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for embedding in an overall energy management system. The operating temperature and pressure 
ency of compressors, are used in developing operational model of the cooling system, which outputs 
 without the need for additional physical measurements. The presented model is superior to a generalized 
includes individual compressor type charac-teristics. The results show that the presented approach is 
age Error (MAPE) as low as 5%, using low resolution and asynchronous data from a case study system. The 
tting, where MAPE is shown to be as low as 1.8%.
1. Introduction

The building and construction sector, including energy intensive
food distribution warehouses, is responsible for almost 40% of total
emissions related to energy and process (IEA, 2019a). Within the
built environment, cooling demand is continually increasing as the
weather grows warmer and a larger part of the worlds population
and industrial enterprises gain access to air conditioning equip-
ment and cooled building space (IEA, 2019b). The environmental
impact of this trend can mainly be alleviated through a two-fold
focus on energy efficient operation (Li et al., 2020; Zhu et al.,
2019) and use of increasingly viable environmentally friendly re-
frigerants, such as carbon dioxide (CO2), in the Cooling Systems (CS)
(Mohammadi and McGowan, 2019; Sarkar et al., 2004; Neksa,
2002; Neksa et al., 1998).

Typically, in warehouses and distribution centers, comprehen-
sive CSs are responsible for a big portion of the building’s energy
use. CS performance will also be affected by changes in the oper-
ational environment, including weather conditions, logistical op-
erations, and workforce behavior (Chua et al., 2010; Sarkar et al.,
2004). These effects are enhanced when dealing with environ-
mentally friendly refrigerants, such as CO2, that recently have seen
an increase in utility due to environmental concerns (Schmidt et al.,
2019). A cost efficient way to reduce environmental impact in the
existing CSs is through energy efficient operation. This can be
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achieved in several ways, depending on the existing energy system
design, such as optimized interaction with a Thermal Energy Stor-
age (TES) (�Sirokỳ et al., 2011), surplus heat recovery (Chua et al.,
2010) and optimized time-of-use with simultaneous access to
local renewable energy resources (Wu and Wang, 2018; Kow et al.,
2018). Implementing an Intelligent Energy Management System
(IEMS) allows the building operator to automate the process of
continuously choosing actions with the highest cost-reduction or
energy-savings potential (T et al., 2018; Venayagamoorthy et al.,
2016; Wen et al., 2015; Zhao et al., 2013; Chen et al., 2011). The
IEMS takes advantage of the shift from Human-to-Machine to
Machine-to-Machine communication, with access to large quanti-
ties of data through Internet/Intelligence of Things (IoT) compo-
nents, and can incorporate the latest developments within Artificial
Intelligence (AI) for prediction and control purposes (Hakimi and
Hasankhani, 2020; Wu and Wang, 2018; Manic et al., 2016). The
IEMS can handle various tasks, such as optimized utilization of
energy storage options to reduce overall CS energy consumption
(�Sirokỳ et al., 2011). TES systems can be used to enhance the CS
performance by exploiting available heating and cooling capacity
for optimum operation of energy storage during high-performance
operating conditions. In a CS, the most important energy efficiency
measure is the Coefficient of Performance (COP). The COP is a ratio
of the useful thermal energy provided compared to the electrical
work required. To determine the thermal component of this ratio in
direct expansion systems that use the refrigerant for cooling energy
distribution, we need an accurate measure of refrigerant flow.

Installing flow measuring equipment in existing CO2 refrigerant,
direct expansion CSs is a costly and complicated operation. The
complexity and risk increases when the CS operates on multiple
temperature levels with separate distribution systems. The most
logical option for performance evaluation then becomes a theoretical
calculation based on available operational data. In Zou and Xie
(2017), a simplified model for COP modelling of a water source
heat pump is suggested. Sun et al. (2017) proposes a general simu-
lation model based on graph theory that utilizes accurate mathe-
matical models of individual components, such as the Li (2013)
suggested approach to variable speed compressors, to model
refrigerant flow. Kim et al. (2018) conducted a case study of variable
refrigerant flow simulation, tailored for building energy modelling,
where the focus was calibration of a CS model to the U.S. DOE’s
EnergyPlus software. Zhu et al. (2013) proposes a generic model for
variable refrigerant flow in air conditioning systems with multiple
evaporators intended for simulation of performance and control
analysis. None of the aforementioned studies propose models for
multi-stage compression CS. Adaptation and implementation of the
proposed methods would also require quite extensive knowledge of
refrigeration technology and specific system design. Future IEMS
systemsmight be dependant upon a realistic simulated environment
to enable training of sophisticated Reinforcement Learning agents
(Schrittwieser et al., 2019; Silver et al., 2018) that can adapt to and
learn from operational data. A robust method that allows for cost
effective, real-world implementation in complex, industrial scale,
CO2 direct expansion CS is needed. Since industrial scale CSs have to
be specifically designed and built for each use case, a general
calculation will be quite inaccurate. Intellectual Property (IP) rights
tied to the individual components in the CS can also restrict options
for full access to precise performance data. Some industrial CS sup-
pliers provide access to web-based software designed for product
selection and simple, static performance calculation, but the details
necessary to build a more robust theoretical calculation model are
not shared. An open, accurate, scalable, and reliable method for
theoretical COP calculation is therefore needed.

Within the field of AI, an Artificial Neural Network (ANN) is a
particularly powerful tool for hidden function approximation.
ANNs trained on limited experimental data were successfully used
for COP calculation in Esen et al., 2008. In Opalic et al. (2019) we
showed that ANNs trained to model the electrical power utilized by
Bitzer, a widely utilized compressor manufacturer, 4CSL12K com-
pressors give highly accurate results, with an MSE of 0.08%, when
compared to results attained from Bitzer software.

In this paper, we expand our scope by using ANNs to model all
Bitzer compressors in a large and fully operational CO2-based CS. To
further examine the usefulness and real-world application of this
approach, we compare electrical power measurements of a case
study CS to the summed calculations of an ensemble of ANNs that
eachmodel a compressor type featured in the CS.We also verify our
method by comparing our calculations to measurements from a
comparable laboratory CS. We train the ANNs using available data
collected from the compressormanufacturer’s web-based software.
The ANN training algorithm adjusts the weighting of the input
parameters, as well as the weighted connections between neurons,
to expertly fit the labelled training data. After we define the
appropriate input and output parameters, our approach only re-
quires limited knowledge of refrigeration technology and system
design to be implemented in an operational setting. In CSs with
access to a limited amount of desired performance measures, our
approach can be used to supplement and enhance the value of the
existing data. In such installations, the overlap between measure-
ments and calculations can also be used to discover inconsistencies
between theoretical and actual performance. To the best of our
knowledge, our approach to linking theory and practice in multi-
stage, CO2 refrigeration technology using ANNs has not been
attempted before. The proposed method is both practically feasible
and useful in evaluating the energy performance of CO2-based
cooling installations. Owners and operators can use our ANNmodel
ensemble approach for quality assurance of CO2-based CSs.

We have designed our approach to:

� independently model the parts of the CS that interact with the
TES at any given time, such that we can use the efficiency of this
isolated part of the CS as input to an algorithm that optimizes
the use of the TES;

� have a more accurate performance measure than what is
currently available;

� create a data set that enables the development of CS future
performance prediction models by applying our method to
historical CS data;

� be able to calculate historical values of available excess heat,
whereas what is currently known is only the amount of heat
that was reclaimed and used;

� investigate to what extent ANNs can model complex scenarios
consisting of several cooling compressors in a multi-stage CS e

especially including transcritical conditions for CO2.

We organize this article in the following manner. Section 2 de-
scribes the components of a real-world advanced warehouse and
logistical center that includes a case study cooling system, as well as
the data collection process for model development. We present our
CS model ANN architecture in Section 3. Section 4 is our discussion
of results and implementation. Lastly, we present our conclusions
and suggest future research efforts in Section 5.

2. System structure and configuration

We based our work on information and data collected from a
warehouse and food distribution center near Stavanger in Norway,
completed in the fall of 2017. The main component of the ware-
house energy system is an industrial CO2 refrigerant CS consisting
of three separate cooling plants circulating liquid CO2 to
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evaporators in the frozen and chilled food storages. The CS also
produces chilled water for cooling of the remaining building areas,
including food storage, office space, and support areas. The archi-
tecture of the case-study cooling plant examined in this study is
shown in Fig. 2. An additional back-up and peak-load cooling ma-
chine also provides chilled water for ventilation and server cooling.
CS surplus heat is recovered and utilized to heat tap water, to keep
the ground beneath the frozen storage frost-free and to supply the
non-cooled areas of the building with heating energy when
needed. If there is insufficient excess heat available, the operating
pressure of the CS is increased to satisfy the heating demand, up to
a predefined maximum pressure level. Recovered heat can also be
stored in a TES for future use, mainly to reduce the need for the
electrical boiler at peak heating demand.

The warehouse also exhibits a considerable photovoltaic (PV)
power generation plant, a lithium-ion battery system (LBS), and a
buried and insulated 300 m3

firewater tank connected to a heat
exchanger that is utilized as a TES. An electrical boiler is employed
for back-up and peak demand heating. Table 1 contains a list of the
operational temperature range in the various warehouse areas,
whereas Fig.1 and Table 2 visualizes and lists the main components
of the warehouse energy system. The PV plant supplies A/C power
directly to the main switchboard. If demand is sufficient, all the PV
energy is utilized in the building. Otherwise, energy is stored in the
LBS, converted to thermal energy and stored in the TES or exported
to the main grid. In addition to storing surplus solar energy, the LBS
is used for power peak reduction. Thermal energy in the form of
chilled or heated water can be stored in the TES, represented by the
purple arrow in Fig.1. The IEMS tasked to control the energy storage
systems applies proven machine learning algorithms to predict PV
power generation, as well as the future demand for thermal and
electrical energy. An optimization algorithm then employs the
predictions to calculate the most cost-effective hourly schedule for
charging and discharging.

The IEMS controls the TES in two separate seasonal modes of
operation, Heat Energy Storage (HES) and Cold Energy Storage
(CES). It employs CES mode from around March to November, and
HES for the remainder of the year. Natural reduction of the cooling
demand occurs as outside temperature decreases towards the
winter season. As a result, surplus heat available for recovery is no
longer able to sustain the warehouse’s overall demand for heating.
However, by storing heating energy reclaimed from the CS in
advance, the load on the electric boiler can be severely reduced,
which in turn reduces the consumption of energy and the cost of
peak power.

In CES mode, the IEMS attempts to balance two main strategies:

1. Storing surplus electricity generated by the PV installation in the
CES through energy conversion.

2. Producing and storing chilled water at high COP conditions.

When the IEMS applies strategy number one, the CS converts
surplus electricity to chilled water for storage in the CES at a
temperature range between 7 �C and 15 �C. In the evening, when
the natural reduction of power output from the PV-plant occurs,
the IEMS may choose to discharge the CES and thereby reducing
Table 1
Warehouse dimensions and temperatures.

Area Size Operating temperature

Dry storage, office space, etc. 19 000 m2 18e22 �C
Frozen 3000 m2 �20 �C
Chilled 3500 m2 0e4 �C
Chilled distribution 3500 m2 0e4 �C
power requirements for the CS. The second strategy involves
optimizing the production of cooling energy by decoupling it from
the consumption through the CES. The IEMS optimization algo-
rithm accomplishes this through the utilization of cooling demand
predictions, weather predictions, and table base COP values.

The IEMS currently uses a simplified approach with a provided
table of COP values to evaluate performance at given ambient
temperature and operating conditions. Future COP values can then
be estimated using weather predictions. The COP table is a rough
metric that does not supply the optimization algorithm with
quantitative input, such as expected cooling production at the
separate CS stages and total available excess heat. Also, the Building
Management System (BMS) provides a general CO2 CS model that
calculates all the necessary parameters, but with unsatisfactory
accuracy.

We, therefore, suggest an ANN approach to calculate
compressor mass flow and electricity consumption. Calculating
cooling capacity instead of mass flow would be preferable. How-
ever, due to unavailability of cooling capacity data for all the
compressors, we usemass flow as an alternative approach.We have
developed models for all the compressors in the cooling system.
Twomodels have been developed for each transcritical compressor
so that we use separate models of the same compressor for calcu-
lations in the subcritical and transcritical operational modes. The
compressors are semi-hermetic reciprocating compressors manu-
factured by Bitzer GmbH, with one frequency-controlled
compressor at each stage. Fig. 2 shows the placement of all the
compressors in a simplified cooling system architecture. There are
two pressure stages of compression as well as parallel compressors
to handle flash gas in the receiver and chilled water production. The
compressors for the frozen storage areas are displayed in the bot-
tom left, with the cold storage compressors in the top left and the
parallel compressors in the top right. Fig. 2 also displays mass flow
direction and the most crucial CS components. It can be noted that
the CO2 based cooling system is a highly complex part of the energy
system in the considered technologically advanced warehouse.
Fig. 2 is an element of Fig. 1.

The website of the manufacturer was used to collect data
(Bitzer-GmbH, 2019). Theoretical values for cooling capacity (Q),
electrical power (P), electrical current (I) or mass flow ( _m), which
can all be substituted for the parameter y in Eqs. (1) and (2), can
then be separately calculated by using the appropriate constants ci;
ci21;2; ::10 in the following polynomials (according to EN
12900:2013), for subcritical pressure conditions

ysc ¼ c1 þ c2to þ c3tc þ c4t
2
o þ c5totc þ c6t

2
c þ c7t

3
oþ

c8tct
2
o þ c9tot

2
c þ c10t

3
c ;

(1)

and, for transcritical pressure

ytc ¼ c1 þ c2to þ c3pHP þ c4t
2
o þ c5topHP þ c6p

2
HPþ

c7t
3
o þ c8pHPt

2
o þ c9top

2
HP þ c10p

3
HP :

(2)

In Eqs. (1) and (2), to (�C) is representing temperature of evap-
oration and tc (�C) is the condensation temperature, whereas
pHP ½bar� is the discharge pressure of the compressors at transcritical
operating conditions where pHP >73:77½bar�. The constants c1
through c10 depend on suction gas temperature (SGT, �C) and
compressor operating frequency (CF, Hz) for subcritical operating
conditions, while gas cooler outlet temperature (GOT, �C) must also
be selected for transcritical operation. Separate and independent
sets of constants are used to calculate Q (kWthermal), P (kW), I (A) or
_m (kg/h) when used with Eqs. (1) and (2). Constants for P and _m
were collected in 5� steps for SGTand GOTwithin each compressors



Fig. 1. The warehouse energy system.
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defined operational range, and 5 Hz steps for CF between 70 and
30 Hz. P and _m example values were then calculated and labelled
appropriately using integers for to, tc and pHP , resulting in data sets
ranging from approximately 10 000 to 100 000 training examples
for each compressor model.

Finally, we can determine cooling production, available excess
heat, and the COP of any part of the system through calculations.
For example, _m can be used to calculate cooling load with the
enthalpy difference equation

Qc ¼
_mDhc
3600

; (3)

where Dhc (kJ/kg) is the specific enthalpy difference of the refrig-
erant between the outlet and inlet of a specific evaporation stage.
Pressure and temperature of the subcooled liquid refrigerant before
the expansion device (evaporator inlet conditions), along with the
pressure and temperature of the superheated gas (evaporator
outlet conditions), are measured. Specific enthalpy at the inlet and
outlet of the evaporation stage is therefore known and can be used
to calculate the specific enthalpy difference. We can then calculate
the COPc of a single, or multiple, compressor(s) using Eq. (4)
COPc ¼Qc

P
: (4)
3. ANN approach design and configuration

We chose the appropriate ANN design for compressormodelling
by analyzing the Bitzer software and the available data. Clearly, in
Eqs. (1) and (2), we can observe the characteristics of a polynomial
function. Even though the relationship between the input variables
and the constants ci, ci21;2; ::10 are unknown, Eqs. (1) and (2)
provide important information which we consider an indication
of the hidden function we are attempting to approximate with
ANNs.

In the considered ANN approach design and configuration, the
patterns are discovered by such a function via training the ANN
employing a hyperbolic tangent (tanh) activation function (Opalic
et al., 2019; Cybenko, 1989). We, therefore, use the most suited
neural network architecture found in (Opalic et al., 2019), namely
using one hidden layer (HL) containing 45 neurons. Fully connected
ANNs are configured to calculate P and _m by feed-forwarding input
data through the neurons in the HL as shown in Fig. 3. We have
trained compressor models for subcritical operating conditions



Fig. 2. On-site cooling plant architecture.

Table 2
Components’ specifications.

Component Capacity Unit of measurement

PV - photovoltaic power generation 1000 [kWp]
LBS - lithium-ion battery system 460/200 [kWh/kW]
TES - thermal energy storage 300/300 [m3/kWthermal]
CS - cooling system 1140 [kWthermal]

Fig. 3. ANN model architectures: a) Subcritical operation, b) Transcritical operation, c
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with data sets generated with Eq. (1), while Eq. (2) was utilized to
generate the data sets for the transcritical operationmodel training.
The Adam optimizer (Kingma and Ba, 2014) has been applied to
update the weights of the neural networks during training. The
training continued until model learning converged by using the
early-stop method in the Keras (Chollet et al., 2015) programming
library, with the “patience” parameter set to 150 epochs.

We set the training optimizer to update the trainable parame-
ters after each training batch, consisting of 100 training examples.
We have used Mean Squared Error (MSE) as the loss function while
) Subcritical and frequency controlled, d) Transcritical and frequency controlled.



Table 3
Training and validationMSE for all models. Separatemodels for frequency controlled
(FC) compressors and transcritical (TC) operation.

Compressor model Training MSE Validation MSE

Bitzer 4CSL12K 2,97E-05 2,48E-05
Bitzer 4CSL12K FC 2,37E-05 1,60E-05
Bitzer 4CTC30K 3,90E-05 3,17E-05
Bitzer 4CTC30 K TC 7,79E-06 4,57E-06
Bitzer 4DTC25K 1,84E-05 2,01E-05
Bitzer 4DTC25 K TC 6,20E-06 2,89E-06
Bitzer 4FTC30K 6,76E-05 6,50E-05
Bitzer 4FTC30K FC 2,68E-05 1,74E-05
Bitzer 4FTC30K FC TC 1,28E-05 7,85E-06
Bitzer 4FTC30 K TC 1,54E-05 1,09E-05
Bitzer 4JTC15K 1,87E-05 1,34E-05
Bitzer 4JTC15K FC 2,34E-05 1,82E-05
Bitzer 4JTC15K FC TC 2,19E-05 1,54E-05
Bitzer 4JTC15 K TC 7,26E-06 6,91E-06
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MSE and Mean Average Percentage Error (MAPE) were used as
model accuracy metrics.

The models are programmed using Python 3.6 and Keras
(Chollet et al., 2015). We divided the data sets into training and
validation data through randomization and a factor of 0.9 to 0.1,
respectively. We normalized the input values by mean (m) sub-
traction and adjusting for variance (s2). The resulting values of m
and s2 calculated on the training data set fXigwere then employed
to also adjust the validation data set.

We finally assembled the individually trained models in accor-
dance with the design of the case-study CS shown in Fig. 2. Oper-
ational data from the cooling system was gathered in order to
compare the aggregated output of the ANN models for running
compressors to the metered power input. In addition to to, tc, PHP ,
SGT, CF and GOT, compressor operating status for each compressor
was collected. For every timestep, our algorithm utilizes the oper-
ational data to determine which compressors are operational, the
CF of the frequency controlled compressors, and whether the CS
pressure level exceeds the transcritical threshold. The data for the
active compressors, in the appropriate operational mode, is then
selected and sorted into the format shown in Fig. 3, and fed into the
input layers of the selected models. The resulting model output is
finally summed for each separate stage of compression and
compared to the metered power input to the CS.

However, none of the data is temporally synchronized.
Accordingly, the raw data had to be processed and aligned in order
for comparisons to be made. The data processing introduces an
error source that has to be taken into account when observing the
results. Also, a third-party BMS, utilizing serial bus communication
for data gathering, is responsible for collecting the power mea-
surements and operational data from the cooling system. The BMS
only timestamps the data when it is received. There is no time-
stamp for when the datawas requested or when the cooling system
controller received the request (the actual time of measurement).
This lack of clarity adds another layer of uncertainty to the temporal
accuracy and integrity of the raw data. By request, the BMS operator
increased the frequency of data collection in June 2019 in order to
increase input data quality.

An analysis of the raw data also shows that even when
measured power input drops to zero, the BMS will still show active
compressors, and accordingly, the models will predict the indi-
vidual compressor power usage. Therefore, we have removed all
data points with a power measurement of zero in the data cleaning
process.

An alternative research approach would have been to structure
the training data so that a single model could be used to predict the
aggregated output. We only briefly considered this alternative as
such an approach would have included removing known infor-
mation and system boundaries from the training process only to
have the information, hopefully, relearned by the single model.
Also, we would have removed the advantage in our chosen
approach of being able to model separate stages in the cooling
system, while transfer learning by reusing already trained
compressor models in other cooling systems would have been
more difficult.

There is no flowmeasuring equipment in the case-study CS that
can be used to verify the accuracy of the aggregated model.
Therefore, we also tested our method with data from an ongoing
experiment at the Norwegian University of Science and Technology
(NTNU) laboratory CS. The NTNU CS has a very similar design to the
case-study CS, while also measuring the flow of CO2 through each
compressor stage and the individual electrical power input of each
compressor. The compressors in the NTNU CS parallel stage, con-
sisting of a Bitzer 2KTE-7Ke40S (Inverter driven), Bitzer 2KTE-
7Ke40S (set to fixed speed) and Bitzer 4JTC-15Ke40S (fixed speed),
were modeled using our previously described ANN configuration
approach. Part of the pressure and temperature sensors in the
NTNU CS are connected to Danfoss controllers which sample and
log the data in 5-s intervals. Mass flow meters, temperature sen-
sors, and active power consumptionmeters for the compressors are
connected to National Instruments Hardware, and the data is log-
ged by LabVIEW software with a sampling time of 1 s. LabVIEW
software also handles information coming from the inverters (fre-
quency, power, etc.), connected by Modbus, with a 5 s sampling
time. NTNU researchers finally synchronize all the data in MATLAB
with in-house software.

4. Results and implementation plan

4.1. Results analysis

In this paper, we attempt to model the compressors in an
operational, industrial CS using ANNs. We trained the ANNs with
data generated by calculating power input and mass flow of Bitzer
CO2 CS compressors using polynomials, subject to openly available
constants, for subcritical and transcritical conditions. The differ-
ence between training and validation error, as shown in Table 3, is
minimal in all cases. Therefore, we could likely have used a more
significant part of the data sets for training without risk of over-
fitting. Table 3 lists the training and validation MSE results for each
compressor model. Table 3 shows that the models are highly ac-
curate when compared to training and validation data sets gener-
atedwith Eqs. (1) and (2) and can therefore be expected to give very
similar results to the hidden ground-truth theoretical models.

Table 4 shows results for aggregated model output compared to
metered power input to the case study CS every month from
January 2019 to July 2019. We observe an increase in aggregated
model predictive accuracy compared to power measurements in
June and July, which is likely due to the increased data collection
frequency implemented in the BMS. Figs. 4 and 5 show monthly
plots for theworst (April) and best (July)months. Making any visual
distinction between thesemonths is difficult, but an apparent trend
in both months is that the largest discrepancies between predicted
and actual power input exists in the lower spectrum of power us-
age. Sudden drops in measured power input, not reflected in the CS
BMS data, is a probable cause of this trend. It is therefore likely that
there is an error in the raw CS data connected to sudden drops in
power input, perhaps due to sudden switches between compres-
sors or a rapid decrease in cooling demand when local evaporator
set-point temperature conditions aremet.We find further evidence
of this when examining the differences between MSE and MAPE in
TC or SC operation during warmer or colder months. Table 4 shows



Table 4
Monthly MSE and MAPE comparison from January 2019 to July 2019. Separate col-
umns for subcritical (SC) and transcritical (TC) operating conditions.

Month MSE MSE TC MSE SC MAPE MAPE TC MAPE SC

January 112.3 120.7 104.1 15.8% 14.9% 16.7%
February 102.8 106.9 101.7 15.4% 12.4% 16.2%
March 90.7 112.0 85.4 14.7% 13.8% 14.9%
April 145.7 187.9 136.3 18.3% 18.7% 18.2%
May 88.0 130.9 79.7 16.3% 18.3% 15.9%
June 44.2 34.6 45.5 12.0% 6.1% 12.8%
July 38.8 31.1 42.6 10.1% 5.8% 12.3%
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that the MSE and MAPE in transcritical operating conditions are
higher than in subcritical operation for January through May, while
the opposite is true in June and July. Since heat is reclaimed from
the CS and used for heating purposes, pressure is increased in the
winter months when the heating distribution system requests
more energy concurrently with or caused by drops in cooling de-
mand. Inversely, during the summermonths, pressure increases are
usually caused by an increase in ambient temperature and cooling
demand. Therefore, the conditions likely to cause the most signif-
icant discrepancies occur most often in TC operation in the colder
parts of the year and SC operation during the summer, possibly
leading to the observable differences in TC and SCMSE andMAPE in
Table 4.

Since the monthly plots are quite hard to read due to a large
number of data points, we include plots of a single random day in
April and July in Figs. 6 and 7. These plots show the importance of
the increased quality of the aggregated model input data. Fig. 6
indicates a temporal displacement between the aggregated model
output and the power measurements when compared to Fig. 7.
Fig. 4. April 2019 - Aggregated model output c

Fig. 5. July 2019 - Aggregated model output co
Due to the jitters in time for the input data, the model output
and the power measurements are not precisely temporally aligned.
To illustrate and compare the results accordingly, we introduced an
offset t in the time domain to align the two data series. In more
detail, we shift PðtÞ by t2½ �10;10� to find the maximum output of
maxt

P

t
MðtÞPðt þ tÞ. In this way, we can probably achieve a more

appropriate time alignment.
The maximum was found at t ¼ � 2. Adjusting accordingly

reduces the MSE in April from 145.7 to 50.5 and the MAPE from
18.3% to 10.1%. For 2019-04-10 in Fig. 6 the MSE was reduced from
133.3 to 29.4 and MAPE from 12.8% to 5.5%, results shown in Fig. 8.

We also compare our aggregated model to BMS calculations.
BMS calculation parameters were first adjusted to maximize ac-
curacy on 2019-08-22. Results for 2019-08-22 to 2019-08-26 are
plotted in Fig. 9. Aggregated model calculation MSE on this sample
is 41.7, while theMSE for the BMS calculation is 206.2. Similarly, our
model calculation MAPE is 8.5% compared to 20.1% for the BMS
calculation.

Finally, we use data, collected through sensor networks, from an
ongoing NTNU CS experiment to validate our approach in a labo-
ratory setting. Measurements of power and flow in the ongoing
experiment are compared to the outputs of our aggregated ANN
model. The NTNU experiment was conducted in transcritical
operating conditions, with pressure ranging from 74.9 bar to
98.3 bar. Results are plotted in Figs. 10 and 11. We obtain a MAPE of
3.13% when comparing the output from the ANNs with measure-
ments from the power meters, whereas using measurements from
the inverter for the frequency controlled compressor reduces MAPE
to 1.87%. Measurements from the powermeters includes the power
consumption of the inverter as well as power conversion losses. The
increased accuracy, when using measurements in the inverter,
ompared with metered power input to CS.

mpared with metered power input to CS.



Fig. 6. 2019-04-10, 24 h - Aggregated model output compared with metered power input to CS.

Fig. 7. 2019-07-16, 24 h - Aggregated model output compared with metered power input to CS.

Fig. 8. 2019-04-10, 24 h - Aggregated model output compared with metered power input to CS, adjusted for t ¼ � 2.

Fig. 9. 2019-08-22 to 2019-08-26 - Aggregated model output compared with metered power input to CS and BMS calculated values.
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Fig. 10. 2019-08-25 - Aggregated model power calculation compared with metered power input (inverter) at the NTNU laboratory CS.

Fig. 11. 2019-08-25 - Aggregated model flow output compared with measured flow at the NTNU laboratory CS.
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suggests that the aforementioned losses are not included in the
Bitzer software (Bitzer-GmbH, 2019) calculations. The result for the
ANN flow output compared to NTNU CS measurements is 1.76%
MAPE. These results show that the presented method is accurate,
when given synchronized data with a low sampling time period.
Our results also suggest that the underlying ground truth mathe-
matical function for each compressor type could possibly be un-
known to the compressormanufacturer. The form that the available
data is given in, combined our highly accurate results in a labora-
tory setting, suggest that the values for the constants could be
based on empirical testing of each compressor. If this is the case,
our approach could also be a useful way for the compressor
manufacturer to easily encode all their laboratory data in neural
networks that can be employed in their own calculation software.
4.2. Implementation in the operational setting

Industrial CSs are very power intensive and produce large
amounts of surplus heat that is often discarded. In the case study
warehouse, excess heat from the CS can be effectively used or
stored in the TES to reduce the need for additional heating supplied
by the electrical boiler, as described in Fig. 1. Chilled water can be
produced and stored in the TES during periods of favorable CS
operating conditions and low energy prices, or access to surplus
solar energy that would otherwise be exported to themain grid at a
severely reduced energy price. The IEMS can facilitate energy
management and reduction of the operational demands in an
intelligent way to reduce energy cost and environmental impact. To
optimize CS and TES interaction, the time-varying performance of
the CS is required. The presented ANN model is currently being
implemented and configured to supply the IEMS with compressor
power consumption and refrigerant mass flow. Our software has
been installed at a dedicated local server and communicates
directly with the BMS through an Application Programming Inter-
face (API) developed by the BMS provider, utilizing the JSON-RPC
2.0 protocol. The IEMS then collects live data as needed from the
BMS through a local gateway setup.

Historical data generated with our ANN ensemble has also been
supplied to the IEMS provider to allow development of predictive
models of CS performance. The performance prediction model is
developed with machine learning tools and will be utilized as input
to the IEMS optimization algorithm. The output of the presented
aggregated ANN model will improve the performance of the smart
warehouse IEMS by increasing the quality of its necessary input
data. The energy management system operator will also use these
measures for quality assurance and performance evaluation
through visualization in the Building Energy Management System.
5. Conclusions

Industrial cooling systems are responsible for a considerable
amount of the buildings total energy use and environmental impact.
To reduce energy consumption and conserve the environment, it is
recommended to recover and store surplus heat, and optimize sys-
tem operation for utilizing it in coordination with intermittent
renewable energy production. These tasks have to be managed
intelligently in a complex energy system with dynamic operation of
various sub-systems/components. In this work, we have presented
ANN model of an operational CO2-based industrial cooling sub-
system of a complex warehouse energy system. The operating
temperature and pressure measurements, as well as the operating
frequency of frequency-controlled compressors, are used in
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developing the operational model. The output of the model is elec-
trical consumption and refrigerant mass flow for the compression
process. The presented technique is relatively superior to a general
theoretical model, both in terms of accuracy, flexibility, cost effec-
tiveness, and implementability in the real-world application.

The developed model has MAPE in the range of 5%e12% in the
operational case-study cooling system. The presented results also
indicate that the accuracy can be drastically improved with
increased quality of data collection frequency in the operational
measurement, supported by a MAPE of 1.87% and 1.76% in a com-
parable laboratory CS, for power and flow respectively. The accu-
racy of the presented ANN flow calculations is promising from a
practical standpoint, and can be implemented throughMachine-to-
Machine communication using IoT related devices.

The developed modelling of the cooling system is currently
being implemented in the case study energy system (Fig. 1). The
energy system operator has already noticed improvement in the
performance calculation accuracy. The energy system operator will
also use these embedded measures for quality assurance and per-
formance evaluation of the building energy management system.
Implementation of our approach in current, and future RL, IEMS
solutions should be explored. Additional training of the developed
models, based on increasing amounts of operational data, could
also be further examined.
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