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Abstract— This paper describes a data-driven method for sys-
tem identification of a CO2 refrigeration system. Traditionally,
the interaction between the measured variables is not utilized
as they are highly dependent of the refrigeration system. In
this work a data-driven method namely subspace identification
is investigated for deriving a control-oriented model such the
interaction in the refrigeration systems can be utilized for e.g.
fault detection and diagnosis. The subspace identification is
applied on laboratory data obtained from a test setup located at
NTNU in Trondheim, Norway. Utilizing subspace identification
technique for system identification shows promising results.

I. INTRODUCTION

Refrigeration systems are widely used in the industry
for cooling of goods. The physical configuration of these
systems varies and depends on the required cooling capac-
ity and operating conditions. In some cases, heat recovery
and/or air conditioning (AC) units can also be included in a
refrigeration system. Furthermore, to increase efficiency of
the refrigeration systems, which use CO2 as coolant, ejectors
in a setup with intermediate compression may be utilized.
Additionally, the dynamic/static characteristics of the used
components (such as valves, compressors, condenser, etc.)
depends on the provider and is not normally known in
advance. [1]

For these reasons and the fact that refrigeration systems
also exhibit nonlinear behaviors, design of controllers for
these systems is a challenging task. These controllers are
often based on first principle models and afterwards tuned
by service people during the commissioning/retrofit phase.
A more appealing approach would be to utilize a data-
driven technique for controller designs. Likewise, data-driven
techniques would be preferable for optimization purposes,
fault detection and diagnosis (FDD) and fault tolerant control
(FTC) [1], [2].

This work is focused on obtaining an off-line data-driven
model (henceforth referred to as data-driven model) of a
CO2 refrigeration system with booster configuration (de-
scribed in Sec. II) that can be utilized for control-oriented
design purposes. The aim for the data-driven model is to
capture the dynamics from input (associated actuator) to
output (associated controlled variable) by use of the available
measurements. The resulting data-driven model is to be linear
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such that it is applicable for already known and well-defined
control, optimization, FDD and FTC algorithms.

Over the past 50 years several papers on system identifi-
cation have been published. Two of them [3], [4] resulted
in numerous techniques, which are now covered by the
label PEM (Prediction Error Method). These are based on
optimization in least squares type criteria which have to be
solved iteratively. The PEM techniques are well defined for
linear SISO (Single Input Single Output) systems, however
MIMO (Multiple Inputs Multiple Output) and non-linear
systems are not covered to the same extent. Later on in
the 1980, subspace identification techniques were introduced
and since then several papers have been published as well
as some books (see references [5], [6], [7] and references
within). A drawback with utilizing PEM for MIMO system
identification is that they are solved iteratively and are based
on a (non-convex) optimization function, which suffer the
risk of being stuck in a local minimum. Subspace techniques
does not suffer from this risk [5].

In recent years, subspace techniques for process monitor-
ing purposes have received increased attention [8], [9]. In
the refrigeration system application field the authors in [2]
have utilized a subspace system identification technique to
generate a model that is used to design a model predictive
control strategy.

Even though several papers (some mentioned previously)
utilize data-driven approaches for various applications on
different systems, there is still a large interest for further
research on usage of data-driven techniques on complex
industrial non-linear MIMO systems. This is mainly caused
by the potential from the (increasing) available I/O data and
computational power. [10]

Application of the methods described above to refrigera-
tion systems has only been pursued to a very limited extent
and even less for systems that utilizes CO2 as coolant. CO2

as a coolant is increasingly utilized because of its reduced
impact on the environment [11].

In section II the test setup is described. Section III
describes the subspace identification method and section IV
deals with the selection of the inputs used for the system
identification. Section V evaluates the validation of the
data-driven model and lastly, section VI shows the main
conclusions of this work.

II. CO2 REFRIGERATION SYSTEM

A CO2 refrigeration system located at NTNU/SINTEF
laboratory is available. This system has been thoroughly
described in [12] with sizing, components and possible
configurations. Thus, only a brief overview of the relevant



aspects of the system and the selected configuration is given
here. In this work the system is set to booster configuration
with refrigeration at medium temperature (MT), low tem-
perature (LT), and air conditioning (AC), where the maxi-
mum loads are 60 kW , 13 kW , and 45 kW respectively.
This configuration is selected for simplicity reasons. Fig. 1
illustrates a simplified schematic of the CO2 refrigeration
system with the mentioned configuration and the relevant
and available measurements, where the measured values
i.e. pressure, temperature, valve opening degree and load
are denoted with P, T, OD and Q respectively. Redundant
components (from a control-oriented perspective) are omitted
from the schematic. Additionally, the heat recovery and gas
cooler (GC) are represented by only one heat exchanger
as heat recovery is not considered in this paper. The CO2

system has a secondary side where all heat exchangers
(LT, MT, AC, GC, desuperheater) are connected to either a
mixture of glycol and water (henceforth referred to as glycol)
or water. On the secondary side it is possible to control
the load and outlet temperature of the glycol of each heat
exchanger, thereby emulating consumer demand (e.g. food
for MT and LT). The reader is referred to [12] for further
details on the secondary side. For this configuration three
parallel MT display cases are utilized where each display
case is represented with a heat exchanger and an electronic
expansion valve. The LT consist of a single display case and
is designed in a similar manner. For each display case (both
LT and MT) load, temperature and opening degree of the
expansion valves are measured.

The controlled variables on the CO2 side are itemized
here:

• Pressure before the high pressure valve (HPV) is con-
trolled with the HPV (type CCMT16 Danfoss valve).

• Temperature before the HPV is controlled with the
three way valve. Both the temperature and the pressure
(mentioned in the prior bullet) are controlled to reach a
desired sub-cooling/trans-critical point.

• Pressure in the receiver is controlled with the bypass
valve (BPV) of type CCMT42 Danfoss valve. Control-
ling this pressure reduces fluctuation in the coolant flow
to the MT and LT cabinets.

• Superheat out of each display case (both MT and LT)
are controlled with the individual expansion valve of
type AKVH10 Danfoss (note in Fig. 1 the controllers
are only illustrated for the MT part). The superheat is
controlled to avoid flooding of compressors.

• Suction pressure at the LT compressors pack (consisting
of a inverter driven 2JME-3K and a 2GME-4K from
Bitzer) is controlled by use of the LT compressor pack.

• Suction pressure at the MT compressor pack (consisting
of two inverter driven 4MTC-10K and one 4JTC-15K
from Bitzer) is controlled in the same manner.

• Temperature of the coolant from the LT compressor
pack is controlled by adjusting the flow on the sec-
ondary side of the heat exchanger (called desuper-
heater). This temperature is controlled to help reducing

the superheat at the suction of the MT compressor pack.
Note that the desuperheater and display cases are not

considered in this work. Additionally, there are several
controllers on the secondary side which are not of interest,
they are mainly used for simulating the various loads on the
refrigeration system.

Fig. 1. Illustration of the CO2 refrigeration system with the selected
configuration.

The system is controlled from a local PC where it is pos-
sible to manually change system configurations (i.e. activate
controller, select controller step point, set system to booster
setting, etc.).

III. SUBSPACE IDENTIFICATION

Subspace identification is utilized as there exist robust
algorithms for implementation and it does not suffer from
the drawback mentioned in the prior. The purpose of sub-
space identification is to obtain linear state space models by
utilizing experimental input/output (I/O) data. In this paper
we consider a discrete-time LTI system described by:

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (1)
y(t) = Cx(t) +Du(t) + e(t) (2)

where x ∈ Rn is the state vector, u ∈ Rm the input vector,
y ∈ Rl the output vector, e ∈ Rl the (innovation) white noise
vector and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m
are constant matrices. The problem is now to identify the
dimension n and the system matrices (A,B,C,D,K) based



on the given I/O data. It should be mentioned that there
are several subspace identification methods to solve this
problem. The difference between them are how the design
variables are selected, it is not yet known how to select them
optimally [5], [13], [7]. To solve this problem the following
assumptions are needed:

1 The number of measurements are sufficiently large (i.e.
N →∞).

2 The inputs (u(t)) are persistently excited.
3 The inputs are uncorrelated with the noise e(t) (open-

loop data).
The following input-output equations are derived by recur-
sive substitution of equations (1) and (2).

Yf = ΓXf +HdUf +HsEf (3)

Yp = ΓXp +HdUp +HsEp (4)

where Γ ∈ Rim×n is the extended observability, Hd ∈
Rim×il, Hd ∈ Rim×im are lower triangular Toeplitz ma-
trices with the superscripts d, s denoting deterministic and
stochastic inputs (u, e) respectively. Yf , Yp, Uf , Up are block
Hankel matrices and are built with the I/O data obtained from
the system, i.e:

Up =


u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)

...
...

. . .
...

u(i− 1) u(i) · · · u(i+N − 2)



Uf =


u(i) u(i+ 1) · · · u(i+N − 1)

u(i+ 1) u(i+ 2) · · · u(i+N)
...

...
. . .

...
u(2i− 1) u(2i) · · · u(2i+N − 2)


where i > n, N is sufficiently large and the input data
utilized for the block Hankel matrices is partitioned into
future (f ) and past (p) measurements. Yf and Yp are obtained
similarly. Note that for simplicity the number of row blocks
in the future Hankel matrices are here shown to be the same
as the past although they could be chosen different from one
another. The future and past state sequences are:

Xf =
[
x(i+ 1) x(i+ 2) · · · x(i+N)

]
Xp =

[
x(1) x(2) · · · x(N)

]
The equations (4) and (3) can be reformulated as:

Y = ΓX +HdU +HsE

where Y =
[
Yf Yp

]T
, X =

[
Xf Xp

]T
and U =[

Uf Up
]T

. The contribution of U -term can be removed
by utilizing orthogonal projection and the noise term (E) is
removed by correlating it away with a suitable vector, often
chosen to consist of the past inputs and past outputs. The
observability matrix multiplied with the states (X) can then
be found as [7]:

ΓX ≈ 1

N
YΠ⊥UTW

T
p = ξ

where Wp =
[
Up Yp

]T
and Π⊥UT = I − UT (UUT )−1U .

The extended observability matrix is obtained by first utiliz-
ing the SVD (Singular Value Decomposition) of W1ξW2:

W1ξW2 =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1
V2

]
with Σ1 ∈ Rn×n and Σ2 ≈ 0. Then the extended observ-
ability matrix is found as:

Γ = W−11 U1Σ
1/2
1 T

where W1 and W2 are weights to be selected, and T is
an arbitrary matrix. From Γ the state space matrices A and
C can be identified. Where A is obtained solving a linear
equation and C is directly obtained from Γ as (remark,
Matlab R© notation is used):

A = Γ(1 : (i− 1) · l, 1 : n)† · Γ(l + 1 : i · l, 1 : n)

C = Γ(1 : l, 1 : n)

Then B and C are derived by solving the linear regression:

arg min
B,D

1

N

N∑
t=1

‖y(t)− C(qI −A)−1Bu(t)−Du(t)‖2

This equation is often an overdetermined problem. Lastly,
the stochastic part (K) is obtained by solving:

Ke(t) = x̂(t+ 1)−Ax(t)−Bu(t)

e(t) = y(t)− Cx̂(t)−Du(t)

with the estimated states defined as X̂ =[
x̂(1) x̂(2) · · · x̂(N)

]T
= T−1Σ

1/2
1 V T1 W2 it is

straightforward to estimate K as well as the covariance
matrix for the noise (e(t)) [7]. The parameters to be chosen
are T , W1, W2, i and n. T is typically selected to be I (the
identity matrix), Σ1 or Σ

1/2
1 . Some of the present algorithm

use:
• N4SID. W1 = I , W2 = ( 1

NWpYfΠ⊥UTW
T
p )−1Wp.

• MOESP. W1 = I and W2 =
( 1
NWpYfΠ⊥UTW

T
p )−1WpΠ

⊥
UT .

Refrigeration systems are open-loop unstable, thus for the
assumptions to hold an Direct Approach [5] is applied,
meaning that the existence of the feedback loop is ignored
and open-loop identification is directly applied.

IV. DEFINING INPUTS AND OUTPUTS
Generally, adding more (relevant) inputs improves the fit,

while adding more outputs have the opposite effect [7]. To
achieve accurate estimation, we take the above-mentioned
observation into consideration and split the refrigeration
system into the following four sub-models:
• Gas cooler - Describes the pressure and temperature

before the HPV.
• Receiver - Describes the pressure in the receiver.
• MT compressors - Describes the suction pressure of the

MT compressor pack.
• LT compressors - Describes the suction pressure of the

LT compressor pack.
The energy and mass balance are utilized to identify the
variables that each sub-model is dependent on.



A. Receiver sub-model

The mass balance for the receiver sub-model is based on
the mass flow (m) through the HPV, the BPV, MT and LT
evaporators:

d Mrec

dt
= mHPV −mBPV −mMTe −mLTe

= f(ODHPV )
√

2ρgc(Pgc − Prec)

− f(ODBPV )
√

2ρMTc(Prec − PMTc)

−
3∑
i=1

f(ODMT (i))
√

2ρMTe(Prec − PMTe)

− f(ODLT )
√

2ρLTe(Prec − PLTe)

where f(OD) includes the valve characteristics and ρ is
density. By linearizing the above mass balance, the pressure
in the receiver (Prec) can be isolated, this linearization is not
shown here due to its size. A linearized version of a non-
linear function will be a linear combination, g(. . . ), of the
variables plus a constant, C̄:

Prec = g(ODHPV , ODBPV , ODMT1, ODMT2, ODMT3,

ODLT , ρgc, ρHPV , ρBPV , ρMTe, ρLTe, Pgc,

PMTc, PMTe, PLTe,
d Mrev

dt
) + C̄

The pressures (Pgc, PMTc, PMTe, PLTe) are controlled,
thus it is reasonable to assume that the densities (ρgc,
ρHPV , ρBPV , ρMTe, ρLTe) are constant. The mass flow to
the evaporators (mLTe, mMTe) are assumed negligible for
simplicity reasons. With these assumptions the pressure in
the receiver can be described as:

Prec = g(ODHPV , ODBPV , Pgc, PMTc) + C̄ (5)

Observe the change in mass in the receiver,
d Mrec

dt = Vrec
d ρrec
dt =

(
Vrec

d ρrec
dPrec

)
d Prec

dt , is a time
constant which the subspace identification method is
estimating and is therefore not included in Eq. 5. Lastly,
the energy transfered to the AC system (QAC) is included
as it has a correlation to mHPV . The variables, used for the
receiver sub-model, are:

Inputs: ODHPV ODBPV Pgc PMTc QAC

B. MT and LT sub-models

The purpose of these two sub-models is to describe the
pressure before the MT compressor pack (PMTc) and LT
compressor pack (PLTc). The mass balance is not used for
these two sub-models as there is a pressure sensor located
at the outlet of the MT and LT evaporators (PMTe, PLTe).
The pressure loss (Ploss) across a horizontal pipe (between
P1 and P2) is:

Ploss = P2 − P1

It is known that the pressure loss depends on pipe and
fluid characteristics (constants) as well as the mass flow and
whether it is turbulent or laminar flow (variables). Thus, the
effect of turbulent flow and mass flow is assumed to be
negligible. Hence, the respective pressure measurement at
the outlet of the evaporators (PMTe and PLTe) are sufficient
for obtaining a model of PMTc and PLTc.

C. Gas cooler sub-model

The gas cooler sub-model covers modeling of the pressure
and temperature before the HPV. It should be mentioned that
the three way valve opening degree is not available and is
thus not considered as an input for the sub-model. The energy
balance is:
d Mgch(Pgc, Tgc)

dt
= mch(Pc, Tc)

−mHPV h(Prec, Trec)−QAC −Qgc

Using the same principles as for the receiver sub-model the
following inputs for the gas cooler sub-model are selected:

Inputs: ODHPV ωc Qgc QAC
Trec Tc Prec Pc

where the mass flow from the MT compressor pack (mc)
is described using the speed of the compressor (ωc). The
compressor speed is utilized as the compressors are a positive
displacement type.

V. VALIDATION OF THE DATA-DRIVEN MODEL
Experimental data is obtained form the test setup at

NTNU, Trondheim. The experimental data set utilized for
training and validation is obtained with active controllers
except for the control of the temperature before the HPV.
The references are selected as stated below:

Ref.: Prec Pgc Tgc PLT PMT

Value: 38 [bar] - - 14.3 [bar] 28 [bar]

All pressure units are stated in absolute pressure throughout
the paper. The reference for the pressure before the HPV is
controlled for optimization purposes. The references for the
superheat on the three evaporators are set to 8 C. Lastly, the
three loads (AC, MT and LT) are varied as shown in Fig. 2.
The data-driven model (consisting of the four sub-models)
is trained on the first half (0 to 140 minutes) of the data set
and validated with the entire data set. It should be noted
that the three way valve at the gas cooler is set at a fixed
position. The data-driven model derived is a fourth order
discrete-time LTI state space model with a sample time of
five seconds with poles located as stated below:

GC Rec. MT comp. LT comp.
0.9213± 0.2332i 0.9578 0.6016 0.5740

The validation of the pressure (Pgc) and temperature (Tgc)
before the HPV is shown in Fig. 3. The data-driven model
shows a good fit for the pressure, this is caused by the pres-
sure measurement at the MT compressor discharge which



Fig. 2. Illustration of the AC, MT and LT loads in the data set.

is a pressure measurement upstream, thus a pressure drop
dependent on gas cooler and piping of the CO2 refrigeration
system. The temperature also shows a good fit, which is in
part caused by the strong correlation between the pressure
(Pgc) and the temperature (Tgc). The remaining outputs are
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T_GC_mod

P_GC_meas

P_GC_mod

Fig. 3. Illustration of pressure and temperature before the high pressure
valve, both measured (red and blue) and outputs form the data-driven model
(black).

shown in Fig. 4 which are receiver pressure (Prec), suction
pressure at MT compressor (PMTc) and suction pressure
at LT compressor (PLTc). MT and LT pressures fit very
well due to the pressure measurements at the outlet of
the respective display cases. The receiver pressure and MT
suction pressure exhibit the same behavior. Hence, the MT
suction pressure could be the cause for the good fit for the
receiver pressure.

LT_meas
LT_mod

MT_meas
MT_mod

Rec_meas
Rec_mod

Fig. 4. Illustration of receiver, MT and LT compressor suction pressures.
The blue (PLTc), red (PMTc) and yellow (Prec) represent the measure
values and the black lines represent outputs from the data-driven model.

A. Change in operating condition

Several data sets have been obtained, some of them
would be beneficial to include here for validation purposes.
However, with the limited space only a few are shown in the
following.

The pressures at MT and LT compressor suction are robust
to changes in operating conditions. However, variations in
operating condition (e.i. mass flow which is caused by
change in load for the respective display case) can cause
a small deviation. The effect of a large changing in load
(hence mass flow) can be seen in Fig 5 where the MT load
is changed from maximum (60 kW) to nominal (30 kW).
Additionally, in Fig 5 a fit using least squares (LS) is also
included, since the dynamic of a pressure drop across a
relatively short pipe is fast (hence, it would be reasonable
to assume the dynamics for MT and LT compressor sub-
models to be negligible). Note that the least squares fit (red
line in Fig. 5) and the output from the data-driven model
(black line in Fig. 5) are very close to one another and are
therefore hard to distinguish. The receiver pressure has the
best performance of all the sub-models, even though the CO2

system includes an AC system. As previously mentioned, the
receiver pressure exhibits the same behavior as the pressure
at the MT compressor suction. Hence, it could be that a LS
could obtain the same performance as the data-driven model.
A least squares model is therefore compared with the data-
driven model on the same data set as shown in Fig. 5, the
result is shown in Fig. 6. The gas cooler is subject to change
in ambient temperature along with the effect of the three
way valve. Unfortunately, there are no data set available to
validate theses effect and is therefore subject to future work.
The data set in Fig. 5, 6 have the three way valve set to



MT_meas
MT_mod

Fig. 5. Lower figure shows the load for the data set. Upper figure shows
the suction pressure at MT compressor pack, where blue is measured value,
black is data-driven model output, red is obtained using least squares.

Rec_meas
Rec_mod

Fig. 6. Illustration of receiver pressure, blue is measured value, black is
data-driven model output, red is obtained using least squares method.

a different position than the data set used for training of
the data-driven model. Thus, the results with that data set is
therefore not shown.

VI. CONCLUSION

In this paper subspace identification is utilized to derive a
data-driven model (consisting of four sub-models, three SISO
and one MIMO) which describes the controlled variables i.e.
temperature and pressure before the HPV, suction pressures
at MT and LT compressor packs and receiver pressure in an
industrial CO2 refrigeration system. The data-driven model
shows a good fit as it exploits the strong correlation between
the measured variables and the respective output in each
sub-model. The strong correlation between the measured

variables and respective outputs are normally not utilized
due to the dependency of the refrigeration system. However,
this paper shows that data-driven methods (in particular the
subspace identification) can conveniently be employed to
develop sufficiently accurate models of different subsystems
in an industrial refrigeration plant. The perspective would be
to utilize these models for the purpose of developing new
algorithms for fault diagnosis and fault tolerant control as
well as overall system optimization.
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