic and accurate calculations of the propulsion required power according to the
aircraft platform and environmental parameters; and battery discharge properties,
which is a relevant factor as sUAS are typically powered by electric batteries and
the discharge rates vary according to the remaining capacity. Therefore, this work
contributes to the field by proposing a tool that can be used to plan the sUAS
mission and to evaluate the different possible scenarios, in order to assist the deci-
sion making. In addition, to demonstrate its applicability, this work also brings the
analysis of the proposed solution for a mission scenario using real sUAS platform
parameters and real terrain and weather data.

3.2 Aircraft performance model

In this chapter the aircraft performance model is presented with the equations
required for the calculation of the required power to propel the aircraft in given
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atmospheric conditions and for a desired maneuver.

3.2.1 Pressure

The pressure (p in [Pa]) is calculated from the aircraft altitude by using the baro-
metric formula with subscript 0, that is valid from sea level up to 11000 m of
altitude:

p = p0

[
T0

T0 + L0(h− h0)

] g0M
RL0

(3.1)

where h is the altitude in [m], p0 is the standard pressure at sea level of 101325
Pa, T0 is the standard temperature at sea level of 288.15 K, L0 is the standard
temperature lapse rate for subscript 0 of -0.0065 K/m, h0 is the altitude at sea level
of 0 m, R is the molar gas constant of 8.314472 Jmol-1K-1, M is the molar mass
of Earth’s air of 0.0289644 kg/mol and g0 is the gravitational acceleration at sea
level of 9.80665 m/s2. The values of the constants are taken from the International
Standard Atmosphere (ISA) mean sea level conditions [106].

3.2.2 Air Density

The density of air (ρ in [kgm-3]) is an atmospheric property which significantly
affects the aerodynamic forces. To calculate the air density, the ideal gas law is
used:

ρ =
p

RdT
, (3.2)

where p is the pressure in [Pa] given by Eq. 3.1, T is the air temperature in [K]
and Rd is the specific gas constant for dry air of 287.058 Jkg-1K-1.

3.2.3 Power Required

For steady, unaccelerated flight, the power required is calculated through:

Preq = (D +Wsin(θ))va (3.3)

where Preq is the required propulsive power in [W], va is the airspeed in [m/s], D
is the drag force in [N] given by Eq. 3.4, W is the aircraft weight in [N] and θ is
the climb angle in [rad].
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Figure 3.1: 2-D representation of an aircraft in a straight flight.

Hence, when the aircraft is cruising (θ is equal to zero), this results in sin(θ) being
equal to zero. In this case, the weight is normal to the drag force and tangent to the
lift. As the drag force is dependent on the body’s size (e.g. the wing surface), the air
density and the airspeed, the equation for drag force D is derived by dimensional
analysis following the Buckingham’s π-Theorem:

D = 0.5ρv2aSCD (3.4)

where ρ is the air density in [kgm-3] given by Eq. 3.2, va is the airspeed in [m/s], S
is the wing surface area in [m2] and CD is the drag coefficient, given by Eq. 3.7. For
an aircraft equipped with propellers, the motor’s required power (Preq) is obtained
dividing the required propulsive power by the propeller efficiency (ηp):

Preq =
Pshaft
ηp

. (3.5)

For a pure descent slope, for which no propulsion power is required, the aircraft’s
motor is assumed to be completely shut off and the on-board systems, except for
the icing protection systems, are assumed to use insignificant amounts of energy.
Therefore, the energy consumption in this case is assumed to be equal to the energy
consumption of the icing protection requirements. However, the maximum descent
angle needs to be chosen so that sufficient lift is provided for airspeed values that
are in the range of predefined accepted values of the desired airspeed.

Aerodynamic Coefficients

To be able to calculate the drag force, which characterizes the power required to
propel the sUAS, it is necessary to first calculate the drag and lift coefficients
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(CD and CL respectively). In common A-to-B missions the aircraft is expected to
primarily be flying in a horizontal straight flight, and performs a limited amount
of turns. These turns depend on the path optimization, however the turns denote
on a relatively small part of the entire path. Therefore, the effects of turns (circling
flights) are not considered in the following calculations. This holds valid for "A-to-
B" missions, and not for other mission types, such as loitering.

In addition, and with respect to the mission profile, the aircraft is assumed to follow
a steady motion flight path, trust angle is zero, and the angle of attack is small,
typically ranging between -4 and 10 deg. The lift coefficient for straight flight is
given by [53] as:

CL =
2W cos(θ)

ρSv2a
, (3.6)

where va is the airspeed in [m/s], W is the aircraft weight in [N], θ is the climb
angle in [rad], ρ is the air density in [kgm-3] given by Eq. 3.2 and S is the wing
surface area in [m2].

In this study, the drag coefficient (CD) as a function the lift coefficient (CL) was
derived by a curve fitting process that aims to find a polynomial equation that
represents the drag polar, typically acquired from wind tunnel experiments or
Computational Fluid Dynamics (CFD) simulations. To derive a valid polynomial
equation, it is necessary to first define the range of the lift coefficient where the
equation will be valid. This domain can be calculated by finding the lowest and
highest lift coefficient (CLmin

and CLmax
), respectively, for the mission and aircraft

constrains, such as minimum and maximum accepted airspeed (va), minimum and
maximum accepted climb angle (θ) and minimum and maximum air density (ρ).
CD is therefore a function of CL:

CD = f(CL), (3.7)

where f is the fitted function.

3.2.4 Ground speed

The airspeed is defined as the speed of the aircraft with relation to the mass of
air in which it is flying. In this research, the airspeed is considered tangent to the
aircraft’s heading. Therefore, when the aircraft climbs or descends, it is possible to
calculate the projection of the airspeed on the horizontal axis (Fig. 3.2), with the
assumption of the absence of vertical wind, by:
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vh =
√
v2hx

+ v2hy
, (3.8)

with x and y components of the horizontal airspeed (vh) given by:

vhy = va cos(ψ) cos(θ),

vhx = va sin(ψ) cos(θ),
(3.9)

where va is the airspeed in [m/s], ψ is the heading in [rad] (Eq. 3.11) and θ is the
climb angle in [rad].

Figure 3.2: Representation of side view of the aircraft.

The presence of wind affects the aircraft’s travelled trajectory (Fig. 3.3). The trav-
elled trajectory is subject to the aircraft’s ground speed (vgs in [m/s]), which is
the aircraft’s speed relative to the ground and calculated by:

vgs =
√

(vhx
+ vwindx)2 + (vhy

+ vwindy )2, (3.10)

where vh is the horizontal airspeed in [m/s] and vwind the wind speed in [m/s].

The heading (ψ) is the direction where the aircraft points to, given by:

ψ = χ− arcsin

(
vwind

va sin(ψwind − χ)

)
, (3.11)

where the course (χ in [rad]) is the travelled direction relative to the ground, with
the wind speed given by:
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Figure 3.3: Wind triangle in coordinated flight.

vwind =
√
v2windx + v2windy , (3.12)

and with the wind heading (ψwind in [rad]) given by:

ψwind = arctan2(vwindx , vwindy ). (3.13)

3.3 Battery performance model

Modern electric batteries have become dominant power sources within sUAS, mainly
because of their simplicity, and relatively high peak power output. Common bat-
tery types, such as lithium-based cells, are rechargeable and durable, which makes
them suitable for sUAS operations. Electric batteries’ energy potential changes ac-
cording to the remaining capacity. [53] modelled the battery potential (Voc in [V])
based on [138] as (Fig. 3.4):

Voc = Vo −

(
κCcut

Ccut − C

)
+Ae−BC , (3.14)

where Ccut is the capacity discharged at cut-off in [Ah], C is the capacity discharged
in [Ah], A = Vfull−Vexp and B = 3/Cexp where Vfull is the fully charged potential
in [V]. Additionally, Vexp is the potential at the end of the exponential range in [V],
and Cexp is the capacity discharged at the end of the exponential range in [Ah],
with the Polarization Voltage (κ in [V]):

κ =
(Vfull − Vnom +A(e−BCnom − 1))(Ccut − Cnom)

Cnom
, (3.15)
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where Vnom is the potential at the end of the nominal range in [V], Cnom is the
capacity discharged at the end of the nominal range in [Ah], and with battery
constant potential (Vo in [V]):

Vo = Vfull + κ+ (RCIeff )−A, (3.16)

where RC is the internal resistance in [Ohms] and Ieff is the effective discharge
current in [A].

Figure 3.4: Battery discharge curve. (Source: [138])

In this study, the power is considered constant during the discretization step, and,
therefore, the effective discharge current is the variable to be calculated. As a result,
the Trembley’s equations were manipulated to accommodate obtaining the effective
discharge current for a given power. From Ohm’s law, the effective current (Ieff
in [A]) is given by:

Ieff =
Peff
Voc

, (3.17)

with the potential (Voc in [V]) being obtained by solving the nonlinear equation:

V n+1
oc −

(
Vfull + κ−A− κCcut

Ccut − C
+Ae−BC

)
V noc −RCI1−nratedP

n
eff = 0, (3.18)
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where n is the battery-specific Peukert’s constant and Irated is the maximum bat-
tery rated current in A.

Note that to obtain the potential (Voc), it is necessary to solve the nonlinear Eq.
3.18. The valid solution will be in the range from the cut-off potential (Vcut) to the
fully charged potential (Vfull).

3.4 Meteorological and elevation data

This work aims to allow sUAS operations in adverse weather conditions. Therefore,
meteorological forecast data needs to be considered. This data is used in the calcu-
lation of the total aircraft energy consumption, as it affects the aircraft’s in-flight
performance. Additionally, the meteorological conditions define when the icing pro-
tection systems are to be used, and how much power is required to mitigate the
adverse effects of aircraft icing. Finally, the elevation data is of importance as the
path planning algorithm optimizes the sUAS’ altitude, and therefore it is vital to
ensure a minimum terrain clearance in the aircraft’s planned path.

3.4.1 Meteorological parameters

In Table 3.1 the downloaded parameters are shown. The wind and air temperature
parameters are implemented directly in the form that they were supplied in. Other
parameters were modified due to unit compatibility for usage in the calculation of
other parameters, as described in the following sub-sections.

Table 3.1: List of downloaded parameters.

Parameter Description Units
vwindx Meridional wind in x direction m/s
vwindy Meridional wind in y direction m/s
T Air temperature K
q Specific humidity kg/kg
LWC Atmospheric cloud condensed water content or Liquid Water Content kg/kg

Relative Humidity

The specific humidity parameter can be downloaded from the meteorological ser-
vice. However, in this work, the parameter used in the calculations is not the specific
humidity but the relative humidity. This is because the aircraft is assumed to be
in icing conditions and turn on the icing protection system when the temperature
is below 0 deg C and the relative humidity is over 0.99. Therefore, the relative
humidity (H) needs to be calculated and it is given by [46]:
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H =
ea
esat

(3.19)

with the vapour pressure (ea in [Pa]):

ea =
qp

0.622 + 0.378q
(3.20)

where q is the specific humidity, p is the pressure in [Pa] given by Eq. 3.1 and with
the saturated water vapour pressure (esat in [Pa]):

esat = 10
0.7859+0.03477(T−273.16)

(1+0.00412(T−273.16)) + 2 (3.21)

where T is the temperature in [K].

LWC and MVD

The "mass fraction of cloud condensed water in air" can be also referred as "liq-
uid water content (LWC)". In the icing protection system regression model, the
LWC is one of the input parameters to estimate how much power is required by
the system. The regression model uses the LWC concentration in [gm-3] but the
downloaded parameter is the LWC mixing ratio in [kg/kg]. Therefore, to convert
LWC mixing ratio (LWCm in [kg/kg]) to LWC concentration (LWCc in [gm-3]),
the gas law for dry air is used:

LWCc =
LWCmp

RdT
× 103, (3.22)

where T is the temperature in [K], Rd is the specific gas constant for dry air of
287.058 Jkg-1K-1. and p is the pressure in [Pa] given by Eq. 3.1. The Water Droplet
Median Volume Diameter (MVD in [µm]) is another parameter used to calculate
the power required by the icing protection system. It is approximated by following
[134] and given by:

MVD =
3.672 + µ

λ
, (3.23)

with the shape parameter (µ) given by:
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µ = min

(
1000

Nc
+ 2, 15

)
, (3.24)

where Nc is the pre-specified droplet number of 100 cm-3 and with:

λ =

[
π

6

ρwNc
LWCc

Γ(µ+ 4)

Γ(µ+ 1)

] 1
3

, (3.25)

where Γ is the gamma function, ρw is the density of water of 1 gm-3 and Nc is
equal to 100x10-6 m-3.

Meteorological data download

The Norwegian Meteorological Institute hosts a webapp called THREDDS Data
Server, where it is possible to have access to weather forecasts of several meteorolog-
ical parameters. One of the services is the MetCoOp Ensemble Prediction System
(MEPS) [101], from where the parameters used in this work were downloaded. This
service provides data for the Scandinavian region with horizontal resolution of 2.5
km and from around 0.00986 to 0.99851 atm pressure levels (that can be converted
to altitude) divided into 65 not equally spaced values. In the MEPS service, raw
and post processed data are available for 10 ensemble members (set of forecast
simulations) and for up to 66 hours of forecast. The models are run every 6 hours
(00,06,12,18 UTC) and the first data file (00) is the most complete one and the
only file containing all the necessary parameters for the development of this work.
Therefore, the 00 file was downloaded for the esemble member 0 (mbr0) and the
data from the forecast time slot 0 was used in the simulations. The time slot 0
reflects the instant information of the chosen date/time while the other time slots
are hourly forecast.

The files are available in the Network Common Data Form (NetCDF) format and
each file is up to 200 GB. However, it is possible to select which parts to download
by using the Open-source Project for a Network Data Access Protocol (OPeNDAP).
Therefore, the selected parameters can be downloaded only for the region of interest
and for the desired pressure levels (altitudes).

3.4.2 Elevation data

The elevation data was downloaded from the Norwegian national website for map
data (geonorge.no). Geonorge provides a catalog with a wide variety of map prod-
ucts, including elevation maps. These elevation maps are in the form of Digital

37



3. Long range path planning using an aircraft performance model for battery
powered sUAS equipped with icing protection system

Terrain Model (DTM) or Digital Surface Model (DSM) and can be visualized in
the website or downloaded via WCS or WMS services. In this work, the DTM was
used, which is available with 1 m and 15 m of resolution for the regions correspon-
dent to UTM32, UTM33 and UTM35.

Elevation data download

To download the data with the WCS service, the web browser can be used as the
WCS client. Therefore, the data is requested via HTTP through URL parameters.
The commands to be used are: GetCapabilities; DescribeCoverage; and GetCov-
erage. The first one returns all service-level metadata and a brief description, the
second one returns the full description and the third one returns the data itself.
The URL parameters varies according to the product and are usually described in
the information obtained by the GetCapabilities and DescribeCoverage commands.

3.5 Path Planning

The goal of this work is to find an optimum three dimensions path minimizing the
energy consumption of a long range sUAS flight from an origin to a destination in
adverse weather conditions. To achieve this an optimization technique is used to
minimize a given cost function.

3.5.1 Optimization technique

In this study the Particle Swarm Optimization (PSO) [34] technique is used to
minimize the cost function and therefore find the optimum path. PSO is a meta-
heuristic optimization method where the particles (solutions) are updated every
iteration based on the best global and local solutions. In this study the standard
PSO was used with a modification to reduce the maximum absolute particle velocity
by an ε factor. This was implemented to keep the search more local, and thereby
avoiding too large movements in the solution domain per iteration, as it may be
expected that the optimum solution is relatively close to the straight line path.

3.5.2 Optimization algorithm

The algorithm’s block diagram is shown in Fig. 3.5. The orange blocks scenario-
based input parameters, such as the meteorological and elevation data, the origin
and destination, the number of control inputs and the PSO parameters. The other
boxes outside the blue box are part of the pre-processing phase when the model is
created and the initial solutions are generated.
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The blue box contains the optimization loop. First the candidate solutions are
evaluated with respect to the terrain. If part of the path is under terrain, the
solution is discarded (cost = ∞). If not, the optimization will evaluate the icing
conditions for each discretization step i.

If icing conditions are present in the step i (Hi > 99% and Ti < 0degC), the deice
and anti-ice required power are calculated (Pdeicei and Panti−icei , respectively). For
the deicing operations the engine’s required power is calculated with an updated
drag coefficient (C∗Di

), which constitutes the average icing penalty, and therefore an
updated required propulsive power P ∗reqi . For the anti-ice operations the aircraft’s
wings are kept clear from icing. Therefore the engine’s required power is the same
as without ice (Preqi). However, the anti-icing system does require thermal energy.
In this study the anti-icing system uses the main battery as power source (i.e. does
not have a separate power source), and therefore induces a performance penalty
during usage. The total power required by the deice and anti-ice systems, including
the respective engine’s required power, are compared and the solution that requires
the least total power is chosen. If there are no icing conditions present the total
required propulsion power remains unchanged (Preqi).

The next step is to calculate the battery energy consumption in the step i taking
into consideration the battery model and how much battery capacity is left. Fi-
nally, the total battery energy consumption is calculated by summing the battery
energy consumption times the flight time of all steps. The total battery energy
consumption is, therefore, used to update the particles’ position in the domain.
The new solutions are then evaluated. This process repeats for the chosen total
number of iterations.

3.5.3 Cost Function

The aim of the optimization algorithm is to minimize a cost function (Eq. 3.26),
which represents the total energy consumption and is calculated by the sum of the
battery discharge rate (Ċ in [Ah/s]) in each discretization step, multiplied by the
time in each discretization step:

minimize Ctot(Ċ, t) =

N∑
i=1

Ċiti (3.26)

where Ċ and t are the vectors with all Ċi and ti, respectively. Ctot is the total
discharged capacity in [Ah], i is the index of the discretization step, N is the
number of discretization steps in the path, ti is the time in [s] at the i-th step given
by:
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Figure 3.5: Algorithm block diagram.

ti = Lstep/vgsi , (3.27)

where vgsi is the ground speed in the discretization step i in [m/s] given by Eq.
3.10, with the step’s length (Lstep in [m]) given by:

Lstep(L) =
L

N
, (3.28)

and with the total length of the path (L in [m]) given by:

L(x,y) =

N∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (3.29)

where xi and yi are east and north positions in the ENU frame and i is the index
of the discretization step.

The the rate of discharge (Ċ in [Ah/s]) given by:

Ċi =
Itoti
3600

, (3.30)

with the total current (Itot in [A]) given by:
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Itoti =
Ptoti
Voci

, (3.31)

where Voc is the battery’s potential in [V] (Eq. 3.18) and with the total required
power (Ptot in [W]) given by:

Ptot = Preq, (3.32)

if there are not icing conditions occurring, or

Ptot = P ∗req + Pdeice, (3.33)

when there are icing conditions occuring, and the deice solution is the one requiring
the least power, or

Ptot = Preq + Panti−ice (3.34)

if there are icing conditions, while the anti-ice solution requires the least power.
Here, Preq is the engine’s required power in [W] (Eq. 3.3), P ∗req is the engine’s
required power when using the deice solution in [W] (Eq. ??), Panti−ice is the anti-
ice solution required power in [W] and Pdeice is the deice solution required power
in [W]. Finally, Ci is the total capacity discharged in [Ah] until instant i and given
by:

Ci =

i∑
i=0

Ċiti, (3.35)

where Ċi is the vector of Ċ from Ċ0 to Ċi and ti is the vector of t from t0 to ti.
C0 is the initial discharged capacity.

Note that when parts of the path are not above the terrain, or if the total energy
consumption is higher than the battery’s capacity, this candidate solution receives
an infinite penalty to ensure it is disregarded as a candidate solution.

3.5.4 Control inputs

The required control inputs are horizontal plane waypoints (x,y), airspeeds (va)
and climb angles (θ). The number of waypoints (O) and airspeeds/climb angles
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(K) are chosen by the user when defining the scenario. Note that the airspeed and
climb angle changes were chosen to occur at the same time for algorithm simplicity.

3.5.5 Model and Mission Parameters

ENU frame

The ENU frame was chosen as the coordinate system of the optimization algorithm.
Therefore, all information in World Geodetic System 1984 (WGS84), which is in
the format of latitude, longitude and altitude, must be converted to the ENU
frame. Also, the resulting waypoints of the optimized solution must be converted
to WGS84 in order to be fed into the sUAS’ flight control system. In this work,
when using the ENU frame, the x axis points east, the y axis points north and
the z axis points up. It is also necessary to define the origin (0,0,0) of the ENU
frame. As the region around the origin is less affected by the frame conversion
error, the origin was chosen to be in the geographical midpoint between origin and
destination at sea level.

Domain

The candidate solutions’ waypoints are limited to be away from the straight path
up to a maximum distance. This maximum distance was defined as one third of the
length of the straight path between the origin and destination. Therefore, the opti-
mization algorithm can only find candidate solutions containing waypoints within
this domain region.

The boundaries of airspeed (va) and climbing angle (θ) must also be defined ac-
cording to the aircraft platform’s constraints. In addition, these boundaries should
be fine tuned for values around the expected optimization resulting values, in order
to achieve faster convergence.

Discretization strategy

The cost function (Eq. 3.26) is evaluated for each discretization step of the path
and the total cost is the sum of the energy consumption in each step. Therefore
the number of steps will affect the resolution of the optimization algorithm, and
the processing time. The number of discretization steps (N) is defined by the
multiplication factor (F ) and the number of airspeed and climb angle changes (K):

N = KF − 1 (3.36)
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These parameters are presented for a scenario example in Fig. 3.6. In this example,
A is the origin and B is the destination. There is one waypoint between origin and
destination (O = 1). There are three airspeed and climb angle changes (K = 3),
and three of multiplication factor (F = 3). Therefore there are eight discretization
steps (N).

Figure 3.6: Example of a path and its division.

Additionally, the first particle in the PSO algorithm has to be initiated with a
candidate solution. A good candidate initial solution for the first particle is a
straight path from origin to destination, climbing with constant climb angle to the
altitude a few meters above the highest peak, then cruising close to the destination,
and finally descending with constant negative climb rate to the destination.

Also, the other particles (candidate solutions) of the population must be initiated.
To not distract the optimization algorithm from the region around the first candi-
date solution, which is expected to contain an optimal solution, the particles are
chosen to be variations of the first particle following the exponential probability
distribution. Therefore, the values of the set of variables of the other particles are
close to the values of the first initial solution set of variables.

3.6 Case study

In this section, the chosen mission case and operational profiles that were evaluated
are described, and the aircraft and battery parameters used in the optimization
algorithm are explained.

3.6.1 Aircraft platform

The P31016 (Fig. 3.7) is a small battery-powered aircraft that is powered by a
6.0 kilowatt brushless motor. The propulsion efficiency (ηp) is assumed constant at
50% with discharge parameters as specified in the next section. The aircraft has
a wing surface (S) of 0.81 m2 and has a typical mission-ready weight of 171.5 N
(W ).
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Figure 3.7: P31016 concept battery-powered fixed-wing unmanned aircraft

Based on the aircraft flight envelope, the airspeed (va) was set ranging from 20 m/s
to 30 m/s, and the climb angle (θ) ranging from -10 to 10 degrees. Considering the
aircraft performance these limits were chosen to avoid the optimization algorithm
explores too high climb angles and airspeed.

The aircraft performance data was generated with the flow solving module FEN-
SAP, which is part of FENSAP-ICE [6]. Three-dimensional CFD simulations were
performed on the P31016 (Fig. 3.7) at Reynolds number (Re) of 1.2×106 with
angles of attack (AOA) corresponding to the set envelope limitations and using a
numerical setup described in Table 3.3. The results for drag and lift of the P31016
are presented in Fig. 3.8. The simulations indicate that the flow separation starts
from the trailing-edge at AOA of 8 deg. Drag forces increase unproportionally after
the onset of stall, whereas lift is decreased as the separation intensifies with higher
AOAs.

This data was used to fit the drag polar curve (Fig. 3.9). The curve was fitted for a
lift coefficient range calculated based on the aircraft and mission constrains. These
constrains are: minimum and maximum airspeed (va), minimum and maximum
climb angle (θ) and minimum and maximum air density (ρ). The air density was
calculated according to the minimum and maximum expected relative humidity
(H), temperature (T ) and pressure (p) in the meteorological data. The minimum
and maximum resulting lift coefficient for these constrains were 0.3436 and 1.0371
respectively. The fitted curve of the drag polar for this range is given as:

CD = 0.1407C2
L − 0.07989CL + 0.02496, (3.37)

where CL is the lift coefficient and CD is the drag coefficient.
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Figure 3.8: AOA (Angle-Of-Attack) vs CD and CL from CFD simulations

3.6.2 Icing protection System model

The power requirements for de-icing and anti-icing, as well as the performance
penalties during de-icing are generated using numerical simulation methods. Two
icing codes are used for this. LEWICE is an icing code that has been developed
by NASA over several decades for general aviation [150]. It is a widely validated
code [151], but it has been shown that there may be limitations for the application
of small UAS [63] [64]. The code is based on a panel-method, that can simulate
ice accumulation, anti-icing, and de-icing with very low computational resources.
ANSYS FENSAP-ICE is an icing code using modern computational fluid dynamics
(CFD) methods [58]. The code is very flexible and has in the past been used for UAS
applications [59] but still lacks a dedicated validation for icing at small Reynolds
numbers [65].

In this work, the LEWICE is used to generate a model for the anti-icing and de-
icing loads, whereas FENSAP-ICE is used for the de-icing performance penalties.
The low computational requirements of the panel-method of LEWICE allow to
simulate a large number of different meteorological icing conditions in short time,
in the order of minutes on a typical desktop computer. The same computations
would take several days on a high-performance computing (HPC) cluster with
FENSAP-ICE.
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Figure 3.9: Drag polar fitted curve

A total of 112 different icing cases have been simulated with LEWICE to generate
a dataset for anti-icing with LEWICE. The boundary conditions of the meteoro-
logical cases are based on the icing envelope of 14 CFR Part 25, App. C [38] used
for the airworthiness certification of commercial aircrafts. The simulation cases
cover the intermittent maximum (IM) icing and continuous maximum (CM) icing
envelope. The range of values for each icing parameter is shown in Table 3.2. Sim-
ulations were performed in 2D using the mean aerodynamic chord (MAC = 0.275
m) of the wing. For all simulation it was assumed that only 20% of the leading-
edge area of the lifting surfaces was protected (surface temperature of +5 deg C).
Runback icing, generated by the refreezing of melted ice from the heated zones,
was not included in this study. This was done for reasons of simplification and
lack of dedicated studies of runback icing on UAS. Runback icing itself may be a
significant source of aerodynamic performance degradation of any IPS [148].

Table 3.2: Range of values for each icing parameter

Parameter Range of values
Airspeed [20, 30, 40, 50] m/s
Angle of attack AOA [0] deg
Chord c [0.275] m
Temperature TC [-2, -5, -10, -30] deg C
Median (droplet) volume diameter MVD [15, 20, 30, 40] µm
Liquid water content LWC concentration [0.04 ... 2.82] gm-3
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The de-icing power requirements have been assumed to be 60% lower than the
anti-icing loads. In contrast to the anti-icing, the minimum power requirement
for de-icing can not be directly simulated with a steady-state assumption. This
means that transient simulations that prescribe a power supply to the leading-edge
is required. Such simulations were carried out with LEWICE and confirmed that
the aforementioned assumption provides sufficient power for successful de-icing.
It should be noted however, that this assumption is a gross simplification, but is
deemed sufficient for the purpose of this work.

The 112 simulation cases from LEWICE for the anti-icing and de-icing power re-
quirements (Panti−ice and Pdeice, respectively) were used to generate linear models
that are used for the path-planning optimization. Forth order linear regression mod-
els were used and have been found to be able to predict the power loads depending
on airspeed (va in [m/s]), temperature (TC in [deg C]), Liquid Water Content con-
centration (LWCc in gm-3) and Median Volume Diameter (MVD in [µm]) with
good accuracy (R2= 0.977).

The data for the de-icing performance degradation was obtained with FENSAP-
ICE in 2D and then extrapolated for the entire aircraft. First, 90 s of ice accretion
were simulated with FENSAP-ICE with the numerical parameters specified in Ta-
ble 3.3. The degradation of lift and drag was then averaged over a full de-icing
cycle of 120 s. Again the 14 CFR Part 25, App. C icing envelopes (CM & IM) were
applied. In order to reduce the number of simulations, only the cruise velocity of
25 m/s and a single MVD of 20 µm was considered.

Table 3.3: Numerical parameters setup

Parameter Setup
Flow conditions Steady-state, fully turbulent
Turbulence model Spalart-Allmaras
Droplet distribution Monodisperse
Artificial
Viscosity

Second order
Streamline upwind

The aerodynamic degradation occurring during de-icing is presented in Fig. 3.10.
A linear model (Eq. 3.38) was selected for the drag (R2 = 0.81).

C∗D = CD + CD(0.0785 LWCc + 0.4973). (3.38)

Therefore, the required power to propel the aircraft when the de-icing solution is
used needs to be calculated using the degraded drag coefficient (C∗D):
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P ∗req =
(0.5ρv2aSC

∗
D +Wsin(θ))va
ηp

. (3.39)

(a) LWC [gm-3] vs ∆CL [%] (b) LWC [gm-3] vs ∆CD [%]

Figure 3.10: Degradation on lift and drag.

Battery parameters

The P31016 is assumed to be equipped with a commercial 10-cells LiPo battery with
26.4 Ah capacity (Ccut). Following Tremblay’s model, the potential parameters of
a 10-cells LiPo battery are approximately: 41.8, 39.67 and 37.67 ampere-hour of
fully charged (Vfull), end of exponential range (Vexp) and end of nominal range
(Vnom) respectively. The capacity parameters are approximately: 2.64 and 20.4
ampere-hour of end of exponential range (Cexp) and end of nominal range (Cnom),
respectively. In addition, from the battery’s manual it is found that the internal
resistance (Rc) is 0.015 Ohms and the maximum rated discharge current (Irated)
to be 660 ampere. The potential curve of this battery with respect to the capacity
discharged for 10 ampere of constant current is shown in Fig. 3.11.

Note that for all cases, the battery was assumed to be fully charged in the beginning
of the mission. Therefore, C0 (the initial capacity discharged of the battery) was
assumed to be equal to 0 Ah.

3.6.3 Mission Case

The region of Northern Norway was chosen for the evaluation of the proposed solu-
tion. The meteorological and elevation data were obtained for the area of the white
rectangle of Fig. 3.13. In this area, one mission case was defined to be investigated
and the weather of the date of 20th of January of 2019 was chosen as the reference
weather. For this area and date, the parameters of liquid water content concentra-
tion (LWCc in [gm-3]) and temperature in deg C are related as shown in Fig. 3.12
if icing conditions are met.
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Figure 3.11: Battery potential versus capacity discharged

Figure 3.12: LWCc and temperature distribution.

Operational Profiles

For the mission case, twelve different operational profiles (OP) were evaluated as
described below.

Note that all the operational profiles start at 250 m of altitude, regardless of the
altitude of the take off spot. Therefore, it is assumed that before starting the
autopilot, the aircraft will be taken by the pilot to 250 m of altitude. Also, when
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Figure 3.13: Mission case.

reaching the destination, the aircraft must be landed by the pilot. Take off and
landing maneuvers are not considered in this work.

The straight path for the initialization is assumed to have constant airspeed of 28
m/s, which is around the value of the best cruise airspeed for the P31016.

• OP 01: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under no
icing conditions.

• OP 02: Optimized path without considering icing conditions. Evaluated under
no icing conditions.

• OP 03: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under no icing conditions.

• OP 04: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under no icing conditions.

• OP 05: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under icing
conditions, using deice or anti-ice (best option) when needed.

• OP 06: Optimized path without considering icing conditions. Evaluated under
icing conditions, using deice or anti-ice (best option) when needed.
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• OP 07: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under icing conditions, using deice or
anti-ice (best option) when needed.

• OP 08: Optimized path without considering icing conditions. Evaluated under
icing conditions, using only anti-ice when needed.

• OP 09: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under icing
conditions, using only anti-ice when needed.

• OP 10: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under icing conditions, using deice or anti-ice (best option)
when needed.

• OP 11: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under icing conditions, using only anti-ice when needed.

• OP 12: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under icing conditions, using only anti-
ice when needed.

3.7 Results

Table 3.4 show the results for the mission case, where the sUAS flies from Oldervik
to Bursfjord. In icing conditions, the operational profile seven has the lowest battery
energy consumption (7.05 Ah), as expected. Compared to the operational profile
one, which consumes 14.82 Ah of battery, it brings a reduction of 52.43 % on the
battery energy consumption. Also, in this mission case, if only the anti-ice is used
and the sUAS is flying straight (OP 09), the battery energy consumption is equal
to 20.54 Ah, almost three times more than the optimized path that both deice and
anti-ice are available. This is due to the absence of path optimization and to the
fact that the anti-ice system requires more power.

In addition, if the path is optimized without taking the ice into consideration,
the expected battery energy consumption is of 6.28 Ah (OP 02). However, if the
sUAS actually experiences icing conditions during this flight, the battery energy
consumption is of 10.74 Ah (OP 06), against 7.05 Ah when the path is optimized
taking into consideration the weather forecast (OP 07). Therefore, this shows the
importance of using the weather information to optimize the path.

All optimized paths were longer than the straight path. Also, the flight time was
slightly longer in all cases. This is due to the fact the optimization takes the wind
into consideration so it is able to change the path to find a better wind profile

51



3. Long range path planning using an aircraft performance model for battery
powered sUAS equipped with icing protection system

Table 3.4: Mission case operational profiles results

Straight
Opt.

without
ice

Opt.
with

anti-ice

Opt.
with
deice

Eval.
with

anti-ice

Eval.
with
deice

Battery
Cons.
[Ah]

Length
[km]

Time
[min]

Length
in ice
[km]

Time
in ice
[min]

OP 01 x 8.08 91.47 44.68 0.00 0.00
OP 02 x 6.28 91.82 45.59 0.00 0.00
OP 03 x x 6.52 97.49 49.80 0.00 0.00
OP 04 x 6.65 94.84 50.36 0.00 0.00
OP 05 x x x 14.82 91.47 44.68 49.39 23.32
OP 06 x x x 10.74 91.82 45.59 34.89 16.27
OP 07 x x x x 7.05 97.49 49.80 3.90 1.96
OP 08 x x 14.32 91.82 45.59 34.89 16.27
OP 09 x x 20.54 91.47 44.68 49.39 23.32
OP 10 x x x 7.09 94.84 50.36 3.79 1.71
OP 11 x x 7.46 94.84 50.36 3.79 1.71
OP 12 x x x 7.48 97.49 49.80 3.90 1.96

and/or to change the airspeed accordingly. Therefore, the flight duration is longer
but the battery energy consumption is lower.

Figure 3.14 shows the straight path (OP 05) and Fig. 3.15 the optimized path (OP
07) of the mission case. It is possible to notice that in the optimization, the path is
optimized so that the ice is avoided when possible by placing it under or above the
icing clouds (blue dots). Also, when close to the destination, the descent maneuver
is started as soon as possible, so energy savings are enhanced.

Figure 3.14: Straight path.

The two peaks on the battery consumption (Fig. 3.16) between 5 and 10 minutes
and between 35 and 40 minutes are due to the icing conditions. In the first moment
that the sUAS is flying under icing conditions, the power required by the deice
system is 477 W and the increase on the power required to propel the aircraft is
184 W, totalizing 661 W. The increase on the propulsion required power is due
to the drag coefficient penalty. If the anti-ice solution was used, where there is
no penalty on the drag, the required power would be around 1150 W. Therefore,
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Figure 3.15: Optimized path.

the deice solution requires less power in total (deice system plus propulsion power).
The predominance of the deice solution over the anti-ice will repeat in almost every
case investigated in this work. This is due to the mission constrains and to the fact
that, according to the deice and anti-ice regression models used in this work, the
anti-ice will only have an advantage in maneuvers with high drag.

Figure 3.16: Battery Consumption.

Finally, Fig. 3.18 shows the optimized airspeed along the path (OP 07). It is possible
to notice that the airspeed is kept around the known best cruise airspeed of the
aircraft, which is around 28 m/s.

It should be noted that several simplifications have been applied to some of the
simulation input of this study regarding the icing protection system and icing effects
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Figure 3.17: Battery Discharged.

Figure 3.18: Airspeed of optimized path.

that may have a significant influence on the overall results:

• No runback icing effects

• Simplified de-icing load calculation

• Simplified simulation of the aerodynamic degradation during de-icing

These simplifications were introduced in order to limit the amount of expen-
sive computational simulations. Since this work is focussing mostly on the path-
planning method, these simplifications were considered sufficient for this study. For
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future work, a greater level of detail can easily be included to the required input
data.

3.8 Conclusion

This chapter presented a path-planning algorithm for small UAS equipped with
icing protection systems. An aircraft performance model was used to calculate the
power required to propel the aircraft. A battery model was also included in the
calculations to give a more precise battery consumption. The goal of the algorithm
was to find an optimum path that uses the least energy, taking into consideration
the atmospheric parameters, such as wind, liquid water content, relative humidity
and temperature of a given time. Climb/decent angles, airspeed and waypoints were
the optimization variables. The investigated mission case was to fly between two
towns in Northern Norway in a given date of the winter season. Twelve operational
profiles were compared and the proposed solution, that takes the icing conditions
into consideration when optimizing the path, achieved 52% of battery savings when
compared to the standard straight path, proving itself to be a very useful solution
for path-planning in icing conditions. In addition, it was verified that, for the sUAS
used in this work, the deice solution will require less power to protect the sUAS
from icing in the majority of situations, compared to the anti-ice solution.
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Long-range Flight Performance and
Safety
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Chapter 4

Contingency Path Planning for
Hybrid-electric UAS

This chapter presents a path planning optimization method which aims to mitigate
the risks in the event of a critical engine or generator failure in hybrid-electric
UAS. This is achieved through continuous determination of the optimum flight
path, based on the remaining battery range and expected local wind conditions.
The result is a dynamically adjusting flight path which ensures the aircraft to
remain within range of pre-specified safe landing spots. The developed algorithm
uses the Particle Swarm Optimization technique to optimize the flight path, and
incorporates regional wind information in order to increase the accuracy of the
expected in-flight performance of the aircraft.

4.1 Introduction

Hybrid-electric power trains used by long-range fixed-wing unmanned aerial vehi-
cles often employ an internal combustion engine as the main source of power. It is
witnessed that the internal combustion engine often is a critical point of failure. In
such an event a functioning electric motor may still be able to propel the aircraft
for a short period by utilizing the remaining battery capacity.

In an effort to contribute to the current scientific search towards path safety within
autonomous decision-making, this chapter proposes a new method for contingent
path planning optimization. The main goal of this study is to derive a method for
autonomous path planning which ensures that the aircraft is able to reach a safe
landing spot in the event of a critical engine or generator failure. This is done while
taking into consideration the presence of expected local winds and their effect on
the obtainable battery range. The resulting optimum path is found by applying
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the technique of Particle Swarm Optimization (PSO) [34].

In recent scientific literature path planning algorithm methods are described which
use local wind information. In [1], the author integrates the uncertainty of the wind
field into the wind model, and uses a Markov Decision Process for path planning.
The goal was to minimize the power consumption of the aircraft and minimize
time-to-goal. A similar approach was chosen in [77], where the technique of Ant
Colony Optimization (ACO) is used to find the path which minimizes the travel
time considering the wind. However, as with most studies the wind is considered
constant during the flight. The ACO is a bio-inspired metaheuristic optimization
algorithm suchlike the Particle Swarm Optimization used in this study. PSO is
widely used for path planning, such as described in [90], where the author uses the
method to minimize the UAS path’s length and danger based on the proximity of
threats.

The study presented in this chapter builds further upon the before mentioned
methods by incorporating a dynamic wind model and translating this into the
real-time in-flight performance of hybrid-electric UAS.

4.2 Aircraft performance model

The resulting achievable flight range is described in the following subsections. This
is illustrated by analyzing the different segments of a flight that suffers a critical
engine or generator failure. The flight segments are divided into normal operations,
battery-powered flight, and unpowered glide.

4.2.1 Aircraft Power Model

For a conventional propeller-driven aircraft in level and unaccelerated flight, the
power that is required for obtaining the maximum flight range is expressed, in
watts, by:

Prmr = W

(
CD
CL

)
min

· vTAS (4.1)

where W is the aircraft total weight in Newton, (CD/CL)min is the minimum
obtainable ratio between the aerodynamic drag and lift coefficients, and vTAS is
the true airspeed occurring at the (CD/CL)min condition.

One advantage of utilizing a hybrid-electric power train is that there is the possi-
bility of co-powering the main drive shaft (continuous or intermittent). Depending
on the sizing of the hybrid system and mission specifications, this may prove to be
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beneficial for the resulting range. A method for determining the achievable range
in the case of co-powering of a hybrid system is described by Marwa in [95]. In the
remainder of this analytical study it is further assumed that a functioning main
generator set is sized so that it is capable of supplying the necessary power required
for maintaining the maximum range cruise speed (vmr). Therefore during cruise it
is given that the necessary amount of co-powering by the electric motor is zero.

4.2.2 Aircraft range - Normal operations

In the case of a hybrid powered aircraft where the electric co-powering equals
zero, the obtainable maximum range may be modelled similarly to conventional
fuel-powered aircraft. The Breguet range equation is a commonly used first-order
approximation to determine the achievable maximum range of a conventional pro-
peller aircraft [39]. When assuming no wind and a parabolic drag polar, the result-
ing maximum range in normal operations (Rno in meters) is expressed by [3]:

Rno =
ηpg
c
·
(
CL
CD

)
max

· ln
(
W0

W1

)
(4.2)

where ηpg is the complete propulsion efficiency of the hybrid system, c is the specific
fuel consumption of the generator in Newtons per second per watt, W0 is the
aircraft’s total weight at the beginning of the cruise flight,W1 is the aircraft’s total
weight at the end of the cruise flight, and (CL/CD)max is the maximum achievable
ratio between the aerodynamic lift and drag coefficients in level and unaccelerated
flight.

4.2.3 Aircraft range - Battery-powered flight

In a situation where the main engine or generator fails, the hybrid system remains
able to supply the power necessary to propel the aircraft by utilizing the remaining
battery capacity. To obtain the performance model the aircraft is considered purely
battery-powered. The adopted method for determining the maximum achievable
range of battery-powered sUAS has previously been described in [72]. The adopted
method in that study is an extension on the classical determination of battery-
powered aircraft range, by including the Peukert effect on the battery capacity. This
allows for a more accurate determination of the aircraft’s battery range [31][136].
When assuming no wind and a parabolic drag polar, the maximum range (Rbp,
in kilometers) for battery-powered sUAS in level and unaccelerated flight, without
the influence of wind, is expressed by:
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Rbp =

 V × C ηpe
W
(
CD

CL

)
min

n(√
2W

ρ∞ S CL

)1−n

·Rt1−n · 3.6 (4.3)

Here V is the battery bus voltage, C is the battery capacity, n is the battery-
specific Peukert constant, Rt is the battery hour rating (i.e. the discharge period
at which the rated capacity C was determined), and ηpe is the propulsion efficiency
of the battery-powered system. The amount of experienced resistance depends on
the specific set-up, and the availability of mitigation systems, such as mechanical
decoupling.

4.2.4 Aircraft range - Unpowered glide

After the main batteries have been drained, the aircraft may be able to fly further by
exchanging its altitude for range. This flight phase is modelled as pure unpowered
glide, depending solely on the altitude (h), and maximum glide ratio (L/D)max.
When the aircraft’s glide angle is moderate the maximum range for unpowered
glide in no-wind condition and for flat terrain is expressed by [4]:

Rug = h

(
L

D

)
max

(4.4)

4.2.5 Effects of Wind

Small unmanned aircraft are often operating in relatively high wind speeds - com-
monly exceeding half of the true air speed. Depending on the speed and direction,
en-route winds may have a significant influence on the obtainable range of the air-
craft. Therefore, in an effort to accurately estimate the maximum obtainable range
of an aircraft, one has to include the wind effects. This study aims to describes a
method for determining the maximum obtainable range, while including the effects
of horizontal winds that are encountered en-route. Note that this wind model shall
be applied to each segment of the flight.

In [61] it is described how the optimum airspeed may be determined when account-
ing for head- and tailwinds. The author states that for propeller-powered aircraft
the optimum airspeed is obtained through:

mbr =
vTAS
vbr

=

 2mbr ±
(
vw
vmd

)
2mbr ± 3

(
vw
vmd

)


1
4

(4.5)
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Herembr is the relative airspeed parameter between the true airspeed and the best-
range airspeed (vbr). vw is the wind speed, with ± indicating a head- or tailwind,
vmd is the minimum-drag airspeed. Solving for mbr yields the optimum ratio to
achieve the best range in the event of head- or tailwind. As Eq. (4.5) only takes
into account head- or tailwinds along the flight path, it is necessary to include
and isolate the crosswind component that may be encountered en-route. When
assuming a flat and non-rotating Earth and flying in level and unaccelerated flight,
the equations of motion through decomposed wind vectors are modelled as:

vGS = vTAS

[
cos φ

sin φ

]
+ vw

[
cos θw
sin θw

]
(4.6)

Here vGS is the aircraft’s ground velocity vector, and θw is the direction of the
wind. The aircraft’s commanded heading (φ) is the sum of the course angle (θ)
and the crab angle (β). Here β is defined as the angle between the TAS vector and
the ground course angle. The wind components perpendicular and parallel to the
resulting ground track, in relation to the reference horizontal path, can be found
by rotating the wind’s x and y components through angle θ, resulting in [147]:

v‖ = vwN cos θ + vwE sin θ

v⊥ = −vwN sin θ + vwE cos θ
(4.7)

Considering the horizontal wind field to be described in the NED (North, East,
Down) frame, then vwE is the decomposed East wind component, and vwN is
the decomposed North wind component. v‖ is the wind component parallel to the
aircraft’s ground course and v⊥ is the perpendicular wind component to the ground
course. In relation to Eq. (4.5) the parallel wind component constitutes the value
for vw.

4.3 Path Planning

In this section, the optimization problem formulation and the cost function that
has to be minimized by the Particle Swarm Optimization (PSO) are presented.
The Apeendix contains a detailed description of the PSO algorithm.

4.3.1 Optimization Problem Formulation

In this study the goal is to find a safe path with the shortest length. Therefore,
the cost function ought to take into consideration both the path’s length and the
safety. Here a safe path is defined as a path in which the aircraft, in the event of

63



4. Contingency Path Planning for Hybrid-electric UAS

a critical engine or generator failure, is within flight range of a pre-specified safe
landing spot.

A two-dimensions geographical approach is used in this work, where the optimiza-
tion variables represent a set of waypoints of the path, with x (North) and y (East)
positions in the NED frame. As the input positions of the origin, destination and
landings spots are given in latitude and longitude coordinates, a conversion to the
NED frame is needed. Besides, to use the result as an input for an Autopilot system
it may be required to convert the waypoints to positions expressed in latitude and
longitude.

The domain has to be defined taking into consideration that the UAV may not
deviate too far from the straight line path between the departure and destination.

To initialize the optimization algorithm, first a straight path from the origin to
the destination is generated - with waypoints distributed equally along the path.
This strategy is crucial, as usually the optimal solution will be a deviation from
this straight path. If only particles initialized with random positions are used,
they might have uncommon waypoints displacement, causing the algorithm to take
longer time to find an optimal solution or to fall into a local minimum.

The stop criteria used is straight forward. The algorithm runs until it reaches a
pre-defined number of iterations.

4.3.2 Cost Function

Always flying within range of a safe landing spot may not always be desired (or
realistic), since this may cause the path to be too long. For that reason a cost
function (f) is proposed that employs a method for weighing the importance of
the safety against the importance of the path length. As shown in the following
equation, α represents the weight of the path’s length over the safety. This results
in:

f = (α) length + (1− α)
1

safety
(4.8)

where length and safety are relative values and in this study presented as percent-
ages. The function is calculated based on the minimum length, which is the straight
line between the departure and destination, as per Eq. (4.9), and the maximum
safety, if all points along the path are safe, as per Eq. (4.10).
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length =
current length (Lcur)

minimum length (Lmin)
(4.9)

safety =
number of safe points (nsafe)
total number of points (Npath)

(4.10)

To ensure that the safety is evaluated for the entire path, and not only for the
position of the waypoint, an interpolation is performed to discretize the path into
Npath number of points. The effective flight range using battery power is calculated
to all landing spots that are not further than the maximum range which the UAV
could fly by taking into consideration a vector of wind that would provide the
maximum range, thus, landing spots very far away are not considered in that step
of the algorithm, saving computational power. As the wind might change along the
path between the point and the landing spot, the range is recalculated every Rstep
considering the closest wind vector.

For each point (n), it is evaluated if it is close enough to at least one landing spot
(j). Then one unity is added to the safety result variable, demonstrated by:

nsafe =

Npath∑
n=1

{
1 if (rn1 < d1)||...||(rnj < dj)

0 otherwise
(4.11)

The total length is the sum of the distance between the points of the interpolation:

Lcur =

Npath∑
n=1

√
(xn − xn−1)2 + (yn − yn−1)2 (4.12)

4.4 Case study and Experimental setup

4.4.1 Case Study

The scenario chosen for this simulation comprises the area located to the north
of the Norwegian city of Trondheim (Figure 4.1). For this study the Norwegian
Defence Research Establishment (FFI) made regional wind models available for
calculating wind speeds and directions for different altitudes with the resolution of
2.5 km. The date of the data retrieval was July 5th 2017, with wind information
valid between 03:00PM and 09:00PM of that day. The orange polygon in the figure
illustrates for which region the information was available. The locations of the
origin (A) and destination (B) were chosen so that the maximum length across the
wind model’s specified area was utilized. The straight-line path distance between
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origin and destination is 210 kilometers, illustrated by the red dotted line, and
has a path safety of 72.6%. The safe landing spot locations were manually selected
through studying satellite imagery. The initial cruise altitude is chosen to be 1500
meters, meaning it can pass any mountain the aircraft may encounter within the
specified region.

Figure 4.1: Simulation scenario

4.4.2 Experimental Setup

This case study utilizes the P31015 concept UAV, which is a fixed-wing aircraft in
conventional pusher configuration. In this theoretical study the model shall employ
a hybrid propulsion system with sufficient capacity to allow continuous in-flight
recharging of the batteries - effectively enabling fully charged batteries during cruise
flight. The total propulsion efficiency through the generator (ηpg) is assumed to be
invariable at 28.5% while the specific fuel consumption c equals 383 grams per
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horsepower per hour. The direct electric propulsion efficiency (ηpe) is assumed to
be invariable at 50%. These values lie within range of experimental data found in
[31], [98] and [75]. At the initiation of the cruise phase the aircraft is modelled to
carry 5.5 liters of on board fuel, and to have a fully charged battery with a usable
nominal capacity of 10 Ampere-hours at 44.4 Volts. The total weight of the aircraft
is assumed to be 17.5 kilograms. More detailed aircraft specifications may be found
in [72].

The theoretical maximum obtainable range of the aircraft at any point in time
during the cruise phase is calculated as the sum of Rno, Rbp and Rug. As Rug is
defined as the maximum obtainable range related to flat terrain, this requires to
be re-evaluated when considering operating in mountainous terrain, such as the se-
lected region for this experiment. The terrain in the selected region is mountainous,
and contains elevated fields nearly as high as the selected cruise altitude. Therefore
the actual obtainable glide range is considered too variant. Thus, in this specific
simulation it is decided to leave out the potential range of unpowered glide, leaving
the sum of Rbp as the maximum obtainable range in case of an engine failure.

4.4.3 MATLAB Code description

A MATLAB script was written to perform the simulation. The main user inputs
are the WGS-84 coordinates of the origin, destination and safe landing spots. The
wind information obtained was previously saved in a .dat file, which is used for
the evaluation of the cost function. The airframe characteristics and battery effi-
ciency, as detailed in previous sections, need to be configured. The optimization
parameters are shown in the next subsection. The script is set up so that it runs
the optimization algorithm until a pre-determined number of iterations is reached.
Figure 4.2 shows a simplified block diagram of the script.

4.4.4 Parameters and Optimization Algorithm

Some parameters need to be defined in the optimization algorithm. Several of these
parameters may strongly affect the convergence speed of the algorithm, and can
prevent it from falling into local minima. Among these are the PSO velocity con-
straint, which was chosen to be attached to the domain in order to be automatically
changed according to the problem; and the initial and final inertia weight, which
were chosen to range from 1.0 to 0.1, to allow a more global search at the beginning,
and a more local search in the course of iterations. However, other parameters can
hardly be modified as they are specified by the user’s requirements, which affects
the processing time. For instance, this is the case with the number of points which
discretize the path (Nsteps). The parameters used in this simulation are presented
in the table below, where the domain is defined by [xmin, xmax, ymin, ymax]:
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Figure 4.2: Overall block diagram

4.5 Results

Figure 4.3 shows the simulation result in the NED frame for a simulation using
α = 0.3. The yellow square and the green star represent the origin and destination
respectively. The red circles are the generated waypoints, while the red crosses
represent the safe landing spots. The path’s discretized points are presented as
black dots. The arrows represent the distance from the point of the path to a
landing spot which the UAS can reach during a critical engine failure. This also
takes into account the effects of wind. What may be observed is that the projected
path is always close enough to at least one of three safe landing spots, resulting
in two landing spots to not be utilized within this scenario. It was found that in
this specific scenario the calculated path has a safety factor of 100%, with a total
length of 215.4 kilometers. This route is 5.4 kilometers longer than the straight
path distance between origin and destination. The convergence of the algorithm is
shown in Figure 4.4, where the vertical axis refers to the Cost Function, Eq. (4.8).

In an attempt to study the effects of the positioning and amount of safe landing
spots, a second simulation was conducted where the first landing spot was removed,
as illustrated in Figure 4.5. Here it is impossible to reach a safety score of 100% due
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Table 4.1: List of parameters

Name Value
Number of itera-
tions

100

Particle velocity
constraint

0.1 x Domain

wini 1.0
wfin 0.1
Nsteps 84
Safe landing spots 5
xmin xs-Lmin/2
xmax xt+Lmin/2
ymin ys-Lmin/2
ymax yt+Lmin/2
Rstep 5 km

Figure 4.3: Result for α = 0.3

to the distance between the landing spots. The grey dots forming a line indicates
the part of the path where the UAS can not reach a landing spot in case of engine
failure. In this specific case it was found that for α = 0.3 the rated path safety was
83.3%, while the path distance had increased to 231.4 kilometers.

In a third scenario where five safe landing spots were placed at different locations,
the simulation for α = 0.3 resulted in a path with length 229.4 and safety of 100%.
When α = 0.7 was chosen, the length was shorter (219.9 km), while the safety was
90.48%.
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Figure 4.4: Algorithm convergence

Figure 4.5: Result without LS1 for α = 0.3

Therefore in this scenario it was found that compared to the straight-line trajectory,
the trade-off for α = 0.3 is 27.4% increased safety against an increase of 19.4
kilometers in path length. When using an α of 0.7, the trade-off was of 17.9%
increased safety against 9.9 kilometers increase in path length, when compared to
the straight-line trajectory.

Figure 4.6 illustrates a magnified part of the path, including the plotting of the
wind vectors (orange arrows). The blue arrows represent by size the range that the
UAS can obtain using the electrical battery from the discretized point of the path
(black dots) to the landing spot (red cross). It may be observed that the wind is
pointing south, resulting in a larger obtainable range when flying North to South,
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compared to flying South to North.

Figure 4.6: Extract of path including the wind vectors

4.6 Limitations

The suggested methods are evaluated through performing simulations. The phys-
ical input parameters, such as the wind, are predicted values based on weather
model simulations. The suggested method does not include vertical winds, nor was
this information available. The aerodynamic and propulsion efficiency parameters
that were used are drawn from a concept aircraft and hybrid system, with assumed
performance characteristics. Although the geographic model is realistic, the safe
landing spots were chosen arbitrarily. All before mentioned limitations may influ-
ence the accuracy of the proposed model, and therefore a verification of the model
may be warranted.

4.7 Discussion

To eliminate the limitations described in the previous section, and to further ver-
ify the proposed model, more simulations are needed. Besides the verification, a
validation through flight test is to be conducted through utilizing an aircraft with
known performance characteristics. One desirable improvement is to optimize the
algorithm to reduce the processing time, so that in-flight real-time recalculation
becomes a possibility.

Though it is beyond the scope of this study, one might consider using a more
sophisticated glide performance model, such as described in [22] which also includes
the effects of turn performance on the achievable range, and consider [41] and [142]
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which describe an optimization method for the in-flight performance in variable
(and altitude dependent) winds.

4.8 Conclusion

In this chapter a method was proposed that aims to increase the operational safety
of hybrid-electric powered UAVs. This was done by taking into account the possi-
bility of direct-electric propulsion in case of main generator failure. It was demon-
strated that the aircraft’s projected flight path can be adjusted so that it remains
within range of pre-specified safe landing spots. This is done while taking into ac-
count the pre-calculated effects of winds that are encountered en-route by including
an altitude-dependent wind model. As it is not always possible (or desirable) to
have a completely safe path, the proposed method includes a cost function in which
the user may specify the importance of path safety over the path length. A first
simulation (α = 0.3) with arbitrarily picked safe landing locations shows a path
safety of 100%, while having a total path length of 215.4 kilometers. This is op-
posed to the straight path distance of 210.0 kilometers which offers a path safety
of 72.6%. In this instance it is concluded that the trade-off may be an increased
path safety of 27.4% at the cost of a longer path length of 5.4 kilometers. In a
second simulation (also α = 0.3) one central safe landing spot was removed. This
simulation resulted in a path safety of 83.3%, while having a total path length of
231.4 kilometers. The trade-off may be determined through a similar approach. A
third scenario was tested where the five safe landing spots were placed at a differ-
ent location, while α was chosen to be 0.3 and 0.7. In this scenario it was shown
that compared to the straight-line trajectory the trade-off made for α = 0.3 is
27.4% increased safety against an increase of 19.4 kilometers in path length, while
for α = 0.7 this is 17.9% increased safety against 9.9 kilometers increase in path
length. The study presented here was a theoretical study based on simulations uti-
lizing hypothetical aircraft systems. To further validate and verify the proposed
methods, a future study with more diverse simulated scenarios is suggested, and
to perform test flights conducted with an aircraft that has known performance
characteristics.
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In-flight Performance and Airframe
Design Considerations
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Chapter 5

Mission Performance Trade-offs of
Battery-powered sUAS

In this chapter a sensitivity analysis is presented on the influence of the weight,
altitude and speed of battery-powered sUAS on the resulting stall speed, endurance
and range. To aid in the determination of the aircraft performance prior to flight,
a method is being brought forth that quantifies the impact of these mission pa-
rameters. As a case study the P31015 sUAS is used. The P31015 is a concept
model of a battery-powered sUAS with a total battery capacity of 977Wh. Since
the aerodynamic model of the aircraft was determined through simulations, and
the specific propulsion set-up is yet to be determined, the case study remains to
be a theoretical approach. The proposed methods and limitations of this study are
applicable to other electric sUAS in similar set-up.

5.1 Introduction

With the recent technological advancements in small Unmanned Aircraft Systems
(sUAS) there has been an increase in the search for suitable applications. Where the
commercial development of a manned aircraft is solely reserved to large specialized
firms, this is not the case for the development of sUAS. The increasing growth of
new sUAS platforms testify to this accessibility to the market. The lower costs and
reduced regulatory complexity allow for smaller firms to enter the market and offer
tailored solutions to the end-user’s specific requirements. With the trend of tailored
designs, there is room for a stronger role of the end-user in the design process. In
these often multi-disciplinary settings there may be challenges in terms of expec-
tations versus technical possibilities [55]. It is the author’s observation that there
is often a knowledge gap on the consequences of altering the mission requirements
and the resulting consequences on the in-flight performance. This study aims to
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contribute to the scientific community by offering a clear overview of the trade-offs
of the in-flight cruise performance characteristics of a sUAS, and perform a sensitiv-
ity analysis on mission-specific flight characteristics. This paper shall demonstrate
its proposed theory through analysis of the P31015 sUAS (Fig. 5.1) as case study.
However, the proposed theoretical model (and limitations) are applicable to any
electric sUAS in similar configuration. The theoretical framework of this article
builds upon the work of Traub [136] and Donateo et al. [31] who studied the effects
of the Peukert-constant and battery discharge rate on the in-flight performance of
sUAS. Currently the P31015 is a conceptual aircraft, with an aerodynamic model
that was approximated through simulations using the AVL software package [33].
The P31015 is an electric-powered sUAS in a conventional pusher configuration.
The sUAS was specifically designed to offer strong wind penetrating capabilities
and low landing speeds. Propulsion for the intended aircraft shall be delivered by
one brushless motor with a maximum shaft power (Ps) of 6kW, while the electric
power shall be delivered by two six-cell LiPo battery packs with a total capacity
of 977Wh.

Figure 5.1: Maritime Robotics P31015 Prototype sUAS

5.2 Flight Envelope

In a level and unaccelerated flight at a given altitude, the net force on the aircraft’s
body equals zero. This requires that the aircraft produces a lift force (L) that equals
the aircraft’s weight (W ), and thrust force (T ) that equals the experienced aero-
dynamic drag force (D). For an electric sUAS the weight is considered constant
during the length of the mission. For sUAS flying in subsonic, level and unaccel-
erated conditions the lift and drag forces are a function of the dynamic pressure
(q∞), wing surface (S) and the specific aircraft’s known lift and drag coefficients
(CL, CD) [4]. This results in:

L = W = q∞SCL (5.1)
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D = T = q∞SCD (5.2)

Where:

q∞ =
1

2
ρ∞v

2
∞ (5.3)

In level and unaccelerated flight the air density (ρ∞) is incrementally constant.
Demonstrated by Eq. 5.3 the dynamic pressure is therefore solely a function of the
free-stream air velocity (v∞). As described by [39], rearranging Eq. 5.1 results in
the following expression for v∞:

v∞ =

√
2

ρ∞

(
W

S

)
1

CL
(5.4)

5.2.1 Available power

Eq. 5.2 expresses that for level and unaccelerated flight the thrust force must equal
the drag force that is experienced by the aircraft. As the efficiency of the propeller
depends on airspeed, the resulting thrust force is a velocity-dependent variable. The
measurement for the propulsion is therefore referred to in power (P ) rather than
force [25][3][52]. Multiplying the thrust force with airspeed results in the following
expression for the available power (Pa):

Pa = ηp T v∞ = ηpPs (5.5)

Today sUAS primarily utilize a fixed-pitch propeller. For the remainder of this
study the assumption is made that for each situation an optimal propeller is in-
stalled to offer an invariant efficiency. Due to a lack of data the total efficiency of
the complete propulsion system (ηp) is assumed to have a constant value of ηp =
0.50. This value lies within the range of the typical propulsion efficiency of a small
sUAS, as described in [141].

5.2.2 Required power

To be able to compare the required power with the available power, one must also
transform the required thrust into the required power (Pr). This is done by mul-
tiplying the required thrust with the velocity component, as expressed in Eq. 5.6.
The required power for level and unaccelerated flight is determined by substituting
Eq. 5.4 into Eq. 5.1 and 5.2. As proposed by [143] this results in the following
expression for Pr:
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Pr = Dv∞ =

√
2W 3

ρ∞ S

C2
D

C3
L

(5.6)

For level and unaccelerated flight a lift force is required that equals the aircraft’s
weight. Eq. 5.6 shows that for one specific aircraft design the drag, and consequently
the required power, are solely a function of airspeed, as CL,CD are speed dependent
variables, and the weight, air density and wing surface are constant parameters.
When plotting Pr against v∞, one illustrates what is known as the aircraft’s power
curve. This curve describes the required power at different airspeeds. With a total
aircraft mass of 17.5 kilograms, or weight W of 171.7 Newtons, a wing surface of
0.81m2 and flying at an altitude of 0m under International Standard Atmospheric
(ISA) conditions (ρ∞ = 1.225kg/m3), the resulting power curve of the P31015 is
shown in Figure 5.2.

Figure 5.2: Power Curve of the P31015 - where ρ∞ = 1.225kg/m3

5.2.3 Minimum airspeed

As the aircraft slows down, it can only maintain altitude by exchanging the lower
airspeed for a higher CL. However, the CL of one aircraft is limited to a maximum,
CLmax

, after which the aircraft will enter a stall. For most aircraft the practical
minimum airspeed is naturally limited to be at the stall speed (vstall) [52]. As
described by [39] the expression for vstall in level and unaccelerated flight can be
obtained by rearranging Eq. 5.1 and Eq. 5.3 into:
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vstall =

√
2

ρ∞

(
W

S

)
1

CLmax

(5.7)

Under the conditions described in the previous section the P31015 has a resulting
stall steed of 13.8 meters per second. In Fig. 5.2 the stall speed and corresponding
Pr are indicated as point (1).

5.2.4 Maximum endurance

Point (2) in Fig. 5.2 corresponds to the minimum amount of power required (Prmin
)

for sustained horizontal flight. When flying at this speed, the electric power con-
sumption per time unit is minimal. Thus the aircraft can stay airborne the longest
on one battery load. This point is defined as the aircraft’s maximum endurance
[3]. This airspeed is relevant for planning long endurance missions. An example of
such a mission could be the surveillance of a static object.

Relating to Eq. 5.6 the required power for flying at the speed that offers the max-
imum endurance is influenced by the aircraft weight, air density, surface, and lift
and drag characteristics. During cruise flight the air density and wing surface are
considered constant. In addition battery-powered aircraft have a constant total
weight during flight [7]. Therefore the remaining variables are the aircraft’s lift and
drag characteristics. By flying at the aircraft’s minimum ratio between C2

D and C3
L,

commonly known as (C3
L/C

2
D)max, the aircraft shall fly at the airspeed where the

maximum endurance is achieved [116]. The corresponding airspeed can be found
by substituting the value of CL into Eq. 5.4. Under the standard conditions, as de-
scribed in the section for the required power, the P31015 has a maximum endurance
of 2.57hr (2hr 34m), at a speed of 20.0 meters per second.

5.2.5 Maximum range

Point (3) in Fig. 5.2 corresponds to the speed and power consumption for achieving
maximum range (Rmax). In contrast to maximum endurance, which aims to mini-
mize the power consumption, the maximum range aims to maximise the trade-off
between power consumption and ground distance covered [3]. This airspeed is rel-
evant for missions that require the sUAS to fly as far as possible on one battery
load, such as an A-B mission or an A-B-A mission. As described by [143] the speed
for maximum range occurs at (Pr/v∞)min and can be found by substitution of Eq.
5.2 and 5.4 into 5.6, resulting in:

(
Pr
v∞

)
min

= W

(
CD
CL

)
min

(5.8)
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Since the aircraft’s weight is considered constant, this resulting expression shows
that the maximum range is achieved by flying at the minimum ratio between CD
and CL, commonly known as (CL/CD)max. The corresponding airspeed can be
found by substituting the value for CL into Eq. 5.4. Under the standard conditions,
as described in the section for the required power, the P31015 has a maximum range
of 214km, at a speed of 25.6 meters per second.

5.3 Effective battery capacity

A typical (but inaccurate) way to determine the flight time of a battery-powered
aircraft is by dividing the specified battery capacity by the current draw. Often
it is assumed that a battery with a capacity (C) of 2Ah, while being discharged
at a rate of 2A, is expected give a flight time of one hour. Similarly the flight
time is often incorrectly assumed to be reduced to half an hour when the battery
is discharged at 4A. In contrast to this method, a higher current draw reduces
the battery’s available capacity [136][31][29]. This behaviour can be assigned to
the so-called Peukert-effect. In [136] it is proposed that when accounting for the
Peukert-effect the discharge time (t) is described by:

t =
Rt
in

(
C

Rt

)n
(5.9)

Where Rt is the battery hour rating in hours, and i the battery discharge current
in Amperes. Here n is the Peukert-constant, which is a discharge parameter that
depends on the battery type, and battery-specific factors, such as temperature, age
and cycles runned [67]. Proposed by [136] the total battery output power (PB) is
then expressed by:

PB = V
C

Rt

(
Rt
t

)n
(5.10)

Where V is the battery voltage. By considering the total battery capacity to be
invariant, and instead modelling the effective power consumption to be increased,
the range and endurance can be determined by solving Eq. 5.10 for different air-
speeds [136][31]. Consequently, the aircraft’s maximum endurance (Emax, in hours)
and maximum range (Rmax, in kilometers) can be determined through:
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Emax =

 V × C ηp√
2W 3

ρ∞ S

(
C2

D

C3
L

)
min


n

R1−n
t (5.11)

Rmax =

 V × C ηp
W
(
CD

CL

)
min

n(√
2W

ρ∞ S CL

)1−n

·Rt1−n · 3.6

(5.12)

The P31015 shall be equipped with a LiPo battery pack with a capacity of 977Ah,
of which the specific model is yet to be determined. Due to a lack of data the
Peukert-constant n of the battery is therefore assumed to have a value of 1.05,
corresponding to the typical value for a lithium-polymer battery pack found in
[31]. This observation corresponds to a 2012 study by Omar [105] where it was
found that the Peukert-constant for Lithium-ion based batteries typically vary
between 1 and 1.09. The value Rt is the discharge time over which the capacity
was determined. It is assumed that the capacity of the battery used in this study
was determined over one hour, thus giving a constant value of Rt of 1.0. Similarly,
for this study the battery voltage during discharge is assumed to be invariable, as
these effects on the mission performance are usually limited, as found in [136].

5.4 Mission Parameters

This paper investigates the mission performance characteristics (stall speed, en-
durance and range) during the cruise phase of a mission. The typical parameters
that a user often changes prior to a mission are the cargo capacity, flight alti-
tude and airspeed. This paper aims to give a better insight in the impact of the
change in these parameters on the mission performance of the aircraft through a
sensitivity analysis. There are several interdependent relationships between these
performance characteristics. The effects on the mission performance shall deter-
mined by analysing the shift of the power curve as the mission parameters change.
These effects shall be discussed individually in the following sections.

5.4.1 Effects of changing Weight

Although a battery-powered sUAS typically has a fixed airframe weight, the choice
of cargo can cause a change in total aircraft weight. To determine how the Pr
versus v∞ curve shifts, it is assumed that with changing total weight the altitude
and aircraft configuration remain constant. Deriving from Eq. 5.4 and 5.6 the
expression for the power curve can be reduced to:
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Pr = constant1
√
W 3 (5.13)

v∞ = constant2
√
W (5.14)

As described by [143], with increasing weight the required power increases with√
W 3, while the airspeed increases with

√
W . However, when also including the

Peukert effect, as determined through by Eq. 5.10, the power curve shifts as illus-
trated in Fig 5.3. This figure shows the power curve at a total weight increase of
50%. Also this figure illustrates the aircraft’s performance sensitivity to changes
in weight on vstall, Emax and Rmax. In addition Table 5.1 lists the sensitivity to
weight by showing the corresponding performance parameters to a fraction of the
original total aircraft mass of 17.5kg (Wf in %).

Table 5.1: Resulting performance at varying weight (Wf as fraction of 17.5kg)

Wf vstall (ms−1) Emax (hr) Rmax (km)

80% 12.3 3.7 272.0

100% 13.8 2.57 214.0

120% 15.1 1.9 175.9

140% 16.3 1.51 149.1

Through Eq. 5.11 and 5.12 an expression can be given for the sensitivity of the
flight performance to the weight by:

• The stall speed is influenced by a factor of
√
W . Note that the aircraft’s stall

speed is not influenced by the Peukert effect. Thus the new stall speed can
no longer be read directly from this resulting power curve.

• The maximum endurance is influenced by a factor of W
−3n
2

• The maximum range is influenced by a factor of W
1−3n

2 .

An important remark is that the increase in weight is considered to be due to
increased cargo weight. Alternatively the weight increase can be caused by an
additional battery. In [136] and [137] a study was performed on the effects of the
battery weight fraction on the in-flight performance in. However this study shall
continue to focus solely on the influence of increased cargo load.
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Figure 5.3: Influence of Weight on Pr, vstall, E and R (n=1.05, ρ = 1.225)

5.4.2 Effects of changing Altitude

The influence of altitude on the performance parameters are evaluated similarly
to that of the weight. To determine the shift of the power curve with increased
altitude, it is assumed that the aircraft weight and configuration remain constant.
As described by [143] Eq. 5.4 and 5.6 can be reduced to:
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Pr = constant3

√
1

ρ
(5.15)

v∞ = constant4

√
1

ρ
(5.16)

Eq. 5.15 and 5.16 demonstrate that with increasing altitude both the required
power and the airspeed shall increase by

√
1
ρ . Similarly to the weight analysis,

when also including the Peukert effect, the power curve shifts as illustrated in Fig
5.4. This illustration shows the shift of the power curve to an altitude of 3.0km,
corresponding to ρ∞ = 0.909 under ISA conditions.

In aircraft designs where the effects of ρ∞ on CL and CD are small, or where the
change of altitude is relatively small, the effects of altitude on the flight performance
can be approximated through:

• The stall speed is influenced approximately by a factor of
√

1
ρ , as previously

described by [143]. Note that similarly to an increase in weight, the aircraft’s
stall speed is not influenced by the Peukert effect.

• The maximum endurance is influenced approximately by a factor of ρ
n
2

• The maximum range is influenced approximately by a factor of ρ
n−1
2 , as

previously described by [136]

Fig. 5.4 shows the approximated values for the aircraft’s mission performance as
a result to change in pressure altitude. In addition Table 5.2 lists this sensitivity
by listing the approximated performance parameters corresponding to a change in
air density (ρ∞) from zero to three kilometers. For the determination of the air
density the ISA model was applied consistently.

Table 5.2: Resulting performance at varying altitudes (ISA)

h in km vstall (ms−1) Emax (hr) Rmax (km)

0km 13.8 2.6 214.0

1km 14.5 2.4 213.5

2km 15.2 2.3 213.0

3km 16.0 2.20 212.4

Note also that, as mentioned before, the theoretical model presented in this paper
assumes an invariant propulsion efficiency. As described in [67] the temperature of
the battery influences its available capacity. As the temperature may drop with
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increasing altitude this could ultimately influence the range and endurance of the
aircraft as the battery cools down.

Figure 5.4: Influence of Altitude on Pr, vstall, E and R (n=1.05)

5.4.3 Effects of changing Airspeed

By deviating from the speed vEmax
or vRmax

, the aircraft will no longer follow the
optimal cruise speeds for respectively maximum endurance and maximum range.
The aircraft’s range becomes solely a function of the achievable endurance, multi-
plied by the corresponding airspeed. The aircraft’s stall speed remains unchanged.
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For level and horizontal flight the required value of CL changes in relation to a
change in speed. Through the aerodynamic model of the aircraft the required air-
speed for sustained level flight can be determined through Eq. 5.4. Then, through
Eq. 5.11 the endurance can be determined for varying airspeeds. Note that this
expression shall now produce the value for E instead of Emax. This is because the
expression no longer utilizes the maximum C3

L/C
2
D ratio of the aerodynamic model,

but simply the C3
L and C2

D values that correspond to that specific airspeed.

Fig. 5.5 shows the aircraft’s mission performance sensitivity to changes in airspeed
expressed in E and R. Table 5.3 shows the new performance parameters corre-
sponding to a change in airspeed ranging van 20m/s to 40m/s kilometers.

Figure 5.5: Influence of Airspeed on E and R (n=1.05)

Table 5.3: Resulting performance at varying airspeeds (interpolated values)

v∞ in ms−1 Endurance (hr) Range (km)

20 2.5 187.5

30 1.89 202.7

40 1.02 141.59

5.5 Limitations and future work

As this paper presents an analytical case study, the validity of the proposed method
is yet to be demonstrated through experimental test flights. Since the study was
conducted on a conceptual design, it was performed with the assumption of an
invariable propulsion efficiency, thus neglecting variances in battery temperature,
voltage discharge effects and propeller efficiency. Anyone considering using these
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presented methods with the purpose of determining the performance of an sUAS,
ought to know the aircraft’s complete aerodynamic model and propulsion efficiency
parameters in order to obtain the correct results.

5.6 Conclusion

A method has been proposed which quantifies the influence of weight and airspeed
on the mission performance of a battery-powered fixed-wing sUAS. In addition a
method has been proposed that, with limitations, approximates the influence of a
change in altitude on the mission performance parameters of the aircraft.
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Conclusion

In this thesis several methods are discussed to increase in the flight performance of
fixed-wing small unmanned aircraft through intelligent path planning. By including
relevant factors that affect the en-route performance, such as winds and icing condi-
tions, it has been demonstrated through simulations that substantial improvements
can be achieved. These findings have been documented in four parts.

The first part of the thesis demonstrated that by including information on forecast
horizontal wind maps into path planning algorithms, substantial energy savings
can be achieved in typical A-to-B missions. The goal of the algorithm was to
find an optimum path that requires the least energy, taking into consideration
the atmospheric parameters. In one instance it was found through simulations
using PSO methods that considering the horizontal wind profile for fixed-altitude
operations, a reduction in required propulsion energy of 4.2% could be achieved.
In another instance, considering multi-altitude and potential icing conditions, it
was found that an aircraft equipped with icing protection system, could obtain a
reduction of up to 52%, when adverse icing conditions were present en-route. An
interesting observation related to the icing protection system is also that en-route
deicing could have a lower energy consumption compared to anti-icing.

In the second part of the thesis, the potential of advanced path planning in re-
lation to operational safety were explored. In this work it was demonstrated that
a hybrid-electrically powered small unmanned aircraft can take advantage of the
dual-propulsive nature of the system, by considering this a redundant propulsion
setup. In case of a critical engine failure the electric motor has the ability to safely
bring the aircraft to a pre-defined safe landing spot. In order to have the air-
craft always (or as much as possible) be in range of such a landing spot, advanced
path planning methods were demonstrated. These include the aircraft performance
model of hybrid-electric propeller aircraft, as well as en-route winds. In cases ex-
plored through simulations using PSO methods it was found that the en-route time
spent in range of a safe landing spot was increased from 72.6% to 100% when a
path was chosen that was 2.6% longer. Other scenarios were described which in
every case quantifies the advantages of such optimization methods.

In the fourth and final chapter of the thesis airframe design consideration for in-
creased in-flight performance were introduced. First a sensitivity analysis was pre-
sented of typical mission planning parameters (aircraft weight, cruising altitude and
airspeed) on the resulting mission range, endurance and stall speed. The battery
discharge effects are included in the analysis. This work provides operators of small
unmanned aircraft with a better understanding and opportunity for optimizing the
airframe for an increased operational envelope.
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Additionally, in the appendix of the thesis work is presented where real-time path
planning optimization methods were described in relation to the aircraft turn per-
formance. The advantages were demonstrated through different applications where
the mission performance depend heavily on the aircraft’s turn performance. Ini-
tially the advantages were demonstrated through simulations using MPC for the
case of multi-UAS airborne communication relaying between a ground station and
unmanned surface vessel. Here the goal was to maximizing the communication
range, while guaranteeing a minimum communication signal quality. It was demon-
strated that, assuming constant wind, through airborne relay methods the signal
strength was above the specified minimum threshold for a significantly longer pe-
riod compared to direct communication. This ultimately effectively extended the
communication range and signal strength. Similarly, the turn performance in path
planning optimization was demonstrated through simulations using MPC for the
use case of real-time multi-UAS Search and Rescue missions. It was found that a
50% probability of success mark in the case of three cooperative airborne systems
was on average achieved 2.25 times faster when compared to a single UAS. Finally,
methods are described for the design and integration of camera gimbal systems.
This also includes considerations relating to in-flight aircraft performance.

Recommendation for future work

• Aircraft performance model: The aircraft performance models presented
in this work are based on existing aircraft: X8 by Skywalker and the PX-31
by Maritime Robotics AS. Non-exact digital models of these airframes have
been used in order to approximate the aerodynamic characteristics using
Computational Fluid Dynamics (CFD) simulations. Although CFD methods
are becoming increasingly more accurate and accessible, for low Reynolds
applications it is difficult to obtain an accurate drag model. Ideally the pre-
sented work is repeated with the inclusion of a more accurate aerodynamic
models, verified through wind tunnel experiments.

• Propulsion efficiency model: Similarly to the aircraft performance model,
the presented work would benefit from an improved propulsion efficiency
model, which was mostly assumed to be constant. This assumption has im-
posed limitations to the accuracy of the research results, and disabled the po-
tential benefits of path optimisation based on variable propulsion efficiency.
Propulsion efficiency tests have been performed in May 2018 in the wind
tunnel located at NTNU’s Fluid Mechanics Laboratory. This was done for
several propellers suitable for the PX-31 airframe, with propellers in the range
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of 22x10. Due to time constraints these measurements were never processed
and integrated into the presented research. However, the data is available by
request to continue the work. The logged data include set motor RPM, mea-
sured motor RPM, motor input voltage and current, ESC input voltage and
current, commanded duty cycle, force balance measurements, wind tunnel
airspeed, ambient wind tunnel temperature, wind tunnel set RPM and wind
tunnel ambient pressure.

• Icing effects model: The aerodynamic effects of wing icing is a complex
case, and in this work has been approximated using CFD methods. This in-
cludes modelling of essential data on the power requirements for the icing
protection system. Ideally the presented work is repeated with an improved
model, based on data obtained in icing wind tunnel experiments. Colleague
researchers are performing such experiments at the moment of writing, and
may publish an updated model. Fellow researchers are encouraged to improve
the proposed simulations by including such updated models.

• Real-time wind measurements: The presented work relies on forecast
wind maps that are either loaded prior to the mission, or intermittently up-
dated during the execution of the mission. Ideally, such forecast models are
complemented with in-situ measurements obtained in-flight by the aircraft.
This creates the opportunity for an increased wind model accuracy. Fellow
researchers are encouraged to integrate such methods, also described in [53].

• Simulations versus field testing: No field test has been conducted due to
time and budgetary constraints. This is arguably one of the biggest drawbacks
of the presented research. Although the researchers have spared neither time
nor effort to set up simulation environments to represent the real world as
good as they could, unfortunately it is practically unavoidable that significant
real world effects are overlooked or otherwise neglected. Ideally, the presented
methods are verified through field testing, under varying conditions.
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Appendix A

Path Planning of Multi-UAS
Communication Relay by
Decentralized MPC

When using Autonomous Surface Vehicles (ASV) in marine operations, long dis-
tances and/or low power transmissions may severely limit the communication be-
tween the ASV and the ground station. One solution to overcome this obstacle is to
use a group of small Unmanned Aerial Systems (UAS) to act as relay nodes, in or-
der to provide a user-defined minimum communication capability. To achieve this,
a decentralized cooperative multi-agent system using fixed-wing UAS with nonlin-
ear model predictive control is proposed, which aims to guarantee a desired signal
strength between the ASV and the ground station. The novelty of the presented
research resides in the inclusion of the aircraft performance model and the effects of
wind, together with the inclusion of the directivity of the antennas. Experimental
results of the proposed method are obtained through simulations.

A.1 Introduction

Utilizing an Autonomous Surface Vehicle (ASV) in maritime missions brings forth
the need for a reliable communication link with sufficient signal strength between
the ASV and the ground station. Although in some cases a direct link can be
used, it is often severely limited in range and affected by the local geography.
Satellite communication can manage longer distances, but can not always be used
due to partial satellite coverage, limited bandwidth or the high associated costs.
An alternative solution is to use autonomous fixed wing Unmanned Aerial Systems
(UAS) to act as communication relay nodes in order to establish a communication
link between the ASV and the ground station. By strategically coordinating the
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UAS’ trajectories, the obtainable communication link can reach the desired signal
strength over a larger distance.

In recent scientific literature, there are several approaches to solve similar problems.
Grancharova et al. [50] used multiple rotary wing UAS to form a communication
network between a base station, a stationary target and a moving target. The au-
thor used RF Signal Propagation, Loss, And Terrain (SPLAT!) for calculating the
communication path losses. The path losses were approximated to linear functions,
and a Model Predictive Control problem was solved by quadratic programming.
Johansen et al. [79] describes the use of one fixed wing UAS as a communica-
tion relay node between a ground station and an Autonomous Underwater Vehicle
(AUV), where the AUV was positioned at the ocean surface. In this reference,
horizontally omni-directional antennas were used. However, in their experiment,
due to the vertical directionality of the antenna beam, the roll angle of the UAS
affects the communication signal power. Kim et al. [81] used multiple autonomous
fixed wing UAS as communication relay nodes for a fleet of vessels using a decision
making algorithm to choose the waypoints which could satisfy Dubins trajectories
and lead to a configuration where the range between the nodes will be less than a
specified minimum communication range. The solution was improved in [82], where
the paths of the UAS were optimized using Nonlinear Model Predictive Control
(NMPC), and the network connectivity was modelled in the context of Mobile Ad
hoc NETworks (MANETs) based on global message connectivity. In this reference,
the change on the directivity of the antenna pattern due to the effect of the attitude
of the UAS was not considered. This made it simpler to model the communication
characteristics, but also made it less realistic. In addition, the method does not
consider the effects of wind or the power consumption of the UAS. Braga et al. [13]
optimized the communication Quality of Service, considering the power consump-
tion and the bandwidth. Here, a simplified power consumption estimation was used,
and, again, the wind and the UAS attitude effect on the radiation pattern were not
considered. In recent studies, Palma et al. [107] performed field experiments using
a UAS as a data mule, i.e. the UAS was used to download and offload data se-
quentially, rather than to uphold a data link. Different protocols were tested where
it is shown that the quality of the communication depends on the protocol being
used. The author also states that the combination between the altitude and loiter
radius, which determines the angle between the nodes, has a significant effect on
the efficiency of data transfer due to the antenna-radiation patterns. Therefore, it
is fundamental to define flight trajectories whilst taking this into consideration.

Dixon and Frew [27] used a decentralized algorithm based on the gradient of Signal-
to-Noise Ratio (SNR) measurements to obtain a cascaded communication chain
between a control station and a moving vehicle. A drawback of their method is
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the limitation in the vehicle dynamics – a cyclic motion is required in order to
obtain an estimate of the SNR – which can result in a non-optimal path. The
authors do not consider power consumption of the vehicles, resulting in a functional
communication relay, but with a reduced duration compared to an algorithm that
considers the power consumption, and has more freedom in vehicle dynamics. Frew
and Brown [43] considered a meshed network of UAV relay nodes. Experimental
data showed that the meshed network improved the range and throughput of the
communication link compared to a static meshed network.

This chapter proposes a solution by using a decentralized nonlinear MPC to opti-
mize the state of multiple UAS to achieve the desired signal strength between the
ground station and the ASV. This is done while minimizing the power consumption
of the maneuvering aircraft in order to maximize the mission endurance. As the
directivity of the antennas is also considered, roll angles of the UAS are taken into
account when determining the signal strength. The proposed solution also takes
into account the effects of wind on the aircraft performance.

A.2 Methodology

A.2.1 Path Planning

Assuming that the path planning problem starts with all the UAS organized on a
network topology (Figure A.1) providing the required transmitter-receiver signal
strength between the ASV and the ground station, the aim of the algorithm is to
optimize the states of the UAS to sustain a signal strength which does not fall
below a preset requirement. A Nonlinear Model Predictive Control (NMPC) [17]
method is used to optimize the airspeed and bank angle of the UAS to achieve the
desired signal strength while minimizing power consumption.

Figure A.1: Network topology

A centralized control system would need to optimize the control inputs of all the
relay nodes, causing significantly increased complexity. With an increased number
of relay nodes the method ultimately becomes unfeasible. Therefore, a fully decen-
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tralized NMPC is proposed in this chapter, where each UAS plans its own path
and attitude, taking into consideration the planned states of the other UAS and
the planned position of the ASV in time. This can only be achieved under the
assumption that the information can be shared between the UAS. Here, the UAS
only needs to be able to communicate with the adjacent nodes.

Assuming that the UAS will fly at a constant altitude maintained by the autopilot,
a two-dimensional kinematic model can be used based on the Coordinated Flight
Vehicle model [117] as:


ẋ

ẏ

ψ̇

v̇a
φ̇

 = f(x,u) =


va cosψ + vw cosψw
va sinψ + vw sinψw

g tanφ
va

uv
uφ

 (A.1)

where x = (x, y, ψ, va, φ) are the North and East positions in the NED frame,
heading, air-relative velocity (airspeed) and bank angle of the UAS, respectively.
vw and ψw are the velocity and heading of the wind and g is the gravity acceleration
of 9.81 m/s2. u = (uv, uφ) are the acceleration control input and the roll rate control
input, respectively.

The model is discretized by the forward Euler method:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk), (A.2)

where Ts is the sampling period.

The overall control problem is decomposed as a unique local control problem for
each UAS node, where each UAS optimizes its own state based on the signal
strength with respect to its two adjacent nodes, while taking into consideration the
planned states of the adjacent nodes. Collision avoidance and power consumption
are also considered.

Considering n UAS (xi,∀i ∈ {1, ..., n}), a fixed ground station (x0) and a moving
ASV (xn+1), the NMPC algorithm finds a control input sequence U ik = {ui0,ui1, ...,uiN−1}
∈ R2×N for the ith UAS, which solves the following optimal control problem:
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minimize δi(x̄iN ) +

N−1∑
k=0

Li(x̄ik,u
i
k) (A.3)

subject to xik+1 = fd(xik,u
i
k) (A.4)

vamin ≤ viak ≤ vamax
(A.5)

φmin ≤ φik ≤ φmax (A.6)

v̇amin ≤ uivk ≤ v̇amax (A.7)

φ̇min ≤ uiφk ≤ φ̇max (A.8)

‖C1(xik − xjk)‖> rc, ∀j ∈ {1, ..., n}\{i} (A.9)

where

δi(x̄iN ) = aJ i(x̄iN ), (A.10)

Li(x̄ik) = aJ i(x̄ik) + buiv
2

k + cuiφ
2

k
, (A.11)

and

J i(x̄ik) = αEi(C2x̄ik) + (1− α)P i(C3xik). (A.12)

x̄ik = [xi−1k ,xik,x
i+1
k ] are the states of the adjacent nodes, N is the number of

horizon steps and rc is the minimum safe distance between the UAS to avoid
collision. a, b, c are constant weighting factors and C1, C2 and C3 ∈ R2×5 are
used to define which state variables of the vehicles are to be considered in the
equations. In case of C1, only the x and y positions should be used, in case of C2,
x, y, ψ and φ are used and in case of C3, only va and φ are used.

C1 =

[
1 0 0 0 0

0 1 0 0 0

]
, (A.13)

C2 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 , (A.14)

C3 =

[
0 0 0 1 0

0 0 0 0 1

]
. (A.15)
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As the main goal of the system is to provide the desired signal strength with the
lowest power consumption, Ei(C2x̄i) through Eq. (A.16) is the difference between
the desired and actual signal strength between the ith UAS and its adjacent nodes,
while P i(C3xi) through Eq. (A.27) is the power consumption function. Finally, α
is a weighting factor that defines how much power can be used to improve the
communication.

A.2.2 Signal strength

The function of the transmitter-receiver signal strength between the ith UAS and
its adjacent nodes is the sum of the difference between the calculated signal strength
and the desired signal strength, for the ith UAS and each of the two adjacent nodes
(Eq. A.16). If the signal strength is equal or higher than the desired one, the error
is considered to be zero.

Ei(C2x̄i) = ∆Erri(C2x̄i)
π
2 − arctan(−β∆Erri(C2x̄i))

π
, (A.16)

where β is the constant which defines how close the curve will be to a conditional
function and ∆Erri(x̄i) is the difference between the desired signal strength and
the minimum calculated signal strength as the following:

∆Erri(C2x̄i) = Pd − P imin(C2x̄i), (A.17)

where Pd is the desired signal strength and P imin(C2x̄i) is the lowest signal strength
between the ith UAS and each one of its adjacent nodes, as the lowest signal
strength is the one limiting the link. To calculate the minimum value between two
elements, the following equation is used:

P imin(C2x̄i) =

0.5(P i−1dBm(C2xi−1,C2xi) + P idBm(C2xi,C2xi+1)−√
(P i−1dBm(C2xi−1,C2xi)− P idBm(C2xi,C2xi+1))2)

(A.18)

where P idBm(C2xi,C2xi+1) = 10 logP i(C2xi,C2xi+1) + 30.

To calculate the signal strength between nodes, the Friis equation [84] is used to
calculate the received power, based on the distance between the nodes and the
directivity of the antennas:
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P i(C2xi,C2xi+1) = Pt ·Di,i+1(C2xi,C1xi+1)·
Di+1,i(C2xi+1,C1xi)·
FSPL(C1xi,C1xi+1),

(A.19)

where FSPL(C1xi,C1xi+1) is the Free-Space-Path-Loss:

FSPL(C1xi,C1xi+1) = (
λ

4πdi(C1xi,C1xi+1)
)2, (A.20)

and Pt is the transmitted power, λ is the wavelength, Di,i+1(xi,xi+1) is the direc-
tivity gain with respect to the position and antenna angle of the ith and (i+ 1)th
nodes, and di(C1xi,C1xi+1) is the distance between nodes:

di(C1xi,C1xi+1) =
√

(xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2, (A.21)

where zi is the constant z offsets of the antennas of the ith node.

The directivities are obtained by the following equation:

Di,i+1(C2xi,C1xi+1) = 4π
F (θ(C2xi,C1xi+1))

Favg
, (A.22)

where F (θ(C2xi,C1xi+1)) is the power radiation pattern of the antenna and Favg
is the average power density over a sphere, given by:

Favg =

∫ 2π

0

∫ π

0

F (θ(C2xi,C1xi+1))sinθdθdγ, (A.23)

where θ(C2xi,C1xi+1) is the angle between the antenna of the ith node and the
body of the (i+ 1)th node:

θ(C2xi,C1xi+1) = arcsin
Rz(ψ

i)Rx(φi)v(C1xi+1 −C1xi)
di(C1xi,C1xi+1)

, (A.24)

where v = [0 0 1] is the reference vector from where the angle θ will be calculated
relative to, Rx(φ) and Rz(ψ) are the rotation matrices in x and y with respect to
the angles φ and ψ [8].
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Rx(φ) =

1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 . (A.25)

Rz(ψ) =

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 . (A.26)

A.2.3 Aircraft power consumption

To obtain an accurate model of the overall system performance, the in-flight per-
formance of the aircraft needs to be considered [53][54]. In this study both the
aircraft’s airspeed and bank angle are being optimized. Therefore it is necessary
for the aircraft performance model to evaluate the in-flight power consumption,
and express the penalty for changing airspeed and performing longitudinal maneu-
vering. For a propeller-driven aircraft in steady flight the consumed power (P ) is
found through:

P =
Dva
ηp

, (A.27)

where D is the aerodynamic drag force experienced by the aircraft, va is the air-
speed, and ηp is the total propulsion efficiency. For level flight the generated lift L
equals the aircraft weight W . However, when the bank angle φ is no longer zero,
the lift force is rotated by an angle φ in relation to the gravity component. This
results in:

L cosφ = W. (A.28)

In this study the loss of lift caused by an increased bank angle is mitigated by
increasing the airspeed. This is done so that a constant altitude can be maintained.
It is therefore necessary to account for the effects of bank angle φ on the required
airspeed va. When considering a coordinated flight the adjusted airspeed for a turn
with constant-CL is found through:

va =

√
2W

ρ∞S

n

CL
= v∞

√
n. (A.29)
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Here v∞ is the required airspeed for level unaccelerated flight in [m/s]. S is the
aircraft’s effective wing surface in [m2], W is the aircraft’s total weight in [N],
and ρ∞ is the air density in [kg/m3]. The initial aerodynamic lift coefficient CL is
determined through:

CL =
2W

ρ∞Sv2∞
. (A.30)

Furthermore, n is the load-factor, which in accelerated flight is larger than zero.
This is defined as:

n =
1

cosφ
=

(
T

W

)(
L

D

)
. (A.31)

In level unaccelerated flight and constant speed level turns the condition applies
that the generated thrust force T equals the drag force experienced by the aircraft.
Assuming a general simplified drag model in a coordinated flight where trim drag
is neglected, and the thrust line is parallel to the airspeed, the drag force D is
obtained through [3]:

D = T =
1

2
ρ∞v

2
aS

[
CD0

+ k

(
nW

qS

)2
]
. (A.32)

Here CD0 is the aircraft’s zero-lift drag coefficient. Finally, k is the lift-induced
drag constant, which is defined as:

k =
1

π AR e
(A.33)

Here AR is the aircraft’s effective aspect ratio, and e is the Oswald efficiency factor.

Figure A.2: Skywalker X8 sUAS - operated by AMOS UAVLab (Source: NTNU)

In this study the Skywalker X8 aircraft is used in the simulations. The X8 (Figure
A.2) is a small battery-powered unmanned aircraft in flying-wing configuration. It
has a wingspan of 2.1 meters with a mission-ready weight of 3.36 kilograms. The
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effective wing surface is approximately 0.74 square meters. Two elevon control sur-
faces are located on the outer wings to provide longitudinal, lateral and directional
control of the aircraft. The aerodynamic lift model that was used in the simula-
tion was based on wind tunnel experiments, which are described in [51], while the
value for k is assumed to be 0.0907. The propulsion characteristics are unknown.
Therefore for the remainder of this study the propulsion efficiency ηp is assumed
to be invariable at 0.5, and the maximum thrust Tmax is assumed to be constant
at 25 N with ideal-battery discharge characteristics.

From Eq. (A.31) and (A.32) it can be observed that as the bank angle increases,
the power consumption increases. The in-flight performance, and consequently the
power consumption, are affected through the required increase in airspeed. It is
important to note that to avoid the aircraft from entering a stall, the maximum
load factor nmax is limited by the available thrust. The thrust-limited maximum
load factor can be found by substituting the maximum available thrust in Eq.
(A.31). Solving for φ yields the thrust-limited maximum bank angle. The minimum
value for the airspeed vstall as a function of load factor n and CLmax

can be found
by inserting the maximum lift coefficient into Eq. A.29. This results in:

vstall =

√
2

ρ∞

W

S

n

CLmax

. (A.34)

Finally, a structural limitation exists. As the structural limit load factor for the
Skywalker X8 platform is not known it is chosen to implement a stricter limitation
for the simulations as further referenced in section A.4.

A.3 System description

Figure A.3: Individual system’s block diagram.
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The simplified block diagram of the control system is shown in Figure A.3. The
Model Predictive Control (MPC) runs inside DUNE [108], which is an open source
robot framework developed by the Underwater Systems and Technology Laboratory
(LSTS) of the University of Porto. DUNE is installed on the onboard computer
and communicates with the ArduPilot board via Micro Air Vehicle Communication
Protocol (MAVLink). When executing the maneuver, the ArduPilot opperates in
Fly-By-Wire-B (FBWB) mode and gets the desired roll and airspeed as Radio
Control (RC) inputs from DUNE.

The MPC is included in a DUNE task. Every time the UAS gets the updated
planned states of the adjacent nodes, it calls the MPC function and, based on
its current state and on the adjacent nodes states, it calculates its own planned
states. In this step, the wind forecast present in a data file is also considered. After
the optimization, the UAS broadcasts its planned states to the other nodes and
sends the commands to the ArduPilot. The coordination of the mission is done
by the dispatch and consumption of Inter-Module Communication Protocol (IMC)
messages. In DUNE, if a IMC message is dispatched by a node, all nodes that are
monitoring that type of message will receive it and run the routine binded to the
reception of that message.

A.3.1 Mission coordination

Figure A.4: Communication between nodes using IMC messages and DUNE Tasks

Each UAS awaits the start of the mission in loiter mode. When the ASV starts
the plan, it dispatches a "PlanControl" message that is consumed by the UAS.
All UAS then start the maneuver and dispatch their planned states considering
the loiter maneuver, except the UAS closest to the ASV and the one closest to
the Ground Station. These two UAS wait for the planned states of their adjacent
nodes and are the first ones to run the MPC. Figure A.4 shows the flow chart of
the IMC messages between the nodes.
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A.4 Simulations

The first simulation (Figure A.5) was done for a scenario considering two UAS to
close the wi-fi link between the ASV and a ground station. The simulation starts
when the ASV is at position [300,300] - 423 meters away from the ground station.
The first UAS starts the mission at position [100,100] and the second one at position
[200,200]. The ASV is moving north with constant speed over ground of 1.6 m/s.

Figure A.5: First simulation scenario. Ground station as a black x, ASV’s path in
black, UAS 1’s path in blue and UAS 2 path’s in red.

It is possible to notice that when the mission starts, the straight link between
the ASV and the ground station has less than -70 dBm, which was chosen as the
desired signal strength as it is the minimum power to establish a wi-fi connection.
Using the UAS, the ASV can progress with the mission for more 8 minutes (or 768
meters north), when two UAS are not capable to provide the desired signal strength
anymore. This means an increase from around 400 to 800 meters of operational
radius around the ground station, resulting in an operational area 4 times bigger.
This increase can be expanded if more UAS are used as relay nodes.

Considering the different limitations of the load factor, the maximum bank angle
φmax is chosen to be restricted to 20o, which offers an associated stall speed of
8.9 meters per second. Therefore the minimum airspeed vamin is defined to be 12.0
meters per second. The other parameters used in the simulation are shown in tables
A.1, A.2 and A.3.

To solve the NMPC problem, Particle Swarm Optimization (PSO) [34] was used.
The algorithm, which is described in Appendix D, was developed using CUDA C
programming language, benefiting from the parallelization to reduce the computa-
tional time. Each optimization takes around 250 ms, proving the algorithm suitable
for real-time applications. The computational time can be reduced if necessary, by
adjusting the horizon and number of steps. This would result in a decrease of the
optimality, but may be beneficial in real environments, as the system will calculate
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the control inputs for a state closer to the state that it was when the calculation
began.

Figure A.6: Second simulation scenario. Ground station as a black x, ASV’s path
in black, UAS 1’s path in blue and UAS 2 path’s in red.

A second simulation was done for a scenario where the nodes were equipped with a
communication system inspired by the characteristics of the Maritime Broadband
Radio (MBR) 144 radio from the company Kongsberg Maritime [83], together with
a 7 dBi antenna with around 25 degrees of HPBW in the elevation plane. This radio
can provide up to 20 km of range [157] for a frequency between 4.90 and 5.85 GHz.
The communication parameters of this simulation were chosen as it is shown in
table A.4 and the results are shown in Figure 6. The ASV starts the simulation
at position [13500,13500] (around 19 km from the ground station) and the UAS 1
and UAS 2 at [4500,4500] and [8000,8000], respectively. Here, the duration of the
mission was set to be one hour. It was found that besides the significant increase
in obtainable communication range, it is also noticeable that the link between the
ASV and the ground station when using the two UAS as relay nodes has a higher
signal strength throughout the duration of the mission.

A.5 Discussion

In the current implementation of the algorithm, the wind is assumed to be constant.
For small a aircraft, however, the wind can have a major effect on the power
consumption. It would therefore be beneficial to use a forecast wind map or local
wind estimations in the optimization algorithm. A proposed method for the forecast
map is to fit an analytic function to a discrete wind map in order to improve the
convergence of the optimization algorithm. Field experiments are also necessary in
order to define constraints for the signal strength variations, that could affect the
overall network capability.

Regarding the number of UAS and the ASV behavior, it is necessary to simulate
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Table A.1: MPC Parameters

Param Name Value Unit
vw velocity of wind 3.0 m/s
ψw heading of wind 0.7 rad
g gravity acceleration 9.81 m/s2

t time horizon 15.0 s
N horizon steps 30 m/s
h altitude of UAS 100.0 m
hN altitude of the ground station 20 m
vamin

minimum airspeed 12.0 m/s
vamax

maximum airspeed 20.0 m/s
φmin minimum bank angle -0.349 rad
φmax maximum bank angle 0.349 rad
v̇amin

minimum acceleration -0.2 m/s2

v̇amax maximum acceleration 0.2 m/s2

φ̇min minimum bank angle rate -1.4 rad/s

φ̇max maximum bank angle rate 1.4 rad/s
rc safe distance between UAVs 50.0 m
a weight of cost function 1.0
b weight of acceleration control 1.0
c weight of bank angle rate control 1.0
α weight of signal strength / power saving 0.99

Table A.2: Communication Parameters of Scenario 1

Param Name Value Unit
β conditional function fitting constant 99999
Pd desired signal strength -70 dBm
Pt transmitter power 100.0 mW
λ wavelength 12.5 cm
HPBW Half-Power-Bandwidth 2.09 rad

scenarios where more UAS are used and that the ASV moves in different patterns
to evaluate the system performance. Simulations using different altitudes for the
UAS should also be considered.

A.6 Conclusion

In this chapter, a communication relay solution was presented. The goal of the
system is to provide a minimum signal strength between the Autonomous Surface
Vehicle and a ground station by using Unmanned Aerial Systems as communication
relay nodes. The system was build to be used with DUNE robotic framework and
was modeled as a Nonlinear Model Predictive Control problem. Simulations show
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Table A.3: Power consumption Parameters

Param Name Value Unit
ηp propulsion efficiency 0.5
W aircraft weight 32.96 N
ρ∞ air density 1.225 kg/m3

CD0 zero-lift drag coefficient 0.125
k lift-induced drag constant 0.0224
S wing surface 0.74 m

Table A.4: Communication Parameters of Scenario 2

Param Name Value Unit
β conditional function fitting constant 99999
Pd desired signal strength -85 dBm
Pt transmitter power 2.0 W
λ wavelength 6.0 cm
HPBW Half-Power-Bandwidth 0.437 rad

that the system is capable to be tested in field experiments and may be a suitable
tool in maritime missions.
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Appendix B

Autonomous Unmanned Aerial
Vehicles in Search and Rescue
missions using real-time cooperative
Model Predictive Control

Unmanned Aerial Vehicles (UAVs) have recently been used on a wide variety of
applications due to their versatility, reduced cost, rapid deployment, among other
advantages. Search and Rescue (SAR) is one of the most prominent areas for the
employment of UAVs in place of a manned mission, specially because of its limi-
tations on the costs, human resources, and mental and perception of the human
operators. In this chapter, a real time path-planning solution using multiple co-
operative UAVs for SAR missions is proposed. The technique of Particle Swarm
Optimization is used to solve a Model Predictive Control problem that aims to
perform search in a given area of interest, following the directive of international
standards of SAR. The solution is able to be embedded in the UAVs on-board com-
puter, using the Ardupilot autopilot and DUNE, an on-board navigation software.
The performance is evaluated in a software-in-the-loop environment with the JS-
BSim flight dynamics model. Results show that when employing three UAVs, the
group reaches 50% of Probability of Success 2.25 times faster than when a single
UAV is employed.

B.1 Introduction

Over the last years, Unmanned Aerial Vehicles (UAVs) are becoming an important
and indispensable tool in a wide variety of applications due to their versatility, low
cost, rapid deployment, among other advantages.
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Search and Rescue (SAR) is one of the fields where the employment of UAVs brings
many advantages over manned missions, such as its reduced costs, lower use of hu-
man resources, and mental and perception limitations of human operators. [121]
was one of the first works to perform experimental tests of a complete autonomous
single UAV SAR solution. A probability density function (PDF) that expressed
the likelihood of the target’s location was one of the main inputs of the system.
Video data from the UAV was transmitted to the ground station, that processed it
in real time using computer vision techniques to detect the presence of the target
and update the PDF. Paths were generated by the ground station to maximize
the probability of finding the targeted object. The experimental flights showed
satisfactory results in searching and detecting the target. The main necessary im-
provements identified by the authors were to implement on-board computing and
to use multiple UAVs in the future.

Search and Rescue missions with autonomous UAVs are usually defined as an ex-
ploration problem. Exploration approaches can be used in a wide range of applica-
tions. For example, ice management, such as proposed by [62], where a Centralized
Model Predictive Search Software was used for surveillance and tracking of ice
using multiple UAVs. In this reference, the optimization finds a set of optimal
waypoints that are sent to the autopilot. The solution was tested in a Software-
In-The-Loop environment and the results were evaluated for a different number
of UAVs. A broad literature review about the persistent surveillance problem was
done by [103] focusing on the use of multiple UAVs. Persistent surveillance is a
type of exploration problem where the areas must be revisited over time. Among
the many topics that the literature review covers, grid decomposition and path-
planning techniques are the ones of the most interest for this work. The author
reviews the most common types of grid decomposition classifying the rectangu-
lar one, that is also used by the enhanced solution proposed by this chapter, as
the most popular. Regarding the path-planning techniques, the author states that
the most common methods are classical search methods such as A* [76], decision
theoretic methods such as Mixed Integer Linear Programming (MILP) [40], and
Spanning Tree Coverage (STC) methods [45]. Model Predictive Control (MPC) is
mentioned as a topic less studied compared to the other planning techniques, but
with significant advantages because it directly incorporate dynamic constrains, it
is less heuristic and can react to changes in the environment.

Model Predictive Control [18] is a receding horizon control technique where the
motion constraints are integrated to the control problem, which is particularly
interesting for problems with fixed-wing UAVs. Also, as the optimization is done
for a finite time horizon, the technique is proper for real-time problems where the
environment can dynamically change during the mission execution. In [126], MPC
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was used for sea Search and Track (SAT) missions using an autonomous UAV.
Hardware-In-The-Loop tests were performed. Waypoints were optimized and sent
to the autopilot. Gimbal attitude was also optimized and sent to the servo system.
The MPC optimization was not run on-board but on a dedicated computer in
the ground control station. In [24], a cooperative multiple UAV solution using
MPC was used to close the communication link between a moving Autonomous
Surface Vehicle and the ground station. Each UAV had to minimize a local cost
function that took into consideration the planned states of the adjacent UAVs. In
[26], a multiple UAVs receding horizon strategy was proposed for a cooperative
surveillance problem. A potential field method was used for collision avoidance
and network topology control management. The cooperative searching model was
established based on the detection probability of the UAVs on targets in cells.
In addition, a forgetting factor was included to indicate how fast the detection
efforts are forgotten, so the UAVs can revisit the areas that were searched before.
Simulations for different parameters were compared. Also, the performance of the
proposed method was compared to the performance of a parallel sequence search.
In [139], a multi-vehicle cooperative search solution was proposed using MPC.
Decoupled, centralized, cooperative and greedy approaches were compared.

In this chapter, a multiple UAVs cooperative Nonlinear Model Predictive Control
solution to search a given area is proposed. The coordinated turn vehicle model is
implemented considering the effects of wind. The search area is divided into cells
and each cell has an associated reward, that in this work is defined according to the
international Search and Rescue directives. The algorithm is fully implemented in
an embedded system to run in the UAV on-board computer and interfaced to the
flight controller board. A Software-In-The-Loop (SITL) environment with flight
dynamics simulations is used to test the solution.

As mentioned, research about the use of receding horizon techniques for exploration
is limited. Also, the solutions found in the literature are developed with simplified
vehicle models, in which the effects of wind are not considered either. In addition,
the solutions are only simulated in environments without embedded programming
restrictions and where vehicle dynamics are not simulated. This makes results not
close enough to what is expected from real-life applications. Implementing the solu-
tion in an embedded software for real-time applications brings additional challenges
such as communication delays, processing time, actuator limitations, among others.
This chapter contributes to the field by filling this gap in the literature.

The main contents of this chapter are the following. First, the exploration Model
Predictive Control problem is detailed including a coordinated turn kinematic
model that takes the wind into consideration. Second, a finite time horizon grid
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search cost function with cells rewards and terminal cost is proposed. Third, the
algorithm is fully implemented in an embedded software and tested in a real-time
SITL environment that also simulates the flight dynamics, bringing results that
are very close to reality. Forth, international SAR directives are used to define the
performance indicators and the mission scenario in order to test the solution in a
relevant case.

B.2 Optimal Control Problem

B.2.1 Coordinated Turn Model

A two-dimensional kinematic model is used based on the Coordinated Turn model
[8] [117] [109] [9] [24]. In this model, the UAV turns by changing its roll angle and
therefore there is no net side force acting on the UAV.

As wind is a major issue on UAV missions as it can likely reach more than half of
the UAV’s maximum airspeed, the Coordinated Turn model used in this project
was developed to consider the influence of wind on the UAV kinematics.

For level flight in the presence of wind:

ẋẏ
χ̇

 = f(x,u) =

 vg cosχ

vg sinχ
g
vg

tanuφcos(χ− ψ)

 , (B.1)

where g is the gravitational acceleration of 9.81 m/s2, x = (x, y, χ) are the north
and east positions in the NED frame in [m] and the course angle in [rad], respec-
tively. u = (uv, uφ) are the airspeed control input in [m/s] and roll control input
in [rad], respectively, and with the ground speed (vg in [m/s]):

vg =
√

(uv cosψ + vw cosψw)2 + (uv sinψ + vw sinψw)2, (B.2)

where vw is the wind speed in [m/s], ψw is the wind heading in [rad] and with the
aircraft heading (ψ in [rad]) calculated using the law of sines:

ψ = χ− arcsin
(vw
uv

sin (ψw − χ)
)
. (B.3)

The model is discretized by the forward Euler method:
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xk+1 = fd(xk,uk) = xk + Tsf(xk,uk), (B.4)

where Ts is the sampling period.

B.2.2 Model Predictive Control Problem

To reach the mission goal, a centralized optimization approach might not be feasible
because the problem would be too complex with too many control inputs. In a non-
convex problem with a very long vector of variables to optimize, falling very early
in a local minima is a common issue. In addition, the necessary processing power
to optimize so many control inputs would be difficult to achieve by the on-board
processing unit of the UAV. In the other hand, optimizing the controls of all UAVs
in a ground station would not be an ideal solution, due to communication range
limitations and because that in case of a communication failure, the UAVs would
not receive its controls, which could compromise the mission.

Therefore, in this research, the problem is addressed as a cooperative control prob-
lem, where each UAV optimizes its own control inputs to update its state so that
a local cost function is minimized. The cost function also takes into consideration
the planned states of the other UAVs. As each UAV follows the same process, it is
expected that the global mission goal is achieved cooperatively. Collision avoidance
between UAVs is also considered.

Considering I UAVs (xi,∀i ∈ {0, ..., I − 1}), the algorithm finds a control input se-
quence U ik = {ui0,ui1, ...,uiK−1} ∈ R2×K for the ith UAV, which solves the following
optimal control problem:

minimize δ(Cx̄K) +

K−1∑
k=0

Li(Cx̄k,uik) (B.5)

subject to xik+1 = fd(xik,u
i
k), (B.6)

vamin
≤ uivk ≤ vamax

, (B.7)

φmin ≤ uiφk
≤ φmax, (B.8)

|C(xik − xjk)| > rc,∀j ∈ {0, ..., I − 1}\{i}, (B.9)

where

δ(x̄K) = F (CxK)− aJ(Cx̄K), (B.10)
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and

Li(Cx̄k,uik) = aJ(Cx̄k) + b(uivk − u
i
vk−1

)2 + c(uiφk
− uiφk−1

)2. (B.11)

Consider uv−1
and uφ−1

as the commanded airspeed and roll angle, respectively,
in the previous optimization loop, x̄k = [x0

k, ...,x
I−1
k ] as the states of all UAVs,

K as the number of horizon steps and rc as the minimum safe distance between
the UAVs to avoid collision. a, b, c are constant weighting factors and C ∈ R2×3

is used to define that only the x (north) and y (east) positions are used from the
state vector:

C1 =

[
1 0 0

0 1 0

]
. (B.12)

The function J represents the grid search function, which is the sum of the rewards
of unvisited cells. F is the terminal cost (cost-to-go) function, which is the distance
from the terminal position to the unvisited cell with highest reward. Both functions
are described in detail in Section B.4.

B.3 SAR directives applied to UAVs equipped with remote
sensing

The Search and Rescue (SAR) consists, according to the Department of Defense
(DoD) of the United States of America, in "the use of aircraft, surface craft, sub-
marines, and specialized rescue teams and equipment to search for and rescue
distressed persons on land or at sea in a permissive environment" [28]. This work
focuses on the sea cases, therefore, the following description emphasizes sea SAR
missions. Also, as only Unmanned Aerial Vehicles (UAVs) are used in this work,
only the directives for aircraft facilities are studied.

B.3.1 Search Area

According to the International Aeronautical and Maritime Search and Rescue
(IAMSAR) Manual [74], the Total Adjusted Search Area (At), which is the mis-
sion’s actual search area, is calculated based on the Total Available Search Effort
(Zta), the Optimal Search Area (Ao) and the targeted Probability of Detection
(POD). The first is a measure of the total area that a set of search facilities can
effectively search within limits of search speed, endurance, and sweep width. The
second is the search area which will produce the highest probability of success
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when searched uniformly with the search effort available and is essentially calcu-
lated based on the leeway and the Datum probable position error. Leeway is the
the movement of a search object through water caused by winds blowing against
exposed surfaces and Datum is a geographic point, line, or area used as a reference
in search planning, such as the "Last Known Position" or the "Estimated Incident
Position".

If the Total Available Search Effort (Zta) is smaller than the Optimal Search Area
(Ao), a strategy must be chosen to balance the Probability of Detection (POD)
and the Total Adjusted Search Area (At). Usually, the chosen strategy is to fly on
higher altitudes, increasing the sensor’s footprint or the crew’s field of view while
decreasing the POD. However, in this work, as UAVs equipped with automated
remote sensing are assumed to be used, resolution requirements usually can not
be relaxed. Therefore, no trade-off between the POD and the search area is made
and the POD is set to its maximum value of one, which makes the Total Adjusted
Search Area (At) equal to the Total Available Search Effort (Zta).

In order to calculate the Total Available Search Effort (Zta), the sweep width (W )
must be defined. When employing UAVs equipped with automated remote sensing
in such missions, the sensor being used has a direct influence on this parameter.
Altitude, view angle and image quality may affect the capability of identifying a
survivor or an object on the sea. This is specially important to be taken into account
because if the image does not contain the object of interest properly recorded, the
computer vision algorithm will not identify it, independently of the ability that
the algorithm has on identifying an important occurrence on an image. This can
occur due to low image quality or too long sensing distances, making the object of
interest imperceptible.

In the IAMSAR manual, the sweep width is calculated based on the altitude of the
aircraft, the visibility and the sensor system specifications. In SAR sea missions
with aircraft facilities and visual search, the Corrected Sweep Width (W ) is ad-
justed regarding the weather, velocity and crew fatigue correction factors. However,
these factors can be excluded from the equation when automated remote sensing
systems are used and the system’s velocity constraints are respected. Therefore,
in this work, the Corrected Sweep Width (W ) is considered equal to the original
Uncorrected Sweep Width (Wu).

Finally, the Search Effort (Za), which represents the area which can be covered by
a specific facility, is calculated by:

Za = V × T ×W, (B.13)
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where V is the Search Facility Speed (average speed) in [m/s], T is the Search
Endurance in [s] and W is the Sweep Width in [m].

Note is that the Search Endurance is the time available for the facility to fly looking
for the survivors. The IAMSAR manual considers this time as 85% of the lower
value between the Daylight Hours Remaining and the On-Scene Endurance. This
is due to the fact that human crew is often only able to search with visible light.
Despite of it, UAVs are often capable to equip sensors that are not affected by that,
such as infrared cameras, which allows the task to be held even along the night. This
is a considerable advantage of using UAVs equipped with remote sensing systems.

By summing the Search Effort of all facilities, the Total Available Effort (Zta in
[m2]) can be found:

Zta =

F∑
f=1

Zaf , (B.14)

where F is the number of facilities.

As described above, in this work the Total Adjusted Search Area (At) is equal to
the Total Available Effort (Zta). Therefore, for Single Point Datum, the Length and
the Width of the search area are given by the square root of the Total Available
Effort (Zta) as defined by the IAMSAR manual.

B.3.2 Probability Map

The Probability of containment (POC) distribution in the search area is very im-
portant to guarantee an efficient employment of the SAR facilities. When the initial
indications do not provide enough information about the area, a standard distri-
bution is assumed. The two most used types of standard distributions are the
standard normal distribution and the uniform distribution, according the nature
of the datum. For datum point and lines, the standard normal distribution is used.
For datum areas, the uniform distribution is the most used. In this work, only the
single point datum is studied. Single point datum occurs, for example, when there
is no significant leeway (e.g. when the target is a person in water [16]).

The probability map is a set of grid cells where each cell is labelled with the prob-
ability of containing (POC) the search object in that cell. As the the probability
map follows a probability distribution function, the total sum of all cells should be
equal to 100%. An example of probability table for single point datum with 12×12

cells is shown in Figure B.1:
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Figure B.1: Initial probability table. Source: IAMSAR Manual

B.4 Cost Function

An exploration cost function was developed based on [139] to search a given area.
The region of interest is divided into M × N square cells of a width (re in [m]),
which value must be chosen to be smaller than the optical imaging sensor’s footprint
radius (Re in [m]) times the square root of 2. The sensor radius is equal to the radius
of the circle inscribed in the sensor’s footprint. Figure B.2 shows an example of a
4× 4 grid with 100 m of cell width (re) and a UAV at position Cx equipped with
a sensor with 100 m of radius (Re).

The matrix Bi ∈ RM×N is used to identify if a cell was visited by the ith UAV.
The matrix bi ∈ RM×N is used to identify if a cell is planned to be visited by the
ith UAV in the MPC horizon. In every M ×N matrix used to identify if the cells
are visited, each element has an associated value of 1 if the referring cell is visited
or 0 if it is unvisited. Each cell has also an associated reward, given by φ ∈ RM×N .
The function J(x̄k) is the sum of all cells associated value (1 or 0) in the step k
times the correspondent reward:

J(x̄k) =

M−1∑
m=0

N−1∑
n=0

φmnymnk
(x̄k), (B.15)

with

ymnk
(x̄k) =(‖Cxk − r1mn‖< Re ∧ ‖Cxk − r2mn‖< Re∧

‖Cxk − r3mn‖< Re ∧ ‖Cxk − r4mn‖< Re) ∨ ymnk−1
,

(B.16)
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where r1mn, r2mn, r3mn and r4mn are the four vertices of the cell (Figure B.2) and
ymnk−1

is the associated value of the cell in the previous horizon step.

Figure B.2: Cells grid example.

The starting value of ymn0
is given by the logical sum of the matrices of already

visited cells of all UAVs and the matrices of cells planned to be visited by other
UAVs:

ymn0
= Bi

mn ∨B
j
mn ∨ b

j
mn,∀j ∈ {0, ..., I − 1}\{i}. (B.17)

Finally, F (xK) is the terminal cost. This function is necessary for the algorithm to
consider the search beyond the prediction horizon by having a cost-to-go term. It
is given as the minimum euclidean distance from the latest state of the UAV in the
horizon, to the center of the closest unvisited cell, weighted by the correspondent
reward, in the end of the horizon:

F (CxK) = min
∀m∈O,∀n∈P

‖CxK − rmnK
‖

φmn
, (B.18)

where O ⊆ M and P ⊆ N are subsets of all unvisited cells and r = [x, y] are the
north and east positions of the cell’s center.

B.5 Embedded System

The path-planning algorithm was implemented as a task in DUNE: Unified Naviga-
tion Environment [108]. DUNE is a software framework that allows the operation
of a wide variety of robots using the same environment. This facilitates the devel-
opment because the communication between DUNE and the different control units
is transparent to the user.
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Regarding the communication with the UAV control unit, it connects DUNE and
the Ardupilot [131] autopilot via MAVLink Micro Air Vehicle Protocol [132]. To
command the Ardupilot, the task must dispatch a message with the desired com-
mand, which will be interpreted by DUNE’s Ardupilot control task and then sent
to the Ardupilot via MAVLink.

The communication between DUNE tasks is done via the IMC: Intermodule Com-
munication API protocol [108], which is also part of LSTS’ toolchain. This protocol
basically works by dispatching and consuming messages. So, if a message is dis-
patched by a task, another task that is waiting for that message will consume
it.

Figure B.3: Simplified embedded system block diagram.

Figure B.3 shows a simplified block diagram describing how the embedded system
blocks are associated. DUNE communicates with the Ardupilot via MAVLink and
with other UAVs and ground station via IMC. The systems must be in the same
network and IP addresses and TCP and UDP ports must be configured.

Inside DUNE resides the MPC task, which is outlined at Figure B.4. The com-
mands to control the UAV are given by the DesiredSpeed and DesiredRoll IMC
messages, which carry, respectively, the airspeed and roll control inputs given by
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Figure B.4: Simplified DUNE block diagram.

the optimization. These messages are interpreted by the Ardupilot control task,
that sends the correspondent MAVLink message to the Ardupilot. The Ardupilot
control task is also responsible for receiving the pose and attitude information of
the UAV and to dispatch it in the IMC messages EstimatedState and Indicated-
Speed. These messages are consumed by the MPC task to be used as the current
state of the UAV.

The communication between the UAVs is done by the multiagent message, which
was created and included in the IMC messages list specifically for this application.
This message carries the information that the UAVs need to share, such as planned
control inputs and current state.

Each UAV waits for the multiagent messages from all other UAVs before running
the MPC optimization. Once all messages are received, the optimization is done
and then the UAV dispatches its multiagent message containing all information
that need to be shared with the other UAVs. This flow is described in Figure
B.5. It is important to mention that the UAV states are predicted according to
the communication and MPC delay and to the planned control inputs before being
used by the MPC algorithm. Therefore, the control inputs that are obtained by the
MPC optimization and sent to the Ardupilot correspond to the predicted state that
is expected to be close to the real state of the UAV after the MPC optimization.

Note that, in an extension of the method, measures can be employed to protect the
system from communication failures, so that the UAV does not wait for delayed
messages for too long.
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Figure B.5: UAV agents flowchart.

B.5.1 Optimization Technique

In this application, the Particle Swarm Optimization (PSO) [34] technique is used
to find an optimal set of airspeed (uv) and roll angle (uφ) that minimizes the
cost function. PSO, which is described in the Appendix D, is a meta-heuristic
optimization method where the particles (solutions) are updated every iteration
based on the best global and local solutions. In this application, a standard PSO
algorithm was implemented using CUDA C programming language in order to
benefit from the parallelism of the Nvidia Graphics Processing Unit that is assumed
to be used in the UAV on-board computer.

The algorithm was set to run a fixed number of iterations on every loop. In addition,
the number of particles must be defined. These two parameters affect the processing
time and need to be fine-tuned according to the requirements.

The initial solutions are initiated with random values following the uniform dis-
tribution, where the minimum and maximum values are the defined boundaries of
the airspeed and roll angle control inputs.

B.6 Software-In-The-Loop environment

To evaluate the proposed solution, a Software-In-The-Loop (SITL) environment
was set up. In this environment, the original Ardupilot and DUNE embedded
software are used. The aircraft platform is simulated by JSBSim [11], an open
source Flight Dynamics Model. Therefore, it is able to compute the UAV dynamics
according to the actuator controls of the Ardupilot.

The JSBSim was modified to use in its calculations the same wind map that is
used by the MPC optimization. Also, an aircraft platform model must be chosen
for JSBSim flight dynamics calculations. In this work, the X8 UAV (Figure B.6)
model [51] was used.
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Figure B.6: X8 UAV. (Source: NTNU)

Figure B.7 shows the interconnection between modules. For each UAV, an Ardupi-
lot SITL instance must be started linked to a JSBSim module. Each Ardupilot
instance uses a different TCP port. Therefore, one DUNE module must be started
for each UAV, set with the correspondent TCP port. Finally, Neptus [108], a com-
mand and control software which is also part of the LSTS’ toolchain, is used to
visualize the UAVs telemetry and location and to give commands to the UAVs,
such as take off, loiter and to start/stop the Search and Rescue mission.

Figure B.7: Software-In-The-Loop setup.

B.7 Mission Simulation Scenario and Parameters

In this section, the parameters that define the mission scenario are described.

B.7.1 Aircraft platform

In this work, the Skywalker X8 UAV (Figure B.6) was chosen to be the aircraft
platform. The X8 is a battery powered small UAV which can fly for around 80
min with the automated remote sensing payload and proper battery. The radius
of the remote sensor is equal to 200 m, which is half of the width of the sensor’s
footprint. This footprint was chosen assuming that a computer vision algorithm,
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such as the one described in [115], can detect the target in images captured at 400
m of altitude by an infrared camera with 7.5 mm of lens focal length, 640 × 480

pixels of resolution and 17 µm of pixel size.

B.7.2 Search Domain

The reference search area used in this work is equivalent to the Search Effort (Za)
of one X8 UAV, calculated by Equation B.13. Considering the total endurance of 80
min, the On-Scene Endurance (T ) is equal to 60 min (85% of the total endurance).
The Search Facility Speed (V ) is equal to the average airspeed of the aircraft, in
this case 16 m/s. The Sweep Width (W ) is equal to 400 m, which is the lateral
length of the required sensor footprint. Therefore, the search area is equal to 23.04
km2, which gives a length and width equal to 4.8 km as the area has a squared
shape because the datum is a single point.

B.7.3 Cells Grid

The grid was built with a cell width of 100 m. Therefore, the 23.04 km2 were
divided into 48× 48 cells.

A two dimensional normal distribution curve was fitted to the single point datum
reference table provided by the IAMSAR manual (Figure B.1).

The fitted curve of the probability (Figure B.8), that gives the reward of each cell
is given by:

φmn = 0.002946 exp
(
−
( (m− 23.5)2

108.28
+

(n− 23.5)2

108.28

))
(B.19)

where m and n are the horizontal and vertical indexes of the cell, respectively.

B.7.4 MPC Parameters

The boundaries and constraints of the control problem were chosen as follows.

The airspeed range was chosen to be between 12 to 22 m/s. The reason for this
choice was to keep the airspeed around the cruise speed, so that the battery con-
sumption does not get too high. The roll angle range was chosen to be between
-45 and 45 degrees so that the aircraft performs smoother maneuvers but still with
freedom. The safe distance between UAVs was chosen to be 100 m and a wind of
9.9 m/s pointing to 45 deg was considered both in the optimization and in the
flight dynamics simulation. The time horizon of 20 s and 20 horizon steps were the
parameters chosen for the MPC problem. With, for example, a ground speed of 17
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Figure B.8: Reward of cells.

m/s, this means 340 m of straight distance, or a 180 deg turn. The weighting factor
a was chosen to be 10000, because the rewards are of a very low value (the sum
of all cells rewards is equal to one). The weighting factors b and c were chosen to
be 0, so the algorithm does not consider the airspeed and roll angle constraints for
aggressive maneuvers. Therefore, the algorithm is free to only consider the search
performance in the optimization.

Regarding the PSO parameters for the optimization, a total of 384 particles was
used and the algorithm runs 35 iterations with local and global coefficients of 1.

B.7.5 Simulation platform

With these parameters, each UAV is able to run the optimization in around 400
ms when 3 UAVs perform the optimization at the same time. The optimization
algorithm was written in CUDA C programming language in order to benefit from
the parallelism, with the goal to embedded it on a NVIDIA Jetson board in the
future for field tests.

The simulations were run in a laptop with the NVIDIA 940MX graphics card,
which has around five times processing power more than the NVIDIA Jetson TX2,
according to performance tests available in the manufacturer’s website. Therefore,
it is expected that the embedded board will also be able to run the optimization
at 400 ms with just a fine tunning of the parameters. Another possibility is to
implement a optimization stopping feature that will run as many iterations as
possible within a given time, instead of a fixed number of iterations.
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It is also relevant to mention that the optimization time was adjusted to 400 ms
also when using only one or two UAVs. This was done by inserting a delay, so the
optimization time in each UAV is the same for simulations when one, two or three
UAVs are used. Therefore, this gives a fair comparison of the results.

B.8 Results and Discussion

Three operational profiles were evaluated for the mission scenario: employing only
one UAV; employing two UAVs; or employing three UAVs. Five missions were
executed for each one of the profiles in order to obtain the average performance.

The reference search area was the Total Adjusted Search Area (At) for one UAV
facility and Probability of Detection (POD) equal to 1, as described in the previous
sections.

The area was kept the same when employing two or three UAVs in order to allow
a proper performance comparison between the profiles. Figure B.9 illustrates one
mission with three UAVs being monitored by the Command and Control software
Neptus. The light red area is the search area and the dark red cross in the middle
is the single point datum.

Figure B.9: Snapshot of a mission with 3 UAVs being monitored with Neptus.

In all missions the UAVs departed from the same region (southeast of the search
area as shown in Figure B.10) where they were loitering and waiting for the com-
mand. After receiving the command, the UAVs departed to the search area and the
mission time started to count from when the first UAV collected the first reward.
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Figure B.10: Snapshot of the beginning of a mission.

The IAMSAR manual describes the Probability of success (POS) as the probability
of finding the search object with a particular search. For each sub-area searched,
POS = POD × POC. It is therefore the way to measure search effectiveness. As
the Probability of detection (POD) is kept at 1, the POS is equal to the POC of
the searched area, which in this work is the sum of all rewards collected by the
group of UAVs.

The boxplot of the time to reach 50% of POS is shown in Figure B.11 for the three
operational profiles: employing one; two; or three UAVs. It is possible to notice
that the gain when a pair of UAVs is used is very significant when compared to
the single UAV profile, reaching 50% of POS 75% faster. When adding a third
UAV, the gain was less significant: on average, the group reached 50% of POS 28%
faster than when employing a pair of UAVs. The decrease on the gain is probably
due to the fact that the UAVs are often flying over areas that have already been
flown. A possible solution to avoid this situation is to reduce the width of the cells,
increasing the resolution of the grid. Therefore, the UAVs would better tune their
maneuvers and still have the cells inside the UAVs’ sensor radius. However, this
will increase the required computational power. This issue could be mitigated by
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optimizing the algorithm, for example.

Figure B.11: Time to reach 50% of Probability of success (POS).

Figure B.12 shows the average POS during 20 min of mission. It is possible to notice
that the results match the observed behavior when the missions were monitored.
From the mission start to around 4 min the UAVs fly to the area close to the
datum, where the reward (Probability of containment) is higher. When two UAVs
are employed, they fly parallel so that they cover more cells than when employing a
single UAV. However, when three UAVs are employed, even if they form a parallel
path, they fly close to each other and, therefore, do not visit more cells than the
pair of UAVs. This happens because in case the three UAVs get far enough from
each other to not visit the same cells, they would take a longer path to arrive at
the central area (highest rewards), not being a cost beneficial solution.

After reaching the area close to the datum at around 4 min, the curve of rewards
collection grows steadily and the difference between the three operational profiles is
clear. When three UAVs were employed, the group reached 50% of POS 2.25 times
faster than the single UAV. The gain, however, reduces over time. For example, to
reach 65% of POS, the group of three UAVs did it 2.04 times faster than the single
UAV. The reason of the decrease on the gain is that the more cells are already
visited and rewards collected, further the UAVs have to fly to visit new cells and
collect new rewards (that are also lower in value). Therefore, the closer it is to
the end of the missions, smaller is the difference between the performance of the
different operational profiles.

Figure B.13 shows the boxplot of the POS after 20 min of mission for the three
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Figure B.12: Average Probability of Success in time.

Figure B.13: Probability of success (POS) in 20 minutes of mission.

operational profiles. According to the IAMSAR Manual calculations, the single
UAV is expected to reach 100% of POS in 60 min. It is possible to notice that the
group of three UAVs is able to reach close to 90% of POS in 20 min, showing that
the improvement of adding extra UAVs is approximately linear.

Finally, a pre-made path where the UAV flies from the origin to the grid midpoint
then flies a spiral path was created (Figure B.14) in order to compare to the
performance of the single UAV with the real-time MPC optimization. This spiral
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path is close to the standard path suggested by the IAMSAR Manual.

Figure B.14: Spiral path.

In the spiral path, the lanes are equally spaced allowing the best coverage by the
sensor’s footprint. This would be the best possible simple standard path for the
mission scenario being investigated. Also, the UAV is assumed to first fly to the
center of the area and then start the spiral path.

Figure B.15 shows that for the same average airspeed of 15.5 m/s, the performance
of the MPC path-planning was superior in the first 20 minutes of mission. Also, in
the spiral path, 50% of POS was reached in around 13 min, while it took less than
11 min when the MPC optimization was used.

In the spiral path, wind was not considered and the UAV keeps the ground speed
constant, while in the MPC path-planning the UAV optimizes its speed to reach
higher coverage, for example reducing the airspeed to achieve a steeper turn when
needed. Another advantage, that is perhaps the most important, is that the MPC
solution has the capability to deal with dynamic changes in the environment and
mission parameters during the mission, as it is a real-time optimization. These
changes can be wind variations, updated search and rescue reports or even the lost
of one UAV in the middle of the mission due to technical problems or the addition
of extra UAVs that arrived later when the mission had already started.
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Figure B.15: Probability of Success.

B.9 Conclusions

In this chapter, a real-time path-planning for search and rescue with Model Pre-
dictive Control solved by Particle Swarm Optimization was proposed. The solution
was implemented on a fully embedded software and tested in a Software-In-The-
Loop environment with flight dynamics simulations. The search area was defined
using the International Aeronautical and Maritime Search and Rescue (IAMSAR)
directives. Also, the area was divided into a grid of cells, where each cell had a
correspondent reward, referred to the IAMSAR’s Probability of containment. Re-
sults were analyzed for missions where one, two or three Unmanned Aerial Vehicles
(UAVs) were employed. To reach 50% of Probability of success, the performance
of the group of three UAVs was on average 2.25 times faster than the single UAV
search. The performance of the single UAV was also compared to a standard search
pattern based on the IAMSAR’s suggested pattern. The search using the proposed
solution outperformed the standard search pattern in the first 20 min, with the ad-
ditional advantage of being a real-time method that can deal with environmental
dynamic changes and new mission directives.
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Appendix C

A Survey of Design Considerations
of Optical Imaging Stabilization
Systems for Small Unmanned Aerial
Systems

Optical imaging systems are one of the most common sensors used for collecting
data with small Unmanned Aerial Systems (sUAS). Plenty of research exists which
present custom made optical imaging systems for specific missions. However, the
research commonly leaves out the explanation of design parameters and consider-
ations taken during the design of the optical imaging system, specially the image
stabilization strategy used, which is a significant issue in sUAS imaging missions.
This paper surveys useful methodologies for designing a stabilized optical imaging
system by presenting an overview of the important aspects that must be addressed
in the designing phase and which tools and techniques are available and should be
chosen according to the design requirements.

C.1 Introduction

The use of small Unmanned Aerial Systems (sUAS) has increased rapidly during the
last years. While some hobby users operate sUAS without any particular purpose,
research institutes and corporations commonly operate sUAS for the purpose of
collecting information about the environment. Environmental data that can be of
interest include readings of the Earth’s magnetic field, elevation data acquired by
a lidar, and various wavelengths of transmitted and reflected light acquired by a
camera system.
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Optical imaging systems are one of the most common sensors used for collect-
ing data with sUAS, and their images can be used to take snapshots of beautiful
scenery, provide situational awareness to an operator during a mission, and in vari-
ous photogrammetry applications. Several commercial off-the-shelf optical imaging
systems for sUAS exist, in particular, for missions with high requirements on the
visual appeal of the images rather than the accuracy of the world time, position,
and attitude of the camera when the image was acquired. This is often the case for
TV and video production, photographers, and hobby users.

Image meta data such as world time, position, and attitude are however of high
importance in many sUAS missions performed by corporations and research in-
stitutes. With the fast development of new sensors and methods to improve the
accuracy and decrease the cost of acquiring this meta data together with a lack
of off-the-shelf customizable imaging systems to test the latest technology with,
many have created their own payloads. Plenty of research exists which present
custom made optical imaging systems for specific missions [37] [? ] [87] [? ] [? ].
The research shows proofs of concept, which can be very valuable since the image
acquisition process is highly complex – experimental data from multiple systems
can show how design parameters affect the data quality in general, or it can be
used to replicate the system for a similar mission. However, the research commonly
leaves out the explanation of design parameters and considerations taken during
the design of the optical imaging system, specially the image stabilization strategy
used, which is a significant issue in sUAS imaging missions. On the other side of the
spectrum, there is research explaining intricate details of the design of inertially
stabilized platforms [69] [96].

The present paper aims to contribute with filling this gap in the literature by pro-
viding useful guidelines and methodology for designing a stabilized optical imaging
system. However, it does not consider more advanced topics for making a finished
product such as structural analysis, or broad, non-specific topics such as software
design. Therefore, the goal of this article is to give an overview of the important
aspects that must be addressed when designing a stabilized optical imaging system
and which tools and techniques are available and should be chosen according to
the design requirements.

This paper is structured as following. In section 2, the main vibration sources
are discussed and the main techniques used to identify and evaluate them, as
well as their effect on image quality. As there are different ways to administer
the vibration issue, the main techniques are presented in the following sections.
First, the mechanical installation of dampers is presented, followed by optical image
stabilization and software solutions. Finally, sections 6 and 7 are focused on gimbal
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design, including the design considerations, followed by the impact of stabilized
image systems on the sUAS aerodynamics. Therefore, in the end, the reader can
make the appropriate choice of which techniques to be explored, according to the
project requirements and limitations.

C.2 Vibration sources and effect

Vibration is one of the main concerns when designing sUAS camera systems: it
potentially adds blur, decreasing the image quality and the potential to distinguish
detail in the image, and consequently has the potential to compromise the entire
mission. Therefore, it is important that the causes of vibration are understood so
that the proper mitigation actions are taken.

C.2.1 Vibration sources in sUAS platform

This section goes through the main sources of vibration in the two main popular
designs of sUAS platforms: fixed-wing and rotary-wing small Unmanned Aerial
Systems. Some sources are shared between them, such as rotors/propellers, and
other sources are fairly unique to each platform (e.g. combustion engine of fixed-
wing sUAS).

Fixed-wing platform

In [92], with the objective to choose the most suitable sUAS for LiDAR mapping,
the authors studied the vibration, capacity, reliability and stability of many sUAS
platforms. With the acquired knowledge about the different platforms, they devel-
oped two sUAS especially optimized for the LiDAR mapping. With respect to the
sources of vibration on fixed-wing sUAS, the authors based their theoretical analy-
sis on a study performed by [94] about positioning errors on LiDAR systems caused
by manned aircrafts platform vibration. In this study, the author enumerates four
main sources of vibration on manned fixed-wing aircrafts: engine; external wind
flow; internal wind flow within open cavities; and (4) airframe structural motions.
Regarding the combustion engine, its noise impinges on the aircraft structures,
causing vibrations mainly on the frequency of the engine’s rotation speed and also
on double frequency, from the reciprocating motion of the piston. The second and
third main sources of vibration are both due to turbulent aerodynamic flow. One
is caused by the flow over external aircraft structures and the other is caused by
the flow and acoustic resonance phenomena within cavities open to the external
airflow. However, according to [140], these vibrations can be considered less sig-
nificant for sUAS due to lower speeds compare to the commercial and military
aircraft. Finally, the fourth main source of vibration pointed by [94] is with regards
to airframe structural motion caused by maneuvers, aerodynamic buffet, landing,
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taxi, etc. Vibration can also be also caused by specific installed items, however,
according to the authors, the effect is only locally on the surroundings of the item.

Rotary-wing platform

Battery powered rotary-wing sUAS have the rotors as the main source of vibra-
tion [156] [144]. In [144], measurements were performed for three setups: motor
without propeller; plastic propeller; and wooden propeller. For the first setup, where
no propeller was mounted, low force levels for both radial and axial vibrations were
recorded, indicating that propellers are the main sources of vibration. In that case,
the frequency of vibration is related to the rotation speed of the rotors/propellers.
According to [156], the second main source of vibration on rotary-wing sUAS corre-
sponds to the vibration of the sUAS’ structure, mainly the platform and extension
arms. However, the frequencies of structural natural frequency vibrations depend
on the sUAS structure. [144] compared numerical simulations of the vibrations on
a hexacopter structure using finite elements (FE) model with experimental results
obtained by the impulse hammer excitation method. The results were satisfactory,
achieving a vibration frequency accuracy between 0.047% and 2.852%. In addition,
a third source of vibration was identified by [156], caused by the vibration of the
payload, such as batteries and other weight sources located on the bottom of the
sUAS.

C.2.2 Vibration effect on sUAS image quality

There is not a significant number of studies about the effect of sUAS vibration
on image quality. [89] investigated the effects of sUAS vibration on Binary Optical
Elements (BOE). BOE is a diffraction imaging element and the diffraction efficiency
can be impinged by the vibration of the platform, affecting the image quality. In
other words, the relative position between the object point and the optical system
changes by the movement of the platform, deteriorating the quality of the image.
Therefore, the study simulates the effect of one dimension sinusoidal vibrations
with different amplitudes and frequencies on an image with pixel size of 9 µm and
integration time of 20 ms (Figure C.1). First, different amplitudes at a constant
frequency of 50 Hz are applied (Figure C.2). For 5 µm of amplitude, no significant
changes on the quality can be noticed. For 10 µm of amplitude, the image quality
is affected, however, a more significant degradation is noticed on the edges of the
image than on its center. For 20 µm of amplitude, the whole image gets blurred,
and for 40 µm of amplitude, the image quality is heavily affected.

Figure C.3 shows the result when the same vibration amplitude (15 µm) is applied
to the image, but with different frequencies. There are not significant differences
between Figure C.3a and Figure C.3b. The conclusion is that when a vibration
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Figure C.1: Original image [89].

Figure C.2: Vibration simulations with different amplitudes [89].

period is lower than the integration time, increasing the vibration frequency has
little effect on the image quality. Figure C.3c and Figure C.3d have the same
frequency and amplitude, but the vibration was applied on different moments.
This may be due to the varying speed of the camera during sinusoidal vibration.
This means that, in case of low-frequency vibrations, the resulting image quality
can be different for different time periods since the phase between the vibrations
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and the image integration period is likely to shift randomly during a flight.

Figure C.3: Simulation with different frequencies [89].

Based on the results, (Li & Tan, 2018) proposes two modifications on the optical
system to reduce the effect of vibration on the image quality. As small amplitudes
of vibration cause minor effects, one way to reduce the degradation of image quality
is to reduce the focal length and increase the pixel size. However, this will result in
a decrease in the angular resolution of the optical system, . Another way is to use a
CCD (charge-coupled device) with a shorter integration time, so that the vibration
period is lower than the integration time.

Other studies that investigated the effect of sUAS vibration on image quality were
performed by [56] and [57]. In the latter, the study was not focusing on vibration
but also investigating other aspects such as lens calibration, orthorectification and
mapping. Both studies worked with images taken on the same research mission
and by a Point Grey Research “Flea” camera with a Fujinon YV 2.2 × 1.4 A-2
fish-eye lens mounted both on a sUAS and on a manned aircraft (Cessna 172).
In the sUAS setup, the camera was mounted on a small supporting platform that
was isolated from vibrations using a special anti-shock material. In the manned
aircraft, the camera was mounted on a simple mounting bracket. The main problem

140



C.2. Vibration sources and effect

caused by the aircraft vibration was the movement of the lens relative position
to the camera (Figure C.4). The authors concluded that the non-interference fit
between the camera and the lens housing is responsible for the vibration effect.
Also, the problem of vibration is more noticeable on the sUAS, because of its small
size, making it more susceptible to maneuvers and turbulence. The comparison
between the roll angle noise of the sUAS and the manned aircraft can be seen
in Figure C.5. The sUAS has variations approximately twice of the variations on
the Cessna 172. In [56], where the focus of the investigation was on vibration
effects and compensation, the vibration was divided into rotation and translational
vibrations. The largest translational movement detected was ±5 pixels measured
from randomly selected images. That is a big issue since vibrations causing only a
one-pixel shift in a fisheye image captured by a sUAS operating at an altitude of
1000 ft above the ground would result in a displacement of approximately 2.5 m,
using a 0.8 megapixel resolution camera.

Figure C.4: Estimated displacement of the center of the fish-eye image in pixels
(xm,ym) and the estimated radius of the entire fish-eye lens image circle boundary
(r) [57].

The available literature about sUAS vibration and image quality is very limited.
However, there are a few studies about the effect of mechanical platform vibration
on satellite imaging, such as in [60]. In this case, vibrations limit the maximum
resolution and performance of remote sensing and are caused by turbines, motors,
reaction wheels, actuators etc. The study performed by [60] was based on [152],
which analyzed the relation between blur, vibration, exposure time and resolution,
with focus on vehicular or airborne imaging systems and in robotic systems. The
calculations can be used to determine the most appropriate sensor for a given task,
and the number of images of the same scene that are necessary to achieve a required
resolution.
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Figure C.5: Comparison of roll angles on sUAS and manned aircraft [57].

C.3 Mechanical Vibration Mitigation

Dampers are very popular devices for vibration mitigation. A wide selection of
vibration dampers are available off-the-shelf. The knowledge of how to select the
best damper is however not widespread, and it is common to just try a few and see
which one works best. By using a more systematic design method together with
collected vibration data (or estimated from the vibration sources), it is possible to
remove targeted vibration frequencies more efficiently. Since trial-and-error might
be resource-intensive in both man-hours and components, a systematic approach
is likely to reduce both cost and time of developing a stabilizing system.

Also, to reduce the vibration effects, actions can be taken in the sUAS platform
design phase, when selecting the materials and when designing the structure.

C.3.1 Dampers on the optical imaging system

Dampers can be used for vibration isolation, to lower the natural frequency of the
system to below the excitation frequency, and for vibration damping, where the
aim is to absorb the mechanical energy and convert it to other energy forms, such
as heat. Three types of dampers (Silicone Foam; Kyosho Zeal; and Sorbothane 30
Durometer Sheets) (Figure C.6) were tested by [156] to mitigate the vibration on a
rotary-wing sUAS. In total, six aspects were taken into consideration when choosing
the dampers: 1. Electrical insulator to avoid short-circuit; 2. Soft and flexible; 3.
Natural frequency outside sUAS structural resonance zone; 4. Low compression set
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and low creep; 5. Good resistance to outdoor conditions; and 6. Easy installation
and adjustment.

Figure C.6: Silicone Foam (top left); Kyosho Zeal (top right) and Durometer Sheet
(bottom) (Adapted from Amazon.com)

To study the effect of the dampers on the sUAS vibration mitigation, a structural
vibration analysis was done before the installation of the dampers. In the first
step, the sUAS structure was modeled in SolidWorks simulation, considering also
the materials properties. The frequency analysis was carried out and the high
vibration frequencies observed were 39.90 Hz on the x and y axes, and 80.48 Hz on
the z axis. Similar behavior also existed for 160.17 Hz and 321.82 Hz respectively,
which the author suspects are the 3rd and 4th mode natural frequencies, related to
the payload. Small vibrations were obtained between 100 to 200 Hz and a stronger
one at 273.16 Hz. The last ones are probably related to the structure, such as arm
extensions and components. After the simulation, flight tests were performed and
the vibrations were measured by an additional IMU with a sampling rate above
800 Hz. Results (Figure C.7) show that the vibration data obtained on the flight
tests was very similar to the simulated one. Peaks (A) related to the payload were
verified on the vibration frequencies of 40, 80, 160 and 320 Hz, a peak (C) related
to the structure was verified on around 270 Hz, and another peak (B) was verified
on around 50 Hz, which is related to the rotation of the rotors. The last one was
not verified in the simulations because the vibration related to the rotation of the
rotors was not included on the simulated model.

The tests of the effectivity of the dampers were performed on a lab vibration table
for a frequency range from 10 to 300 Hz. Different sizes of each of the three dampers
were used in order to change the transmissibility curve. Among the selections,
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Figure C.7: sUAS vibration measured by an IMU before the damper installa-
tion [156].

Kyosho Zeal Sheet had the best performance. Therefore, it was installed on the
sUAS to mitigate the vibrations on the additional IMU. The size of the damper
was chosen so that the natural frequency of the damper (around 50 Hz) was further
apart as possible from the highest disturbing frequencies (around 270 Hz) to be
mitigated. Results of the flight experiment (Figure C.8) show a significant reduction
on the vibrations. However, as expected from the transmissibility curve of the
damper, vibration caused by the rotors at around 50 Hz was slightly amplified.

C.3.2 Other mechanical solutions

In addition to the use of dampers on the optical imaging system, other actions
can be taken to reduce vibrations on sUAS. In rotary-wing platforms, an accu-
rate balancing of the propeller blades may reduce the propeller-induced vibrations
significantly [100]. Other suggestions are given by [140], focusing on the reduc-
tion of noise produced by sUAS, but, as in many cases the noise is related to the
vibration of parts of the platform, the same actions can be applied to vibration
mitigation. The author categorizes the methods into five groups: conventional noise
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Figure C.8: sUAS vibration measured by an IMU after the damper installa-
tion [156].

control methods by modifying the structure; futuristic methods; reduction of en-
gine noise; operation time adjustment based approach; and noise reduction targets
of the federal agencies. The first method consists on passive and active techniques.
An example of a passive technique is to use vibration-absorbing materials on the
structure and therefore reduce the vibration on a specific frequency band. Actives
techniques are, e.g., closed loop adaptive feedforward control techniques with elec-
tromechanical systems, such as piezoelectric actuators, to reduce the vibration of
surfaces [32]. The second category is regarding the design and selection of materi-
als that could reduce the vibration, such as “owl wings”. Engine noise mitigation
is the third category and the author points out some methods from the literature,
such as structural modifications; active noise control systems; slightly changes the
phase between the propeller sets; and modifying blades and controlling the rotation
speed. All these techniques are to be considered during the design and manufac-
turing phases and should be taken into account if the purpose of the sUAS being
developed is sensitive to vibrations. The last two categories discussed by the author
are not related to vibration mitigation.

Flow-induced oscillations

During the design of a optical imaging system it may prove beneficial to consider the
effects of flow induced oscillations on the structure. By minimizing the occurrence

145



C. A Survey of Design Considerations of Optical Imaging Stabilization Systems
for Small Unmanned Aerial Systems

of the oscillations, the overall system performance may increase, while the need for
mitigation through dampening could be reduced. Here the most relevant aspects
with regards to the stabilized imaging system design are discussed. Vortex-induced
vibrations (VIV) is a phenomena where the generated vortices cause vibrations of
the object. This is caused by the asynchronous periodical release of vortices along
the object. The magnitude and impact of VIV is highly dependent on the flow
conditions and the shape of the body.

Because the optical imaging sensor is mounted on the airframe, it may experience
vibrations that are not necessarily caused by the optical imaging sensor itself, but
by the airframe or components that are installed on the airframe. Besides more
obvious sources of vibrations, the aircraft may suffer from secondary aerodynamic
effects. One prominent example of this is dutch roll. This is an oscillatory movement
caused by a change in the aircraft’s yaw, which is coupled into a roll movement.
Because a yaw movement forces one wing forward in relation to the other, a differ-
ential in that wing’s lift and drag occurs. This causes the aircraft to wiggle. The
dynamics behind dutch roll are considered a difficult dynamic mode to analyze
[154]. However, if the performance of the optical imaging sensor suffers from the
effects of dutch roll, the typical remedies include an increase of the aircraft’s verti-
cal tail, or the installation of a yaw dampener [110]. The occurrence of dutch roll
can be recognized by an oscillatory motion, where the roll motion lags behind the
yaw motion by approximately π/2.

C.4 Optical Image Stabilization

In imaging missions, an alternative or supplement to mechanical vibration miti-
gation is Optical Image Stabilization (OIS) [155]. This technique consists of using
motion sensors readings to detect vibration and to move the lens or sensor in order
to correct the jitter. Nowadays, many camera systems, especially the ones installed
on the most modern phones come with this capability. Basically, actuators move
the camera system parts according to the detected vibrations, cancelling the effect.
OIS is considered superior to digital image stabilization as it acts before the image
acquisition and therefore there is no image distortion or degradation. Despite its
advantage, not all imaging systems have this feature and the installation of OIS on
the existing imaging systems is very challenging as the intervention happens in the
hardware of the imaging system. OIS can also alter camera parameters, reducing
the accuracy of remote sensing data.

[91] evaluated the performance of an OIS system using fuzzy sliding-mode controller
under the effect of sinusoidal signals of 6 Hz, 8 Hz, 10 Hz and 12 Hz. The camera
acquired images of a standard ISO-12233 chart with OIS ON and OFF. Figure C.9
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shows the comparison between the chart picture taken from a camera with and
without OIS turned on for vibrations of ±0.15 degrees on the vertical axis.

Figure C.9: Comparison of OIS OFF and ON on a standard ISO-12233 chart [91].

C.5 Software Image Stabilization

Image stabilization algorithms are also a way to reduce the effect of vibration on
images. This category of image processing is usually referred to as Digital Image
Stabilization (DIS). It is important to make a distinction between DIS and digital
video stabilization. Digital video stabilization consists of removing the effects of
unwanted camera motion from video data; and Digital Image Stabilization (DIS)
consists of correcting the effects of unwanted motions that are taking place during
the integration time of a single image or video frame [135], by estimating the
motion between frames in sequential imaging and then removing unwanted camera
motions.

C.5.1 Digital Image Stabilization

In DIS, motion estimation techniques can be classified into two categories: feature
based [111] or direct pixels based [78] (also called “image based”). The main differ-
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ence is that feature based approaches extract characteristics of the frames such as
corners, edges, etc, while direct pixels based approaches use every single pixel on
the calculations. Therefore, techniques using the feature based approach are usually
faster and more effective but implies non optimal use of the available information.
Also, in images where the degradation caused by vibrations is too accentuated,
the number of detectable features is small and the features may not be sufficiently
reliable, therefore, a direct pixels based approach would be more suitable because
it uses the intensity of every single pixel of the image. The motion estimation is
usually done by estimating a parameter vector, which is a two-dimensional map-
ping function that overlaps input images over a reference image [135]. The reference
image has to be chosen among a sequence of images and a good candidate to be a
reference image may be the one the least affected by blur. To identify such image,
a sharpness measure can be used.

Figure C.10 shows an example of a comparison between an image captured with
exposure time of 1.8 seconds where DIS was not applied (Figure C.10a) and a
resulted DIS image (Figure C.10b) using 4 frames captured with 0.3 seconds of
exposure time each. It is possible to notice that the image for which the DIS
algorithm was applied is less blurry.

Figure C.10: (a) non stabilized image taken with exposure time of 1.8 sec; and (b)
stabilized image by fusing four frames with exposure time of 0.3 sec each [135].

C.5.2 Digital Video Stabilization

In digital video stabilization, where the goal is to make the video flow less trembled
due to the movement of the camera, the motion between frames is also estimated
by calculating the rotation and translation between frames. Then, the opposite
motion can be applied to counteract image shake and realign the frames in order
to make the transition between frames smoother [12]. This is a very popular topic
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on sUAS imaging because video taken from sUAS frequently suffers from unwanted
motion of the sensors.

In [133], Scale Invariant Feature transform (SIFT) was used for key point detec-
tion and matching between successive frames taken by a sUAS. Then, an affine
transformation model was used to estimate the global motion parameters between
two successive frames. After that, the undesired motions were compensated and
spatio-temporal filtering was used to remove the noises in the video. Finally, all
frames were transformed to obtain stabilized video frames.

A fast video stabilization for sUAS was proposed by [122]. A polynomial fitting
and predicting method was proposed to estimate the global motion parameters
and to select undesired frames. After that, the undesired frames are compensated
and all frames are transformed to obtain stabilized images. Figure C.11 shows the
compensation (Figure C.11d) of an undesired frame (Figure C.11c).

Figure C.11: Compensation of an undesired frame for video stabilization [122].

As most of sUAS are equipped with inertial measurement units (IMU), an alterna-
tive to the feature or pixel based motion estimation for digital video stabilization
is to use the IMU readings to calculate the camera motion between frames and
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use this information to stabilize the camera feed [? ]. IMU readings can also be
integrated with conventional motion estimation methods to increase the speed and
accuracy [118]. In this case, the results can be improved significantly as the ac-
curacy of the motion estimation increases. A timing and navigation solution was
developed by [2], which made it possible to synchronize the camera images with
the UAV’s position with high accuracy by using dedicate hardware time synchro-
nization of GNSS, IMU and camera sensors readings.

C.6 Gimbal Stabilization

sUAS gimbal systems are electromechanical devices that can be used to stabilize
a platform on a given attitude. Therefore, they are suitable to mitigate unwanted
camera rotations caused by the UAS motion and also for pointing the platform
on a desired direction, controlling the sensor’s line of sight (LoS). Such systems
have already been used in many areas before, such as spacecrafts, manned aviation
and cinematography. However, due to the recent availability of small UAS and its
market growth, there is a new demand for small and precise gimbal systems specif-
ically optimized for particular requirements regarding size and precision. Also, this
topic is benefiting from the advances in the miniaturization of key technologies
such as high-performance gyros and drivetrain components, fast embedded micro-
controllers and small cameras. Therefore, small gimbal system design is a topic just
recently being researched, which the main challenges are regarding the limited size
and weight of the device. In order to evaluate the different gimbal designs, [99] has
undertaken a number of trade studies, investigating various gimbal configurations,
sensors, encoders, drivetrain configurations, control system techniques, packaging
etc.

C.6.1 Gimbal Systems Classification

[99] classifies the gimbal systems according to stabilization performance related to
the LoS Jitter (µrad RMS). Low performance gimbal systems are the ones with
more than 250 µrad RMS of LoS Jitter. Medium quality with from 25 to 250
µrad RMS and high quality with less than 25 µrad RMS. [15] classifies the gimbal
systems by crossing size and LoS stabilization performance in degrees. Small gimbal
systems weight up to 4.5 kg and can achieve a LoS stabilization performance on
the order of ±0.5 to ±0.1 degrees. Medium and larger gimbal systems weight from
4.5 to 9.0 kg and greater than 22.5 kg can and can achieve less than ±0.1 degrees
of LoS stabilization performance.
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C.6.2 Gimbal Systems Design Considerations

Regarding sUAS gimbal systems design, while [99] did a wide comparison between
different configurations, in order to provide a broad overview of the design con-
cepts, [15] focused his work on studying the topic to define the best approach for
the development of his specific gimbal system, designed to meet size, weight and
performance requirements previously defined.

According to [99], the first aspect of gimbal system design is to decide the number
of gimbal axes needed for a desired LoS control and field-of-regard (FoR), which
is the area over which the gimbal can point. A minimum of two axes are required
for controlling two degrees of freedom and point the LoS in a two-dimensions
(vertical/tilt/pitch and horizontal/pan/yaw) desired direction. To control a third
degree of freedom, such as the image orientation, a third axis is needed. In small
sUAS, two-axis gimbal systems are most commonly used. In fixed-wing sUAS, it is
common to use gimbal systems with an outer azimuth gimbal axis to control the
pan so that it is able to rotate 360 degrees and therefore have a wider FoR.

Another important design aspect is to correctly align the center of gravity with
the gimbal motors. By doing this, the required torque and power to make precise
angular rotations can be greatly reduced [19].

Thermal considerations must also be addressed because sUAS gimbal systems are
commonly too small to package cooling fans or heat exchangers. Therefore, correct
electronics layout and proper materials selection are the best measures to mitigate
thermal problems.

C.6.3 Stabilization

As the gimbal system will be mounted on a sUAS, which is subject to vibrations
caused by rotors, engine or turbulent aerodynamic flows, the gimbal system vibra-
tion isolation must be addressed. Combustion engine powered sUAS produce large
torque pulses, due to the non-continuous nature of their operation, often in the
range of 50-80 Hz. This can cause significant image blurring and/or excitation of
jitter in the gimbal’s control system, if no specific vibration isolation is provided.
Electric powered sUAS produce higher frequencies, which are easier to mitigate
and have less of effect on the image quality.

Gimbal system stabilization can be active or passive. Passive stabilization is re-
lated to the fact that the platform, sensor, and target LoS move within inertial
space. Therefore, low friction joints and high inner axis inertia can passively con-
tribute to maintaining the desired LoS/attitude [15]. Active stabilization is done
when the drivers will act based on sensor readings to keep the platform’s desired
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attitude/LoS. Therefore, to mitigate these vibration effects, [15] designed an active
inertial dampening to take care of frequencies of less than 5 Hz and the gimbal
system mechanical design provides a good passive inertial dampening for frequen-
cies on the order of 5-20 Hz. For higher frequencies, the gimbal mounting system
is responsible for dampening them out. According to [99], an option to mitigate
severe effects of sUAS vibration could be to decouple the gimbal system from the
sUAS by vibration isolation, isolating its parts from the UAV structure, however,
this solution may degrade the accuracy of any type of pointing relative to the ve-
hicle, and can induce angular motion inputs. This degradation occurs due to the
necessity of accurate measurements the gimbal position relative to the sUAS in
order to send the correct controls to the drive systems.

Regarding the vibration caused by the gimbal system structure itself, fortunately,
the frequency of the gimbal system structural resonance is typically higher for
smaller gimbals than larger gimbals [99]. Therefore, structural vibration effects are
often much less a design issue in small sUAS gimbal system design but nonetheless
important to consider. The most common approach to deal with this is to include
structural notch filters, which helps to improve the loop gain margin at the resonant
frequency. [69] does a deeper analysis of the gimbal structural interactions and
suggests to stiffen the structure, as a first attempt to attenuate LoS motion due
to bending and to modify the relevant structural transfer functions. The author
also suggests to stiffen the torsional response of the mounting structure, to add
mass to the stationary gimbal structure, and to employ the notch filters in the
pointing servo system to achieve a better interaction of the control system with
the structure.

Drive System

The gimbal drive system can be direct, where the motor controls the axis directly,
or indirect, via cables, gears or belts. Gimbals with brushless DC direct drive have
the highest performance, being able to achieve very low friction and no reflected in-
ertia [99]. However, it is usually heavier, bigger and more expensive than the other
approaches to achieve the same torque, and needs more complex electronics. If an
indirect drive with gears or belts is chosen, the solution is cheaper and smaller,
but has increased backlash, hysteresis, cogging and compliance as result. The cable
drive approach has a performance between the direct drive and gears/belts ap-
proaches but it has higher friction and lower stiffness, and the difficulty to achieve
360 degrees continuous motion for the yaw axis.

[15] designed the gimbal system using brushless DC servomotors with belts, pulleys
and gears for its axes. The first design attempt achieved too high backslash in the
pan axis. Therefore, the final decision was to use the motor without a gearbox

152



C.6. Gimbal Stabilization

driving a small rubber wheel directly on an interior bearing surface.

As part of a fixed-wing sUAS imaging system design, [125] designed and produced a
new gimbal system aiming to achieve a better stabilization, wire handling, repairing
capability and robustness than the off-the-shelf gimbal systems. As self stabilizing
direct drive gimbals using speedy brushless motors became available in the market
for multirotors, the authors decided the use this kind of motor on their new gimbal
system design specially because they allow gimbals to move fast enough to stabi-
lize the camera from low frequency vibrations. The commercial brushless gimbal
systems are often supplied with a dedicated controller which uses input from an
IMU to be mounted on the camera. However, according to the authors, angular
drift in heading is a potential worry when using a brushless motor for the yaw
rotation, specially because of the bias instability of the IMU. A possible solution
to remediate this problem could be to implement an estimator between the IMU
and the controller board, integrated to the sUAS’ heading estimator. Another ad-
vantage with using brushless motors and IMU is no need to index the gears when
disassembling the gimbal. Therefore, as long as the IMU is reinstalled in the same
location and orientation, the gimbal will calibrate itself on startup.

The minimum torque of a motor used to stabilize a given sensor is the sensor’s
moment of inertia times the desired angular acceleration.

T = Jα, (C.1)

where T is the torque, J is the moment of inertia and α is the angular acceleration.

Therefore, the first steps when choosing the right motor is to calculate the moment
of inertia and to choose the desired angular acceleration.

[15] derives the equations detailed by [80] which includes all torque contributions
and consequences. In the same axis, the contributions are from the torque of friction
and cable restraint and the mass imbalance torque. In case of the inner axis (e.g
elevation), where the gimbal is mounted on the sensor body, the mass imbalance
torque is caused by the asymmetry of the sensor. In the outer axis (e.g azimuth),
where the gimbal is mounted on the inner gimbal mounting that is connected to
the sensor body, the mass imbalance torque is caused by the asymmetry of the
sensor plus the inner gimbal mounting asymmetry.

In [19], where a gimbal system to house two imaging sensors was designed, the
authors also opted to use brushless DC motors to directly drive the gimbal axes
because of their superior small angular rotations compared to servos. Low weight
motors (109 g per motor) capable to carry the payload (around 400 g) were chosen.

153



C. A Survey of Design Considerations of Optical Imaging Stabilization Systems
for Small Unmanned Aerial Systems

Motion Sensors

Gyros are the main rotational sensors used in gimbal systems. They measure gimbal
angular velocities, and are used as system’s feedback. Gimbal gyros are usually
based on Micro-Electro-Mechanical Systems (MEMS) technology and should have
the lowest noise and bias instability that the design constraints allow.

Resolvers and encoders are the most common gimbal angle transducers [99]. They
are used to detect the orientation and to report the absolute position of the axes.
Resolvers are more robust but incremental encoders are becoming very popular for
gimbal angle measurement because they are smaller, lighter and cheaper and can
achieve comparable resolution and accuracy. Encoders can be optical, capacitive
or magnetic. [15] used a 12 bits of resolution magnetic encoder for each axis of the
gimbal system design.

C.7 Impact of the stabilized imaging system on sUAS
Aerodynamics

Implementing a stabilized imaging system that is optimized for airborne vehicles
requires consideration of its effects on the in-flight performance. Studying the effects
early in the design process may enable a reduction in the negative impact on the
in-flight performance. Presented in this section are the system design trade-offs
in relation to the overall aircraft performance. Besides the energy consumption
of the electrical components, the in-flight performance of the aircraft is primarily
affected by the system’s mass, shape and position. In addition to the flow-induced
oscillations, as described in section 2.1.3, these parameters are elaborated to such
an extend that it gives the essentials in design considerations in the context to
aircraft performance.

C.7.1 Impact of weight

Aerial vehicles stay afloat in the air by generating a force that is equal and opposite
to earth’s gravitation force. In the case of conventional fixed-wing and rotary-wing
aircraft creating such a force requires the consumption of energy. To generate such a
thrust force the rotary-wing aircraft utilize one or more powered propellers which
are positioned so that it directly counteracts the gravitation force. Fixed-wing
aircraft utilize one or more propellers to generate a forward motion, which results
in the main wings to generate a lift force that opposes the gravitational force. As
the total mass of the aircraft increases, so does the required lift force. This results
in an increase in energy consumption.

In an attempt to demonstrate the importance of weight reduction, the effects of
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weight on the energy consumption of the aircraft are quantified. For both fixed-
wing and rotary-wing sUAS, the maximum range by approximation is reduced
proportional to the increase in weight. For sUAS with constant mission variables,
the maximum endurance is reduced by a factor of approximately W 3/2, where W
is the weight, for both fixed-wing [110] [72] and rotary-wing [88]. Therefore, an
increase of 5% on weight, for example, means a reduction of approximately 7% of
endurance.

C.7.2 Impact of shape and size

Moving objects placed inside a viscous medium, such as air, are bound to create
external forces. Overcoming the effects of such forces typically increases the in-flight
power requirements. A stabilized imaging system that is placed inside moving air
will contribute to the total drag force and will thus typically reduce the overall
in-flight efficiency. It is therefore warranted to optimize the design of the system
to reduce the impact through aerodynamic considerations.

Impact of shape and size on fixed-wing aircraft

Figure C.12: Aerodynamic forces acting on an airplane - Thrust, Lift and Drag.

Aerodynamic drag, also known as air resistance, is the force parallel to the air-
speed [52] (Figure C.12). With an increase in drag, the aircraft needs to compensate
the energy losses by producing more thrust in order not to lose speed or altitude.
Considering that a typical stabilized imaging system is not intended to generate
a lift force, it may be assumed that the in-flight performance benefits from mini-
mizing the total aerodynamic drag generated by system. To be able to reduce the
aerodynamic drag it is important to understand how it is built up and how it is
affected. The total drag force D generated by an object can be determined through:

155



C. A Survey of Design Considerations of Optical Imaging Stabilization Systems
for Small Unmanned Aerial Systems

D = CD
1

2
ρv2aA, (C.2)

where

CD = CDP + CDI , (C.3)

where ρ is the air density in kilogram per cubic meter, va is the speed of the
moving air before being affected by the object in meters per second, A is the cross-
sectional area of the object in square meters, and finally CD is a dimensionless
drag coefficient that relates the object’s shape, inclination and flow conditions to
the resulting drag force.

The takeaways from Eq. (C.2) in the context of stabilized imaging systems design
are that the drag generally can be reduced by minimizing the size of the object,
and that the drag increases exponentially with airspeed. Thus, fast flying aircraft
suffer much more from poor design choices than slow flying aircraft. Finally, the
drag coefficient CD ought to be minimized. This can be done by optimizing the
shape or placement of the object in such a way that it causes the least interference
with the moving air. It should be noted that the complete theoretical basis of
aerodynamic flow optimization falls beyond the scope of the study presented here,
and is therefore limited to the most relevant aspects. Assuming that the casing of
the camera system is not designed to generate lift, the lift-induced drag (CDI) is
negligible. The remaining parasitic drag (CDP ) can be categorized into:

1. Form drag: The form drag is influenced by the shape of the object (Fig-
ure C.13). Although the droplet shape offers the most favourable aerodynamic
characteristics, when pointed straight into the direction of the moving air, it
also offers challenges related to possible viewing angles of the camera system.
Therefore, the aerodynamic considerations may be considered a performance
parameter within the overall geometrical optimization of the camera system.

2. Skin friction drag: As air moves over the surface of the body, close to the
surface the flow will lose energy due to viscous effects. This type of drag is
called skin friction drag. A turbulent boundary layer that is induced by a
rougher surface may stay attached longer than a laminar boundary layer,
thus reducing the form drag. This generally holds true for smaller object in
relatively low air speeds [110]. Therefore, for smaller objects the negative
effects of higher skin friction drag, which is caused by a rougher surface,
may potentially be offset by a lower overall profile drag. Finally, it should be
noted that such potential benefits are highly dependent on the specific design
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Figure C.13: Flow visualization over different shapes (EASA).

and flow conditions, and therefore require an in-depth aerodynamic analysis.
Projects where such analyses is not within reach, may benefit from focusing
on the form drag and interference drag instead.

3. Interference drag: In the context of aerodynamics, the interference drag can
be explained as the airflow over one object disturbing the airflow over another
object unfavourably. The actual effects of interference drag depend to large
extend on the airspeed. Therefore in the context of aircraft performance it
cannot be said that a closed and shielded system is necessarily superior to a
system with exposed components as it may also be heavier. It is dependent
on mission-specific parameters. The following section suggests methods to
study the effects of on-board camera designs, including the interference drag
characteristics.

To quantify the actual impact of a camera design on the aircraft performance, there
are three methods that ought to be considered. The first is through wind tunnel
testing. Inside a wind tunnel the effects of moving air over an object are recreated,
and the generated forces and moments are captured. The camera can be placed in-
side the wind tunnel without the airframe. However, in that case the aerodynamic
interactions between the aircraft body and stabilized imaging system are not in-
cluded. If executed and post-processed correctly, a wind tunnel test can give an
accurate indications of the impact of the camera system on the flight performance.
Also the airflow around the bodies can be visualized, which provides information
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for further optimizing the airflow. However, modelling through wind tunnel ex-
periments are complex and require dedicated equipment. This causes wind tunnel
experiments to be relatively expensive and time consuming. Also the iterative de-
sign process is commonly slow when compared to its alternatives.

Nowadays, designers have embraced Computational Fluid Dynamics (CFD). This
is a computer-based method that can approximate the behaviour of fluids, such
as air, over an object. It may prove useful for design optimization as it allows for
quicker iterative development. In popular terms it is sometimes called a virtual wind
tunnel. It is to be noted that setting up such a simulation environment requires
in-depth knowledge on the theory of fluid dynamics. Also, when results with a
high accuracy are required, then a verification of the model is necessary. This
is commonly done inside a wind tunnel. This is especially true for low velocities
and/or smaller objects, such as camera systems, as the modelling of drag then
becomes increasingly problematic.

The final method discussed here is through actual flight tests where the perfor-
mance is compared with and without the camera system installed. Measuring the
consumed energy in cruise flight may serve as an indicative measurement for the
impact on the in-flight performance of the aircraft. Such in-flight comparisons are
only valid when all mission parameters, including airspeed, altitude, atmospheric
conditions and battery charge, are the same in each benchmark flights. Since this
may be hard to accomplish and verify, it is important to note that the obtained
results are non-conclusive, and can only serve as an approximation. The advantage
of this method is that it is accessible and does not require in-depth knowledge of
fluid dynamics. This may serve as a suitable method when an approximation is
sufficient.

Impact of shape and size on rotary-wing aircraft

For rotary aircraft operating in stationary flight there is no forward motion of the
vehicle. As the air in front of the rotor is accelerated by the rotors itself, the before
mentioned aerodynamic effects require additional design considerations. By locat-
ing the camera system outside of the propeller slipstream (vs), the impact of the
aerodynamic effects are limited (Figure C.14). When the aerodynamic effects as a
result become small, such a system may not require further aerodynamic optimiza-
tion. Note, however, that when operating in atmospheric winds the aerodynamic
effects remain. For rotary-wing aircraft, a center position ought to be considered.
For conventional rotary aircraft, which typically utilize one main rotor, the camera
mounting points are commonly found under the main body. As the aircraft’s main
body shields the camera system to a large extend from the propeller slipstream, the
need for aerodynamic optimization decreases. However, due to other design con-
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siderations, such as clearance to the ground, these mounting locations may not be
feasible. For conventional rotary-wing aircraft the camera systems are often found
to be mechanically suspended in front or along the side of the aircraft body. In such
cases the aircraft performance benefits from a minimized wetted area, which is the
area exposed to the airflow, in order to reduce the interference drag and propeller
blockage.

Figure C.14: Visualization of the propeller induced slipstream vs in relation to the
camera location (in red).

C.7.3 Impact of Position

For fixed-wing and rotary-wing aircraft to be controllable in flight, it relies on the
ability of the aircraft to compensate the generated forces which are experienced.
Each individual component installed on an aircraft has a mass. When these compo-
nents are exposed to the moving air it will create a drag force, while lifting bodies
may also generate a lift force. First, for the aircraft to maintain altitude in the air,
the aircraft needs to be able to generate enough lift force (or thrust) to compensate
the aircraft’s total weight. In other words, for level flight the sum of the vertical
forces equals zero. In addition, all these individual forces, such as lift and drag will
generate a moment around the aircraft’s center of gravity (C.G.).

C.8 Conclusions

Vibration is one of the main concerns when designing sUAS optical imaging sys-
tems. In fixed-wing platforms equipped with a combustion engine, the engine is the
main source of vibration, followed by the turbulent aerodynamic flow. Rotary-wing
platforms have the rotors as the main source of vibration. To mitigate the effects of
vibration, mechanical solutions such as dampers can be used. Also, it is possible to
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use optical stabilization by installing motion sensors to measure the jitter and use
actuators to move the lens in order to correct it. Software solutions are also avail-
able, such as digital image stabilization or digital video stabilization algorithms.
Gimbal stabilization platforms can be used for stabilization and also for pointing.
The most important components in these platforms are the drive systems and the
motion sensors. The installation of a stabilization platform may affect the sUAS
aerodynamics and the impact of weight, shape, size and position must be taken
into consideration in the design phase.
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Appendix D

Particle Swarm Optimization

Particle Swarm Optimization (PSO) [34] is a technique that uses a population of
solutions that explores the hyperspace of a problem at a defined speed, which is
adjusted according to the best individual historical solution pbest, and with the
best historical global solution gbest. This evaluation is performed by calculating
the cost function. Calculating the cost function according to the position of the
particle makes it possible to identify whether the new position is better than that
previously occupied by the particle. Thus, at each iteration a new velocity, i.e.,
the movement in the domain space, is adjusted as a function of pbest and gbest.
This is done so that each particle explores the hyperspace optimally, as it takes
into consideration the historical performance of the population. This procedure is
illustrated in figure D.1. Through this method the movement of each particle is
considered to naturally evolve into the optimal (solution) position.

Figure D.1: Behavior of two particles in an arbitrary two-dimensional space

This technique is notable for its simplicity as the behavior of each particle, and
therefore the set of presumed solutions, is defined by only two iterative equations.
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D. Particle Swarm Optimization

These determine the position xni and velocity vni of the particle i at time n, resulting
in:

v
(n+1)
i = vni + c1 r1(pbesti

n − xni )

+ c2 r2(gbestg
n − xni )

(D.1)

x
(n+1)
i = xni + v

(n+1)
i (D.2)

where c1 and c2 are called “acceleration coefficients”, which are related to the local
and global portion, respectively; and with r1 and r2 representing the stochastic
factor of these accelerations. These are usually chosen as a uniformly distributed
random value between 0 and 1.

The PSO algorithm corresponds to the pseudocode shown in Algorithm 1:

Algorithm 1 PSO
1: Initialize a swarm with random positions and velocities
2: while Stop criteria is not satisfied do
3: for Each particle i do
4: Calculate the new velocity
5: Update the position
6: Evaluate the cost function f(xi)
7: if f(xi) < f(pbesti) then
8: pbesti ← xi
9: end if

10: if f(xi) < f(gbestg) then
11: gbestg ← xi
12: end if
13: end for
14: end while

Several authors proposed modifications to the basic algorithm. In this study two
small modifications proposed by the original creators of the algorithm are adopted;
position and velocity boundary constraints as described in [36], and linear inertia
weight as described in [35].

The PSO algorithm evolves by updating the particle position for each iteration
in relation to the velocity vector. Such updates have stochastic gains, where it
is undesirable that the particles move uncontrollably. A particle that has a high
velocity in relation to the total domain size, may eventually jump to a distant
point inside the domain. This results in the particle no longer performing a minutely
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search for the optimum. To avoid this problem, the concept of position and velocity
constraints was developed.

Another fundamental strategy is to limit the search domain in relation to the
optimization problem in question. To prevent the particle from exploring distant
regions away from the region that has the optimal solution, or to prevent from
bringing solutions outside the problem domain.

Here the basic idea is to avoid for the particle to leave the domain where the
optimal solution resides.

The constraints can be implemented through:

vi =


Vmax if vi > Vmax

−Vmax if vi < −Vmax
vi otherwise

(D.3)

The following conditions are added to the algorithm:

xi =


Xmax if xi > Xmax

Xmin if xi < Xmin

xi otherwise

(D.4)

The final modification is to permit a better control of the search domain. The
inertia weight, indicated in the following equation as wn, is applied to the current
velocity vni , during the process of calculating the new velocity of the particle:

v
(n+1)
i = wnvni + c1 r1(pbesti

n − xni )

+ c2 r2(gbestg
n − xni )

(D.5)

When a constant value is chosen for the inertia weight, high values imply high
velocities, which can make the particle to traverse the entire search domain more
quickly; while low values slow down, limiting the search domain of the particle to
its neighborhood. Initially, a constant value was proposed for the inertia weight.
However, proposals of dynamic values that varied linearly appeared later.

In this specific case the consensus is that initially it is more convenient for the
particle to have a global search power, and only afterwards perform a more local
exploration. In the linear inertia weight, if N is the maximum number of iterations,
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nd wini and wfin are the values of the initial and final inertia weight, the inertia
weight for the iteration n is determined by:

wn = (wini − wfin)
(N − n)

N
+ wfin (D.6)
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