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Motivated by the important role of the normalized second-order coherence function, often called gð2Þ, in
the field of quantum optics, we propose a method to determine magnon coherence in solid-state devices.
Namely, we show that the cross-correlations of pure spin currents injected by a ferromagnet into two metal
leads, normalized by their dc value, replicate the behavior of gð2Þ when magnons are driven far from
equilibrium. We consider two scenarios: driving by ferromagnetic resonance, which leads to the coherent
occupation of a single mode, and driving by heating of the magnons, which leads to an excess of incoherent
magnons. We find an enhanced normalized cross-correlation in the latter case, thereby demonstrating
bunching of nonequilibrium thermal magnons due to their bosonic statistics. Our results contribute to the
burgeoning field of quantummagnonics, which seeks to explore and exploit the quantum nature of magnons.
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Introduction.—In the early years of quantum mechanics,
the drive towards demonstrating its classical limit led
Schrödinger to examine a class of wave functions that
replicates the classical dynamics of a harmonic oscillator
[1]. In the language of second quantization, these states
turned out to represent the eigenstates of the annihilation
operator [2]. These have come to be known as “coherent
states”. Remarkably, the purely quantum phenomenon of
Bose-Einstein (BE) condensation results in a condensate
characterized by a coherent state wave function, comprising
phenomena like superconductivity and superfluidity.
Characterizing and quantifying the “quantumness” of

photonic states is one of the central themes in the field of
quantum optics [3,4]. A measure particularly relevant for
condensation phenomena is the so-called normalized sec-
ond-order temporal coherence function, typically denoted
by gð2ÞðτÞ:

gð2ÞðτÞ ¼ h∶ÎðtÞÎðtþ τÞ∶i
hÎðtÞihÎðtþ τÞi ; ð1Þ

where Î is the optical intensity magnitude operator, ∶ ∶
represents normal ordering of the photon ladder operators,
and h i denotes the expectation value. For a coherent state
(e.g., a laser), the numerator in Eq. (1) factorizes, and
gð2ÞðτÞ ¼ 1. gð2ÞðτÞ also quantifies the relative probability
of detecting two photons separated by a time lag τ.
Specifically, gð2Þð0Þ gives the rate of simultaneous detection
of two photons in a given optical state. A single-mode
thermal light field exhibits the so-called photon bunching

effect, corresponding to gð2Þð0Þ ¼ 2, which is indicative of
the bosonic nature of the photons. The concept of bosonic
bunching has been extended beyond quantum optics in
more recent years; an analogue of gð2ÞðτÞ has been
measured in a system of ultracold trapped atoms, demon-
strating temporal atomic bunching and BE condensate
coherence [5].
While quantum optics is now a mature field, similar

advances have just begun to be made for bosonic excita-
tions in magnets—magnons [6,7]. Recent advances [8] in
manipulating and detecting these excitations have enabled
exciting fundamental physics in magnetic systems with the
potential for technological applications [9]. Observation of
a nonequilibrium magnon BE condensate has been reported
[6,10] wherein magnon coherence has been demonstrated
by various optical techniques [11]. The same system seems
to exhibit a superfluidlike flow of spin current providing
further evidence towards these claims [12], which, how-
ever, are not uncontested [13] but are recently supported by
new observations [14]. The existence of robust spin super-
fluidity with a different physical origin has been postulated
in specific circumstances [15–18]. However, a direct
signature of magnon coherence measurable in all-solid-
state systems, where optical probes may not be feasible, is
still lacking.
In this Letter, we give a proposal for the solid-state

detection of magnon state coherence, adapting concepts
from quantum optics to metal-magnet hybrid structures.
We show that metallic contacts, such as those used in
nonlocal magnon transport experiments [19], can play
the role of coherence-sensitive “detectors” of magnon
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emission, in analogy with the photon detectors in quantum
optical experiments. A key difference between quantum
optical and spintronic systems lies in the fact that light, due
to its long wavelength, weak interaction with surroundings,
and ability to propagate in vacuum, exhibits coherence
over large distances. This eliminates the need for the
explicit inclusion of detectors in its description. In solid-
state systems, we find it prudent to develop the coherence
theory of magnons for a specific realization of detection
integrated into the device structure. Nevertheless, the ideas
developed herein are general and can be adapted to a
different detection scheme. Furthermore, our findings are
suggestive of employing heat currents as a probe into
phonon coherences in an analogous manner.
Normalized spin current cross-correlation.—We con-

sider a ferromagnetic insulator (FI) in contact with two
nonmagnetic left and right metal (LNM and RNM) leads
(e.g., see Fig. 1), into which spin current is injected and can
be measured via the inverse spin Hall effect [8]. We define
the normalized spin current cross-correlation cð2ÞðτÞ:

cð2ÞðτÞ≡
1
2
hfÎLðtÞ; ÎRðtþ τÞgi
hÎLðtÞihÎRðtþ τÞi ; ð2Þ

where Îl with l ¼ L, R are operators corresponding to the
spin currents injected into LNM and RNM, respectively,
and f� � �g denotes an anticommutator. A key feature of
this measure, distinguishing it from gð2ÞðτÞ, is that the spin
currents may be positive or negative. In this sense, LNM
and RNM at finite temperatures may be considered as
“nonideal detectors” which may also emit magnons back
into the FI, in addition to absorbing (detecting) them from
it. The optical detectors, in contrast, are designed to
predominantly absorb, and hence detect, photons. Thus,
the positivity of intensity in Eq. (1) is maintained in this
case.
In the present work, we evaluate cð2Þ ≡ cð2Þð0Þ consid-

ering a single magnon mode driven into (i) a coherent state
and (ii) a thermal state with temperature higher than the
metal leads. We find that at sufficiently large drives, cð2Þ

emulates the behavior expected from gð2Þ ≡ gð2Þð0Þ (Fig. 2),

i.e., it approaches 1 and 2 for cases (i) and (ii) respectively,
demonstrating it to be a valid coherence measure. The need
for strong driving of the FI arises because magnon
detection via the metal leads is rendered nonideal by the
processes in which the metal leads emit magnons into the
FI. At sufficiently large drives, quantified by the temper-
ature of the metal leads, magnon absorption by the metal
lead detectors dominates over emission, and the detection
process is efficient and similar to its optical counterpart.
Electron-magnet coupling.—We consider the FI to be

axially symmetric around the z direction. Accordingly, we
take the equilibrium macrospin to be oriented in the −z
direction, so that excitations thereof carry spin in the þz
direction. For simplicity, in order to contrast coherent and
incoherent spin excitations of the FI, we allow for small
angle dynamics of the macrospin S only, neglecting
micromagnetic degrees of freedom. Such excitations are
conveniently parametrized by the Holstein-Primakoff trans-
formation:

Ŝz ≡ ϕ̂†ϕ̂ − S; Ŝ− ≡ Ŝx − iŜy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − ϕ̂†ϕ̂

q
ϕ̂; ð3Þ

where S is the integer macrospin of the FI, and ϕ̂ and ϕ̂†

are, respectively, magnon annihilation and creation oper-
ators, subject to the bosonic commutation relations
½ϕ̂; ϕ̂†� ¼ 1. The operator ϕ̂ has two components:

ϕ̂ ¼ φ̂þ φ: ð4Þ

The first term, φ̂, corresponds to incoherent fluctuations,
with hφ̂i≡ 0, while the second, φ, is a c-number corre-
sponding to a coherent magnon. Only φ contributes to the
ensemble-averaged transverse dynamics. Assuming small
amplitudes for φ and φ̂, we obtain hSxi ¼

ffiffiffiffiffiffi
2S

p
Re½φ� and

hSyi ¼ −
ffiffiffiffiffiffi
2S

p
Im½φ�.

The evolution of the heterostructure spin dynamics is
governed by the Hamiltonian H ¼ Hm þHe þHJ.
The uncoupled FI magnon Hamiltonian is given by
Hm ¼ Emϕ̂

†ϕ̂, with Em as the magnon gap or, equivalently,
ℏ times the ferromagnetic resonance frequency. The
uncoupled normal-metal electron Hamiltonian is He ¼P

l¼L;RHl, where Hl ¼
P

kσϵkb̂
†
lkσb̂lkσ , with b̂lkσ as

a σ-spin annihilation operator for an electron in the
l ¼ L, R lead with quantum number k [20]. Magnons in
the FI and the spins of electrons in the normal metals
are coupled by exchange at the metal-magnet interfaces,
which is captured by hopping of spin between magnons
and electron-hole excitations in the normal metals: HJ ¼P

KJKϕ̂
†ðL̂K þ R̂KÞ þ H:c: [21]. Here JK is the effective

exchange interaction for both interfaces, while L̂†
K ¼

b̂†Lk↑b̂Lk̃↓ and R̂†
K ¼ b̂†Rk↑b̂Rk̃↓ are creation operators for

up-electron–down-hole pairs in the left and right leads,
respectively, with K ¼ k; k̃ as a collective index.

FIG. 1. Magnetic heterostucture, with ferromagnetic insulator
(FI) and metallic leads (LNM and RNM). The arrow in the FI
depicts its total spin. Spin currents ÎL and ÎR are injected into the
LNM and RNM, respectively, when the FI is excited.
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The coupling HJ gives rise to spin currents through the
left and right interfaces. The operator expression for each
of these currents is obtained from the Heisenberg equation
of motion for the electron spin density ŝl ¼

P
Kðb̂†lk↑b̂lk↑ −

b̂†lk↓b̂lk↓Þ in the respective lead. The current in the left
lead is

ÎL ¼ i
2
½ĤJ; ŝl� ¼

X

K

ðL̂†
K − L̂KÞ:

Similarly, the current in the right lead is ÎR¼
P

KðR̂†
K−R̂KÞ.

In equilibrium, the average currents IL ¼ hÎLi and
IR ¼ hÎRi vanish. The exchange Hamiltonian also gives
rise to correlations between LNM and RNM electrons. To
zeroth order in ĤJ, such correlations are destroyed by
coupling to the environment, and the equilibrium density
averages are unaffected by the exchange coupling. Thus,
for LNM and RNM electrons in equilibrium, hb̂†lkσb̂l0k0σ0 i ¼
δll0δkk0δσσ0nFðϵkÞ where nFðϵÞ ¼ 1=ð1þ eðϵ−ϵFÞ=TÞ is the
Fermi-Dirac distribution with common electronic temper-
ature T and Fermi energy ϵF ≫ T. As phase coherent
dynamics vanish in equilibrium, the z component of the
incoherent spin density under equilibrium conditions
is hφ̂†φ̂i ¼ N ¼ Ni, with Ni ¼ 1=ðeEm=Tm − 1Þ as the
Bose-Einstein distribution for magnon energy Em and
temperature Tm.
Driving the magnet.—We assume the normal metals to

be ideal heat and spin sinks, so that the electrons there are
described by equilibrium conditions discussed above. We
consider two methods of directly driving the FI. First,
ferromagnetic resonance (FMR) can coherently excite
magnetic dynamics. Under the influence of a microwave
field with frequency ω, a coherent excitation described by
φðtÞ ¼ φeiðωtþθÞ is created. Here the U(1) symmetry of the
FI is explicitly broken, as the precessional phase ωtþ θ is
determined by the applied microwave. As a second driving
scheme, incoherent magnetic dynamics can be excited
beyond equilibrium by heating the FI to a temperature
Tm higher than that of the metal leads, for example by
heating with a laser pulse. Thus, in the presence of one or
both types of drives, the nonequilibrium magnon density, to
zeroth order in ĤJ becomes hφ̂†φ̂i ¼ N ¼ Nc þ Ni, where
Nc ¼ φ�φ. The steady-state current resulting from either
type of drive has been calculated to second order in the
exchange coefficient JK [21]:

hÎLi ¼ hÎRi ¼ IL ¼ IR ¼ 2πD2J2EmðN − NNMÞ; ð5Þ

where NNM ¼ 1=ðeEm=T − 1Þ is the Bose-Einstein distri-
bution function describing electron-hole excitations in the
leads. The Fermi-surface averaged square of the exchange
interaction is given by J2 ≡P

KjJKj2δðϵk − ϵFÞ×
δðϵk̃ − ϵFÞ=D2, with D as the electronic density of states

at the Fermi energy ϵF in the metal leads. Thus we see that
it is not possible to distinguish the coherent and incoherent
magnons from the spin currents IL and IR alone, since these
depend on the total number of magnons N ¼ Nc þ Ni.
Instead, we turn to the cross-correlations of the spin
currents.
Spin current cross-correlations.—Wenow investigate the

current-current cross-correlator CðτÞ¼ 1
2
hfÎLðtÞ;ÎRðtþτÞgi

to obtain cð2ÞðτÞ in Eq. (2). One can see directly how CðτÞ
encodes information about magnon fluctuations. When the
magnons are completely coherent (ϕ̂ ¼ φ) and magnon
fluctuations can be neglected, the coupling Hamiltonian
HJ does not give rise to correlations between left and right
electrons. Here,CðτÞ ¼ hÎLðtÞihÎRðtþ τÞi factorizes, yield-
ing cð2ÞðτÞ ¼ 1. If, however, incoherent fluctuations of the
magnon operators are taken into account, then cross-corre-
lations give rise to

cð2ÞðτÞ ¼ 1þ ΔcðτÞ; ð6Þ

where the correction ΔcðτÞ comes from the Wick decom-
position of magnon correlators. As discussed above, we
focus on equal-time (τ ¼ 0) correlations in the steady state,
abbreviating C≡ Cð0Þ and Δcð0Þ≡ Δc.
The current-current cross-correlation function is calcu-

lated perturbatively in J [22]. Such an approach is con-
sistent with the idea that the metallic leads act as weak
probes of the magnet, thereby preserving a well-defined
notion of a magnon rather than an entangled magnon–
electron-hole excitation. Relegating the detailed calculation
to the Supplemental Material [24], we summarize our
results here.
Because the lowest nonvanishing contribution to C is

fourth order in J, the lowest order terms (which we consider
here) each contain four magnon operators, or two factors of
the magnon density. There are therefore three types of
terms: those ∼N2

c, those ∼N2
i , and those ∼NiNc, which we

denote as Ccc, Cii, and Cic, respectively. One thus has

C ¼ Ccc þ Cii þ Cic ð7Þ

where Cii ¼ Cð×Þ
ii þ CðkÞ

ii and Cic ¼ Cð×Þ
ic þ CðkÞ

ic , with the
superscripts ð×Þ and ðkÞ respectively denoting diagrams
that cross and do not cross the FI (see Supplemental
Material [24]). As shown in the Supplemental Material

[24], one finds Ccc ¼ IðcÞL IðcÞR , CðkÞ
ii ¼ IðiÞL IðiÞR , and CðkÞ

ic ¼
IðcÞL IðiÞR þ IðiÞL IðcÞR , where IðiÞl ¼ 2πD2J2EmðNi − NNMÞ and

IðcÞl ¼ 2πD2J2EmNc are the incoherent and coherent con-

tributions to the l ¼ L, R spin current Il ¼ IðiÞl þ IðcÞl . The
sum of Ccc and the uncrossed terms is thus equal to the

product of the currents: Ccc þ CðkÞ
ii þ CðkÞ

ic ¼ ILIR. One

thus obtains Δc ¼ ðCð×Þ
ii þ Cð×Þ

ic Þ=ILIR, so that cð2Þ is
obtained directly by evaluating the crossed diagrams.
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Next, let us consider the cross-correlations under various
scenarios. First, in equilibrium, N ¼ NNM, and the currents
IL and IR vanish, as does coherent dynamics (φ ¼ 0), so
Ccc ¼ Cic ¼ 0. At finite temperature, however, incoherent
magnons are excited by thermal fluctuations. While the

uncrossed diagrams vanish (CðkÞ
ii ¼ ILIR ¼ 0), the crossed

diagrams Cð×Þ
ii do not, reflecting correlations between

fluctuations of the left and right currents. Thus, in equi-
librium, the normalized correlation coefficient cð2Þ ¼
1þ Δc diverges.
Second, consider heating of the FI. Under heating, a spin

current flows from the FI to the normal-metal leads. All of
the coherent terms, which are ∝ Nc, are zero, leaving

C ¼ Cii ¼ Cð×Þ
ii þ CðkÞ

ii . As can be seen in the left-hand side
of Fig. 2, as Tm increases from T, IL ¼ IR becomes
nonzero, decreasing cð2Þ from infinity. As shown in the
Supplemental Material [24], when Tm is sufficiently large

that Nm ≫ N, one finds after some work that Cð×Þ
ii → ILIR,

and therefore cð2Þ → 2. Under strong incoherent driving,
thermal magnons dominate the spin currents and their
correlations, and cð2Þ ∼ hφ̂†φ̂†φ̂ φ̂i=jφ̂†φ̂j2 ¼ 2, reflecting
bunching of thermal magnons [25]. Note also that because
of quantum fluctuations, even as the metal leads temper-
ature T is reduced to zero, a sufficiently large bias ΔT ¼
Tm − T is required in order to observe thermal magnon
bunching, i.e., cð2Þ ¼ 2.
Last, consider driving by FMR. Here, only coherent

magnons are excited by the external field, and the spin
currents IL ¼ IðcÞL ¼ IR ¼ IðcÞR are determined by the FMR
power. Because the incoherent spin currents are zero

(Ni ¼ NNM), C
ðkÞ
ii ¼ CðkÞ

ic ¼ 0, but the crossed terms Cð×Þ
ii

and Cð×Þ
ic survive, reflecting correlations that arise from spin

cotunneling. At sufficiently large FMR power, however,

Nc ≫ Ni, and Ccc ¼ ILIR ≫ Cð×Þ
ii ; Cð×Þ

ic , and therefore
Δc→0, so cð2Þ → 1. Thus, at sufficiently large FMR power,

the spin current correlations are dominated by the coherent
magnons, and cð2Þ ≈ gð2Þ ¼ hφ�φ�φφi=jφ�φj2 ¼ 1. Note
that even as T → 0, cð2Þ is not necessarily equal to 1 at
finite Nc. As with temperature biasing, quantum fluctua-
tions of magnons and electron-hole pairs require that
additionally Nc ≫ 1 in order for cð2Þ to saturate at 1.
Measurement of cross-correlations.—In the present

device geometry, the spin current cross-correlation function
C can be obtained from the spin current fluctuations
SðτÞ≡ 1

2
hfδÎLðtÞ; δÎRðtþ τÞgi, where δÎl ≡ Îl − hÎli. In

turn, SðτÞ is obtained by Fourier transforming the power
spectral density SðωÞ. It is straightforward to see that
C ¼ ILIR þ Sðτ ¼ 0Þ, so Δc ¼ Sðτ ¼ 0Þ=ILIR. It should
be noted that in an actual measurement, the detector
bandwidth sets the lower limit on τ for which SðτÞ can
be measured. Thus, τ → 0 corresponds to τ approximately
approaching the inverse of the detector bandwidth.
One might wonder why the spin current noise cannot

alone be used to infer the coherence of the magnon state.
The problem is that for both heating of the FI and FMR,
Sð0Þ increases with driving. In the former case, when the
temperature difference between the FI and leads is large

enough, Sð0Þ ¼ Cð×Þ
ii ∼ N2

i , while ILIR ∼ N2
i , so that their

ratio Δc saturates at constant value. In the latter case, the

noise Sð0Þ grows with Cð×Þ
ic ∼ Nc, but because ILIR ∼ N2

c,
Δc ∼ 1=Nc approaches zero with increasing FMR power.
Thus, in order to distinguish the cross-correlations of
coherent magnons from those of incoherent magnons, it
is expedient to use the normalized quantity cð2Þ, rather than
simply the noise S.
Discussion.—We have focused on a simple model to

capture the essential physics of magnon bunching; we now
comment on some of the approximations, along with their
validity, employed in our analysis. First, we have neglected
spatial dependence of cross-correlations on the assumption
that the metal contacts are closer than the magnon coher-
ence length (which for noninteracting magnons, is the
thermal wavelength). If the contacts are further apart, a
more general calculation, including finite wavelength
thermal modes, should be carried out. By analogy with
gð2Þ, however, one may expect cð2Þ for thermal magnons to
decay from 2 at distances smaller than the coherence length
to 1 at larger distances; for coherent magnons, cð2Þ should
remain equal to 1 [5], thus preventing one from distinguish-
ing incoherent from coherent magnons if the contacts are
not close enough. A distance-dependent study would,
however, provide an avenue for measuring the magnon
coherence length. If, on the other hand, the FI is too thin or
the contacts too close, tunneling of electrons across the FI
becomes possible, giving rise to a spin-polarized charge
current that distorts the magnonic signal.
Second, the actual observation of pure spin currents and

their fluctuations require conversion to measurable charge
currents by, for example, the inverse spin Hall effect; this

FIG. 2. Normalized spin-current cross-correlation cð2Þ for FI
driven via heating (left) and FMR (right). The coherent mode
number Nc ¼ ðχhÞ2 is assumed to be driven by a circularly
polarized FMR field h, with χ as the susceptibility. Solid lines,
blue to red, represent electronic temperatures T=Em ¼ 0.01, 2.5,
5, 7.5, 10.
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process may introduce additional charge current noise that
is convoluted with that of cross-correlations. The conver-
sion of spin to charge currents may also be complicated by
interfacial spin-orbit coupling, which can spoil spin con-
servation; if interfacial spin-orbit coupling renormalizes
effective transport coefficients and reduces the steady-state
magnon efficiency [26], then in principle our dimensionless
cð2Þ is unaffected. However, because in practice this could
lead to a weaker signal and because inelastic spin-orbit
scattering at the interface may convolute with the cross-
correlations, it would be prudent to focus on materials (e.g.,
yttrium-iron-garnet–platinum heterostructures) in which
such effects are thought to be minimal [27].
Third, we have considered a macrospin model, wherein

higher energy magnons are gapped out. While this may be a
reasonable assumption for small structures at low temper-
atures, clearly as the FI is heated, micromagnetic modes
must be taken into account. Last, we have neglected
magnon-magnon interactions, which arise through addi-
tional, nonlinear terms in the magnon Hamiltonian. For a
single magnon mode with contacts in close proximity, such
terms serve only to renormalize the magnon gap and thus
do not qualitatively change our results. When magnons are
allowed to occupy a spectrum of modes with different
energies, however, inelastic magnon scattering can facili-
tate interesting interplays between coherent and incoherent
magnons [28], which might be observed via cð2Þ.
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