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Abstract

1. Dispersal, the movement of individuals between populations, is crucial in many
ecological and genetic processes. However, direct identification of dispersing
individuals is difficult or impossible in natural populations. By using genetic
assignment methods, individuals with unknown genetic origin can be assigned to
source populations. This knowledge is necessary in studying many key questions
in ecology, evolution and conservation.

2. We introduce a network-based tool BONE (Baseline Oriented Network Esti-
mation) for genetic population assignment, which borrows concepts from undi-
rected graph inference. In particular, we use sparse multinomial Least Absolute
Shrinkage and Selection Operator (LASSO) regression to estimate probability
of the origin of all mixture individuals and their mixture proportions with-
out tedious selection of the LASSO tuning parameter. We compare BONE
with three genetic assignment methods implemented in R packages radmixture,
assignPOP and RUBIAS.

3. Probability of the origin and mixture proportion estimates of both simulated
and real data (an insular house sparrow metapopulation and Chinook salmon
populations) given by BONE are competitive or superior compared to other as-
signment methods. Our examples illustrate how the network estimation method
adapts to population assignment, combining the efficiency and attractive prop-
erties of sparse network representation and model selection properties of the L1
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regularization. As far as we know, this is the first approach showing how one can
use network tools for genetic identification of individuals’ source populations.

4. BONE is aimed at any researcher performing genetic assignment and trying
to infer the genetic population structure. Compared to other methods, our
approach also identifies outlying mixture individuals that could originate outside
of the baseline populations. BONE is a freely available R package under the
GPL license and can be downloaded at GitHub. In addition to the R package, a
tutorial for BONE is available at https://github.com/markkukuismin/BONE/.

Keywords: assignment analysis, genetic stock identification, LASSO, networks, SNP
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1 Introduction

Dispersal is of fundamental importance in ecology, evolutionary biology, conservation and

management (see, e.g., Ronce, 2007; Clobert et al., 2012; Driscoll et al., 2014; Saastamoinen

et al., 2018). Being able to accurately identify dispersers and individuals’ population of

origin is therefore important. One fruitful approach is to assign individuals to their popula-

tion of origin using genetic information (Manel et al., 2005). Multilocus genetic data, such

as single-nucleotide polymorphisms (SNP), are now a common source of information, for

example, in genetic stock identification (GSI) in fishery management (see, e.g., Beacham

et al., 2012; Garvin et al., 2010). This is due to the major development in sequencing

technologies (review in Jiang et al., 2016; Garvin et al., 2010). Today it is increasingly

common to have data sets with thousands of markers on a variety of species and thus new

methods are emerging to analyze large data sets (Li et al., 2008; Novembre et al., 2008;

Anderson et al., 2008; Anderson, 2010; Helyar et al., 2011; Ruegg et al., 2017; McKinney

et al., 2017).

Utilizing graphs in computational biology has been an active endeavour for the past

couple of decades (review in Wang and Huang, 2014). These methods include directed

and undirected graphical models, which characterize the conditional dependency structure

between random variables (review in Drton and Maathuis, 2017). One widely used vari-

ant is the weighted gene co-expression network analysis (see, e.g., Horvath, 2011). Graph

methods are not only restricted to gene networks but they have also been utilized in land-

scape genetics (see, e.g., Garroway et al., 2008), phylogenetic trees construction (see, e.g.,

Huson and Scornavacca, 2011) and in estimation of genetic population structure (see, e.g.,

Dyer and Nason, 2004; Greenbaum et al., 2016; Kuismin et al., 2017), to mention a few

applications.

Here we show how a graph estimated with the Least Absolute Shrinkage and Selec-

tion Operator (LASSO) (Tibshirani, 1996) can be applied for population assignment using

multilocus SNP data. We have used a similar approach previously for genetic population

structure inference (Kuismin et al., 2017). The difference of genetic assignment compared

to the population structure estimation is that some information on populations of origin

(defined as “baseline” or “source populations”) is known in advance, and these baseline
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populations function as reference data to which individuals without known origin (defined

as “mixture individuals”, included in a “mixture population”) are assigned.

We show how the probability of the origin and the mixing proportions of an individual

can be determined from a graph. In our method, these probabilities are estimated based

on the robustness of the results when the graph is produced using different values of the

LASSO tuning parameter that controls the sparsity level of the graph. We can inspect the

strength of the probability of the origin by examining how graph neighborhood of a mixture

individual changes with different regularizations along the LASSO solution path. We claim

that if the mixture individual has a strong genetic similarity with individuals in a baseline

population, the neighborhood of such a mixture individual is more robust to the changes

of the LASSO tuning parameter value compared to those mixture individuals that have a

weak genetic similarity with baseline individuals. In particular, with strong penalization,

the strong genetic signals stand out more clearly than the weaker ones. If neighbors of an

individual seem to resurface more or less randomly from the different baseline populations

when the LASSO regularization is changed, one can suspect that this individual is not a

member of any of the baseline populations. Hereafter, we refer this kind of individuals to

as “outsiders”. Here, we first describe in detail our network-based method.

We can describe the workflow of our method with five steps:

1. Use multinomial LASSO regression to determine close genetic relationships between

individuals in baseline populations, with known structure, and mixture individuals,

with unknown origin. By “close genetic relationship” we mean that both the mixture

individual and baseline individual belong to the same group (baseline population)

that is genetically homogeneous.

2. Collect results of the multinomial LASSO regression into a form of a genetic relation-

ship network.

3. Assign mixture individuals to those baseline population(s) with which the node of

the mixture individual shares at least one edge (neighbor) in the network.

4. Determine estimates of the probability of the origin based on the node degree and

mixture proportions, which are averaged probabilities of the origins over different
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baseline populations.

5. Detect which mixture individuals are potential outsiders using the whole LASSO

solution path information.

We call our method BONE, that stands for Baseline Oriented Network Estimation.

Next, we compare BONE with three population assignment methods: commonly used

ADMIXTURE (Alexander et al., 2009), along with two recently published methods “RU-

BIAS” (Moran and Anderson, 2019) and “AssignPOP” (Chen et al., 2018) using both

simulated and real data. ADMIXTURE, RUBIAS and AssignPOP are implemented in R

packages radmixture, RUBIAS and AssignPOP, respectively, and are publicly available at

CRAN (The Comprehensive R Archive Network). RUBIAS and AssignPOP in particular

are designed for population assignment. They allow assignment of individuals in mixed

populations with several classification tools (support vector machines, naive Bayes etc.),

they also enable simulation of mixture individuals to predict assignment accuracy. ADMIX-

TURE is usually used to estimate ancestries when nothing is known about the contributing

ancestral populations, but it can also be applied to population assignment using so called

supervised learning model extension (Alexander and Lange, 2011).

2 Methods

2.1 Baseline-mixture graph

Assignments of mixture individuals, with unknown genetic background, into known baseline

populations, can be represented with baseline-mixture graph (terms graph and network are

used interchangeably in this article). Let M denote the group of mixture individuals and

B the group of baseline individuals (group of source populations or reporting units). There

are no duplicates in the data meaning that sets M and B are separated, M ∩ B = ∅. We

refer to different baseline populations with subscripts Bbp. Assume that there are |B| = p

baseline individuals and |M | = m mixture individuals. Notation | · | is the cardinality of

the set (i.e., how many individuals there are).

Let G = (E, V ) be an undirected graph (the baseline-mixture graph). The set E =
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{i, j | i ∈ M, j ∈ B} is the set of nodes. Each node i corresponds to a mixture individual

and each node j corresponds to a baseline individual. V = {(i, j), (j, i) | i ∈ M, j ∈ B}

is the set of edges. We shortly write (i, j) ∈ V , denoting, that both pairs (i, j) and (j, i)

are in the set V . If (i, j) ∈ V , then there is an undirected edge between nodes i and j in

the graph. Undirected edge (i, j) denotes the close genetic relationship between mixture

individual i and baseline individual j and vice versa. The undirected graph does not imply

direction of the genetic relationship.

The undirected graph G can be coded into a symmetric, (p+m)×(p+m) binary valued

adjacency matrix A = [aij], aij ∈ {0, 1}. The diagonal elements of the adjacency matrix are

all zero, because there are no edges from a node to itself (loops) in the undirected graph G,

diag(A) = 0. We define aij = aji = 1, if (i, j) ∈ V , when there is a close genetic relationship

between mixture individual i and baseline individual j, and aij = aji = 0, if (i, j) /∈ V ,

when there is no genetic relationship between mixture individual i and baseline individual

j. Because of this, the adjacency matrix A is symmetric, A = A>, where superscript >

denotes matrix or vector transposition.

Neighbors of the node i ∈ M are all nodes j ∈ B that share an edge with the node

i ∈M . Together, neighbors form a neighborhood of node i. In the baseline-mixture graph,

we require that mixture individuals cannot be neighbors of other mixture individuals (no

loops). Similar restriction holds also for baseline individuals. We have illustrated this in

Fig 1.

2.2 Probability of the origin and mixing proportions

We use the symmetric adjacency matrix A to describe how one can determine the prob-

ability of the origin and mixture proportions of each mixture individual. All we need is

the node degrees and the number of neighbors of each mixture individual. Denote the

probability of the origin of a mixture individual i with (b+1)×1 vector p(Mixi | B) where

b = #{baseline populations} (note that b = 3 in the illustrative example of Fig 1). Vector

element p(Mixi | Bbp) is the probability of the origin of individual i originating from the

baseline population Bbp, bp = {1, . . . b}. Populations are not in any particular order. We

define the probability of the origin p(Mixi | Bbp) as follows:
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Baseline Mixture

Baseline

Mixture

B1 B2 B3

B1

B2

B3

Figure 1: A schematic illustration of the symmetric adjacency matrix. Assignments of the

baseline source individuals are known and fixed into one of the baseline source populations

before analysis. In this illustrative example, there are three baseline source populations:

B1, B2 and B3. Potential neighborhoods that are estimated using BONE correspond to

the shaded areas, and form the fundamental set for neighborhood selection of the baseline-

mixture graph.

p(Mixi | Bbp) =
1

di

∑
j∈Bbp

aij, (1)

where
∑

j∈Bbp
aij is the number of neighbours (baseline individuals) of individual i that

belong to population Bbp and di =
∑p

k=1 aik, i ∈ {(p + 1), . . . (p + m)}, is the number of

neighbors of individual i. Here di can have values between zero and p. It is possible that

an individual is originating from outside of the baseline populations. In this case, di = 0

and we set p(Mixi | B(b+1)) = 1, which denotes an outsider population.

Mixing proportion of population Bbp is the average of the probability of the origin

estimates defined in equation (1) over all mixture individuals assigned in the baseline

population Bbp

p(Bbp) =
1

m

m∑
i=1

p(Mixi | Bbp), (2)
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where m is the total number of mixture individuals. In the next section, we describe

how one can estimate the baseline-mixture graph G needed to estimate the probability of

the origin and mixture proportions.

2.3 Network estimation with LASSO

It is well known that the LASSO method can be used in a sparse linear model selection

due to the properties of the L1-type penalty function (see, e.g., Tibshirani, 1996; Mein-

shausen and Bühlmann, 2006). Following the work of Kuismin et al. (2017), we use the

L1-regularized multinomial logit model (Friedman et al., 2010) to select the graph and

estimate the probability of the origin for each mixture individual under the restrictions

illustrated in Fig 1.

We have described the multinomial logit model used in our neighborhood selection in

more detail in supplementary materials. We have also depicted other elements of the graph,

probability of the origin, mixture proportions and quick decision rule for outsider detection

based on this LASSO model in more detail in supplementary materials.

It is important for the user to know, that the sparsity of the network estimated with

the LASSO regularized multinomial logit model is controlled in BONE with a user defined

tuning parameter λ that is a non-negative real number. When λ is sufficiently large, the

selected graph is sparse or even empty. When the tuning parameter value decreases, more

edges are included into the selected network. The LASSO procedure is computationally

very efficient and (sometimes) it is actually faster to compute LASSO solution using a

decreasing sequence of tuning parameter values down to a small λ value, than computing

LASSO solution only at one small value for the tuning parameter (Friedman et al., 2010).

The information gained from this procedure is used to compute so-called solution path

that is the set of LASSO estimates associated with each pre-determined value of the tuning

parameter.

We propose two methods of selecting neighbors for mixture individuals from the baseline

group:

1. Winner Takes it All (WTA) method: This method starts with an empty graph

and follows the LASSO-solution path using a decreasing sequence of tuning parameter
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values until at least one neighbor for the mixture individual is found from a baseline

group. The mixture individual is assigned to the same baseline population where

the first neighbor was found. Occasionally, it is possible to find more neighbors than

just one with this procedure, which causes the mixture individual to be assigned to

all of the baseline populations where the neighbours were found. This procedure is

repeated for all mixture individuals, after which all found neighbors are summarized

into an symmetric adjacency matrix as described before.

2. Solution path method: In this method, the whole LASSO-solution path is exam-

ined and the mixture individual is associated to all baseline population neighbors that

are found at each tuning parameter value. In other words, a continuum of graphs

is explored and all neighbors are collected over all neighborhoods found. Neighbors

for all mixture individuals are summarized into a weighted graph: we assume that

graphs composed with large tuning parameter values contribute more to the weighted

graph and thus we give them larger weights.

The solution path method is loosely related to Lockhart et al. (2014) where the authors

use LASSO-solution path in significance testing. The probability of the origin can again

be computed from the composed adjacency matrix (1). We have described the computing

of the weighted adjacency matrix, mentioned in the solution path method, in more detail

in supplementary materials. Both the WTA and the solution path method ease the selec-

tion of the LASSO tuning parameter value, which otherwise is a laborious task (see, e.g.,

Meinshausen and Bühlmann, 2010): inclusion of a model parameter does not (excessively)

complicate BONE. It is sufficient just to use a wide range of tuning parameter values from

large to small ones.

The weakness of the multinomial logit model is that if the multilocus genotype pattern

of some individual has extremely low occurrence of a certain genotype class, e.g., if an indi-

vidual has very low heterozygosity, the numerical algorithm used to solve the multinomial

logit LASSO problem returns biased estimates. The algorithm may fail in whole if there are

one or less occurrences of a certain genotype class (either heterozygous or homozygous) or

an individual is totally homozygous/heterozygous over loci. Nevertheless, this rarely hap-

pens if the data contains thousands or hundreds of thousands of SNPs. We have illustrated
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this problem in supplementary Fig “BONEFailureSchematics”.

2.4 Qualitative check of the randomness of the probability of the

origin

If the neighborhoods of mixture individuals were defined by chance, then the observed count

of the neighbors of a mixture individual would be close to the counts of the individuals in

each baseline population at hand. In this case, the probability of a mixture individual to

be a neighbor with a baseline individual in group Bbp is pbp/p. Here pbp is the number of

individuals in baseline population Bbp and also the expected count of neighbors, whereas p

is the total number of baseline individuals. If the observed size of the neighborhood is not

considerably different from the expected counts, it is possible that the mixture individual

is an outsider (e.g., a disperser from outside of the baseline populations).

However, the number of neighbors in the network is very limited: a given mixture

individual usually has just a few or no neighbors in the baseline populations. This is because

BONE produces very sparse network estimates which are easier to examine in general. Since

the number of observed counts (number of neighbors) is very limited, statistical testing,

just as G-test, of the neighborhood division is not feasible. Nevertheless, we propose to

check how observed neighborhood proportions (probability of the origin estimates) diverge

from expected neighborhood proportions, which are equal to the expected probability of

origins.

To identify potential outsiders in the data, we compute the mean squared errors (MSE)

between probability of the origins, estimated by using the solution path method, and ex-

pected probability of the origins. When the tuning parameter value is decreased, probability

of the origin estimates approach the expected values. If the tuning parameter value is zero,

all probability of the origin estimates are equal to the expected values because every base-

line individual is a neighbor of each mixture individual (full graph). However, the LASSO

augmented multinomial logit model first finds neighbors of a mixture individual from the

baseline with strong genetic similarity (shared SNP genotype patterns) and these assign-

ments are robust to the increment of the tuning parameter value by showing constantly

strong degree of genetic similarity. For the individuals whose neighborhood is found only
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with very small tuning parameter values, the probability of the origin estimates are very

close to the expected probability of the origin values. Their neighborhood approaches the

full graph and only the size of the baseline population determines their neighborhood, seem-

ingly found by chance. Individuals whose probability of the origin estimates are the closest

to the expected values are qualitatively interpreted as potential outsiders. In this article,

we use the mean squared error to measure the distance between estimated and expected

probability of the origin values. This deduction rule cannot be applied with the Winner

Takes it All method, because it produces rigid estimates for the probability of the origin,

which seemingly always differ from the expected probability of the origin. Mathematical

basis of this qualitative procedure is described in more detail in supplementary materials.

Individuals identified with this procedure have fragmented probability of the origin

estimates. This can be caused either by i) dispersal from outside of the baseline group, or

ii) strong admixture of the baseline populations. We have illustrated different outcomes of

BONE and what might cause these outcomes in Fig 2.

2.5 Comparison of different assignment methods using simulated

and partitioned real data

We utilize three different data sets (a house sparrow data set, and a large and a small

Chinook salmon data set) in two different illustrative examples, which we describe below.

2.5.1 Data simulation scheme

We simulate SNP genotype data using the Diriclet-multinomial model of the ADMIX-

TURE (Alexander et al., 2009) producing the binomial proportions

Pr(0 for i at SNP j) =

[∑
k

qikfkj

]2

,

Pr(1 for i at SNP j) = 2

[∑
k

qikfkj

][∑
k

qik(1− fkj)

]
, (3)

Pr(2 for i at SNP j) =

[∑
k

qik(1− fkj)

]2

,
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(A)

B1

Fst > 0, no intermating

B2

B3

(B)

B1

Fst > 0, intermating

B2

B3

(C)

B1

Fst≈0, intermating

B2

B3

Figure 2: An illustration of how subpopulation division (here, B1, B2 and B3) of the base-

line group (light shaded area) and intermating between baseline populations (admixture)

may affect assignments of a mixture individual (the small orange node). The width of

the edge represents the strength of the assignment. (A) Baseline populations are clearly

separated and there is no admixture: assignments are clear and potential outsiders are easy

to detect. (B) Baseline populations are clearly separated and the mixture individual has

relatives in multiple baseline populations: assignments are more ambiguous and admixed

individuals might be identified as potential outsiders. (C) Baseline populations are not

clearly separated and there is intermating: assignments seem to happen by chance and

outsider detection identifies many potential outsiders.

where Q = [qik] is the (I × K) ancestry coefficient matrix and F = [fkj] is the (K × J)

population allele frequency matrix. Here I is the number of unrelated individuals, K is the

number of populations and J is the number of SNPs.

In our simulation study, Q is fixed such that individuals from different populations are

totally separated from individuals from other populations (see Fig 2 (A)). We use empirical

SNP genotype frequencies as known genotype frequencies. These genotype frequencies are

determined from two data sets which we use as our starting point:

1. An extensive house sparrow data set (Lundregan et al., 2018; Araya-Ajoy et al.,

2019; Saatoglu et al., 2019, see supplementary materials for details). Overall, there

are 183,145 SNPs and 507 baseline birds for 2012 in the original data file from eight

populations.

2. A large Chinook salmon data set with several thousands of SNPs (Larson et al., 2014).
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This data set is freely available in Dryad digital repository

(https://doi.org/10.5061/dryad.rs4v1). Overall, there are 10,944 SNPs and 265

individuals for 2007 – 2010 in the original data file from five populations.

From the original house sparrow data set and the large Chinook salmon data set, we

choose three of the largest populations, and a fourth population which is defined as an

outsider population. First, we compute the SNP genotype frequencies of these populations

and set the values of the genotype matrix F to these values. Note that now K = 4 for both

data sets but the number of SNPs J is 1322 for the empirical house sparrow data and 1242

for the empirical Chinook salmon data (only loci with non-missing entries are included).

After model parameters have been determined and fixed, we simulate SNP data fol-

lowing the scenario described in Anderson et al. (2008) (see their article Fig. 1 (a)). We

simulate SNP data for four large populations with 500 individuals in each of the popula-

tions following the model (3). Finally, we randomly sample 100 baseline individuals from

three populations of the size of 500 individuals. We also sample m = 10, 20 and 50 mixture

individuals from the same three populations. In addition, we randomly sample 10 mixture

individuals from the fourth “outsider” population: these mixture individuals do not have

any genetic relationship with those 300 baseline individuals sampled from the other three

simulated populations. Thus there are individuals from four populations in the mixture

data but baseline data has only individuals from three populations. See supplementary Fig

“Sampling” for schematic illustration of our mixture and baseline sampling procedure.

2.5.2 Data partitioning scheme

We use the procedures of the RUBIAS package to sample test data for a cross-validation

style method comparison.

We apply all competing methods to sampled data sets that we generate using small

subsets of individuals in:

1. The same house sparrow data we use in the data simulation scheme. Briefly, eight (8)

different populations correspond to different islands on the coast of Norway, and the

data used here was collected in year 2012. Overall, there are 183,145 SNPs and 507
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baseline birds for 2012 in the original data file. The eight populations in the baseline

data set had sample sizes 16, 20, 58, 63, 147, 130, 53 and 20.

2. Six (6) populations from a small Chinook salmon baseline data with under one hun-

dred SNPs (Clemento et al., 2014). This data is freely available in the RUBIAS package

and in Dryad digital repository (https://doi.org/10.5061/dryad.574sv). Overall

there are 91 SNPs and 909 baseline fish for 2010 in the data file. The six populations

had sample sizes 119, 95, 146, 117, 295 and 137. Genetic data was generated on a

Fluidigm EP1 platform using 96.96 Dynamic Arrays.

We use the baseline population proportions from these data sets as the parameters of

Dirichlet distribution and we treat the parameter vector simulated from the Dirichlet dis-

tribution as the “true” mixture proportions. Mixture individuals are randomly sampled

from the baseline to satisfy these mixture proportions. Baseline samples are divided into

a baseline group (eight populations in the house sparrow data and six populations in the

Chinook salmon data) and a mixture group now with known origin. In this comparative

analysis, we inspect how the cross-validation error of probability of the origins and mix-

ture proportions differ when they are estimated with BONE, ADMIXTURE, RUBIAS and

AssignPOP.

We sample m = 100 mixture individuals from both the sparrow and salmon baseline

groups. We keep the rest of the individuals as baseline samples. The baseline and mixture

sample sizes may vary slightly due to the random sampling done with the RUBIAS proce-

dures. For computational convenience and to reduce dependence among SNPs of the house

sparrow data, we selected 1000 SNPs from the sparrow data by systematically taking every

183th SNP from the data set (with random starting position).

2.5.3 Method comparison

We compare BONE with ADMIXTURE software (Alexander et al., 2009) which is a widely

used software in population structure analysis. In particular, we exploit known ancestral

populations in a supervised learning model in ADMIXTURE (Alexander and Lange, 2011)

and use the EM algorithm for estimating the ancestry coefficient matrix Q. In addition, we

compare our method with two recent population assignment techniques, RUBIAS (Moran
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and Anderson, 2019) and AssignPOP (Chen et al., 2018). These methods are implemented

in R packages radmixture, RUBIAS and AssignPOP respectively. With RUBIAS, we set

allele frequency priors to constant scales and ran 1000 MCMC iterations with a “burn-in”

set to 100. Then we computed posterior mean estimates based on all remaining MCMC

iterations. With assignPOP, we used two classifiers: support vector machines (SVM) and

naive Bayes. With BONE, we pre-set the LASSO tuning parameter to a decreasing sequence

from 0.4 to 0.02 of the length 40 (on a non-log scale). Because BONE depends on the R

glmnet package (Friedman et al., 2010) that cannot handle missing data, we removed

markers with more than 5% missing values and imputed the rest of the missing genotype

values with marker mode for BONE. This was repeated in each sampling round. On

average, we had to remove 0.7% percent of the SNPs and 68.0% contained at least one

missing genotype that had to be imputed in the house sparrow data. In the small Chinook

salmon data set of Clemento et al. (2014) the corresponding proportions were 1.4% and

13.6% respectively. For the results using alternative imputation strategy in BONE, see

supplementary materials.

We compute the MSE for both probability of the origin and mixture proportion esti-

mates over 50 simulation replications of both empirical and simulated data. The MSE for

any matrix M is

MSE(M̂,M) =
1

50

50∑
i=1

(M̂ −M)2. (4)

When interpreting simulation analyses results, outgroup individuals were omitted while

computing the MSE of both the probability of the origin and mixture proportions.

For comparison, we computed estimates for the probability of the origin and mix-

ture proportions randomly: probability of the origin for each individual are sampled from

Dirichlet distribution Dir(α) where the vector α corresponds to the baseline population

proportions. Mixture proportions are also simulated from the Dir(α) distribution.

We computed MSEs for all the methods and summarized their values in Fig 3 and for

the simulated data sets and Fig 6 for the partitioned empirical data sets. We note that

due to possible dispersers in natural populations (see e.g., Pärn et al., 2012), the MSE of

estimated probability of the origin, mixture proportions of the partitioning scheme cannot
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be exactly zero: Assignments may be biased by complex genetic histories which make

baseline populations less genetically divergent.

Individuals are assigned to baseline populations based on the largest estimate of prob-

ability of the origin (see also supplementary materials). We also tested how increasing the

number of SNPs simulated from the Dirichlet-multinomial model changes the assignment

accuracy and the estimates of the mixture proportions of solution path and “Winner Takes

it All” methods.

To illustrate how BONE is able to identify outsiders from the simulated data sets, we

select 10 of the most obvious outsiders (top 10 lowest MSE between the estimated and the

expected probability of the origin) detected by BONE. We note that out of 90 simulated

mixture individuals, 10 are from “outsider” population in our simulation scheme. In our

example, true positive (TP) is a mixture individual sampled from outsider population

and identified as an outsider. False positive (FP) is a mixture individual sampled from

other three populations (with sample sizes 10, 20 and 50) and identified as an outsider.

Thus the total number of non-outsiders is 80. We compute the averaged true positive rate

(TPR), TP/10 and false positive rate (FPR), FP/80 over 50 simulation replications. A

graphical representation of the estimated probability of the origins of mixture individuals

(including 10 outsiders) in one random run of our qualitative outsider detection procedure

is represented in Fig 4.

3 Results

As shown in Fig 3, all methods estimate the probability of the origin and the mixture

proportions of simulated mixture individuals far better than random guessing. Fig 4 is

graphical representation of the estimated probability of the origins of the simulated data

(large Chinook salmon data as the starting point) with a randomly sampled data set. AD-

MIXTURE produces estimates of the probability of the origin and mixture proportions

with the lowest averaged MSE values for simulated data. This is not surprising consider-

ing binomial proportions (3) which were used to simulate SNP genotype data come from

the ADMIXTURE model. Nevertheless, averaged accuracy rates (proportion of simulated

mixture individuals assigned to the correct baseline population) of the assignments of differ-
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Figure 3: The mean squared errors (MSE) for different methods in the probability of the

origin and the mixture proportions recovery based on 50 simulation replicates (using house

sparrow and large Chinook salmon data SNP genotype frequencies as starting point). Here

nB stands for naive Bayes, SVM for support vector machines, WTA for Winner Takes it

All and SP for solution path. When estimates were determined from random samples of

the Dirichlet distribution using true model parameters (random guessing), MSE median

(standard deviation) of the probability of the origin and mixture proportion were 0.339

(0.049) and 0.061 (0.089) along with 0.331 (0.039) and 0.067 (0.093) for the house sparrow

and Chinook salmon simulations respectively.

ent methods were very high: (i) simulated sparrow data: 100 per cent for BONE (solution

path), ADMIXTURE and RUBIAS and 99.97 for AssignPOP (both naive Bayes and SVM)

and 97.05 for BONE (WTA) (ii) simulated large Chinook data: 100 per cent for ADMIX-

TURE, 99.9 for BONE (solution path) and AssignPOP (both naive Bayes and SVM), 99.8

for RUBIAS and 96.03 for BONE (WTA).

The difference between averaged MSE values (Fig 3) can be partially explained by

the number of available SNPs. To test this, we dropped out mixture individuals from

the outside population and ran BONE analysis multiple times with different numbers of

simulated markers. When the number of SNPs increases, the assignment accuracy improves

and the MSE of the mixture proportions decreases in both BONE solution path and WTA
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Figure 4: Graphical illustration of the probability of the origin for the 90 mixture indi-

viduals in one random data set among the 50 simulated data (large Chinook salmon data

SNP genotype frequencies as starting point). “WTA” is short for “Winner Takes it All”.

Different colors correspond to different simulated baseline populations. The red popula-

tion corresponds to so called outsider population with no correspondence in the baseline.

Potential outsiders (10 individuals) are marked with an “X” in the network solution path

bar chart.

methods (Fig 5). Using at least ca. 20,000 markers in the simulation analysis reduces

the bias of the mixture proportion estimates practically to zero and the assignments are

flawless.

When we specifically examine for the ability of BONE solution path method to detect

outsiders in the simulated data sets, the averaged TPR and FPR are (i) 89.8 (standard

deviation 6.5) and 1.3 (0.1) for the house sparrow simulated data, and (ii) 73.6 (standard

deviation 11.2) and 3.3 (1.4) for the large Chinook simulated data, respectively. These

10 “outsider” mixture individuals are the ones among the mixture individuals having the
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Figure 5: The assignment accuracy and the mean squared errors (MSE) of mixture pro-

portions recovery based on 50 simulation replications (house sparrow data SNP genotype

frequencies as the starting point) show the effect of number of SNP markers in the BONE

method (“WTA” is short for “Winner Takes it All”). Assignment accuracy represents the

proportion of correctly assigned mixture individuals.
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Figure 6: The mean squared errors (MSE) for different methods in the probability of

the origin and the mixture proportions recovery based on 50 data partitioning replicates

(empirical house sparrow data, 1,000 SNPs and small empirical Chinook salmon data, 91

SNPs). Here nB stands for naive Bayes, SVM for support vector machines, WTA for Winner

Takes it All and SP for solution path. For comparison, when estimates were determined

from random samples of the Dirichlet distribution using true model parameters (random

guessing), MSE median (standard deviation) of the probability of the origin and mixture

proportion were 0.118 (0.000) and 0.042 (0.031) along with 0.148 (0.000) and 0.066 (0.038)

for the house sparrow and Chinook salmon simulations respectively.
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weakest genetic similarity with baseline individuals compared to other individuals. LASSO

model selection algorithm suppresses the genetic signals (covariate coefficients of the multi-

nomial logit model, which define the neighbors in the baseline group of these mixture

individuals, are shrunk exactly to zero by the LASSO penalty) of these individuals. Never-

theless, these results should be studied in more detail, because there is no guarantee that

populations in the baseline group are genetically homogeneous, like in this simple example,

when one examines true empirical data.

In Fig 6, when empirical sparrow and salmon data sets are examined, BONE produces

the lowest MSE estimates with the house sparrow data (1,000 SNPs) and RUBIAS with the

small Chinook salmon data set (91 SNPs). BONE is not accurate when the number of SNPs

is very low although the averaged MSE values in Fig 6 indicates that mixture proportions

of the small Chinook data are comparable with those produced by ADMIXTURE. Proba-

bility of the origin estimates of the house sparrow data computed with ADMIXTURE are

fragmented and hard to interpret. This might be reflecting the presence of close relatives in

the house sparrow data set or uneven sample sizes (Puechmaille, 2016; Wang, 2017; Lawson

et al., 2018). See supplementary materials for a graphical illustration of the probability of

the origin estimates of the empirical house sparrow data (“Supp SparrowBarplots”).

Finally, we note that a more detailed comparison between BONE and GSI SIM (An-

derson et al., 2008), which is a Unix-variant of RUBIAS, is presented in Saatoglu et al.

(2019), where the house sparrow data that was used as a starting point to compare different

methods in the current study, is analysed in its entirety.

3.1 Qualitative comparison of population assignment methods

applied in this article

All population assignment methods we have examined here have their pros and cons. Most

of their unwanted features relate to the implementation of these methods, and could be

solved if their implementation involved more efficient programming or by using top-notch

hardware. For example, the supervised learning model of ADMIXTURE implemented in

the R package radmixture supports only one unknown individual at a time. These technical

problems may be overcome via the evolution of computer hardware. We have collected
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a small summary of the properties of RUBIAS, BONE, AssignPOP and ADMIXTURE

methods in Table 1.

We note that unbalanced population sample sizes are often the case in empirical studies

(like in our house sparrow data set), and they are problematic for some methods (see, e.g.,

Puechmaille, 2016; Wang, 2017). Our previous study with the multinomial logit model

suggests that our graph method is not sensitive to uneven sample sizes (Kuismin et al.,

2017).

RUBIAS BONE AssignPOP ADMIXTURE

Running time Fast Moderate Fast Fast (slowa)

Initial costsb Moderate Moderate High Small

Performance with small data sets Good Moderate Goodc Good

Performance with large data sets Good Good Good Good

Outsider detection No Yes No No

Effect of unbalanced sample sizes ? Negligibled Negligible Highe

a The original command line program is fast but the R implementation radmixture only sup-

ports estimation of one individual with unknown ancestry at a time.

b Time needed for reading and formatting the raw genotype data.

c AssignPOP provides tools to reduce the number of loci with low variance.

d Kuismin et al. (2017).

e Puechmaille (2016); Wang (2017).

Table 1: A qualitative comparison of the properties of RUBIAS, BONE, AssignPOP and

ADMIXTURE.

In addition to the features summarized in Table 1, there are other practical differences.

For example, each method uses different file formats: AssignPOP uses either GENEPOP

formatted files (Rousset, 2008) or STRUCTURE formatted files (Pritchard et al., 2000),

RUBIAS uses its own file formats, and BONE was initially developed for PED formatted

files used by, e.g. PLINK (Purcell et al., 2007). Previously published methods have not

been able to detect outsiders, but it may be possible to overcome this limitation in them

by using our suggested detection procedure based on the MSEs of the probability of the
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origin estimates.

4 Conclusions

Here we have provided a detailed description of how to apply graph estimation tools in

genetic assignment. We have shown that BONE produces probability of the origin and

mixture proportion estimates, which are comparable or superior to recently published ge-

netic assignment methods. Furthermore, general characteristics of the network model (i.e.,

nodes might have no neighbors) provide a separate group for those individuals which do

not seem to have any logical assignment to baseline populations (i.e., no mixture individual

is forced into a baseline population). Therefore, we have shown how these outsiders can be

correctly identified. A characteristic of BONE is that one can actually inspect the baseline

neighbors of each mixture individual from a graph.

There is still room for improvement of our graph method. For example, the genetic

relationship between mixture individuals and baseline individuals is defined by binary val-

ues in the adjacency matrix. The smaller variance associated with the estimates computed

with our solution path method in MSE sense seem to indicate that a weighted graph could

describe the genetic relationship between mixture and baseline individuals in more detail.

Moreover, if this relationship could be defined with weighted values, A = [ai,j], 0 ≤ ai,j ≤ 1,

it is theoretically possible to determine the probability of the origin and mixture propor-

tions with minimal estimation error. However, this is a far more challenging graphical

model to estimate and we leave its development and examination for future studies.

BONE avoids the difficult task of LASSO tuning parameter selection, which makes

BONE practically parameter free. The user does not have to be an expert of the LASSO-

regression to use BONE. The only serious limitation, where BONE estimates are biased, is

when an individual has very low heterozygosity or homozygosity. Compared to ADMIX-

TURE, RUBIAS and AssignPOP, BONE also allows inspection of which baseline individ-

uals are the most probable close relatives of a given mixture individual by inspecting the

nodes of the network (see the supplementary Fig “WTANetworkEstimate”). We leave a

thorough investigation of this property for future studies.

We have provided example data sets and open source code for users to apply BONE in
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practice. BONE provides a methodological starting point and a framework which is a new

addition and useful alternative to toolbox of existing genetic assignment techniques.
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