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Introduction

Natural selection is a key mechanism of evolution and the central process in nature. It occurs
when there is a difference between phenotypical traits in expected relative fitness (Gardner and
Grafen, 2009; Hansen, 2017). It also plays a role in shaping life cycles in ways that optimize re-
productive fitness (Charnov, 1993; Stearns, 2000) and the mechanism of which has been studied
in the framework of life history theory. In population biology, one of the fundamental questions
is which selection, under which circumstances and to what extent, can have an appreciable im-
pact on population dynamics (Charlesworth, 1971; Saccheri and Hanski, 2006). Understanding
the genetic basis of the traits that selection operates on and the signatures of past and present
selection in patterns of variation in the genome remain as a priority in the research agenda for
evolutionary biologists (Stinchcombe et al., 2017). Even though the interplay between selection
and life history evolution, selection and population dynamics has been approached from various
perspectives in each study area over the past years, to obtain a better understanding of the role of
natural selection in driving evolutionary changes, accurate estimates of the strength of selection
acting in the wild is an essential prerequisite (Linnen and Hoekstra, 2009).

Most of the previous work attempting to measure natural selection within populations drew on
the seminal studies of Price (1970); Lande (1979); Lande and Arnold (1983), in which the se-
lection is characterized by the relationship between traits and relative fitness. Building on their
foundational work, Schluter (1988) provides a non-parametric estimate of the fitness function
and uses it to suggest an appropriate parametric model. Thomson and Hadfield (2017) shows
that using offspring fitness components as part of parental fitness (“mixed fitness” in their terms)
is common in studies of birds and mammals, but will only lead to correct estimates of selection
and evolutionary change under very restrictive conditions. Among many others, the enormous
literature contains conceptual, methodological and statistical recommendations to estimating the
phenotypic covariances between traits and some aspect of relative fitness (Stinchcombe et al.,
2017). In empirical studies, the mode and intensity of natural selection are estimated by regress-
ing relative fitness onto phenotypic values. The selection gradient () analysis has now been
applied to a wide range of plant and animal taxa (reviewed by Kingsolver et al., 2001; Siepielski
et al., 2009).

Fluctuating and auto-correlated selection

The publication of synthetic reviews of form and strength of selection (Kingsolver et al., 2001;
Siepielski et al., 2009) confirms that phenotypic selection commonly fluctuates in strength and
frequently changes in direction among years. The variance in phenotypic selection was usually
estimated by computing the variance of the strength of selection using selection gradients estim-
ated separately at each time point which reflects both random sampling error and real variation
in selection (Morrissey and Hadfield, 2012). Since temporal variation in natural selection is a
fundamental determinant of evolutionary outcomes and an appealing hypothesis to explain evol-
utionary stasis (Price and Liou, 1989; Meril4 et al., 2001; Siepielski et al., 2010), more accurate
models with a detailed look at the extent of variation in selection, accounting for sampling error,
are desirable. Among the previous empirical studies accounting for the sampling error of vari-
ation, Calsbeek (2011) presents a non-parametric analysis in exploring the variation of fitness
surfaces over time or space. In contrast, using a log-quadratic generalized linear mixed model



with a random effect on the regression slope implemented using Integrated Nested Laplace Ap-
proximations (INLA, Rue et al., 2009), Chevin et al. (2015) estimated yearly fluctuations and
autocorrelation in optima of a Gaussian fitness function. Using instead the more flexible frame-
work of Template Model Builder (TMB, Kristensen et al., 2016), Gamelon et al. (2018) fitted
a model of fluctuating selection via several non-overlapping selection episodes with non-linear
random effects added directly on the location of the fitness optima and on the peak of the fitness
function. The latter two identify the pattern of temporal dynamics in the selection not only by
its variance but also by its temporal auto-correlation. Previous theory has shown that the auto-
correlation of selection strongly affects whether (and how much) genetic responses to selection
optimize long-term fitness and population growth in a fluctuating environment (Charlesworth,
1993; Lande and Shannon, 1996; Biirger and Gimelfarb, 2002; Chevin, 2013; Tufto, 2015). The
empirical estimate of auto-correlation in the location of the fitness optima turned out to be sig-
nificant in Chevin et al. (2015); Gamelon et al. (2018); Cao et al. (2019). The generality of this
finding, however, needs to be confirmed across a wider range of species, populations, and traits,
using the same, statistically robust approach. As of yet, estimating auto-correlation in selection
may require a large sample size with many time points (Chevin and Haller, 2014).

A straightforward extension of previous models with temporally varying selection strength for
stabilizing selection is to allow all the properties (height, location of maximum and width) of
a Gaussian fitness function at population level to be temporally fluctuating and even cross-
correlated. Such a statistical model including all these possibilities into one framework can be as
complex as that powerful enough model-fitting techniques are required for statistical inference.
Cao et al. (2019) is among the few to have done this with an R package named Template Model
Builder (TMB, Kristensen et al., 2016), which is developed for fast-fitting complex, linear or
nonlinear statistical models. The temporal fluctuation in the strength and even the direction of
selection can be captured by using appropriate statistical approaches. However, changes in the
form of selection, which are likely common, are harder to quantify (Siepielski et al., 2009).

Selection on correlated traits

The target trait that selection acts on can be correlated with fitness either because they impact
fitness directly (direct selection) or because they are correlated with other traits that affect fitness
(indirect selection) (Linnen and Hoekstra, 2009). For the great tits, the brood size is correlated
with the egg-laying date and the early breeders tend to lay bigger clutches (Perrins and McCleery,
1989; Barba et al., 1995). In a black-throated blue warbler population, the egg-laying date of the
first brood is positively correlated with the propensity a second brood to be laid from a given
female (Townsend et al., 2013). We tend to focus on traits that we have a priori reasons to
believe are targets of selection. In fact, strong indirect selection can overcome direct selection
in an opposing direction (Linnen and Hoekstra, 2009). How can we determine the actual target
of selection? Lande and Arnold (1983) shows elegantly how total selection can be partitioned
into direct selection on a trait and indirect selection through correlated traits, in which selection
gradients ((3) are calculated using multiple regression to control for indirect selection, thereby
estimating direct selection on a trait. The famous Darwin’s finches also illustrate the importance
of measuring multiple traits and estimating both direct and total selection.

The correlated characters that selection is acting simultaneously on might likely be genetically



correlated, so selection on one trait can result in a change in the other. The total response to
selection will be a combination of direct selection on a particular trait, plus indirect selection
resulting from a correlated response to selection on some other traits, and therefore leads to an
accurate picture of adaptation and evolutionary constraint in natural populations. In reality, the
data on genetic structure of correlated traits are not always available, it is thus necessary to con-
duct simulations with various genetic and phenotypic covariance structures for correlated traits,
explore the evolutionary trajectories under different scenarios and compare them with the reality,
to gain a better understanding of the mechanism behind the correlational selection on the traits.
Alternatively, Reed et al. (2016) uses an animal model to obtain the genetic covariance matrix
of clutch size and laying date and then calculates predicted response to selection based on the
Robertson—Price Identity and the multivariate breeder’s equation (MVBE). It finally concludes
that the similar prediction indicates that unmeasured covarying traits were not missing from the
analysis.

Selection via multiple fitness components

Most studies estimating natural selection focus on a specific component. For short-lived hole-
nested species, pre-breeding mortality is one of the major sources of individual variation in life-
time reproductive success (Clutton-Brock, 1988; Newton et al., 1989), which implies that the fate
of individual fledglings is completely altered after recruiting to the population. This phenomenon
can be recognized as a straightforward reason of different selection patterns estimated with the
same populations since either number of fledglings or recruits is taken as the fitness component
(for example Verboven and Visser, 1998; Reed et al., 2013a; Chevin et al., 2015), but rarely both
(except for Gamelon et al., 2018). How the temporal dynamics of phenotypic selection may
vary among fitness components (e.g. fecundity and survival) is poorly understood thus (Siepiel-
ski et al., 2010). Furthermore, many previous studies (for example Siikaméki, 1998; Verboven
and Visser, 1998) have demonstrated that the date of fledgling affects post-fledgling survival,
the usual pattern being early fledglings experienced higher survival. An advancement of mean
annual egg-laying date is thus expected to be observed to maximize offspring fitness, however,
the reality contradicting the expectation is that an enlarging mistiming between the egg-laying
date and food peak date over the course of study is observed (Visser et al., 1998; Chevin et al.,
2015; Cao et al., 2019). One potential explanation is that the adaptive evolutionary change is
determined by relative form and strength of selection acting among different fitness components
(Schluter et al., 1991; Hoekstra et al., 2001). Besides, integrating multiple fitness components
into one modeling framework is a start point to explore the evolution of life history traits (e.g.
size at birth, number, size, and sex of offspring, lifespan) and the dynamic interaction between
them, which is research objectives in life history theory.

Even though the importance of measuring selection through separate episodes of selection over
the reproductive cycle was pointed out by Arnold and Wade (1984), the empirical measurements
on selection have rarely done this. The exceptions include Engen et al. (2011), in which selection
is estimated separately with fitness components (fecundity and survival) in different age classes.
Gamelon et al. (2018) proposes a multi-episodic approach where different reproductive stages
(clutch size, survival from egg to fledgling, from fledgling to recruit and breeding mothers) are
included in one statistical model. Potential ecological drivers of selection on both laying dates



and clutch sizes were accounted and the method was applied to a dipper population.

Partial and complete brood failure

In altricial birds, the nestlings are brooded for 1 to 2 weeks after hatching and typically obtain
extensive parental care from both parents before independence (Liker et al., 2015). Partial and
complete brood failure is common in this period and this is a key determinant of variation in re-
productive success in such species (Santema and Kempenaers, 2018). The underlying causes of
nestling mortality are usually unknown unless the nest predation is identified (Martin and Briskie,
2009). In some bird species, complete brood failure is found associated with nest predation, (Mc-
Cleery et al., 1996) which might be related to nest-site security (Wesotowski, 2002) and to the
sudden and permanent disappearance of one of the parents (Santema and Kempenaers, 2018). It
is often hypothesized that offspring mortality results from a particular factor such as breeding
timing that determines brood success through its effect again on parental care. Even though it is
plausible that a particular factor influences both partial and complete brood mortality, the effect
sizes of the factor on them likely differ. Moreover, if partial and complete brood mortality has
different proximate causes, it might give misleading results on the effects of biological factors
on offspring mortality when they are lumped together. Therefore, it is biologically and statistic-
ally necessary to separate complete brood failure from partial brood failure when exploring the
proximate mechanism of offspring mortality.

Ecological selective agents

Changes in ecological conditions driven by climatic fluctuations appear to be common and im-
portant. Natural selection on wild populations is driven by such changes in biotic and abiotic
conditions (Bell, 2010). Despite of increasing interests in the environmental sensitivity of phen-
otypic selection, few studies have identified causal mechanisms underlying temporal variation
in the form, direction, and strength of selection (Siepielski et al., 2009). Several studies have
linked temporal variation in natural selection through survival or fecundity to variation in ecolo-
gical factors such as density, temperature, precipitation, predation, competition, and many other
factors. These factors are heterogeneous at both temporal and spatial scales. For example, the
survival of juveniles is identified to be strongly density-dependent (Reed et al., 2013a,b) and
density is shown to be a varying selective agent in a dutch great tit population (Sather et al.,
2016). The temporal variation in optimal phenotypic maximizing yearly fitness subjects to fluc-
tuating spring temperature (Chevin et al., 2015; Gamelon et al., 2018). Predation is a selective
pressure leading to fledglings hatched early in the season suffering lower probability of complete
brood failure in great tits (Sether and Bakke, 2000). In turn, the changing climate conditions
lead phenotypic distribution to be constantly shaped and reshaped by various agents of natural
selection (Endler, 1986). Even though these studies have accumulated our understanding of en-
vironmental sensitivity in natural selection, incorporating abiotic and biotic factors as potential
selective agents into the big picture of estimating varying selective selection on various traits
throughout the life cycle has remained challenging.



Double brooding evolution

Multiple breeding (more than one reproductive attempt in a breeding season) is a common re-
productive strategy in short-lived species (Verhulst et al. 1997 and references therein). The fre-
quency of double brooding is an important factor determining the productivity of a population,
as Nagy and Holmes (2004) shows that 19% of the annual variance in fecundity is explained by
double brooding in a black-throated blue warbler population in America. Since annual fecundity
plays a major role in determining population growth (S@ther and Bakke, 2000), understanding
the mechanism of multi-brooding in short-lived species has implications on the future viability
of a population. Several studies of birds have investigated the intra-seasonal costs (Mulvihill
et al., 2009) or determinants (Jacobs et al., 2013) of multiple-breeding, either experimentally
(Parejo and Danchin, 2006) or using longitudinal studies (Townsend et al., 2013) or combination
of them (Evans Ogden and Stutchbury, 1996; Verboven and Verhulst, 1996). These studies find
that delaying hatching date, as well as increasing clutch size and/or brood size, commonly lead
to a lower probability of initiating a second clutch (Lindén, 1988; Geupel and DeSante, 1990;
Evans Ogden and Stutchbury, 1996; Verboven and Verhulst, 1996; Verboven et al., 2001; Parejo
and Danchin, 2006; Townsend et al., 2013). The study species include wren tit, hooded warbler,
black-throated blue warbler, great tit, and many others. Husby et al. (2009) shows that in four
long-term study populations of great tits in the Netherlands, the proportion of females that double
brood has declined in all populations. They stated that the decline has two-fold reasons. The first
is the increase in the mistime to the food peak experienced by the population over the study years
and thus birds are less likely to attempt a second clutch. The second is the temporal decline
in the number of recruits produced from the second clutch. They concluded that changing en-
vironmental conditions are important in determining the number of clutches a female lays and
therefore potentially alter important life-history traits in the species.

These studies no doubt give us a better understanding of the mechanism of multiple brooding and
provide promising explanations for the observational temporal fluctuations in the frequency of
double-brooding. However, little theoretical and mechanical hypotheses for the double-brooding
evolution exists. It is unclear if there is a genetic basis of the liability of multiple brooding and
how the genetic structure interacts with different climate scenarios to produce different evolu-
tionary consequences of double brooding. Due to the lack of genetic data on these reproductive
traits of natural bird populations, investigating the mechanism of double brooding evolution is
probably feasible only through theoretical genetic models.

Bayesian analysis of ecological processes

Both frequentist and Bayesian inferences are powerful tools for a better understanding of eco-
logical processes in population and community ecology. In the frequentist framework, the most
state-of-the-art model fitting technique, an R package named Template Model Builder (TMB,
Kristensen et al., 2016) is gaining popularity recently due to its power and efficiency in fitting
complex nonlinear mixed models, which are common when modelling complicated ecological
processes (for example Cadigan, 2015; Albertsen et al., 2016; Auger-Méthé et al., 2017). One
worth mentioning feature of TMB is that it enables Laplace approximation of the marginal like-
lihood where the random effects are automatically integrated out. Maximum marginal likelihood
estimation with the Laplace approximation tends to be orders of magnitude faster but poten-
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tially leads to biased inference (Monnahan and Kristensen, 2018). In spite of the flexibility and
efficiency of TMB, however, the lack of capability of working in the Bayesian framework has
hindered the adoption of it for Bayesians. In the Bayesian framework, Bayesian statistical in-
ference is used extensively to model dynamics of single species, population dispersal, growth,
and extinction (Ellison, 2004). The software package Stan (Gelman et al., 2015), a probabilistic
programming language for Bayesian statistical inference written in C++ is attracting people’s
attention in many fields as an alternative to BUGS (Lunn et al., 2000) and recommended to be
widely applied in ecology due to its improved efficiency (Monnahan et al., 2017).

To best utilize the merits of both TMB and Stan, a new R package rmbstan (Kristensen, 2018)
was developed to allow users to make Bayesian statistical analysis with TMB models. It provides
MCMC sampling for TMB models while the integration of randoms effects can be calculated
either with Laplace Approximation (by specifying laplace=TRUE) or with Stan. Monnahan and
Kristensen (2018) conducts simulation studies and real case studies to compare the computational
efficiency of tmbstan with and without Laplace approximation and check the validity of Laplace
approximation. They found that enabling the Laplace approximation was less efficient than full
MCMC integration, but it is unclear whether this will typically be true. The case studies also
showed the Laplace approximation is not always met. Even though it is intuitive to apply tmbstan
to estimating fluctuating natural selection especially when prior knowledge on some parameters
is available, this has not been done to date. Therefore, there exists no guideline on whether
Laplace approximation should be used to achieve better efficiency especially when the statistical
model for estimating selection is extremely complicated. To answer this question, simulation
studies under different scenarios in different statistical frameworks are necessary.



Aims

Linking the sources of natural selection to the dynamics of evolution has been a major goal of
evolutionary biology, however, the lack of a unified framework to quantify the fluctuations in
selection accurately has hampered this progress. Previous empirical findings show that fitness
landscapes are not constant over time, and populations are evolving towards a continuously chan-
ging fitness optimum. A more statistically robust approach, however, is needed to be applied to
a wider range of species, populations, and traits. This thesis contributes to this end by show-
ing how current methods for estimating fluctuations in selection can be extended using a more
flexible statistical framework. Due to the flexibility of the method equipped with state-space
models and TMB, it can be extended to estimating fluctuating selection of life history for differ-
ent life cycle segments while identifying biotic and abiotic factors exerting selective pressures
and identifying which traits (egg-laying date or clutch size in our study), or combinations of
traits (potentially correlated), will be targets of the selection. The method can be alternatively
implemented in the Bayesian framework by taking prior information into account and using the
Bayesian inference tool tmbstan. Using long-term brood-based data from a great tit population
in the Netherlands, we hope to be able to answer the questions below:

1. Is there temporal variation, auto-correlation, and cross-correlation in phenotypic selec-
tion on the egg-laying date? (paper I, III)

2. What is the possible explanation for the observed decline in the frequency of double
brooding? (paper I, IT)

3. How selection operates on phenotypes differently in different selective episodes? (paper
1)

4. Which ecological variables drive the temporal variation in the phenotypic selection?
(paper III)

5. Is Bayesian inference made by tmbstan” comparable with frequentist inference for
estimating phenotypic selection and should Laplace approximation be used? (paper IV)

The diagram in Fig. 1 shows the connection and transition of the papers in my dissertation. To
be specific, paper II, III and IV are extended from paper I by asking specific questions listed
above that are not addressed in paper I. According to the modeling approach used in the study,
paper L, IIT and IV are grouped into "statistical model” and for paper II, it is "theoretical genetic
model”. Furthermore, Paper I and III are classified in the frequentist framework, while paper IV
in the Bayesian framework, as illustrated by different colors of the blocks in the last row of the
diagram.



Figure 1: A diagram showing how the papers in this dissertation are connected. Paper II, III
and IV are extended from paper I by asking specific questions listed above. Generally, paper
I, IIT and IV involve statistical modeling approaches and paper II theoretical genetic modeling
approach, as illustrated by the last row. Furthermore, the studies in paper I and paper III were
carried out in the frequentist framework, while paper IV in the Bayesian framework, as indicated
by the different colors of the blocks.

Paper |

Estimating fluctuating selection
using a time series model

Paper Ill Paper IV

Estimating multi-episodic Performance of Laplace approximation
selection in the context of estimating
while identifying selection agents fluctuating selection

Statistical model in frequentist Statistical model in Bayesian
framework framework




Methods

The central elements of our statistical methods are great tit data (paper I, II, III and IV), state-
space models (paper I, III, and IV), vector autoregression (paper I, III, and IV), zero-inflated
models (paper I, III), Template Model Builder (paper I, III, and IV), tmbstan (paper IV), and
evolution of double brooding (paper II).

The great tit study system
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Figure 2: Map of the park (National Park of
Hoge Veluwe in the Netherlands) where the
great tit data have been collected.

Figure 3: A great tit.

The great tit (Parus major, Fig 3) is 18-20g small passerine bird species widespread throughout
European woodlands and gardens. As a cavity nester, it readily accepts nest-boxes for breeding,
which allows monitoring of the whole population if a surplus of nest-boxes is provided (Harvey
et al., 1979). The study area (52°02° - 52°07’N, 5°51’ - 5°32’E in The Netherlands, Fig 2)
consists of mixed pine-deciduous woodland on poor sandy soils. From 1955 to 2015, more
nest boxes than needed were placed in the study area at approximately constant availability.
On average the ratio of nest boxes to breeding females was around 3:1 in a typical year. A
surplus of nest boxes is supplied so that the actual number of individuals that survive is generally
determined by selection and not by external limiting factors such as the number of nest sites.
During the breeding season from April to June/July, nest boxes were visited once per week. At
each visit, the number of eggs or nestlings was counted and nestlings were given metal leg rings
on day 7 and the parents caught on the nest using a spring trap. For some years, clutch or brood
size manipulation experiments were carried out, which possibly affected fledgling production or
recruitment probability, therefore, manipulated broods were excluded from our studies.

11



State-space models

A State-Space Model (SSM) is a time series model where observations are regarded as made
up of distinct components such as trend, seasonal, regression elements and disturbance terms
(Durbin and Koopman, 2012). A typical SSM consists of two equations:

Xt = g(x¢—1,€); (1)
yi = h(x¢,v), )

where equation (1) is a process model describing the relationship between unobserved states
with function ¢ and parameter ¢ and x; denotes the state at time ¢. The observation model in
equation (2) links the observation or measurement y; with state x; at time ¢ through function A
and parameter v.

State-space models are often used for analyzing complex ecological processes that can not be
observed directly, such as marine animal movement (Albertsen et al., 2015), population dynam-
ics (Wang, 2007) and animal behavior (Morales et al., 2004). It provides a natural paradigm
for ecosystem modeling (Pedersen et al., 2011). In spite of the flexibility of SSMs for estim-
ating the unobserved states while simultaneously relating them to various environmental (and
other) covariates of interest, these models and their implementations still have limitations arising
from underlying difficulties of likelihood computation and maximization for non-Gaussian and
nonlinear models. Johnson et al. (2008) utilized the computationally efficient Kalman filter to
compute the model likelihood but it is applicable only to linear Gaussian SSM formulations.
Jonsen et al. (2005) and McClintock et al. (2012) relied on Markov Chain Monte Carlo (MCMC)
techniques performed by sampling from the posterior likelihood of the parameters and the unob-
served states, but it is computationally expensive and comparatively slow. Pedersen et al. (2011)
examines and compares the estimation performance of three methods for fit of a theta logistic
model for population dynamics with simulated data, namely Hidden Markov Model (HMM), AD
Model Builder (ADMB) and the popular Bayesian framework of BUGS. It concludes that estima-
tion performance for all three methods are largely identical, while ADMB establishes computing
time superiority. The most state-of-the-art statistical tool named Template Model Builder (TMB)
that can be used for fitting state-space models will be introduced later.

Vector autoregression

Vector autoregression (VAR) is a stochastic process model used to capture the linear interde-
pendencies among multiple time series. It is an extension of the univariate autoregression model
to multivariate time series data and consists of a list of models that can be hypothesized to affect
each other intertemporally. All variables in a VAR enter the model in the same way: each vari-
able has an equation explaining its evolution based on its own lagged values, the lagged values
of the other model variables, and an error term.

The basic p-lag vector autoregressive (VAR(p)) model has the form:
Yt = C+A1yt—1 +A2yt—2 + - +Apyt—p +et>t = 17"'5Ta (3)

where each y; is a vector of length k, each A; is a k X k coefficient matrix and e; is a k x 1
unobservable zero mean white noise vector. Here I write a first-order VAR (VAR(1)) in a large
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matrix notation as

Y1, C1 ah a%,Q T ai,k Y1,t—1 €1t

Y.t C2 a%’l a%,z e aé,k Y2,t—1 €2.¢
=10+ . ) . +1 .- 4)

Ykt C CL}CJ aglc,g cee a;1c7k Ykt—1 Ck,t
Each variable (y1¢, 92,4, -+ ,Yk,¢) in the model has one equation. The current (time ¢) observa-
tion of each variable depends on its own lagged values as well as on the lagged values of each
other variable in the VAR(1). Vector (¢q, ca, - -+ ,¢i) is a k-vector of constants (intercepts). The
matrix consisting of ail and so on is called transition matrix or autoregressive matrix. Vector
(e1.t,€24,- - ,ex) is errors that are usually assumed to be multivariate normal distributed. Vari-
ables (y1,,Ya,t, -, Yk,¢) are cross-correlated either through the transition matrix or variance-
covariance matrix of (e ¢, €24, - ,€ex¢). To guarantee this VAR(1) process to be stationary, it

is sufficient to ensure that the eigenvalues of the transition matrix lie in unit circle (Liitkepohl,
2005; Wei, 2006).

Zero-inflated models

In ecological research, most count data are zero-inflated. In our analyzed data set, for example,
the response variable (number of chicks, number of fledglings, number of recruits) contain more
zeros than expected based on the Poisson or negative binomial distribution. A zero-inflated
model is a statistical model based on a zero-inflated probability distribution that can deal with
the excessive number of zeros. The common used zero-inflated models for count data include
zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-altered Poisson (ZAP)
and zero-altered negative binomial (ZANB) models. The latter two differ from ZIP and ZINB in
terms of the nature of zeros. ZAP and ZANB are two-part models that can deal with false zeros
(see Zuur et al. (2009) for the definition of false zeros). The negative binomial models (ZINB
and ZANB) can cope with overdispersion not only due to excessive numbers of zeros but also
due to extra variation in the count data. The main R packages for modeling zero-inflated data
include pscl, INLA, MCMCglmm, glmmADMB, mgcv, brms, gamlss and glmmTMB (Zeileis
et al., 2008; Rue et al., 2009; Hadfield et al., 2010; Skaug et al., 2013; Wood et al., 2016; Biirkner
et al., 2017; Stasinopoulos et al., 2017; Magnusson et al., 2017). Brooks et al. (2017) makes a
comparison between the packages and claims that glmmTMB is most appealing to users in terms
of the combination of speed and flexibility.

In our analysis, zero-inflated Poisson (ZIP) model was used to deal with the excessive num-
ber of zeros in the number of fledglings and zero-inflated Beta-Binomial (ZIBB) was used to
model the offspring viability (in our study offspring viability is defined as non-zero inflation
probability x offspring survival probability), in which there are excess zeros and the remaining
component (offspring survival probability) can be modeled with predictors instead of being a
fixed parameter. To be specific, a ZIP model consists of two components (equations (5) and (6))
corresponding to two zero generating processes. The first is governed by a binary distribution and
second by a Poisson distribution, which also generates zero counts. The two model components
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are described as follows with probability mass functions f:

fly=0)=m+(1—-me )
AVe A
flyly>1) =1 ~-m) . (6)

where the outcome variable ¢ has any non-negative integer value. The expected Poisson count is
denoted as A\ and 7 is the probability of extra zeros.

A ZIBB model (see Hu et al. (2018) for more details) also consists of two zero-generating pro-
cesses. One is again governed by a binary distribution and the other one by a Beta-binomial
distribution in which the probability p is a random variable drawn from a beta distribution para-
meterized by e and 3. The two components are given below:

0 T+ (1 = 7) foetabino (0|1, @, B); @)
f(y‘y > 1) = (1 - Tr)fbeta-bino(y|n7avﬁ); (8)
where n is the total number of events with any non-negative integer value and y is the number

of successes. 7 is again the probability of extra zeros. The probability mass function of a Beta-
binomial distribution fie(sino 1S given by:

€))

Soetabino (¥ | 7, a0, B) = <n> Bly+a,n—y+p)

y B(a,p) ’

which consists of a binomial function and a beta function B.

Laplace approximation to deal with random effects

Consider a hierarchical model where the data y depend on a parameter vector # and random
effects u, then maximum likelihood inference requires maximization of

L) = Poly) = [ Paty | )Pofu)du (10)

The evaluation of this integral proves often difficult. Various numerical or analytical approaches
were proposed to calculate the approximation of the integral. Among them, Laplace’s method
has been widely used to approximate likelihoods (Raudenbush et al., 2000). In standard Laplace
approximation, the natural log of the integrand is expanded in a second-order Taylor series and
higher order terms diminish with big sample size, the approximation to the likelihood is thus
given as

L*(0) o< det(|H(0)]) ™2 x Py {y | @(8)} Py {a(0)}, (1)
where

(0) = argmax Py(y)Py(u)

u
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and
2L
T ou?

(see Kristensen et al. (2016) for the review of Laplace approximation).

H(O In {Py(y)Po((0))}

I mentioned glmmTMB as an R package that can deal with zero-inflated models. In our analyses,
however, I used another R package named Template Model Builder (TMB, Kristensen et al.,
2016) instead of glmmTMB as a model fitting technique to benefit from the flexibility in model
formulation in TMB. The relationship between them is that glmmTMB is built on TMB and
provides a user-friendly interface similar to Ime4 for researchers who have difficulties with TMB
since TMB requires users to formulate models with C++. The core feature of TMB is that it
evaluates the integral with Laplace approximation. The procedure of using TMB to fit a statistical
model can be summarized into three steps. Firstly, the joint likelihood for the data, the fixed
effects, and the random effects are defined by the user as a C++ template function. Then the
package evaluates and maximizes the Laplace approximation of the marginal likelihood where
the random effects are automatically integrated out. This approximation and calculation of its
derivatives are achieved by using reverse-mode automatic differentiation (up to order three) of
the joint likelihood. At last, the approximated likelihood function and its derivatives are passed
to optimizers in R such as nlminb and optim.

The combination of reverse-mode automatic differentiation and Laplace approximation for high-
dimension integrals allows for the efficient fitting of complex (nonlinear, non-Gaussian, and
hierarchical) models with large multivariate data sets to perform parameter estimation (Fournier
etal., 2012). The performance of TMB is superior to ADMB (Kristensen et al., 2016) and thus is
gaining researchers to use it instead of ADMB to fit state-space models (for example Albertsen
et al., 2015; Cadigan, 2015; Albertsen et al., 2016; Berg and Nielsen, 2016). Another model
fitting tool that uses the Laplace approximation and is known to be computationally efficient is
INLA (Rue et al., 2009), but it is restricted to fit a class of models where the random effects are
Gauss-Markov random fields (Kristensen et al., 2016).

MCMC sampling from a TMB model

I mentioned in the introduction that tmbstan (Kristensen, 2018) as an R package developed for
MCMC Sampling from TMB model objects using Stan (Team, 2017; Carpenter et al., 2017),
is able to make efficient Markov chain Monte Carlo (MCMC) sampling for a broad range of
Bayesian models. It is worth noting that tmbstan not only provides TMB users with a possibility
of making Bayesian statistical analysis with Stan, but also takes advantage of the features of both
TMB and Stan by utilizing the flexibility of TMB in the model specification as well as the high
computational efficiency of Stan.

I have introduced that TMB uses the Laplace approximation to integrate random effects. How-
ever, Laplace approximation is not always accurate especially when the random effects u are
not Gaussian distributed. In addition, the higher-order terms in the Taylor series not necessarily
diminish as sample size increases in some special model classes (Raudenbush et al., 2000). In
a Bayesian analysis, MCMC integrates all parameters and this allows us to check the accuracy
of Laplace approximation in TMB. tmbstan is featured with an argument ’laplace’. When this
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argument is enabled, TMB would integrate random effects and Stan integrates the rest fixed ef-
fects. The accuracy of the Laplace approximation thus can be tested by comparing the posterior
distributions of the fixed effects with and without Laplace approximation enabled in tmbstan
(Monnahan and Kristensen, 2018).

The evolution of double brooding

For a great tit population, consider reproductive traits z; and zo, for example, z; is the laying
date of first brood and z5 is the liability of initializing a second brood. The phenotypic values 21
and z9 are assumed to be jointly multivariate normal. I also assume the genetic and phenotypic
variance-covariance matrix G and P of z; and zo, as well as the age-specific fecundity and
mortality rates for each phenotype, remain nearly constant for a few generations.

With above assumptions and let zZ; and Z; be the mean phenotypic values in a given generation,
then the change in mean phenotypic values from one generation to the next is given by

Az = GVInw(z,z), (12)

where V = (6%1, %)Tis the gradient operator, G is the additive genetic variance and covari-
ance matrix and w(Zz, Z2) is the mean of individual fitness taken over the phenotype distribution
of the population (Lande, 1982; Lande and Arnold, 1983; Caswell, 2006). The population re-
sponds to selection by moving uphill in the steepest direction that the selection gradient points

at, In w(z, z2), which is a vector of directional selection pressures (Lande, 1982).
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Main results and discussion

Zero-inflated observations

In our analyzed great tit dataset, the proportion of zero observations in the number of chicks,
fledglings, and recruits is 6.56%, 15.5%, 74.91% respectively. A zero-inflated Poisson model
is used by Chevin et al. (2015) to estimate selection for the same population and the number of
fledglings is taken as a fitness component. In the study, the zero-inflation probability is treated as
a parameter instead of a separate selective episode. From a biological viewpoint, it is reasonable
to assume that the complete brood failure is going though a selective process different from the
expected number of fledglings. Our statistical results in paper I and III also indicate that the
model where the zero-inflated observations were regarded as a separate selective episode acting
on laying dates report much better model fit than the models where zero-inflated probability is
taken as a model parameter.

Directional selection via complete brood failure

In paper I, the number of fledglings was partitioned into two fitness components, namely, the ex-
pected number of fledglings and the brood failure probability. The expected number of fledglings
can be recognized as a straightforward extension of the conceptualization of propensity fitness,
which is measured as expected rather than actual numbers of offspring (Brandon, 1978; Mills
and Beatty, 1979). The best model suggested directional selection through complete brood fail-
ure and stabilizing selection via the expected number of fledglings. The direction and strength
of selection via complete brood failure fluctuated over the course of study, but in most of the
study years (78%) the selection favors early broods implying that females that bred late relative
to the food peak were more likely to fail to raise any fledglings. Similarly, the offspring viability
at each reproductive stage, from egg to chick, chick to fledgling, fledgling to recruit was split
into offspring survival probability and the brood failure probability in paper III. The complete
brood failure was assumed to go through directional selection in the study. The results show that
selection favors early broods from stage egg to chick and implies again that early broods suffered
lower probability of complete brood failure, while laying dates show no effect on complete brood
failure probability from neither chick to fledgling nor from fledgling to recruit. Altogether, even
though there is a much higher proportion of zero observations in number of recruit than the other
episodes, directional selection operates on laying dates through complete brood failure only in
the early stage of a brood, from egg to fledgling.

Stabilizing selection via expected number of fledgling (and off-
spring survival)

The offspring mortality is the result of malnutrition due to the mismatch between the rearing
and the abundance of caterpillar peak, the main food of great tit chicks (Visser et al., 1998).
Therefore, in theory, the broods laid either too early or too late relative to the peak of food
resource would suffer high offspring mortality, which leads to stabilizing selection favoring the
laying dates that can synchronize the chicks rearing with a narrow window of food peak. Indeed,
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the analyzed great tit data set supports the best model in paper I with stabilizing selection against
the model with directional selection through the expected number of fledglings on laying dates. It
is thus reasonable in paper I1I to assume that the offspring mortality in consecutive reproductive
cycle segments from egg to chick, chick to fledgling and fledgling to recruit all experienced
stabilizing selection on laying dates. The properties in stabilizing fitness function (the height,
location, and width) turn out to fluctuate over the course of study. The episode from chick to
fledgling experienced the strongest selection implied by the smallest estimate of the width of the
fitness function, compared to the other two selective episodes. Even though these three properties
are assumed to be a VAR(1) process, it turns out that only the optimal laying date and width of
fitness function are temporally auto-correlated and no significant cross-correlation between the
fitness properties are found. It is thus safe to conclude that the annual optimal laying date and
width of fitness function follow an AR(1) process respectively. The auto-correlation of optimal
laying dates is estimated to as large as 0.49 and for the width of the fitness function, it is 0.64.
Even though with such strong auto-correlation estimated, the simulation studies in paper I and
IV suggest that the auto-correlation is probably underestimated. The temporal variation in the
optimal laying dates for the different selective episodes from egg to recruit is estimated to be
the same, while the variation in the width of fitness function from egg to chick is almost four
times larger than the other selective episodes. In addition, the episode from fledgling to recruit
estimates a much early mean optimal laying date (18.7 + 3.1) compared to episode from egg
to chick (40.7 & 2.6) and chick to fledgling (33.5 £ 2.4). The annual overall optimal laying
date calculated by maximizing the multiplication of the fitness (only for offspring survival) for
the three episodes shows a close track with the optimal laying date for the third episode, from
fledgling to recruit. The offspring viability (multiplication of offspring survival and non-zero
inflation probability) from fledgling to recruit is also the determinant of recruit value for a specific
brood and dominating the other episodes for annual reproductive success contribution. All of
these imply that the cue used for timing of breeding is only available in the early breeding season,
this might result from that climate change is not at constant pace through the entire breeding
season, or other factors than climate have larger effects on the population outside the breeding
season.

Ecological drivers of selection

One of the study aims of paper III is to identify causal mechanisms underlying temporal variation
in the strength and direction of phenotypic selection on laying dates and compare the effect sizes
of selective agents between the life cycle segments. We found no correlational selection on laying
date and clutch size. Clutch size and laying date are negatively correlated but the correlation is
weak. We found neither adult survival cost to lay broods early nor to lay big broods. The
beech crop index (BCI) have lager effects on offspring survival from fledgling to recruit than
from egg to fledgling, where BCI shows almost no effect. Higher BCI level is found to be
positively correlated with higher female survival. Bigger clutch size is associated with higher
offspring survival from egg to chick, while negatively affects offspring survival from chick to
recruit. The size of the effect reduced along with the life cycle segments from egg to recruit.
We also found that bigger clutches suffered a lower probability of complete brood loss from
egg to chick and chick to fledgling, the effect is much stronger for the former. Not surprisingly,
clutch size is negatively correlated with population density. Higher population density is found
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also linked to higher offspring survival from chick to fledgling. As expected, higher population
density is linked to earlier optimal laying date for offspring survival, the effect is especially
strong for the episode from fledgling to recruit. The food resource peak is positively correlated
with optimal laying date for each episode. In an average environment and year, the stabilizing
selection strength is strongest for the episode from chick to fledgling. Higher spring temperate
is associated with the wider fitness function, which suggests a weaker strength of selection.
Early laying date is also linked to lower risk of complete brood loss from egg to chick but early
caterpillar peak date is linked to a higher risk of complete brood loss from chick to fledgling.
Breeding females differ to each in the clutch size they lay, also in the ability to survive, the
ability to rear offspring successfully, and the ability to protect their broods against complete loss
from egg to chick. The difference is relatively more significant for the episode from chick to
fledgling.

Decreasing probability of double-brooding

The double-brooding behavior reported in our study population has been less common over the
study years and the probability that a female breeds twice in a breeding season is related to
the timing of her first clutch relative to the peak in caterpillar abundance (Husby et al., 2009).
Indeed, we estimated the phenotypic correlation between the breeding time of first brood and
liability of producing a second brood to be -0.302. Using a genetic model with parameter values
estimated from the study population and a large cost of double-brooding, we show that the ad-
aptive topography of mean population fitness exhibits two peaks at a location where there is no
double-brooding or there is 100% double-brooding and the observed mean reproductive traits are
overall moving towards the adaptive peak where there is no double-brooding. As long as there
is no strong negative genetic correlation between the breeding time of first brood and liability of
producing a second brood, the genetic model provides another possible explanation for the ob-
served decline in the frequency of double brooding in this population in addition to the empirical
study.

Laplace approximation in tmbstan

When using R package tmbstan for Bayesian inference, the built-in feature Laplace approxim-
ation to the marginal likelihood with random effects integrated out can be switched on and off.
Both the simulation results and case study result in paper IV show that the Laplace approxima-
tion is accurate. In addition, turning on Laplace approximation in tmbstan would probably lower
the computational efficiency. I conclude that only when there is a good amount of data, both
tmbstan with and without Laplace approximation are worth trying since in this case, Laplace
approximation is more likely to be accurate and may also lead to slightly higher computational
efficiency. The transition parameters and scale parameters in a VAR(1) process are hard to be es-
timated accurately and increasing the sample size at each time point does not help in estimation,
only more time points in the data contain more information on these parameters and make the
likelihood dominate the posterior likelihood, thus lead to accurate estimates for them.
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Conclusions and perspectives

In this thesis, we have built a statistical framework to measure fluctuating and potentially tem-
porally auto-correlated selection, extended the framework to include more life cycle segments
while taking selective forces of variation in selection into account. A simpler statistical model
for estimating fluctuating selection has also been implemented in the Bayesian framework and by
which we conducted simulation studies to evaluate the performance of Laplace approximation,
one core feature of the Bayesian inference tool tmbstan. We also developed quantitative genetic
models to provide a possible explanation for observed decreasing double-brooding frequency in
the study population.

Either from a biological point of view or the result of statistical analysis, we found that offspring
viability in the Dutch great tit population is ongoing two separate selective processes, both of
which produce zero chicks/fledglings/recruits for a given brood. The nest failure experienced
temporally varied directional selection and the selection generally favors early broods. The ex-
pected number of fledglings, as well as offspring survival given that the brood is successful,
experienced stabilizing selection. The maximum value, optimal laying date, and width of the
fitness function tend to fluctuate and auto-correlate temporally. Mother survival cost of laying
eggs early is not detected. Clutch size increased along with a shift towards earlier laying date,
but the effect is too small (one day earlier the laying date is, 0.0635 bigger the clutch would be)
to produce a noticeable increase in clutch size even though the mean laying date has advanced
around 19 days in past 50 years. We find no evidence of correlational selection on laying date
and clutch size. The ecological variables, including beech crop index (BCI), population density,
food peak date tend to affect one selective episode and another, in different sizes and directions.
The recruit probability is the determinant of recruit value and reproductive success. The seasonal
reproductive success contributed by second broods is diminishing when the first brood is laid too
late provided there is no strong negative genetic correlation between the laying date of first brood
and liability of attempt second brood, which provides a possible explanation for the observed de-
creasing frequency of double-brooding. In the state-space model, the parameters in the transition
matrix and variance-covariance matrix of unobserved states are of our main interest, which are
also the most difficult parameters to estimate. The simulation study in the Bayesian analysis
shows that to estimate these parameters accurately, it is necessary to increase the time points in
the data instead of the sample size at each time point. Laplace approximation would probably
slow down the computational efficiency of MCMC especially when there is a small sample size
in the data. The rule of thumb might be using Laplace approximation when you have more than
50 time points in the data.

Thanks to the new model-fitting techniques TMB and tmbstan, using state-space models to es-
timate a large number of parameters and random effects in complicated biological processes
or ecological systems become possible even in cases where the state-space equations are highly
nonlinear or non-Gaussian. By treating the phenotypical selection process as a time series and al-
lowing a flexible covariance structure for the Gaussian fitness parameters, our method is capable
of modeling different forms of variation and autocorrelation in phenotypic selection. Besides
VAR(1), it can also accommodate other autoregressive structures, such as VAR(p) (p-order vec-
tor autoregressive process) and vector ARMA(p,q) processes. Within species, there is substantial
geographic variation in the response to climate change, therefore, another direction of extending
our studies could be estimating the temporal-spatial variation and correlation in fluctuating se-
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lection and investigating the causes of geographic variation in selection within species to get a
better understanding of avian responses at a broader geographic scale.

Although our studies have developed applicable statistical tools for the measurement of natural
selection on reproductive traits (breeding time and clutch size) through life cycle segments, how-
ever, the relationship between the timing of breeding and breeding performance is still unclear.
In our studies, the clutch size has no noticeable increase in the population with a temporal shift
towards earlier egg-laying. We also found no evidence of adult survival cost being laying early
and selection through complete brood failure favors early broods. The probability of initializing
second brood is also decreasing with delayed first brood. Take all these together, there seems no
reason not to advance laying date of first brood to match the seasonal breeding time with food
abundance, which is not happening in reality. One explanation could be that the timing of laying
is adapted to other factors besides the timing of food supply for the chicks, or the birds are just
not capable enough to track the cues of climate change. Another missing piece in our analysis is
the social interaction between the phenotype (the laying date) of breeding females and males and
the phenotypes of the species they associate with. At last, developing a mechanistic and theoret-
ical understanding of the relationship between reproductive decisions and breeding performance
as well as the physiological basis for these relationships are beyond the scope of our studies, but
should be top priorities in extended studies since they are essential for linking the responses of
birds to climate models and predicting long-term change in populations.
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1 | INTRODUCTION

Fluctuating selection resulting from environmental variation has
been of long-lasting interest. Empirical and theoretical research have
documented that natural populations respond to varying selection
through various mechanism including conventional Darwinian ge-
netic evolution (Lande & Shannon, 1996), evolution of phenotypic
plasticity (Scheiner, 1993; Van Tienderen & Koelewijn, 1994), evo-
lution of genetic polymorphism (reviewed by Hedrick, 2006; Bell,
2010), genetic variance (Barton & Keightley, 2002), evolution of the
phenotypic variance (Zhang & Hill, 2005) including diversifying bet-
hedging (Bull, 1987; Cohen, 1966; Svardal, Rueffler & Hermisson,
2011) or combinations of these response modes (Tufto, 2015).
Importantly, the relative magnitudes of these different responses
depend on the temporal autocorrelation in selective optima. Even
though the phenotypic traits typically evolve through natural se-
lection to match the environmental conditions to maximize fitness
(Futuyma, 2006), phenotypic adaptation through genetic evolution
is limited by the amount of genetic variance in the trait under selec-
tion, which might lead to mistiming between the mean phenotype
and the phenotypic optimum (Lande & Shannon, 1996). Adaptive
tracking through phenotypic plasticity acting in conjunction with
genetic evolution may also be limited by factors such as imperfect
cue reliability (Post & Forchhammer, 2007; Gienapp, Reed & Visser,
2014) or parental energetic costs (Visser, Marvelde & Lof, 2012;
Visser et al., 2015).

There are few studies estimating the temporal variability and
autocorrelation of phenotypic selection in spite of the importance.
The variance in phenotypic selection in previous studies was usually
estimated by computing the variance of the strength of selection
using selection gradients estimated separately at each time point
(reviewed by Siepielski, DiBattista & Carlson, 2009), which reflects
both sampling error and real variation in selection (Morrissey &
Hadfield, 2012). Among the previous empirical studies accounting
for the sampling error of variation, Calsbeek (2011) presented a
nonparametric analysis in exploring the variation of fitness surfaces
over time or space, but such nonparametric estimates are difficult
to relate to parameters appearing in theoretical models. In contrast,
using a log-quadratic generalized linear mixed model (GLMM) with a
random effect on the regression slope implemented using integrated
nested Laplace approximations (INLA) (Rue, Martino & Chopin,
2009), Chevin, Visser and Tufto (2015) estimated yearly fluctua-
tions and autocorrelation in optima of a Gaussian fitness function.
However, INLA and GLMMs in general are restricted to cases where
the predictor is linear in parameters and random effects. Using in-
stead the more flexible framework of Template Model Builder (TMB)
(Kristensen, Nielsen, Berg, Skaug & Bell, 2015), Gamelon et al. (2018)
fitted a model of fluctuating selection via several non-overlapping
selection episodes with nonlinear random effects added directly
on the location of the fitness optima and on the peak of the fitness
function. This model form is not feasible within the framework of
INLA or GLMMs (see Gamelon et al., 2018, Appendix A for a tech-
nical discussion).

Here, we extend the approach taken in Chevin et al. (2015) and
Gamelon et al. (2018) in several new ways. First, instead of assuming
a fixed zero-inflation parameter for modelling the number of fledg-
lings as in Chevin et al. (2015), we model the zero-inflation proba-
bility using a separate linear (or nonlinear) predictor. This leads to
a model with selection via zero-inflation and via the Poisson mean,
although occurring during the same interval. As with multi-episodic
selection more generally (Gamelon et al., 2018), selection through
two episodes can involve the same or different biological processes.
Second, in addition to random effects on the peak and location of
the fitness optimum as in Gamelon et al. (2018), we also allow the
width of the fitness function to vary between years, with all three
properties of the Gaussian fitness function jointly following a vector
autoregressive process. Such variation in the width is of theoretical
importance for the evolution of the phenotypic variance (Zhang &
Hill, 2005) and for the evolutionary stability of the additive genetic
variance-covariance matrix (Revell, 2007). Third, instead of treating
the total number of fledglings from all broods laid by a female in
a particular year as the sample unit and estimating stabilizing se-
lection on onset of breeding via its effect on the sum of number
of fledglings from all broods as in Chevin et al. (2015), we treat the
number of fledglings from each brood as the sample unit and fit the
model under the assumption that the expected number of fledglings
depend on the laying date according to the same Gaussian fitness
function for all broods. In addition to increased statistical power, this
has the advantage that the parameters relate directly to theoreti-
cal models for the joint evolution of multiple brooding and onset of
breeding (Tufto, Cao and Visser, submitted manuscript). Fourth, as
an alternative to stabilizing selection, we allow each episode (here
selection via zero-inflation and via the Poisson mean) to instead in-
volve directional selection. As in Gamelon et al. (2018), we imple-
ment our method using TMB (Kristensen et al., 2015), an R package
providing a comprehensive framework for fast fitting nonlinear,
complex, latent variable models.

2 | MATERIALS AND METHODS

2.1 | Study population

The data analysed come from a natural population of great tits
(Parus major) at the Hoge Veluwe National Park in the Netherlands
(52°02" — 52°07'N, 5°51’ — 5°32' E). Female great tits usually start
reproduction in the second calendar year of life (Perrins, 1979)
and are capable of producing a second and very rarely, a third
brood in a season. The analysed dataset consists of 5892 records
of 3257 females breeding in 61 years from 1955 to 2015. Unlike
the previous studies on the same population (e.g. Reed, Jenouvrier
& Visser, 2013), we kept the data from the 1991 breeding season
when a late frost led to a very late caterpillar food peak (Visser,
Noordwijk, Tinbergen, & Lessells 1998) and we expected a very
late optimum estimate for this breeding season. Laying dates are
presented as the number of days after March 31 (day 1 = April 1,
day 31 = May 1). The number of fledglings for each visited brood
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was counted and the mother of each brood was identified (3257
breeding mothers in our analysed data). The average number of
breeding records per known female was 1.81. See Supporting
Information for more details on study population and fieldwork

procedures.

2.2 | Model formulation

We formulated a statistical model that takes into account temporally
fluctuated stabilizing selection and used laying date as the focal trait
that selection operates on. We also considered alternative models as-
suming fluctuated directional selection. We take the number of indi-
viduals surviving to fledglings as the measure of fecundity component
of fitness and it is assumed to follow a zero-inflated Poisson distribu-
tion instead of a Poisson distribution due to the high probability of
clutch failure (around 15.7% in our analysed dataset, clutch failure in
this study means that no single chick survived to fledgling). In addi-
tion, previous studies showed (e.g. Reed et al., 2013; Townsend et al.,
2013) that the relative contribution to fitness from each brood, at in-
dividual level, is determined by the food abundance at the time each
brood is raised. We therefore assume that the expected number of
fledglings and the probability of clutch failure potentially depends on
laying dates in the same way for first, replacement (first broods failed)
and second (first broods succeeded) broods via the same Gaussian
fitness function. We present our approach using selection on the
number of fledglings, but it can be applied to any selection episodes,
such as viability, fertility selection or overall selection through lifetime
fitness for species with non-overlapping generations.

We assume that the number of fledglings Y; (i = 1,2,...,n) from
the ith brood follow a zero-inflated Poisson (ZIP) distribution. Such
random variables can be represented as a product Y; = I,X; where

I;lp; ~Bernoulli(1-p;),
(1)

Xill;=1,w; ~Poisson(w;).

Here, p; is the probability of zero-inflation (complete brood fail-
ure), w; is the Poisson mean and i is the index for all of the broods in
our analysed dataset, i = 1,2,...,5892. Using the law of total expecta-
tion, the overall fitness contribution from brood i is then

E(Y;|p;, w;) =EXil;|p;, w;)
=EXli1p, wi, ;= 1)P(l; = 1)+ EXXl;1p;, w;, ;= 0)P(1;=0) (2)
=EXll;=1, w)E(;|p)).

The decomposition of the left-hand side into the two factors on
the right-hand side shows that the zero-inflation part I; can be inter-
preted as a separate selection episode, which we refer to as episode
P for short in this study. Similarly, the Poisson part X; is referred to as
episode W in the rest of this paper.

We consider two selection modes: fluctuating stabilizing selec-
tion and fluctuating directional selection. In the fluctuating stabiliz-
ing selection model, the zero-inflation probability p; and the Poisson
mean w; are determined by the same process, driven by deviation

from the optimal onset of breeding. In addition, we assume that p;

is linked to covariates of interest via a logit link function while for w;
via a log link function. Therefore, logit(1—p;) and Inw; are given by
models of the same form:

(7 -2
|ogit(1—p,»)=n;"2— :7(,? +1, €3 ®)
T 2(eM)?
and
(Z_’,I(H))Z
@ _ T Twt
In Wi:"wa.t_m ej- (4)
et

Here, ",(:f)’ ﬂff and r/‘(:';), t = 1,2,..,61 are parameters determining
maximum fitness (indicated by superscript a), optimal laying dates
(indicated by 6) and widths of fitness function (indicated by w) of
brood i in year t respectively for logit(1—p;). Similar explanations
apply to the equation of Inw;. The variable z; is the laying date of the
ith brood. The term ¢ ~N(0,1),j = 1,2,...,J (where J is total number of
unique females) is a random effect included to model extra variation
between the mothers and assumed to be same for the two episodes,
but the magnitude of the effects on the two episodes are potentially
different, subscript p,w thereby allow standard deviations of mother
effect r;”, 7 to differ between episode P and W.

The maximum fitness, optimal laying date and width of fitness
function in the two episodes are assumed to have a constant dif-

(@) _ (@) ) _ (0 (@) _ (@)
wt = Mot + Cor My = Mt + cyand N +c,

) and we therefore model né"t) ;1‘(:’2 and n:)";’ by the three stochastic

ferencec,, c;andc, (1

processes

Wii) =o5+ay,
© _5
g =0s+0, (5)
ni":) =+,
where index s takes values from (P,W) indicating the two episodes
respectively. Parameters a,, ,, @, are the means of the three pro-
cesses. More assumptions in terms of stochastic processes a;, 6, w;

are made. They are assumed to follow a first-order vector autore-

gressive VAR(1) process

at g
0, |=®| 6,1 |+w, (6)
@t W1

where @ is a 3 x 3 matrix of autoregressive coefficients and w; is multi-
variate normal zero-mean white noise with variance-covariance matrix
X. Correlation between a;, 6, and w, are determined through off-diago-
nal entries in both X and ®. Possible model alternatives are obtained by
making @ and X both diagonal, such that a;, 6, and w, simplify to indepen-
dent AR(1) processes. If all entries of ® are zero, a;, 6; and w, are inde-
pendent and identically distributed white noise processes. Alternatively,
we model each episode as fluctuating directional selection, which can be
described by a GLMM with annual random intercept and slope:

(0)
pt
(0)
wit

logit(1—p;) = é°’+u +(ﬂx(71)+“st))zi+7,;"€;'(i)5

@)

1) 1)
+ (ﬂ&,) +u\(/v,)t)z" + )€

Inw; = &?)+u i



1404 Methods in Ecology and Evolution

CAOETAL.

In this model, ﬂ,(,o) and ﬂf,i) are fixed intercept and slope respec-
tively for episode P, random intercepts and slopes are denoted by u‘pot)
and ug, which account for the variation among years. These random

effects are assumed to be multivariate normal:

( (00p)*  Pp00,01, ))
\ ) .
PpOopCrp  (o1,)

Similar explanation applies to the alternative model for episode W

P
SIS
es
~—
2
=z
/N
[=]

(Inw). As before, z, 7", 77 and ¢ have same interpretations as that in
Equations 3 and 4.

Since our statistical method relies on model selection, the candi-
date models we tested include different assumptions for a;, 6; and e, or

different selection patterns for episode P and W, among many others.

2.3 | Model selection and inference

All model alternatives were implemented using R package TMB.
Briefly, based on a C++ function computing the joint density of the
observed data and unobserved random effects, TMB computes the
Laplace approximation of the marginal likelihood of the observed
data. This is then maximized numerically to obtain maximum likeli-
hood estimates of model parameters and approximate standard er-
rors based on information theory.

We fitted in total 43 different alternative models. Among the
candidate models, each selection episode P and W maybe equipped
with either directional selection or stabilizing selection. For the
directional selection mode, we tested models with only fixed ef-
fects, with random intercepts and with both random intercepts and
random slopes. For the stabilizing selection mode, the fitness pa-
rameters a;, 6, and w; were either considered as constant, as three
independent AR(1) processes, as jointly following a VAR(1) process,
or combinations of them.

Our model selection relies on the measurement of data sup-
port for the different models which vary in degree of complexity.
We use Akaike information criterion (AIC; Akaike, 1973) based on
the observed Fisher information as a model selection criterion (see
Burnham & Anderson, 2003 for more details about AIC). The model
with lowest AIC value was selected as the best model and the esti-
mates of all parameters together with their approximate standard
errors were obtained. All the source code of this study are archived
and accessible online.

3 | CASE STUDY RESULTS AND
DISCUSSION

3.1 | Model selection procedure

As introduced in section 2.3, in total, 43 candidate models were
tested. For brevity, only the selected model and its neighbour mod-
els are listed in Table 1. The model numbering is consistent with the
model updating sequence in our R code. Updating procedure from

model 1 to model 8b can be found in Supporting Information. Based
on the best model selected (model 9), the differences of AIC value
for each model from the selected model are calculated and listed in
column AAIC, along with the difference in the number of parameters
(Ap). Model 9 with directional selection in episode P and stabilizing
selection in episode W is the best model.

Model 10 with directional selection via both episode P and W
does not improve the model fit. To guarantee that model 9 is indeed
the best one among all the candidate models, model 11 to model
14i are neighbour models updated around model 9 for comparison
purpose, but none of them improves the model fit. It is worth not-
ing that the performance of model 14g with fixed w; is only slightly
worse than our selected model, implying a constant w, assumption
in our study would be reasonable. The estimates of parameters from
the selected model (model 9) and from model 14g with constant w;
are listed in the Supporting Information for comparison.

We also carried out a simulation study (see Supporting
Information) to explore the power of our model selection technique
in identifying our best model especially against model 14g and 14i.
We concluded from the simulation study that our model selection
technique has around 80% probability to distinguish the model with
fixed w, from the one with random w; when the variation scale of w;
being 0.2. This further implies that model 14g might be as good as
our selected model. The simulation study also showed that a weak
mother effect (e.g. the standard deviation of random mother effects
is 0.05) is hard to detect. However, since our selected model reports
6.44 lower AIC values with the estimate of standard deviation of
mother effects being 0.041 in episode W, we have confidence in the
mother effects in the underlying ‘true’ model. The remaining chal-
lenge is that there is no strong evidence for model 9 outperforms
model 13, we thus should be cautious when interpreting estimates
of correlations between the errors for a;, 6, and ;.

The selected model (model 9) has stabilizing selection via epi-
sode W, directional selection via P with annual correlated random

intercepts and slopes given by

(0) (1), (1) m
ot +< o +up,t>zi+TD €j(i)s

(a) (Z; - ”\Ef.’t(i) )2 ®)

160

logit(1—p;) = f,o) +u

INW; =1, = o

2 (e”wm )2

Furthermore, the selected model supports VAR(1) process of a,
, 0, and w, in the episode W. However, the three processes are cor-
related through errors instead of the transition matrix ®. Mother
effects are significant in both episodes. More details about the pa-
rameter estimates are given in next section 3.2.

3.2 | Directional selection via probability of
clutch failure

Our selected model (Equation 8) indicates directional selection via epi-

) The estimates

sode P with annual random intercept (uLOt)) and slope (upt
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TABLE 1 A part of model selection
procedure of phenotypic selection on
breeding time of great tits. The order of
models listed below is accordance with 9 0
the order of models fitting, from model 9
to 14i. AAIC and Ap is the difference in
AIC and number of parameters p between 10
each model and the best model (model
9). The column of description gives the
details of the updated model based on 1
the previous ones. For simplification,
the probability of successful brooding
is denoted as episode P and the mean
number of fledglings episode as W. The 13 0.54
updating procedure from model 1 to
model 8a can be found in Supporting Info

Model AAIC

104.11

4.075
12 14.32

Ap Description

Directional selection via episode P and stabilizing selection via episode W

0 The selected model formulated as Equation 8

Directional selection for both episode P and W

=5 The model formulated as Equation 7 with correlated ran-
dom intercepts and slopes

Model 9 is the best model so far, test neighbour models with minor changes based on model 9

7 Add all entries of ® back

-3 Keep only significant entries in @ and significant correla-
tions between the errors for a;, 6, and w;

=2 Keep only significant correlations between the errors for
a, 0; and w;

Model 9 is still the best model so far, test models with all possible specifications for a;, 6, and w,,

and remove mother effect from each episode

14 210.47
14a 203.98
14b 96.99
14c 85.47
14d 24.84
14e 28.64
14f 71

14g 3.27
14h 211
14i 6.44

TABLE 2 Estimates (standard errors) and corresponding 95%
confidence intervals of model parameters from the selected model
(i.e. model 9 of Table 1, only for selection via the probability of
successful brooding)

Parameter = Meaning Estimate (SE) 95% ClI

ﬂéo' Fixed 2.946(0.220) (2.515,3.377)
intercept

ﬁél' Fixed slope -0.025 (0.005) (-0.035, -0.015)

o1y SD of ran- 0.032 (0.004) (0.024, 0.040)
dom slopes

7 SD of mother  0.701 (0.092) (0.520, 0.881)
effect

Po Correlation -0.827(0.054) (-0.933, -0.720)
between
random
intercepts
and slopes

of parameters of our interest are listed in Table 2. We estimated the
fixed slope, the mean of the annual selection gradient to Al(,l) =-0.025
(red dashed line on the right panel of Figure 1). Given a standard de-
viation of the random slopes estimated to ,,, = 0.032, corresponding
to selection for early laying 78% of the time, the distribution of selec-
tion gradients is shown with the black line in the right panel of Figure 1,

-6 Change random «; into fixed, 6; and w, are random

-4 Change random «, into fixed, 6, and w, are AR(1)

-6 Change random 6, into fixed, a; and w, are random

-4 Change random 6, into fixed, ; and w, are AR(1)

-4 Change random w;, into fixed, a; and 6, are AR(1)

-2 Change random ; into fixed, VAR(1) ; and 6,

=il Change random w;, into fixed, VAR(1) a; and 6,, add correla-
tion to the errors of a; and 6,

-3 Change random w; into fixed, VAR(1) «; and 6, with signifi-
cant entries in @, add correlation to the errors of &, and 6,

=il Remove mother effect from episode P

-1 Remove mother effect from episode W

which implies that over 22% of the study years experienced positive
selection, therefore, favoured late broods. The left panel of Figure 1
shows the annual selection gradient together with error bars represent-
ing + one standard error. The selection favoured early broods in 82%
(note that the 78% is obtained with selection distribution while 82%
with temporal estimated selection) of the study years, as can be seen
from the left panel that most of the selection gradients fall below O.
This result agrees with the finding from Reed et al. (2013) that fe-
males that breed late relative to the food peak (influenced by tempera-
ture, see Visser, Holleman and Gienapp (2006)) were more likely to fail
to raise any fledglings. Perrins (1965) states that there is a higher pro-
portion of predation in the later part of the season and the young of
the later broods are more vulnerable to the predators since the young
in the later broods are more noisy and lighter. Maziarz, Wesolowski,
Hebda, Cholewa and Broughton (2016) shows that nest losses are
mostly due to predation (69% nest failures of a great tit population in
Poland) and the risk of nest failure varied with nest cavity attributes.
To explore which biotic and abiotic factors best explain the sign and
variation in annual directional selection via the probability of suc-
cessful brooding, more data information concerning these factors are
required and this would be one among other interesting expansions
of this study. In this selection episode, mother effects contribute to
explaining the variation of successful-brooding probabilities and the

estimate of the standard deviation r;" is 0.701, as shown in Table 2.



1406 Methods in Ecology and Evolution

CAOETAL.

< <
S S
o o
—_ N o
o 2 S
Q © o
S _
@
§
T oA - -F- © - the estimated fixed slope
S A(1)
" B, =-0.025
g N N
& S S
w9 T
= UM LR Tl L e T | Tt ]
X —
- < <
o I € S
s S s
€
Q €
e © ©
E o - o
o S =
c T T
k] -
8
s 3 8
® e 7]
S S A
] ]
T T T T T T T T T T T T T T T T T T T
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 00 02 04 06 08 10

Year

Distribution of selection gradients

FIGURE 1 Annual directional selection gradient (left panel, defined as the sum of the fixed slope and annual random slope) associated
with error bars representing one standard error and the distribution of it (right panel) for episode P (selection on laying date via the
probability of successful brooding). The red dashed line on the left plot is an indication of O and on the right plot is estimated fixed slope

(-0.025)

3.3 | Stabilizing selection via the mean
number of fledglings

Our selected model indicates that stabilizing selection acts via
the mean of the Poisson component. Parameter estimates of the
Gaussian fitness function in Equation 4, and the estimates for the
parameters involved in the VAR(1) a,, 8, and w;, along with their con-
fidence intervals are shown in Table 3.

The estimates of the mean of maximum fitness (@) and optimum
(9) are 2 (exponent with base e approximates to 7 fledglings) and
18.227 (approximately 18th of April) respectively. Our estimate for
the width of the fitness function is much wider than that from Chevin
et al. (2015) (47.395 vs. 24.11 days), in which the sum of the fledg-
lings from multiple broods instead of the single brood was treated as
the sample unit and the lay dates of only first broods (with a much
narrower range) were used. We doubt that the distribution of this
summation of multiple broods is well approximated by a Gaussian
function and therefore we modelled the number of fledglings from
each brood separately, and the second broods were laid in the late
breeding season and this might be the reason of a wider fitness func-
tion being estimated with our selected model.

The estimates of the standard deviation of «;, 6; and w; are 0.176,
21.180 and 0.205 respectively. The estimate of standard deviation

for 6, is slightly larger than that from Chevin et al. (2015) (21.18 vs.
11.3 days) and this might partly result from the different datasets we
used. In Chevin et al. (2015), the data before 1973 were excluded
from their analysis and we therefore also fit the selected model with
data only after 1973 for a fairer comparison. It turned out that the
estimates with both full and partial datasets are quite close, while
the estimates with full data generally have less uncertainty (narrower
%95 confidence intervals). The detailed comparison can be found in
Supporting information. The estimated variance in w, (0.042) trans-
lates to a coefficient of variation for e’ of Vet042 _1 = 0.207, that
is, quite large fluctuation in the width of the fitness function. When
conducting model selection we fitted a model with fixed w, (model
14g in Table 1) over study period, however, it turned out the model
fit did not improve much when w, is taken random as in our selected
model. In addition, by comparing the standard deviations of parame-
ter estimates from the models with fixed and random w, reported in
Supporting Information, we find that uncertainties of parameter esti-
mates are comparable. These imply that the whole analysis would not
change much if in our study the constant w, assumption was made.
The autocorrelation estimates of a; (,,) and 6, (¢,,) are 0.334
and 0.524, respectively, but w; is not autocorrelated in our selected
model. The estimate of ¢, in Chevin et al. (2015) was 0.2472 with
a wide 95% confidence interval (-0.1745, 0.626). While our selected
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TABLE 3 Estimates(standard errors) and corresponding 95%

confidence intervals of model parameters with the selected model

(only for selection via the mean number of fledglings)

Parameter Meaning Estimate (SE)

a Mean of pro- 2.000 (0.036)
cess r]m

0 Mean of pro- 18.227 (5.826)
cess "S)t

e? (days) Mean ?)f pro- 47.395 (3.234)
cess el

You SD of a; 0.176 (0.024)

Yoo SD of 6, 21.180(3.422)

Yo SD of o 0.205 (0.049)

Do Autocorrelation  0.334(0.122)
of o,

Do Autocorrelation  0.524 (0.110)
of 6,

Oy SD of errors 0.166 (0.023)
of a;

oy SD of errors 18.034 (2.808)
of 6,

G, SD of errors 0.205 (0.049)
of w;

P Correlation -0.592(0.125)

between the
errors of a;
and 6,
Puw Correlation -0.357(0.287)
between the
errors of a;
and w;
Pow Correlation -0.307 (0.254)
between the
errors of 6,
and w;
o SD of mother 0.041(0.013)
effect

FIGURE 2 Position of optimal laying
date over study period from 1955 to
2015. The estimated movement of optimal
laying date from the selected model is
shown with solid blue line, along with

its 95% confidence interval (dashed blue
lines). The black dots are the observed
within-year mean laying dates

Optimal laying date, mean laying date

95% ClI
(1.929, 2.071)

(6.808, 29.647)
(41.056,
53.734)

(0.129, 0.224)

(14.473,
27.888)

(0.110, 0.300)
(0.094, 0.574)

(0.310, 0.739)
(0.120,0.212)
(12.531,
23.538)

(0.110, 0.300)

(-0.837,

-0.34¢6)

(-0.920, 0.206)

(-0.806, 0.191)

(0.015, 0.066)

model reported a significant and larger estimate of ¢, , with narrower
confidence interval (0.310, 0.739). With the result from the simula-
tion study, even this larger estimate may be potentially underesti-
mated. The estimates of the standard deviations of errors of VAR(1)
a;, 0, and w, (o, 64, 6,,) are also listed in Table 3, along with estimates
of correlations of the correlated noises. Even though our result indi-
cates that the VAR(1) stochastic processes a;, §; and w, are correlated
through errors w; not through transition matrix ®, we are conserva-
tive in interpreting the estimates of p, , and p, , since the candidate
model 13 with only p,, reported almost the same AIC value as our
best model. The estimate of standard deviation of mother effect is
0.041, implying that the mean of X; from broods produced by the
same mother are weakly correlated to each other.

The estimated optimum phenotype is shown in Figure 2 with a
solid blue line. It fluctuates over the study period with an obvious
downward trend. The mean within-year laying dates (denoted with
black dots) also show a downward trend but the advance is not as
strong as the optimum, resulting in increasing mistiming between
the optimal laying date and the mean within-year laying date, which
is in line with the finding from previous study of the same popula-
tion (e.g. Chevin et al., 2015; Reed et al., 2013; Visser & Both, 2005;
Visser et al., 1998). Since the reproductive fitness of the great tits
depends strongly on the mismatch with food phenology, mistim-
ing in our case therefore equals mismatch, even though the food
resource phenology is not considered in our study (see Visser and
Gienapp (2019) for the difference between mistiming and mismatch).
One explanation for the mismatch is that females might be unwilling
to breed at the optimal date in terms of the offspring fitness because
of higher energetic cost of producing and incubating earlier in harsh
environment where it is cold and food is scarce, mismatching by a
few days might therefore be optimal for the sake of parental fitness
(Te Marvelde, Webber, Meijer & Visser, 2011). Beside this optimal
mismatch hypothesis, another leading explanation (the cues hypoth-
esis) is that the cues used for timing laying are no longer accurately
predicting the phenology of the food peak (see Visser et al., 2012 for

more details on these two hypotheses).
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T T

1955 1960
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1965
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Year
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. a specified year (from 1955 to 2015). Our analysed data includes
3.4 | Model evaluation P Y : Y )
three brood types represented by three colours in the plots. The

The performance of our selected model is evaluated by visualizing red, green and blue dots correspond to first, replacement and sec-
the observed and predicted number of fledglings for each year. Each ond broods respectively. The solid grey curve represents nonpara-
panel in Figure 3 shows the observed (dots in the panels) and pre- metric loess regression through the points with the dashed grey lines

dicted number of fledglings (dark solid line) against laying date for being associated 95% confidence band. With our selected model,

1990 2001, 2012

2015
« Fistbrood
« Replacement brood (frstbrood faed)
= Second brood ater successful first brood

T T T T
oril 1 May 1 June 1 July 1

Observed and predicted number of fledglings

<o . B oo

T T T T T T T T T T T T T T T T T T T T
April 1 May 1 June 1 July 1 April 1 May 1 June 1 July 1 Aprl 1 May 1 dune 1 duly 1 April1 May 1 June 1 July 1 April 1 May 1 Jdune 1 duly 1

Laying date

FIGURE 3 Observed and predicted number of fledglings (E(Y;|p;, w;)) against the laying date for each year. The blue, red and green dots
represent the observed number of fledglings from first, replacement and second broods respectively. The grey curve is loess regression
(with default degree of smoothing = 0.75) through the scatter points with 95% confidence band (dashed grey lines). The black line indicates
the number of fledglings predicted with our selected model conditional on zero mother random effects with dashed black lines representing
its 95% confidence band. The 95% confidence band was calculated by multiplying the standard errors reported with TMB by the 2.5 and
97.5th percentiles of the normal distribution
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the dark curve shows the predicted number of fledglings at laying
dates conditional on zero mother effect over the whole breeding
season, with the dashed dark lines representing associated 95% con-
fidence band again. The figure indicates a good fit of our selected
model to the data as we can see that the dark lines lie within the
loess confidence bands for all the years. For most of the years, the
prediction of number of fledglings peaked at early breeding season
when the first broods were laid except year 1991, when a late frost
hit the population and the plot validates our expectation of a very

late optimum estimate.

4 | CONCLUSION AND POSSIBLE
EXTENSIONS

Thanks to the new techniques such as TMB for fast likelihood
computation for non-Gaussian and nonlinear models, the use of
state-space models for analysing ecological systems is increasing
(for example Cadigan, 2015; Albertsen, Nielsen & Thygesen, 2016;
Auger-Méthé et al., 2017). The conditional independence structure
in state-space models yield a sparse precision matrix for the joint
distribution of the data and the random effects (Kristensen et al.,
2015) and TMB takes maximal advantage of this sparseness struc-
ture (through automatic sparsity detection) in its computation of the
Laplace approximation. Therefore, using state-spaces models cou-
pled with TMB makes estimating a large number of parameters and
random effects which is usually the case in modelling complicated
biological processes or ecological systems, possible. Compared with
the models and approaches adopted by previous studies on fluc-
tuating selection, our method based on SSM, GLMM and TMB has
several advantages. First, state-space models allow us to explore
two correlated fitness components simultaneously, instead of meas-
uring different fitness components independently. Second, due to
the flexibility of SSMs, parameters can be estimated efficiently with
little computational effort. Third, the formulation of our theoreti-
cal models turns out to be more realistic to account for directional
selection and non-Gaussian fitness residual, as GLMMs. Our results
from the great tit case study partly agree with the findings from pre-
vious studies on the same population, and due to the VAR(1) formu-
lation for the fitness parameters we could gain more in terms of the
underlying patterns of the fluctuating selection. For the researchers
who are interested in applying our method to their data either for
modelling fluctuating selection or general ecological systems with
VAR(1) stochastic processes, it is worth to mention that TMB has
no built-in probability function for modelling VAR(1). Our study can
serve as a template for this as well as for conducting model selection
with TMB.

In our study, we treated fluctuations in properties of the Gaussian
fitness function as a vector autoregressive process. In principle, our
approach can also accommodate other autocovariance structures,
such as vector autoregressive moving-average (ARMA) models (see
Wei, 2006 for the definition). Besides, in our statistical model, the

random mother effect ¢;; is assumed to be same for the two episodes

but vary in magnitude, which implies that a mother that is likely to
have complete brood failure will be more likely to have a low num-
ber of fledglings (with correlation 1). To relax this assumption, the
mother effects can be treated differently for the two episodes and
assumed to be multivariate Gaussian distributed (¢, ;. eWJ-(,-))T ~N(0,%)
with X being a covariance matrix. Furthermore, the number of fledg-
lings is chosen as the selection component so that the estimates
could be compared to those from Chevin et al. (2015), which claims
that using the number of recruits may cause more uncertainty in es-
timates of parameters due to the much larger coefficient of variation
in the number of recruits. However, in some previous studies (e.g.
Reed et al., 2013), the fecundity component of fitness is measured
as the number of recruits surviving to the next breeding season in-
stead of the number of individuals surviving to become fledglings.
As claimed by Naef-Daenzer and Griiebler (2016), using the number
of fledglings as a proxy for fitness may be misleading in inference
of evolutionary significance since reproductive success can be com-
pletely altered by many causal factors driving the adaptations which
operate during the post-fledgling period, and thereby change the ju-
veniles' fate from fledgling to independence. Therefore, it would be
interesting to expand our model to incorporate both pre- and post-
fledgling period, such as chicks’ survival and recruitment probabil-
ity, as well as a female’s survival, into a comprehensive life-history
framework for the lifetime selection exploration.

Our study demonstrates a technique of estimating fluctuating se-
lection in cases where ecological covariates are not available. To under-
stand whether observed shift in selection are biologically meaningful,
however, it is important to elucidate the ecological drivers of fluctu-
ations in selection. Empirical investigations of the causal mechanisms
driving such selection dynamism are needed before the development
of novel analytical and statistical techniques. In our great tit case, for
example, the peak movement might be affected by the height of the
caterpillar peak, the mean breeding timing relative to the caterpillar
peak and the breeding density. The width of the fitness function is
likely being affected by the height and probably the width of the cat-
erpillar peak (Visser et al., 2006). The location of optimum might be
influenced by environmental variables (e.g. Chevin et al., 2015; Gienapp
etal., 2013). However, the biotic interactions coupled with other abiotic
factors playing a direct or indirect role in the selective process could
likely make analysis much more complicated. Other extensions include
analysis of correlational selection on multivariate traits and estimating

the temporal-spatial variation and correlation in fluctuating selection.
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About TMB

Template Model Builder (TMB; Kristensen, Nielsen, Berg, Skaug, & Bell, 2015)) is an R package for fitting
statistical latent variable models. It is functionally similar to ADMB (Fournier et al., 2012). The joint
likelihood for the data and the random effects are defined by the user as a C++ template function. Then the
package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random
effects are automatically integrated out. This approximation is achieved by using reverse-mode automatic
differentiation (up to order three) of the joint likelihood. The combination of reverse-mode automatic differ-
entiation and the Laplace approximation for high-dimension integrals allows for the efficient fitting of complex
(nonlinear, non-Gaussian, and hierarchical) models with large multivariate data sets to perform parameter
estimation (Fournier et al., 2012). TMB takes maximal advantage of sparseness structure (Kristensen et al.,
2015) and the first derivatives of the Laplace approximation obtained with automatic differentiation of the

negative log-likelihood can be used by other approaches such as hybrid MCMC.

More details on study population

The great tit is 18—20g small passerine bird species widespread throughout European woodlands and gardens.
As a cavity nester, it readily accepts nest-boxes for breeding, which allows monitoring of the whole population
if a surplus of nest-boxes is provided (Harvey, Greenwood, & Perrins, 1979). The study area consists of
mixed pine-deciduous woodland on poor sandy soils. From 1955 to 2015, more nest boxes than required
were placed in the study area at approximately constant availability. On average the ratio of nest boxes to
breeding females was around 3 : 1 in a typical year. During the breeding season from April to June/July,
nest boxes were visited once per week. At each visit, the number of eggs or nestlings was counted and
nestlings were given metal leg rings on day 7 and the parents caught on the nest using a spring trap. For
some years clutch or brood size manipulation experiments were carried out, which possibly affected fledgling
production or recruitment probability, therefore, manipulated broods were excluded from our analysis. We
also deleted 35 third clutch observations for simplifying the comparison between the different brood types.
We also deleted the records with uncertainty of the brood type, and clutch size being smaller than number
of fledglings. Unknown females were not included in our analyses, as their mother effects as random effects

in the model could not be determined. Eventually, 5892 out of 6353 records were kept for our analysis.



Simulation study

A simulation study was carried out to test the power of our method in identifying the best model. We simu-
lated laying dates z which stabilizing selection acts on with a mixture of normal distribution 0.7N(23,7.5) +
0.3N(62,10.5), which is close to the reality of the Dutch great tit population. We considered 50 years and for
each year the sample size was drawn from a Poisson distribution with a mean of n = 100 individuals. To sim-
plify the simulation study, we considered stabilizing selection via the expected number of fledglings (episode
W) while the zero-inflated probability (episode P) was kept as a fixed parameter (set to 0.12). In terms
of the parameters in equation (3) and (4) in the main text, vector (&,0,®) was set to (2,18,log(45)) and
the vector of standard deviation of the random effects (04,09, 0,,) was set to (0.2,18,0.2). For brevity the
variance-covariance matrix X was set diagonal and only ¢4, and ¢g e in the transition matrix ® were con-
sidered as non-zero. They were set to be equal (¢q,o = ¢g,9) and took values from (0,0.1,0.25,0.5,0.75,0.9).
The standard deviation of random mother effects was set to 0.05 and added only to episode W.

Since there is a potentially long list of candidate models, we did not fit all the possible models and
instead considered, in addition to the true model, five models that can help us to test if our model selection
procedure has the power to: identify the zero-inflation probability as a parameter of a selection episode;
distinguish models with and without fluctuation in wy; identify the auto-correlation parameters in ®; dis-
tinguish models with and without off-diagonal parameters in ®; identify random mother effects in the ‘true’
model. Specifically, based on the true model we fitted (i) a model with zero-inflation probability regressed
against laying dates with random intercepts but without random slopes; (ii) a model with fixed wy; (iii)
a model with all entries in ® equal to zero; (iv) a model with 2 x 2 upper-left non-zero entries in ®; (v)
a model without random mother effects. For each value of ¢, and ¢g9, we ran 100 simulations and for
each simulation we compared the reported AIC between the true model and each of the alternative models
respectively. The true model was selected against the alternative model only when the AIC of it is at least
two points lower than that of the alternative model.

Fig. S1 shows the simulation result. The left plot shows the percentage of cases for which the true
model was selected over each of the alternative models against the actual auto-correlation values used in the
simulations. It is clear that when zero-inflation probability is only a fixed parameter in the model, the model
selection procedure never wrongly favours the model with fluctuating zero-inflation probability. When w; was
set to fixed in an alternative model, the true model with random w; was detected in approximately 80% of
the simulations. If ¢, and ¢g 9 were excluded from the true model, it then reduced to an alternative model
with oy, 6; and w; following iid processes. The true model (including auto-correlation) is rarely selected

as best over the alternative model when the auto-correlation value is as small as 0.1. However, when the
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Figure S1: Left: test the power of our method. Each of the line in the plot shows the percentage of our true
model was selected against an alternative model out of total 100 simulations. The x axis is the actual values
of ¢a,a = 9,0 used in simulations. The five lines represent five alternative models that the true model were
compared with and the true model was chosen by at least two points lower in AIC than the alternative model.
The five alternative models are described in the legend. Right: estimated auto-correlation (¢q,q and ¢g ) in
all the simulations. The red triangles represent the mean of ¢4 under cach setting of the auto-correlation,
with error bars representing + one standard deviation of the estimates over 100 simulations. The similar
explanation applies to (igﬁg./ which is shown with blue color. The dashed grey line plots the expected value
if the MLEs are unbiased.



auto-correlation magnitude increased to 0.5, in over 90% of the simulations the AR(1) structure in a; and 0,
can be detected. When cross-correlation between oy and 6; (¢a,9, ¢,o) was added to the true model, only
in around 60% of the simulations was the true model selected against the more complex alternative model.
It is even more challenging when the random mother effects were excluded from the true model, that in only
around 20% of the simulations that the true model with random mother effects was chosen.

The right plot in Fig. S1 shows the estimated auto-correlation against the true auto-correlation used in
the simulations. Red and blue color corresponds to ¢, and ¢g ¢ respectively. The triangles and round dots
show the mean estimate of ¢, and ¢g ¢ respectively with error bars representing one standard deviation of
all the estimates over 100 simulations. The dashed grey line represents the expected value if the MLEs are
unbiased and it goes across all the error bars of g{)a,a. Estimating ¢g ¢ accurately turns more difficult than
that for ¢, o indicated by the larger deviation from the unbiased MLEs.

To sum up, our model fitting and model selection procedure has promising power to capture the basic
structure (fixed zero-inflation probability, fluctuated w; and auto-correlation in oy and 6;) of the true model.
However, it also shows that the cross-correlation between the fitness parameters might be overestimated
and therefore wrongly included in the selected model. In addition, cautions should be made when excluding
random mother effects from the model especially when the models with and without random mother effects
report similar AIC values since the random mother effects might be too small to be detected with AIC. At last,
both our simulation study and the one in Chevin, Visser, and Tufto (2015) shows that the auto-correlations

in the fitness parameters are potentially underestimated.

Supplementary model selection procedure

In the main text we have shown the model selection procedure only for the best model and the models
around it. The updating procedure from a null model to the best model is supplemented in Table S1. Model
1 is consistent with stabilizing selection via episode W and episode P and the fitness function parameters
remain unchanged across years but vary across episode W and P. Based on the estimates of the parameters
in model 1, we changed stabilizing selection into directional selection for episode W (model 2, 2a, 2b, 2c)
or for episode P (model 3, 3a, 3b, 3c). The models with correlated random intercepts and slopes (model 2¢
and 3c) perform best in each situation. Next, from model 4 to model 8b, we updated each model (model 1,
2¢, 3c) such that a;, 0; and w, are either white noise (model 4 to model 4e, note that model 4a, 4c, 4e are
hard to get converged, thus they were updated through model 4, 4b and 4d respectively), or AR(1) (model
5 to model 5b), or VAR(1) (model 6 to model 6b) processes. Model 7, Ta, 7b, Tc were updated with only

significant entries of ® kept. Auto-correlations between errors of oy, 6y and w; were introduced into model



8, 8a and 8b. So far, model 8 reports the smallest AIC, therefore, mother effect was added to it (model 9),
and model 9 was eventually confirmed to be the best model, as have shown in the main text.

It is worth to mention that our candidate models were generally updated from the simple ones to the
complicated ones and therefore the subsequent models are subject to the choice of the initial models. The
choice should be made carefully especially when the initial models report similar AIC values. In this case,
one suggestion is that the subsequent models can be updated simultaneously based on the competitive initial
models and another suggestion is the neighbor models of the selected model should be carefully tested to

ensure it is indeed the best one.

Table S1: Supplementary Model selection procedure of phenotypic selection on breeding time of great
tits. The order of models listed below is accordance with the order of models fitting, from model 1 to 9.
The following model selection procedure can be found in the main text. AAIC and Ap is the difference
in AIC and number of parameters p between each model and the best model (model 9). The column of
description gives the details of updating model based on the previous ones. For simplification, the probability
of successful-brooding component is denoted as episode P and the mean number of fledglings as episode W.

Model | AAIC | Ap | Description

1 1246.99 | -12 ’r/i’)?, 7]2?2, ng‘ft) fixed across ¢, vary across s

based on model 1, change stabilizing selection via episode P into directional selection

2 1246.01 | -13 | only with fixed intercept and slope
2a, 1011.41 | -12 | add random intercepts on model 2
2b 919.21 | -11 | add random slopes on model 2a

2c 877.37 | -10 | add covariance to random intercepts and slopes on model 2b

based on model 1, change stabilizing selection via episode W into directional selection

3 1247.54 | -13 | only with fixed intercept and slope

3a 708.48 | -12 | add random intercepts on model 3

3b 509.98 | -11 | add random slopes on model 3a

3c 437.33 | -10 | add covariance to random intercepts and slopes on model 3b

change fixed oy, 6; and w; into white noise

4 241.24 | -10 | based on model 1, white noise o and wy, fixed 6;
4a 114.45 -9 | based on model 4, white noise «y, 6, and w;

4b 114.08 -8 | based on model 2¢, white noise o and wy, fixed 64
4c 110.11 -7 | based on model 4b, white noise oy, 6; and w;

4d 129.33 -8 | based on model 3¢, white noise «; and wy, fixed 6;

Continued on next page




Table S1 — continued from previous page

Model

AAIC

Ap

Description

de

96.48

-7

based on model 4d, white noise oy, 6; and w;

change random ay,

0, and w; into AR(1)

5 81.74 -6 | based on model 4a, AR(1) a, 0; and w;

5a 40.84 -4 | based on model 4¢, AR(1) a, 0; and w,

5b 74.57 -4 | based on model 4e, AR(1) ay, 6; and w;
change random «, 0, and w; into VAR(1)

6 89.02 0 | based on model 4a, VAR(1) «y, 0, and w;

6a 88.83 2 | based on model 4¢, VAR(1) a, 6; and w;

6b 80.59 1 | based on model 4e, VAR(1) a4, 6; and w;

keep only significant (at

significance statistics 0.05) entries in ®

7
Ta

7b
Tc

82.17
39.13

76.48
76.1

-7
-5

-9

-6

update based on model 6, AR(1) a; and 6;

no significant entries in @ in model 6a, so update based on model 5a, AR(1)
oy and 6,

update based on model 6b, AR(1) o and 6,

update based on model 6b, AR(1) a;

add correlations to

the errors of oy, 6; and wy

8 57.8 -3 | update based on model 5, which is the best model so far for stabilizing selection
for both episode P and W

8a 19.1 -2 | update based on model 7a, which is the best model so far for directional selec-
tion via P

8b 74.82 -1 | update based on model 5b, which is the best model so far for directional selec-
tion via episode W

add mother effect
9 0 0 | update based on model 8a, which is the best model so far (directional selection

via episode P and stabilizing selection via episode W)




Supplementary model evaluation

In addition to the model evaluation in the main text, we here further illustrate the performance of our
selected model in predicting successful-brooding indices and non-zero number of fledglings. Each panel in
Fig. S2 shows the observed indices and the predicted probability of successful-brooding against laying date
for a specified year (from 1955 to 2015). Our analyzed data includes three brood types. The red, green
and blue dots represent the observed indices of successful-brooding for first broods, replacements broods
(first broods failed) and second broods (first broods succeeded) respectively. The solid grey curve represents
nonparametric loess regression through the points with the dashed grey lines being associated 95% confidence
band. The dark curve shows the predicted probability of successful-brooding at laying dates along the whole
breeding season and conditional on zero random mother effects. It can be shown that it is a function of both

the zero inflation probability and the mean number of fledglings:

P(Y; > 0| pjw;) =1—P(Y; =0 p;,w;)

=1 =p)(1—e™),

where p; and w; are zero-inflation probability and mean number of fledglings for brood i and estimated
with our selected model. Similarly, each panel in Fig. S3 shows the observed number of fledglings (only
nonzero observations plotted) and the expected number of fledglings predicted with our selected model for
each year. The dots with different colors illustrate the observed number of fledglings from three brood types
and the grey line again indicates the nonparametric loess regression with its 95% confidence band (dashed
grey lines). The dark curve is the conditional expectation of number of fledglings (E(Y; | ¥; > 0)) as a
function of w; estimated with our selected model with associated 95% confidence band (dashed black lines).

Specifically, using the law of total expectation, we know that
E(Y; | pi,wi) = E(Y; | Yi > 0,w;)P(Y; > 0| pi,wi) + E(Y; | Y; = 0,p;, wi) P(Y; = 0 | pi, w;).

Hence
E(Y; | pi,w;)

P(Y; > 0] pi,wy)

_ (1= pi)w; ’ (S2)
00— ™)

T l—ewi’

EY: |Y; > 0,w;) =

It is worth noting that p; and w; in equation (S1) and equation (S2) were calculated conditional on zero
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Figure S2: Observed indices and predicted probability of successful-brooding (P(Y; > 0 | p;, w;)) against
the laying date for each year. The blue, red and green dots represent the observed indices of successful-
brooding for three different brood types (red dot represents first brood, green dot is replacement brood with
first brood failed, and blue dot is second brood with successful first brood). The grey curve is loess regression
(with default degree of smoothing = 0.75) through the scatter points with 95% confidence band (dashed grey
lines). The black line indicates the probability of successful-brooding predicted with our selected model at
laying dates along the whole breeding season and conditional on zero random mother effects and the dashed
black lines represent associated 95% confidence band.
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Figure S3: Observed and predicted nonzero number of fledglings (E(Y; | Y; > 0,w;)) against the laying date
for each year. Note that only nonzero number of fledglings are plotted. The blue, red and green dots represent
the observed number of fledglings for three different brood types (red dot represents first brood, green dot
is replacement brood with first brood failed, and blue dot is second brood with successful first brood). The
grey curve is loess regression (with default degree of smoothing = 0.75) through the scatter points with
95% confidence band (dashed grey lines). The black line indicates the number of fledglings predicted with
our selected model conditional on zero random mother effects with dashed black lines representing its 95%
confidence band.




random mother effects for simplification. From both Fig. S2 and S3 we can see that for most of the years
the dark line lies within the 95% confidence band of loess regression, indicating a good fit of our selected
model. Moreover, we find from both figures that the replacement broods (first brood failed, green dots)
were laid earlier than the second broods (first brood succeed, blue dots). Interestingly, it is hard to see any
difference in the probability of successful-brooding between the replacement broods and second broods after
successful first broods, but the mean number of fledglings for the second broods after successful first broods
are strikingly smaller than that of the replacement broods. This might result from the increasing mistiming
between the breeding time and optimal breeding time, and the fitness effects of being mismatched relative
to the food peak are stronger at the individual level for the mean number of fledglings compared with the
probability of successful-brooding. However, it is interesting to see that for most of the years the second
broods suffer higher probability of complete loss than the first broods, as have been discussed in the main

text.

Model fitting with partial data

In our study we used the great tit data of 1955-2015 (61 years) from the Hoge Veluwe. However, because
a severe storm damaged the pine plantation in the winter of 1972-1973, some of the nest-boxes had to be
replaced or relocated. Therefore, some of previous study on HV great tit population treated the HV1 (1955~
1972) and HV2 (1973-2004) as two temporally separate populations (see Husby, Kruuk, & Visser, 2009).
Other studies only focused on the HV great tit data after 1973 (for example Reed, Jenouvrier, & Visser,
2013; Gamelon et al., 2016). It is of our interest to fit the selected model with the data after 1973 and make
a comparison between the estimates with this partial data set and full data set.

Table S2 shows the comparison between the estimates from our selected model with full data (1955-2015,
5892 records) and partial data (1973-2015, 4449 records), and the estimates from the model with fixed w
with partial data. We find from the second and third column that most of the estimates with the full data
and with partial data are close to each other, but three differences are worth noting. First, the estimate
of 0 is smaller (14.95 days) with partial data, which is reasonable and consistent with what can be seen
from Fig. S4, where for recent years the estimated optimal laying dates are earlier compared with that in
previous years. Second, the estimates of transition (¢a,. and ¢gg) are slightly smaller with partial data.
At last, the estimates with full data generally have less uncertainty (smaller estimate of standard error).
Since the selected model from Chevin et al. (2015) assumed fixed w; across the study period from 1973 to
2015, it is interesting to get a flavor that how our result obtained from a candidate model with fixed w;

and with data after 1973 differ from theirs. The last column in Table S2 therefore lists the estimates of
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Table S2: Estimates(standard error) of model parameters from the selected model with full data and partial
data, and the model with fixed w; and partial data.

Optimal laying date, mean laying date with partial data

May 1 June 1

April 1

Estimate(S.E.)
Parameter Selected model Model with fixed w
Full data Partial data Partial data
& 2.000(0.036) | 1.996(0.041) 1.998(0.041)
0 18.227(5.826) | 14.950(5.753) 15.841(5.159)
¢® (days) | 47.395(3.234) | 45.985(3.835) 44.785(2.774)
o 0.176(0.024) | 0.181(0.031) 0.182(0.029)
0.0 21.180 (3.422) | 18.131(3.330) 19.423(2.838)
Yoo 0.205 (0.049) | 0.191(0.056) NA
Paa 0.334(0.122) | 0.206(0.173) 0.251(0.161)
00,0 0.524(0.110) 0.386(0.157) 0.338(0.146)
O 0.166(0.023) | 0.177(0.032) 0.176(0.029)
o6 18.034(2.808) | 16.728(3.095) 18.278(2.694)
0w 0.205(0.049) | 0.191(0.056) NA
() 2.946 (0.220) | 2.742(0.233) 2.739(0.234)
1< -0.025(0.005) | -0.028(0.005) -0.028(0.005)
a; 0.032(0.004) 0.028(0.004) 0.029(0.005)
o -0.827(0.054) | -0.830(0.062) ~0.831(0.061)
o 0.701(0.092) | 0.654(0.103) 0.653(0.103)
m 0.041(0.013) | 0.041(0.016) 0.041(0.016)

T T T T T T T T T
1973 1980 1985 1990 1995 2000 2005 2010 2015

Year

Figure S4: Position of optimal laying date estimated from our selected model with partial data from 1973
to 2015. The estimated movement of optimal laying date from the selected model is shown with solid blue
line, along with its 95% confidence interval (dashed blue lines). The black dots are the observed within-year
mean laying dates.
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parameters in a model with the same formulation as our selected model except for that w; is assumed to be
constant. We can see that the estimates in the last column are not far from that in the third column and
the basic conclusion made from comparison with estimates from Chevin et al. (2015) remain the same, that
our result reports larger width of fitness function, larger autocorrelation of the optimum laying dates and
larger standard deviation of the fluctuated optimum laying dates.

Fig. S4 shows the movement of optimal laying date estimated from our selected model with partial data
from 1973 to 2015. The estimated movement of optimal laying date from the selected model is shown
with solid blue line, along with its 95% confidence interval (dashed blue lines). The black dots indicate
the observed within-year mean laying dates. The pattern of the optimum movement in Fig. S4 is exactly
identical to the movement of optimum in Fig. 2 in the main text from 1973 to 2015. This again implies
that the full data set from 1955 to 2015 can be assumed to be generated from the same great tit population

without invalidating the general results of our analysis.

Supplementary figures

The estimates of w; from our selected model range from 3.47 to 4.04 over the study period, and the corre-
sponding natural exponent e*t fluctuates from 32.15 to 56.65 days and the fluctuation can be seen clearly
from the top-left plot of Fig. S5, even though the estimate of variance of w; is negligible and the candidate
model with fixed w; does not perform much worse then our selected model. The movement of estimated
within-year max fitness a; (max mean number of fledglings), probability of successful-brooding and mean
number of fledglings are shown in the top-right, bottom-left and bottom-right plot respectively, with the
colorful lines representing non-parametric local regressions. 1988 is a standing-out year with a narrow width
(32.49), large maximum number of fledglings (11.29) and early optimal laying date (14th March), which
implies strong stabilizing selection via the mean number of fledglings (episode W) on laying dates. From
the bottom plots the good years (1979, for example) with high mean probability of successful-brooding and
mean number of fledglings can be differentiated from the bad years (1984, for example). The information
obtained from the plots might provide insights for future researches which investigate the potentially abiotic
variables driving the selection.

Although our approach offers an advance in the study of phenotypic selection, we believe we have not yet
made best use of their full potential. Here, the estimates of random slopes produce order 1 autocorrelation
in the annual directional selection as shown in Fig. S6. This implies that our model specification failed to
capture the correlation structure of the fluctuated directional selection. While it does not bias the random

slopes estimates, the standard deviation of the random slopes tends to be underestimated when the lag 1
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Figure S5: Annual movement of width of fitness function (top-left), maximum fitness (top-right), mean
probability of successful-brooding (bottom-left) and mean number of fledglings (bottom-right). The black
fluctuated lines are the corresponding estimates from our selected model (the discrete estimates are connected
across years) and the colorful lines represent non-parametric local regressions.

autocorrelation of estimates is present.
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Figure S6: Estimated autocorrelation function of annual random slopes in the selected model for the
probability of successful-brooding.
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Evolution of double brooding
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Abstract

In some populations of birds, females produce a second brood after raising a
successful first brood. The proportion of females doing so varies strongly among
study populations and years. To understand the adaptive significance of double
brooding we consider double brooding jointly with the evolution of onset of breeding
in a model with resources limited to a finite window in time. Double versus single
brooding is modeled as a threshold character. Onset of breeding and the liability of
double brooding follows a binormal phenotypic distribution. Depending on the cost
of laying two broods versus one and the delay between the first and second brood
relative to the width of the resource window and the phenotypic variance of onset
of breeding, the adaptive topography may have single or multiple, purely single-
or purely double-brooding adaptive peaks. Despite no frequency-depedence, an
adaptive peak at an intermediate frequency of double brooding can exist if double
brooding has a sufficiently negative phenotypic correlation with onset of breeding.
If the location of the resource windows in time fluctuates between years, double-
brooding has an additional adaptive value as a conservative bet-hedging strategy.
Climate change, producing a linear trend in the location of the resource window
towards earlier dates, may select for a reduced frequency of double brooding. An
opposite effect is also possible if the additive genetic covariance between the liability
and onset of breeding is negative. Finally, the model is discussed in terms of an
empirical example.
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Bayesian inference with tmbstan for a state-space
model with VAR(1) state equation

Yihan Cao,* Marcel E. Visser,' Jarle Tufto*

1 Introduction

Both frequentist and Bayesian statistical inference have been used for investigating ecolog-
ical processes. In the frequentist framework, Template model builder (TMB, Kristensen
et al., 2016), an R package developed for fast fitting complex linear or nonlinear mixed
models, has gained the popularity recently, especially in the field of ecology which usu-
ally involves in modeling complicated ecological processes (for example Cadigan, 2015;
Albertsen et al., 2016; Auger-Méthé et al., 2017). The combination of reverse-mode au-
tomatic differentiation and Laplace approximation for high-dimension integrals makes
parameter estimation with TMB very efficient even for non-Gaussian and complex hier-
archical models. TMB provides a flexible framework in model formulation and can be
implemented even for statistical models where the predictor is nonlinear in parameters
and random effect. However, the lack of capability of working in the Bayesian framework
has hindered the adoption of it for Bayesians.

Within the Bayesian framework, the software package Stan (Gelman et al., 2015),
a probabilistic programming language for statistical inference written in C+-+ attracts
peoples attention. It uses the No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014),
an adaptive extension to Hamiltonian Monte Carlo (Neal et al., 2011), which itself is a
generalization of the familiar Metropolis algorithm, to conduct sampling more efficiently
through the posterior distribution by performing multiple steps per iteration. Stan is a
valuable tool for many ecologists utilizing Bayesian inference, particularly for problems
where BUGS (Lunn et al., 2000) is prohibitively slow (Monnahan et al., 2017). As such,
it can extend the boundaries of feasible models for applied problems, leading to a better
understanding of ecological processes. Fields that would likely benefit include estimation
of individual and population growth rates, meta-analyses and cross-system comparisons,
among many others.

Combining the merits of TMB and Stan, the new software package tmbstan (Monnahan
& Kristensen, 2018) which provides MCMC sampling for TMB models was developed.
This package provides ADMB and TMB users a possibility for making Bayesian statis-
tical analysis when prior information on the unknown parameters is available. From the
user’s perspective, it implements NUTS sampling from a target density proportional to
the product of marginal likelihood (computed by TMB or Stan) and the prior density

*Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of
Science and Technology, 7491 Trondheim, Norway

TDepartment of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Post Office Box
50, 6700AB Wageningen, Netherlands



specified by the user. The user has the flexibility to decide which random effects are in-
tegrated out via the Laplace approximation in TMB and then the TMB model is passed
to function Stan in the RStan package so that the rest of the parameters are integrated
by Stan. This methodology might therefore potentially be more computationally efficient
than using MCMC alone to integrate out all parameters. Monnahan and Kristensen
(2018) introduced the tmbstan package, applied it to simulation studies and compared its
capabilities (computational efficiency and the accuracy of Laplace approximation) with
other platforms such as ADMB and TMB.

However, it is unclear that if Bayesian inference with arbitrary prior distribution
implemented with Stan would perform comparatively with frequentist inference when
modeling complex ecological processes. It is also unclear that when using tmbstan, if
using the Laplace approximation to integrate latent variables is more computationally
efficient than handling all latent variables via MCMC. In the case studies in Monnahan
and Kristensen (2018), Laplace approximation turned out to reduce the computational
efficiency of MCMC. Another issue arose in the case studies is that the Laplace approxi-
mation to the integration of random effects is not accurate to a degree and this could lead
to biased parameter estimates or uncertainties in parameter estimation. To gain more
insights on these issues, in this paper we conduct simulation studies and a case study in
the context of modeling fluctuating and auto-correlated selection with state-space models
(SSM). These forms of models are more generally increasingly used in ecology to model
time-series such as animal movement paths and population dynamics (for example Cadi-
gan, 2015; Albertsen et al., 2016; Auger-Méthé et al., 2017). Furthermore, following Cao,
Visser, and Tufto (2019), we also use order-1 vector autoregressive model (VAR(1)) to
model the unobserved states, which in our study are temporally fluctuating and poten-
tially auto-correlated height, width and location of a Gaussian fitness function. This
also allows us to make a further investigation into the issue of underestimation of the
auto-correlation parameter in auto-regressive models shown in Chevin et al. (2015) and
Cao et al. (2019).

Through the simulation and empirical studies, our paper aims to (1) compare esti-
mates between frequentist inference and Bayesian inference under different simulation
schemes; (2) investigate how the choice of prior influence Bayesian inference; (3) compare
the computational efficiency of MCMC with and without integrating out some of the
random effects via Laplace approximation.

2 Methodology

2.1 Model formulation

We consider a typical ecological process, the fluctuating selection in a bird species, the
great tit (Parus major). We conduct the study in the context of temporally changing
selection on the laying date with the number of fledglings as the fitness component, but it
can be generalized to any episode of viability or fertility selection, or to overall selection
through lifetime fitness. The discrete nonnegative variable, number of fledglings, is best
modelled by distributions such as Poisson, or zero-inflated Poisson (for example Chevin
et al., 2015; Cao et al., 2019). Within the framework of generalized linear models,
the expected value of response variable is commonly linked to the linear predictors of
biologically interest by logarithm. When both linear and quadratic effects of the traits are
included, this leads to a Gaussian model of stabilizing selection. In this study, the number



of fledglings in a specific brood is assumed to be Poisson distributed, X;|w; ~ Poisson(w;),
where 7 indicates the breeding event. The fitness (the expected number of fledglings w; )
of individuals with phenotype z; is then given by
- (0)y2
Inw; = TIt(a) - 7(22 Zﬁ )
2(em )2

(1)

where nga), nt(e) and et (e based to guarantee positive) are parameters determining the

logrithm of maximum fitness, optimum laying date and width of the fitness function in
: (o) (0 (w) :

year t respectively. We further model 7,"”, ;" and 7,”’, the three stochastic processes as

following;:

nt(a) = fla T OO,

77759) = po + oy, (2)
1) = iy + o

The elements of vector p1 = (jia, g, fiw)? are the means of the three processes. The
stochastic processes oy, 0, w; are assumed to be multivariate normal distributed (ay, 6;, wt)T ~

1 Pad Paw
N;(0,To) with To = | pap 1  pow|, where pag, paw and py, indicate the correla-
Pow Pow 1

tions and are assumed to be mutually independent. (oy, 6y, wt)T are further assumed to
follow a first-order vector autoregressive (VAR(1)) process as below:

%3 Q1
0, =® |01 | +wy, (3)
Wi Wi—1

where ® is 3 x 3 transition matrix and wy is a 3-dimentional vector of white noise. The
covariance matrix of wy is calculated as I'g — ®T'¢®. Correlations between the elements of
w; are determined by both p = (pa.0; Paw, Po.w) and @. If p is 0 vector and ® is diagonal,
then w; reduces to be three independent and identically distributed white noise processes.
In this case, oy, 0; and w; simplify to three independent first-order autoregressive (AR(1))
processes. If p is 0 and all entries of @ are zero, both (a, 0y, w;)” and w; reduce to three
independent and identically distributed white noise processes. In any case, our non-
centered parameterization implies that the standard deviation of a4, 0; and w; is only
determined by o,, 0y and o, respectively. We expect the non-centered parameterization
yields simpler posterior geometries (Betancourt & Girolami, 2015) and will be much more
efficient in terms of effective sample size when there is not much data (Stan Development
Team, 2018b, chapter 20).

It is worth mentioning that one objective of this study is to provide another case study
beyond the ones in Monnahan and Kristensen (2018). Therefore, even though a4, 6; and
w; are assumed to be VAR(1) in the model, in the simulation study we consider only
AR(1) 6, and white noise of o and w;. The alternative simulation studies in which «y, 6,
and w; are formulated as other possible stochastic processes can be conducted similarly
and exhaustively, but that is an enormous amount of work in one single study. When ay,
0; and w; are assumed to be VAR(1), one caution to be taken is that all the eigenvalues
of ® must lie in the unit circle to guarantee the VAR (1) process to be stationary (Wei,
2006). At last, in the simulation study, we assume that the model structure is known,
which means that we already know 6, is AR(1) process since the aim of the study is not
to explore the structure of the true model.



2.2 Prior distribution

The priors are assumed to be independent to each other 7w (p, ®,%) = 7(p)m(®)7(X). We
take a normal N(m, ¢l3) prior distribution for the process mean vector p = (fiq, o, fy)
and input weak prior information on the <process mean by taking m = 0 and ¢ = 100.
Since in this study we assume constant nta) and 77t<w), ®9,0 is the only non-zero entry in
®. We used truncated normal prior on ¢y since it outperforms Jeffreys’ prior (Jeffreys
& Jeffreys, 1961), g prior (Zellner, 1986) and natural conjugate prior (Schlaifer & Raiffa,
1961) in terms of posterior sensitivity using Highest Posterior Density Region (HPDR)
criterion concluded from the simulation study in Karakani et al. (2016). Lei et al. (2011)
also uses truncated normal distribution as subjective prior for the auto-regressive param-
eter in its AR (1) model. The mean and standard deviation of the truncated normal
distribution are arbitrarily set to be 0 and 0.5 respectively.

For the variance of the error term o3 (02 and ¢? are assumed to be zero), two priors
are used:

(1) half-Cauchy (0, 10) prior on o, (Priorl);

(2) lognormal (1, 0.5) prior on o,y (Prior2).

These two priors are referred to Priorl and Prior2 respectively in the rest of this paper.
It is worth mentioning that we also tested uniform prior on log(oy) (non-informative im-
proper prior which equals to 1 /¢ prior on o (Gelman et al., 2006)) and inverse-gamma (1,
1) prior on o3 (non-informative proper prior, also illustrated in (Gelman et al., 2006)),
but both of them render an issue that the sampler traps in a subspace of the whole pa-
rameter space of log(og) and results in numerous divergent transitions. It was potentially
caused by the posterior becoming improper and consisting of a mode and an infinite
low-posterior-density ridge extending to infinity as illustrated in Tufto et al. (2012). We
thus in this study only consider the two proper informative priors (Priorl and Prior2),
while more information on the MCMC with inverse-gamma (1, 1) prior on o7 is given in
Supporting Information.

Note also that the scale parameters log(oy) is declared in the TMB template in the
logarithmic format, but the half-Cauchy prior and lognormal prior contributed to the
total likelihood with the log density in terms of oy and for inverse-gamma prior, it is in
terms of o2, where 0y is a positive transform o = €/°?. Therefore, Jacobian adjustment
(see chapter 20.3 in Stan Development Team (2018b) for Jacobian adjustment) was con-
ducted by adding logoy to the total likelihood when half-Cauchy prior and lognormal
prior are used. When testing inverse-gamma prior, it was log2 + 2log gy added to the
total likelihood.

2.3 Software implementation

The model is formulated with C++ and passed to TMB for frequentist inference. The
model objective (fn) and gradient (gr) functions are fed to optimization function nlminb
with default setting to optimize the objective function.

For Bayesian inference, the TMB model objective and gradient functions are passed
to tmbstan which uses the stan function and executes the No-U-Turn sampler (NUTS)
algorithm by default to sample. Currently the other options are "HMC" (Hamiltonian
Monte Carlo), and "Fixed_param". We ran the simulation study on a multicore com-
puting server with enough RAM to avoid swapping to disk. The number of warmup
iterations to be excluded when computing the summaries is set to 1000 and for total
sample length, it is 3000. We thin each chain to every second sample and set the value
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adapt_delta to 0.95, which is the average proposal acceptance probability Stan aims for
during the adaption (warmup) period. We set a seed for each simulation including data
set and tmbstan to make sure all the simulation results are reproducible.

Divergent transitions during sampling may occur due to a large step size in the sampler
or a poorly parameterized model, meaning that the iteration of the MCMC sampler runs
into numerical instabilities (Carpenter et al., 2017) and thus inferences will be biased.
RStan team suggested that the problem may be alleviated by increasing the adapt_delta
parameter (gives a smaller step size), especially when the number of divergent transitions
is small (Stan Development Team, 2018a). In our simulation studies, we find it difficult
to completely avoid divergent transitions across all data sets even though adapt_delta
is increased to 0.95. Similar to Fuglstad, Hem, Knight, Rue, and Riebler (2019), we
thus removed simulations where 0.1% or more divergent transitions in the iterations after
warmup occur during the inference to avoid reporting biased results.

It is worth mentioning that the execution of Markov chains can be done in parallel.
While the default of RStan is to use 1 core, the RStan team recommended to set it to
as many processors as the hardware and RAM allow and at most one core per chain
(Stan Development Team, 2018a). The simulations we run are done with a server that
has 28 available cores. We thus set the number of cores to be 4 for the 4 Markov
chains. However, since for frequentist inference, optimization algorithm used in R function
"nlminb" makes the best use of all available cores of CPU, we thus only compare the
computational efficiency between tmbstan with and without Laplace approximation and
ignore the computational efficiency with "nlminb" to ensure fair comparisons.

3 Simulation scheme and results

3.1 Simulation scheme

All the data simulated are in natural units and considered to be biologically realistic
according to the empirical studies of natural birds populations (e.g. Grant & Grant, 2002;
Vedder et al., 2013). Samples were modeled from a population undergoing stabilizing
selection with AR(1) 6;, fixed 1\ and n{). Vector pt = (ja, 16, j1,)T is set to (2,20, 3.5).
The autocorrelation ¢y is set to 0.1, 0.4 and 0.7 (only positive values considered since
the estimate of auto-correlation in temporal optimal laying date is positive, for example
0.3029 in Chevin et al. (2015) and 0.524 in Cao et al. (2019)), the variance of fluctuating
optimal laying date oy is set to 20.

For each value of ¢g, tmax = 25 or 50 time points were simulated and for each time
point the sample size was drawn from a Poisson distribution with mean n = 25, 50 or
100 individuals. We considered four combinations of tmaz and n, which are (tmaxr =
25,n = 50), (tmax = 25,n = 100), (tmax = 50,n = 25) and (tmax = 50,n = 100).
These four combinations are refered as simulation setting 1, 2, 3, 4 respectively in the
following sections. Similar to Cao et al. (2019), we neglected response to selection and
used the same normal distribution for simulating individual phenotype each year. The
phenotypic standard deviation before selection ¢, was set to 20, such that the strength
of stabilizing selection S = 02/(e"”)? + 02 (e.g. Chevin et al., 2015) was 0.267. For each
individual, its fitness was computed from its phenotype using equation (1), and its actual
number of offspring was then drawn from a Poisson distribution with mean w;(z).



3.2 Frequentist vs. Bayesian estimates

The results of one single simulation obtained from maximum likelihood in the frequentist
framework are compared with those from tmbstan. The summaries of the estimates with
tmbstan are computed after dropping the warmup iterations and merging the draws from
all the four chains. The frequentist and Bayesian estimates with different sample sizes
and ¢pp = 0.4 are shown in Table 1, the estimates with other values of auto-correlation
in 0; (¢gp =0.1 and 0.7) can be found in Supporting Information.

From Table 1 we find that both frequentist and Bayesian inferences show good es-
timates for u, and p,. It is interesting to see that the auto-correlation for #; is not
always under-estimated under all settings (for example (tmaz = 25,n = 50)), this can be
also seen from the tables for parameter estimates in Supporting Information. Bayesian
inference with Priorl (half-Cauchy prior) generally reports smaller estimates of pp than
MLE and Prior2 (lognormal prior) but larger estimates of ¢y and logoy. The estimates
with MLE and Prior2 are close to each other while the estimates with Prior2 show fewer
uncertainties for ¢y and logoy implied by the smaller standard errors in the brackets.
Prior2 also reports smaller estimates for logoy compared with MLE and Priorl since it
puts very large weight on small values of the variance, as will be graphically demonstrated
in section 3.4. We also find that ¢y and log oy are difficult parameters to estimate since
none of these three techniques can estimate them accurately across all the cases. How-
ever, the estimates are based on one realization of simulation, the discrepancy between
estimates to the true value would vary from simulation to simulation.

We also compare the estimates across the different sample sizes. We typically compare
the estimates between setting (tmax = 25,n = 50) and (tmax = 25,n = 100), (tmax =
50,n = 25) and (tmaz = 50,n = 100), (tmaz = 25,n = 100) and (tmazx = 50,7 = 100).
We find that increasing the mean sample size at each time point does not necessar-
ily increase the certainty of the estimates, but the data set with increased time points
(tmax = 50,n = 100) contains more information on the parameters of interest and thus
reports more certain estimates compared with the data set with (¢maz = 25,n = 100).
The same conclusion can be also drawn by making similar comparisons among the esti-
mates in Table S1 and S2 in Supporting Information.

We can also find from Table 1, Table S1 and S2 from Supporting Information that the
Bayesian inference with Priorl in some cases report 1 or 2 divergent transitions while with
Prior2 there are no divergent transitions reported. This implies that the geometric shape
of posterior likelihood with Priorl is more challenging for sampling probably due to light
tails and thus potentially leads to an incomplete exploration of the target distribution.

3.3 Bias Plot

The comparison between the estimates in the last section is based on one realization of
the simulation. To make comparisons of estimates over more realizations, the simulation
was repeated 50 times under the setting of (tmaz = 50,n = 25). Due to divergent
transitions, only 44 out of 50 replicates were kept and the replications with more than
0.1% divergent transitions (in 2000 iterations) were excluded from the analysis. For the
estimate of ¢y and logoy in each replication, the bias was calculated in a frequentist
framework as the absolute difference between the true value and the mean estimate from
each inference technique. The absolute bias for ¢y and logoy are graphically displayed
in the upper and lower plot in Fig. 1 respectively. From the upper plot we find that
in most replications, Bayesian inference with Priorl slightly outperforms the frequentist



Table 1: Frequentsit and Bayesian estimates (standard errors) from the model with AR(1)
0;, autocorrelation in 6; ¢g9 = 0.4, and different sample sizes ((tmaz = 25,n = 50),
(tmax = 25,n = 100), (tmax = 50,n = 25) and (tmaz = 50,n = 100)) from one realiza-
tion of the simulation. For each sample size setting, the number of divergent transitions in
the MCMC is also reported and is used as a measure of stability of the inference scheme.
MLE stands for maximum likelihood estimate, Priorl and Prior2 represent half-Cauchy
(0, 10) and lognormal (1, 0.5) prior respectively.

09,0 = 0.4, tmax = 25, n =50

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

o 2 2.017(0.015) 2.017(0.015) 2.016(0.015)

) 20 18.5(3.7) 18.3(5.1) 18.5(3.7)

e 3.5 3.472(0.028) 3.475(0.028) 3.469(0.028)

0.0 0.4 0.14(0.20) 0.23(0.23) 0.16(0.18)

logog 2.996 2.77(0.15) 2.88(0.19) 2.70(0.14)
00,0 = 0.4, tmazx = 25, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 2 0

lha 2 1.995(0.011) 1.995(0.012) 1.995(0.012)

1) 20 20.2(8.7) 18.3(17.5) 20.1(7.4)

Lo 3.5 3.506(0.022) 3.508(0.022) 3.504(0.021)

0.0 0.4 0.50(0.17) 0.59(0.18) 0.46(0.13)

logoy 2.996 3.25(0.18) 3.43(0.28) 3.13(0.14)
$op = 0.4, tmax = 50, n = 25

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 0 0

L 2 1.974(0.015) 1.974(0.015) 1.973(0.015)

i) 20 20.0(3.8) 19.8(4.9) 20.1(4.2)

e 3.5 3.520(0.032) 3.523(0.032) 3.515(0.031)

®o,0 0.4 0.42(0.14) 0.48(0.15) 0.42(0.13)

logoy 2.996 2.84(0.13) 2.92(0.16) 2.79(0.13)
09,0 = 0.4, tmax = 50, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 0 0

o 2 1.9865(0.0076) | 1.9864(0.0076) | 1.9861(0.0076)

4o 20 20.7(3.9) 20.0(5.0) 20.7(4.1)

e 3.5 3.512(0.015) 3.513(0.015) 3.510(0.015)

Do, 0.4 0.41(0.13) 0.47(0.15) 0.41(0.12)

logog 2.996 2.89(0.12) 2.97(0.17) 2.85(0.11)
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Figure 1: Bias plots for the auto-regressive parameter ¢ (the upper plot) and for the
scale parameter logoy (the lower plot) respectively under the setting with time series
length tmax = 50, average annual sample size n = 25, autocorrelation in 6, ¢y = 0.4
and 44 replications (50 replications were conducted, among which 6 replications report 3
or more divergent transitions for the MCMC of Bayesian inference and thus are removed
from the analysis).

inference and Bayesian inference with Prior2, the latter two reported very close estimates
for ¢gg. One striking thing is that the bias is close to or even larger than 0.4 for some
replications, this suggests that the inferences report even negative estimates of ¢ and
it again turns out to be a difficult parameter. In the lower plot, we can see no single
inference technique stands out in estimating the scale parameter logoy.

3.4 Prior-posterior distribution

Fig. 2 shows histograms of posterior samples of the scale parameter oy from models with
the two different prior distributions: half-Cauchy (0, 10) and log-normal (1, 0.5), which
are represented by solid lines in the left and right plot on each subplot respectively. The
true value of oy is indicated by a solid red line. Plot (a), (b), (¢) and (d) correspond
to setting (tmax = 25,n = 50), (tmaz = 25,n = 100), (tmaz = 50,n = 25) and
(tmaxz = 50,n = 100) respectively. We can see from plot (a) that the priors are quite
informative and pull the posteriors towards small values away from the true value and
this prior-domination is more clear with log-normal prior where the prior distribution
sharply peaks at 2. The domination is not mitigated even though the mean annual
sample size is increased to 100 as shown in plot (b). With the same total sample size
in plot (¢) (tmax = 50,n = 25) as that in plot (a) (tmaxz = 25,n = 50), the posterior
likelihoods in plot (c¢) are, however, not dominated by the priors. The prior-domination
is also mitigated in plot (d) compared with plot (b) by increasing the time points from
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Figure 2: Histograms of posterior samples of the scale parameter gy from models with
two different prior distributions. Plot (a), (b), (c) and (d) correspond to sample size
setting (tmax = 25,n = 50), (tmax = 25,n = 100), (tmax = 50,n = 25) and (tmax =
50,n = 100) respectively. On each subplot, the left one shows the histogram of posterior
samples given half-Cauchy (0, 10) prior on oy and similarly, the right one displays the
histogram of posterior samples given log-normal (1, 0.5) prior on oy. Overlain on each
subplot (the solid black lines) is the corresponding prior density function. The red lines
indicate the true value of og. Only ¢y = 0.4 was considered in the simulations.



25 to 50.

Altogether, the informative log-normal prior pulls more of the posterior towards a
narrower range of smaller parameter values especially when the number of time points
in the data is small. The posterior samples are less dominated by the half-Cauchy prior
in this case. Increasing the annual mean sample size does not necessarily lead to better
identification of the small region of parameter space. Only the amount of time points is
the matter for the likelihood to overwhelm the prior distribution and to dominate the
posterior distribution.

3.5 Computational efficiency with and without Laplace approx-
imation

In tmbstan, sampling can be performed with or without Laplace approximation for the
random effects. It is possible to mix the Laplace approximation with MCMC by speci-
fying laplace=TRUE, such that the random effects are integrated with the Laplace ap-
proximation in TMB and other parameters (such as fixed effects and hyperparameters
specifying the distribution of the random effects) are handled by the NUTS in Stan. In
the case studies in Monnahan and Kristensen (2018), the Bayesian inference algorithms
with Laplace approximation is less computationally efficient than without Laplace ap-
proximation, where the efficiency is defined as the minimum effective sample size per sec-
ond. Following that definition, we calculated the efficiency of tmbstan with and without
Laplace approximation with simulated data. Different from Monnahan and Kristensen
(2018), we did not consider the computational efficiency of Frequentist inference with the
Laplace approximation, as explained in the last section.

In Fig. 3, plot (a) displays violin plots of computational efficiency without (orange) and
with (green) Laplace approximation (la) of Bayesian inference with Prior]l under different
sample size settings. The setting 1, 2, 3, 4 on x axis stand for setting (tmax = 25,n = 50),
(tmax = 25,n = 100), (tmax = 50,n = 25) and (tmaz = 50,n = 100) respectively. Only
09,0 = 0.4 was considered and the divergent transitions were not taken into account.
Inside the violin plots are box plots showing the quantiles of 50 realized computational
efficiencies. Similarly, the violin plots of computational efficiency with Prior2 are shown
on plot (b). We find from both plot (a) and (b) that Bayesian inference without Laplace
approximation generally is more efficient under setting 1, 2, and 3, the outperformance
is more manifest when the sample size is small (tmaz = 25,n = 50). However, when the
sample size is increased to (tmaxr = 50,n = 100), inference with Laplace approximation
turns out to be slightly more efficient than that without Laplace approximation, the
boxplots and violin plots also tend to be more compact under this setting.

Even though the technique in which the random effects are integrated out by Laplace
approximation in TMB turns out to be less efficient in most settings, we still provide a
counterexample from Monnahan and Kristensen (2018) in which the enabling of Laplace
approximation is always less computationally efficient in the case studies.

3.6 Laplace approximation check

By comparing the Bayesian posteriors with and without Laplace approximation, we are
allowed to check how well the Laplace approximation works. Fig. 4 shows pair plots of
posterior samples with and without Laplace approximation done by TMB under different
sample size settings with Prior2. Only autocorrelation in 6, ¢99 = 0.4 was considered.
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(a) Computational efficiency with Priorl.
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(b) Computational efficiency with Prior2.

Figure 3: Violin plots of computational efficiency (minimum effective sample size per
second) without (orange) and with (green) Laplace approximation (la). The four settings
on x axis correspond to sample size setting (tmaxr = 25,n = 50), (tmax = 25, n =
100), (tmax = 50,n = 25) and (tmax = 50,n = 100) respectively. Plot (a) shows
the computational efficiency of Bayesian inference with Priorl and plot (b) with Prior2.
Only ¢pp = 0.4 was used in simulations. Inside the violin plots are box plots showing
the quantiles of 50 realized computational efficiencies. For each realization among the 50
simulations and across the settings, the same specifications in tmbstan are used.
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(¢) (tmax = 50,n = 25) with Prior2. (d) (tmax = 50,n = 100) with Prior2.

Figure 4: Pair plots of posterior samples for Laplace approximation check from one
realization of the simulation with Prior2. The four plots (a) (b) (¢) and (d) correspond
to the four settings of sample size in simulation. The random effects in the TMB model
can be integrated with two techniques: (1) full MCMC integration via NUTS and (2)
Laplace approximation. To check the accuracy of Laplace approximation to the posterior
likelihood density, the posterior samples for all the fixed effects in the model without
(yellow dots) and with Laplace approximation (green dots) are shown pair-wisely on the
same plot. Columns and rows on the lower diagonal correspond to pair-wise parameters,
with the diagonal showing QQ-plot of posterior samples from Bayesian inference without
(yellow dots) and with (green dots) Laplace approximation for that parameter including
a 1:1 line in yellow. The large red circles on the off-diagonal plots represent the pairwise
means. On each off-diagonal plot, there are 4000 yellow dots corresponding to 1000
samples retained from each of four chains without Laplace approximation, so as the green
dots with Laplace approximation. Posterior rows were randomized to prevent consistent
overplotting of one integration technique. Overlaps in the two colored dots suggest that
the Laplace approximation is accurate.
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Plot (a), (b), (c¢) and (d) correspond to setting (tmax = 25,n = 50), (tmax = 25,n =
100), (tmaz = 50,n = 25) and (tmax = 50,n = 100) respectively. On each subplot,
the lower diagonal plots contain pairwise parameter posterior points. The green dots
represent posterior points from full MCMC integration via NUTS and the yellow points
from enabled Laplace approximation of the random effects. The hollow red circles on
the off-diagonal plots represent the pairwise means. The diagonal shows QQ-plot of
posterior samples from Bayesian inference without (yellow dots) and with (green dots)
Laplace approximation for that parameter including a 1:1 line in yellow. Even though
the posterior points are densely packed, the overlap of the red circles with each technique
shows seemingly good alignment of the two versions of the posterior, and this suggests that
the Laplace approximation to the marginal likelihood where random effects are integrated
out works well. Similar pair plots for Laplace approximation check with Priorl can be
found in Supporting Information.

4 Real-data case study

Having established the utility of our modeling approach and frequentist and Bayesian
inference in the context of simulated data, we also applied the same statistical model
to the analysis of a real great tit dataset of practical interest. The observed data were
collected from a Dutch great tit (Parus major) population at the Hoge Veluwe National
Park in the Netherlands (52°02" - 52°07'N, 5°51” - 5°32E). The recorded variables include
the number of chicks, number of fledglings, mother ID, brood laying date and so on
for each brood. Laying dates are presented as the number of days after March 31 (day
1=April 1, day 31=May 1). Similar to Reed et al. (2013), only the broods with one or
more chicks were considered in our analysis due to the high proportion (15.7%) of zero-
observations in the number of fledglings among the broods. The number of fledglings was
taken as the fitness component and assumed to be Poisson distributed. The analyzed
dataset consists of brood records breeding in 61 years from 1955 to 2015 and the sample
size in a specific year ranges from 10 to 164 with an average of 81 across the study years.
See Reed et al. (2013) for more details on the study population and fieldwork procedures.

The focus of this empirical study is to compare the computational efficiency of Bayesian
inference with and without Laplace approximation and to check the accuracy of Laplace
approximation. However, since the true structure of the model is unknown, we first
conducted model selection under the frequentist framework and the candidate models
considered are different from each other only in the model structure of stochastic oy, 6;
and w;. The details of all the candidate models including the best model are given in
Supporting Information. We then made Bayesian inference with the two different pri-
ors as in the simulation study using the selected model. For each prior distribution, we
implemented tmbstan with and without Laplace approximation to check the accuracy of
Laplace approximation.

Table 2 lists the reported estimates of model parameters from maximum likelihood
(MLE) and Bayesian estimates with half-Cauchy (0, 10) prior (Priorl) and log-normal (1,
0.5) prior (Prior2). The best model indicates VAR(1) structure of oy and ¢; and non-zero
correlation p,. The width of stabilizing fitness function turned to be constant over the
study years implied by zero w;. Frequentist inference and Bayesian inference with Prior2
report close estimates for ¢y but the estimates with Prior2 show again less uncertainty
for most of the estimates except for p, ¢. In terms of log oy, Bayesian inference with Priorl
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Table 2: Frequentist and Bayesian estimates of parameters in the selected model with
great tit dataset. The Bayesian estimates (in column Priorl and Prior2) are obtained

without Lapalace approximation done by TMB.

parameter | MLE Priorl Prior2

Lha 2(0.0369) 2(0.0491) 2(0.0379)

Lbo 18.5(5.35) 18.8(7.12) 19.4(5.09)

Lo 3.88(0.055) 3.89(0.0563) 3.86(0.0522)
Do 0.379(0.12) 0.458(0.13) 0.398(0.124)
Po.0 0.48(0.112) 0.545(0.114) 0.477(0.102)
logo,, -1.72(0.14) -1.63(0.152) -1.76(0.126)
logog 3.07(0.137) 3.16(0.155) 2.98(0.125)
Pa0 -0.728(0.0825) | -0.715(0.0895) | -0.661(0.0987)

Table 3: Comparison of computational efficiency between Bayesian inference without (in
the row "Full MCMC") and with Laplace approximation (in the row "Laplace approxi-
mation") for random effects for the great tit case study.

Model | Inference Time(s) | min.ESS | Efficiency(ESS/t)
Prior 1 Full MCMC 1542.215 | 186.7651 | 0.1211019

Laplace approximation | 15491.85 | 1004.643 | 0.06484975
Prior 2 Full MCMC 1266.096 | 291.0717 | 0.229897

Laplace approximation | 7815.218 | 1111.257 | 0.1421914

reports the largest estimate and least certainty compared with the other two techniques.
The close resemblance between estimates of log oy based on maximum likelihood and
Bayesian inferences suggests that the data contains a good amount of information on
log gy so that the maximum likelihood overwhelms the log-normal prior and dominates
the posterior likelihood.

Table 3 shows computational efficiencies of Bayesian inference without and with
Laplace approximation. It turns out that the computational efficiency with Laplace ap-
proximation is approximately half of that without Laplace approximation in both models
with Priorl and Prior2.

Similar to Fig. 4, Fig. 5 and Fig. 6 display pair plots of posterior samples to check
the accuracy of Laplace approximation with Priorl and Prior2 respectively. Both the
figures seemingly suggest a good mix of posterior samples with and without Laplace
approximation for all the parameters in the selected model, indicating that the Laplace
approximation assumption is met.

5 Conclusions and extensions

In this study, we have investigated frequentist inference and Bayesian inference with two
different priors. The inferences were implemented with a state-space model estimating
temporal fluctuating selection and with simulated biological data under four different sim-
ulation settings. A state-of-the-art R package (tmbstan) for fast fitting statistical models
was used for Bayesian inference with Laplace approximation turning on or off. The simu-
lation studies show that the choice of prior can have an important impact on the geometric
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Figure 5: Pair plots of posterior samples for Laplace approximation test for the great
tit case study with Priorl. The random effects in the great tit TMB model can be in-
tegrated with two techniques: (1) full MCMC integration via NUTS and (2) Laplace
approximation. To check the accuracy of Laplace approximation to the posterior likeli-
hood density, the posterior samples for all the fixed effects in the model without (yellow
dots) and with Laplace approximation (green dots) are shown pair-wisely on the same
plot. Columns and rows on the lower diagonal correspond to pair-wise parameters, with
the diagonal showing QQ-plot of posterior samples from Bayesian inference without (yel-
low dots) and with (green dots) Laplace approximation for that parameter including a
1:1 line in yellow. The large red circles of the off-diagonal plots represent the pairwise
means. On each off-diagonal plot, there are 4000 yellow dots corresponding to 1000 sam-
ples retained from each of four chains without Laplace approximation, so as the green
dots with Laplace approximation. Posterior rows were randomized to prevent consistent
overplotting of one integration technique. Overlaps in the two colored dots suggest the
Laplace approximation assumption is met.

shape of the posterior distributions of the model parameters and a non-informative prior
(in this study uniform prior and inverse-gamma prior on the scale parameter) may lead
to unstable inference since the Markov chains may not converge or get stuck in part of
the ridge of posterior. With unobserved states following a VAR(1) process, we also found
that the autoregressive parameters and the scale parameters in the variance-covariance
matrix of the states are difficult and challenging to be estimated accurately. The in-
creased sample size at each time point does not necessarily provide more information for
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Figure 6: Pair plots of posterior samples for Laplace approximation test for the great tit
case study with Prior2. The random effects in the great tit TMB model can be integrated
with two techniques: (1) full MCMC integration via NUTS and (2) Laplace approxima-
tion. To check the accuracy of Laplace approximation to the posterior likelihood density,
the posterior samples for all the fixed effects in the model without (yellow dots) and with
Laplace approximation (green dots) are shown pair-wisely on the same plot. Columns
and rows on the lower diagonal correspond to pair-wise parameters, with the diagonal
showing QQ-plot of posterior samples from Bayesian inference without (yellow dots) and
with (green dots) Laplace approximation for that parameter including a 1:1 line in yel-
low. The large red circles of the off-diagonal plots represent the pairwise means. On each
off-diagonal plot, 4000 yellow dots correspond to 1000 samples retained from each of four
chains without Laplace approximation, so as the green dots with Laplace approximation.
Posterior rows were randomized to prevent consistent overplotting of one integration tech-
nique. Overlaps in the two colored dots suggest the Laplace approximation assumption
is met.

the transition parameters and scale parameters. Only more time points in the data could
make the likelihood dominate the posterior likelihood and thus lead to better estimates of
these parameters. Half-Cauchy prior on the scale parameter leads to less stable inference
than log-normal prior indicated by the number of divergent transitions in the Markov
Chains. Laplace approximation for the random effects turns out to be accurate suggested
by the pair plots of the posterior samples with and without Laplace approximation for
both the simulation studies and the great tit case study. Turning on Laplace approxi-

16



mation in tmbstan would probably reduce computational efficiency but it is worth trying
when there is a good amount of data, in which case the Laplace approximation is more
likely to be accurate and also potentially improve the computational efficiency of MCMC.

In our study, we used arbitrary prior distributions, however, the prior information can
be obtained from different sources. For example, in our great tit case study, the timing
and width of the caterpillar peak can provide a clue for the time window of optimal laying
dates, thus the information can be used to decide the prior for the scale parameter of
the optimal laying dates. Prior information can also be generated from previous studies
on the same species and more general ecological knowledge coming from other related
species (Tufto et al., 2000).

We conducted simulation studies with only AR(1) process of the optimal laying dates,
but the model is formulated and coded in a way that can be effortlessly extended to
order-1 vector autoregression (VAR(1)). It can be widely used for modeling ecological
processes where auto-correlation and cross-correlation in the processes arise due to shared
environmental variables at either temporal or spatial scale. We expect more ecologists to
adopt these two new estimation methods, TMB, and tmbstan, given its flexibility in either
frequentist or Bayesian inference for a wide range of models, including the models where
the unobserved ecological processes are treated as latent variables and assumed to be VAR
processes. However, the drawback of Bayesian VAR (BVAR) methods is that it usually
requires estimation of a large number of parameters and thus the over-parameterization
might lead to unstable inference and inaccurate out-of-sample forecasts. Some shrinkage
methods (Sims & Zha, 1998; Koop et al., 2010; Giannone et al., 2015; Sgrbye & Rue,
2017, for example) were thereby developed, in which Bayesian priors provide a logical
and consistent method of imposing parameter restrictions that can be potentially applied
to ecological data cases.
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Supporting Information (SI) for

Bayesian inference with tmbstan for a state-space model with VAR(1) state equation

1 Supplementary results of simulation studies

Similar to Table 1 in the main text, we here show the frequentist and Bayesian estimates of the same
parameters but with different true values of ¢g 9. Table S1 and Table S2 list the estimates of parameters
under different simulation settings with ¢g 9 = 0.1 and 0.7 respectively. From these two tables, we find
generally similar patterns to the table of estimates in the main text. For example, dataset with more time
points (tmaz = 50,n = 100) leads to more accurate estimates compared with the dataset with shorter time
series (tmax = 25,n = 100). Increasing the sample size at each time point improves neither the accuracy
nor the certainty of the estimates for the parameters of interest, only a bigger sample size is required for this
purpose.

In the main text, we only present the pair plots of posterior samples for Laplace approximation check
with Prior2. We here supplement the pair plots (Fig. S1) with Priorl under the four different sample
size settings. Fig. S1 also suggests accurate Laplace approximation indicated by the good mix of posterior
samples. To further validate this conclusion, we visually inspect the accuracy of Laplace approximation by
plotting bivariate contour plots of posterior samples from the Bayesian model with and without Laplace
approximation on the same figure, as shown in Fig. S2. Only the joint posterior distribution (¢g¢ and
log(cyg)) is considered and other parameters are ignored for simplifying the analysis. The overlap of contours
with (yellow) and without (green) Laplace approximation for the random effects suggests again that the

Laplace approximation in these cases is accurate.



0.1, and different sample sizes.

Table S1: Frequentsit and Bayesian estimates from the model with AR(1) 6;, autocorrelation in 6; ¢g o =

P9, = 0.1, tmax = 25, n = 50

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

Lo 2 2.006(0.016) 2.005(0.016) 2.006(0.016)

116 20 19.6(6.4) 19.3(9.3) 19.8(6.1)

e 3.5 3.475(0.030) 3.479(0.030) 3.472(0.030)

Ty 0.1 0.26(0.19) 0.34(0.22) 0.25(0.16)

logog 2.996 3.21(0.16) 3.34(0.20) 3.11(0.14)
99,0 = 0.1, tmax = 25, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

Lo 2 1.996(0.010) 1.996(0.010) 1.997(0.010)

140 20 17.1(3.7) 16.4(5.0) 17.0(3.8)

o 3.5 3.493(0.021) 3.494(0.022) 3.491(0.022)

D00 0.1 0.07(0.21) 0.15(0.24) 0.10(0.18)

logog 2.996 2.85(0.15) 2.95(0.18) 2.78(0.13)
¢9,0 = 0.1, tmax = 50, n = 25

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 0 0

Lo 2 1.977(0.015) 1.977(0.015) 1.976(0.015)

140 20 19.8(2.7) 19.7(3.1) 19.9(2.8)

Lo 3.5 3.529(0.033) 3.535(0.033) 3.525(0.033)

bo.0 0.1 0.04(0.15) 0.07(0.17) 0.06(0.14)

logoy 2.996 2.88(0.12) 2.93(0.12) 2.83(0.12)
99,0 = 0.1, tmax = 50, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 0 0

Lo 2 1.9858(0.0076) | 1.9857(0.0078) | 1.9856(0.0077)

116 20 20.3(2.8) 20.3(2.9) 20.3(2.9)

o 3.5 3.515(0.015) 3.515(0.016) 3.513(0.015)

D00 0.1 0.09(0.14) 0.12(0.16) 0.11(0.14)

logog 2.996 2.89(0.10) 2.93(0.11) 2.86(0.10)




0.7, and different sample sizes.

Table S2: Frequentsit and Bayesian estimates from the model with AR(1) 6;, autocorrelation in 6, ¢g o =

P90 = 0.7, tmax = 25, n = 50

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

fla 2 2.012(0.015) 2.012(0.015) 2.011(0.014)

Lo 20 15.7(4.8) 15.0(8.7) 16.0(5.0)

e 3.5 3.483(0.031) 3.486(0.031) 3.480(0.031)

Ty 0.7 0.45(0.18) 0.55(0.19) 0.43(0.16)

logog 2.996 2.72(0.18) 2.89(0.27) 2.65(0.16)
99,0 = 0.7, tmax = 25, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA NA 0

Lo 2 1.987(0.011) 1.980(0.014) 1.986(0.011)

116 20 18.3(9.7) 20(18) 18.4(8.1)

o 3.5 3.539(0.022) 3.566(0.049) 3.537(0.022)

D00 0.7 0.70(0.13) 0.60(0.35) 0.63(0.11)

logog 2.996 3.10(0.23) 3.36(0.29) 2.95(0.16)
P9,0 = 0.7, tmax = 50, n = 25

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

Lo 2 2.021(0.016) 2.021(0.016) 2.021(0.016)

140 20 19.3(8.9) 20(14) 19.7(7.8)

Lo 3.5 3.488(0.031) 3.490(0.030) 3.482(0.030)

bo.0 0.7 0.739(0.094) 0.781(0.091) 0.692(0.081)

logoy 2.996 3.24(0.18) 3.39(0.25) 3.13(0.14)
99,0 = 0.7, tmax = 50, n = 100

Parameters True value | MLE Priorl Prior2

no. divergent transitions | NA NA 1 0

Lo 2 1.9899(0.0076) | 1.9899(0.0076) | 1.9896(0.0075)

T 20 21.1(6.2) 20(12) 21.6(5.5)

o 3.5 3.511(0.015) 3.511(0.015) 3.510(0.015)

D00 0.7 0.71(0.10) 0.76(0.10) 0.667(0.086)

logog 2.996 2.93(0.17) 3.09(0.27) 2.84(0.14)
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Figure S1: Pair plots of posterior samples for Laplace approximation check for one realization of the
simulation with priorl. The four plots (a), (b), (c), and (d) correspond to the four schemes of simulation.
The random effects in the TMB model can be integrated with two techniques: (1) full MCMC integration
via NUTS and (2) Laplace approximation. To check the accuracy of Laplace approximation to the posterior
likelihood density, the posterior samples for all the fixed effects in the model without (yellow dots) and with
Laplace approximation (green dots) are shown pair-wisely on the same plot. Columns and rows on the lower
diagonal correspond to pair-wise parameters, with the diagonal showing QQ-plot of posterior samples from
Bayesian inference without (yellow dots) and with (green dots) for that parameter including a 1:1 line in
yellow. The large red circles of the off-diagonal plots represent the pairwise means. On each off-diagonal
plot, there are 4000 yellow dots corresponding to 1000 samples retained from each of four chains without
Laplace approximation, so as to the green dots with Laplace approximation. Posterior rows were randomized
to prevent consistent overplotting of one integration technique. Overlaps in the two colored dots suggest the

Laplace approximation assumption is met.
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Figure S2: Bivariate contour plots of posterior samples of ¢g ¢ and log(og) from one realization of the

simulation with Priorl (the first row) and Prior2 (the second row) for Laplace approximation check. The

posterior samples data used are the same as that in Fig. S1 and Figure 4 in the main text. The yellow

contours indicate the joint posterior distribution of (¢g,¢, log(cy)) from the estimation technique full MCMC

integration via NUTS, and the green contours correspond to the technique that Laplace approximation is

used. The yellow and green dots in each plot represent the mean of the bivariate posterior samples in each

setting respectively.



Table S3: Model selection for the real data case study. The table lists all the candidate models fitted with
the great tit data. Model 7 is selected as the best model due to the smallest AIC value. Column Ap and
AAIC lists the difference between the selected model and the corresponding candidate model in the number
of parameters and reported AIC value respectively. The rightmost column describes the candidate models.

The elements in matrix ® and vector p are set to 0 if not otherwise specified.

Model Ap | AAIC | Description

1 -5 82151 | ay =6 =w; =0

2 -4 295.07 | 0; = wy = 0, random o

3 -3 34.81 w; = 0, random «; and 6;

4 -2 176.51 | random «y, 6; and w;

5 -4 265.32 | ay = wy = 0, random 6

6 2 2.52 wr =0, VAR(1) a¢ and 0s: ¢o,0 # 09,0 # Pao # P0,0 # 0, pae # 0
7 (best model) | 0 0 wy =0, AR(1) o and AR(1) 04: o0 # P90 # 0

8 1 1.92 wr =0, VAR(1) o and 0y G0 # G060 # P00 # 0, pag # 0
9 1 1.21 wy =0, VAR(1) o and 0y b0 # 0,0 # a0 # 0, pa,g # 0
10 -1 12.93 w; = 0, random 6;, AR(1) oy da,a # 0

11 -1 6.7 wy = 0, random oy, AR(1) 04: ¢g 9 # 0

2 Supplementary info on real data case study

Beside half-Cauchy and lognormal priors for the scale parameters of the great tit model as shown in the
main text, we also tested inverse-gamma (1, 1) prior for the scale parameter o2 and o3. To visualize MCMC
diagnostics we show trace plots for the two scale parameters along with the prior densities in Fig. S3. The
solid black line in plot (a) shows prior density function of o, (or o) given a Inverse-gamma (1, 1) prior
density on 02 (or 07). The details on density function transformation are omitted here. The solid red line
indicates the density mode. The prior density mode of o, at 0.71 translates to density mode of logo, at
-0.34. However, the left trace plot in plot (b) for logo, implies that the posterior likelihood is dominated
by the prior so that the sampler gets trapped in the subspace of the parameter, which is a space near -0.34,
while the true posterior density mode locates around -1.7.

As mentioned in the main text, the great tit model implemented with Bayesian inference was selected in
the frequentist framework with model selection procedure. Table S3 lists all the candidate models fitted with
the great tit data. Model 7 is selected as the best model due to the smallest AIC value reported. Colomun
Ap and AAIC lists the difference between the selected model and the corresponding candidate model in the
number of parameters and reported AIC value respectively. The rightmost column describes the candidate
models.

We also plot the contours of posterior samples with and without Laplace approximation for a subset
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Figure S3: A prior density and trace plots for the great tit case study. In plot (a), the solid curve indicates
2

- or O'g, the equivalent density on o, or oy is

an equivalence of the density to inverse-gamma (1, 1) prior on o,
calculated with rules of density function transformation, which is omitted here. The red solid line indicates
the density mode. Plot (b) shows trace plots with the inverse-gamma (1,1) priors for parameter o2 (left)

and o3 (right) respectively. The grey areas indicate warm-up iterations.



(a) Bivariate contour plots with Priorl.
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(b) Bivariate contour plots with Prior2.
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Figure S4: Bivariate contour plots of posterior samples of a subset of the parameters in the selected great
tit model for Laplace approximation check. The posterior samples used here are the same as that in Figure
5 and Figure 6 in the main text. The plots in row (a) correspond to the Bayesian model with Priorl, and in
row (b) they are with Prior2. Similar to Fig. S2, the yellow contours indicate the joint posterior distribution
of the parameters from the estimation technique full MCMC integration via NUTS, and the green contours
correspond to the technique that Laplace approximation is used. The yellow and green dots in each plot
again represent the mean of the bivariate posterior samples in each plot respectively. Only a subset of the

parameters is considered for simplification.



of parameters in the great tit model on the same graph (Fig. S4), to get a clearer visualization of the
posteriors’ distribution. The first and second row of the contour plots corresponds to the Bayesian great tit
model with Priorl and Prior2 respectively. The round dots on the plots are the mean of posterior samples
for each estimation technique. The good amount of overlap of the yellow contours, dots (without Laplace
approximation), and green contours, dots (with Laplace approximation) again suggests a good accuracy of

Laplace approximation.



	109465_PhDCover_Yihan_Cao
	109465_PhD_Yihan_83_NY



