1	Exchange-enhanced Ultrastrong Magnon-Magnon Coupling in a
2	Compensated Ferrimagnet
3	Lukas Liensberger, 1,2,* Akash deep Kamra, 3,† Hannes Maier-Flaig, 1,2
4	Stephan Geprägs, ¹ Andreas Erb, ¹ Sebastian T. B. Goennenwein, ⁴
5	Rudolf Gross, 1,2,5,6 Wolfgang Belzig, 7 Hans Huebl, 1,2,5,6 and Mathias Weiler 1,2,‡
6	$^{1}Walther-Meißner-Institut, Bayerische Akademie$
7	der Wissenschaften, 85748 Garching, Germany
8	² Physik-Department, Technische Universität München, 85748 Garching, Germany
9	³ Center for Quantum Spintronics, Department of Physics,
10	Norwegian University of Science and Technology, 7491 Trondheim, Norway
11	⁴ Institut für Festkörper- und Materialphysik,
12	Technische Universität Dresden, 01062 Dresden, Germany
13	⁵ Nanosystems Initiative Munich, 80799 Munich, Germany
14	⁶ Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
15	⁷ Department of Physics, University of Konstanz, 78457 Konstanz, Germany
16	(Dated: July 15, 2019)

Abstract

We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and counterclockwise magnon modes. The magnonmagnon coupling strength reaches almost 40% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed mode-coupling as arising from the broken rotational symmetry due to a weak magnetocrystalline anisotropy. The effect of this anisotropy is exchange-enhanced around the ferrimagnetic compensation point. The strong and ultrastrong interaction of light and matter is foundational for circuit quantum electrodynamics [1–3]. The realizations of strong spin-photon [4–6] and magnonphoton [7–12] coupling have established magnetic systems as viable platforms for frequency up-conversion [13, 14] and quantum state storage [15]. Antiferromagnets and ferrimagnets further host multiple magnon modes. Their coupling allows for coherent control and engineering of spin dynamics for applications in magnonics [16, 17] and antiferromagnetic spintronics [18, 19].

Recently, it has been shown [20–22] that the weak interlayer exchange interaction between two magnetic materials can cause magnon-magnon coupling. However, the much stronger intrinsic exchange has not yet been leveraged for coupling phenomena. While the THz-frequency dynamics in antiferromagnets is challenging to address experimentally [23], the sublattice magnetizations in compensated ferrimagnets can be tuned to achieve GHzprequency quasi-antiferromagnetic dynamics. Here, we report the experimental observation of ultrastrong exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet with the coupling rate reaching up to 37% of the characteristic magnon frequency. We furthermore demonstrate that the coupling strength can be continuously tuned from the ultrastrong to the weak regime.

We investigate spin dynamics, or equivalently the magnon modes, in a compensated, 34 ³⁵ effectively two-sublattice ferrimagnet in the collinear state. Around its compensation tem-³⁶ perature, this system can be viewed as a "quasi-antiferromagnet" due to its nearly identical $_{37}$ sublattice magnetizations $M_{\rm A} \gtrsim M_{\rm B}$. Figure 1 schematically depicts the typical spatially ³⁸ uniform spin dynamics eigenmodes of the system [25]. Within the classical description, these ³⁹ become clockwise (cw) and counterclockwise (ccw) precessing modes which correspond to 40 spin-down and spin-up magnons, respectively, in the quantum picture. The key physics ⁴¹ underlying our experiments is the tunable exchange-enhanced coupling, and the concomi-⁴² tant hybridization, between theses two modes. The essential ingredients - mode coupling 43 and exchange-enhancement - are both intuitively understood within the quantum picture 44 as follows. First, due to their opposite spins, a spin-up magnon can only be coupled to 45 its spin-down counterpart by a mechanism that violates the conservation of spin along the ⁴⁶ sublattice magnetization, and thus magnon spin, direction [24]. Since angular momentum 47 conservation is a consequence of rotational invariance or isotropy, an anisotropy about the ⁴⁸ magnon spin axis provides such a coupling mechanism. Achieving the equilibrium sublattice

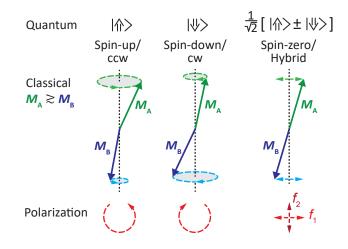


FIG. 1. Classical and quantum representations of the magnetization dynamics in a two-sublattice compensated ferrimagnet. The eigenmodes of the compensated ferrimagnet close to its compensation temperature are similar to that of an antiferromagnet since the sublattice magnetizations are almost identical (we choose $M_A \gtrsim M_B$). In the quantum picture, the classical modes with counterclockwise (ccw) and clockwise-precession (cw) are identified as spin-up and spin-down magnons. The hybridized modes with linear polarization correspond to spin-zero magnons [24]. The angles between the two sublattice magnetizations have been exaggerated for clarity.

⁴⁹ magnetizations, or equivalently the magnon spin axis, to lie along directions with varying de-⁵⁰ grees of local axial anisotropy allows to correspondingly vary the resultant magnon-magnon ⁵¹ coupling. This explains the nonzero mode-coupling along with its tunability. However, the ⁵² typically weak magnetocrystalline anisotropy may not be expected to yield observable effects ⁵³ and, therefore, has typically been disregarded. This is where exchange-enhancement in a ⁵⁴ quasi-antiferromagnet makes the crucial difference. The antiferromagnetic magnons, despite ⁵⁵ their unit net spin, are formed by large, nearly equal and opposite spins on the two sublat-⁵⁶ tices [26]. The anisotropy-mediated mode coupling results from, and is proportional to, this ⁵⁷ large sublattice spin instead of the unit net spin, and is therefore strongly amplified. This ⁵⁸ amplification effect is termed exchange-enhancement within the classical description [26–28].

In our corresponding experiments, we study the magnetization dynamics of a (111)o oriented single crystal $Gd_3Fe_5O_{12}$ (gadolinium iron garnet, GdIG) disk by broadband magnetic resonance (BMR) [29]. A schematic depiction of the setup is shown in Fig. 2(a). We use a vector network analyzer to record the complex transmission S_{21} as a function of ⁶³ the microwave frequency f and the external magnetic field H_0 applied in the (111)-plane. ⁶⁴ Our experiments are performed at T = 282 K, slightly below the ferrimagnetic compensation ⁶⁵ point $T_{\rm comp} = 288$ K, as determined by SQUID-magnetometry [30]. At this temperature, the ⁶⁶ resonance frequencies of the spin-up and spin-down modes are in the microwave frequency ⁶⁷ range.

In Fig. 2(b), we show the normalized background-corrected field-derivative of S_{21} [31] recorded at fixed magnetic field magnitude $\mu_0 H_0 = 0.58$ T applied at $\varphi = 90^\circ$. As discussed ro later, this situation corresponds to H_0 applied along an effectively axially symmetric (e.a.s.) r1 direction. By fitting the data to Eq. (S7) [30], we extract the resonance frequencies f_1 and f_2 f_2 of the two observed resonances, their difference $\Delta f_{\rm res}$ and their linewidths κ_1 and κ_2 . In Fig. 2(c) we show corresponding data and fits for $\varphi = 0^\circ$ and $\mu_0 H_0 = 0.65$ T, which r4 corresponds to H_0 applied along an axial symmetry broken (a.s.b.) direction, as explained r5 below. Again, two resonances are observed. In contrast to the data in Fig. 2(b), the r6 resonances are now clearly separated.

⁷⁷ We repeat these experiments for a range of magnetic field magnitudes H_0 applied along ⁷⁸ the two directions (e.a.s. and a.s.b.) of interest. The obtained resonance frequencies are ⁷⁹ shown as symbols in Figs. 2(d) and (e). In the e.a.s. case shown in Fig. 2(d), we clearly ⁸⁰ observe two resonance modes. The first one follows $\partial f_{\rm res}/\partial H_0 > 0$ and is the spin-up ⁸¹ mode f_{\uparrow} and the second resonance with $\partial f_{\rm res}/\partial H_0 < 0$ is the spin-down mode f_{\downarrow} . The ⁸² vertical dashed line corresponds to $\mu_0 H_0 = 0.58$ T where $\Delta f_{\rm res}$ is minimized and the data ⁸³ shown in Fig. 2(b) is obtained. The resonance frequencies are in excellent agreement with ⁸⁴ those obtained from numerical (see Supplemental Material [30]) and analytical (see below) ⁸⁵ solutions to the Landau-Lifshitz equation.

⁸⁶ When applying H_0 along the a.s.b. axis, we obtain the resonance frequencies shown in ⁸⁷ Fig. 2(e). Here, we observe a more complex evolution of the resonance frequencies for two ⁸⁸ reasons. First, for $\mu_0 H_0 \leq 0.4$ T, the equilibrium net magnetization is titled away from H_0 ⁸⁹ and varies with H_0 . Second, and crucially, f_{\uparrow} and f_{\downarrow} exhibit a pronounced avoided crossing. ⁹⁰ The dashed vertical line indicates the value of H_0 of minimal $\Delta f_{\rm res}$ (c.f. Fig. 2(e)).

We plot $\Delta f_{\rm res}$ and the half-width-at-half-maximum (HWHM) linewidths κ_{\uparrow} and κ_{\downarrow} as a function of the magnetic field H_0 in Figs. 2(f) and (g) for the e.a.s. and a.s.b. cases, respectively. We find the mutual coupling strength $g_c/2\pi = \min |\Delta f_{\rm res}/2| = 0.92 \,\text{GHz}$ for the e.a.s. case and $g_c/2\pi = 6.38 \,\text{GHz}$ for the a.s.b. configuration. In the former case,

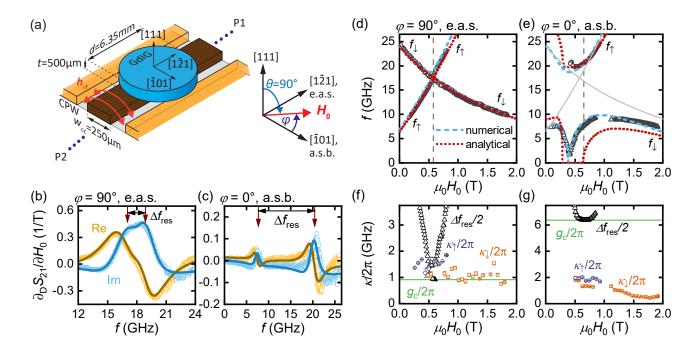


FIG. 2. (a) Schematic broadband ferromagnetic resonance (BMR) setup, with the GdIG disk on the coplanar waveguide (CPW). The angle φ defines the in-plane direction of the magnetic field H_0 . (b),(c) BMR spectra obtained for fixed magnetic field strengths applied along the (b) effectively axially symmetric (e.a.s.) direction in the (111)-plane at $\varphi = 90^{\circ}$ ($\mu_0 H_0 = 0.58$ T) and along the (c) axial symmetry broken (a.s.b.) axis $\varphi = 0^{\circ}$ ($\mu_0 H_0 = 0.65$ T) recorded at T = 282 K ($T_{\rm comp} = 288$ K). The solid lines are fits to Eq. (S7) [30]. The resonance frequencies are indicated by the red arrows and their difference is denoted as $\Delta f_{\rm res}$. (d),(e) Mode frequencies vs. applied magnetic field strength measured at T = 282 K where $M_{\rm Gd} \gtrsim M_{\rm Fe}$. Open circles and triangles denote measured resonance frequencies. The red dotted curves depict results of our analytical model and the blue dashed lines are obtained by numerical simulation. Along the e.a.s. direction $\varphi = 90^{\circ}$ (d), weak coupling is observed, whereas along the a.s.b. direction $\varphi = 0^{\circ}$ (e), we find ultrastrong coupling (see text). The solid gray lines in (e) indicate the uncoupled case taken from the analytical solution of panel (d). (f),(g) Linewidths $\kappa/2\pi$ of the spin-up κ_{\uparrow} and spin-down κ_{\downarrow} modes, and resonance frequency splitting $\Delta f_{\rm res}/2$ as a function of H_0 . The coupling strength $g_c/2\pi$ is given by the minimum of $\Delta f_{\rm res}/2$.

⁹⁵ $g_c \leq \kappa_{\uparrow}, \kappa_{\downarrow}$ (c.f. Fig. 2(f)). Thus, the system is in the weak to intermediate coupling regime. ⁹⁶ For the a.s.b. case, the linewidths κ are at least three times smaller than g_c . Hence the ⁹⁷ condition for strong coupling $g_c > \kappa_{\uparrow}, \kappa_{\downarrow}$ is clearly satisfied. Furthermore, the extracted ⁹⁸ coupling rate of $g_c/2\pi = 6.38$ GHz is comparable to the intrinsic excitation frequency $f_r =$ ⁹⁹ $(f_1 + f_2)/2 = 17.2$ GHz. The normalized coupling rate $\eta = g_c/(2\pi f_r)$ [8, 32] evaluates ¹⁰⁰ to $\eta = 0.37$. Consequently, we observe magnon-magnon hybridization in the ultrastrong ¹⁰¹ coupling regime [1]. Importantly, the measured g_c is the intrinsic coupling strength between ¹⁰² spin-up and spin-down magnons and is independent of geometrical factors, in particular, ¹⁰³ sample volume or filling factor. This is in stark contrast to the magnon-photon or cavity-¹⁰⁴ mediated magnon-magnon coupling typically observed in spin cavitronics [8, 33–37].

To demonstrate that the coupling is continuously tunable between the extreme cases 105 discussed so far, we rotated H_0 with fixed magnitude in the (111)-plane at T = 280 K. 106 The background corrected transmission parameter (see Supplemental Material [30]) as a 107 function of the angle φ is shown in Fig. 3(a) and (b) for $\mu_0 H_0 = 0.5 \text{ T}$ and $\mu_0 H_0 = 0.8 \text{ T}$, 108 respectively. These magnetic field magnitudes correspond to H_0 slightly below and above 109 the hybridization point at T = 280 K (see Fig. S2 [30]). For both H_0 values, we observe two 110 resonances for each value of φ , where the lower resonance frequency depends strongly on φ 111 while the upper one is nearly independent of φ . Overall, these results strongly indicate a 112 φ -dependent level repulsion that allows to continuously adjust the coupling strength. 113

To understand the coupling strength variation with φ , we analyze the cubic anisotropy 114 ¹¹⁵ landscape of our GdIG disk by plotting its magnetic free energy density F (c.f. Eq. (S9) [30]) ¹¹⁶ in Fig. 3(c). The applied field directions for the e.a.s. and a.s.b. cases are indicated by the two grey dots in Fig. 3(c). The sublattice magnetizations as well as the magnon spin axis are 117 collinear with the applied field in our considerations. As derived rigorously below, coupling 118 between the opposite-spin magnons is proportional to the degree of anisotropy in the free 119 energy about the magnon spin axis [24]. Moreover, since they represent small and symmetric 120 deviations of magnetization about the equilibrium configuration, the magnons can only sense 121 anisotropy variations that are local and averaged over antiparallel directions. Considering 122 the a.s.b. configuration first, if the magnetization deviates from equilibrium along the orange 123 (white) arrows, it experiences an increase (a decrease) in energy. Therefore, the free energy 124 ¹²⁵ change depends on the direction of deviation and the symmetry about the magnon spin axis ¹²⁶ in this configuration is clearly broken by anisotropy. This causes a non-zero mode-coupling

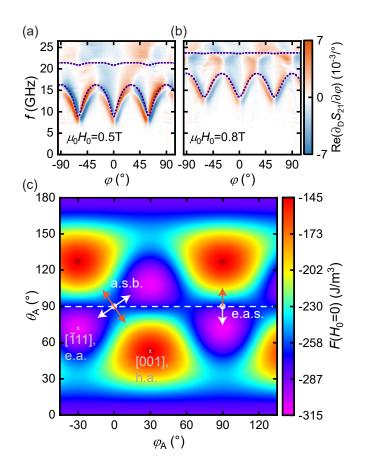


FIG. 3. Tunable coupling strength and anisotropy landscape. (a),(b) BMR-data obtained with fixed magnetic field magnitudes with (a) $\mu_0 H_0 = 0.5 \text{ T}$ (below the hybridization point) and (b) $\mu_0 H_0 = 0.8 \text{ T}$ (above the hybridization point) as a function of the H_0 -orientation φ in the (111)disk plane at T = 280 K. The blue dashed lines are the results from the numerical simulation. (c) Colormap of the free energy density F for $H_0 = 0$. The angles φ_A and θ_A denote the orientation of M_A , defined analogously to φ and θ in Fig. 2(a). The dashed horizontal line at $\theta_A = 90^{\circ}$ corresponds to the (111)-disk plane. The orange and white arrows at the e.a.s. ($\varphi_A = 90^{\circ}$) and a.s.b. ($\varphi_A = 0^{\circ}$) orientations point towards increasing and decreasing free energy density, respectively. The [001]-direction denotes a crystalline hard axis (h.a.) and [111] a crystalline easy axis (e.a.).

¹²⁷ in the a.s.b. configuration. In contrast, for the e.a.s. configuration, an averaging over the ¹²⁸ two antiparallel directions results in a nearly vanishing and direction-independent change in ¹²⁹ the free energy, thereby effectively maintaining axial symmetry. This is prominently seen ¹³⁰ when considering the direction collinear with the orange and white arrows, which nearly ¹³¹ cancel each other's effect on averaging. This configuration is thus named effectively axially ¹³² symmetric (e.a.s.). The corresponding degree of axial anisotropy, and thus mode-coupling, ¹³³ varies smoothly with φ between these two extreme cases.

The two key ingredients in the physics observed herein are (i) nonzero mode-coupling 134 ¹³⁵ arising from violation of spin conservation by an axial anisotropy [24], and (ii) a strong amplification of the otherwise weak coupling via an exchange-enhancement effect character-136 istic of (quasi-)antiferromagnetic magnons [26]. We now present a minimalistic, analytically 137 solvable model that brings out both these pillars underlying our experiments, and yields 138 results in good agreement with our data (Fig. 2(d) and (e)). To this end, we employ a 139 two-sublattice model, which corresponds to the net Fe- and Gd-sublattice in GdIG, within 140 the Landau-Lifshitz framework and macrospin approximation, treating anisotropies as uni-141 ¹⁴² axial to enable an analytical solution. In our experiments, both of the distinct anisotropy ¹⁴³ contributions considered here are provided by the cubic crystalline anisotropy of the mate-¹⁴⁴ rial. Parameterizing the intersublattice antiferromagnetic exchange by J (> 0) and uniaxial 145 anisotropies by K (> 0) and $K_{\rm a}$, the free energy density $F_{\rm m}$ is expressed in terms of the sublattice A and B magnetizations $M_{A,B}$, assumed spatially uniform, as

$$F_{\rm m} = -\mu_0 H_0 (M_{\rm Az} + M_{\rm Bz}) \mp K \left(M_{\rm Az}^2 + M_{\rm Bz}^2 \right) + K_{\rm a} \left(M_{\rm Ax}^2 + M_{\rm Bx}^2 \right) + J \boldsymbol{M}_{\rm A} \cdot \boldsymbol{M}_{\rm B}, \qquad (1)$$

¹⁴⁶ where the first term is the Zeeman contribution due to the applied field $H_0\hat{z}$. We further ¹⁴⁷ assume an appropriate hierarchy of interactions $J \gg K \gg |K_a|$, such that K_a terms do ¹⁴⁸ not influence the equilibrium configurations. The upper and lower signs in Eq. (1) above ¹⁴⁹ represent the cases of an applied field along easy and hard axes, respectively. The e.a.s. ¹⁵⁰ (a.s.b.) direction is magnetically easy (hard) [30]. The axial symmetry is broken by the term ¹⁵¹ proportional to K_a , with $K_a \approx 0$ for the e.a.s. case and $K_a \neq 0$ to the a.s.b. case. We have ¹⁵² choosen coordinate systems for treating the two configurations with the z-direction always ¹⁵³ along the applied field. The equilibrium configuration is obtained by minimizing Eq. (1) ¹⁵⁴ with respect to the sublattice magnetization directions (see Supplemental Material [30]).

The dynamics are captured by the Landau-Lifshitz equations for the two sublattices:

$$\frac{\partial \boldsymbol{M}_{\mathrm{A,B}}}{\partial t} = -|\gamma_{\mathrm{A,B}}| \left[\boldsymbol{M}_{\mathrm{A,B}} \times \left(-\frac{\partial F_{\mathrm{m}}}{\partial \boldsymbol{M}_{\mathrm{A,B}}} \right) \right], \qquad (2)$$

¹⁵⁵ where $\gamma_{A,B}$ are the respective sublattice gyromagnetic ratios, assumed negative. It is conve-¹⁵⁶ nient to employ a new primed coordinate system with equilibrium magnetizations collinear ¹⁵⁷ with \hat{z}' . The ensuing dynamical equations are linearized about the equilibrium configuration ¹⁵⁸ which, on switching to Fourier space (i.e. $M_{Ax'} = m_{Ax'}e^{i\omega t}$ and so on), lead to the coupled equations describing the eigenmodes expressed succinctly as a 4×4 matrix equation:

$$\left(\tilde{P}_0 + \tilde{P}_a\right)\tilde{m} = 0,\tag{3}$$

¹⁵⁹ where $\tilde{m}^{\intercal} = [m_{A+} \ m_{B+} \ m_{A-} \ m_{B-}]$ with $m_{A\pm} \equiv m_{Ax'} \pm im_{Ay'}$ and so on. The matrix \tilde{P}_0 ¹⁶⁰ is block diagonal in 2 × 2 sub-matrices and describes the uncoupled spin-up and spin-down ¹⁶¹ modes, distributed over both sublattices. The matrix \tilde{P}_a captures axial-symmetry-breaking ¹⁶² anisotropy effects, and provides the spin-nonconserving, off-diagonal terms that couple the ¹⁶³ two modes and underlie the hybridization physics at play. The detailed expressions for the ¹⁶⁴ matrices are provided in the Supplemental Material [30].

For applied fields along the easy-axis (e.a.s.), the equilibrium configuration is given by $M_A = M_{A0}\hat{z}$ and $M_B = -M_{B0}\hat{z}$, with $M_{A0,B0}$ the respective sublattice saturation magneti- $M_{A0} \geq M_{B0}$. For the case of a sufficiently small field applied along the hard axis (a.s.b.), the equilibrium orientation of M_A is orthogonal to the hard axis. With increasing field strength, M_A moves to align with the applied field. In the considered temperature and field range, M_B always remains essentially anticollinear to M_A [38]. The initial decrease field range, M_B always remains essentially anticollinear to M_A [38]. The initial decrease for the resonance mode with lower frequency (Fig. 2(e)) is associated with this evolution with the z-axis. Only the K_a anisotropy term breaks axial symmetry about the equilibrium magnetization direction (z-axis) and leads to off-diagonal terms in \tilde{P}_a , which couples the the two modes. The coupling-mediated frequency splitting $\Delta f_{\rm res}$, where uncoupled eigenmode

frequencies would cross, is evaluated employing Eq. (3) as:

$$2\pi\Delta f_{\rm res} = \omega_{\rm c} \sqrt{\frac{16JM_0^2}{J\left(M_{\rm A0} - M_{\rm B0}\right)^2 + F_{\rm eq}}},\tag{4}$$

where $\omega_{\rm c} \equiv |\gamma| |K_{\rm a}| M_0$ is the bare coupling rate, considering $\gamma_{\rm A} \approx \gamma_{\rm B} \equiv \gamma$ and $M_{\rm A0} \approx M_{\rm B0} \equiv 177 M_0$ near the compensation point. $F_{\rm eq}$, given by $16KM_0^2$ for H_0 along an easy axis, is an equivalent free energy density comparable to the anisotropy contribution, parametrized by K. The bare coupling rate is thus enhanced by a maximum value of $\sqrt{J/K}$ at the compensation point yielding a greatly enlarged coupling. Hereby a small coupling of $\omega_{\rm c} = 2\pi \cdot 160 \text{ MHz}$ originating from a weak cubic anisotropy present in GdIG is greatly enhanced as demonstrated by Eq. (4) and the analytical model results displayed in Fig. 2(e), quantitatively describing our experimental observations. The amplification of coupling from 160 MHz to ¹⁸⁴ several GHz is an exchange-enhancement effect [26–28, 39]. This (exchange-)enhancement is
¹⁸⁵ an embodiment of antiferromagnetic quantum fluctuations [26] predicted similarly to amplify
¹⁸⁶ magnon-mediated superconductivity [40].

¹⁸⁷ Our findings demonstrate that previously typically neglected details of the magnetocrys-¹⁸⁸ talline anisotropy can lead to giant effects on spin-dynamics if they have the appropriate sym-¹⁸⁹ metry and are exchange-enhanced. The ultrastrong and size-independent magnon-magnon ¹⁹⁰ coupling reported here opens exciting perspectives for studying ultrastrong coupling ef-¹⁹¹ fects in nanoscale devices and exploring quantum-mechanical coupling phenomena beyond ¹⁹² classical electrodynamics. The reported effect also enables the tuning and tailoring of quasi-¹⁹³ antiferromagnetic dynamics and magnons.

¹⁹⁴ Note added: During the preparation of the manuscript, we became aware of a related ¹⁹⁵ study showing magnon-magnon coupling in the canted antiferromagnet CrCl₃ [41].

Acknowledgments. – We thank A. Habel, K. Helm-Knapp, and K. Danielewicz for techni-¹⁹⁷ cal support. We gratefully acknowledge the financial support of the Deutsche Forschungsge-¹⁹⁸ meinschaft (DFG, German Research Foundation) via Germany's Excellence Strategy EXC-¹⁹⁹ 2111-390814868 (R.G. and H.H.) and the projects WE5386/4 and WE5386/5 (L.L. and ²⁰⁰ M.W.). A.K. acknowledges financial support from the Research Council of Norway through ²⁰¹ its Centers of Excellence funding scheme, project 262633, "QuSpin". W.B. was supported ²⁰² by the DFG through SFB 767 and thanks the Center of Excellence QuSpin by the Research ²⁰³ Council of Norway and Arne Brataas (NTNU Trondheim) for hospitality.

- ²⁰⁴ * Lukas.Liensberger@wmi.badw.de
- ²⁰⁵ [†] Akashdeep.Kamra@ntnu.no
- $_{206}$ [‡] Mathias.Weiler@wmi.badw.de
- ²⁰⁷ [1] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling
 ²⁰⁸ between light and matter, Nature Reviews Physics 1, 19 (2019).
- 209 [2] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-i. Karimoto, H. Nakano, W. J. Munro,
- 210 Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and K. Semba, Coherent cou-
- pling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature **478**,
- 212 221 (2011).

- [3] J. J. Viennot, M. C. Dartiailh, A. Cottet, and T. Kontos, Coherent coupling of a single spin
 to microwave cavity photons, Science 349, 408 (2015).
- [4] D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu,
 G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, High-Cooperativity
 Coupling of Electron-Spin Ensembles to Superconducting Cavities, Physical Review Letters
 105, 140501 (2010).
- ²¹⁹ [5] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auf-
- feves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Strong Coupling of a Spin Ensemble to a Superconducting Resonator, Physical Review Letters **105**, 140502 (2010).
- 223 [6] N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais,
- G. Scappucci, and L. M. K. Vandersypen, Strong spin-photon coupling in silicon, Science
 359, 1123 (2018).
- [7] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B.
 Goennenwein, High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator
 Hybrids, Physical Review Letters 111, 127003 (2013).
- [8] X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Physical Review Letters 113, 156401 (2014).
- [9] L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems, Physical Review Letters 114, 227201 (2015).
- ²³³ [10] T. Liu, X. Zhang, H. X. Tang, and M. E. Flatté, Optomagnonics in magnetic solids, Physical
 ²³⁴ Review B 94, 060405 (2016).
- ²³⁵ [11] S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, Coupled spin-light dynamics in cavity
 optomagnonics, Physical Review A 94, 033821 (2016).
- 237 [12] M. Harder and C.-M. Hu, Cavity Spintronics: An Early Review of Recent Progress in the
- 238 Study of MagnonPhoton Level Repulsion, in *Solid State Physics 69*, edited by R. E. Camley
- and R. L. Stamps (Academic Press, Cambridge, 2018) pp. 47–121.
- R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami,
 and Y. Nakamura, Bidirectional conversion between microwave and light via ferromagnetic
 magnons, Physical Review B 93, 174427 (2016).
- 243 [14] S. Klingler, H. Maier-Flaig, R. Gross, C.-M. Hu, H. Huebl, S. T. B. Goennenwein, and

- M. Weiler, Combined Brillouin light scattering and microwave absorption study of magnonphoton coupling in a split-ring resonator/YIG film system, Applied Physics Letters **109**, 072402 (2016).
- ²⁴⁷ [15] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura,
 ²⁴⁸ Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science
 ²⁴⁹ **349**, 405 (2015).
- ²⁵⁰ [16] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, Journal of Physics D: Applied
 ²⁵¹ Physics 43, 264001 (2010).
- ²⁵² [17] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Magnon spintronics, Nature
 ²⁵³ Physics 11, 453 (2015).
- ²⁵⁴ [18] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nature
- 255 Nanotechnology **11**, 231 (2016).
- ²⁵⁶ [19] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Antiferromagnetic
 ²⁵⁷ spintronics, Reviews of Modern Physics **90**, 015005 (2018).
- ²⁵⁸ [20] S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn, H. Maier-Flaig, M. Althammer, H. Huebl,
 ²⁵⁹ R. Gross, R. D. McMichael, M. D. Stiles, S. T. Goennenwein, and M. Weiler, Spin-Torque Excitation of Perpendicular Standing Spin Waves in Coupled YIG/Co Heterostructures, Physical
- 261 Review Letters **120**, 127201 (2018).
- ²⁶² [21] J. Chen, C. Liu, T. Liu, Y. Xiao, K. Xia, G. E. W. Bauer, M. Wu, and H. Yu, Strong
 ²⁶³ Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures,
 ²⁶⁴ Physical Review Letters **120**, 217202 (2018).
- ²⁶⁵ [22] H. Qin, S. J. Hämäläinen, and S. van Dijken, Exchange-torque-induced excitation of perpen dicular standing spin waves in nanometer-thick YIG films, Scientific Reports 8, 5755 (2018).
- 267 [23] T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig,
- A. Leitenstorfer, and R. Huber, Coherent terahertz control of antiferromagnetic spin waves,
 Nature Photonics 5, 31 (2011).
- ²⁷⁰ [24] A. Kamra, U. Agrawal, and W. Belzig, Noninteger-spin magnonic excitations in untextured
 ²⁷¹ magnets, Physical Review B 96, 020411(R) (2017).
- 272 [25] A. Gurevich and G. Melkov, Magnetization Oscillations and Waves (CRC Press, Taylor &
- ²⁷³ Francis Group, 1996) p. 445.
- 274 [26] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas, W. Belzig, and A. Sudbø, An-

- tiferromagnetic Magnons as Highly Squeezed Fock States underlying Quantum Correlations,
 arXiv:1904.04553 , 1 (2019).
- 277 [27] F. Keffer and C. Kittel, Theory of Antiferromagnetic Resonance, Physical Review 85, 329
 278 (1952).
- ²⁷⁹ [28] A. Kamra, R. E. Troncoso, W. Belzig, and A. Brataas, Gilbert damping phenomenology for
 two-sublattice magnets, Physical Review B 98, 184402 (2018).
- ²⁸¹ [29] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva,
 ²⁸² and J. P. Nibarger, Ferromagnetic resonance linewidth in metallic thin films: Comparison of
 ²⁸³ measurement methods, Journal of Applied Physics **99**, 093909 (2006).
- ²⁸⁴ [30] See Supplemental Material [url], which includes Refs. [42–52], for a detailed description of the
- ²⁸⁵ material, SQUID magnetometry measurements, additional BMR measurements at 280K and
- 294K, the used fitting routine and the numerical and analytical models as well as a qualitative
 discussion of the essential physics..
- ²⁸⁸ [31] H. Maier-Flaig, S. T. B. Goennenwein, R. Ohshima, M. Shiraishi, R. Gross, H. Huebl, and
 ²⁸⁹ M. Weiler, Note: Derivative divide, a method for the analysis of broadband ferromagnetic
- resonance in the frequency domain, Review of Scientific Instruments **89**, 076101 (2018).
- ²⁹¹ [32] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll,
- D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics
 in the ultrastrong-coupling regime, Nature Physics 6, 772 (2010).
- ²⁹⁴ [33] H. Maier-Flaig, M. Harder, S. Klingler, Z. Qiu, E. Saitoh, M. Weiler, S. Geprägs, R. Gross,
- S. T. B. Goennenwein, and H. Huebl, Tunable magnon-photon coupling in a compensating
 ferrimagnet from weak to strong coupling, Applied Physics Letters 110, 132401 (2017).
- ²⁹⁷ [34] M. Tavis and F. W. Cummings, Exact Solution for an N-Molecule-Radiation-Field Hamilto²⁹⁸ nian, Physical Review **170**, 379 (1968).
- ²⁹⁹ [35] C. Eichler, A. J. Sigillito, S. A. Lyon, and J. R. Petta, Electron Spin Resonance at the Level of
 ¹⁰⁴ Spins Using Low Impedance Superconducting Resonators, Physical Review Letters 118,
 ³⁰¹ 037701 (2017).
- ³⁰² [36] B. Zare Rameshti and G. E. W. Bauer, Indirect coupling of magnons by cavity photons,
 ³⁰³ Physical Review B 97, 014419 (2018).
- 304 [37] Ø. Johansen and A. Brataas, Nonlocal Coupling between Antiferromagnets and Ferromagnets
- ³⁰⁵ in Cavities, Physical Review Letters **121**, 087204 (2018).

- 306 [38] K. Ganzhorn, J. Barker, R. Schlitz, B. A. Piot, K. Ollefs, F. Guillou, F. Wilhelm, A. Rogalev,
- M. Opel, M. Althammer, S. Geprägs, H. Huebl, R. Gross, G. E. W. Bauer, and S. T. B. Goennenwein, Spin Hall magnetoresistance in a canted ferrimagnet, Physical Review B **94**, 094401 (2016).
- ³¹⁰ [39] G. P. Rodrigue, H. Meyer, and R. V. Jones, Resonance Measurements in Magnetic Garnets,
 ³¹¹ Journal of Applied Physics **31**, S376 (1960).
- ³¹² [40] E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, Superconductivity enhancement on
 ³¹³ a topological insulator surface by antiferromagnetic squeezed magnons, arXiv:1903.01470
 ³¹⁴ (2019).
- ³¹⁵ [41] D. MacNeill, J. T. Hou, D. R. Klein, P. Zhang, P. Jarillo-Herrero, and L. Liu, Gigahertz
 ³¹⁶ frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered
 ³¹⁷ crystal CrCl3, arXiv:1902.05669 (2019).
- 318 [42] G. F. Dionne, Magnetic Oxides (Springer US, Boston, MA, 2009).
- ³¹⁹ [43] S. Koohpayeh, Single crystal growth by the traveling solvent technique: A review, Progress
 ³²⁰ in Crystal Growth and Characterization of Materials 62, 22 (2016).
- ³²¹ [44] G. F. Dionne, Molecular Field Coefficients of Substituted Yttrium Iron Garnets, Journal of
 Applied Physics 41, 4874 (1970).
- ³²³ [45] G. F. Dionne, Molecular Field and Exchange Constants of Gd³⁺-Substituted Ferrimagnetic
 ³²⁴ Garnets, Journal of Applied Physics 42, 2142 (1971).
- 325 [46] E. C. Stoner and E. P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous
- Alloys, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences **240**, 599 (1948).
- ³²⁸ [47] D. Polder, VIII. On the theory of ferromagnetic resonance, The London, Edinburgh, and ³²⁹ Dublin Philosophical Magazine and Journal of Science **40**, 99 (1949).
- ³³⁰ [48] L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory
 ³³² and experiment, Physical Review B 86, 134415 (2012).
- ³³³ [49] J. A. Osborn, Demagnetizing Factors of the General Ellipsoid, Physical Review 67, 351 (1945).
- ³³⁴ [50] S. Geschwind and L. R. Walker, Exchange Resonances in Gadolinium Iron Garnet near the
- Magnetic Compensation Temperature, Journal of Applied Physics **30**, S163 (1959).
- ³³⁶ [51] B. A. Calhoun and M. J. Freiser, Anisotropy of Gadolinium Iron Garnet, Journal of Applied

- ³³⁷ Physics **34**, 1140 (1963).
- 338 [52] P. Hansen, Ferromagnetic Resonance in Ruthenium-Doped Gadolinium Iron Garnet, Physical
- ³³⁹ Review B **5**, 3737 (1972).