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Abstract—With increasingly rapid advances in the field of 
producing modern and autonomous vehicles, the need for 
intelligent traffic management systems, which take advantage of 
the vehicle’s abilities to sense and communicate, has increased. 
A considerable amount of literature has been published on 
managing traffic that includes only autonomous vehicles. 
However, changing all vehicles to autonomous versions is a long-
term process. In the near future, traffic will be a mixture of 
human-driven and autonomous vehicles. To date, few studies 
have investigated mixed traffic in intelligent management 
systems. The main objective of this research is to study the 
possibility of using a vehicle-mounted camera to sense and 
collect the required traffic data of the surrounding vehicles in 
mixed traffic. To achieve this, a vehicle with a monocular 
camera is used to collect image information for detecting and 
counting the vehicles in different lanes and estimating their 
distance and speed on the defined route. The results indicate 
that our proposed image processing algorithms can acquire the 
information needed for intelligent traffic management systems. 

Keywords-intelligent traffic management; autonomous 
vehicle; image processing; vehicle detection; speed estimation; 
distance estimation 

I.  INTRODUCTION 
Recent developments in autonomous vehicle (AV) 

technology have heightened the need for intelligent traffic 
management systems that are suitable for AVs. Managing AV 
traffic has been studied by many researchers. They used AVs 
to collect and share information based on vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I) communications 
(e.g., [1], [2], [3], [4], [5], [6], and [7]). Despite the importance 
of managing AVs, changing all vehicles to autonomous 
versions will take time. Thus, we believe that traffic will be a 

mixture of human-driven vehicles (HDVs) and AVs for a long 
period. However, little attention has been paid to the mixed 
traffic that we will face in the coming years [8]. 

Intersections play a critical role in enhancing the 
efficiency and safety of traffic. Intelligent intersection 
management systems are introduced to manage traffic by 
using traffic data. There are various approaches to collecting 
traffic data. If traffic comprises purely AVs, AVs’ sensors and 
V2X communication are used for collecting and sharing 
traffic data. However, for HDVs, such technologies are not 
applicable. Therefore, streets and intersections are equipped 
with various sensors such as inductive loop detectors and 
stationary cameras for collecting traffic information. Using 
these sensors can improve a traffic management system 
through accessing traffic data. However, weather conditions 
and brightness affect data quality. Furthermore, equipping all 
intersections and streets with these sensors would be costly. 

To deal with these challenges of advanced cars or AVs, 
the idea of our study is to use vehicles’ sensors to collect 
traffic data of AVs and HDVs. As the main focus of this work 
is to study the effect of a vehicle sensing and collecting traffic 
data, and we did not have access to an AV in our experiments, 
we used a vehicle-mounted camera to achieve our goals. This 
study seeks to identify how to use sensors, especially the 
mounted monocular camera, to collect the required data from 
multiple lanes. We limited our focus to the necessary data for 
managing traffic, especially at intersections. We developed 
algorithms to analyze the video data collected from a camera. 
We collected and analyzed real traffic information from a 
route in Trondheim to evaluate our algorithms. 

Our data collection and analyses focus on answering the 
following research questions: 



• RQ1: How can we identify the number and type of 
vehicles in front of a vehicle and in the nearby lanes 
using image data captured by a vehicle-mounted 
monocular camera? 

• RQ2: What is the most accurate combination of width 
and height when calculating the distance of vehicles 
in front and in nearby lanes using image data captured 
by a vehicle-mounted monocular camera? 

• RQ3: How can the speed of the detected vehicles be 
estimated by using image data captured by a vehicle-
mounted monocular camera? 

The experimental work presented here provides one of the 
first investigations on how to use a vehicle-mounted camera’s 
ability to collect traffic data to improve traffic management 
systems at intersections by considering mixed traffic. The 
results indicate that autonomous vehicles can provide the 
required mixed traffic data such as number and type of 
vehicles, their distance, and their speed. However, more 
studies are needed to improve the accuracy of the outputs. 

The remainder of this paper is organized as follows: 
Section II provides a brief overview of studies related to 
intersection management methodologies. Section III explains 
the research objective and approach. Section IV presents the 
implementation and evaluation of our proposed approach and 
algorithms. Section V discusses the advantages and remaining 
challenges of this study. Section VI concludes. 

II. BACKGROUND 
Managing intersections plays a critical role in improving 

the performance and safety of traffic management systems. 
Developments in software, hardware, networks, and 
communications and the introduction of AVs have led to the 
use of intelligent systems to manage traffic. Therefore, more 
studies recognize the importance of an intelligent traffic 
management system that includes AV traffic. Many different 
methodologies have been presented. Most of the current 
literature has paid particular attention to using rule-based 
(e.g., [9] and [10]), optimization (e.g., [11], [12], and [13]), 
and hybrid (e.g., [14] and [15]) methodologies [8]. Moreover, 
to enhance the smartness of intersection management systems, 
artificial intelligence (AI) techniques can be applied (e.g., 
[16], [17], and [18]). Most of the AI-based intersection 
management research focuses on two issues: One is about 
decision-making and predicting the traffic situation based on 
the traffic data, which are collected by stationary sensors at 
the intersections. Another is to use AVs’ AI capabilities to 
sense, collect, and share information about themselves in 
purely AV traffic. Our recent literature review [8] showed that 
in intelligent intersection management systems from 2008 to 
2019, only 3.8% of the papers used AI to achieve their goals. 
However, AI-based traffic management systems have the 
potential to enhance traffic performance by improving the 
data collection process and predicting traffic features. 

During the last few years, there has been a growing body 
of literature on using AI in object detection algorithms. 
Girshick et al. [19] proposed a region-based convolutional 
network (ConvNet) method (R-CNN) that used a deep 
ConvNet to classify the object proposals. It is a combination 

of region proposal and CNN. As the training phase is a multi-
stage pipeline, it is costly in terms of space and time. 
Moreover, it is slow at detecting objects [20]. To mitigate the 
limitations of R-CNN, the fast region-based convolutional 
network method (Fast R-CNN) was presented by Girshick 
[20]. It used a deep ConvNet to classify object proposals 
efficiently. It tried to improve the training and testing speed 
and detection accuracy. Fast R-CNN was developed with 
Python and C++. The experiments indicate that Fast R-CNN  
trains the deep VGG16 network 19 times faster than R-CNN. 
Also, test time is 213 times shorter. In addition, it is more 
accurate. 

Faster R-CNN was presented by Ren et al. to detect objects 
by considering region proposal networks (RPNs) [21]. Mask 
R-CNN, which is the extended version of Faster R-CNN, was 
proposed by He et al. [22]. It detects objects in an image 
efficiently and generates a high-quality segmentation mask 
simultaneously. Training with Mask R-CNN is simple and 
adds just a small overhead to Faster R-CNN. 

Redmon presented You Only Look Once (YOLO) [23], 
which is a real-time object detection algorithm. In contrast 
with previous studies, YOLO is based on a regression problem 
rather than classification. It uses a single neural network for 
the detection pipeline. Moreover, classes and bounding boxes 
are predicted in one run of the algorithm for the whole image. 

A number of researchers have considered using various 
proposed algorithms to detect vehicles, inter-vehicle distance, 
and vehicle speed. For instance, to detect vehicles, Godha [24] 
proposed an algorithm using a mounted camera in real-time 
that could send a warning to the driver. This system was 
developed in MATLAB as a driver assistant system. Asvadi 
et al. [25] proposed a real-time and multimodal vehicle 
detection system. It uses YOLO [23], [26] as a deep ConvNet 
object detection framework. Moreover, it is based on fusing 
the data collected by a color camera and 3D-LIDAR. The 
KITTI object detection dataset is used in the experiments 
phase. Caltagirone et al. [27] developed a fusion fully 
convolutional neural network (FCN) for road detection. It uses 
KITTI as a dataset and LiDAR and camera fusion. 

In addition, some studies were done that focused on 
detection of the inter-vehicle distance. For example, Huang et 
al. [28] proposed a driver assistant system to detect vehicles 
and estimate the inter-vehicle distance. This system uses a 
camera as a sensor and includes image processing, 
information collection, vanishing point detection, road region 
segmentation, and estimation of the inter-vehicle distance. 
Lee [29] presented a method for estimating the inter-vehicle 
distance using a blackbox camera. The idea is to estimate the 
distance based on the lane width for the detected vehicle. 
Chadwick et al. [30] proposed an approach using radar and a 
camera to estimate the vehicle distance. Moreover, an 
automatic process was introduced for training and labeling the 
new dataset from multiple cameras. It used YOLO [23] as an 
object detector and KITTI as a dataset. Furthermore, several 
studies consider determining the vehicles’ speed. For instance, 
Gerát et al. [31] used Gaussian mixture models, density-based 
spatial clustering of applications with noise (DBSCAN), a 
Kalman filter, and the optical flow method to detect vehicle 
speed using a stationary camera. Moazzam et al. [32] 



proposed a new approach to determine vehicle speed based on 
video captured by a stationary camera. They used the QMUL 
dataset [33] for this experiment. 

III. METHODOLOGY 

A. Research objective 
An intelligent intersection management system tries to 

improve traffic flow performance by accessing traffic data. In 
this study, we have tried to collect the number and type of 
vehicles, their distance, and their speed in mixed traffic by 
using a mounted monocular camera installed on a vehicle. We 
limited our focus to analyzing the monocular camera rather 
than more expensive sensors, e.g., radar or LiDAR, because 
we observe that many advanced vehicles have cameras 
installed by default and not many vehicles will have radar or 
LiDAR installed in the future. We believe that considering the 
data from a camera only will make our system more 
applicable. The objective of this work is to study the 
possibility of using a mounted monocular camera to collect 
mixed traffic data from multiple lanes by considering the 
effect of camera movement. 

B. Research approach 
This study is exploratory and normative in nature, since 

vehicle-mounted cameras have not been used to collect 
vehicle data to manage mixed traffic in existing studies, and 
new algorithms are developed. In this study, we followed 
Pfeffers et al.’s Design Science Research Process [34]. 

IV. IMPLEMENTATION AND EVALUATION 
To answer the research questions, we decided to construct 

a system based on various state-of-the-art algorithms. The 
system was developed in Python and used popular 
frameworks that have well-documented outcomes in various 
projects. We proposed a system that is a combination of 
PyTorch [35] for implementation of the pre-trained version of 
YOLO [23], [36], [37] and OpenCV [38], Canny edge 
detection [39], and progressive probabilistic Hough 
transformation [40], [41] for lane detection while driving. 

The data were collected from a vehicle equipped with a 
front-facing camera. We used a GoPro Hero 7 camera [42], 
since it is able to record GPS data as well. The video resolution 
was 1920 × 1080, the frame rate was set to 30 frames per 
second (FPS), and the GoPro had built-in video stabilization. 
Every 55 ms, the GPS sensor registered information including 
latitude, longitude, altitude, speed, and a coordinated 
universal time  (UTC) stamp. 

To collect data and to evaluate our data analysis 
algorithms, the route driven was defined by considering the 
coverage of various road types. For instance, a motorway with 
multiple lanes, city traffic with traffic lights, buses, and 
pedestrians, road sections with tunnels or roundabouts, and 
other mixed traffic were considered. The recording took place 
between 9 and 10 a.m. on a typical workday. The recorded 
video was split into manageable sequences. Moreover, the 
GPS data were extracted to a JSON file by an online tool [43]; 
then, the GPS file related to the video sequences was split. 

In our evaluation, the system ran at around 10–15 FPS on 
a medium- to a high-end desktop computer with an Intel i7-
7700k CPU and NVIDIA GTX 1080ti GPU. This gave a 
processing time of 60–100 ms per frame. Considering that the 
videos were captured at 30 FPS, this meant that the system 
performed at roughly half the speed of the videos themselves. 

In the following, we will describe the approaches used to 
answer each research question and the outcomes. 

A. RQ1. Detect number and type of vehicles in nearby lanes 
We followed two steps to estimate the vehicles’ positions 

and count them in each lane, namely, vehicle detection and 
lane detection. The first step was vehicle detection, which was 
done based on the existing object detection implementation 
called YOLO [23], [36], [37]. We chose to use YOLO because 
it is a real-time object detection algorithm. The selected 
implementation was trained on the COCO dataset [44]. We 
adapted YOLO to make it fit with our objectives. In the second 
step, image processing techniques were used to detect the 
lanes on the road. To achieve this goal, we experimented and 
compared various edge detection methods: Sobel edge 
detection [45], Canny edge detection [39], and Prewitt edge 
detection [46]. As Fig. 1 shows, Sobel has too much noise, and 
Prewitt is able to recognize only a few edges. Canny showed 
a good number of lane edges without much noise. Therefore, 
we decided to use Canny edge detection. In addition, to find 
the continuous lines, we decided to use progressive 
probabilistic Hough transform [40], [41], which provided 
great results for a small computing power cost. To further 
reduce the computation time, the system uses the grayscale 
image and regions of interest (ROIs) approach [47]. 

The steps applied in the lane detection algorithm are 
shown in Fig. 2. The output of Canny edge detection, cropping 
of the image, and progressive probabilistic Hough transform 
for lane detection are displayed in Fig. 3.  

To answer RQ1, the findings of the vehicle detection and 
lane detection were merged and processed to yield 
information about detected vehicles and their relative 
positions. The output of the algorithm can be seen in Fig. 4. It 
shows the lanes and objects by using bounding boxes. It 
represents the number, speed, and distance of the detected 
bicycles, buses, vans, motorbikes, trucks, and cars in multiple 
lanes in front of the equipped vehicle with a monocular 
camera. 

 

 
Figure 1.  Comparison of different edge detection algorithms. Top left: 

Sobel edge detection; top right: Canny edge detection; bottom left: Prewitt 
edge detection; bottom right: the original image 



 

 

For easier processing, the image is 
converted to grayscale. 

To remove noise before edge detection. 

Apply the Canny edge detection 
algorithm to find edges. 

To remove areas that do not contain lane 
lines. 

To find lines in the ROI. 
 

To form one long continuous line for 
each side. 

 

Figure 2.  Steps of the lane detection algorithm 

 

  
a. Canny Edge Detection b. Cropping the Image 

  
c. Hough Transform d. Lane Detection 

Figure 3.  Outcomes of applying Canny edge detection, cropping the 
image, Hough transform, and lane detection 

 

 
Figure 4.  Lanes and vehicles detection on the road 

To evaluate the proposed algorithm, three scenarios are 
selected with various durations and locations. 
• S1. City traffic – Elgeseter Street, Trondheim 

- Includes several traffic light intersections, buses, and 
pedestrians 

- Video duration is equal to 4 minutes 

- 72 readings, giving a reading approximately every 3.5 
seconds 

• S2. Mixed traffic – Lade, Trondheim 

- Includes normal to heavy traffic, multiple traffic light 
intersections, crossing traffic, and surrounding 
parking lots 

- Video duration is equal to 3.5 minutes 

- 78 readings, giving a reading every 2.7 seconds 

• S3. Mixed traffic – Tempe to Lerkendal, Trondheim 

- Includes normal to heavy traffic, and the lanes were 
separated by a central reservation with a medium-high 
fence 

- Video duration is equal to 1.5 minutes 

- 27 readings, giving a reading every 3.5 seconds 

The evaluation of the algorithm is based on the 
comparison of the outputs with manually counted results. It is 
evaluated on two measures: 

Measure 1: Overall ability to detect and count objects, not 
respecting the vehicle type. 

Measure 2: Number of times vehicles were counted 
correctly and incorrectly in different lanes, respecting vehicle 
type. 

The results obtained from the evaluation process of the 
proposed algorithm are presented in Tables I, II, III, and IV. 
The outputs show that the total error rate in S1, S2, and S3 is 
1.0%–10.6% for measure 1. The total wrong on average for 
the proposed scenarios in measure 2 is 34.4%–46.3%. These 
findings show that the proposed algorithm is able to detect and 
count vehicles with high accuracy without considering their 
locations and types, but it is still not accurate if it focuses on 
identifying the type of the vehicle and its position in the lane. 

B. RQ2. Using a camera to estimate the distance 
We proposed a novel approach based on the pinhole 

camera geometry for calculating the distance of the vehicles 
in front in the same lane as the camera and in the left, right, 
and opposite lanes [48]. The pinhole camera is defined as 
equation 1, where 𝑑 is the distance to the object, 𝐹# is the focal 
length of the camera, 𝐻% is the real height of the object, and 
ℎ% is the height of the image. 

 
𝑑 = 	𝐹# 	× 	

𝐻%
ℎ%
																																																																																											(1) 

 
We used a combination of height and width to estimate the 

vehicle’s size and enhance the accuracy of the estimated 
distance. The values used for the calculations, based on 

Draw lines on the image

Merge lines

Hough line transform

Crop region of interest

Edge detection

Blur

Convert to grayscale

Frame from video



approximate sizes of vehicles, are presented in Table V. 
Moreover, the distance estimation algorithm is shown in Fig. 
5. 

TABLE I. THE OUTPUT OF SCENARIO 1 - BASED ON MEASURE 1 

S1 Lane Total Left Mid Right 
Manual 99 49 50 198 
System 85 51 60 196 
Error 14.1% 4.1% 20.0% 1.0% 

TABLE II. THE OUTPUT OF SCENARIO 2 - BASED ON MEASURE 1 

S2 Lane Total Left Mid Right 
Manual 265 56 159 480 
System 228 70 131 429 
Error 14.0% 25.0% 17.6% 10.6% 

TABLE III. THE OUTPUT OF SCENARIO 3 - BASED ON MEASURE 1 

S3 Lane Total Left Mid Right 
Manual 35 39 24 98 
System 40 21 31 92 
Error 14.3% 46.2 29.2% 6.1% 

TABLE IV. THE OUTPUT BASED ON MEASURE 2 

Scenarios 

Measure 2 Measure 2 
(Total 

corrects on 
average) 

Counted 
too many 

in average 

Counted 
too few in 
average 

Total 
wrongs 

calculation 
on average 

S1 19.7% 14.7% 34.4% 65.6% 

S2 24.3% 22.0% 46.3% 53.7% 

S3 24.7% 10.0% 34.7% 65.3% 

TABLE V. THE APPROXIMATE SIZES OF VEHICLES 

 
As we did not have the ground truth of vehicle distance in 

our collected videos, we recorded new videos. The goal was 
to find the most accurate ratio of the vehicles’ heights and 
widths. These videos captured a stationary vehicle at different 
distances and different angles. Then, we used a laser to 
measure the ground truth distance to stationary vehicles. We 
experimented with different ratios of height and width, and the 
results were compared with the ground truth from the laser. 
The average error with varying ratios of height and width is 
shown in Fig. 6. Based on the experiment results, the best ratio 
is 85% of the height and 15% of the width, which is affected 
by the detected vehicle angle. 

 
 

 
Figure 5.  Distance estimation algorithm 

 

  
 

Figure 6.  Average error with varying ratios of height and width 

 

C. RQ3. Estimating the speed 
Two steps were followed to answer the third research 

question: tracking the object in different frames and 
estimating the speed. 

- How can we track vehicles between multiple frames? As 
we used a vehicle-mounted monocular camera, in a given 
period, the same vehicle could be viewed in the collected 
video. Then, the centroid of the bounding boxes identified 
by YOLO object detection and the Euclidean distance 
between a vehicle’s centroids in different frames were used 
to track the same vehicle. 

- How can we estimate the speed (𝑣)? Based on the physics 
concepts,  distance traveled (∆𝑑) over time (∆𝑡) is needed. 
The formula is shown in equation 2. 

𝜐 = ∆1
∆2

                                                                            (2) 
 

Vehicle Type Width Height 

Bus 2.4 m 4.0 m 

Car 1.8 m 1.6 m 

Motorbike/Bicycle 1.0 m 1.0 m 

Truck 2.4 m 4.0 m 

Van 1.9 m 2.5 m 



Referring to the study of Chai and Wong [49], to calculate 
the speed, we used the known frame rate of the camera. As the 
FPS in this work is 30, to estimate the speed, the average 
change in distance over the last 30 frames was used to find the 
change per second. Moreover, the camera’s speed based on 
GPS data was considered in the estimation process. 

The proposed algorithms for object tracking between 
multiple frames and speed estimation are shown in Fig. 7 and 
Fig. 8, respectively. 

 

 

YOLO is used to find bounding boxes. 

Using the centroids to track the object 
between frames. 

Using Euclidean distance to calculate the 
positional difference. 

The closest centroid from the Euclidean 
distance represents the same object. 

 

 

Figure 7.  Steps for tracking objects 
 

 

The object detection algorithm 
detects the object, and the object 
tracker assigns the ID to the object. 

Finding and storing the distance 
with the object ID. 

Calculating the distance changes 
in the last frame based on the 
stored data for the vehicle. 

 

 

Figure 8.  Speed estimation algorithm 
 
To evaluate the algorithms, as we did not have equipment 

for measuring the true speed of the vehicles, we analyzed the 
three video sequences manually based on the estimated 
distance in RQ2 as the traveling distance (∆𝑑 ) for each 
selected frame by considering the distance moved by the 
camera. The results are shown in Fig. 9, which shows the true 

speed, based on the calculation described in the test procedure, 
and the speed estimated by the system. The average difference 
of the 75 total manual readings across all the sequences was 
2.09 m/s, and the maximum difference was 10.64 m/s. 

 

 

Speed analysis 1 

 
Speed analysis 2 

 

Speed analysis 3 

Figure 9.  Speed analysis 

V. DISCUSSION 
This study set out with the aim of assessing the feasibility 

of using vehicle-mounted sensors to sense the surrounding 
traffic to collect and share traffic data rather than using 
stationary sensors on the road. Prior studies focused on 
collecting traffic data that can be classified into two main 
groups. One group of papers used stationary sensors [31], 
[32]. While these methods might be effective in collecting the 
required data, they count AVs as HDVs without considering 
AVs’ possibilities. Moreover, this methodology is not 
compatible with using a vehicle-mounted camera, as it does 
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not consider the effect of the sensor’s movement on the quality 
of detection. The other group of studies used vehicle-mounted 
sensors, which are the main focus of this study. Various 
autonomous and modern vehicles are equipped with different 
types of sensors. As there is a strong relationship between the 
type of sensors and a vehicle’s price, some auto manufacturers 
might use a limited number of sensors to mitigate the vehicle’s 
cost. Therefore, it is vital to find a method that is usable for all 
types of vehicle-mounted sensors. As the camera is the most 
common sensor, we tried to extract all the data from video. 
However, some studies focused on sensors’ fusion, which is 
suitable for vehicles equipped with various types of sensors, 
such as LiDAR and RADAR (e.g., [25] and [27]). Although it 
might be effective in the correctness of detection, it is costly 
as well and might not be practically useful for all vehicles. 

Moreover, unlike many other studies (e.g., [27], [25], and 
[32]), in this research, we equipped a vehicle with a camera 
and drove it on a defined route that contained many different 
scenarios to collect real traffic data. 

In addition, one of the main goals of collecting traffic data 
is to improve the performance of intelligent traffic 
management systems. Therefore, considering the data type 
required by the traffic management system was a key point in 
developing our algorithms. To the best of our knowledge, no 
other paper has determined the number, type, distance, and 
speed of vehicles at the same time. Most of the papers have 
tried to extract one data type (e.g., [24], [25], [27], [30], [29], 
[31], and [32]), which is not enough for managing traffic 
safely and efficiently. 

As a part of our research to determine the number and type 
of vehicles in each lane, we proposed algorithms for object 
detection and lane detection. The current study found that 
overall object detection with YOLO worked quite well. The 
results show that the average accuracy of vehicle detection is 
92.4% in the proposed system. One unanticipated finding was 
the low accuracy of vehicle classification, which affected the 
accuracy of the position based on lanes. Almost 60% of the 
errors were caused by the detector misclassifying vehicles. A 
possible explanation for this might be that the network was 
trained on the COCO dataset, which contains 80 different 
objects, and not only objects related to traffic [44]. Hence, it 
could conceivably be hypothesized that using a specialized 
dataset for traffic objects could contribute to improving the 
classification accuracy, thus lowering the error rate and 
boosting the accuracy of the system. Moreover, the generated 
boundary boxed by YOLO may be unstable between frames. 
This result may be explained by the fact that YOLO’s 
boundary detection approach leads to unstable detections. 
Non-maximum suppression could be used to fix these 
multiple detections [23]. 

Another important finding was the ability of the proposed 
system to detect lanes and separate vehicles in different lanes. 
In our evaluation of the system, this worked well on straight 
roads when the lane markings were clear and easily visible. 
However, overall lane detection results were not satisfactory 
with curved lanes. Edge detection with Canny edge worked as 
anticipated. However, sometimes the edge detector detected 
curbs as a lane edge. Contrary to expectations, the second-
largest source of error was wrongly identified lanes. It would 

be hard to address some issues with lane detection, such as 
that faraway lanes are difficult to detect and distinguish, 
and bad or non-existent lane markings create some 
difficulties in the detection process. We suspect that, when 
choosing the lane detection part of the algorithm, progressive 
probabilistic Hough transform [40], [41] might not be the best 
choice. The method proposed by Kim [50] of tracking left and 
right lane markings separately and utilizing an ANN that was 
trained to detect lines could be used to increase the accuracy. 
This would also have the added benefit of being able to detect 
lanes with curves. However, using an ANN might increase the 
resource demand and would also require training. 
The use of standardized lane sizes in the algorithm could be 
another future enhancement. The Norwegian Public Roads 
Administration [51] handbook includes different standard 
sizes of lanes and markings. This could ensure that different 
lane detections were not bigger than a set threshold. The other 
observed limitation of the system related to lane detection is 
that the lane detected on the left side was often the lane with 
opposing traffic, which caused noise in the results. 

Another interesting finding of our study concerned 
estimating the vehicle distance based on the object size. We 
used the pinhole model and proposed an efficient ratio of 
object width and length to estimate the vehicle distance. Our 
evaluations show that combining the height and width of the 
detected object with a ratio of 85% and 15%, which gave the 
lowest amount of error with 11% on average. The unexpected 
finding with this idea was that camera movement and the 
varying sizes of the generated bounding boxes affected 
distance estimation. This result may be explained by the fact 
that images with only 2D information from a camera were 
used for distance estimation. More advanced equipment such 
as LiDAR, which generates 3D information, might be more 
accurate. The other limitation is caused by assuming a fixed 
true value for vehicle size. Moreover, the accuracy of the 
distance estimation could be affected by wrongly classified 
vehicles. Furthermore, in this study, we proved that it is 
feasible to estimate vehicle speed using a moving monocular 
camera. Our study found that the speed estimation worked as 
expected for vehicles in front of the camera that were driving 
in the same direction as the camera, with a mean difference of 
2.09 m/s. However, this experiment was not accurate enough 
for vehicles going the opposite direction as the camera. A 
possible explanation for these results may be the lack of 
adequate time to capture the vehicles driving in the opposite 
direction, which is needed to calculate the speed accurately. 
Movement of the camera caused some errors in estimating the 
speed. Additionally, the estimation was not that accurate for 
faraway vehicles, since their determined centroid points 
vanished. On the other hand, as speed was calculated based on 
distance, any error in distance estimation had a negative effect 
on the correctness of the estimated speed, and a significant 
error in estimated speed occurred if the estimated distance 
suddenly spiked or varied between consecutive frames. 

VI. CONCLUSION AND FUTURE WORK 
This study set out to use vehicle-mounted monocular 

camera technology to collect the traffic data from multiple 
lanes required for managing traffic intelligently and 



efficiently. We tried to achieve this objective by answering 
three research questions. First, we defined a system based on 
object detection algorithms and computer vision methods. 
Experiments on the recorded images from a predefined route 
in Trondheim confirmed that the proposed approach worked 
well for object and lane detection in that specific situation. 
However, more studies are needed to enhance the accuracy of 
the outputs and generalize the system to various situations. 
The second aim of this study was to investigate the effects of 
considering both the length and the width of the detected 
object in estimating the distance. The results of this 
investigation show that combination height and width with the 
ratio of 85% and 15% worked best. The third purpose of the 
current study was to estimate the speed of the nearby vehicles 
based on their distance changes over time. In general, this 
study proved the possibility of collecting traffic data from a 
camera, which is useful for managing mixed traffic. Our 
future work will focus on improving the performance of the 
proposed algorithm to minimize the error rate in real traffic. 
To achieve this, we will extend the system to be able to work 
in a broader environment and include more lanes. In addition, 
we will try to collect more traffic data types, which is required 
for traffic management systems, considering the state of the 
art. We will also improve the accuracy of the proposed 
approach by improving the object detection algorithm and 
using a training dataset specific to traffic. In addition, we 
could improve the lane detection approaches by considering 
the lane width standards. 

REFERENCES 
[1] F. Yan, M. Dridi, and A. E. Moudni, “Autonomous vehicle sequencing 

algorithm at isolated intersections,” in 12th Int. IEEE Conf. Intell. 
Transp. Syst. , 2009, pp. 1–6. 

[2] G. R. d. Campos, P. Falcone, and J. Sjöberg, “Autonomous cooperative 
driving: A velocity-based negotiation approach for intersection 
crossing,” in 16th Int. IEEE Conf. Intell. Transp. Syst. (ITSC 2013), 
2013, pp. 1456–1461. 

[3] S. Adams and M. J. Rutherford, “Towards decentralized waypoint 
negotiation,” in 2012 AAAI Workshop, Toronto, ON, vol. WS-12-10, 
pp. 2–5. 

[4] Y. Zhang, A. A. Malikopoulos, and C. G. Cassandras, “Decentralized 
optimal control for connected automated vehicles at intersections 
including left and right turns,” in 2017 IEEE 56th Annu. Conf. 
Decision and Control (CDC), 2017, pp. 4428–4433. 

[5] L. Makarem and D. Gillet, “Fluent coordination of autonomous 
vehicles at intersections,” in 2012 IEEE Int. Conf. Syst., Man, Cybern. 
(SMC), 2012, pp. 2557–2562. 

[6] R. Krajewski, P. Themann, and L. Eckstein, “Decoupled cooperative 
trajectory optimization for connected highly automated vehicles at 
urban intersections,” in 2016 IEEE Intell. Veh. Symp. (IV), pp. 741–
746. 

[7] J. Ding, H. Xu, J. Hu, and Y. Zhang, “Centralized cooperative 
intersection control under automated vehicle environment,” in 2017 
IEEE Intell. Veh. Symp. (IV), pp. 972–977. 

[8] E. Namazi, J. Li, and C. Lu, “Intelligent intersection management 
systems considering autonomous vehicles: A systematic literature 
review,” IEEE Access, vol. 7, pp. 91946–91965, 2019. 

[9] M. Vasirani and S. Ossowski, “A computational market for distributed 
control of urban road traffic systems,” IEEE Trans. Intell. Transp. 
Syst., vol. 12, no. 2, pp. 313–321, 2011. 

[10] C. Wuthishuwong and A. Traechtler, “Consensus-based local 
information coordination for the networked control of the autonomous 

intersection management,” Complex Intell. Syst., vol. 3, no. 1, pp. 17–
32, Mar 2017. 

[11] S. A. Fayazi, A. Vahidi, and A. Luckow, “Optimal scheduling of 
autonomous vehicle arrivals at intelligent intersections via MILP,” in 
2017 American Control Conf. (ACC), pp. 4920–4925. 

[12] J. Wu, A. Abbas-Turki, and A. E. Moudni, “Intersection traffic control 
by a novel scheduling model,” in 2009 IEEE/INFORMS Int. Conf. 
Service Operations, Logistics, Inform., pp. 329–334. 

[13] J. Wu, A. Abbas-Turki, and A. E. Moudni, “Discrete methods for urban 
intersection traffic controlling,” in VTC Spring 2009 – IEEE 69th Veh. 
Techn. Conf., pp. 1–5. 

[14] F. Ze-hua, L. Han-bo, H. Wei, and Y. Tian, “District control strategy 
for vehicle collision avoidance based on hybrid automaton model,” in 
Proc. 11th World Congr. Intell. Control Autom., 2014, pp. 5378–5383. 

[15] Y. Bichiou and H. A. Rakha, “Developing an optimal intersection 
control system for automated connected vehicles,” IEEE Trans. Intell. 
Transp. Syst., vol. 20, no. 5, pp. 1908–1916, 2019. 

[16] Y. Wu, H. Chen, and F. Zhu, “DCL-AIM: Decentralized coordination 
learning of autonomous intersection management for connected and 
automated vehicles,” Transp. Res. Part C: Emerg. Technol, vol. 103, 
pp. 246–260, 2019. 

[17] Y. Mo, M. Wang, T. Zhang, and Q. Zhang, “Autonomous cooperative 
vehicle coordination at road intersections,” in 2018 IEEE Int. Conf. 
Commun. Syst. (ICCS), pp. 192–197. 

[18] N. Aloufi and A. Chatterjee, “Autonomous vehicle scheduling at 
intersections based on production line technique,” in 2018 IEEE 88th 
Veh. Techn. Conf. (VTC-Fall), pp. 1–5. 

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 
hierarchies for accurate object detection and semantic segmentation,” 
in Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2014, pp. 
580–587. 

[20] R. Girshick, “Fast r-cnn,” in Proc. IEEE Int. Conf. Comput. Vision, 
2015, pp. 1440–1448. 

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances 
Neural Inf. Process. Syst., 2015, pp. 91–99. 

[22] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proc. 
IEEE Int. Conf. Comput. Vision, 2017, pp. 2961–2969. 

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 
once: Unified, real-time object detection,” in Proc. IEEE Conf. 
Comput. Vision Pattern Recognition, 2016, pp. 779–788. 

[24] S. Godha, “On-road obstacle detection system for driver assistance,” 
Asia Pacific J. Engineering Science and Technology, vol. 3, no. 1, pp. 
16–21, 2017. 

[25] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J. Nunes, 
“Multimodal vehicle detection: fusing 3D-LIDAR and color camera 
data,” Pattern Recognition Lett., vol. 115, pp. 20–29, 2018. 

[26] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in 
Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2017, pp. 
7263–7271. 

[27] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “LIDAR–
camera fusion for road detection using fully convolutional neural 
networks,” Robot. Auton. Syst., vol. 111, pp. 125–131, 2019. 

[28] D.-Y. Huang, C.-H. Chen, T.-Y. Chen, W.-C. Hu, and K.-W. Feng, 
“Vehicle detection and inter-vehicle distance estimation using single-
lens video camera on urban/suburb roads,” J. Visual Commun. Image 
Representation, vol. 46, pp. 250–259, 2017. 

[29] J. Lee, “Intervehicle distance estimation through camera images,” J. 
Electron. Imag., vol. 27, no. 6, p. 063001, 2018. 

[30] S. Chadwick, W. Maddern, and P. Newman, “Distant vehicle detection 
using radar and vision,” arXiv preprint, arXiv:1901.10951, 2019. 

[31] J. Gerát, D. Sopiak, M. Oravec, and J. Pavlovicová, “Vehicle speed 
detection from camera stream using image processing methods,” in 
2017 Int. Symp. ELMAR, pp. 201–204: IEEE. 



[32] M. G. Moazzam, M. R. Haque, and M. S. Uddin, “Image-based vehicle 
speed estimation,” J. Comput. Commun., vol. 7, no. 6, pp. 1–5, 2019. 

[33] QMUL Junction Dataset, Chinese University of Hong Kong, Feb. 
2018. [Online]. Available: 
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_qmul_junction.html 

[34] K. Pfeffers, T, Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen, 
and J. Bragge, “The design science research process: A model for 
producing and presenting information systems research,” in Proc. 1st 
Int. Conf. Design Sci. Research Inf. Syst. Techn. (DESRIST 2006), 
Claremont, CA, USA, pp. 83–106. 

[35] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. 
Lin, A. Desmaison, L. Antiga, and A. Lerer “Automatic differentiation 
in pytorch,” 31st Conf. on Neural Information Processing Systems 
(NIPS), 2017. 

[36] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 
arXiv preprint, arXiv:1804.02767, 2018. 

[37] Ayooshkathuria/pytorch-yolo-v3. [Online]. Available: 
https://github.com/ayooshkathuria/pytorch-yolo-v3 

[38] G. Bradski, “The opencv library,” Dr Dobb’s J. Software Tools, vol. 
25, pp. 120–125, 2000. 

[39] L. Ding and A. Goshtasby, “On the Canny edge detector,” Pattern 
Recognition, vol. 34, no. 3, pp. 721–725, 2001. 

[40] C. Galamhos, J. Matas, and J. Kittler, “Progressive probabilistic Hough 
transform for line detection,” in Proc. 1999 IEEE Comput. Soc. Conf. 
Comput. Vision Pattern Recognition (Cat. No PR00149), vol. 1, pp. 
554–560: IEEE. 

[41] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using 
the progressive probabilistic hough transform,” Comput. Vision Image 
Understanding, vol. 78, no. 1, pp. 119–137, 2000. 

[42] “Gopro hero 7 black.” [Online]. Available: 
https://shop.gopro.com/EMEA/cameras/hero7-black/CHDHX-701-
master.html. 

[43] “Gopro telemetry extractor.” [Online]. Available: 
https://tailorandwayne:com/gopro-telemetry-extractor/#!. 

[44] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. 
Perona, D. Ramanan, C. Zitnick, and P. Dollar´, “Microsoft COCO: 
Common objects in context,” in European Conf. Comput. Vision, 2014, 
pp. 740–755: Springer. 

[45] S. Gupta and S. G. Mazumdar, “Sobel edge detection algorithm,” Int. 
J. Comput. Sci. Manag. Res., vol. 2, no. 2, pp. 1578–1583, 2013. 

[46] A. Seif, M. M. Salut, and M. N. Marsono, “A hardware architecture of 
Prewitt edge detection,” in 2010 IEEE Conf. Sustain. Utilization and 
Develop. Eng. Technol., pp. 99–101. 

[47] G. Deng and Y. Wu, “Double lane line edge detection method based 
on constraint conditions Hough transform,” in 2018 17th Int. Symp.  
Distrib. Comput. Appl. Business Eng. Sci. (DCABES), pp. 107–110: 
IEEE. 

[48] K.-Y. Park and S.-Y. Hwang, “Robust range estimation with a 
monocular camera for vision-based forward collision warning system,” 
Scientific World J., vol. 2014, 2014. 

[49] C. Chai and Y. D. Wong, “Automatic vehicle classification and 
tracking method for vehicle movements at signalized intersections,” in 
2013 IEEE Intell. Veh. Symp.  (IV), pp. 624–629. 

[50] Z. Kim, “Robust lane detection and tracking in challenging scenarios,” 
IEEE Transactions on Intelligent Transportation Systems, vol. 9, pp. 
16-26, 2008. 

[51] Vegdirektoratet, “Vegoppmerking,” 2015. [Online]. Available: 
https://www:vegvesen:no/ attachment/69741 
 

 


