
Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

Model-Driven Game Development: A Literature Review
Meng Zhu†

Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway, mengzhu331@outlook.com

Alf Inge Wang
Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway, alf.inge.wang@ntnu.no

Abstract
Model-driven game development (MDGD) introduces model-driven methodology to the computer game domain, shifting the focus of

game development from coding to modeling to make game development faster and easier. The research on MDGD is concerned with both
the general model-driven software development methodology and the particular characteristics of game development. People in the MDGD
community have proposed several approaches in the last decades, addressing both the technology and the development process in the
context of MDGD. This article presents the state-of-art of MDGD research based on a literature review of 26 approaches in the field. The
review is structured around five perspectives: target game domains, domain frameworks, modelling languages, tooling, and evaluation
methods. The paper also includes reflections and a discussion of the challenges within MDGD.

CCS CONCEPTS
• Software and its engineering ~Domain specific Languages
• Software and its engineering ~Application specific development environments
• Information systems ~ Massively multiplayer online games

Keywords
Model-Driven Software Development, Game Development

1 Introduction
Game development has progressed massively over many areas from its initial start to where we are today. However, game development

is still complicated due to the following reasons [1]:

1) The requirements of computer games keep evolving throughout the development process: Although the overall goal of game
development being “entertaining” or “fun” is unchangeable, the concrete functional requirements and the game design are
always subject to change during the whole development lifecycle. This is due to the gap between the anticipated gaming
experience and the actual gaming experience, which cannot be guaranteed even by the most experienced game designers.

2) Games have to be developed through a creative process, which makes it challenging to follow general software engineering
practices directly: In terms of its artistic nature, the development team consists of a majority of people from a non-technical
background. Artists work through creative processes, which are difficult to align with structured and defined engineering
processes. In [2], Callele et al. argued that “imposing too much structure on the creative process may be highly detrimental –
constraining expression, reducing creativity, and impairing the intangibles that create an enjoyable experience for the
customer.”

3) Communication is essential but difficult in the game development: The success of developing computer games requires effective
communication within multi-disciplinary development teams. Prominent game designers may have a good understanding of
the underlying technology and can even do some coding themselves, but this usually is not the case. In practice, game designers
must describe and explain most gameplay ideas to programmers, either through verbal communication or through written
documentation. Documentation is highly recommended in [3, 4], but creating useful documents is difficult because the
technical specifications of a game can easily reach 50 pages [5], and some designers insist that game design is something one
cannot write down on a piece of paper [3]. Besides, game designers and game programmers do not always “speak the same
language”.

4) There are challenges connected to the tools and workflow [1]: Current commercial games are intricate pieces of software, which
are very difficult to develop from scratch. Game engines that emerged in the 90s have made the game development more
accessible and solved parts of this problem. However, as it was pointed out in [6], when the technology evolves, the demands
for software also increase.

Due to the challenging nature of game development, it has a high probability of failure. Moreover, the capital investment must be
considered, which can be as high as a Hollywood movie for a AAA game title. This means that the development of a massive modern game
is financially risky. Failure of a big-budget game can, in the worst-case bring down major game companies. The challenges mentioned

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 2

above, and the financial risk of the game industry has motivated the research on new technologies and methodologies that can ease the
game development and lower the risk of game production. Model-Driven Development (MDD) is a promising direction, which has shown
improvements in software productivity in various software domains. Walt Scacchi also pointed out in [7] that domain-specific languages
that allow designers to be creative and expressive are essential for future game development. Moreover, game as a software is particularly
appropriate for MDD because:

1) MDD makes prototyping of design ideas easier: The requirements of computer games come from the game design. Game design
is a creative process where many ideas are generated, tested, evolved, and possibly thrown away, while only a few ideas are
implemented in the finished product. The process of game design is iterative, or looping [4], and the iterative design emphasizes
play-testing and prototyping [10]. It is also advocated that prototyping of gameplay before adding some detailed artifacts is a
good practice [3]. However, implementing prototypes for validating designer’s ideas is a stressful, duplicating and frustrating
process for the programmers, as they have to implement changing ideas on a tight schedule, and the entire code may be dropped
if the ideas are eventually considered non-entertaining. The programmers have to implement playable prototypes until the
game design becomes stable continuously, which is so time-consuming that the dedicated phase called preproduction [5] has
been introduced to the game development process. MDD can ease the preproduction phase, because firstly it allows the game
designers to model and evaluate their ideas without going through a designer-programmer-designer cycle that overburdens the
workflow, and secondly it can save the time on manually coding the prototypes.

2) MDD reduces the requirement of developers’ knowledge and experience: A factor that makes game development difficult is
that computer games have some highly domain-specific requirements, which involves significant domain-specific knowledge
[1], and this generates a huge demand for experienced programmers. When MDD is applied, proficient developers can work on
the technical infrastructure such as domain-specific languages and tools, while junior developers and game designers can work
on the game models which can be transformed into executable game code. Another advantage of the finer granularity of work
decomposition is that the developers can dedicate themselves to a specific development domain and thus be more proficient in
it.

3) MDD enables more efficient communication: MDD’s opportunity here is that models, especially models created with domain-
specific languages, are formal specification of ideas. Due to the formality, communication via models can eliminate some
misunderstandings of natural languages. Moreover, Domain-Specific Models (DSMs) can ease the communication between
software developers and domain experts [8] in general, and we also believe it is valid for the game development domain.

When MDD is introduced to the game development, Model-Driven Game Development (MDGD) emerges as a new research field. Many
academic studies within this field have been published during the last fifteen years, such as [11-13] and [14]. This article presents a
literature review of the MDGD approaches published up to and including 2018 and analyzes the approaches from five perspectives: 1)
target game domains [45], 2) domain frameworks and target environments [48], 3) modelling languages [6], 4) tooling [60], and 5)
evaluation methods. The review gives an overview of what and how MDD technologies have been used in game development without
going into the technical details of each MDGD approach.

Since the MDGD field is relatively new, there are not many related works in this area. [70] is a survey of MDGD for educational games.
Our article differs from [70] in at least three aspects:

1) Our review aims at games in general while [70] focuses on the educational games domain;

2) We use a different review framework from [70] thus provide different views for MDGD;

3) Our review includes newer studies as [70] was published in 2011.

[16] is another related work. It discusses the modeling approaches for a sub-domain of [70], which is educational Adventure games. Since
the focused game domain is narrow, there are only three approaches reviewed. Analysis and discussion of the three approaches mainly
focus on the modeling language aspect. Compared to [16], our review has a broader scope and uses a more systematic framework. The
sources in our review are also newer.

The rest of the article is organized as follows: Section 2 presents the methodology of the review; Section 3 provides an overview of the
reviewed approaches; the sections 4 to 8 analyze the MDGD approaches from the five abovementioned perspectives respectively, and
Section 9 concludes the article.

2 Research Method
The study presented in this paper tailored the systematic review method presented in [15], which uses five stages to organize the

literature review: 1. “development of review protocol”, 2. “identification of inclusion and exclusion criteria”, 3. “search for relevant studies”,
4. “critical appraisal”, 5. “data extraction”, and 6. “synthesis”. Because the number of relevant sources found in literature was limited, and
we decided to include all the qualified sources, stage 4 “critical appraisal” was skipped.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 3

2.1 Review Protocol
A review protocol was developed to achieve the following goals:

1) to maximize the literature coverage;
2) to identify and include the related work where models are central artifacts in the development process;
3) to find appropriate perspectives to collect and synthesize the meaningful data from the sources.

To meet the first goal, we used a 2-round search to find the relevant sources. In the first round, we searched online databases to find
an initial set of sources, and in the second round we went through the bibliography of the found sources and manually looked for the
relevant sources that were not included in the initial set.

We realized that there are different understandings of “model-driven” in the modeling community, and in this study, we only considered
the work where models are central artifacts of development, which means that the models are either executable or they can be transformed
into executable code. This principle of the review was reflected in the inclusion and exclusion criteria to meet the second goal of the review
protocol.

An MDGD approach can be studied from various perspectives. To meet the third goal of the review protocol, five perspectives constituting
a framework were chosen to structure our review (described in Section 2.4).

2.2 Inclusion and Exclusion Criteria
Our primary purpose was to analyze existing MDGD approaches and reveal future research directions, so the included sources must

document at least one MDGD approach with sufficient details for studying. Also, the approach should use the models as the central
artifacts in game development, and the models must be described in a formal modeling language whose syntax and semantics are explicitly
defined. The language is not only intended for a game design specification but also executable (or executable after transformation), and a
tool-chain must support it. The included sources do not have to present details in all five perspectives, but they must cover sufficient
details for at least one of the five perspectives. The review included articles up to and including 2018. Only works written in English were
included.

Sources were excluded if the models in the approach can neither be executed, nor be transformed into executable game code. To keep
the review focused we excluded some work on conceptual models that were not intended for execution. For example, [71] presented a
conceptual framework and a GUI tool for creating game design documents for educational games. Since it was not about executable models,
it was excluded, although it was a promising game modeling approach. Moreover, the review is about game development methodology,
so sources were excluded if the approach documented lacked game-oriented characteristics, i.e., the approach did not mainly target the
game domain. A common phenomenon is that an approach was presented in several publications with the focuses on distinct aspects of
the approach respectively. In such cases, all the sources were included and integrated as one approach during the review.

2.3 Search for relevant studies
The search for relevant studies was done in two phases. In the first phase, the authors searched electronic databases, and found an

initial set of sources. In the second phase, the authors went through the bibliography of the initial set and identified a secondary set of
sources. In the first phase, the following three electronic databases were searched:

1) ACM Digital Library
2) Compendex
3) IEEE Xplore

We used the following keywords:

 (Game OR Gaming) AND Model

The selection of keywords is a tricky problem: since MDGD is an emerging field, there has not been a commonly adopted terminology
that can be used to precisely refer to the relevant studies. To avoid missing sources, the general keywords above were used to do the
search. The downside is that it resulted in a lot of “hits” that manually had to be filtered out as they were not relevant. The percentage of
relevant studies in the search results was 0.59%. Due to the high number of hits in our search, we did not search for additional general
terms like “gamification” and “entertainment” to make the size of the result set manageable. However, the trade-off can potentially reduce
the literature coverage of our review. To compensate, we introduced the second round of search (by bibliography).

The keywords were used in searching the titles, abstracts and indexes of the documents in the databases, and 5933 “hits” were found.
Then the authors manually excluded irrelevant and duplicated results by going through the abstract and other attributes of the
publications. Most of the results were excluded in this step, and only 47 publications were considered relevant for the study. The authors
read the full-texts of all 47 publications, and excluded further articles using the inclusion and exclusion criteria. Eventually, 20 publications
were included in the review as the results of the first searching phase. In the second phase, the authors went through the bibliography of
the publications collected from the first phase and identified another 15 relevant publications.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 4

The two-phases search eventually resulted in 35 publications, which represented 26 individual MDGD approaches, and then the full-
texts of all the sources were read and analyzed by the authors. Figure 1 shows the process of literature searching.

Figure 1: Process of Searching for Sources.

2.4 Data Extraction and Synthesis
We investigated all the sources and extracted data for the five review perspectives:

1) Target Game Domains [45]: The target domain describes what kind of software the MDD approach is intended to support.
Computer games as a software domain is too broad for an MDD approach. All of the reviewed MDGD approaches have chosen
a narrowed scope as the target domain, such as Adventure Games or Role-Playing Games. Section 4 discusses how MDGD
approaches define their target domains and what these domains are.

2) Domain Frameworks and Target Environments [48]: In MDD, models should be executable, either directly by a model
interpreter or indirectly by transforming into an executable format for a target environment. In both cases, there is an underlying
execution framework. Section 5 discusses the software chosen as the execution frameworks by the reviewed approaches.

3) Modelling Languages [6]: The Modeling language is the central and fundamental artifact of an MDGD approach. Section 6
discusses the significant attributes of the modelling languages invented or adopted by the MDGD approaches, such as the
syntax and semantics of the languages.

4) Tooling [60]: The modelling languages have to be supported by a set of tools such as model editors and code generators. Tools
enable MDGD in practice. Section 7 analyzes both the tools provided by the MDGD approaches and the technologies the tools
are based on.

5) Evaluation: All of the reviewed MDGD approaches have been evaluated in some way. The purposes of the evaluation include
utility, usability, and productivity improvements. Different evaluation methods were chosen by the MDGD approaches such as
experiments, prototypes, and case studies. Section 8 discusses the evaluation methods that were used by the approaches, and
the corresponding purposes of the evaluations.

Moreover, we have identified some gaps and synthesized our reflections from the extracted data which are presented in the summary of
each review section.

3 An Overview of MDGD Approaches Found in the Literature
The game industry has a long tradition of using models. One example is the level models created with a level editor, which provides a

visual interactive environment for game world modeling. However, the game elements the engine tools can model are restricted to a

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 5

narrow scope of the game software, which is mainly assets such as game world layout and artistic data. Other elements such as AI, control,
and game flow are still hand-coded, either with a native programming language such as C++ or C# or with special-purpose game scripting
languages. Some state-of-art game engines do provide visual modeling tools for creating script code, e.g., the visual scripting tool in Unreal
game engine. However, these tools are not taking full advantages of MDD, such as the use of meta-models and language workbenches,
which makes them difficult to be adapted to new game domains. Further, the MDGD research community has explored the applications
of modern MDD in the game field for years, and the results are promising.

There are mainly two categories of contributions from the MDGD research community: MDGD Technology and Development Process.
Table 1 gives an overview of MDGD approaches found in the literature classified according to these two categories. A structured
description is also provided for each MDGD approach, which includes the following aspects:

1) Authors of the proposed and published approach;
2) Major contributions of the MDGD approach;
3) Game genre of the approach targeted, or game genre used for validation;
4) Technology Bases being the technical standards or frameworks is the approach based on;
5) Noteworthy features of the approach.

Note that some approaches have more than one publication, so to distinguish each approach we format its citations specially in this
article as < [number, number…] >.

Table 1: MDGD Approaches Found in the Literature.

Category Description Source

MDGD Technology Authors: Kevin Sánchez, et al.

Major Contributions: A DSL and Tools
Game Genres: Tower Defense Games
Technology Bases: XText
Highlights: Game models can be transformed into an intermediate language, and
then transformed into code in various programming languages

< [17] >

Authors: Prado, E.F.D. and D. Lucredio
Major Contributions: A set of DSLs and Tools
Game Genres: 3D Games
Technology Bases: XML
Highlights: 1) Various game elements can be modeled with dedicated DSLs, 2)
Generated code can be integrated with manual written code

< [18] >

Authors: Reyno, E.M., et al.
Major Contributions: UML tools
Game Genres: 2D Platformers
Technology Bases: UML, MOFscript
Highlights: 1) Uses standardized UML technology, 2) Generated C++ code can work
together with manual written code

< [19, 20] >

Authors: Guana, V., et al.
Major Contributions: A DSL (PhyDSL-2) and tools
Game Genres: 2D Physics-based Games
Technology Bases: Eclipse, Atlas Transformation Language (ATL) and Acceleo
Highlights: 1) Code generator can generate code for Android, 2) DSL supports
various game elements such as game objects, scene layout, and rules.

< [21, 22] >

Authors: N Thillainathan, et al.
Major Contributions: A DSL (GliSMo) and tools
Game Genres: Serious Games, Point & Click Adventure
Technology Bases: Unity
Highlights: 1) Tools are integrated with Unity, a game engine, 2) The DSL can
model both structural and behavioral aspects, 3) The tools include a model validator

< [23, 24] >

Authors: Van Hoecke, S., et al.
Major Contributions: A DSL (ATTAC-L) and tools
Game Genres: Serious Games
Technology Bases: XML
Highlights: A model interpreter is introduced to make the model executable

< [25-27] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 6

Authors: Cutumisu, M., et al.
Major Contributions: A visual programming tool
Game Genres: Role-Playing Games (RPGs)
Technology Bases: Java, NeverWinter Nights (NWN) Engine
Highlights: The tool was released to the NWN community and downloaded 6000
times in six months. The reaction from the community has been positive.

< [28, 29] >

Authors: Vargas, R., et al.
Major Contributions: A DSL and tools
Game Genres: Maze Games
Technology Bases: Model-Driven Architecture (MDA), XML
Highlights: It uses Object Management Group’s (OMG) standard Model-Driven
Architecture (MDA)

< [30] >

Authors: Minovic, M., et al.
Major Contributions: A DSL and tools
Game Genres: Educational Games
Technology Bases: XML, MDA
Highlights: It uses MDA and only supports modeling of user interfaces

< [31] >

Authors: Matallaoui, A. and Herzig, P.
Major Contributions: A DSL (GaML) and tools
Game Genres: Serious Games
Technology Bases: Unity, XText
Highlights: It supports a popular game engine: Unity

< [32] >

Authors: Pleuss, A., et al.
Major Contributions: A set of DSLs (MML) and tools
Game Genres: Flash Games
Technology Bases: Eclipse Modeling Framework (EMF)
Highlights: It supports both behavioral and structural modeling of games with
dedicated DSLs

< [33, 34] >

Authors: Marques, E., et al.
Major Contributions: A DSL and tools
Game Genres: Mobile RPGs
Technology Bases: Eclipse Modeling Framework (EMF)
Highlights: 1) Code generation is implemented through a two-step process
including a model-model transformation, and a template-based model-code
generation. 2) ALPiNA [35]-based semantic validation is also implemented

< [36] >

Authors: Stürner, M. and Brune, P.
Major Contributions: A DSL and tools
Game Genres: Virtual Worlds
Technology Bases: EMF
Highlights: It can generate JavaScript code for web browser

< [37] >

Authors: Marchiori, E. J., et al.
Major Contributions: A DSL and tools
Game Genres: Educational Games
Technology Bases: Mealy Finite State Machine
Highlights: The DSL has a formal theoretical base and supports domain specific
features

< [38] >

Authors: Valdez, E. R. N., et al.
Major Contributions: A graphical modeling toolset (Gade4all)
Game Genres: Various genres such as puzzle, platformer.
Technology Bases: XML
Highlights: Toolset supports multiple game genres and can generate code for
various platforms such as iOS, Android, HTML5

< [39] >

Authors: Morales, L., et al.
Major Contributions: A Model-Transformation Chain (MTC)
Game Genres: Maze Games
Technology Bases: MDA and EMF
Highlights: The MTC proposed includes three steps: 1) transformation from game
Platform-Independent Models (PIMs) to architecture PIMs, 2) transformation from

< [40] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 7

architecture PIMs to game Platform-Specific Models (PSMs), and 3) generate code
(JavaSE or Torque 2D) from game PSMs

Authors: Funk, M. and Rauterberg, M.
Major Contributions: A DSL (PULP) and tools
Game Genres: HTML5 Games
Technology Bases: XText
Highlights: PULP supports both structural modeling and behavioral modeling of
games

< [41] >

Authors: Furtado, A. W. B. and Santos, A. L. M.
Major Contributions: Two DSLs (SLGML and Head-Up Display Creation DSL) and
Tools
Game Genres: 2D Adventure Games
Technology Bases: Microsoft Visual Studio DSL Tools
Highlights: The approach follows Software Factory engineering methodology

< [42] >

Authors: Hernandez, F. E. and Ortega, F. R.
Major Contributions: A DSL (Eberos GML2D) and Tools
Game Genres: 2D Games
Technology Bases: Microsoft Visual Studio DSL Tools
Highlights: Eberos GML2D supports both structural and behavioral modeling of
games

< [43] >

Authors: Zhu, M., et al.
Major Contributions: A modeling approach (ECGM) and A DSL (RAIL)
Game Genres: Action/Adventure Games
Technology Bases: EMF and Acceleo
Highlights: The ECGM approach bridges engine-based game development and
model-driven game development, enabling the cooperation of tools from these two
development methods.

< [72, 73] >

Authors: Ferreira, C., et al.
Major Contributions: An XML based DSL (LEGaL) for creating Location-Based
Games
Game Genres: Location-Based Games
Technology Bases: XML and Nested Context Language (NCL)
Highlights: NCL is a declarative language for hypermedia
documents authoring, and LEGaL extended NCL to support modeling and
generating Location-Based Games.

< [74] >

Authors: Aouadi, N., et al.
Major Contributions: A DSL and tools for creating serious games
Game Genres: Serious Games
Technology Bases: MDA and EMF
Highlights: It has implemented a DSL and tools following MDA standard, which
can generate serious game code for the Unity engine.

< [75] >

Development Process
Authors: Maier, S. and Volk, D.
Major Contributions: An MDGD process
Game Genres: Pac-Man Like Games
Technology Bases: EMF
Highlights: The process follows Software Factory engineering methodology and
emphasizes the use of language workbenches

< [44] >

Authors: Walter, R. and Masuch, M.
Major Contributions: An MDGD process
Game Genres: 2D Point & Click Adventure Games
Technology Bases: XPand and XText
Highlights: The process follows a bottom-up approach starting from language
requirements to reference artifacts, then up to language definition and finally the
domain-specific programs

< [14] >

Authors: Furtado, A. W. B., et al.
Major Contributions: An MDGD process
Game Genres: 2D Arcade Games

< [45, 46] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 8

Table 1 can be used as the entry point for searching for information of interest in this article: Readers can first choose which category
(technology or process) of existing studies they are interested in, and then go through that category in Table 1 to get a quick glance of the
approaches through the structured description. If the reader needs more detailed information about:

1) a specific approach, he or she can find the sources for the approach in Table 1; or

2) a specific aspect of MDGD, he or she can go to the corresponding review section among Section 4 to Section 8 to get the details
of that aspect, and the comparison results across the approaches as well.

4 Target Game Domains
An essential value of MDD is to raise the abstraction level, which allows specifying a solution with problem domain concepts, thus

making the solution more straightforward and more accessible. To this end, both the modeling language and the code generator should be
domain-specific [48]. Choosing a proper target domain is essential to the success of an MDGD approach. If the target domain is too narrow,
the application of the approach will be restricted. Therefore, it will be challenging to pay off the initial investment. On the other hand, if
the target domain is too broad, it will result in other issues such as:

1) Unmanageable number of language constructs: The broader the target domain is, the more concepts the modeling language
has to support. A too large number of concepts can make the modeling language too complex to develop and maintain.

2) Low abstraction level: To control the complexity of a modeling language targeting a too broad domain, the abstraction level of
the language may have to be sacrificed; therefore, the language will become less useful. In extreme cases, the abstraction level
can be as low as a third-generation programming language (such as C or C++), which eliminates the advantages of MDD.

3) Poor descriptiveness: If the modeling language targeting a too broad domain needs to keep both high abstraction level and
manageable complexity, it has to sacrifice the descriptiveness by supporting only a minimal set of concepts in the domain. The
language capability is thus limited, and the language may need a continuous update.

The rest of this section presents how the reviewed MDGD approaches define their target domains, and a discussion of the remaining
challenges.

4.1 Genre-based Domains
The reviewed MDGD approaches have different methods for defining the target domain, where defining the domain based on a game

genre is the most common choice. Game genres are categories of games based on features of the gameplay. Note that “genre” is an informal
categorization, and genres can have ambiguous definitions.

< [19, 20] > targets “2D Platform Games (Platformers)”, which is a kind of action game featuring the player character jumping between
various platforms. < [72, 73] > targets “Action/Adventure Games”, which is also action games but can support more complex player and
AI behaviors than platform games do. < [17] > supports “Tower Defense Games”, whose gameplay is about building static defensive units
to protect your base from being captured by incoming enemies. Two MDGD approaches are targeting “Role Playing Games (RPGs)”: < [28,
29] > and < [36] >. RPG is a popular game genre, where players act as a character in an interactive virtual world, which usually has a
compelling background story. < [28, 29] > supports RPGs targeted for the Neverwinter Nights’1 engine, and < [36] > targets RPGs on
mobile platforms. “Maze Game” is a kind of top-viewed 2D games played on a gridded map. Each cell of the map can be an obstacle or
open ground. Enemies and player characters move on the map and conflicts may occur. < [30] > and < [40] > both target the Maze Games
genre. < [14] > uses “Point & Click Adventure Games (ADVs)” as the target domain, which are games featuring pointing and clicking on
graphical objects rendered on a static background and players interacting with Non-Player Characters (NPCs) to collect clues in order to
unfold a story. < [23, 24] > supports ADVs, but only focuses on the ADVs for educational purposes. < [21, 22] > supports “2D Physics-

1 Neverwinter Nights is originally an RPG released by BioWare, and due to its extensibility, many mods are created. Today an active community has created over 4000 mods for
Neverwinter Nights and it has become a development platform for custom RPGs. The community website: www.neverwinternights.info.

Technology Bases: Microsoft Visual Studio DSL Tools
Highlights: The process is iterative, and it combines both top-down and bottom-up
methods, where the elaboration of the problem domain and the solution domain is
done alternately

Both Technology and Process
Authors: Guo, H., et al.
Major Contributions: An MDGD process, a DSL and tools
Game Genres: Pervasive Games
Technology Bases: EMF
Highlights: 1) It uses ontology-based domain analysis and iterative process to
ensure effective MDD workflow, 2) A textual DSL is proposed for modeling
pervasive games

< [47] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 9

Based Games”, which is a kind of 2D action games building gameplay around physics simulation. < [39] > is different from the above
approaches, as it provides an integrated tooling environment, Gade4all, to support multiple genres, such as Platformers and Puzzle Games.
Gade4all can also be extended to other game genres.

“Educational Games” are games that are created for teaching or learning purposes. Educational Games as a genre is controversial
because its gameplay can hardly be distinguished from other genres. For example, an educational game can be an RPG, an ADV or a Puzzle
Game. “Serious Games” is a superset of Educational Games which include not only educational games but also other games with serious
purposes, such as games for physical exercise and games for health. There are quite a few MDGD approaches targeting serious games or
educational games, such as < [23, 24] >, < [25-27] >, < [31] >, < [32] >, < [38] > and < [75] >.

Choosing an existing game genre can easily reuse the shared domain knowledge and making the domain definition intuitive and
straightforward. On the other hand, game genres do not have formal definitions. Therefore, they cannot precisely define the application
scopes of the MDGD approaches. However, a well-defined application scope is essential for developing and applying such an approach.
The drawbacks of genre-based domains are discussed in detail in Section 4.5.

4.2 Systematically Defined Domains
Several MDGD approaches use systematic methods to define the target domain. < [42] > outlines the target domain as “Adventure

Games”, and then provides a detailed description from nine perspectives corresponding to nine key features of the game domain. In < [45,
46] >, ArcadEx goes further through using a feature model in addition to the keyword “2D Arcade Game” to characterize the target domain.
The model includes 150 features describing the domain’s commonality and variability. Similarly, < [47] > targets “Pervasive Games”, which
is a game genre where the gameplay integrates the virtual and physical world. < [47] > uses a Pervasive Games ontology, “PerGO” [49] to
systematically analyze the commonality and variation of the target domain. Location-Based Games are a sub-type of Pervasive Games,
which feature the utilization of players’ physical position in creation gameplay. In < [74] >, the features and four major gameplay patterns
of Location-Based Games are summarized in terms of a survey and analysis of 15 Location-Based Games in literature, which constitute its
domain definition.

These systematic methods produce more formal and useful domain definitions, which provide well-defined goals for the MDGD
approaches development and help the users to understand the approaches easily.

4.3 Single Game Domains
Two approaches define extremely narrow target domains: a single game or a game family consisted of a couple of very similar games.

< [44] > presents MDD for Pac-Man like games, which follows a “one game at a time” principle: For a particular game or game family, a
complete MDD tool-set is created, which is optimized for the development of the project and can hardly be reused without significant
modifications in other projects. Creating DSLs and tools for one game may be economically unfeasible, so the language workbench is
promoted as the core for the approach, which can significantly save the cost of MDGD tooling. < [25-27] > is another example of creating
MDD tools and languages for a single game project, and the target game is a serious game for preventing cyberbullying.

4.4 Other Domains
Some MDGD approaches choose domains broader than the genre-based domains. < [37] > intends to facilitate the development of

“Virtual Worlds” by visualizing the construction of scenes and characters. Virtual Worlds include games but are not restricted to games,
so the domain has a very broad scope. < [41] > claims to support “Interactive HTML5 Applications”, which is also a vast domain. Similarly,
< [33, 34] > targets Adobe Flash games, which is a rival technology of HTML5. These domains are so broad that each of them covers many
if not all game genres, whose domain concepts can hardly be packed into a single DSL. In practice, these approaches only support a sub-
set of the target domains.

Hernandez and Ortega argued that the 2D game domain is narrow enough for MDGD, and they created Eberos GML2D in < [43] > to
support the development of all variations of 2D games. The DSL includes generic concepts for 2D games such as sprites, entities,
animations, state machine, and messages. They also validated the approach by modeling and generating two games. However, the two
games demonstrated are both Platformers. It is doubtful whether the approach scales to the tremendous diversity of 2D games. Similarly,
< [18] > chose “3D games” as the target domain, and a set of DSLs were proposed to support three sub-domains, namely camera, character
and scenario (game scene). The limitations of < [43] > and < [18] > are mainly about the expressiveness of the DSLs: 2D/3D games include
games ranging from board games to MMORPGs, which have enormous number of distinct domain concepts, while the DSLs have supported
only a limited subset. We have to keep in mind that “developers often create a language that is too generic for its domain, with concepts
and semantics that are either too few, too generic, or both” is one of the worst MDD practices [50].

4.5 Summary of Target Game Domains
Table 2 summarizes the target game domains of the MDGD approaches in our review: The majority of the approaches (15 out of 26)

choose genre-based domain definition; four approaches define their target domains with more systematical methods; two approaches use

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 10

a single game or a game family as the target domains; and five approaches claim to support game domains broader than a single game
genre.

Table 2: Domain Definitions of The MDGD Approaches.

Category Target Domain MDGD Approach

Genre-Based Domains
2D Platformers < [19, 20] >
Action/Adventure Games < [72, 73] >
Tower Defense Games < [17] >
RPGs < [28, 29] >, < [36] >
ADVs < [14] >, < [23, 24] >
Maze Games < [30] >, < [40] >
2D Physical-Based Games < [21, 22] >
Multiple Genres such as Puzzles, Platformers < [39] >
Educational Games < [31] >, < [38] >
Serious Games < [32] >, < [23, 24] >, < [75] >

Systematically Defined
Domains

ADVs with a detailed description from nine perspectives < [42] >
2D Arcade Games defined with a feature model < [45, 46] >
Pervasive Games with a detailed definition based on PerGO
ontology

< [47] >

Location-Based Games with key features and gameplay
patterns identified from analyzing 15 games in literature

< [74] >

Single Game Domains Pac-Man Like Games < [44] >
Friendly ATTAC: A Serious Game for preventing
cyberbullying

< [25-27] >

Other Domains Virtual Worlds < [37] >
Interactive HTML 5 Applications < [41] >
Flash Games < [33, 34] >
All 2D Games < [43] >
3D Games < [18] >

We want to point out two significant problems with the Genre-Based Domains:

1) There is a gap between the game genres claimed to be supported and the actual game domains supported: Game genres is an
informal categorization of games, which is not precisely defined, so the MDGD authors may not share the same understanding
of genres as developers using their approaches. Moreover, a game genre can have many variations, which usually exceed the
feasible scope of an MDGD approach in practice. For example, RPG is a quite large genre that has sub-genres such as Action
RPG, Tactical RPG, Sand-Box RPG, and Simulation RPG. The MDGD approaches using RPGs as the target domains only support
a limited set of RPGs.

2) Domain concepts are not entirely supported in the prototype implementations of the MDGD approaches: The MDGD
approaches are developed in research environment with limited resources, which constrains the complexity and maturity of the
prototype implementations of the languages and tools. For example, < [19, 20] > targets 2D platform games, and does support
some important domain concepts such as entities and player characters, but many essential concepts of the game genre are still
missing, such as physics, camera control, and inventory.

The above gaps make it difficult to evaluate the suitability of an MDGD approach for a given game project and therefore threatening
the usefulness of the MDGD approaches. Note that the problems are even more significant with the approaches using the broader domain
definitions (the Other Domains category in Table 2).

Use of a Single Game Domain solves the problems by narrowing down the scope of MDGD to a single game or a game family that is
easier to define and support. Moreover, since the modeling languages and tools are dedicated to a specific game, game-specific features
can be added to the tools and languages on-demand, which maximizes the gameplay flexibility, freeing the game designers from tool-
restrictions.

The Systematically Defined Domains provide the most precise definition of the target domain, making it easier for MDGD developers
to understand the requirements and for MDGD users to evaluate the suitability of the languages and tools. We found three systematic
domain definition methods: 1) nine-perspectives domain description method in < [42] >, 2) feature-model based method in < [45, 46] >,
and 3) ontology-based method in < [47] >.

All the above methods have their pros and cons, and we believe that the choice of the most appropriate domain definition method
depends on the characteristics of a specific project.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 11

5 Domain Frameworks and Target Environments
The models in MDD are either directly executable or able to be transformed into the executable code. For the former, a model interpreter

is required to process the model semantics. For the latter, a software layer between the generated code and the underlying target
environment is usually necessary [48]. The interpreter and the software layer in the middle are so-called Domain Frameworks in MDGD.
For example, a game engine is a typical domain framework. Table 3 shows the domain frameworks of the reviewed MDGD approaches.

Table 3: Domain Frameworks of Reviewed MDGD Approaches.

Category Domain Framework MDGD Approaches

Use general computation
platforms

OS < [17] >, < [19, 20] >, < [39] >, < [44] >

J2ME < [31] >
Web Browser < [37] >, < [41] >

Use game engines or equivalent
software

jMonkeyEngine < [18] >
Box2D Engine < [21, 22] >
Unity Engine < [23, 24] >, < [32] >, < [75] >
Neverwinter Nights < [28, 29] >
Adobe Flash < [33, 34] >
e-Adventure Engine < [38] >
J2SE/Torque 2D < [40] >
Microsoft XNA < [43] >, < [14] >
LAGARTO tool (LocAtion-based Games AuthoRing
TOol) [76]

< [74] >

Use modified game engines Modified Corona SDK < [36] >
Modified FlatRedBall Engine < [42] >
A modified game engine, unknown name < [45, 46] >
Modified Torque 2D < [72, 73] >

Use model interpreters Self-developed Interpreter < [25-27] >
N/A Not Presented < [30] >, < [47] >

The domain frameworks used by the reviewed MDGD approaches mainly fall into four categories. The first category includes
approaches where the generated code runs directly on top of a general platform, such as OS, web browsers and the Java platform. In such
cases, the generated games are relatively simple, and due to the higher abstraction level of models, they are usually portable among various
platforms. The second category uses game engines or equivalent software components as the domain frameworks. Game engines provide
a common implementation of low-level technologies for the generated games, thus support more complex gameplay. Note that we include
< [33, 34] > in this category, although the domain framework it used is Adobe Flash, which is not a game engine but instead can be
classified as a multimedia engine. The third category is modifying a game engine to promote it to a domain framework, as it was suggested
in [51]. Modifying a game engine can increase its abstraction level thus reduce the semantic gap between the game model and the engine
application interface to make the code generation easier to implement. The last category is using a specific semantics engine to interpret
the models in runtime. < [25-27] > is the only approach in this category that has implemented a semantics engine on top of a game engine.
It can load the models and feed them to the game engine, which renders the game graphics as well as handles the player interactions.

The reviewed approaches show that choosing a domain framework is dependent on the project context: for simple games such as
educational games and prototypes, OS and web browsers are proper options; for commercial games, a game engine is undoubtedly the
mainstream choice, because it is too difficult to re-implement the features provided by game engines. Furthermore, in many cases,
modifications to the game engine, such as adding a layer are useful. The modifications make the game engine a domain framework,
including “utility code or components to make the generated code simpler” [48]. The model interpreter is an unusual solution to support
the model semantics. It differs from a code generator at two stages: analysis time and mode of execution [52]. Interpreters have two distinct
advantages: they avoid code generation and compiling and thus simplifies the workflow, and they also support runtime update of models.
Model interpreters have been used in other software domain, such as business process modeling, and they can also be useful to commercial
game development because compiling generated code and making binary images is time-consuming [1].

6 Modeling Languages
The Modeling Language is the central part of MDGD. “A language provides the abstraction for development and as such is the most

visible part for developers” [48]. This section discusses modeling languages proposed or used by the MDGD approaches. We use the
framework introduced in [77] to structure the discussion, which was proposed for classifying design guidelines for modeling languages
and includes five perspectives: 1) Language Purpose, 2) Language Realization, 3) Language Content, 4) Concrete Syntax, and 5) Abstract
Syntax. The framework is modified a bit as follows for our needs:

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 12

1) Language Purpose is about what the language needs to describe (domain) and what the language can be used for (usage). For
usage, general examples include documentation, development, and generation tests [76]. However, due to the scope of our
review, the modeling languages used by the MDGD approaches always serve the development purpose, so for the Language
Purpose discussion, we will only focus on the language domain aspect.

2) Language Realization is about how to implement the language, which is an essential topic of our review. We have an individual
section (Section 7) that discusses the implementations of the languages in terms of the tools they provide and the underlying
technologies that enable the implementations, so we do not include the perspective again in this section.

6.1 Supported Domain Concepts
One of the first activities in language design is to analyze the aim of the language [77]. The result of the analysis includes the usage of

the modeling language and the domain concepts that the language should support. We will not discuss the usage of the languages here,
as this section focuses on how the MDGD approaches identify the relevant domain concepts in the language design. As it was summarized
in [48] and [54], there are five popular methods for finding the relevant domain concepts for modeling languages: 1) “physical product
structure”, 2) “look and feel of the system”, 3) “variability space”, 4) “domain expert concepts”, and 5) “generation output”. Table 4 shows
methods being used by MDGD approaches to find language constructs. The MDGD approaches that do not present such information are
put in the last row in the table.

Table 4: Sources of Language Concepts.

Language Concepts From MDGD Approaches

Physical product structure < [47] >

Look and feel of the system < [17] >, < [19, 20] >, < [42] >, < [14] >, < [21, 22] >, < [36] >, < [40] >,
< [72, 73] >

Variability space < [45, 46] >, < [18] >, < [47] >
Domain expert concepts

< [14] >, < [23, 24] >, < [32] >, < [33, 34] >, < [38] >, < [43] >

Generation output < [45, 46] >
N/A < [25-27] >, < [28, 29] >, < [30] >, < [31] >, < [37] >, < [39] >, < [41] >, < [44] >, < [74] >, < [75] >

Look and Feel of the system is about how the system externalizes its states and how users interact with the system. In the computer
games domain, it is mainly about the game visualization and gameplay. Unsurprisingly most of the MDGD approaches use it as the main
source for language concepts. In the simplest case, the target domain is outlined with several sentences where core concepts were revealed
and identified, e.g., < [40] >. Furthermore, < [42] > describes the target domain from nine perspectives, providing more specific information.
< [21, 22] > performs a systematic domain analysis by answering five questions about the look and feel of the target game domain to reveal
the core concepts. Moreover, some approaches analyze the look and feel of one or more game instances in the target domain to understand
the target domain and identify the core concepts, such as < [17] > and < [19, 20] >.

Variability space-based analyses are used by some approaches to find the language concepts. < [18] > uses several prototypes to explore
the possible variabilities of the domain before implementing the modeling language. < [47] > uses an ontology named PerGO [49] to
analyze the variabilities.

< [14] > encourages the participation of domain experts (game designers) in the language design phase, which can provide valuable
insights necessary for technical people to avoid misunderstandings of the target domain. In < [43] >, one of the authors himself is a domain
expert, and the language design integrates the results from discussion with other domain experts. When domain experts are not available
in person, a practical alternative may be studying literature by domain experts, which is used in a few approaches such as < [23, 24] > and
< [32] >.

The generation output on the low abstraction level can reveal the pros and cons of the existing language. It is used by < [45, 46] > as
part of its most systematic domain analysis method: An iterative process that combines variability analysis and generation results analysis,
where the variability analysis results in a language and analysis of the generation results provides feedback on the current language, and
the language is continuously improved.

Physical product structure is only used in < [47] >, which targets pervasive games. Pervasive games generate gameplay in the
intersection of the physical and the virtual world. Thus, the physical aspects of the gaming system become relevant in designing the
modeling language.

6.2 Language Content
One Main activity in language development is the task of defining the different elements of the language [77]. The language elements

are means to map the problem domain concepts to the solution domain. We can identify three major categories of language elements that

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 13

are provided by the MDGD modeling languages: 1) Structural Elements, which support modeling the structural aspects of games, e.g.
program static structure, game scene structure, game entities structure; 2) Behavioral Elements, which support modeling the behavioral
aspects of games, e.g. game control, game flow, character behavior; and 3) Hybrid Elements, which serve both structural and behavioral
modeling, e.g. User Interface related elements. Table 5 presents an overview of the categorized language elements provided by the MDGD
languages.

Table 5: Language Elements Provided by The MDGD Modeling Languages.

Elements
Categories

Sub-Categories of Language
Elements

Sources of The Modeling Languages

Structural
Elements

Program Static Structure < [19, 20] >
Scene Structure < [17] >, < [18] >, < [21, 22] >, < [23, 24] >, < [25-27] >, < [30] >, < [36] >

, < [47] >, < [37] >, < [39] >, < [40] >, < [44] >, < [14] >, < [42] >, < [45, 46] >,
< [74] >, < [75] >

Game Entities < [17] >, < [18] >, < [21, 22] >, < [25-27] >, < [30] >, < [36] >, < [47] >
, < [37] >, < [39] >, < [40] >, < [43] >, < [14] >, < [42] >, < [45, 46] >

Global Configuration < [18] >, < [21, 22] >, < [45, 46] >

Behavioral
Elements

Player Character Control < [19, 20] >, < [21, 22] >, < [40] >, < [45, 46] >
Game Object Behavior < [17] >, < [19, 20] >, < [21, 22] >, < [23, 24] >, < [25-27] >, < [28, 29] >

, < [37] >, < [40] >, < [43] >, < [14] >, < [42] >, < [72, 73] >
Game Flow < [25-27] >, < [33, 34] >, < [38] >, < [42] >, < [45, 46] >, < [74] >, < [75] >
Global Rules < [21, 22] >, < [32] >, < [41] >, < [14] >

Hybrid User Interface/ Heads-Up
Display

< [31] >, < [33, 34] >, < [39] >, < [41] >

We further elaborate the three major categories into nine sub-categories in Table 5, which are:

1) Program static structure: It is about how the data structure and process are organized, e.g. a class view in Object-Oriented
Design (OOD). This type of model is usually regarded as a meta-model in DSL-based approaches, and in General Purpose
Language (GPL)-based approaches, e.g. UML, it can be supported by the GPL. Only < [19, 20] > provides elements in this
category, as a UML-based approach.

2) Scene Structure: Languages supporting Scene Structure modeling should provide elements that can specify what game entities
a game scene contains and the relationships between the entities. A Scene Structure model usually includes two views: a logic
view representing what the scene contains, and a layout view representing the spatial relationships of the content.

3) Game Entities: It is about the individual objects in a game scene, which can be a Player Character (PC), a Non-Player Character
(NPC), Gameplay Objects (GO), or similar. Elements for modeling game entities usually support the creation, removal, and
configuration of game entities in game scenes.

4) Global Configuration: It is about the high-level game settings, for example, screen resolution, camera mode, and session time,
which significantly impact the gaming experience.

5) Global Rules: It defines the high-level rules of the game, including the game-ending rule, scoring rule, or similar.

6) Game Flow: It is about how the game unfolds and proceeds. Language elements in this category support modeling the temporal
and logical connections between game scenes, which constitute an organic narrative structure.

7) Game Object Behavior: It is about how game entities interact with each other and the player. The interaction is essential for
almost all kinds of gameplay. In traditional game development, the Game Object Behavior has to be implemented through
programming and is very resource consuming. By providing language elements for Character Behavior, MDGD can significantly
reduce the development cost.

8) Player Character Control: It is about how the user input is mapped to the player character (avatar) moves. Language elements
such as the input-to-action map belongs to this sub-category.

9) User Interface (UI): It is about the visual components used for user interaction, such as buttons and menus. A sub-set of User
Interface components for displaying in-game players information such as scores and lives is called Heads-Up Display (HUD) in
the game community. UI is a large domain, so some languages chose it as a major, or even the sole target of the language
elements.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 14

6.3 Concrete Syntax
The concrete syntax, i.e., the language representation, determines the first-sight impression of the language. “A poorly chosen concrete

syntax will drive users away, stopping them from using even the most wonderful language” [50]. Table 6 shows the forms of concrete
syntax chosen by the MDGD approaches.

Table 6: Forms of Concrete Syntax of The Modeling Languages.

Forms of Concrete Syntax MDGD Approaches

Graphical < [18] >, < [19, 20] >, < [23, 24] >, < [33, 34] >, < [36] >, < [38] >, < [39] >
, < [43] >, < [44] >, < [45, 46] >, < [42] >, < [75] >, < [25-27] >

Textual < [17] >, < [30] >, < [31] >, < [32] >, < [47] >, < [41] >, < [21, 22] >
, < [44] >, < [14] >, < [74] >

Tree-View < [28, 29] >, < [37] >, < [72, 73] >
Form-Based View < [18] >, < [39] >
N/A < [40] >

The most commonly used forms of concrete syntax are the graphical and the textual forms. Graphical representation is usually more
intuitive. By using graphical representation, the language notation and its symbols can directly represent domain concepts, which is the
best practice for selecting symbols [48]. However, graphical languages does not always over-performs textual languages, as discussed in
[55]. Another study also revealed that “higher proportion of developers might be predisposed to choose text given its traditional prevalence
in programming” [50]. To take the advantage of both forms, Engelen and Brand explored the potential of integrating graphical and textual
representations [56]. We agree that a combination of graphical and textual representations can improve the usability of game DSLs.

Tree-view is a special kind of graphical form, which is good at presenting a hierarchical structure. In game scene modeling, it is
particularly useful because a game scene can usually be organized in a tree structure. Furthermore, when using Eclipse Modeling
Framework (EMF) as the tooling environment, you can get a tree-view model editor with negligible development effort, which is very
attractive for researchers who need proof-of-concept implementations. A form-based view allows setting attributes of modeling objects
by filling a form with a group of fields, where each field must be filled with a specific type of value. The form-based view is convenient in
modeling attributes of game entities (< [39] >), and global configuration (< [18] >).

6.4 Abstract Syntax
The abstract syntax is a model of the proper sentences of the language [78], which defines the concepts, relationships, and integrity

constraints available in the language [9]. The abstract syntax of a modeling language is usually defined through meta-modeling [53], while
every model created by the modeling language is an instance of the language meta-model. Abstract syntax determines what a modeling
language can describe and how.

For the reviewed MDGD approaches, the abstract syntaxes of their modeling languages vary; thus, the forms of supported game models
are different as well. In Table 7, we classify the abstract syntaxes of the modeling languages based on what kinds of models they can
support. Note that each kind of abstract syntax has different domain appropriateness. Therefore, one modelling language may use multiple
kinds of abstract syntaxes to support modeling various game aspects appropriately.

Table 7: Classification of The Modeling Language Abstract Syntaxes.

Abstract Syntax Categories Source MDGD Approaches
Code-Like models < [21, 22] >, < [25-27] >, < [47] >, < [41] >, < [28, 29] >
Game Object Specification < [18] >, < [23, 24] >, < [44] >, < [42] >, < [17] >, < [30] >, < [31] >, < [14] >, < [74] >

, < [36] >, < [37] >
Directional Graphs < [19, 20] >, < [33, 34] >, < [36] >, < [43] >, < [75] >
State Machine Models < [17] >, < [19, 20] >, < [23, 24] >, < [33, 34] >, < [38] >, < [43] >, < [72, 73] >
Production Rule Systems < [19, 20] >, < [42] >
Decision Trees < [14] >
Graph Transformation < [44] >

Mainstream programming languages follow the imperative programming paradigm that defines computation through a sequence of
steps [8]. The first category of abstract syntax in Table 7 supports models following the same paradigm which define game behaviors by
describing the detailed control flows. We name this category “Code-Like” models because they are similar to programs from the abstract
syntax perspective. Note that although the models have code-like nature, the abstract syntaxes are on a higher abstraction level than the
programming languages, and they do not have to be externalized by a textual concrete syntax, e.g. < [25- 27] >(graphical), < [28, 29] >
(tree view).

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 15

The second category in Table 7 supports the specification of game objects, which commonly includes spatial data, presentation data,
and game-specific data of game objects. The game objects are usually organized with a hierarchical structure (scene tree) based on their
logical relationships such as containment, ownership, and grouping. In the traditional game development method, such models are created
by a World Editor which is a component of game engines. Quite a few modeling languages are based on such abstract syntaxes, but they
often include additional syntax to improve the expressiveness on behavioral modeling.

A Directional Graph consists of two sets: a node set and an edge set, where edges connect nodes, and each edge has two ends with
different meanings. A typical Directional Graph is the UML class diagram, which is used in < [19, 20] > to model the static structure of the
game software. Other examples include < [33, 34] > that uses a UML-like notation to model user interface elements and corresponding
media objects, and < [36] > that uses Directional Graph to model game scene, to name a few.

State Machine is a standard tool for modeling processes or object behaviors. A State Machine consists of a set of states. For a given
state, the behaviors of the machine, which may include a state-transition, are triggered with events depending on the current state[8].
State Machine is supported by < [33, 34] > for modeling UI interaction, and by < [43] > for modeling entity behaviors. < [38] > extends the
State Machine by adding domain-specific features such as hierarchical structure, parallel structure, and multi-interaction node to support
modeling narrative aspects of games. < [72, 73] > also adapted State Machine to its target domain by adding concepts such as Triggers and
Actions that are useful for modeling NPC behaviors.

A Production Rule System implements “the notion of a set of rules, where each rule has a condition and a consequential action” [8],
and the rules are run in cycles whose actions are executed if its conditions match [8]. The modeling language used by < [19, 20] > supports
the Production Rule System for modeling the game control, which maps each input event (condition) to a character action. < [42] > defines
more types of conditions than input events, and the actions to be triggered are not only restricted to character actions but are extended to
various game state manipulations such as spawning game objects and playing animations. Moreover, the conditions in < [42] > can be the
combination of multiple atomic conditions in conjunction, and so can the actions.

Decision Tree [58] is a widespread technique in the information theory field. Decision Tree syntax is used by < [14] > to specify
interactive conversations. An interactive conversation is a tool for unfolding the story, or for determining the game flow. It usually starts
from a character saying something to another, and the latter can respond by choosing one option from a set of answers, which further
drives the other characters to respond, and this process repeat until the conversation ends. The process of conversation naturally conforms
to the decision-tree structure.

A Graph Transformation can specify how models evolve, and when structural models are defined with a Graph, behavioral
computations are naturally modeled as graph transformations [57]. Graph Transformation syntax is used by < [44] > for modeling the
game logic.

6.5 Summary of The Modeling Languages
Modeling languages as the heart of MDD has been the focus of the design and development for most of the MDGD approaches. A broad

range of methodologies and technologies from MDD communities are applied. For example, to identify the relevant domain concepts for
modeling languages, all five methods found in the MDD literature have been used. Moreover, in < [45, 46] > multiple methods are
integrated as a systematic approach that is particularly suitable for finding domain concepts.

The content of modeling languages used by the MDGD approaches has a broad coverage for game software, from scene structure to
character control. We also notice that the reuse of technologies from other software domains is worth further exploration. For example,
Graphical User Interfaces (GUIs) are similar for games and other graphical software, but none of the MDGD approaches have attempted
to adopt existing GUI modeling technologies.

The MDGD approaches displayed appropriate use of different forms of concrete syntax, from textual to graphical, which improved the
descriptiveness and readability of the modeling languages. There are still some forms of concrete syntax with potentials not being used,
such as matrix and table. They may over-perform others in a specific context, e.g. “a matrix is especially good if connections between
model elements are important, and a matrix also scales better than a diagram since more information can be show in the same space” [48].

The abstract syntax of modeling languages determines the form of the game models. The modeling languages used by the MDGD
approaches have various abstract syntaxes thus support diverse forms of models, such as Game Object Specification, State Machine and
Graph Transformation. The abstract syntaxes presented still have potentials to improve, for example, the chaining of the Production Rule
System: when rule actions change the state of the software, all rule conditions need to be evaluated to find if any has become true, and the
found rules will be added to the agenda for further execution [8]. More forms of models may also worth exploration, such as Decision
tables, which “display elements of data in a way which makes it clear what combinations of values result in specific courses of action”
[59].

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 16

7 Tooling and Tooling Environment
Model-Driven Software Development does not make sense without tool support [52]. Kent also advocated in [60] that “Tooling is

essential to maximize the benefits of having models, and to minimize the effort required to maintain them.” This section discusses the
tools provided by the existing MDGD approaches and the tooling environments for creating and supporting them.

7.1 Tooling of the MDGD Approaches
The tool support of the reviewed MDGD approaches varies from simple solutions only providing a code generator to complex solutions

providing a tool suite including model editor, semantic validator and more. Table 8 shows the tools provided by the reviewed MDGD
approaches.

Table 8: Tool Support of the MDGD Approaches.

Tool Support MDGD Approach

Code Generator < [19, 20] >, < [21, 22] >, < [30] >, < [31] >, < [40] >, < [74] >
Model Editor and Code Generator < [17] >, < [18] >, < [28, 29] >, < [32] >, < [33, 34] >, < [37] >, < [38] >

, < [39] >, < [41] >, < [43] >, < [14] >, < [45, 46] >, < [72, 73] >, < [75] >
Model Editor and Interpreter < [25-27] >
Model Editor, Code Generator and Semantic
Validator

< [47] >, < [36] >, < [42] >, < [23, 24] >

Not Presented < [44] >

In MDD, the model execution tool (either direct or indirect) is essential. Table 8 shows that all the MDGD approaches with tooling
information presented have provided some kinds of model execution tools. Most of the approaches provide a code generator. The code
generator is arguably the most common way of doing MDD [52]. Code generators are implemented based on model transformation
technology, which is about transforming one model to another model that can have different syntax and semantics. Model-to-model
transformation is the general form of model transformation, and Model-to-text transformation is a special case [61]. Most of the MDGD
approaches only use Model-to-text technologies to generate code from game models, and a few approaches have added one or more Model-
to-model transformation steps before the Model-to-text transformation, in order to reduce the semantic gap between the model and the
code. In [61], two Model-to-text transformation methods are discussed, which are the Visitor-based method, and the Template-based
method. In [52], the Template-based method is further divided into Templates and Filtering Method, and Templates and Meta-model
method. For the Model-to-model transformation, [61] pointed out five categories: Direct-Manipulation, Relational, Graph Transformation-
Based, Structure-Driven, and Hybrid.

To implement the above model transformation approaches, one can build them from scratch or preferably use available technology
frameworks. Most of the MDGD approaches have made use of existing frameworks to simplify the implementation of a code generator.
However, still a few approaches choose to make their own implementation from scratch. Table 9 presents the transformation methods and
frameworks used by the reviewed approaches.

Table 9: Model Transformation Methods and Frameworks.

Transformation Method Transformation Framework MDGD Approach

Relational Model-to-Model
Transformation

Query/View/Transformation (QVT) < [40] >

Hybrid Model-to-Model
Transformation

Atlas Transformation Language (ATL) < [17] >, < [21, 22] >, < [36] >, < [40] >, < [75] >

Visitor-Based Model-to-
Text Transformation

Xtend < [32] >
Custom Code Generation Program < [28, 29] >, < [37] >, < [74] >

Templates and Metamodel-
Based Model-to-Text
Transformation

Epsilon Generation Language (EPL) < [17] >
MOFScript < [19, 20] >, < [30] >
Acceleo < [21, 22] >, < [40] >, < [72, 73] >, < [75] >
Java Emitter Templates (JET) < [33, 34] >
XPand < [36] >, < [14] >
Xtend < [41] >, < [47] >

Templates and Filtering
Model-to-Text
Transformation

FreeMaker < [18] >
XSL Transformation (XSLT) < [31] >
Custom Code Generation Program < [39] >

Not Presented N/A < [23, 24] >, < [38] >, < [42] >, < [43] >, < [44] >, < [45, 46] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 17

The interpreter is another mechanism supporting the model-execution, which shares the same underlying principles as the code
generation [52]. Only < [25-27] > in the reviewed MDGD approaches has chosen to implement an interpreter, and this will be further
discussed in Section 7.3.

The model editor is also a central tool in MDD [52]. A specialized model editor can better support a modeling language, thus making
the development more effective. The evolution of modern language workbenches has reduced the cost of implementing model editors,
resulting in that most of the MDGD approaches have provided a model editor as a part of their tooling solution. However, some of the
MDGD approaches have not provided any model editors. Among them, < [19, 20] > uses UML as the modeling language whose models
can be created with general UML tools, so a specific model editor is not necessary. Other approaches mostly use textual languages whose
models can be created with general text editors. Note that language-specific support such as keyword highlighting, and syntax checking
is lacking.

Before generating the code, the correctness of models must be checked with respect to the meta-model, and this checking is in most
cases done by a separate tool in order to avoid the unnecessary complication of the code generation [52]. Four approaches have provided
such a tool called a semantic validator. A semantic validator can detect semantic inconsistencies and defects within the models. Considering
the difficulty in debugging model-driven projects, the semantic validator is very useful. Modern language workbenches simplify the
development of the tool, so it is practical to be implemented as part of the MDGD tooling.

7.2 Tooling Environment
The tooling environment of MDGD approaches is about the software used to create and support the MDGD tools. The choice of tooling

environment can significantly impact the cost of developing tools. Table 10 presents the tooling environments of the reviewed MDGD
approaches categorized into four groups.

Table 10: Tooling Environment of The MDGD Approaches.

Category Tooling Environment MDGD Approach

Integrated Language Workbenches Eclipse Modeling Tools < [17] >, < [21, 22] >, < [32] >, < [33, 34] >, < [47] >, < [36] >
, < [40] >, < [41] >, < [44] >, < [14] >, < [72, 73] >, < [75] >

Microsoft Visual Studio
Tools

< [43] >, < [42] >, < [45, 46] >

Individual Language Tools Freemaker, MOFScript,
XSLT, DiaMeta

< [18] >, < [19, 20] >, < [30] >, < [31] >, < [44] >

Game Engines jMonkeyEngine < [18] >

Unity < [23, 24] >, < [32] >, < [75] >
General Programming Tools Java < [37] >, < [28, 29] >
Not Presented N/A < [38] >, < [39] >, < [74] >

The majority of the MDGD approaches used integrated language workbench [62] as the tooling environment. A language workbench
is a software suite integrating various essential components for developing and supporting DSLs. With a language workbench, a complete
tool-chain of a MDGD approach can be created in a rapid and simple process.

The most popular language workbench used by the reviewed MDGD approaches is Eclipse Modeling Tools (EMF). Eclipse is an open-
source development platform, which has an active community developing various development tools as plug-ins including both traditional
development tools and MDD tools, for example:

• Eclipse Modeling Framework (EMF): It includes eCore, a meta-meta-model for defining DSLs, and a couple of generators that
generate model editors and a generic editing framework for editing the models [52]. According to the classification of tooling
approaches in [48], EMF-based meta-tools enable an approach with the best maturity that is described as “Integrated meta-
modeling and modeling environment”. EMF is used by < [33, 34] >, < [47] >, < [36] >, < [40] >, < [72, 73] >, < [75] > and <
[44] >.

• Xtext: It is a framework for developing textual DSLs on the Eclipse platform. The framework provides a language and a user
interface for defining the concrete syntax of DSLs. Once a DSL is defined, the framework generates a parser, a class model for
the abstract syntax tree, and a textual model editor integrated into the Eclipse platform. The model editor offers syntax coloring,
code completion, static analysis, and more. Xtext was used by < [17] >, < [32] >, < [47] >, < [41] > and < [14] >.

• ATL Transformation Language (ATL) [63]: It is a Domain Specific Language and corresponding toolkit built on EMF for creating
model transformations, that can semantically turn the model in one language to another. ATL is often used for generating
intermediate models to facilitate code generation. It is used by < [17] >, < [21, 22] >, < [36] >, < [75] > and < [40] >.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 18

• Acceleo: It is a template-based implementation of the Model-to-Text transformation Language (MTL) standardized by OMG,
and it greatly reduces the effort of writing a code generator. Acceleo is used by < [21, 22] >, < [72, 73] >, < [75] > and < [40] >.

Apart from the above tools, other popular Eclipse-based technologies used include Xpand used by < [36] > and < [14] >, Xtend/Xtend2
used by < [32] >, < [47] > and < [41] >, and ALPiNA used by < [36] >.

Microsoft Visual Studio Tools is another option of a language workbench, which is a powerful toolkit integrating “frameworks,
languages, editors, generators, and wizards that allow users to specify their own modeling languages and tools” [48]. The toolkit provides
its own meta-meta model for defining DSLs, which is equivalent to eCore in EMF. One limitation is that Microsoft Visual Studio Tools is
only available on the Windows platforms. It is used by < [42] > to create the tool-suite for a DSL including a model editor, a code generator
and a semantic validator. < [41] > and < [45, 46] > also use Microsoft Visual Studio Tools.

Apart from language workbenches, individual language tools may also be used in developing DSLs, especially when the language
workbenches do not provide the proper components. Freemaker used by < [18] >, MOFScript used by < [19, 20] > and < [30] >, and XSLT
used by < [31] > are all tools for creating code generators. DiaMeta is a tool for creating graphical editors, which takes an EMF model as
the meta-model of the DSL, and an editor specification that is created with DiaMeta tools as the concrete syntax specification. A graphical
DSL editor is then generated. DiaMeta is used by < [44] >.

Some MDGD approaches have chosen game engines as the tooling environment, where a plug-in for the game engine is developed,
which supports the DSLs of the approaches. Using a game engine as the tooling environment is a double-edged sword, as it simplifies the
development toolchain while sacrificing the advantages of dedicated language tools. Unity is a commercial game engine that features a
flexible level editor open for extension, and it is used by < [23, 24] >, < [75] > and < [32] > as the tooling environment. jMonkeyEngine is
an open-source engine that is used by < [18] >.

Lastly < [37] > and < [28, 29] > directly use Java to create the DSL tools. Compared to the plain programming approach, we believe that
the use of language tools can be more productive and easier to adopt changes.

7.3 Summary of MDGD Tooling
The MDGD approaches have provided different levels of tooling support, from the basic code generator to the versatile tool suite.

Successful MDD may require more tools that are lacking in current MDGD approaches, and such tools are summarized in [64], which
include model validation tools, model instances management tools, model mapping tools, model-driven testing tools, dashboard
applications, version-control and distributed modeling tools, and software process management tools. This section summarizes the
challenges with MDGD tools and tooling environments.

7.3.1 Interoperability of MDGD Tools and Game Engine Tools.

The game industry has a long history of using game engines including the tool suites coming with the engines. When MDGD is
introduced to game production, its tools must be integrated with the engine tools instead of replacing them. However, most of the existing
MDGD approaches are only aware of the run-time engine, while ignoring the engine tool suite. Moreover, in some approaches, tools have
been developed to re-implement the functionalities provided by the engine tools. For example, a world editor is the core tool in most of
the engine tool suites, which is re-implemented in SLGML < [42] >, AcadEx < [45, 46] >, and PacMan DSL < [44] >. In contrast, some
approaches have embraced game engines (< [18] >, < [23, 24] >, < [32] >), but did not take full advantage of existing MDD tooling
environments, which makes their modeling tools difficult to create and maintain. < [72, 73] > is an approach addressing this issue, which
integrated the game engine tools and MDGD tools with an architecture named Engine-Cooperative Game Modeling (ECGM).

7.3.2 Model-level Debugger.

The model-level debugger is the tool that helps modelers to identify semantic errors and locate them at the model level. The static
semantics can be checked with the semantic validators as in < [47] >, < [36] >, < [42] > and < [23, 24] >, but the dynamic semantic errors
have to be identified through observing the models at run-time. Without the model-level debugger, such errors can only be reported from
the generated code and cannot be traced back to the model level. This could bring significant problems to the productivity of MDD in
general, since extra time has to be spent on locating known code-level errors at the model level, which can be even more expensive than
locating known binary-code level errors at the GPL program level, because the semantic gap between the abstraction levels of the modeling
language and the generated code is wider [65]. Moreover, we argue that the model debugger is particularly important for MDGD because
an important purpose (or advantage) of MDGD is to enable game designers and level designers to make as much the game logic as possible
without the need for help from programmers. However, if (dynamic semantic) errors can only be reported at the code level, most of this
advantage is nullified, as professional programmers are still needed in the modeling process to fix the bugs.

7.3.3 Cooperation of Model Interpretation and Code Generation.

As we have discussed, there are two alternatives for making models executable, which are code generation and interpretation [8].
Interpretation tools allow models to be executed without producing intermediate output. One important advantage of interpretation is
that “they provide early direct experience with the system being designed” [65]. There are at least two reasons that make interpretation
tools particularly valuable for game development: One is that the game development suffers a workflow problem, as compiling game code

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 19

can take hours. The other is the modelers in game development sometimes are game designers or level designers who might not be able
to use the programming tools such as compilers and binary-image-making tools. If MDGD tools support the cooperation of interpreter
and code generator, it will improve the usefulness of the MDGD approach.

8 Evaluation Methods
Most of the MDGD research follows the Design Science Research (DSR) paradigm, which is about “a designer answers questions

relevant to human problems via the creation of innovative artifacts” [66]. Such artifacts may include constructs, models, methods,
instantiations and better design theories [66]. In short, this definition includes any designed object with an embedded solution to an
understood research problem [67]. Evaluation is a central and essential activity in conducting rigorous DSR [68]. All the reviewed MDGD
approaches include an evaluation. This section discusses two major aspects of the MDGD evaluation: the purpose and the method.

The purpose of the evaluation is about what quality attributes of the MDGD approach are concerned in the evaluation. The major
purposes we found include:

1) Utility: Whether the MDGD approach is applicable in developing the target games, i.e. whether the approach “works”.

2) Productivity: Whether the MDGD approach can improve the productivity of game development, compared to the traditional
development technologies.

3) Usability: Whether the MDGD approach is easy to use, for example, easy to learn, or can lower the technical threshold of
development.

The method of the evaluation is about the approach for doing the evaluation. In [69], 148 publications about DSR in Computer Science
and Information Systems were reviewed, and their evaluation methods were categorized as eight types: Logical Argument, Expert
Evaluation, Technical Experiment, Subject-based Experiment, Action Research, Prototype, Case Study, and Illustrative Scenario. This
taxonomy framework has covered all the evaluation methods that are used by the MDGD approaches reviewed so that we will adopt the
framework. For the selection of the evaluation methods, [68] provided a comprehensive framework on how to make the decision, and [69]
argued that artifact type, context, and data availability are significant factors that affect the selection. For the reviewed MDGD approaches,
it is revealed that the data availability may be most important: It is difficult to obtain data from real game projects in the game industry;
therefore, most of the researchers have to evaluation their approaches by developing prototypes in research environments. The purpose
of the evaluation also affects the evaluation method selection significantly. For example, if productivity improvements are to be evaluated,
an experiment method is often applied; and if usability is the focus, a case study is usually used.

8.1 Prototype
The Prototype evaluation method is defined in [69] as “Implementation of an artifact aimed at demonstrating the utility or suitability

of an artifact”. Here we need to distinguish the game prototype and the technology prototype. The latter is an implementation of the
technology that supports an MDGD approach, while the former is an illustrative artifact that is produced using an MDGD approach. When
we discuss the Prototype method in this section, we are addressing the technology prototype, while the game prototype is discussed in
Section 8.2.

All the reviewed MDGD approaches have implemented some technology prototypes, although they vary a lot in maturity and
complexity. A working technical prototype is firstly a proof-of-concept validation, and secondly the base for further evaluation. In all the
reviewed MDGD approaches, the Prototype method is used in combination with one or more other methods.

8.2 Illustrative Scenario
According to [69], Illustrative Scenario means applying an artifact in a synthetic or real-world situation to demonstrate its utility. An

Illustrative Scenario is used frequently among the reviewed MDGD approaches, where 16 out of 26 approaches more or less have used the
method. In the simplest case, < [40] > only has described how the approach works with the general maze game concept, without a working
game prototype presented, while other approaches, e.g., < [17] >, < [38] >, < [47] >, have created one or more game prototypes to
demonstrate their capabilities. Furthermore, < [39] > has developed a couple of commercial mobile games to show its utility in a real-world
situation. Apart from the above-mentioned technical approaches, < [14] > and < [45, 46] > focuses on the MDGD process, and both
demonstrate how the processes work when developing prototypes.

8.3 Subject-based Experiment
Subject-based Experiment is a kind of experiment which involves subjects to evaluate whether an assertion is true or not [69]. In

contrast to the Technical Experiment method, the Subject-based Experiment concerns not only the technology itself but also its effect on
the people utilizing the technology. Five out of 26 MDGD approaches used Subject-based Experiment, which are < [18] >, < [19, 20] >, <
[21, 22] >, < [72, 73] > and < [43] >. The method is mainly used for quantifying the productivity improvement from applying MDGD.
Besides, it can validate the utility of the approaches, since the approaches must be able to function before being tested in experiments. The

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 20

typical setting of such experiments is to develop the same prototype game using the MDGD and the traditional coding approach
respectively, and then comparing the time used.

8.4 Case Study
The Case Study method applies an artifact from DSR to a real-world situation and evaluates its effect on the real-world situation [69].

The real-world situation in our context is mainly the MDGD users, their knowledge, skills, and attitudes. We need to distinguish between
a Case Study and an Illustrative Scenario where the former concerns about the effect of the approach on the user and environment, and
the latter concerns about how the approach itself works.

A significant advantage of the Case Study method is that the results are from real-world application and real users. The method was
used by 6 out of 26 MDGD approaches, and the primary purpose of these evaluations was the usability. For example, in < [21, 22] >, three
domain experts and one programmer were hired to create games using the approach, and their activities and interactions in development
were observed and analyzed, to evaluate whether the approach can fulfill the technical requirements, and how easy it is for non-
programmers to use the approach.

In addition to usability, < [44] > also reported productivity improvements, because in the case study student groups implemented
prototypes with the MDGD approach from scratch in hours, although there was no comparable data with coding approach presented. Use
of the Case Study method can also validate the utility of the MDGD approaches, because the approaches must work in the first place before
affecting the user and environment.

8.5 Summary of Evaluation Methods
The evaluation methods used by the MDGD approaches are summarized in Table 11, with a brief description for each MDGD approach

about how the method is used and for what purposes. Note that some MDGD approaches use more than one evaluation method. For
example, Prototype is the fundamental evaluation method used by all the MDGD approaches, which validates if the approaches can be
implemented, providing the base for utility. Illustrative Scenario is mostly used for validating the utility of the approaches. The Subject-
based experiment is suitable for evaluating the productivity improvements, while Case Study is the standard method for evaluating
usability.

Table 11: Evaluation Methods Used by The MDGD Approaches.

Evaluation
Method

Use of The Method Purpose MDGD Approach

Illustrative
Scenario

Developed a set of tower defense games such as Space Attack to
demonstrate the approach

Utility
Productivity

< [17] >

Used the approach to make a serious game named Friend ATTAC Utility
Productivity
Usability

< [25-27] >

Used ScriptEase to create game scripts that can replace the hand-
written code in NWN modules and calculated the code lines generated.

Utility
Productivity

< [28, 29] >

Prototyped a maze game with the approach, but no details of the game
provided.

Utility < [30] >

Briefly demonstrated how to model the User Interface of an Adventure
game

Utility < [31] >

Demonstrated how to add Achievement system to a serious game Utility < [32] >
Showed the model of a Car Race game Utility < [33, 34] >
Developed a pervasive game, and calculated the time used on
development as well as code lines

Utility
Productivity

< [47] >

Created a game scenario model and generated JavaScript code Utility
Productivity

< [37] >

Developed an educational game for learning fire evacuation Utility < [38] >
Developed a couple of mobile games and commercially released Utility

Usability
< [39] >

Described a generic maze game concept to demonstrate how the
approach works

Utility < [40] >

Prototyped a game with Adventure DSL to demonstrate the proposed
MDGD process

Utility < [14] >

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 21

Created ArcadEx and used it to prototype games to show how the
MDGD process works

Utility < [45, 46] >

Rewrote a Location-Based Game (AudioRio) with the proposed
approach

Utility < [74] >

Implemented a medical training game with the proposed approach to
demonstrate how it works

Utility < [75] >

Subject-based
Experiment

Two student groups (6 students for each group) finished game
development tasks with traditional technology and the MDGD
approach respectively. The time spent and correctness of answers were
compared

Productivity
Utility

< [18] >

Implemented Bubble Bobble with the MDGD approach and traditional
technology respectively, and compared time used, and calculated the
code lines generated.

Utility
Productivity

< [19, 20] >

A serious game prototype was developed by three domain experts and
a programmer with a coding and MDGD approach respectively, and
compared the time used

Utility
Productivity

< [21, 22] >

1) Developed Pong game with the coding approach and the MDGD
approach respectively by the author, and compared code lines and time
used;
2) Developed SpaceKartz with the approach by the author, compare
with SIG Games on code lines and time

Utility
Productivity

< [43] >

A game prototype Orc’s Gold was developed with both traditional
approach and the MDGD approach, and the time used as well as code
lines were compared.

Utility
Productivity

< [72, 73] >

Case Study Observed the development process of making a serious game with the
MDGD approach by three domain experts and a programmer, and the
behaviors of the participants

Utility
Usability

< [21, 22] >

1) Five educators without game development knowledge participated
in an experiment to create a serious game;
2) A serious game was developed with the guidance by domain experts
and instructors and evaluated by SHaC apprentices.

Utility
Usability

< [23, 24] >

The approach was introduced to a group of participants to try out Utility < [41] >
used some student groups to develop three game prototypes

Utility
Productivity
Usability

< [44] >

Developed a game named Ultimate Berzerk with the approach, and
observed the process as well as the result

Utility
Usability

< [42] >

The approach was introduced to five students to try out Utility
Usability

< [75] >

Prototype All the MDGD approaches implemented a technology prototype,
which provides the proof-of-concept validation and the base for other
methods.

Utility All the MDGD
Approaches

The Illustrative Scenario method as the second most popular method, has been used by 16 approaches, but only < [39] > has been
validated in a commercial game development project. The rest of the approaches have only been demonstrated by developing research
prototypes. This is because most research projects cannot afford the considerable cost of developing full-scale commercial games. It is also
difficult to persuade a game company to apply a research-in-progress approach in a real-world development process because of the high-
investment and high-risk nature of the game industry.

Note that the Illustrative Scenario method is descriptive and qualitative and cannot produce quantitative results. Due to this limitation,
most of the approaches only use the method for validating the utility. Some approaches such as < [17] > do use the method to evaluate
also the productivity or usability, by collecting some data from prototyping (e.g. code lines generated), but the results are not as convincing
as quantitative methods like Experiments. The Experiment method can generate quantitative and relatively generalizable results. However,
we notice two significant limitations with the design of the experiments which have threatened the generalizability of the evaluation:

1) Small sample size: Only < [18] > has twelve participants finishing the experiment, while other approaches are evaluated by only
one participant or one participant group.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 22

2) Loose variable control: All the approaches except < [18] > use the same participant group to develop the same game prototypes
twice with the MDGD approach and coding approach respectively. The confidence of the results is therefore reduced, since it
is likely that the experience from the first-time development makes the development second-time easier.

9 Conclusion
Model-Driven Game Development (MDGD) brings the general Model-Driven Development methodology to the game development

domain, which can potentially make game development faster and easier. Apart from the advantages of using MDD in general software
development, MDD is particularly useful for game development because a significant proportion of game developers are non-programmers,
meaning that the use of models instead of code will not only make their job more accessible but also save cost in communication. On the
other hand, as an emerging research field, MDGD still has a long way to go in commercial game development. We have reviewed 26
approaches in this article, but only one of them (< [39] >) has been used in commercial games development.

The reviewed MDGD approaches aim at different game domains: The broad domains cover a wide range of games such as all 2D games,
while the narrow ones only cover one specific game. The domains are also defined using different methods. A domain framework is a
software that implements the domain semantics, thus makes the models executable. The domain frameworks chosen by the MDGD
approaches vary. In the simple cases, graphics SDKs or OS are used as the domain framework, and in more cases, game engines or modified
game engines are used. Model interpreters can also be used as domain frameworks, but only one of the approaches creates an interpreter
for the purpose. The modeling languages invented or adopted by the approaches have various forms such as textual, graphical, tree view,
and form view. The semantics of the languages cover both behavioral and structural aspects of games. The abstract syntax of the languages
also varies, which support different forms of models such as state machines, directional graphs, and decision trees. Tooling is essential for
MDD to become useful. There are four kinds of tools supported by the MDGD approaches: Code Generators, Model Editors, Semantic
Validators, and Model Interpreters. Most of the MDGD approaches have chosen the Eclipse-based modeling tools as the tooling framework,
while Microsoft DSL tools and other tools such as DiaMeta have also been used. Lastly, evaluation is an essential part of any research. We
analyzed the purposes and methods of evaluation of the MDGD approaches and found that there are mainly four methods being used:
Prototype, Illustrative Scenarios, Subject-based Experiment, and Case Study. The methods were mainly used for three evaluation purposes:
Utility, Usability and Productivity Improvements.

There are still challenges and gaps in the reviewed MDGD approaches. For example, the actual domains supported are usually narrower
than the domains claimed to be supported, essential tools such as model-level debuggers are missing, and evaluation of MDGD approaches
can also be improved with better processes and designs.

Further work includes exploring more opportunities for MDGD with the inspirations from the literature review in mind, and solutions
addressing the challenges presented that can potentially improve the usefulness of MDGD in practice.

References
[1] Blow, J., Game Development: Harder Than You Think. Queue, 2004. 1(10): p. 28-37.
[2] Callele, D., E. Neufeld, and K. Schneider, Requirements Engineering and the Creative Process in the Video Game Industry, in 13th

IEEE International Conference on Requirements Engineering. 2005.
[3] Rouse III, Richard. Game design: Theory and practice. Jones & Bartlett Learning, 2010.
[4] Schell, J., The Art of Game Design A Book of Lenses. 2008: Elsevier.
[5] Canere, D., Eric Neureid, and K. Schneider, Requirements Engineering and the Creative Process in the Video Game Industry, in13th

IEEE International Conference on Requirements Engineering. 2005.
[6] France, Robert, and Bernhard Rumpe. Model-driven development of complex software: A research roadmap. 2007 Future of Software

Engineering. IEEE Computer Society, 2007.
[7] Scacchi, Walt, and Kendra M. Cooper. Research challenges at the intersection of computer games and software engineering. In Proc.

2015 Conf. Foundations of Digital Games.2015.
[8] Fowler, M. and R. Parsons, Domain-Specific Languages. 2011: Addison-Wesley.
[9] Chen, Kai, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring infrastructure for domain-specific modeling

languages. In Proceedings of the 5th ACM international conference on Embedded software. ACM, 2005.
[10] Salen, K. and E. Zimmerman, Rules of Play Game Design Fundamentals. 2004: The MIT Press.
[11] Furtado, A.W.B. and A.L.M. Santos, Using Domain-Specific Modeling towards Computer Games Development Industrialization, in

6th OOPSLA Workshop on Domain-Specific Modeling (DSM’06). 2006.
[12] Furtado, A.W.B. and A.L.M. Santos, Extending Visual Studio .NET as a Software Factory for Computer Games Development in the

.NET Platform, in2nd International Conference on Innovative Views of .NET Technologies (IVNET06). 2007.
[13] Furtado, A.W.B., A.L.M. Santos, and G.L. Ramalho, A Computer Games Software Factory and Edutainment Platform for Microsoft

.NET, in SB Games 2007. 2007.
[14] Walter, R. and M. Masuch, How to integrate domain-specific languages into the game development process, in Proceedings of the 8th

International Conference on Advances in Computer Entertainment Technology. 2011, ACM: Lisbon, Portugal. p. 1-8.
[15] Dybå, T. and T. Dingsøyr, Empirical studies of agile software development: A systematic review. Information and Software

Technology, 2008. 50 (9-10): p. 833-859.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 23

[16] Zahari, A. S., Rahim, L. A., & Mehat, M. A review of modelling languages for adventure educational games. In 2016 3rd International
Conference on Computer and Information Sciences (ICCOINS) (pp. 495-500). IEEE. 2016, August

[17] Sánchez, K., K. Garces, and R. Casallas. A DSL for rapid prototyping of cross-platform tower defense games. In10th Colombian
Computing Conference, 10CCC 2015, September 21, 2015 - September 25, 2015. 2015. Bogota, Colombia: Institute of Electrical and
Electronics Engineers Inc.

[18] Prado, E.F.D. and D. Lucredio. A Flexible Model-Driven Game Development Approach. In9th Brazilian Symposium on Software
Components, Architectures and Reuse, SBCARS 2015, September 21, 2015 - September 22, 2015. 2015. Belo Horizonte, Minas Gerais,
Brazil: Institute of Electrical and Electronics Engineers Inc.

[19] Reyno, E.M., et al., Automatic prototyping in model-driven game development. Comput. Entertain., 2009. 7 (2): p. 1-9.
[20] Reyno, E.M. and J.A.C. Cubel, Model-Driven Game Development: 2D Platform Game Prototyping, in Game-On 2008, 9th Int’l Conf.

Intelligent Games and Simulation, EUROSIS. 2008.
[21] Guana, V., E. Stroulia, and V. Nguyen. Building a Game Engine: A Tale of Modern Model-Driven Engineering. in2015 IEEE/ACM 4th

International Workshop on Games and Software Engineering. 2015.
[22] Guana, V. and E. Stroulia. Phydsl: A code-generation environment for 2d physics-based games. In 2014 IEEE Games, Entertainment,

and Media Conference (IEEE GEM). 2014.
[23] Thillainathan, N., et al. Enabling educators to design serious games - A serious game logic and structure modeling language. In8th

European Conference on Technology Enhanced Learning, EC-TEL 2013, September 17, 2013 - September 21, 2013. 2013. Paphos,
Cyprus: Springer Verlag.

[24] Thillainathan, N. and J.M. Leimeister. Educators as game developers model-driven visual programming of serious games. In9th
International Conference on Knowledge, Information and Creativity Support Systems, KICSS 2014, November 6, 2014 - November 8,
2014. 2016. Limassol, Cyprus: Springer Verlag.

[25] Van Broeckhoven, F. and O. De Troyer. ATTAC-L: a modeling language for educational virtual scenarios in the context of preventing
cyber bullying. in Serious Games and Applications for Health (SeGAH), 2013 IEEE.

[26] Janssens, O., et al. Educational virtual game scenario generation for serious games. in Serious Games and Applications for Health
(SeGAH), 2014 IEEE.

[27] Van Hoecke, S., et al. Enabling control of 3D visuals, scenarios and non-linear gameplay in serious game development through
model-driven authoring. In5th International Conference on Serious Games, Interaction, and Simulation, SGAMES 2015, September
16, 2015 - September 18, 2015. 2016. Novedrate, Italy: Springer Verlag.

[28] Cutumisu, M., et al., Generating ambient behaviors in computer role-playing games. IEEE Intelligent Systems, 2006. 21 (5): p. 19-27.
[29] McNaughton, M., et al. ScriptEase: Generative design patterns for computer role-playing games. in Proceedings of the 19th IEEE

international conference on Automated software engineering. 2004. IEEE Computer Society.
[30] Vargas, R.E., et al. MDA game design for video game development by genre. in MODELS-JP 2013 - Co-located with the 16th

International Conference on Model Driven Engineering Languages and Systems, MODELS 2013, September 29, 2013 - October 4,
2013. 2013. Miami, FL, United states: CEUR-WS.

[31] Minovic, M., et al. Model driven development of user interfaces for educational games. In2009 2nd Conference on Human System
Interactions, HSI '09, May 21, 2009 - May 23, 2009. 2009. Catania, Italy: IEEE Computer Society.

[32] Matallaoui, A., P. Herzig, and R. Zarnekow. Model-driven serious game development integration of the gamification modeling
language GaML with unity. In48th Annual Hawaii International Conference on System Sciences, HICSS 2015, January 5, 2015 -
January 8, 2015. 2015. Kauai, HI, United states: IEEE Computer Society.

[33] Pleuss, A., D. Gračanin, and X. Zhang. Model-driven development of interactive and integrated 2D and 3D user interfaces using mml.
in Proceedings of the 16th international conference on 3D web technology. 2011. ACM.

[34] Pleuss, A., & Hussmann, H. (2011). Model-driven development of interactive multimedia applications with MML. In Model-driven
development of advanced user interfaces (pp. 199-218). Springer, Berlin, Heidelberg.

[35] Buchs, D., Hostettler, S., Marechal, A., & Risoldi, M. (2010, June). Alpina: A symbolic model checker. In International Conference on
Applications and Theory of Petri Nets (pp. 287-296). Springer, Berlin, Heidelberg.

[36] Marques, E., et al., The RPG DSL: a case study of language engineering using MDD for generating RPG games for mobile phones, in
Proceedings of the 2012 workshop on Domain-specific modeling. 2012, ACM: Tucson, Arizona, USA. p. 13-18.

[37] Stürner, M. and P. Brune. Virtual worlds on demand? Model-driven development of JavaScript-based virtual world UI components
for mobile apps. In4th International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2016,
February 19, 2016 - February 21, 2016. 2016. Rome, Italy: SciTePress.

[38] Marchiori, E.J., et al., A visual language for the creation of narrative educational games. Journal of Visual Languages & Computing,
2011. 22 (6): p. 443-452.

[39] Valdez, E.R.N., et al., Gade4all: developing multi-platform videogames based on domain specific languages and model driven
engineering. IJIMAI, 2013. 2 (2): p. 33-42.

[40] Morales, L., D. Méndez-Acuna, and W. Montes, Model-driven game development-case study. a mtc for maze-game s prototyping.
Revista electrónica en construcción de software PARADIGMA, 2011. 5 (3): p. 1-15.

[41] Funk, M. and M. Rauterberg, PULP scription: A DSL for Mobile HTML5 Game Applications. In International Conference on
Entertainment Computing. Springer, Berlin, Heidelberg, 2012.

[42] Furtado, A.W. and A.L. Santos. Using domain-specific modeling towards computer games development industrialization. In The 6th
OOPSLA Workshop on Domain-Specific Modeling (DSM06). 2006. Citeseer.

[43] Hernandez, F.E. and F.R. Ortega, Eberos GML2D: a graphical domain-specific language for modeling 2D video games, In Proceedings
of the 10th Workshop on Domain-Specific Modeling.2010, ACM: Reno, Nevada. p. 1-1.

[44] Maier, S. and D. Volk, Facilitating language-oriented game development by the help of language workbenches, in Proceedings of the
2008 Conference on Future Play: Research, Play, Share. 2008, ACM: Toronto, Ontario, Canada. p. 224-227.

[45] Furtado, A.W., et al., Improving digital game development with software product lines. IEEE software, 2011. 28 (5): p. 30-37.

Post-print version of the paper by Zhu and Wang in ACM Computing Surveys (CSUR) 52.6 (2019): https://doi.org/10.1145/3365000

 24

[46] Furtado, A.W., A.L. Santos, and G.L. Ramalho. SharpLudus revisited: from ad hoc and monolithic digital game DSLs to effectively
customized DSM approaches.in Proceedings of the compilation of the co-located workshops on DSM'11, TMC'11, AGERE! 2011,
AOOPES'11, NEAT'11, & VMIL'11. 2011. ACM.

[47] Guo, H., et al., Realcoins: A case study of enhanced model driven development for pervasive games. International Journal of
Multimedia and Ubiquitous Engineering, 2015. 10 (5): p. 395-411.

[48] Kelly, S. and J.-P. Tolvanen, Domain-Specific Modeling Enabling Full Code Generation. 2008: John Wiley & Sons, Inc.
[49] Guo, Hong, et al. PerGO: an ontology towards model driven pervasive game development. In OTM Confederated International

Conferences" On the Move to Meaningful Internet Systems". Springer, Berlin, Heidelberg, 2014.
[50] Kelly, S. and R. Pohjonen, Worst Practices for Domain-Specific Modeling. Software, IEEE, 2009. 26 (4): p. 22-29.
[51] Furtado, A.W.B., et al., Improving Digital Game Development with Software Product Lines. Software, IEEE, 2011. 28 (5): p. 30-37.
[52] Stahl, T., M. Voelter, and K. Czarnecki, Model-Driven Software Development: Technology, Engineering, Management. 2006: John

Wiley & Sons.
[53] Krahn, Holger, Bernhard Rumpe, and Steven Völkel. Integrated definition of abstract and concrete syntax for textual languages. In

Proceedings of International Conference on Model Driven Engineering Languages and Systems. Springer, Berlin, Heidelberg, 2007.
[54] Tolvanen, J. P., & Kelly, S. Defining domain-specific modeling languages to automate product derivation: Collected experiences.

In International Conference on Software Product Lines (pp. 198-209). Springer, Berlin, Heidelberg. 2005, September.
[55] Petre, M., Why looking isn't always seeing: readership skills and graphical programming. Commun. ACM, 1995. 38 (6): p. 33-44.
[56] Engelen, L. and M.v.d. Brand, Integrating Textual and Graphical Modelling Languages. Electronic Notes in Theoretical Computer

Science, 2010. 253 (7).
[57] Heckel, R., Graph transformation in a nutshell. Electronic notes in theoretical computer science, 2006. 148 (1): p. 187-198.
[58] Safavian, S.R. and D. Landgrebe, A survey of decision tree classifier methodology. IEEE transactions on systems, man, and

cybernetics, 1991. 21 (3): p. 660-674.
[59] Fisher, D., Data, documentation, and decision tables. Communications of the ACM, 1966. 9 (1): p. 26-31.
[60] Kent, S., Model Driven Engineering, in IFM 2002. 2002.
[61] Czarnecki, K., Classification of model transformation approaches. In Proc. 2nd OOPSLA Workshop on Generative Techniques in the

Context of the Model Driven Architecture, 2003, 2003.
[62] Erdweg, Sebastian, et al. The state of the art in language workbenches. in2013 International Conference on Software Language

Engineering. Springer, Cham, 2013.
[63] Jouault, F., et al. ATL: a QVT-like transformation language. in Companion to the 21st ACM SIGPLAN symposium on Object-oriented

programming systems, languages, and applications.2006. ACM.
[64] Kent, S. Model driven engineering. in Integrated formal methods. 2002. Springer.
[65] Selic, B., The pragmatics of model-driven development. IEEE software, 2003. 20 (5): p. 19-25.
[66] Hevner, A. and S. Chatterjee, Introduction to Design Science Research, In Design Research in Information Systems: Theory and

Practice. 2010, Springer US: Boston, MA. p. 1-8.
[67] Peffers, K., et al., A Design Science Research Methodology for Information Systems Research.J. Manage. Inf. Syst., 2007. 24 (3): p. 45-

77.
[68] Venable, John, Jan Pries-Heje, and Richard Baskerville. A comprehensive framework for evaluation in design science research. in2012

International Conference on Design Science Research in Information Systems. Springer, Berlin, Heidelberg, 2012.
[69] Peffers, K., Rothenberger, M., Tuunanen, T., & Vaezi, R. (2012, May). Design science research evaluation. In International Conference

on Design Science Research in Information Systems (pp. 398-410). Springer, Berlin, Heidelberg.
[70] Tang, S. and M. Hanneghan (2011). State-of-the-Art Model Driven Game Development: A Survey of Technological Solutions for

Game-Based Learning. Journal of Interactive Learning Research 22(4): 551-605.
[71] Roungas, B. and F. Dalpiaz (2016). A Model-Driven Framework for Educational Game Design. Revised Selected Papers of the 4th

International Conference on Games and Learning Alliance - Volume 9599. Rome, Italy, Springer-Verlag: 1-11.
[72] Zhu, M., et al., Engine- Cooperative Game Modeling (ECGM): Bridge Model-Driven Game Development and Game Engine Tool-

chains, in Proceedings of the 13th International Conference on Advances in Computer Entertainment Technology. 2016, ACM:
Osaka, Japan. p. 1-10.

[73] Zhu, Meng, and Alf Inge Wang. RAIL: A Domain-Specific Language for Generating NPC Behaviors in Action/Adventure Game.
In2017 International Conference on Advances in Computer Entertainment. Springer, Cham, 2017.

[74] Ferreira, C., et al. A Model-Based Approach for Designing Location-Based Games. In2017 16th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames). 2017.

[75] Aouadi, N., et al. Models and mechanisms for implementing playful scenarios. In 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA). 2016.

[76] Nolêto, C., et al. An Authoring Tool for Location-Based Mobile Games with Augmented Reality Features. In2015 14th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames). 2015.

[77] Karsai, Gabor, et al. Design guidelines for domain specific languages. arXiv preprint arXiv:1409.2378 (2014).
[78] Clark, Tony, Andy Evans, and Stuart Kent. Engineering modelling languages: A precise meta-modelling approach. In Proceedings of

the International Conference on Fundamental Approaches to Software Engineering. Springer, Berlin, Heidelberg, 2002.

