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ABSTRACT. We introduce twisted matrix factorizations for quantum complete intersec-
tions of codimension two. For such an algebra, we show that in a given dimension,
almost all the indecomposable modules with bounded minimal projective resolutions
correspond to such factorizations.

1. INTRODUCTION

In this paper, we study twisted matrix factorizations for four dimensional quantum
complete intersections of the form

A = k〈x, y〉/(x2, x y −q y x, y2),

where k is a field and q is a nonzero element of k. Namely, for the algebra

B = k〈x, y〉/(x2, y2, x y x, y x y),

we consider the homotopy category HFact
(
F (B),Sν,ηw

)
of twisted matrix factoriza-

tions of the element w = x y−q y x, the twisting being with respect to the automorphism
ν defined by x 7→ −q−1x and y 7→ −q y . By [BJ2], this homotopy category is triangulated
in a natural way. It is related to the categories studied in [CCKM], whose twisted ma-
trix factorizations are in some sense the complements of the ones we define. Namely,
in [CCKM] the factorizations are taken with respect to a regular element, whereas our
element w is actually a socle element in the algebra B . The resulting theories are quite
different.

Similarly to the classical commutative case, reduction modulo the element w in-
duces a triangle functor

HFact
(
F (B),Sν,ηw

)−→ Kac (F (A))

from this homotopy category of twisted matrix factorizations over B into the homotopy
category of acyclic complexes of free modules over the quantum complete intersection
A. The latter is equivalent to the stable module category mod A, and so we obtain a
triangle functor

HFact
(
F (B),Sν,ηw

)−→ mod A.

The image of a twisted matrix factorization is an A-module with a “twisted two-
periodic” minimal free resolution. In particular, its minimal free resolution is bounded.
In our main result, we show that when the field k is algebraically closed, then almost
all the indecomposable A-modules with bounded minimal projective resolutions are
obtained this way, in the following sense. In a given dimension, all except two of the
A-modules with such projective resolutions belong to the image of the triangle functor,
and thus correspond to twisted matrix factorizations over B .
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2. PRELIMINARIES

In this section, we recall some of the theory from [BJ2]. Fix an additive category C ,
an additive automorphism S : C →C , and a natural transformation 1C → S with

ηSM = SηM

for all M ∈C . A (C ,S)-factorization of η is a sequence

M
f // N

g // SM

of objects and morphisms in C , satisfying

g ◦ f = ηM , (S f )◦ g = ηN .

We denote such a factorization by (M , N , f , g ). A morphism

θ : (M1, N1, f1, g1) → (M2, N2, f2, g2)

between factorizations is a pair θ = (ψ,φ) of morphisms in C , with ψ : M1 → M2 and
φ : N1 → N2, such that the diagram

M1
f1 //

ψ

��

N1
g1 //

φ
��

SM1

Sψ
��

M2
f2 // N2

g2 // SM2

commutes. Such a morphism is an isomorphism if both ψ and φ are isomorphisms in
C .

The collection of all (C ,S)-factorizations of η, together with the morphisms
just described, becomes an additive category Fact(C ,S,η). Its homotopy category
HFact(C ,S,η) has the same objects, but the morphisms are the homotopy equivalence
classes [θ] of morphisms θ in Fact(C ,S,η). Here, the notion of homotopy is the standard
one. Namely, two morphisms

θ = (ψ,φ) : (M1, N1, f1, g1) → (M2, N2, f2, g2)

θ′ = (ψ′,φ′) : (M1, N1, f1, g1) → (M2, N2, f2, g2)

in Fact(C ,S,η) are homotopic if there exist diagonal morphisms

M1
f1 //

ψ′ψ

��

N1
g1 //

φ′φ

��

s

xx

SM1

Sψ′Sψ

��

t

xx
M2

f2 // N2
g2 // SM2

satisfying

ψ−ψ′ = s ◦ f1 + (S−1g2)◦ (S−1t )

φ−φ′ = t ◦ g1 + f2 ◦ s.

Homotopies are compatible with all the operations in Fact(C ,S,η), thus the homotopy
category HFact(C ,S,η) is also additive.

Given a (C ,S)-factorization (M , N , f , g ) of η, we obtain a new factorization
(N ,SM , g ,S f ) by rotating to the left. The suspension Σ(M , N , f , g ) of (M , N , f , g ) is this
new factorization with a sign change on the maps, i.e. Σ(M , N , f , g ) = (N ,SM ,−g ,−S f ):

(M , N , f , g ) : M
f // N

g // SM

Σ(M , N , f , g ) : N
−g // SM

−S f // SN
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This assignment induces an additive automorphism Σ on HFact(C ,S,η). Next, consider
a morphism θ

M1
f1 //

ψ

��

N1
g1 //

φ
��

SM1

Sψ
��

M2
f2 // N2

g2 // SM2

of (C ,S)-factorizations of η. Its mapping cone Cθ is the (C ,S)-factorization

N1 ⊕M2

(−g1 0
φ f2

)
// SM1 ⊕N2

(−S f1 0
Sψ g2

)
// SN1 ⊕SM2

of η. There are natural morphisms

iθ : (M2, N2, f2, g2) →Cθ, πθ : Cθ →Σ(M1, N1, f1, g1)

in Fact(C ,S,η), and these are used to endow the suspended category
(
HFact(C ,S,η),Σ

)
with the structure of a triangulated category. Namely, given a morphism

[θ] : (M1, N1, f1, g1) → (M2, N2, f2, g2)

in HFact(C ,S,η), we declare the triangle

(M1, N1, f1, g1)
[θ] // (M2, N2, f2, g2)

[iθ] // Cθ

[πθ] // Σ(M1, N1, f1, g1)

in HFact(C ,S,η) to be a standard triangle.

Theorem 2.1. [BJ2] Let (C ,S) be a suspended additive category, η a central element, and
∆ the collection of all triangles in HFact(C ,S,η) isomorphic to a standard triangle. Then(
HFact(C ,S,η),Σ,∆

)
is a triangulated category.

3. MATRIX FACTORIZATIONS

In this section, we establish some general theory of generalized matrix factorizations
over arbitrary rings, not necessarily commutative. We shall work with the following
setup.

Notation. Let B be a ring, w ∈ B a central element, and denote the factor ring B/(w) by
A. Furthermore, let ν : B → B be an automorphism which fixes the elements of the ideal
(w), that is, ν(bw) = bw for all b ∈ B .

Note that the automorphism ν fixes the element w , and that it induces an automor-
phism on A: we denote also this by ν. Now for every left B-module M , consider the
twisted module νM , on which B acts via ν, i.e. b ·m = ν(b)m for b ∈ B and m ∈ νM . The
assignment M 7→ νM induces an additive functor Sν : ModB → ModB on the category
of left B-modules, a functor which acts as the identity on morphisms. This functor is
an automorphism with inverse Sν−1 . Now for every M ∈ ModB , let ηM : M → SνM be
the multiplication map given by m 7→ wm. Since ν(b)w = ν(bw) = bw for all b ∈ B , the
equalities

ηM (bm) = wbm = ν(b)wm = b · (wm) = b ·ηM (m)

hold, showing that the map ηM is B-linear. Moreover, for every B-linear map M
f−→ N in

ModB the diagram

M
f //

ηM

��

N

ηN

��
SνM

f =Sν f // SνN

commutes, hence the collection

ηw = {ηM | M ∈ ModB}
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forms a natural transformation ηw : 1ModB → Sν. It is easy to see that the coordinate
maps commute with the functor Sν, that is, ηSνM = SνηM for all M ∈ ModB : this follows
from the fact that ν(w) = w . Hence the natural transformation ηw is a central element
in the suspended additive category (ModB ,Sν).

We now follow the setup from Section 2. Consider the homotopy category
HFact

(
ModB ,Sν,ηw

)
of (ModB ,Sν)-factorizations of ηw , which is triangulated (in

terms of standard triangles) by Theorem 2.1. By definition, its elements are sequences

M
f // N

g //
νM

of left B-modules and B-linear maps, with

g ◦ f = ηM , f ◦ g = ηN .

This is a noncommutative version of a category of matrix factorizations, and related to
the categories studied in [CCKM], one important difference being that our element w is
not regular in B . The following result shows that reduction modulo w induces a triangle
functor from HFact

(
ModB ,Sν,ηw

)
to the homotopy category K(Mod A) of complexes of

left A-modules.

Proposition 3.1. Let B be a ring, w ∈ B a central element, put B/(w) = A, and let
ν : B → B be an automorphism with ν(bw) = bw for all b ∈ B. Furthermore, let
Sν : ModB → ModB be the twisting functor given by ν, and ηw : 1ModB → Sν the natural
transformation with coordinates ηM : M → νM given by ηM (m) = wm. Then reduction
modulo w induces a triangle functor

HFact
(
ModB ,Sν,ηw

)−→ K (Mod A) .

The image of a factorization (M , N , f , g ) is the complex

· · · //
νn−1 (N /w N )

g //
νn (M/w M)

f //
νn (N /w N )

g //
νn+1 (M/w M) // · · ·

of left A-modules and maps, with M/w M in degree zero.

Proof. Let (M , N , f , g ) be a (ModB ,Sν)-factorization of ηw . Reduction modulo w gives
a sequence

M/w M
f // N /w N

g //
ν(M/w M)

of left A-modules and maps. Since g ◦ f = w ·1M and f ◦ g = w ·1N , the sequence

· · · //
νn−1 (N /w N )

g //
νn (M/w M)

f //
νn (N /w N )

g //
νn+1 (M/w M) // · · ·

is a complex. A homotopy between morphisms in Fact
(
Mod M ,Sν,ηw

)
becomes a ho-

motopy between complexes after reduction, hence we obtain an additive functor

T : HFact
(
ModB ,Sν,ηw

)−→ K(Mod A),

to the homotopy category of complexes of left A-modules. The triangulated structures
on the two categories HFact

(
ModB ,Sν,ηw

)
and K(Mod A) are analogous: the distin-

guished triangles are those that are isomorphic to the standard triangles. Consequently,
the functor T is a triangle functor. �

In the next section, we shall mainly be dealing with free modules. The maps are
then given by matrices, and the factorizations are noncommutative versions of classical
matrix factorizations.

Let F (B) be the category of finitely generated free left B-modules. The twist νF
of a free module F is again a free module, hence the twisting functor Sν : ModB →
ModB restricts to a functor Sν : F (B) → F (B). Similarly, the natural transformation
ηw : 1ModB → Sν restricts to a transformation ηw : 1F (B) → Sν, which becomes a central
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element in the suspended additive category (F (B),Sν). As in Proposition 3.1, reduction
modulo w induces a triangle functor HFact

(
F (B),Sν,ηw

) → K (F (A)). We record this
in the following result.

Proposition 3.2. Let B be a ring, w ∈ B a central element, put B/(w) = A, and let ν : B →
B be an automorphism with ν(bw) = bw for all b ∈ B. Furthermore, let Sν : F (B) →
F (B) be the twisting functor given by ν, and ηw : 1F (B) → Sν the natural transformation
with coordinates ηF : F → νF given by ηF (m) = wm. Then reduction modulo w induces
a triangle functor HFact

(
F (B),Sν,ηw

)→ K(F (A)).

4. QUANTUM COMPLETE INTERSECTIONS

In this section, we apply the theory from the previous section to a class of quantum
complete intersections. We fix the following notation throughout.

Notation. Let k be a field and B the noncommutative k-algebra

B = k〈x, y〉/(x2, y2, x y x, y x y).

Furthermore, let q be a nonzero element in k, w the quantum commutator x y −q y x in
B , and A the algebra B/(w). Thus A is the four dimensional quantum complete inter-
section

A = k〈x, y〉/(x2, x y −q y x, y2).

Our aim is to show that when k is algebraically closed, then in a given dimension,
almost all - in fact, all except two - of the finitely generated indecomposable left A-
modules with bounded-rank minimal free resolutions are obtained from twisted matrix
factorizations of the element w over B . By this, we mean matrix factorizations with
respect to a functor S which is given by twisting with an algebra automorphism. The
twisting automorphism ν : B → B of interest acts on the generators by

ν(x) =−q−1x, ν(y) =−q y,

and is closely related to the Nakayama automorphism on A. Namely, by [Ber, Lemma
3.1], the latter maps x to q−1x and y to q y . Note that ν(bw) = bw for all b ∈ B , hence we
are in the setting from Section 3.

Remark 4.1. The automorphism ν we have just defined is in some sense the only nat-
ural one when studying twisted matrix factorizations over B , at least among automor-
phisms µ : B → B given by µ(x) =αx and µ(y) =α−1 y for some α ∈ k. Namely, suppose
that

B
f // B

g //
µB

is a rank one factorization in HFact
(
F (B),Sµ,ηw

)
. Then the maps are given by right

multiplication with elements in B , and these are of the form c0+c1x+c2 y+c4x y+c5 y x.
Such an element is invertible in B if and only if c0 is nonzero, and then the factorization
is zero in the homotopy category HFact

(
F (B),Sµ,ηw

)
. Moreover, the socle elements x y

and y x play no role in the factorization. Consequently, we may assume that the maps f
and g are given by right multiplication with elements β1x +β2 y and γ1x +γ2 y , respec-
tively. The compositions g ◦ f and f ◦ g both equal ηB , which is given by multiplication
with w . It is not hard to see that this forces the scalars β1,β2,γ1 and γ2 to be nonzero,
and that α must be −q−1. Thus µ= ν.

The canonical way of producing an A-module from a twisted matrix factorization
over B is to reduce modulo w and then take the image of one of the maps. We shall
now show that this assignment is functorial. By Proposition 3.2, reduction modulo w
induces a triangle functor

HFact
(
F (B),Sν,ηw

)−→ K (F (A)) .
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The following result shows that in our present setting, this functor maps the matrix fac-
torizations, that is, the (F (B),Sν)-factorizations of ηw , to acyclic complexes of free A-
modules.

Theorem 4.2. Let k be a field and B the k-algebra k〈x, y〉/(x2, y2, x y x, y x y). Take an
element 0 6= q ∈ k, put w = x y −q y x, and consider the quantum complete intersection

A = B/(w) ' k〈x, y〉/(x2, x y −q y x, y2).

Furthermore, let ν be the automorphism on B defined by ν(x) =−q−1x and ν(y) =−q y.
Finally, let F (B) be the category of finitely generated free left B-modules, Sν : F (B) →
F (B) the twisting functor given by ν, and ηw : 1F (B) → Sν the natural transformation
with coordinates ηF : F → νF given by ηF (m) = wm. Then reduction modulo w induces
a triangle functor

HFact
(
F (B),Sν,ηw

)−→ Kac (F (A)) ,

where Kac(F (A)) is the homotopy category of acyclic complexes of finitely generated free
left A-modules.

Proof. Consider a factorization

F
f // G

g //
νF

in HFact
(
F (B),Sν,ηw

)
. Since g ◦ f = ηF and f ◦g = ηG , the free B-modules F and G are

of the same rank, say r . We may therefore assume that F = G = B r , and that the maps
are given by multiplying the standard generators of B r (that is, the row vectors with a
single nonzero entry, the unit of B) on the right by r ×r matrices C = (ci j ) and D = (di j ).
Thus for arbitrary elements the maps are given by

f : u 7→ uC , g : u′ 7→ ν(u′)D.

Here ν(u′) is the row vector in B r obtained from u′ by applying the automorphism ν to
all its entries. Note that we may assume that none of the matrices contain a unit: such
an entry would imply that the factorization (F,G , f , g ) has a direct summand which is
zero in the homotopy category HFact

(
F (B),Sν,ηw

)
.

Now take the standard generators b1, . . . ,br of B r . Applying g ◦ f to these gives

g ◦ f (bi ) = g (bi C )

= g

(
r∑

j=1
ci j b j

)

=
r∑

j=1
ν(ci j )b j D

=
r∑

j=1
ν(ci j )

(
r∑

k=1
d j k bk

)

=
r∑

k=1

(
r∑

j=1
ν(ci j )d j k

)
bk

= biν(C )D,

where ν(C ) is the matrix obtained from C by applying the automorphism ν to all its
entries. Since the composite map g ◦ f is given by multiplying the standard generators
on the right by the matrix ν(C )D , for an arbitrary element it is given by

g ◦ f : u 7→ ν(u)ν(C )D.

Similarly, the matrix for the composite map Sν( f )◦ g is DC , so that for an arbitrary ele-
ment it is given by

Sν( f )◦ g : u′ 7→ ν(u′)DC .



MATRIX FACTORIZATIONS FOR QUANTUM COMPLETE INTERSECTIONS 7

Now look at the matrices C and D . Since none of their entries are units and the algebra
B has a basis {1, x, y, x y, y x}, we may decompose the matrices as

C = xC1 + yC2 +x yC3 + y xC4,

D = xD1 + yD2 +x yD3 + y xD4,

where the Ci and Di are r × r matrices over k. This gives

ν(C )D = (−q−1xC1 −q yC2 +x yC3 + y xC4
)(

xD1 + yD2 +x yD3 + y xD4
)

= −q−1x yC1D2 −q y xC2D1,

which must equal x y I − q y xI , since g ◦ f = ηF and the matrix for this map is (x y −
q y x)I , where I is the r ×r identlty matrix. Consequently, the matrices C1,C2,D1,D2 are
invertible.

Let u ∈G be an element in Ker g . We may write u as u = u0+xu1+yu2+x yu3+y xu4,
where the ui are row vectors in kr . Then

g (u) = ν(u)D

= (
u0 −q−1xu1 −q yu2 +x yu3 + y xu4

)(
xD1 + yD2 +x yD3 + y xD4

)
= xu0D1 + yu0D2 +x yu0D3 + y xu0D4 −q−1x yu1D2 −q y xu2D1,

and this is zero in νF . Since every element in νF can be written uniquely as a sum u′
0 +

xu′
1 + yu′

2 + x yu′
3 + y xu′

4, where the u′
i are row vectors in kr , we see immediately that

u0D1 = 0. But D1 is invertible, hence u0 = 0, and so

0 =−q−1x yu1D2 −q y xu2D1

in νF . This forces u1 and u2 to vanish as well (u1 because the matrix D2 is also in-
vertible), giving u = x yu3 + y xu4. But then u must belong to Im f . Namely, since the
matrices C1 and C2 are of rank r , there are row vectors u′

1,u′
2 ∈ kr with u′

1C1 = u4 and
u′

2C2 = u3, giving

f (yu′
1 +xu′

2) = (
yu′

1 +xu′
2

)(
xC1 + yC2 +x yC3 + y xC4

)
= y xu′

1C1 +x yu′
2C2

= y xu4 +x yu3

= u.

This shows that Ker g ⊆ Im f .
Now take an element u ∈G , and suppose that u+wG belongs to Ker g in the reduced

sequence

F /wF
f // G/wG

g //
ν(F /wF )

Then g (u) = wu = g◦ f (u′) for some u′ ∈ F , giving g (u− f (u′)) = 0. We showed above that
Ker g ⊆ Im f , hence u must belong to Im f . It follows that the element u +wG belongs
to Im f , so the reduced sequence is exact. Similarly, the sequence

· · · //
νn−1 (G/wG)

g //
νn (F /wF )

f //
νn (G/wG)

g //
νn+1 (F /wF ) // · · ·

is acyclic, hence the image of the functor is contained in Kac(F (A)). �

The following will be useful later.

Remark 4.3. As shown in the above proof, the x and y “components” of the two maps
in a nonzero factorization in HFact

(
F (B),Sν,ηw

)
are invertible matrices. Namely, let

F
f // G

g //
νF
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be a nonzero rank r factorization, with f and g defined in terms of r ×r matrices C and
D , respectively. These matrices decompose as

C = xC1 + yC2 +x yC3 + y xC4,

D = xD1 + yD2 +x yD3 + y xD4,

where the Ci and Di are r × r matrices over k. The four matrices C1,C2,D1,D2 were
shown to be invertible.

Conversely, let C1 and C2 be invertible r × r matrices over k, and consider the B-
linear maps f : B r → B r and g : B r → νB r defined in terms of the matrices xC1 + yC2

and xC−1
2 −q yC−1

1 , respectively. Then the matrix for the composition g ◦ f is

ν
(
xC1 + yC2

)(
xC−1

2 −q yC−1
1

)= (−q−1xC1 −q yC2
)(

xC−1
2 −q yC−1

1

)= w I ,

and for the composition Sν( f )◦ g it is(
xC−1

2 −q yC−1
1

)(
xC1 + yC2

)= w I .

Thus g ◦ f = ηB r = Sν( f )◦ g , and so

B r f // B r g //
νB r

is an element of HFact
(
F (B),Sν,ηw

)
.

In the commutative case, when the element one factors out is a non-zerodivisor in
the ring (and S is the identity), the triangle functor from the homotopy category of ma-
trix factorizations to the homotopy category of acyclic complexes over the factor ring is
always faithful, as shown in [BJ1, Proposition 3.3]. The following example shows that
this is not the case here.

Example. Consider the diagram

B
·(x+y) // B

·(x−q y) //
νB

As in the proof of Theorem 4.2, the composition of the two maps is given by

1 7→ ν(x + y)(x −q y) = (−q−1x −q y)(x −q y) = w.

Moreover, the composition of the two maps

B
·(x−q y) //

νB
Sν(·(x+y)) //

νB

is given by

1 7→ (x −q y)(x + y) = x y −q y x = w,

hence the top diagram is an object of Fact
(
F (B),Sν,ηw

)
. Now the diagram

B
·(x+y) //

0
��

B
·(x−q y) //

·w
��

νB

0
��

B
·(x+y) // B

·(x−q y) //
νB

commutes, and therefore represents a morphism in Fact
(
F (B),Sν,ηw

)
. It is easily seen

that this morphism is not nullhomotopic, and so it represents a nonzero morphism in
the homotopy category HFact

(
F (B),Sν,ηw

)
. However, this morphism trivially maps to

zero by the functor HFact
(
F (B),Sν,ηw

)→ Kac (F (A)).

Returning to the general theory, we now show that we can assign modules to twisted
matrix factorizations functorially. Namely, since A is a local selfinjective algebra, the
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homotopy category Kac(F (A)) of acyclic complexes of finitely generated free left A-
modules is equivalent to the stable module category mod A of finitely generated left
modules. The canonical equivalence

Kac(F (A)) −→ mod A

maps an acyclic complex to the image of its degree zero map. The following is therefore
an immediate corollary to Theorem 4.2.

Corollary 4.4. Let k be a field and B the k-algebra k〈x, y〉/(x2, y2, x y x, y x y). Take an
element 0 6= q ∈ k, put w = x y −q y x, and consider the quantum complete intersection

A = B/(w) ' k〈x, y〉/(x2, x y −q y x, y2).

Furthermore, let ν be the automorphism on B defined by ν(x) =−q−1x and ν(y) =−q y.
Finally, let F (B) be the category of finitely generated free left B-modules, Sν : F (B) →
F (B) the twisting functor given by ν, and ηw : 1F (B) → Sν the natural transformation
with coordinates ηF : F → νF given by ηF (m) = wm. Then reduction modulo w induces
a triangle functor

T : HFact
(
F (B),Sν,ηw

)−→ mod A,

where mod A is the stable module category of finitely generated left A-modules. The image

of a factorization (F,G , f , g ) in HFact
(
F (B),Sν,ηw

)
is the image of the map F /wF

f−→
G/wG.

As mentioned, we shall show that when k is algebraically closed, then in a given
dimension, almost all the finitely generated indecomposable left A-modules with
bounded minimal projective resolutions are obtained from twisted matrix factoriza-
tions of the element w over B . To do this, we use the classification of the indecom-
posable A modules. Recall first that the complexity of a finitely generated left A-module
M with minimal projective resolution

· · ·→Q2 →Q1 →Q0 → M → 0

is defined as

cxA M
def= inf{t ∈N∪ {0} | ∃a ∈R such that dimk Qn ≤ ant−1 for n À 0}.

The modules of complexity one are precisely the ones with bounded-rank minimal free
resolutions. In [BGMS], a minimal projective bimodule resolution

PA : · · ·→ P2 → P1 → P0 → A → 0

of A was constructed, with dimk Pn = 16(n +1). Now if M is a finitely generated left A-
module, then the complex PA ⊗A M is acyclic, and is therefore a projective resolution of
M . It may no longer be minimal, but its rate of growth is at most that of PA . Thus the
complexity of any A-module is at most two.

Note that if the parameter q is not a root of unity, then it was shown in [Sch, Propo-
sition 4.1] that there exist non-periodic A-modules of complexity one: the acyclic com-
plex

· · ·→ A
·(x+(−q)n+1 y)−−−−−−−−−−→ A

·(x+(−q)n y)−−−−−−−−→ A
·(x+(−q)n−1 y)−−−−−−−−−−→ A →···

gives rise to one class of such modules. However, if q is a root of unity, then by [Sch,
Proposition 4.1] again there are no such A-modules: in this case, the indecomposable
modules of complexity one are precisely the periodic ones.

The classification of the indecomposable A-modules goes back to Kronecker. What
follows is based on [Sch, Section 4], which again is based on [Baš, Co1, Co2, HeR]. It
classifies the modules according to their complexities.



10 PETTER ANDREAS BERGH AND KARIN ERDMANN

Fact 4.5. (1) Since complexity zero is the same as finite projective dimension, there is
only one such indecomposable, namely A itself. The modules of complexity two, that is,
the ones having unbounded (but linearly growing) minimal projective resolutions, are
the cokernels of the maps in the minimal complete resolution of the module k over the
algebra k[x, y](x2, y2). These modules are all of odd dimension over k. To see this, take
any indecomposable A-module which is not projective. As A is injective, such a module
is annihilated by x y and hence it is a module for the algebra A/(x y), which is indepen-
dent of q . As described in [Sch], for each n ≥ 1 there are precisely two indecomposable
modules of dimension 2n+1 (and if n = 0, just k). Moreover, it is shown that when work-
ing with the algebra k[x, y]/(x2, y2), all these modules are kernels in a minimal complete
resolution of k. When working with the algebra A, the same holds. One only needs to
check that the syzygy with respect to A of an odd-dimensional indecomposable module
is the same as the syzygy with respect to k[x, y]/(x2, y2).

(2) The modules we are interested in are the ones of complexity one, that is, the ones
with bounded-rank minimal free resolutions. These are all of even dimension over k,
and in what follows we assume that k is algebraically closed. For each n ≥ 1, the inde-
composable A-modules of dimension 2n are

{Cn(λ) |λ ∈ k ∪ {∞}},

and these are described as follows. For λ ∈ k, denote by Jn(λ) the n ×n Jordan matrix

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


with eigenvalue λ. The underlying vector space of Cn(λ) is k2n , with the action of x and
y given by the 2n ×2n block matrices

x 7→
(

0 Jn(λ)
0 0

)
y 7→

(
0 In

0 0

)
where In is the n×n identity matrix. The module Cn(∞) has the same underlying vector
space, with the action of x and y given by

x 7→
(

0 In

0 0

)
y 7→

(
0 Jn(0)
0 0

)
Note that every one of these modules has n independent generators.

We are now ready to state and prove the main result.

Theorem 4.6. Let k be an algebraically closed field, q ∈ k a nonzero element, and A the
quantum complete intersection

A = k〈x, y〉/(x2, x y −q y x, y2).

Furthermore, let B , w,ν and the triangle functor

T : HFact
(
F (B),Sν,ηw

)−→ mod A

be as in Corollary 4.4, and
{Cn(λ) | n ∈N,λ ∈ k ∪ {∞}}
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the indecomposable left A-modules with bounded projective resolutions. Then Cn(λ)
is in the image of T if and only if λ ∉ {0,∞}. Thus, for 0 6= λ ∈ k there is a factoriza-
tion (F,G , f , g ) ∈ HFact

(
F (B),Sν,ηw

)
with Cn(λ) isomorphic to the image of the map

F /wF
f−→G/wG, whereas for Cn(0) and Cn(∞) there are no such factorizations.

Proof. We start by proving the following. Let

B n f // B n g //
νB n

be a rank n factorization in HFact
(
F (B),Sν,ηw

)
, and suppose that the matrix for f is

of the form xI + yC + x yC ′+ y xC ′′, with C invertible (the matrices I ,C ,C ′,C ′′ are n ×n

matrices over k, with I the identity matrix). We claim that the image of the map F /wF
f−→

G/wG is isomorphic to the left A-module with underlying vector space k2n , and with the
action of x and y given by

x 7→
(

0 qC
0 0

)
y 7→

(
0 I
0 0

)
To see this, note that the image of the map f is generated as a B-module by the n

rows ζ1, . . . ,ζn of the matrix xI + yC + x yC ′+ y xC ′′. We describe the action of x and y
on these generators, in terms of the standard generators b1, . . . ,bn of B n , where bi is the
row vector with a single nonzero entry, the unit of B . First, since y2 = 0 = y x y in B , we
see that y

(
xI + yC +x yC ′+ y xC ′′)= y xI , and so

yζi = y xbi .

Similarly, since x2 = 0 = x y x, we obtain x
(
xI + yC +x yC ′+ y xC ′′)= x yC , hence

xζi = x y
n∑

j=1
ci j b j ,

where C = (ci j ). Rewriting x y as q y x +w , we obtain

xζi = (q y x +w)
n∑

j=1
ci j b j

=
n∑

j=1
qci j (y xb j )+w

n∑
j=1

ci j b j

=
n∑

j=1
qci j (yζ j )+w

n∑
j=1

ci j b j ,

where we have used the equality yζ j = y xb j from above. All this shows that when we

factor out w , then the image of the map f is spanned as a vector space by the cosets of

ζ1, . . . ,ζn , yζ1, . . . , yζn .

The equality yζi = y xbi gives x(yζi ) = 0 = y(yζi , and using it once more we see that
the 2n cosets are linearly independent. The action of x and y on the vector space they
generate are given by the two matrices, hence the claim follows.

Having proved the claim, let λ be a nonzero element in k. Then the n ×n Jordan
matrix Jn(λ) is invertible, and so by Remark 4.3 there exists a factorization

B n f // B n g //
νB n
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in HFact
(
F (B),Sν,ηw

)
with xI + yq−1 Jn(λ) as the matrix for the map f . By the claim

above, the image of the map f has underllying vector space k2n , and with the action of
x and y given by

x 7→
(

0 Jn(λ)
0 0

)
y 7→

(
0 I
0 0

)
This is precisely the A-module Cn(λ).

Finally, we show that the A-modules Cn(0) and Cn(∞) cannot be obtained from
twisted matrix factorizations over B , for any n. Namely, take any nonzero rank n fac-
torization

F
f // G

g //
νF

in HFact
(
F (B),Sν,ηw

)
. By Remark 4.3, the matrix for f is of the form xC1+yC2+x yC3+

y xC4, where the Ci are n ×n matrices over k, and with C1 and C2 invertible. Consider
the factorization (F,G ,C−1

1 f , gC1), in which the matrix for the map C−1
1 f is that for f

multiplied on the left with C−1
1 , whereas the matrix for gC1 is that for g multiplied on

the right with C1. The diagram

F
f //

·C1

��

G
g //

·I
��

νF

·C1

��
F

C−1
1 f
// G

gC1 //
νF

shows that the two factorizations are isomorphic in HFact
(
F (B),Sν,ηw

)
, and they are

therefore mapped by the functor T to isomorphic A-modules. The matrix for the map
C−1

1 f is x+yC−1
1 C2+x yC−1

1 C3+y xC−1
1 C4, hence from the claim we proved the image of

these factorizations under T is isomorphic to the following A-module: the underlying
vector space is k2n , and the action of x and y are given by

x 7→
(

0 qC−1
1 C2(λ)

0 0

)
y 7→

(
0 I
0 0

)
Both these matrices have rank n. However, from Fact 4.5 we see that for Cn(0), the matrix
that defines the action of x has rank n −1, as does the matrix that defines the action of
y on Cn(∞). Namely, these actions are given by 2n × 2n block matrices with Jn(0) as
the nonzero n ×n block. This shows that the A-modules Cn(0) and Cn(∞) cannot be
obtained from twisted matrix factorizations over B . �
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