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Abstract

The latest developments in the field of additive manufacturing (AM) have
led to the wider use of this technology for the production of end-user products.
As a result, more stringent requirements are set to the quality of parts pro-
duced with AM technology. In order to satisfy the needs of industries and to
make additive manufacturing more attractive technology, a more in-depth
understanding of the factors that cause variations is needed.

Since each AM process works with a limited number of materials and re-
quires optimization of different process parameters, each AM category defines
a variety of materials and parameters that can be optimized. There are
seven different categories of AM, while a polymer powder bed fusion pro-
cess is analysed in this work. Typically, the main components of the AM
process, which are material, process, and CAD models(s), are investigated
isolated from each other, or by limited combinations. However, a compre-
hensive mathematical description of any AM process should be based on all
related components. Therefore, a new approach towards quality assurance
in AM is needed.

This thesis aims at describing two perspectives: (1) gaining more know-
ledge about the effect of build layout design on the quality of the produced
parts; (2) and how the obtained knowledge can be transformed into a user-
friendly decision support tool to minimize variations in polymer powder bed
fusion process prior to fabrication. The STL model characteristics, nine co-
ordinates, three orientation angles, building platform utilization, platform
density, material, run number, and build height are the parameters used to
describe the build layout design.

As a result, experimental work on the EOS P395 AM system has been
conducted, and 1526 standard dogbones specimens have been produced.
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In order to collect data from these specimens in a systematic way, a new
data acquisition and analysis approach has been proposed, which includes
data registration rules for stages before, during, and after the AM process.
With the help of model-based system engineering, a number of calculation
modules have been grouped into an intelligent system for quality assurance.
Each calculation module consists of a set of functional requirements and a
number of selected predictive models trained from the collected data using
machine learning algorithms. Since the quality of machine learning models
can be affected by the quality of used data, the data analysis pipeline has
been proposed as a process of data preparation and has been developed
based on the data science foundations. Data cleaning, data integration,
data normalization, and feature selection have been used as the main data
preprocessing steps. The resulting predictive models are:

1. the Random Forest machine learning model with an accuracy of 99.16%
for the estimation of geometric deviations.

2. the Random Forest machine learning model with accuracy 47.14%
(RMSE = 0.026) for estimation of compensation ratios in x, y, and z
axes for each object individually.

3. the Random Forest machine learning model with accuracy 66.24% for
estimation of tensile modulus, tensile strength, and strain at break.

This work also describes an attempt that was made to develop the predictive
model for optimization of part location in the build chamber with respect
to mechanical properties. However, this model requires further work.
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Chapter 1

Introduction

1.1 Introduction

Additive Manufacturing1 has been developed and improved significantly
during the past a few decades. Patents expiration has opened up new oppor-
tunities for both researchers and industry to obtain a deeper understanding
of AM processes. However, a complete mathematical description of the AM
processes is yet a research gap.

Any AM process consists of three main components; machine (usually char-
acterized by process parameters), material, and CAD model(s). The de-
velopment of an envisioned comprehensive mathematical description of a
process should be based on all related aspects of the components mentioned
above. The formulation of an analytical form is infeasible at this time. At
the current state, a more in-depth understanding of components and their
interrelations should be acquired first. While the CAD model can be the
same for any AM process, the choice of material and machine is dependent
on each other. In other words, if a metal material needs to be used, lim-
ited types of AM machines can be of interest. Conversely, a choice of AM
machine also sets constraints for a material choice.

Seven major types of AM process categories are presented in ISO/ASTM
52900:2015 [62], which are binder jetting, direct energy deposition, material

1AM is a process of joining materials, usually layer upon layer, in order to produce
parts from 3D models [62]

1
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extrusion, material jetting, powder bed fusion, sheet lamination, and vat
photopolymerization. Each AM process category differs by material, and
the type of energy used to fuse the material. For instance, powder bed fu-
sion processes2, also known as SLS, SLM, and EBM, fuse metal or polymer
powder with laser or electron beam. In contrast, material extrusion, also
known as Fused Deposition Modeling (FDM) or Fusion Filament Fabrica-
tion (FFF), selectively dispenses a plastic fillament3 through a nozzle [62].
Thus, different AM process categories have different parameters that are
used to describe the process. Additionally, metals and polymers have dif-
ferent material parameters. Therefore, a mathematical description of each
AM process should be done individually, depending on the used material
and process.

Usually, a set of developed models that describe the physical phenomena
of a process is used for numerical simulation to detect possible defects in
order to avoid them beforehand. Process and material models are developed
independently from each other due to the inherent complexity of the task.
Smith et al. [102] report that modeling of AM process ”is exceedingly difficult
due to the highly localized and drastic evolution that often occurs over the
course of the manufacture time of each component.” Since this research is
a part of the Norwegian knowledge-based project, MKRAM4, and powder
bed fusion processes are predefined by the project, this AM process category
is of interest in the thesis.

Modeling of the powder bed fusion process is often tackled from two different
angles. On the one hand, machine-related process parameters are optimized
to improve the quality of fabricated parts. On the other hand, the packing of
a build chamber5 by optimizing part’s position and orientation is considered
as another machine-related group of parameters, which will be referred to
as build chamber parameters.

Optimization of process parameters such as laser power, scan spacing, scan
speed, beam compensation, contouring and hatching, hatch length, the iner-
tia of scanning mirror, scan direction, bed temperature, and layer thickness

2PBF is an AM process in which thermal energy is selectively applied to fuse regions
of a powder bed [62]

3Usually, thermoplastic or composite material
4Material Knowledge for Robust Additive Manufacturing [1]
5Build chamber is ”enclosed location within the additive manufacturing system where

the parts are fabricated” [62]
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has been already presented in the literature [18, 21, 22, 30, 33, 33, 74, 90,
97, 101]. While part orientation, position, build chamber packing density,
and strategy have also been reported as important parameters [22, 59, 119],
only a few have attempted to investigate a combination of build chamber
parameters with machine process parameters [97].

In addition to process parameters, influence of material parameters is also
extensively described in the literature. Powder morphology, viscosity and
particle size are defined as important material characteristics used to predict
quality of the parts with a focus on mechanical properties [37, 39, 40, 50,
51, 77]. Besides, combination of the material, process and build chamber
parameters (mainly part orientation) have been intensively investigated and
used in Finite Element Analysis [16, 18, 22, 26, 36, 37, 44, 59, 64, 68, 69,
77, 91, 92, 93, 113, 114, 116, 119].

Zhu et al. [124] have presented three main mechanisms of error generation in
AM processes, which are the mathematical geometry approximation error
(conversion from CAD to STL model), error due to process parameters,
and material-related error (thermal shrinkage and material distortion). In
addition, Calignano [20] has reported that a combination of part position,
orientation, and a number of mesh triangles for the powder bed fusion AM
process have an impact on dimensional accuracy. The importance of part
position within a build chamber was also highlighted in [86] due to its effect
on the cooling time (which is essential for mechanical properties).

Therefore, there is a need to investigate how the synergy of STL model
parameters and build chamber parameters, namely part orientation and
position, affect the quality of fabricated parts. In this work, geometric
accuracy and mechanical properties are used as the two main aspects of
quality measures. The integration of information about the build chamber
and STL model parameters is referred to as a build layout design.

In addition to the need for a better understanding of how a build layout
design affects the geometry and mechanical properties, there is a need for
predictive models to control and manage possible deviations. This task
is important since AM has found an increased use for fabrication of func-
tional parts [102, 118], especially for electronics, automotive, medical, and
aerospace industries [102, 105, 117]. Thus, requirements for quality have
become more stringent.
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On the one hand, mathematical modeling, in combination with finite ele-
ment analysis, is widely used to model a sintering process. Still, developed
models are simplified and restricted to a specific set of parameters [16].
Thus, simulated results are not within the required tolerances. Machine
learning (ML) methods, on the other hand, show promising results when
modeling tasks are complex and have a large number of both linear and
nonlinear interrelated parameters. Machine learning techniques can find
hidden patterns in the data, and then, the accumulated information in the
form of trained ML models can be used to solve new unknown problems.

Even though there is a wide choice of machine learning techniques, Artifi-
cial Neural Network (ANN) and Genetic Algorithm (GA) are the most used
machine learning methods in AM. For example, several studies [46, 80, 90]
reported that geometric deviation could be minimized via prediction of scal-
ing ratio or through optimization of process parameters by applying ANN
machine learning techniques. Rong-Ji et al. [90] and Shen et al. [99] used
ANN to investigate the effect of process parameters on the density of pro-
duced parts and to develop predictive models.

In the recent publications, machine learning techniques have been used for
prediction of shrinkage behavior, surface quality, optimization of process
parameters, real-time process monitoring using both electric signals and
images of each layer [32, 81, 83, 88, 94, 100]. This is only a short list
of available literature, but it shows that application of machine learning
techniques is justified for getting understanding of variations in AM.

Additionally, the application of machine learning is especially effective for
data analysis collected from process monitoring by using different types of
sensors [10, 17, 78, 93]. The process monitoring systems, available nowadays,
are typically used for quality assurance, but only at the stage of fabrication.
On the one hand, such monitoring systems contribute to quality improve-
ments. On the other hand, if part orientation or position has not been
optimized, such monitoring systems are not able to compensate for the pos-
sible deviations via tuning only process parameters of the AM machine.
Therefore, there is a need for a decision support tool that can be used at a
stage of the build layout design by operators.

The work underlying in this thesis combines two perspectives: (1) gaining
knowledge about how a build layout design influences the quality of the pro-
duced parts; (2) and how the obtained knowledge can be transformed into
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a user-friendly decision support tool to minimize variations in AM prior to
the fabrication. One of the main goals of this work is focused on evaluating
which machine learning techniques are the best for the development of mod-
els that will become a part of an intelligent system for quality assurance in
the powder bed fusion machine.

1.2 The MKRAM project

The work underlying in this thesis is a part of the Norwegian project
MKRAM (Material Knowledge for Robust Additive Manufacturing) fun-
ded by the Norwegian Research Council. The main goal of this project has
been set to gain more in-depth knowledge about material behavior, and
how material variation influences mechanical properties for the powder bed
fusion AM process, which would result in material models for selected ma-
terials. The project investigated plastic and metallic materials separately,
and this work is a part of the polymer research focus.

While the main interest was to develop material models for their further use
in finite element analysis (FEA), this work shows another perspective on how
different build layout designs influence material properties and geometric
accuracy. How part’s position, part’s orientation, and other build layout
related features can be used for the prediction of material properties and
geometric variations is also presented in this work.

1.3 Research questions

This thesis aims at answering the following research questions:

RQ1. How does the build layout design affect product quality in polymer
powder bed fusion systems?

This research question aims at understanding how the quality of parts pro-
duced by a polymer powder bed fusion system is affected by different build
layout designs. Part orientation, part positioning, and STL model charac-
teristics are chosen as the main parameters to describe build layout design.
Quality of the produced parts is described in terms of geometric accuracy
and mechanical properties, namely tensile modulus, tensile strength, and
strain at break.

RQ2. How can machine learning techniques improve dimensional accuracy
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of AM?

The second research question aims at addressing the issues of insufficient
geometric accuracy of additively manufactured parts. Many different factors
may have an impact on dimensional accuracy. While traditional mathem-
atical descriptions of isolated issues may be found in the literature, there
is a need for ML techniques that will allow using historical data to find
hidden patterns in the data. Therefore, different machine learning methods
are applied, and their performance is compared to select the most suitable
method for the task.

RQ3. How can application of ML techniques contribute to control and
management of mechanical properties of AM built products?

Similarly to RQ2, this research question aims at addressing the issues of
inconsistent mechanical properties of additively manufactured parts. The
prediction of mechanical properties for a specific position of a part is an im-
portant task. Therefore, machine learning techniques are applied to develop
predictive models and determine which parameters are significant for this
task.

RQ4. How to utilize a build chamber of powder bed fusion machines in a
more sustainable way?

In the powder bed fusion system, if more parts can be fit in one building
cycle, the cost of each part will be reduced, and material usage will be
more efficient. Therefore, this research question aims at addressing how the
developed models can help to utilize more space in a build chamber while
still maintaining the desired quality.

1.4 Contributions of the thesis

The thesis describes the following contributions:

• Experimental investigation of how a build layout design affects product
quality in polymer powder bed fusion system, EOS P395, has been
done.
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• Data from 1526 standard specimens for tensile testing has been col-
lected through the experimental work, which was not available from
before, and can be used by other researchers in the future as a starting
point for new models’ developments.

• A new data acquisition and analysis approach has been developed,
which includes data registration rules for the stages before, during,
and after the AM process.

• Design of calculation modules and functional requirements of an in-
telligent system for quality assurance for powder bed fusion machines
has been proposed.

• Machine learning models have been developed for the prediction of
dimensional deviations based on the part position, orientation, STL
model characteristics, and build layout design. A prototype of a mod-
ule of the intelligent system for quality assurance has been developed
based on the developed models.

• Machine learning models are developed for prediction of scaling ratio
individually for each part in the build layout design. A prototype
of a module of the intelligent system for quality assurance has been
developed based on the developed models.

• Machine learning models are proposed for mechanical properties, namely
tensile modulus, tensile strength and strain at break, based on the
part position, orientation, STL model characteristics, and build lay-
out design. A prototype of a module of the intelligent system for
quality assurance has been developed based on the developed models.

• Optimized part placement in the build chamber with the help of newly
developed machine learning models has been proposed. A prototype
of a module of the intelligent system for quality assurance has been
developed based on the developed models.

1.5 Thesis outline

Due to the nature of the research, the rest of the thesis is structured, as
shown in Fig. 1.1. The theoretical background is divided into two chapters.
Chapter 2 aims at describing theoretical background about AM, and a cur-
rent state-of-the-art regarding issues raised in the research questions, while
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Figure 1.1: Thesis outline

Chapter 3 is devoted to the description of foundations of data science tech-
niques that are used for data analysis.

The research philosophy, design of experiments, and mechanical testing are
described in the details in Chapter 4. Then the description of how system
engineering was applied to design an intelligent system for quality assurance
for powder bed fusion machines is introduced in Chapter 5. Additionally,
Chapter 5 also describes the reasons behind the structure of the represent-
ation of the results.

The results are presented as separate modules that correspond to the design
of the intelligent system for quality assurance of PPBF. Thus, Chapter 6
is devoted to (1) the analysis of measured length, width and thickness, (2)
to the investigation of correlation between chosen parameters (build layout
design and STL model properties) and dimensions, and (3) to the description
of the developed machine learning models for prediction of the geometric
deviations with the respect to the orientation and location of the part within
a build chamber.

Chapter 7 aims at addressing similar issues as Chapter 6, but in terms of the
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compensation ratios in x, y, and z axes individually for each part. This step
is necessary since it helps to simplify a process of compensating geometric
deviations. Chapter 8 is devoted to the analysis of the measured mechanical
properties, namely tensile modulus, tensile strength, and strain at break.
The correlations between chosen parameters and mechanical properties are
also described in this chapter, and the developed machine learning models
for the estimation of mechanical properties are presented at the end of the
chapter.

Chapter 9 discusses the opportunities related to the optimization of part
placement for the desired mechanical properties, and aims at providing
machine learning models for the defined task. Discussion about the ob-
tained results with respect to the formulated research questions is provided
in Chapter 10. The conclusions and ideas for future work are presented in
Chapter 11.
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Chapter 2

Theoretical background and
state-of-the-art

Description of the theoretical background is started with Section 2.1 focused
on the foundations of AM in terms of powder bed fusion system, material,
and STL model characteristics. Section 2.2 provides a brief overview of the
current progress in the state-of-the-art regarding geometric deviations and
mechanical properties in additive manufacturing.

2.1 Foundations about additive manufacturing tech-
nology

This section aims at describing the main principles of the powder bed fusion
additive manufacturing process. The first section starts with a description of
a powder bed fusion system in detail. The second section is about polymer
powder and its characteristics. The last section describes the STL model
and characteristics that are important for powder bed fusion systems.

2.1.1 Polymer powder bed fusion system

The original patent that describes the main principle of the powder bed
fusion process has a name ”Molding process”, and was issued in 1981 [53].
The main idea was to join molding and casting processes into one process,
allowing them to produce 3-dimensional (3D) objects faster. It was proposed
to use simultaneously two materials, powdered dry sand to form a mold (in

11
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the patent referred to as ”mold material”) and dry mixture of plaster of paris
and sand (referred to as ”casting material” in the patent).

Inventors described that materials are filled in a matrix that is divided into
square cells (openings in Fig. 2.1). The matrix is inside of a container and
always stays at the fixed position. A movable table also called a frame, is
placed under the matrix at the first layer to ensure that material remains in
the cells. Each cell is filled with the corresponding material: either casting
or mold material. When all cells are filled, the table is lowered by a defined
step so that the matrix can be filled again. When all layers are finished,
water is loaded into the container for a couple of hours to create a chemical
reaction between the plaster of paris and water, which allows the material
to fuse. As the last step, the mold material is removed by water under high
pressure, resulting in the completed 3D object.

Figure 2.1: Schematic representation of the idea of the molding process from a
patent issued in 1981 (adopted from [53])

Housholder [53] described many variations of the abovementioned molding
process, and only one of them reminds of the powder bed fusion process as
it is known nowadays. The author presented that only one type of powder
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material can be used if a laser beam is used as a source of energy to melt
the material. In general, this description is the same as known nowadays as
powder bed fusion.

According to the ISO/ASTM52900-15 standard [62], powder bed fusion con-
stitutes an ”additive manufacturing process in which thermal energy select-
ively fuses regions of a powder bed”. The schematic representation of the
powder bed fusion machine is shown in Fig. 2.2. The machine table (powder
bed) is first lowered to a one layer thickness. Then the powder is distributed
on the bed, and thermal energy is applied to selected regions on the sur-
face to fuse the material1. All these steps are repeated in a cycled manner,
where the total number of cycles is equal to the number of layers that are
predefined beforehand. A number of layers depends on the layer thickness
and the size of the object to be produced. For example, if layer thickness
is chosen to be 0.12 mm with the height of the object being 75 mm, the
number of layers equals 625.

Figure 2.2: Schematic representation of powder bed fusion machine

In polymer powder bed fusion processes, a pulsed laser beam is the most

1Metallic, ceramic, composite, and polymer are types of material that can be used for
fabrication by powder bed fusion additive manufacturing process.
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widely used source of energy [65]. In order to melt or sinter material in
selected regions, the laser beam needs to be projected on these regions. The
direction of the beam is realized with galvanometer-controlled mirrors [30].
The scanning strategy defines the way how the laser beam scans the surface
of the material.

As shown in Fig. 2.3, laser beam movement from one side of the part
contour to another side can be defined as a scan line. The direction of the
scan lines at each layer determines the scanning strategy. Fig. 2.3 illustrates
schematic representation of the ’sorted’ scanning strategy. The thin blue
line, in Fig. 2.3, represents the contour of a part at one layer. The thick
blue line, shown on PSW example, is the actual contour of a part defined
by its CAD model (the laser beam follows a thin line since it is a center of
the path line for contour solidification), and green lines/arrows correspond
to scan lines. Usually, scan lines are referred to as hatch lines, and the
distance between them is called hatch distance (d in Fig. 2.3). According
to EOS, the default hatch distance between hatch lines is d = 0.3 mm. In
addition to the hatch distance, laser power, scan speed, beam offset, and
hatch pattern are the main controllable parameters in a scanning strategy.
Laser beam offset is used to compensate for the increase in the size of the
contour due to curing zones, which are material specific. According to EOS,
usually, beam offset is set to 0.33 mm.
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Figure 2.3: Schematic representation of the sorted scanning strategy, including
an example from the PSW software by EOS

It is important to mention that the distribution of hatch lines at one layer
is dependent on the chosen hatch distance. In other words, one layer can
be considered as a 2-dimensional coordinate system consisting of x and y
axes (Fig. 2.3). The scan line at each layer starts from the origin point
(0, 0) on the ”world” coordinate system of the AM machine. Thus, scan
lines along y-direction will be distributed as y = {0, d, 2d, 3d, ..} for layer 1,
and scan lines along x-direction will be distributed as x = {0, d, 2d, 3d, ..}
for layer 2. So d is a step for hatch line positioning at each layer, and
therefore, even and odd layers will always consist of the same number of
hatch lines, respectively. According to Pavan et al. [86], this information is
important because energy density is considered as a factor that influences
both geometric accuracy and mechanical properties.
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Figure 2.4: An example of a build layout in Magics 20.0 software

In addition to the scanning strategy, build layout2 is another factor that has
an effect on temperature distribution in the build chamber (an example is
shown in Fig.2.4) [97]. Build packing strategy describes how parts should be
oriented and positioned in the build chamber for effective use of the build
volume and the material. Part position (or part placement) in the build
chamber is defined in terms of rotation and translation respect to the build
chamber global coordinate system (World Coordinate System, WCS).

Since Magics 20.0 software provides information about part placement in
terms of central, minimal, and maximal coordinates (see Fig.2.5), it is im-
portant to define what these coordinates mean. Minimal coordinate corres-
ponds to a point on the part that is placed closest to the origin of WCS
of the build chamber. In contrast, the maximal coordinate describes the
position on the part that is farthest from the origin of WCS.

Fig. 2.5 illustrates how minimal and maximal coordinates are defined for a
part that is placed in the build chamber in two different orientations. For

2Build layout is a result of a build packing strategy, in which optimization of parts’
placement and orientation is performed to maximize utilization of the build volume and
material usage without negative impact on the quality.
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Figure 2.5: Example of part placement description in the build chamber through
maximal, central and minimal coordinates for Angle (left hand side) and XZY
(right hand side) orientations using Magics 20.0

the part in XZY orientation, the difference between maximal and minimal
coordinates corresponds to its dimensional features. However, a distance
between maximal and minimal coordinates for parts in Angle orientation
will not correspond to the value of a dimensional feature. In other words,
part placement coordinates are typically used to describe the part placement
in the build chamber, but not to define dimensional features of parts.

2.1.2 An introduction to mechanical properties

A polymer is a material used in the experimental work underlying this thesis.
It is well known that material is an essential factor influencing the quality
of additively manufactured parts. Therefore, even though the material is
not directly included in the list of investigated parameters in this research,
a basic overview of material and related quality characteristics need to be
presented.

Gedde [47] defined polymer as ”a substance composed of molecules charac-
terized by the multiple repetitions of one or more species of atoms or groups
of atoms (constitutional repeating units).”PA2200 is a powder based on the
material polyamide-12 (PA12), which constitutes of the n - number of the
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constitutional repeating unit shown in Fig. 2.6.

Figure 2.6: The polyamide-12 constitutional repeating unit (adopted from [47])

Investigation of the polyamide behavior includes analysis of powder mor-
phology, particle size distribution, particle density, flowability properties,
and powder materials physical properties [111]. Researchers look into the
interconnection between material characteristics and AM parameters (e.g.,
energy density, layer thickness, laser power). However, the main driving
force why these interconnections are investigated is due to the aim of re-
vealing their correlation with the final part quality. Depending on the ap-
plication areas of the produced parts, final quality can be described in terms
of part density, surface quality, geometric accuracy, internal build flaws, and
mechanical properties [111].

Mechanical properties can be described differently with respect to the chosen
mechanical testing techniques. In this work, tensile testing is conducted to
evaluate the strength and stiffness of the produced specimens (standard dog-
bones described in more detail in Chapter 4). A tensile test is a technique
used to define the relationship between stress and strain of the material.
Different material characteristics can be determined from a stress-strain
diagram. In this work, the mechanical properties of PA 2200 will be eval-
uated and analyzed with respect to Young’s modulus, tensile strength, and
elongation at break.

Young’s modulus, also known as tensile modulus or modulus of elasticity,
measures material resistance to elastic deformation under the applied load.
According to ISO 527-1:2019 standard [61], tensile modulus is a ”slope of the
stress/strain curve σ(ε) in the interval between the two strains ε1 = 0.05%
and ε2 = 0.25%”, and is expressed in megapascals (MPa).

Tensile strength, also known as maximum stress, is referred to as strength
in ISO 527-1:2019 standard [61] and is defined as ”stress at the first local
maximum observed during a tensile test.” Similar to the tensile modulus,
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strength is also expressed in megapascals (MPa).

The elongation at break, also known as the strain at break, is the maximum
relative deformation of the specimen before it breaks. The strain in uniaxial
tension, defined in eq. 2.1, is the ratio of the change in gauge length upon
loading (ΔL) to the original gauge length (L) [61].

ε =
ΔL

L
∗ 100% (2.1)

A more detailed overview of the parameters that influence investigated
mechanical properties is described in Section 2.2.2.

2.1.3 Highlights of STL model characteristics and their im-
portance

In order to fabricate a 3-dimensional (3D) CAD model by additive manu-
facturing, it should be first converted into STereoLithography (STL) model
(saved in ’STL’ file format). This file format was developed in 1987 by 3D
Systems. STL is considered as the most used CAD file format in AM [9].
Conversion of CAD model into an STL model is a process of tessellation of
CAD model into a set of triangular facets, which represents a surface feature
of a geometry [9, 58].

Tessellation of CAD model into STL format frequently ends with errors,
which lead to gaps and holes in data structures [106]. Usually, these types of
error create open loops in cross-sections, and such cross-sections will not be
possible to produce with AM technology. Due to these issues and a need for
more information being stored, there is a broad discussion in AM on using
more advanced geometry file formats, namely AMF and 3MF. Additionally,
more advanced users make attempts to use CAD models directly for AM
fabrication. However, STL still stays as the most used geometry file format,
especially for powder bed fusion AM processes.

There are two types of STL files; binary STL and ASCII STL format (ex-
amples are shown in Fig. 2.7). Even though ASCII STL is easier to read, the
binary STL is mostly used in practice. The main reason for that is because,
for a large part, the ASCII STL file becomes too large and inconvenient to
use. Therefore, in this work, the binary STL file is used and referenced to
as STL file format.
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Figure 2.7: Representations of ASCII STL format and Binary STL file format

STL file is a set of oriented triangles (facets), which can be numerically
represented as (ni

x, n
i
y, n

i
z) coordinates of outward normal of ith facet, and

(vikx, v
i
ky, v

i
kz) coordinates of k

th vertex of the iith triangle, while i = 1, .., N
is a number of mesh triangles [106]. Graphical representation of vertices
and normal vector is shown in Fig. 2.8. The normal vector needs to be
perpendicular to the facet and should point outwards with respect to 3D
model.

Figure 2.8: An example of a facet in STL model with the corresponding normal
vector and the verteces (e.g. P1 = (v1x, v1y, v1z))

All triangular facets in the STL file must comply with the following two
rules [58]:
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1. Vertex rule. Each triangle must share two vertices with its adjacent
triangles.

2. Facet orientation rule. The orientation of a facet must be described
to satisfy two conditions; (1) direction of the normal vector is outward,
and (2) the order of listing vertices is counterclockwise when looking
at the object from outside.

Often, many CAD systems could generate STL files that are incorrect since
they do not comply with the two rules described above. Typically, the main
reason for that is a very complex design of the CAD model. The incorrect
direction of the normals, overlapping facets, and cracks are common the
STL file errors [58]. Therefore, it is recommended to use STL file repairing
programs before 3D printing them. In some cases, not all errors can be
corrected, which means that either there is a need for model redesign or
using algorithms that allow repairing contour at 2D level, formed as slices
from the STL model rather than repairing the STL file in general [58].

Since generated STL file needs to be sliced into layers of 2D contours [9, 106],
contour generation is an important part of this process. Fig. 2.9 illustrates
a schematic representation of how slicing of the mesh model is performed
for contour generation by a generic algorithm [76].

Figure 2.9: Using horisontal planes for contour generation (adopted from [76])
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If to look at the simplified process of contour generalization, one can consider
slicing of the mesh model with horizontal planes (parallel to XY plane),
incremented along the z-axis (shown in Fig. 2.9). Intersections of a plane
and triangle edges create intersection points (vertices). Created intersection
points within one slice plane are connected into a set of lines. Lower contour
can be described as set of L1, L2 and L3 line segments, and line segments
L

′
1, L

′
2 and L

′
3 define the upper contour. Distance between the upper and

lower contours is equal to layer thickness. Thus, two generated contours can
be defined as a set of segments {L1, L2, L3} and {L′

1, L
′
2, L

′
3}.

Therefore, the STL file format is an important factor in additive manufac-
turing. Accuracy of 2D contours may be affected by changing the number
of triangles, and thus resulting in a smaller or larger volumetric error, which
leads to geometric deviations. Volumetric error determines numerically dif-
ference between generated contours of the STL model and designed a CAD
model with respect to the part’s orientation [76].

2.2 A brief overview of the current state-of-the-
art

A brief overview of the current state-of-the-art is presented as three differ-
ent subsections. In the first subsection, an overview of the recent studies
regarding geometric variations in AM is presented. The second subsection
describes the current state-of-the-art of the studies about mechanical prop-
erties in additive manufacturing. The last subsection illustrates an overview
of how machine learning techniques are used for additive manufacturing
technologies.

2.2.1 Geometric variations in additive manufacturing

Compensation of shrinkage effect based on the STL model

In the series of research publications [54, 55, 56, 57, 73, 124] the issues of
geometric deviations related to the shape deformations at the stage of pro-
cessing STL file are raised and addressed. Zhu et al. [124] highlighted that
due to the layer-wise nature of additive manufacturing technology, there ex-
ist in-plane and out-plane deviations of the product shape from the designed
shape. The in-plane deviations occur as a result of an error effect inside each
layer, while out-plane deviations are due to errors between layers.
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Zhu et al. [124] have adopted a multi-task Gaussian process machine learn-
ing algorithm to model the local variations, namely in-plane variations. A
general model for prediction of in-plane (x-y plane) geometric deviations for
various shapes (cylindrical [57], polygon [55] and prismatic shapes [56]) has
been described. The main idea of Luan and Huang [73] was to decouple the
complexity of geometric shapes from the deformation modeling and thus to
develop a predictive learning strategy of freeform objects.

The optimal compensation policy for 2D and 3D shapes has been proposed
by Huang [54], where minimum area deviation and minimum volume devi-
ation are used as quality measures. While deviation compensation for 2D
shapes is addressed via transformation of shape deformations into deviation
profiles by using a polar coordinates system, the 3D shapes deformations
have been addressed as a unified formulation of in-plane and out-plane de-
formations by using a spherical coordinate system. Both of the provided
annotations are built on the previously published works [55, 56, 73] and
show great potential for addressing issues of dimensional inaccuracies in
additive manufacturing.

In the most recent research activities, application of machine learning tech-
niques for predictive modeling of dimensional inaccuracies of freeform 3D
shapes based on the STL model [31]. Decker and Huang [31] have used a
random forest machine learning method to predict the physical position of
a vertex in the print bed. The orientation and curvature of a surface are
significant for defining surface slope properties with possible errors like the
stair-step effect.

Usually, the stair-step effect is tackled from another perspective, where re-
searchers focus on the development of new slicing algorithms that will help
to minimize geometric deviation [9, 35, 76, 109]. Since larger CAD models
with more complex designs result in the increasing size of the STL model,
and thus, resulting in the decreased efficiency of existing slicing algorithms.
Therefore, Ding et al. [35] proposed a multi-direction slicing algorithm for
3D shapes with respect to part’s orientation. In order to be able to use the
proposed algorithm, AM machines need to be able to conduct a deposition
path trajectory along multiple directions.

For instance, error compensation by correcting STL files has been evalu-
ated on fused filament fabrication [109]. Two types of compensation errors
have been defined: translational error individually for x, y and z axes, and
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rotational error in y and z axes. However, dimensional inaccuracy in the
z-direction was not significantly improved due to layer quantization, which
means that geometric variations along the z-axis are less controllable.

Hao et al. [52] have developed a method for decomposing and reconstruct-
ing the STL model into several meaningful sub-models, which are easier
and more efficient to fabricate. The authors have validated the proposed
curvature-based partitioning algorithm on the large-scale STL model, which
improved the geometric accuracy. However, the usage of the feature plane
as the cut plane leads to incomplete cutting corners [52].

Even though these solutions have been validated on simpler additive man-
ufacturing processes, like stereolithography and material extrusion, there is
no discussion on how the developed models can be utilized for powder bed
fusion machines, or how optimization of process parameters can contribute
to the minimization of geometric inaccuracies.

Shrinkage effect compensation by optimization of process para-
meters

Even though compensation of geometric deviations based on STL model im-
provements have shown great potential, Cheng et al. [23] highlighted that
including process parameters is also an important step towards minimiza-
tion of geometric inaccuracies. Therefore, the authors have extended the
proposed in-plane compensation model from Huang et al. [57] by including
information about process parameters of material extrusion additive man-
ufacturing technology. The proposed framework, namely Gaussian Process
and Kernel Smoothing scheme, consists of the first part, based on in-plane
shape deviation with respect to STL file and process parameters, and the
second part, smoothing the new compensated contours of the 2D shape.

Often researchers connect shrinkage effect with geometric deviations. Thus,
Negi and Sharma [81] reported that dimensional accuracy could be improved
as a result of minimizing shrinkage effect by optimizing part bed temperat-
ure, scan speed, and scan spacing for polymer powder bed fusion machine.
The main algorithm utilizes an artificial neural network. The authors dis-
cussed the relationship between shrinkage effect and polymer crystallization
rate, which is a significant factor for defining a tendency for part’s curling
or other geometric deviations, and is dependent on the temperature inside
the build chamber.
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Optimization of laser power, scan spacing, bed temperature, and hatch
length of polymer powder bed fusion process (3D Systems) was performed to
predict shrinkage effect [101]. The authors used Analysis of Variance (AN-
OVA) based on the quadratic model for shrinkage, and their results showed
that all parameters are significant, with scan spacing being the most signi-
ficant parameter. When scan spacing is too narrow, the overlapping zones
of hatch lines lead to a higher temperature in such places and an additional
sintering-cooling sequence.

However, if scan spacing is too large, poor packing of the particle will take
place, and thus layers can have a tendency of curling and clinging to the
powder distribution rake (roller) [101]. Similarly, powder bed temperature
also influences the process of the powder recrystallization process. Lower
temperature leads to lower recrystallization and smaller shrinkage effect,
while higher powder bed temperature provides better density and strength
for fabricated parts, but larger dimensional inaccuracy [101, 119].

Caulfield et al. [22] investigated thickness and width in terms of their de-
pendence on energy density and build orientation. However, authors haven’t
included the length of the part and ”Y” orientation that could provide more
information for a better understanding of the sintering process. As a result,
Caulfield et al. [22] have documented that the ”role of the build orientation
and parts dimensions may be more complicated than the influence of energy
density.” Therefore, more investigation of dimensional accuracy interaction
with build properties is needed.

Yang et al. [119] proposed a set of models for optimization of shrinkage ratio
for part placement in X, Y, or Z directions. Models are built based on the
results from Taguchi and Analysis of Variance and supported their optimiz-
ation with experimental testing of models. The results obtained from these
models led to decreased shrinkage error from 84% to 64% comparing with
the results of other commercially available methods, and thus improving the
accuracy of part dimensions significantly [119] .

Senthilkumaran et al. [97] investigated the influence of different building
strategies on the shrinkage effect. Authors studied the effects of beam com-
pensation, contouring, and hatching, the inertia of scanning mirror, scan
direction, and compensation of positioning errors on shrinkage effect. Ad-
ditionally, the impact of part’s orientation has been evaluated with respect
to geometry deviations per unit length. Senthilkumaran et al. [97] observed



26 Theoretical background and state-of-the-art

that shrinkage effect of parts oriented in XYZ orientation is higher than in
YXZ direction ((0.4− 0.6)% and (−0.4− 0.35)%, respectively).

Later, Senthilkumaran et al. [98] introduced a new model for shrinkage
compensation based on the results and gained knowledge from the previous
study. This model was developed for compensation of shrinkage ”at every
layer and at every hatch length, unlike a uniform compensation scheme ap-
plied to the entire part” [98]. Results were compared with the compensation
suggested by the machine manufacturer, and improvements of dimensional
accuracy approximately by 55-62% were observed for the newly developed
compensation scheme.

Similarly, Senthilkumaran et al. [98] proposed a model for compensating
shrinkage behavior with respect to a part position and exposure strategies
(such as scan length and scan distance). The shrinkage effect was repor-
ted as highly non-uniform, especially along the z-axis due to lower scan
length. While in-plane shrinkage compensation is easier to achieve by using
developed models along x and y directions separately, the shrinkage effect
along the z-axis is affected by both part position, and distance between
hatchlines [98]. As a result, the authors highlighted the complexity of such
a model and haven’t developed model for shrinkage compensation along the
z-axis.

Another research work [65] shows that optimization of scanning strategy
is one of the solutions for minimization of shrinkage effect, and thus geo-
metric deviations. Jhabvala et al. [65] stated that scan patterns, including
scanning orientation, hatch spacing, and beam offset, are among the most
significant parameters. Moreover, these parameters play an important role
in the thermal evolution, and deformations related to the temperature dis-
tribution in the build chamber [123]. The authors proposed a thermal model
for layer-wised simulation of the powder bed fusion process as a means for
geometry improvements via scanning parameters’ optimization [123].

Investigation of the relationship between the shrinkage and layer thickness,
hatch spacing, laser power, scanning speed, the temperature of a working
environment, interval time, and scanning mode have been presented byWang
et al. [113]. Delgado et al. [33] also evaluated the significance of the effects of
process parameters on dimensional error, surface roughness, and mechanical
properties for metal powder bed fusion systems. The authors also reported
that research on dimensional accuracy for two metal materials is limited
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comparing with surface roughness and mechanical properties.

As shown above, the compensation of geometric deviations with the help of
optimizing STL models and AM process parameters are actively investig-
ated nowadays. The proposed solutions show great potential, while at the
same time, there is a number of research gaps yet to be addressed. First
of all, there is a need for more in-depth knowledge on how the STL model
parameters affect the geometric deviations. While optimization of AM pro-
cess parameters and correction of STL files are performed isolated from each
other, the combination of these two aspects is yet not well studied. Besides,
the current state-of-the-art shows that there is a lack of understanding of
how dimensional inaccuracies vary within the build chamber of the powder
bed fusion process. Most of the presented studies describe the geometric
deviations based on the limited number of produced objects. Moreover, the
usage of larger space in the build chamber could contribute to a different
deviation profile.

2.2.2 Mechanical properties in additive manufacturing

The current state-of-the-art [14, 16, 18, 22, 26, 36, 37, 44, 59, 68, 69, 77, 91,
92, 93, 103, 104, 113, 114, 116, 119] describes the importance of part ori-
entation, powder morphology, and machine process parameters as a means
towards the control and management of variation in polymer powder bed
fusion system.

Laser power, scan speed, hatch distance, scan strategy, melting temperature,
and powder bed temperature are among the most investigated AM machine
process parameters [36, 44, 68, 91, 113, 114]. There is a number of studies
[41, 49, 50, 79] which report that laser power, scan speed, hatch distance,
and layer thickness can be used to define the line energy and how their
variation may influence mechanical properties of the part. In addition to
energy applied to solidify polyamide, Mielicki et al. [77] have also reported
the importance of layer thickness and powder distribution in each layer.
Powder distribution is dependent on the size of the particles and powder
viscosity.

Furthermore, Drummer et al. [37] and Gümüs et al. [51] studied how the size
of the particles of the polymer powder and its viscosity influence mechanical
properties. While Drummer et al. [37] investigated the degradation beha-
vior of PA12 based on the analysis of phase transition temperature and melt
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viscosity for both virgin and aged powder, Gümüs et al. [51] have reported
that the size and morphology of the particles could lead to the creation of
pores, gaps, or/and voids in the fabricated parts. Flodberg et al. [40] have
reported that porosity is an important factor leading to the degradation of
mechanical properties. Two different types of polyamide-12 was evaluated,
namely, Duraform ProX Nylon PA12 and PA12 reinforced by carbon fibers.
It was found the PA12 reinforced with carbon fibers have better mechanical
properties and lower porosity including smaller sizes of pores, while Dura-
form ProX Nylon PA12 has larger porosity level (including larger sizes of
pores) and lower mechanical properties. Besides, Flodberg et al. [40] re-
ported that tensile strength and tensile modulus were less affected by the
part’s orientation, while strain at breaks has significant variation depending
on the part’s orientation.

Stichel et al. [103] have performed a Round Robin procedure on six different
polymer powder bed fusion machines with the best set of process paramet-
ers for each machine, and corresponding choice of the material, namely 12
Duraform PA (3D Systems) and PA2200 (EOS). In a series of publications
[103, 104], researchers have reported on ”the minor reproducibility regarding
the mechanical and dimensional properties.”While microstructural origin in
mechanical properties with a significant focus on the importance of porosity
and residual particles and cores is described in [103], the backtracing of pore
morphology to the process parameters were presented in [104].

The highest ductility (elongation at break) and ultimate tensile strength
have been observed when a high melt efficiency without coplanar residual
particle core arrangements was achieved [103]. The pore morphology was
found to be less significant for mechanical properties, but it is reflected in
the anisotropic mechanical response depending on the samples’ orientation
in the build chamber. Stichel et al. [103] have highlighted that porosity
and residual particles and core are not linked and can vary independently
depending on the machine configurations.

The backtracing of porosity, pore density, pore shape, and pore arrangments
of laser-sintered polyamide-12 samples to the process parameters have been
described in [104] as a following up article of [103]. The laser energy in-
put temperature was found to be the most critical process parameter that
may help to reduce porosity and improve mechanical properties. The com-
bination of 100 μm layer thickness, the area energy density value around 4
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J/cm2, and process temperature close to the melting point are recommended
to achieve microstructure with lower porosity, and thus higher mechanical
properties [104].

The mechanical properties of samples produced with three different polymer
powder bed fusion machines, namely EOS Formiga P100, multijet fusion by
HP, and large area projection sintering (LAPS), were compared by Craft
et al. [27]. The importance of temperature in terms of lower porosity and
higher elongation at break has also been reported [27], and these results are
in line with the findings described in [103, 104].

In another study, monitoring and control of a powder morphology by using
machine vision in combination with Design of Experiment (DoE) were pro-
posed by Flores Ituarte et al. [41]. In order to control powder flowability,
the authors described how machine process parameters need to be varied
(e.g., line energy, change the speed of the recoater, adjust layer thickness).

The influence of part orientation on mechanical properties has already been
described in detail by [22, 74, 108]. It is important to note that there is a
difference between what is reported in the literature and what is provided
by EOS datasheets. While [22, 74, 108] have reported that tensile modulus,
elongation at break, and maximal stress are affected by the part orienta-
tion, EOS reports in their datasheets for PA12-Balanced process parameters
group that Tensile Modulus is the same in all orientations. Ituarte et al. [64]
have also reported that part orientation has the most significant influence on
mechanical properties, among other investigated parameters based on the
Taguchi DOE. Caulfield et al. [22] reported that the thermal distribution in
the build chamber also has an impact on the mechanical properties of the
fabricated parts.

In contrast, Faes et al. [39] reported that mechanical properties are isotropic,
and part orientation is not a significant factor. The authors assume that
such observation could be connected to the age of the used AM machine
since newer AM machines have highly optimized parameter settings, namely
”scanning patterns, laser beam settings, improvements to the preheating
homogeneity of the powder bed, and also continuous improvement in the
sintering characteristics of the material itself” [39]. However, part location
within the build chamber was found to be an important factor for tensile
modulus and elongation at break.
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Tasch et al. [107] investigated the dependence of mechanical properties on
the thickness of polymer powder bed fusion produced samples. The thick-
ness was varied from 0.6 mm to 2 mm, and mechanical properties decreased
significantly for thickness lower than 0.8 mm. In addition, Tasch et al. [107]
highlighted that the results are non-homogeneous, AM system-specific, with
anisotropic material properties that depend on position and wall thickness
of the produced parts.

The impact of various process parameters on mechanical properties and
investigation of material properties with a focus on new material devel-
opments are well presented in the current state-of-the-art. Even though
researchers have highlighted the importance of energy distribution within
the build chamber as a significant factor that affects mechanical properties,
the impact of build chamber packing strategies on temperature distribution
in the build chamber is not investigated in depth. Several studies evaluated
the effect of the parts’ position and orientation. Still, more effort towards
mapping build packing strategies to mechanical properties needs to be put
in the future.

2.2.3 Machine learning in additive manufacturing

Considering latest progress in the fields of AM and ML, Razvi et al. [89]
reported in their overview that there are four main ML application areas
in AM, namely (1) design, (2) process and performance optimization, (3)
in-situ process monitoring and control, and (4) inspection, testing and val-
idation.

The in-situ process monitoring and control was highlighted as one of the
most widely presented machine learning applications within additive manu-
facturing technologies. The data collected from various sensors and cameras
are used for mapping process performance to quality metrics [89, 115, 120,
122]. The main interest is set to defining deviations during fabrication and
adjusting process parameters in real-time. Since even small changes in pro-
cess parameters may introduce a larger deviation, this task requires more
in-depth knowledge about all possible factors affecting product quality.

The optimization of process parameters in order to improve product per-
formance (or in other words, quality metrics such as surface roughness,
dimensional accuracy, strength, strain at break, etc.) is also widely in-
vestigated in AM. For example, Artificial Neural Network (NN), mainly
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backpropagation NN, and the Genetic Algorithm are the most used ma-
chine learning methods for process modeling, optimization, and prediction
of process parameters.

Vosniakos et al. [112] have proposed a neural network model to be used as
a cost function of a genetic algorithm to optimize volumetric accuracy of
shape approximation and build time but for powder bed fusion. At the same
time, Rong-Ji et al. [90] attempted to determine the best process parameters
to fabricate parts with a higher level of accuracy. Authors focused on such
parameters of SLS as the layer thickness, hatch spacing, scanning speed,
scanning mode, laser power, interval time, and work surrounding temperat-
ure. To obtain optimum process parameters listed above, Rong-Ji et al. [90]
applied combination of genetic algorithm and backpropagation (BP) NN
algorithm. In this study, results from BPNN were used as input parameters
for fitness function in GA. A genetic algorithm was used as a method to
determine optimal process parameters based on minimum shrinkage ratio
[90].

Padhye and Deb [85] tested and evaluated different methods for multi-
objective optimization and multi-criteria decision making. The authors bor-
rowed already described by other scientists two multi-objective evolutionary
algorithms, namely non-dominated sorting genetic algorithm (NSGA-II) and
multi-objective particle swarm optimizer (MOPSO). These algorithms were
tested on 16 different 3D CAD models considering surface roughness and
build time as the main parameters that should be minimized [85]. Their
results showed that some geometries do not have one best solution, while
for other shapes, NSGA-II found a better optimization solution. However,
the authors mentioned that this work hadn’t been experimentally verified.

When it comes to the task of compensation of dimensional inaccuracies
prior to fabrication, the application of conventional mathematical models
is a difficult task for estimation of the shrinkage effect [113]. The main
reasons are the complexity of the AM processes and the presence of nonlinear
and multivariable relationships between dimensional properties and process
parameters. Development of a neural network model based on the series
of experiments to describe relationships between process parameters and
shrinkage effect have been already proposed in [97, 101, 113]. Several studies
[24, 31, 110, 124] have also addressed how different ML techniques can be
used for estimating dimensional deviations by comparing 3D point clouds
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of nominal CAD model and model created as a result of scanning printed
product. However, the proposed solution is limited to specific shapes and
are not universal.

When it comes to mechanical properties, the porosity (density) estimation
with the help of ML techniques is one of the most presented quality metrics
in the literature [25, 45, 99, 114]. For instance, Wang et al. [114] and Shen
et al. [99] used ANN to develop predictive models for prediction of density
for the powder bed fusion process based on laser power, scan speed, scan
spacing, and layer thickness parameters.

Garg et al. [45] investigated the prediction of open porosity for SLS fab-
ricated parts from self-made powder as a mix of hydroxyapatite (HA) and
polyamide (PA). The authors applied a multi-gene genetic programming al-
gorithm (MGGP) and ensemble-MGGP (EN-MGGP). Results showed that
layer thickness, laser power, and laser scan speed has a significant impact on
open porosity, and EN-MGGP is better than the classical MGGP algorithm.

Other mechanical parameters are usually modelled with a help of traditional
mathematical models that have a number of constraints. Baturynska [15]
has made an attempt to estimate tensile modulus, tensile strength, and
strain at break through mapping part orientation, part location within a
build chamber and STL model properties to the mechanical properties. The
four different machine learning methods have been evaluated and compared
with linear models, and gradient boosting regressor has outperformed all
investigated methods.

As a result, the application of machine learning techniques in additive man-
ufacturing has shown that process monitoring is one of the most promising
areas due to the availability of large datasets. At the same time, artifi-
cial neural networks, and genetic algorithms are among the most common
machine learning techniques applied in other AM areas such as estimation
of density, mechanical properties, or dimensional deviations. However, the
current state-of-the-art shows that more experimental data needs to be col-
lected in order to benefit from ML techniques. The application of machine
learning methods needs to be performed using well-defined methodologies,
which are not available yet. Finally, the quality of the collected data should
also be controlled either by using existing data science techniques or by the
development of new ones.



Chapter 3

Data science as a means
towards robust AM

This chapter describes the theoretical foundations of data science techniques
that have been used at different stages of data analysis. The first section is
focused on the explanation of feature selection methods used to evaluate the
correlation between investigated parameters and outcome. The second sec-
tion describes the theoretical background of the machine learning techniques
used to predict the quality characteristics of additively manufactured parts.
The third section describes the process of how the model’s hyperparameters
are optimized and evaluated.

3.1 Feature selection

In data science, features are defined as a number of parameters that are
used to predicted desired output. Feature selection filtering methods are
used to identify nonsignificant features to exclude them from a model. This
step allows for minimizing risks for the model’s overfitting and improving
generalization capabilities. The selected features from this step are used for
training machine learning models by Multi-Layer Perceptron (MLP) ANN
method. However, other ML techniques used in this work have a feature
selection step incorporated inside their algorithms, and therefore, this step
is not required for them.

Pearson correlation test, Spearsman’s Rho correlation test, and Mutual In-
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formation methods are used to analyze correlation independently between
each feature and each target.

Pearson correlation test measures the linear correlation between two
datasets, and requires that their distribution is close to normal distribution
[3]. The correlation coefficient varies from −1 to 1 and implies no correlation
when it is equal to 0. For feature x and a target y, negative coefficient values
correspond to a decrease of y when x increases and otherwise.

Spearman’s Rho correlation test, unlike the Pearson correlation test, is
a nonparametric measure of the relationship between two variables, which
are not required to be normally distributed [4]. Spearsman’s correlation test
is also often referred to as a non-linear test, with its correlation coefficient
varying between −1 and 1, and having the same meaning as for the Pearson
correlation coefficient.

Mutual Information filtering method measures a dependency between
two random variables [5]. This coefficient has non-negative values, and
variables are independent only if Mutual Information rank is equal to 0, oth-
erwise higher value means higher dependency. Unlike Pearson and Spears-
man’s correlation tests, the Mutual Information test does not have a bound-
ary of 1. The concept of mutual information is linked to the Information the-
ory through a combination of entropy estimation of a random variable from
k-nearest neighbor distances [67]. While correlation tests have an assump-
tion about the variable’s distribution, in the mutual information method, it
is assumed that the variable is not categorical.

3.2 Machine Learning Techniques

The first step of an application of any machine learning method consti-
tutes the splitting of the main dataset into training and testing subsets.
This is a necessary step since the training subset is used to train models,
while a testing subset is used to evaluate models’ performance and gener-
alization ability. Depending on the number of available data points, the
ratio of training/testing subsets varies. Since, in this work, five-fold cross-
validation is conducted at the training stage, the train/test split ratio is set
to 85%/15%, respectively. The normalized data is split data with the help
of train test split Scikit-Learn function.
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3.2.1 Artificial Neural Network

Artificial Neural Networks constitute a class of machine learning models
that allows defining a complicated non-linear relationship between inputs
and outputs. The core idea behind ANNs is in constructing a complex
model as a network of processing functions and learning the parameters
of these functions using backpropagation. The latter constitutes a method
for computation of gradients of a cost function with respect to functions’
parameters by propagating the error back through the network architecture
and applying the chain rule for differentiation.

Multilayer Perceptron (MLP) is the classical neural network model, based
on a sequence of fully connected layers of neurons, where the linear layer-
to-layer mapping is activated with a non-linear function.

MLP using backpropagation

A feed-forward multi-layer perceptron using backpropagation is one of the
machine learning techniques. This method can be applied for modeling of
complex tasks, where more conventional mathematical modeling is difficult
or unsuitable. A performance of MLP neural network can be described
based on its operational unit, the perceptron. The perceptron takes a set of
features as an input vector. Typically, it is represented as a vector x ∈ R

n

where n is a number of features. A set of features and the corresponding
outputs y ∈ R should be preliminary collected. Thus, an algorithm will
map the input values to output as a function f : Rn → R. The function f
is evaluated based on the sum of weighted inputs and bias factors.

The most common MLP is a three-layer neural network that uses different
layers for processing information sequentially. These layers are an input
layer, a hidden layer, and an output layer, which are schematically repres-
ented in Fig. 3.1. Each hidden unit approximates an input layer to the
output layer using the activation function (a(·)):

hj = a(

n∑

i=1

xiwji + bj) (3.1)

where hj is the output of jth hidden unit, n is a number of inputs, wji is a
weight (connection link) for ith neuron, and bj is a bias.
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Figure 3.1: Schematical representation of three-layer feed-forward backpropaga-
tion MLP

The approximated output is calculated by using the output from equation
3.1 as an input:

ŷk = f(

N∑

j=1

hjwkj + bk) (3.2)

where ŷk is an approximated value of the kth output unit, N is a number
of neurons in a hidden layer, and bk is a bias.

Optimization of weights needs to be performed to minimize the difference
(e) between the observed and approximated outcomes:

e = argmin
wji,bj ,wkj ,bk

(
1

2

m∑

k=1

(yk − ŷk)
2) (3.3)

where yk refers to the observed outcome, ŷk is the approximated outcome,
and m is the number of outcomes.

3.2.2 Decision Tree Regressor

A decision tree is also one of the machine learning techniques used in this
thesis. Typically, this method is used for classification tasks, but there is
a possibility of applying it for a regression task. Opposite to utilizing an
artificial neural network as a black-box, a decision tree method is an open
and easy to understand method.

For a given training vector x ∈ R
n (where n is a number of features) and

a training label y ∈ R
l (i = 1, 2, ..., l where l is a number of labels) the

regression tree algorithm recursively partitions the features domain into
smaller regions (separate classes). It is important to choose correct metrics
for best data split and determining when a tree node should become a
terminal.
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Since, in this work, a decision tree algorithm is used for a regression task,
the target constitutes a continuous value. For a node m, which represents
a region Rm with Nm observations, Mean Squared Error (MSE) or Mean
Absolute Error (MAE) are possible regression criteria to minimize impurity
function H(·) as for determining locations for future data splits. Minimiza-
tion of an error can be done by using mean values of the terminal nodes for
MSE [87]:

H(Xm) =
1

Nm

Nm∑

i=1

(yi − ỹm)2 (3.4)

or by using MAE:

H(Xm) =
1

Nm

Nm∑

i=1

|yi − ỹm| (3.5)

where Xm is training data in node m, and ỹm is a mean of all targets in
node m.

However, when it comes to the analysis of the big amount of data, this
method has issues with scalability, stability, and robustness [11, 66]. An-
other issue that should be addressed is an increase of the complexity when
large data samples are used. The total number of nodes, total number of
leaves, tree depth, and the number of attributes are hyperparameters that
can be controlled in order to minimize the complexity of the decision tree
[66]. Since these issues not always can be addressed, ensembles of decision
trees are used instead, which are more robust.

3.2.3 Gradient Boosting Regressor

Gradient boosting regression (GBR) machine learning method can be de-
scribed as an ensemble of decision trees (see Fig. 3.2). Instead of building
one tree, this method predicts the desired outcome based on the additive
regression model that uses decision trees as weak learners [121]. Sequen-
tial fitting of a parameterized function (base learner) to current ”pseudo”-
residuals is done at each iteration by optimizing regression loss (e.g., least
squares, absolute error) [43]. Friedman [43] describes ”pseudo” residuals as
minimization of the gradient of a loss function with respect to values of the
regression model at each training data point for the current step.
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Figure 3.2: Schematical representation of gradient boosting regression in regards
to algorithm iterations

The introduction of randomization in the process of training data set selec-
tion allows to improve accuracy and reduce the possibility for overfitting.
This way of compiling a decision tree allows minimizing the errors at each
following step, and therefore boosting regressor is considered as a more re-
liable and robust method comparing to the classic decision tree regressor.

3.2.4 Adaptive Boost Regressor

AdaBoost Regressor (ABR, short for Adaptive Boost) is another ensemble
machine learning method. It works similarly to the Gradient Boost re-
gressor, with the only difference being the way weak learners are created at
each iteration. AdaBoost changes the sample distribution at each iteration
by varying the weights of each feature (the ones with the biggest error will
have the highest weights).

3.2.5 Random Forest

Random Forest (RF) is another ensemble machine learning method. Simil-
arly to GBR and ABR, it also uses a decision tree as the elementary model.
However, in the random forest, successive trees are chosen independently
from the previous results (opposite to AdaBoost and Gradient Boosting re-
gressors where results of previous trees are used for constructing the new
ones), and each tree is constructed by using bootstrapped1 data samples

1Bootstrap sample is a smaller sample that is resampled from the larger data set.
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[71]. At the last step, a prediction is made based on the simple majority
vote. Randomness in the random forest comes from two levels; datasets are
randomly resampled into smaller subsets used to train decision trees, and a
number of features are randomly chosen at node splitting step.

The random forest method is not sensitive to either the number of trees
in a forest or to the number of features at each node, and it is robust
against overfitting [71]. The main steps in the random forest method are
the following[71]:

1. Generating n - bootstrapped samples from a training dataset (drawn
randomly and can share some of the data points).

2. Generating a forest by training regression trees for each bootstrap
sample for a randomly chosen number of features for node splitting.

3. The average value of obtained predictions from each tree is provided
as the overall output of the forest.

4. A part of training data, which has not been used for training, is used to
evaluate predictors’ performance, typically called an out-of-bag data-
set. The Mean Squared Error is used as a metric for performance
evaluation.

3.3 Model optimization and evaluation

3.3.1 Model optimization with Grid Search

Every machine learning algorithm consists of two types of model paramet-
ers; model parameters and hyperparameters. While model parameters are
tuned while training a model, hyperparameters need to be passed by an
ML engineer. Since there is a large number of possible combinations of hy-
perparameters, trying each of them manually is a time-consuming process.
Therefore, a grid search Scikit-learn module can be used to address this
issue.

Grid search entails training the chosen ML model for every combination of
hyperparameters from the given set. This process also includes the cross-
validation step and accuracy evaluation of regression estimators.
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An example of a code listing of the grid search for multi-layer perceptron is
presented below:

from sklearn.neural_network import MLPRegressor

from sklearn.model_selection import GridSearchCV

parameters = {’hidden_layer_sizes’:[19, 22, 25, 27, 35, 52],

’activation’:(’relu’, ’logistic’),

’solver’: (’lbfgs’, ’sgd’)}

model = MLPRegressor()

clf = GridSearchCV(model, parameters, cv=5)

clf.fit(X_train, y_train)

3.3.2 Model evaluation with 5-fold cross-validation

The five-fold cross-validation is a process when training data is randomly
split into k folds, in our case k = 5, and then the model is trained on the
k − 1 folds, while one is left for testing (an example is illustrated on Fig.
3.3). This procedure is repeated k times. The last step of cross-validation
is the final evaluation of the model performance, which uses testing data
(separated from the original dataset before starting cross-validation) and
evaluates the accuracy of the model.

Figure 3.3: Description of 5-fold cross-validation



Chapter 4

Methodology

This chapter describes the research philosophy, design, and methods used
to define the problem, design a system, collect and analyze data. Since data
is an essential resource for this work, the process of collecting data is under-
lined in a more detailed way so that anyone could repeat the experimental
work.

4.1 Research Philosophy

Research design is always shaped by a discipline area of the researcher,
his/her beliefs, academic environment, and the researcher’s previous exper-
ience [28]. According to Creswell [28], there are four main philosophical
paradigms that describe ”a basic set of beliefs that guide action”, which are
positivism, pragmatism, realism, and interpretivism.

While realism and interpretivism are research philosophies mostly related to
qualitative studies, this work is about quantitative research design. There-
fore, a research design is mainly shaped by the combination of the other two
philosophical paradigms.

Typically, additive manufacturing is considered as a technology where a set
of variables influence the outcome. For example, Goodridge and Ziegelmeier
[49] have investigated how laser power, scan speed, hatch distance, layer
thickness influence the mechanical properties of fabricated parts. Another
example is an investigation of how scan spacing and direction, laser power,
bed temperature, hatch length, and contouring influence a geometric accur-
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acy of 3D printed parts [21, 33, 97, 98, 101, 119]. An approach presented
in these reports is based on the experimental studies, where a small dataset
is used to evaluate the hypothesis where investigated parameters have an
impact on the outcome. Such an approach is known as a positivism (or
postpositivism) philosophical paradigm. The researchers determins causes
that influence the outcome, usually via experiments, by reducing a problem
into small discrete tasks. Therefore, one of the main tasks in positivism is
empirical observations and measurements that are used to verify a theory.

Similarly, the first experiment in this work has been designed by testing
a hypothesis that if one controls material properties, uses the same build
layout design and process parameters, the quality of AM produced parts
will be similar. This hypothesis arose from a study reported by [91], where
researchers have controlled the material and received good repeatability
between the runs that is usually a challenge for additive manufacturing
processes.

After this hypothesis has been proven to be true, the next challenge that
was of interest has come from the observations from other published works.
Often a limited number of samples is produced for a better understand-
ing of AM processes. However, in the real-world, packing the whole build
chamber with many parts is of interest due to the reduction of the costs.
Therefore, the first research question has been formulated as a result of the
first observations. The RQ1 is about investigation how changes in build
layout design can influence the quality of AM produced parts.

While the first part of experiments was inspired by the positivism philosoph-
ical paradigm, the second set of experiments is shaped by the pragmatism
paradigm. Even more, when it comes to methods used for data analysis, the
previously used methods like linear regression and ANOVA are not suitable
for this research problem [14]. Thus, all available research methods need
to be applied to understand the problem and derive knowledge about the
problem (as in pragmatism philosophical paradigm) [28].

Since it is not possible to describe the impact of changes in build layout
design on the quality of AM produced parts as a linear function, more
sophisticated methods are required. Additionally, the complexity of para-
meter sets that have an impact on the quality of AM parts is emphasized in
[48, 60, 93, 94, 95]. Typically, there is a set of unknown factors that influ-
ence quality. Therefore, methods capable of dealing with these factors are
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of interest. Applying machine learning techniques that can identify different
patterns in the data is one of the solutions, which is widely used in computer
science, computer vision, and traditional manufacturing [70, 75, 82, 96].

Therefore, coming back to the positivism paradigm, another two research
questions have been formulated. RQ2 states that it is of interest to in-
vestigate how machine learning methods can help to understand polymer
powder bed fusion process and mathematically describe its behavior with a
focus on geometric deviations. The RQ3 raises a similar question but with
application to the mechanical properties.

So, as can be seen, there is a synergy of positivism and pragmatism philo-
sophical paradigms that influenced the way research has been designed.
Additive manufacturing is still a new technology is many unknown factors
that influence an outcome. Therefore, the researcher needs to be flexible
and react based on the results at each stage of the research path.

The design of experiments in such a way has shown an interesting obser-
vation, which was outside the scope of this study. Typically, it is assumed
that fabricating parts in the center of the build chamber will always lead
to the best quality of a part. However, results obtained in this research
study have shown that this assumption can be questioned because strong
mechanical properties have been observed not only in the center part of the
build chamber, and more factors influence the mechanical properties.

Therefore, an understanding of how to pack parts in the build chamber
before producing them can allow making AM even more sustainable by
reducing material waste, energy consumption, and obtaining desired quality.
These challenges are formulated as RQ4.

4.2 Limitations of the work

By the reason that this research has a limited timeframe, there is a need to
set boundaries for the research.

This study is limited to the polymer powder bed fusion AM process with
the main material PA 2200. The only one machine will be used in this
work, which is located at NTNU Gjovik campus. Testing results on other
machines or other types of AM process is out of the scope of this work.
Similarly, polymer material, which is used in this laboratory, is investigated
in this study, and other types of polymers, composites, or metals are out of
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the scope.

Even though additive manufacturing is known for its flexibility of producing
complex shapes parts, this work is limited only to the investigation of one
type of specimen used for mechanical testing. First of all, additive manu-
facturing is still considered an expensive manufacturing process. Therefore,
data collection for the investigation of both geometry and mechanical prop-
erties needs to be combined. This was the first reason why specimens for
mechanical testing is chosen as the main object for study. The second reason
is that there is no systematic approach or standard for the evaluation of geo-
metric deviations and mechanical properties of complex shapes. Therefore,
complex designs are out of the scope of this work.

The predictive models developed in this study are not final models ready
to be used in manufacturing. These models are considered as prototypes
that allow establishing a systematic process of data collection, preprocessing
and analysis, identifying which and how machine learning techniques can be
used.

4.3 Research methods

As was already described, this research is quantitative and is based on ex-
perimental work. The knowledge is derived from the results of experimental
work. Therefore, the research methods are chosen with a correspondence
to the research questions and philosophical paradigms that influenced the
research design. The design of experiment, 3D printing, measurements of
dimensions, conditioning, mechanical testing, and data analysis are con-
sidered as main research activities in this work. Fig.4.1 illustrates which
hardware and software have been used in each activity.

However, the list of research methods used in this work is even longer.
Since, in addition to listed activities, it also includes a literature review,
application of system engineering, and process of validation and verification
of the results. Each of the research methods is described in the details
below.

4.3.1 Literature review

As can be seen in Figure 4.2, a literature review has been performed through-
out the whole Ph.D. study. The main motivation behind this decision was
to follow the current state-of-the-art and being able to go deeper into the
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Figure 4.1: Correspondence of the used hardware and software with respect to
the research activities

topic. Since researchers started to pay more attention to AM and the ap-
plication of machine learning during the past couple of years, the number of
published articles has been increased exponentially. Therefore, continuously
following the developments and new findings were necessary and beneficial
for this research.

According to the requirements and needs of the project, the first stage of
the literature review was performed in the first year of Ph.D. study and
was focused on the material models for FEA of polymer powder bed fusion
systems. However, one of the main outcomes of this literature review was
an understanding that material models for PA 12 include many simplific-
ations, and cannot be used for finite element analysis. Therefore, a more
extensive literature review was needed for proposing another solution on
how geometric accuracy and mechanical properties can be analyzed with a
larger number of parameters.

Thus, the literature review conducted throughout the whole Ph.D. study
was organized in the following way. The main keywords that have been
used in a search for literature can be divided into several groups: ’material’,
’process name’, ’type of modeling’, and ’other’.
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Figure 4.2: Grant chart about PhD research path

Thus, the ’material’ group consisted of the following terms: polymer, poly-
amide 12, PA12, nylon, nylon 12, nylon 6, polyamide 6, PA6, PA11, plastic,
plastic powder, polymer powder, polymers.

The ’process name’ group included such terms:additive manufacturing, ad-
ditive manufacturing technology, AM, AM process, SLS, selective laser sin-
tering, rapid prototyping, layered manufacturing, 3D printing, 3D-printing,
3d printing, 3D printer, 3D-printer, 3D-printed, powder bed fusion, powder
bed, powder bed fusion system, polymer powder bed fusion system, additively-
manufactured, SLM, selective laser melting.

The ’type of modeling’ group in the first year of Ph.D. study (second and
third quarters on Fig. 4.2) was mainly focused on the terms like mathem-
atical modeling, material model, material models, finite element analysis,
FEA, finite element method, FEM, Taguchi method, ANOVA, analysis of
variance, design of experiments, S/N analysis. From the fourth quarter of
2016 year (see Fig. 4.2), the keywords of this group have been changed to
regression modeling, design of experiments, DOE, data analysis, intelligent
data analysis, machine learning, artificial intelligence, artificial neural net-
work, ANN, feature selection, intelligent methods, genetic algorithm, GA,
support vector machines, SVM, Bayesian methods.

The ’other’ keyword group was expending every year based on the topic of
interest. For example, when a more in-depth understanding of STL file was
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needed, stl model, STL models, CAD model, STL model features, STL model
properties, number of mesh triangles, mesh triangles, contouring, contouring
failures, triangular mesh have been used in combination with other keyword
groups. Similarly, any search for literature (including patents) have been
performed by mixing keywords from different groups.

4.3.2 Design of experiments

Based on the first results of the literature review, theRQ1 has been defined,
and the first experiment has been designed. The sequential design of exper-
iment1 was used in this work due to two main reasons. First of all, practical
experiments in additive manufacturing usually have been limited to a small
number of samples, which have also led to the limitations of understanding
what can be expected in the results when a larger number of samples are
produced in one run. Second of all, the results of each experimental work
may influence the design of the next one, and therefore sequential DOE is
the best choice in this research study.

4.3.3 Experimental work

Experimental work was performed in two stages. The first one was executed
in the 2017 year, and the second stage was conducted in the 2019 year.
As Fig. 4.2 shows, an extensive literature review has been done before
the first experiment was designed. This experiment was designed by using
Rüsenberg et al. [91] article as a reference work because it could help to get
a better understanding of how control of material properties can influence
the resulting quality.

After the first experiment, collected data was analyzed based on the defined
RQ1, and different modeling techniques were tested and evaluated. The
analysis of the collected data stimulated the definition of the RQ2 and
RQ3, and the design of experimental work in 2019 has also been done with
taking into account observed weak sides of the first experiment. More details
about experimental work are described in Section 4.4.

4.3.4 Model-based system engineering

System engineering is a field of study that provides different techniques to
design complex systems. In this work, a combination of the experiments and
analysis of the collected data is considered as a complex system. The term

1The second experiment builds on the results from the first experiment [28]
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”system” in this work is regarded as ”any organized assembly of resources
and procedures united and regulated by interaction or interdependence to
accomplish a set of specific functions”[72]. Since any system consists of com-
ponents and interrelations between the components, the understanding of
how the collected data can be used efficiently for the analysis of dimensions
and mechanical properties is needed. Therefore, model-based system engin-
eering is applied in this work to define a roadmap for data analysis and to
determine a systematic way of presenting results. The proposed roadmap is
represented as an intelligent system for quality assurance in additive man-
ufacturing, and more details on how it was developed are presented in a
separate Chapter 5.

4.4 Experimental work

In this work, each experiment consists of the specific steps that need to
be done before the experiment can be executed. Similarly to any additive
manufacturing process, a polymer powder bed fusion system requires a 3-
dimensional (3D) model of an object to be produced. Therefore, computer-
aided design (CAD) is converted into an STL file format that is readable
by AM machine. STL models are shallow triangular meshes that are first
placed in the build chamber of a machine and then sliced into layers. A
build layout design can be defined as a set of STL models placed in the
same build chamber by following specific rules for the chosen material and
AM machine.

The main steps conducted during all experimental work are illustrated on
Fig.4.3 and Fig.4.4. Preparation of the material mix (mix of virgin and
used powder with defined ratio - typically recommended by AM machine
producer as 50/50 % ratio) and designing a build layout are two first steps
that should be done before the experiment can be conducted. Then based
on the material properties, AM machine process parameters are selected
with a consideration that working chamber temperature is dependent on
the powder melting point. After parameters are defined, the fabrication job
is executed, and the build chamber needs to be cooled down at least for the
same time as the printing process has taken place. The next step is getting
produced part out from the build cake and cleaning parts from the powder.

While in metal additive manufacturing, typically, the next step would be
post-processing of the parts; in polymer additive manufacturing, one can
usually skip this step. Therefore, the next stage is measuring the dimensions
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Figure 4.3: Experiments 2017

Figure 4.4: Experiments 2019
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Table 4.1: Material and process parameters used in the experiments

Parameters Value

Virgin/aged PA2200 powder ratio, % 50/50
EOS P395 system settings Balance

AM system warm up time, min 120
AM system cooling down time, min 240
Working chamber temperature, ◦C 180.5
Removal chamber temperature, ◦C 130.0

of produced parts.

Since in this work, part quality is considered as both geometric (dimen-
sional) accuracy and mechanical properties, destructive testing - tensile test
- is executed at the end of the experiment. Following the DIN EN ISO 527-1
standard, produced samples have been conditioned first, and only then the
tensile test has been performed. Additionally, it is important to mention
that experimental work conducted in 2017 is different from the experimental
work performed in the 2019 year due to changes in a build layout design
and material properties.

As can be seen in Fig.4.3, only two runs were produced at the first stage
of experimental work. While at the second stage of the experimental work,
which is illustrated in Fig.4.4, four runs were made, and three out of four
runs had changes in the build layout design.

4.4.1 EOS P395 polymer powder bed fusion system

An EOS P395 polymer powder bed fusion system has been used in the
experiments performed to collect data. Machine process parameters have
been used the same for all six runs, and more details about known material
and process parameters are depicted in Table 4.1.

PA 2200 was used in all runs with virgin/aged powder ratio of 50/50 %.
While in the first two runs, the material was kept the same, starting from
Run 3, polymer powder has been used with the same virgin/aged ratio but
with different material properties.

In order to be able to control material properties and keep them constant
in the first two runs, an idea of controlling material properties via self-aging
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Figure 4.5: Schematic representation of the polyamide powder self-aging steps

powder was presented by Rüsenberg et al. [91] and applied in this work. The
process of self-aging PA12 is shown in Fig. 4.5. The powder was self-aged
through 3 cycles of running EOS P395 without laser deposition.

4.4.2 Build layout design

Build layout design for runs 1-3

Even though Rüsenberg et al. [91] was used as a reference for the design of
the first and second runs, strategy for placement and orientation of speci-
mens was chosen to be different. I assumed that the build layout should be
designed similarly to real manufacturing conditions.

Based on this assumption, the maximum number of parts is chosen to be the
main criterion for the design of the build layout. It means that the parts are
placed as close to each other as possible, and the minimum distance between
the specimens is set to 5 mm based on the recommendations from Magics
20.0 (and Magics 22.03) software. Additional attention was paid to the
specimens placed in the same orientation for verification and validation of
the results. In other words, more than five specimens in the same orientation
were placed close to each other for better control of potential variations
related to the position of the specimen.

Description of the build layout for runs 1-3 is combined because these runs
have used the same layout. So, in total, 358 specimens were produced in one
run (or 1074 specimens for the three runs combined). However, as a part
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of this Ph.D., data have been collected only from 217 (or 651 in total for
runs 1-3) specimens of type ISO 527-2 1BA for mechanical testing. This is
done for a possibility of comparison results obtained for geometric accuracy
and mechanical properties, and evaluating whether the same dataset can be
used for modeling different quality metrics.

An example of a specimen with a dimensional description is shown in Fig.4.6.
A final build layout design (filtered to only investigated specimens) used for
these three runs is illustrated in Fig.4.7(a).

All investigated specimens have been placed in four different orientations
(see Fig. 4.6), and names of the orientations have been defined according
to the ISO/ASTM 52921:2013 [63] standard:

• Group 1. XYZ -oriented parts (XY on Fig.4.6)

• Group 2. XZY -oriented parts (XZ on Fig.4.6)

• Group 3. ZYX -oriented parts (Z on Fig.4.6)

• Group 4. Angle-oriented parts (Angle on Fig.4.6)

The Angle-oriented specimens are parts (the word ”parts” is and will be
used as a synonym) oriented at 45◦ between x and z axes.

Since the requirement to fit as many specimens as possible has been defined
during the design of experiment, the number of specimens in each orientation
differs. Thus, each run consisted of 65 parts placed in XYZ orientation, 24
parts in XZY orientation, 84 parts in ZYX orientation, and 44 in Angle
orientation.

To identify parts and be able to connect the dimensional measurements,
tensile testing results with part’s position, every specimen has its label,
which is placed on two sides of the part. This led to variations in the STL
model properties, which are number of mesh triangles, surface, and volume,
for each part within the build layout. Although, it is important to mention
that there is no variation in STL model properties between Run 1, Run 2,
and Run 3 due to the usage of the same build layout.

In addition to named characteristics of a build layout design, platform
volume utilization, current nesting density, build height, and coordinates
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Figure 4.6: (Schematic visualization of parts’ orientation and dimensional features
(where t – thickness, w – width and L – length)

that describe the part position in a build chamber will also be considered
as important features in this work. The resulting build height for this build
layout is 314.75 mm. Platform volume utilization is 0.75%, and current
nesting density is 1.48%.

Build layout design for Run 4

In a build layout for Run 4, the majority of the parts, which are not used
for analysis, have been taken out of the build layout design, and on their
place, new 75 specimens of type ISO 527-2 1BA for mechanical testing have
been fitted in build layout. Among these new 75 specimens, 14 are in XYZ
orientation, 26 in XZY orientation, 3 in ZYX orientation, and 32 in Angle
orientation. The main focus was set to produce more specimens in XZY
and Angle orientation because, in previous build layout, their number was
significantly smaller than for the other two orientations. Thus, the number
of specimens in the new build layout in each orientation group has increased
to 79 (XYZ - 65 previously), 50 (XZY-24), 87 (ZYX-84), and 72 (Angle-44).
The final build layout for Run 4 is illustrated on Fig.4.7(b).

The resulting build height is also 314.75 mm. Platform volume utilization
is 0.76%, and current nesting density is 1.51%.
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure 4.7: Build layout design in Magics 22.03: home view
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Build layout design for Run 5

A redesign of the build layout for Run 4 into a build layout for Run 5 has
been conducted in three main steps. The first step was focused on:

• changing the orientation of specimens in XYZ orientation into XZY,
ZYX, and Angle orientations but keeping the same positions;

• changing the orientation of specimens in XZY into XYZ, ZYX, and
Angle orientations but keeping the same positions;

• changing the orientation of specimens in ZYX into XYZ, XZY, and
Angle orientations but keeping the same positions;

• changing the orientation of specimens in Angle into XYZ, XZY, and
ZYX orientations but keeping the same positions.

However, by the reason that temperature distribution is dependent on the
build layout design and nesting density of the build chamber [13, 19], a
limited number of specimens can be rotated and moved. Thus, not all of
the listed conditions were possible to fulfill, especially for such cases when
orientation needs to be changed from XYZ/XZY to Angle/ZYX orientation,
or another way around.

Therefore, the next step was to change the position of specimens that have
not been rotated. This step is mandatory due to overlaps created by rotating
specimens, and because of the need for having a 7 mm distance between
specimens, so they do not sinter together.

In the third step, the position of rotated specimens that are too close to
other specimens was changed. In other words, specimens, which interfere
with neighboring specimens (had less than 7 mm distance in x, y, or z axes),
need to be moved to an empty area in a build chamber.

The comparison of orientation groups for Run 4 and Run 5 is shown in
Fig.4.8.

The resulting build is shown on Fig.4.7(c), and its height is 314.75 mm.
Platform volume utilization is smaller than for the other runs and is equal
to 0.56%, and current nesting density is 1.10%.
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((a)) XYZ for Run 4 ((b)) XYZ for Run 5

((c)) XZY for Run 4 ((d)) XZY for Run 5

((e)) ZYX for Run 4 ((f)) ZYX for Run 5

((g)) Angle for Run 4 ((h)) angle for Run 5

Figure 4.8: Orientation-based comparison of changes conducted on the build
layout Run 4 to create a new build layout for Run 5
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Build layout design for Run 6

A build layout design for Run 6, shown in Fig. 4.7(d), was done by Tor-
bjorn Leirmo (Ph.D. candidate in Additive Manufacturing at NTNU) by
utilizing the same specimens produced in runs 4-5. However, dimensional
measurements and mechanical testing were done by Ivanna Baturynska.

The main goal for this run was set to use a build layout designed by another
person because it will help to evaluate how sensitive developed models could
be for an external user. Besides, using data collected from this run will also
be beneficial for models’ generalization in the future, while weaknesses could
be identified for further improvements.

This build layout design consists of 8 different families. Each family has
a number of groups of specimens rotated around y or z axes by 5- and 10
-degrees intervals. The starting positions for different groups are XYZ and
YXZ orientations. The distance between specimens in all axes was set to
7 mm by following recommendations from Materialize software and EOS
(producer of used AM machine system).

The resulting build height was reduced to 299.45 mm, which is less than in
other build layouts. Platform volume utilization is the same as for runs 1-3
and is equal to 0.75%, and current nesting density is 1.56%.

4.4.3 Measurement of dimensions

In the first experimental work, data was collected from two identical runs
and was used to evaluate the dimensional accuracy of the produced speci-
mens. Length value was measured using a Digital ABS Caliper Coolant-
Proof IP67 with an accuracy of ±0.02mm. Width and thickness were meas-
ured using a Digital Micrometer QuantuMike IP65 with an accuracy of
±1μm.

In the second stage of experimental work performed in 2019, data was collec-
ted with the help of the Zeiss DuraMax coordinate measurement machine
(CMM) with an accuracy of ±(2.7 + L/250)μm (where L - is measured
value) [2]. A stylus assembled with two probes with a diameter of 0.5mm
has been used for measurements based on the expert’s recommendation from
the Zeiss company. Due to the size of measured specimens and weight of
the part (light material), a special fixturing was designed to provide stable
fixation of the specimen while dimensions are measured, and it is shown in
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Figure 4.9: Specially designed fixturing for measurements with Zeiss coordinate
measurement machine

Fig.4.9.

In addition, the final value of each dimensional feature (see Fig. 4.6) was
calculated as a mean of three repeated measurements to minimize a meas-
urement error.

While measurements of width and thickness in the first two runs have been
conducted without registration of a measured side, the width and thickness
from runs 3-6 have been measured in three different locations, as it is shown
in Fig.4.10. This change in the locations was based on the observation from
data analysis of runs 1-2, and discussions with an expert from EOS com-
pany. The expert has described that due to temperature distribution in the
powder bed fusion system, variations in the z-axis are complicated and non-
linear. Therefore, it is of interest to look at the geometric variations along a
part, especially those that are printed in ZYX and Angle orientations, and
measuring specimens in three locations (Side A, side B, and side C) will
allow conducting this analysis.
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Figure 4.10: Description of differences between measurement areas from runs 1-2
and runs 3-6

4.4.4 Mechanical testing

Tensile testing was performed according to ISO 527-1 [61]. PA12 absorbs
some moisture from the atmosphere, and this affects the mechanical prop-
erties. Hence, the specimens were conditioned to a moisture content cor-
responding to saturation at the standard condition 50% relative humidity
and 23 ◦. This conditioning was implemented by storing the specimens for
7 days in a climate chamber at 62% relative humidity and 70 ◦, which is
accelerated conditioning that results in the same moisture content as the
standard condition mentioned above [ISO 1110]. After this, the specimens
were kept 1-2 days in a climate chamber at the standard condition before
testing. The Zwick Z250 machine was loaded with 2.5 kN cell. The speci-
mens were mounted in wedge grips with grip to grip distance set to 55 mm,
and an initial gauge length of the extensometer of 25 mm.

4.5 Data preparation and analysis

Python programming language is used in this work for prototyping and
development of the modules, which can be used later as a core of the intel-
ligent system for quality assurance. This programming language has been
chosen because it is simple, easy to use, and supports multiple programming
paradigms. An extensive choice of standard open-source libraries allows ex-
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Figure 4.11: Python stack for the codebase of the data anlysis

ecuting complex algorithms in a simple ”one-line” code manner. It thus
provides a possibility of focusing on the application area rather than pro-
gramming all algorithms from scratch.

Python stack used for the codebase of the data analysis is presented in
Fig.4.11. The latest version of Python 3.6 is used for the data analysis in
this work. Analysis of the collected data is conducted in this work through
three main steps:

• Data preprocessing (data preparation) is a necessary step towards
quality assurance of the collected data because raw data is vulnerable
to noise, outliers, missing values, or grammatic errors. Transforming
data into correct data classes, cleaning data from the outliers, and
empty values (like NaN or null), grouping data with respect to ne-
cessary analysis are conducted at this stage of the research. Such
libraries, like pandas, scipy, numpy, and scikit-learn, are used
for tasks listed above. The preprocessing is a scikit-learn module
used for data normalization and data split into training, testing, and
validation datasets. Data normalization is needed when, for example,
values of different features vary from 1 to 5000, and it will help to
avoid overweighting some of the features only due to their large values
rather than relevance rank.

• Data visualization is performed throughout all process of data ana-
lysis. For a better understanding of data and its quality, graphical
visualization is used for illustrating different data distributions, and
therefore, may also be of use for detecting data outliers. At the stage
of data processing, visualization of the model’s performance as a func-



4.5. Data preparation and analysis 61

tion of accuracy and training epochs have also been used for the eval-
uation of models. The matplotlib library has been used for data
visualization in combination with scikit-learn metrics module.

• By data processing, in this work, is considered a process of mod-
els’ development. Linear modeling is conducted by using scikit-learn
linear model module, and more complex machine learning methods
are applied with a help of neural network , ensemble (AdaBoost

Regressor, Random Forrest and Gradient Boosting Regressor),
and tree (Decision Trees for regression) modules. While mul-
tilayer perceptron (MLP) neural network has been chosen as ML tech-
nique in this study since this method is already widely applied in AM,
the other ML techniques have been chosen based on the two major re-
quirements. The techniques have to be suitable for the regression task,
and they should provide additional information on features (paramet-
ers used to map build layout design to quality metrics) importance.
The second requirement was introduced in this work because it is of
interest which of the investigated parameters are significant for pre-
dictive models.

All the abovementioned steps are performed for analysis of both geometric
accuracy and mechanical properties, and more details are presented below.

4.5.1 Data cleaning

In this work, several mistakes have been found in the collected data. For
instance, feature’s names spelled differently (e.g., ’Orientation’ and ’orienta-
tion’ are considered as two different feature names), punctuation signs were
in a wrong order, and specimen indices were spelled inconsistently (e.g., ’a’
in one table and ’a.’ in another table).

In addition to that, in Run 6, one sample was lost during cleaning samples
from the powder after the printing process, and 20 samples have not been
mechanically tested due to the transportation equipment-related delays.
Data corresponding to one lost sample was removed from Run 6 for all
data analysis steps, while data corresponding to 20 not tested samples are
removed from the feature list used for analysis related to mechanical prop-
erties. In total, 1526 samples were used for measuring dimensions, and 1506
samples were mechanically tested. A list of all features and targets are
depicted on Tables 4.2 and 4.3.
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Table 4.2: Description of the features (also refered to as inputs)

Features/Input Short name

central coordinate x cent coord x
central coordinate y cent coord y
central coordinate z cent coord z
max coordinate x max coord x
max coordinate y max coord y
max coordinate z max coord z
min coordinate x min coord x
min coordinate y min coord y
min coordinate z min coord z

volume volume
surface surface

number of mesh triangles num mesh triang
number of mesh points num mesh triang

orientation angle by x axis reor a
orientation angle by y axis reor b
orientation angle by z axis reor c

build hight bh
platform volume utilization pvu
current nesting density cnd
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Table 4.3: Description of the targets (also refered to as outputs)

Target/outcome

length
thickness
width

Tensile modulus
Nominal stress

Elongation at break
Scaling ratio - length

Scaling ratio - thickness
Scaling ratio - width

Placement - cent coord x
Placement - cent coord y
Placement - cent coord z

More details that will help to understand target data are described in more
detail in Chapter 6 and Chapter 8, for dimensions and mechanical proper-
ties, respectively.

4.5.2 Data integration

Data integration is an important part of any data analysis process. Since,
in this study, six different experiments have been performed with different
controlled variables at each stage, the run-based data integration process is
illustrated in Fig. 4.12.

The data collected from Run 1 and Run 2 are joined into one dataset
(Column A) because these two experiments were characterized by the same
build layout, material, and machine process parameters.

In order to understand whether the change in material has an impact on
feature importance, data collected from Run 3 is joined with Column A into
a new dataset described as Column B. The next experiment was conducted
with a similar material as Run 3, but additional 75 specimens have been
fitted into the same build layout as used in the previous runs. The joined
data is presented as Column C.
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Figure 4.12: Description of data structure used for feature selection and analysis
of the results

Column D is a description of datasets that consists of data from runs 1-
5, where in the last run a small variation in the material is introduced,
but the main difference constitutes changes of orientations and positions of
specimens in the build chamber within the same orientation groups as in the
previous runs. However, Run 6 introduces an extreme change in the build
layout with more than 18 orientation groups being defined and produced.

Besides, files extracted from different machines required additional format-
ing. The integration of data from these files was conducted into two files,
one containing features, and the other contains target values. The file that
contains features values is the same for both dimensions and mechanical
properties, while the target values are saved separately for dimensions and
mechanical properties.

4.5.3 Data normalization

The application of machine learning requires the normalization of features in
the input data set. ML estimators perform poorly if a feature has variance
with orders of magnitude larger compared with other features. Therefore
this step is conducted after data integration. Parameters’ values have to be
scaled to zero mean and unit variance. As such, feature (input) data are
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scaled to zero mean and unit variance using StandardScaler (Scikit-learn
module), while target values are not changed.

The prepared data is used to develop intelligent predictive models with the
help of MLP, Random Forest, Gradient Boosting Regressor, and AdaBoost
regressor machine learning techniques. The next step is the validation and
verification of the results, which are described below.

4.6 Validation and verification of the results

Since the results of this research are both predictive models and prototypes
of software modules for the intelligent system for quality assurance, the de-
veloped models and modules need to be validated and verified. The process
of the validation of the models is directed towards the predictive models,
while the design of an intelligent system, which will incorporate the proposed
predictive models as modules, is considered as a verification process.

Validation of the obtained results is performed at different levels. First
of all, models developed on the data collected from the first experiments
conducted in the 2017 year (Run 1 and Run 2) are evaluated with the help
of Run 3. Run 3 consists of a number of specimens that have been rescaled
with respect to the prediction of geometric deviations - this step can be
called as compensation of deviations.

The next level of the models’ validation is set to the integration of the five-
fold cross-validation into the process of training models. In such a way, issues
with memorizing data by models (overfitting) can be overcome. However,
the generalization of the models is still under the question.

Therefore, the third level of models’ validation is based on using a specific
testing dataset, which is not used in the previous two validation levels, for
evaluation of model performance on them. This step can help to show us
whether models are sensitive to new unseen data. The prediction accuracy of
the proposed models is used as the main metric for performance evaluation
and for making a final decision on which model should be used or further
developed.
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Chapter 5

System engineering as a
means towards an intelligent
system for quality assurance

This chapter describes how model-based system engineering is used to design
an intelligent system for quality assurance in additive manufacturing. The
main goal is to understand which components in a system should be de-
veloped, which interconnections exist, and how to provide a successful solu-
tion at the end of the research.

Typically, four steps illustrated in Fig. 5.1 are used as a guideline for the
development of a technical system. However, in this work, only the first
step is highlighted, namely requirement analysis, since the development of
the whole system is a time-consuming task. However, a brief analysis of
the stakeholders’ needs and description of the functional behavior analysis,
architectural synthesis, and validation and verification stages are presented
in Appendix B.

In this chapter, the main attention is paid to the description of the compon-
ents of the proposed system and the corresponding functional requirements.
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Figure 5.1: Process of working across the domains in SE [72]

5.1 Requirements analysis

Defining requirements is a process that first and foremost involves stake-
holders and their needs. Therefore, the requirements to the system are
identified through the analysis of the MKRAM project description, stating
what each participant needs and expects to obtain at the end of the project.
However, for a better understanding of how all their needs can be included
in one system, the top-down model-based system engineering principle is
used. According to this approach, a system is analyzed in terms of layers,
starting with a general description and then going into more details with
every following layer.

5.1.1 Layer 1. General understanding of a system

In the first layer, the general explanation of system components and inter-
relationships are visualized, see Fig. 5.2. There are three main components,
namely customers, an intelligent system (a tool for quality assurance), and
a production floor (additive manufacturing machine). A customer and the
intelligent system should be able to communicate, with the intelligent sys-
tem being able to understand what the customer wants and providing some
solution, which is then sent to the additive manufacturing machine. As
such, the intelligent system should also be able to communicate with the
production floor.

In more details functional requirements to the system shown in Fig.5.2
are listed below:

• Accept request from the customer
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Figure 5.2: First layer of a system for quality assurance in additive manufacturing

• Understand request from the customer

• Analyze request from the customer (CAD model)

• React to request from the customer (send feedback, optimization/pre-
diction)

• Save optimized results

• Send the results to the AM machine

• Accept report after part is produced (parameters and quality check)

• Accept feedback from the customer about product quality.

5.1.2 Layer 2. Description of main components of the intel-
ligent system

Since a general understanding of what intelligent system should do is already
described, the next step is to look into more details of the intelligent system
(a tool for quality assurance in additive manufacturing in Fig. 5.3). Based
on the previously defined functional requirements, to provide communica-
tion between customer and system, an interface for the intelligent system
should be created. A request should be analyzed using the calculation core,
with the results being saved in the database. In addition, the calculation
core should have access to the required data, and thus, it should be connec-
ted to the database. Results from the calculation core should also be passed
to the additive manufacturing machine.
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Figure 5.3: Second layer of system for quality assurance in additive manufacturing

In more details, functional requirements to interface shown on Fig. 5.3
are listed below:

• Should have clear links to operations and be easy to navigate

• Should have a field to enter a request

• Should have a button to upload a CAD model

• Should have a field to enter the type of AM machine

• User should be able to choose a type of material

• User should be able to choose a type of a problem

5.1.3 Layer 3. Description of the database component of the
intelligent system

To define the requirements for the next component of the intelligent system,
namely the database, more information about the input is provided in Figure
5.4.

Since the database is not the main priority of this research due to time
limitation and is out of the scope of this study, just general functional
requirements to the database (data storage) are proposed below:
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Figure 5.4: Third layer of system for quality assurance in additive manufacturing

• Should be able to retrieve data sets based on the queries

• Should store data in a structured way

• Should be flexible (to make changes in the future easily)

• Should work fast (as its operation will influence the calculation speed)

5.1.4 Layers 4-5. Description of the calculation core of the
intelligent system

The main focus of this research is set on the development of the calculation
core, as it will process and analyze requests from the customers. In order
to address the stakeholders’ needs, the calculation core, which could be
considered as a set of mathematical models and algorithms, should be able
to perform classification and prediction tasks (Fig. 5.5).

The classification module is important for this system because its result can
predict which of the part may be produced with defects. Fig. 5.6 illus-
trates three classification groups, namely dimensional properties, mechan-
ical properties, and their combination. Therefore, the following functional
requirements to the Classification component should be included in
the intelligent system:
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Figure 5.5: Fourth layer of system for quality assurance in additive manufacturing

• Classify parts that are within the tolerance range for dimensions

• Classify parts that are within the tolerance range for mechanical prop-
erties)

• Classify good thickness in regards to mechanical properties

Prediction component of the system, shown in Fig. 5.6, consists of 12 mod-
ules. They correspond to functional requirements to the Prediction
component, which are the following:

P1 - Predict dimensions

P2 - Predict compensation ratio in x, y, and z axes individually for each
part

P3 - Predict part position/placement (x, y, and z coordinates)

P4 - Predict the number of mesh triangles/surface/volume (CAD model
properties)

P5 - Predict which standard set of parameters to use (TopQuality, Per-
formance, Balance, Speed, TopSpeed)
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Figure 5.6: Fifth layer of system for quality assurance in additive manufacturing

P6 - Predict humidity level and temperature in the laboratory where the
AM machine is placed

P7 - Predict layer thickness (process parameter)

P8 - Predict porosity level

P9 - Predict preheating temperature fo the AM machine (process para-
meter)

P10 - Predict virgin/used powder ratio (material parameter)

P11 - Predict powder bed temperature (process parameter)

P12 - Predict mechanical properties

In addition, connections between the modules are also shown in Fig. 5.6,
where modules correspond to the parameters that need to be predicted or
optimized. P1 and P12 modules are directly connected to the output, and
therefore they are highlighted in the same color as output. Connections with
solid lines mean that it is known from the previous studies that parameters
are related to each other, while connections with dashed lines need to be
investigated.
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Figure 5.7: Representation of data pipeline conducted individually for each mod-
ule; starting with the used equipment description

Due to the time limits of this work, only prototypes of modules P1, P2, P3,
and P12 are developed based on the collected data. Fig. 5.7 shows a data
pipeline that is used as a guideline for developing and describing prototypes
for each module individually. Three main stages can be highlighted; data
collection and file formats, data preprocessing, and data processing/models’
development.

At the first stage, a typical process of how the data has been collected
from the equipment is shown (more details are described in Chapter 4), and
which file formats are extracted from each equipment and transformed into
the CSV file format.

At the second stage, data preprocessing is started from cleaning data in each
∗.csv file and then was passed through other important steps of data prepro-
cessing. The last stage is the development of the models, which are a core
part of the corresponding modules. The theoretical foundation of the data
science techniques illustrated in Fig. 5.7 is described in Chapter 3. Selec-
ted modules for prototyping in this work are described in the corresponding
Chapters 6 - 9.



Chapter 6

Module P1: Prediction of
dimensional deviations

The results of this Ph.D. study are presented in four different chapters.
This chapter describes how predictive models for estimation of dimensional
deviations are developed. The description of the collected data is presented
in the first section. The selection of significant features based on the filtering
methods is presented in the second section. The description and comparison
of intelligent predictive models are provided in the third section of this
chapter.

6.1 Data exploration

In order to develop predictive models based on the collected data, there is a
need for data understanding and preprocessing. This process allows prepar-
ing good quality data that doesn’t contain empty cells or/and meaningless
information. Therefore, this section aims at describing the collected data
through graphical visualization of data distributions. Additional data ex-
planations such as various tables and figures have been used for comparison
of different runs.

Since additive manufacturing is a relatively new technology, there is a lim-
ited number of international standards that are ready to be applied for
quality evaluation and assurance in the manufacturing. Therefore, using
standards developed for traditional manufacturing processes could be con-
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Table 6.1: Possible deviations (in mm) from DIN 16742:2013 [34] tolerance stand-
ard for injection molding for relevant values

Tolerance classes 0.5 – 3 mm 6 – 30 mm 30 –120 mm

fine ±0.05 ±0.1 ±0.15
medium ±0.1 ±0.2 ±0.3
coarse ±0.2 ±0.5 ±0.6

very coarse — ±1 ±1.5

sidered as a solution until the required standards for AM processes are
developed.

Results of the polymer powder bed fusion process are often compared with
results from the injection molding process. Since the latter traditional man-
ufacturing process has well-defined international standards for quality in-
spection and assurance, the DIN 16742:2013 [34] tolerance standard for
injection molding will be used for comparison in this work. This standard
has been chosen because it is used by researchers investigating the injection
molding process [8, 29, 38].

According to DIN 16742:2013 [34], there are four main tolerance classes that
are illustrated on Table 6.1. Depending on the application area, different
tolerance classes are of interest. In this work, it is assumed that future ap-
plications could be the products with tight geometric tolerances. Therefore,
the fine tolerance class is used as the main class in this work, while the
medium class is also used for comparison.

6.1.1 Description of length measurements

The specimens produced in six experimental runs were designed with the
length of 75 mm. All measured values (1526 specimens in total for six runs)
are illustrated in Fig.6.1 as distributions based on kernel density estimation
(KDE) for each run separately including a comparison of medium and fine
tolerance classes.

As can be seen from Fig.6.1, the difference between experiments performed
in 2017 and 2019 is present. While comparing two tolerance classes, Table
6.2 shows that even for medium tolerance class, there is a number of spe-
cimens that are outside of tolerance range. In cases when the tolerance
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((a)) Medium tolerance class

-

((b)) Fine tolerance class

Figure 6.1: KDE distributions of length measurements for all runs with a reference
to DIN-17642-2013-10 standard for injection molding tolerances

Table 6.2: Number of specimens outside the tolerance range (length measure-
ments) based on medium (M) and fine (F) tolerance classes according to DIN
16742:2013 [34] tolerance standard for injection molding

Measured dimension Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Length (M) 67 63 50 114 65 95
Length (F) 163 173 127 224 162 194

range is tighter, like the fine tolerance class, most of the specimens will not
meet requirements set to the length value. Since it was already defined that
the fine tolerance class is chosen as the main class for quality evaluation,
the upcoming analysis of length measurements will be done by comparing
results with this tolerance class.

Additionally, it is important to take a look at how the collected data is dis-
tributed since it will provide an overview of run-to-run variations, and a com-
parison of the obtained results will be easier to conduct. Thus, Fig.6.2(a)
shows that the measured length from Run 1 and Run 2 has multimodal dis-
tributions with two peaks, where the first (”larger”) peak corresponds to the
length value and is smaller than the nominal value (75 mm). The second
(”smaller”) peak corresponds to a value that is larger than the nominal one.

Two possible factors may lead to the bimodal distribution, namely the
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parts orientation or their location in the build chamber. The more detailed
orientation-based comparison of the results will be presented hereafter in
the section.

The results from runs 3-6 are distributed normally (see Fig.6.2(b)), but still,
most of the measured values are outside of the fine tolerance class and are
larger than nominal values. Additionally, one can observe that variation for
the results obtained from runs 1-2 is larger than the variation observed for
runs 3-4.

The main difference between the runs (except for runs 1 and 2 because they
are identical with the same material, process parameters, build layout design
and produced within one week) are material 1 and build layout design. For
example, Fig.6.2(c) shows the difference between experiments in 2017 and
the first experiment (Run 3) in 2019 when the main difference is the material
mix. Since Run 3 reflects how a change of the material influences the quality,
the material used in 2019 may have had better properties than the material
used in 2017 because the variation of the measured length has decreased.

When all parameters have been controlled and kept the same (Fig.6.2(a))
data distributions are similar, and results show good repeatability. How-
ever, results obtained by using the same build layout design and process
parameters but different material show different data distributions. Similar
data distributions were observed when small changes to build design have
been done (see Fig.6.2(d), Fig.6.2(e), and Fig.6.2(f)).

The change in the material is an important factor in powder bed fusion
systems, and it has already been reported by researchers in previous studies.
By summarizing the observed results, one can see that the first group of
experiments (year 2017) resulted in mainly smaller specimens, while the
second group of experiments (year 2019) has resulted in larger specimens.

Orientation-to-orientation comparison of length measurements

As presented earlier, multimodal distributions observed for runs 1-2 could be
a result of orientation groups and/or their locations in the build chamber.
In order to understand how different orientations contribute to the data
distributions in general, Fig. 6.3 is illustrated below.

1Material is PA12 from different batches of mixed virgin powder and regularly aged
powder
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((a)) Runs 1 and 2 ((b)) Runs 3, 4, 5 and 6

((c)) Runs 1, 2 and 3 ((d)) Runs 1, 2 and 4

((e)) Runs 1, 2 and 5 ((f)) Runs 1, 2 and 6

Figure 6.2: Kernel Density Estimation distributions of length measurements for
all runs with a reference to DIN-17642-2013-10 tolerance standard for injection
molding
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While in Fig. 6.1, multi-modal distribution was observed for runs 1-2, Fig.
6.3 shows that Run 3 also has multimodal distribution for XZY and ZYX
orientations, while Run 5 has multimodal distributions in ZYX and Angle
orientations. Additionally, the similarity of the distributions for runs 1-2 is
observed between ZYX and partly Angle orientations. However, the first
peak in Fig. 6.1 mainly correspond to the joint distributions of XYZ and
XZY orientation, while the second peak corresponds to the results for ZYX
and Angle orientations.

In other words, samples fabricated in different orientations tend to have
different variations within one run. The XYZ and XZY orientations provide
roughly normally distributed results, while ZYX and Angle orientation are
more alike, and there is a need to understand which factors can lead to the
bimodal distributions for these orientations.

Since in ZYX orientation length value corresponds to the dimension that is
measured along the z-axis, it is assumed that parts’ location in the build
chamber can be one of the reasons leading to the observed results. Therefore,
Fig. 6.4 shows distributions of the measured length values along the z-axis in
the build chamber only for the runs and orientations that have multimodal
distribution in Fig. 6.3.

As can be seen, there is a difference between variations related to the part
location along the z-axis in the build chamber. For example, specimens are
larger on the last layers of the build chamber when z>200 (bright green
color on Fig. 6.4), while specimens are smaller or close to the desired values
in the first layers of the build chamber where z<75 in the build chamber.
In other words, the temperature distribution and cooling time are different
for the described regions if to look at them as a function of time. While the
first layers have already started a process of cooling down, the last layers
haven’t been produced yet. Therefore, these factors are important for the
observed deviations along the z-axis, and they need to be taken into account
in the future experiments.

6.1.2 Description of width measurements

While length measurements were done on the same areas of the specimen
for all runs, the width and thickness measurements have additional values
for runs 3-6. As described in Chapter 4, each specimen has two sides with
width designed to be 10 mm and a narrow central part, which is intended
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((a)) Length - XYZ ((b)) Length - XZY

((c)) Length - ZYX ((d)) Length - Angle

Figure 6.3: Orientation-based illustration of length measurements via Kernel
Density Estimation distributions with reference to DIN-17642-2013-10 tolerance
standard for injection molding
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((a)) Run 1 - ZYX ((b)) Run 2 - ZYX

((c)) Run 3 - ZYX ((d)) Run 3 - XZY

((e)) Run 1 - Angle ((f)) Run 5 - Angle

Figure 6.4: Distribution of measured length values in x and z axes of the build
chamber



6.1. Data exploration 83

Table 6.3: Number of specimens outside the tolerance range (width measure-
ments) based on medium (M) and fine (F) tolerance classes according to DIN
16742:2013 [34] tolerance standard for injection molding

Measured dimension Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Width Side A (M) 79 82 5 29 13 15
Width Side A (F) 174 179 62 109 91 71
Width Side B (M) – – 5 30 14 14
Width Side B (F) – – 62 107 89 87
Width Center (M) – – 34 69 85 78
Width Center (F) – – 116 164 157 156

to be 5 mm. During the experiments from the 2017, a single side 2 has
been measured (10 mm), and it was not registered which side it was. In
the process of data analysis after Run 1 and Run 2, the author understood
that the missing information was important. Therefore this issue has been
addressed in all other measurements since 2019.

Thus, Fig.6.5 illustrates measurements for side A, side B, and center (side
C) of the specimen for runs 3-6 separately, while runs 1-2 are compared with
both sides A and B. Similarly to how it was done for length measurement,
medium and fine tolerance classes are shown in Fig.6.5. Additionally, the
number of parts outside the tolerance range is calculated using the medium
and fine tolerance classes as a reference, and the results are summarized in
Table 6.3.

In the case of medium tolerance class, most of the width measurements
for runs 3-6 are within the tolerance range, while approximately 80 out of
217 specimens from Run 1 and Run 2 are out of the tolerance range (See
Fig.6.5(a) and Fig.6.5(c)). However, when it comes to the fine tolerance
class, approximately 170 out of 217 width measurements from runs 1 and 2
are out of tolerance range (see Table 6.3 and Fig.6.6).

Another important issue is the repeatability of mesurements on two sides
of one sample. Results in Table 6.3 and Fig.6.6 illustrates that KDE distri-
butions for Side A and Side B are similar at each run, but Run 3 and Run
4 have multimodal distributions (see Fig.6.6(a) and Fig.6.6(c)). Therefore,

2The side was randomly chosen
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((a)) Medium tolerance class ((b)) Fine tolerance class

((c)) Medium tolerance class ((d)) Fine tolerance class

((e)) Medium tolerance class ((f)) Fine tolerance class

Figure 6.5: Kernel Density Estimation distributions of width measurements for all
runs with reference to DIN-17642-2013-10 standard for injection molding tolerances



6.1. Data exploration 85

((a)) Runs 1 and 2 ((b)) Runs 1, 2 and 4

((c)) Runs 1, 2 and 5 ((d)) Runs 1, 2 and 6

Figure 6.6: Kernel Density Estimation distributions of width measurements for all
runs with reference to DIN-17642-2013-10 tolerance standard for injection molding



86 Module P1: Prediction of dimensional deviations

there is a need for orientation-based analysis.

Moreover, Run 6 also has a different number of defects for Side A and
Side B when the fine tolerance class is used (see Table 6.3). One of the
reasons that leads to different variations on the sides could be a non-even
temperature distribution within the build chamber, which could be caused
by build layout design. The distribution of the samples within the build
chamber or specific locations in the build chamber could affect the physical
process. For instance, some specimens can cool down faster than others (in
the corners of the build chamber).

Similarly to the results for length measurements, change of material batches
may have the most significant impact on the deviations between results for
experiments from 2017 and 2019. Additionally, it is also observed that
changes in the build layout could lead to a change from multimodal dis-
tribution to Gaussian distribution for Run 5 and Run 6 (See Fig. 6.6(c)
and Fig. 6.6(d)). However, these assumptions need to be analyzed in more
detail with corresponding statistical techniques, which will be presented in
the following chapter.

Orientation-to-orientation comparison of width measuements

Orientation-to-orientation analysis of width is also performed separately for
side A, B, and C (center of the specimen) for runs 1-5. However, as can be
seen from Fig. 6.7 and Fig. 6.8, distributions within the same orientation
groups look similar for width measured on sides A and B. Thus, it can be
assumed that factors, impacting on the variations of measured values are
the same.

By comparing the distributions from runs 1-2 and Run 3, one can see that
even though results for Run 2 repeats the result from Run 1, the distri-
butions are multimodal, and width variation is larger than for other runs.
Although, width measured for Run 3 has a normal distribution that is inside
the tolerance range, and material is the only factor that was varied.

The results for runs 4-5 have similar behavior as for Run 3, while the ma-
terial is similar between runs 3-5, the build layout has been changed in the
runs 4-5 what led to larger variation. However, the results are still better
than for the runs 1-2.

One of the reasons why this phenomenon is observed is related to the ma-
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((a)) Width (A) - XYZ ((b)) Width (A) - XZY

((c)) Width (A) - ZYX ((d)) Width (A) - Angle

Figure 6.7: Orientation-based illustration of width (side A) measurements via
Kernel Density Estimation distributions with reference to DIN-17642-2013-10 tol-
erance standard for injection molding
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((a)) Width (B) - XYZ ((b)) Width (B) - XZY

((c)) Width (B) - ZYX ((d)) Width (B) - Angle

Figure 6.8: Orientation-based illustration of width (side B) measurements via
Kernel Density Estimation distributions with reference to DIN-17642-2013-10 tol-
erance standard for injection molding
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terial properties, but there is another not controlled factor that may have
an impact on the quality. The powder bed fusion machine has a scheduled
maintenance, in which the machine is recalibrated. Since the first two runs
were conducted in 2017, while other runs in 2019, the powder bed fusion
machine had a number of scheduled maintenance in two years. Therefore,
in addition to the material variation, maintenance of the powder bed fusion
system could have influenced the quality of the fabricated specimens.

At the same time, the results obtained in XZY, ZYX, and Angle orientation
groups look similar for all runs. For instance, Fig. 6.7(b) shows that width
in XZY orientations for all runs is larger than designed, and all distribu-
tions have a large variation. In ZYX orientation, distributions are narrow,
meaning small variation, and are normally distributed except for Run 4.
Fig. 6.7(c) shows that width values for Run 4 has multimodal distribution
with two peaks, which is similar to the data distribution for Run 4 observed
for Angle orientation (see Fig. 6.7(d)).

It is assumed that multimodal distribution is observed for ZYX, and Angle
orientation groups of Run 4 are related to the parts’ location in the build
chamber. Since results for width measured on side A and side B are similar,
analysis of the impact of specimens’ location on the measured values will
be illustrated only for one side (side A). However, after a comparison of the
results for Run 4 measured on side A and side B for ZYX orientation, Fig.
6.9(a)- 6.9(b) and Fig. 6.9(c) -6.9(d) show similarities between two runs,
but still, in the build chamber, there are randomly distributed specimens
that have different values in the same position. Additionally, it can be seen
that in the right side of the build chamber the specimens are larger than in
other positions of the build chamber.

It can be summarized that there is a small difference between measurements
on side A and side B in specific locations. This difference may be present due
to random error or temperature distribution related to the size of powder
particles, and how the material is distributed on the build plate at each layer.
A similar observation is made for the Angle orientation of Run 4, where
the part location is related to the multimodal distribution. Moreover, the
same side of the build chamber as for other measurements, including length,
provides larger specimens than it was designed.

When it comes to the orientation-to-orientation comparison of the meas-
ured width on side C (in the central part of the specimen), this measure-
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((a)) Run 4 (A) - ZYX ((b)) Run 4 (A) - ZYX

((c)) Run 4 (B) - ZYX ((d)) Run 4 (B) - ZYX

((e)) Run 4 (A) - Angle ((f)) Run 4(A) - Angle

Figure 6.9: Distribution of measured length values for Run 4 in (x,y) and (x,z)
axes of the build chamber
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ment hasn’t been done for experiments from 2017. Thus the influence of
the material change is assumed to be the same for other width measure-
ments. However, Fig. 6.16 shows that distributions in XYZ, ZYX, and
Angle orientations are normal, and Run 3 has the smallest variations in
ZYX orientation compared to the other two runs.

While multimodal distributions have been observed for Run 4 in ZYX and
Angle orientations for both side A and side B, different behavior is noted for
the central part of the specimen. One of the reasons that may lead to the
obtained results could be a temperature distribution in the build chamber
that is influenced by the density of part placement (build layout design).
This assumption is hard to investigate based on the experiments performed
but should be considered as a task for future work.

The multimodal distribution is observed in XZY orientation for Run 3,
which is similar to the data distribution for length and Run 4. Since the
previous analysis has shown that usually, multimodal distribution is present,
in most cases, due to locations of the specimens in the build chamber, a sim-
ilar analysis should be conducted for Run 3 and Run 4 in XZY orientation.

However, Fig. 6.11 shows that variations in measured width on side C are
random, and there is no clear pattern or specific area in the build chamber
that corresponds to larger or smaller specimens. Thus, there either should
be some additional factors that may lead to the deviations, which are not
known to the author, or this is a random error that needs to be defined and
controlled in some way.

6.1.3 Analysis of thickness measurements

Even though thickness was measured in the same way as width, its value
should be the same (2 mm) across the whole specimen. Similarly to the
width measurements, thickness in Run 1 and Run 2 has been measured only
on one side that was randomly chosen. The obtained results are compared
to the measurements in different location on the specimen, which are sides
A, B and C. Thus, Fig.6.12 illustrates comparison of the results for thickness
measured on sides A, B and C (center of the specimen) for runs 3-6 with
measurements for Run 1 and Run 2.

While thickness measurements are very similar on Side A for all runs, meas-
ured value in a central part of specimens has the highest variation from
run to run. However, when it comes to the tolerance ranges defined by the
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((a)) Width (C) - XYZ ((b)) Width (C) - XZY

((c)) Width (C) - ZYX ((d)) Width (C) - Angle

Figure 6.10: Orientation-based illustration of width (side C) measurements via
Kernel Density Estimation distributions with reference to DIN-17642-2013-10 tol-
erance standard for injection molding
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((a)) Run 3 (C) - XZY ((b)) Run 3 (C) - XZY

((c)) Run 4 (C) - XZY ((d)) Run 4 (C) - XZY

Figure 6.11: Distribution of measured width (side C) values in the build chamber
along x, y and z axes



94 Module P1: Prediction of dimensional deviations

Table 6.4: Comparison of the number of specimens outside the tolerance range
(thickness measurements) based on medium (M) and fine (F) tolerance classes
according to DIN 16742:2013 [34] tolerance standard for injection molding

Measured dimension Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Thickness Side A (M) 162 157 147 162 164 138
Thickness Side A (F) 170 174 180 230 222 200
Thickness Side B (M) – – 146 146 185 148
Thickness Side B (F) – – 187 225 248 213
Thickness Center (M) – – 44 57 134 62
Thickness Center (F) – – 123 158 208 152

standard for injection molding [34], measurements from the central area of
specimens are mainly within the medium tolerance class (see Fig.6.12(e)).
In contrast, most of the measurements on sides A and B are out of both the
medium and fine tolerance classes (see Table 6.4).

As the distributions for side A and Side B have similar shapes, frequency,
and width, results from each run are visualized separately in Fig. 6.13.
Both data distributions for runs 1-2 and Run 3 are multimodal. A change of
material in Run 3 has led to the smaller range of variations in the thickness
in the central part, but similar distribution for measurements conducted
on sides for runs 1-3 (see Fig.6.13(a)). Then the question that arises from
such results is why variation on sides of the specimen is different from the
variation in the central area of the specimen within one run (given the same
material).

Since width measurements have similar behavior, but its value is similar on
the sides (10 mm), and smaller in the central area (5 mm), the concentration
of energy applied to this area could be different. As a result, narrower
regions of the part may be characterized by a faster colling process, thus
leading to a different shrinkage ratio for all dimensions affected by this area
(in this case, it is width and thickness of a specimen).

Similar behavior can be seen for Run 4 (shown in Fig.6.13(b)), where ad-
ditional 75 specimens were fitted into an existing build layout design, and
Run 5, where build layout design was changed (see Fig.6.13(d)). However,
shape, frequency, and width (variation) of data distribution for the central
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((a)) Medium tolerance class ((b)) Fine tolerance class

((c)) Medium tolerance class ((d)) Fine tolerance class

((e)) Medium tolerance class ((f)) Fine tolerance class

Figure 6.12: Kernel Density Estimation distributions of width measurements
for all runs with reference to DIN-17642-2013-10 standard for injection molding
tolerances
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((a)) Runs 1 and 2 ((b)) Runs 1, 2 and 4

((c)) Runs 1, 2 and 5 ((d)) Runs 1, 2 and 6

Figure 6.13: Kernel Density Estimation distributions of thickness measurements
for all runs with reference to DIN-17642-2013-10 tolerance standard for injection
molding



6.1. Data exploration 97

area for Run 5 is more similar to the data distribution on sides. Therefore
a change in the build layout is one of the possible reasons for the observed
results. In other words, the build layout design can influence the distribu-
tion of the energy at each layer, and thus having an impact on the cooling
time, which results in a similar shrinkage ratio at different locations within
one sample.

Similarly, Fig. 6.13(d) shows that changing build layout and introducing
more orientations than in the previous runs leads to a smaller variation, and
multimodal distributions have the second peak that is much smaller than
for other runs. In order to better understand the nature of the observed
multimodal distributions for all measurements, orientation-to-orientation
analysis is described below.

Orientation-to-orientation comparison of thickness measurements

One of the assumptions that different orientations lead to multimodal data
distribution has been made for thickness measurements. However, Fig. 6.14
- 6.16 show that multimodal distributions are also observed for XYZ, XZY
and Angle orientations. In XYZ orientation, the distributions for runs 1-3
for side A and side B are similar. At the same time, the distribution for Run
5 is normal on side A and multimodal on side B. The assumption behind this
phenomenon is similar as for the width and length measurements, namely
that in addition to the orientations, part location in the build chamber also
affects the dimensional variation.

In other words, as it was already presented in other publications [36], the
temperature distribution in the build chamber is not uniform. Thus pack-
aging of the build platform (strategy for part placement in the build cham-
ber) has an impact on how much energy is applied at each layer to the spe-
cific area of the build chamber. Therefore, part location can provide more
information that is necessary to understand the described phenomenon.

In addition to the part location and orientation, material importance is
also reflected in the results for thickness measurements. For example, mul-
timodal distribution in XZY orientation is observed for the experiments
(runs 1-2) conducted in 2017, but after changing only material, the thickness
has a smaller deviation from the nominal value and is normally distributed
for Run 3. Even after adding new specimens to the build layout, the data
distribution is very similar. Only when changing the build layout by chan-
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((a)) XYZ ((b)) XZY

((c)) ZYX ((d)) Angle

Figure 6.14: Orientation-based illustration of thickness (side A) measurements
via Kernel Density Estimation distributions with reference to DIN-17642-2013-10
tolerance standard for injection molding

ging the specimens’ orientation and location, the variation has increased to
a large degree, as it is shown in Fig. 6.14(b).

Another new observation can be made for Angle orientation for Side A,
which is shown in Fig. 6.14(d). The distribution of the measured thickness
for all runs is similar in all aspects, namely distribution width, shape, and
frequency. Therefore, one can see that for thickness measurement, speci-
mens fabricated in different orientations and locations are less affected by
the changes in the experiments.

The results of thickness measurements on side B is similar to the observed
results for Side A. Fig. 6.14 - 6.15 also show that specimens fabricated
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((a)) XYZ ((b)) XZY

((c)) ZYX ((d)) Angle

Figure 6.15: Orientation-based illustration of thickness (side B) measurements
via Kernel Density Estimation distributions with reference to DIN-17642-2013-10
tolerance standard for injection molding

in XYZ orientation are larger than designed. Most of the measurements
are smaller than designed in XZY and ZYX orientations, while in Angle
orientation value is both smaller and larger than it was designed. However,
thickness measured in the central area (side C) of the specimen has a similar
shape of the deviations, but their width and frequency are different.

For instance, thickness measurements have multimodal distributions in XYZ
orientation for all runs. Even more, as can be seen from Fig. 6.16(a), dis-
tribution for Run 4 has three peaks that have not been observed before
for either length, width, or thickness (sides A and B) measurements. An
additional assumption, which hasn’t been made before, could lead to the ob-
served variations; positions of the specimens in one orientation, for instance,



100 Module P1: Prediction of dimensional deviations

((a)) XYZ ((b)) XZY

((c)) ZYX ((d)) Angle

Figure 6.16: Orientation-based illustration of thickness (side C) measurements
via Kernel Density Estimation distributions with reference to DIN-17642-2013-10
tolerance standard for injection molding
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XYZ, may be affected by specimens from another orientation groups. Since
the powder bed fusion process solidifies material in a layered manner, it
is also important to investigate the scanning strategy that defines the way
energy is distributed at each layer.

Thus, it can be seen that powder bed fusion technology is a complex process
in which dimensional variations could be caused by different factors that are
hard to capture in a small number of experiments. Therefore, all highlighted
issues need to be further investigated in future experiments.

Analysis of Run 6 as a special case study

Analysis of Run 6 is a special case due to the number and type orientation
groups applied to the current build layout design. A build chamber is a 3-
dimensional space, which is described through the world coordinate systemin
R
3 (x, y and z axes). Therefore, length measurements are illustrated in Fig.

6.17(a) shows the distribution of specimens in 2-dimensional space with x
and y used as axes; in Fig. 6.17(b), which illustrates the distribution of
specimens in the build chamber in x and z axes, and Fig. 6.17(c), which
shows specimens distribution along y and z axes.

For such type of the build layout design, visualization of length distribution
shows that there are no specific areas in the build chamber where specimens
tend to shrink or expand more. Both shrinkage and expansion of length are
randomly distributed in the build chamber. Even more, most of the parts
are larger than it was designed.

Width measurements are shown on Fig. 6.18 only on X/Y and X/Z axes
in order to be able to compare visually different sides measured for this
dimensional property. However, how width measurements are distributed
in Y/Z axes has been performed and compared with results for X/Z axes
beforehand, and the most informative 2D space has been chosen.

Fig. 6.18 shows that that results for side A and side B are similar, and the
variation range is also similar. Only some of the points differ, but no pattern
is observed that can detect in which location samples tend to shrink/expand
more than in the other. There is also no difference between the center of the
build layout and the sides. Along with that, the variation range for width
measured on side C resembles the ones for sides A and B.

Since the current nesting density is larger than for other builds, it may be
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((a)) X/Y axes

((b)) X/Z axes

((c)) Y/Z axes

Figure 6.17: Distribution of measured length values for Run 6
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((a)) Side A - X/Y axes ((b)) Side A - X/Z axes

((c)) Side B - X/Y axes ((d)) Side B - X/Z axes

((e)) Side C - X/Y axes ((f)) Side C - X/Z axes

Figure 6.18: Distribution of measured width values for Run 6
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((a)) Side A - X/Y axes ((b)) Side A - X/Z axes

((c)) Side B - X/Y axes ((d)) Side B - X/Z axes

((e)) Side C - X/Y axes ((f)) Side C - X/Z axes

Figure 6.19: Distribution of measured thickness values for Run 6
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assumed that temperature within the build layout has been affected and has
led to a more uniform cooling process. However, this assumption needs to
be investigated in more detail with the help of additional thermal sensors.

Thickness measurements for Run 6 are analyzed similarly to the width, and
results are shown in Fig. 6.19. The measurements on side A and side B are
very similar, and have the same variation range, while thickness measured
in the central area of the specimen has a smaller variation range. The
same observations have been made for thickness measurements for other
runs. Therefore, one can see a dependency between width and thickness.
For larger width areas, thickness has larger variations, while for smaller
width areas, thickness deviation has a smaller range. In other words, more
energy is directed to the area, more expansion (phenomenon opposite to the
shrinkage) is observed for this area in all directions.

6.2 Feature selection

Typically development of models based on machine learning techniques has
challenges related to overfitting and long training time. Many different
methods can be used to overcome these challenges. Feature selection is one
of these techniques. The selection of the relevant features helps to reduce
model overfitting, shorter training time, and improve prediction accuracy
by decreasing noise that might come from irrelevant features.

Therefore, this section is focused on the selection of significant features for
length, width, and thickness. The selected features will be used for the
development of predictive models.

6.2.1 Feature selection for length dimensional property

Feature selection for Run 1 and Run 2

Table 6.5 shows a comparison of three different methods used for under-
standing what investigated features are significant and should be used for
prediction of length. While the Mutual Information method and Spearman’s
rank correlation coefficient test (Spearman’s Rho method) include analysis
of non-linear correlations, the Pearson correlation test is a measure of only
linear relationships between two parameters.

In order to understand which method should be used for further analysis,
a quick check on the predictive model’s performance has been done. Multi-
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layer perceptron (MLP) has been trained on the same data, but with features
selected by each method, and prediction accuracy obtained from the five-
fold cross-validation test is used as a metric to choose a method for feature
selection for other runs.

As can be seen from Table 6.5, the model has higher prediction accuracy with
features selected based on the methods that take into account non-linear
relationships, namely Mutual Info and Spearman’s methods. Additionally,
neglecting non-significant features has led to an increase of prediction accur-
acy from 64.44% to 91.63 % (models without and including feature selection,
respectively).

Therefore, it can be summarized that features having a correlation rank
higher than 0.1 are considered significant for prediction of length. In Table
6.5 features are listed in an order according to their importance rank based
on Spearsman’s correlation rank method. All features except for run number
(Run on Table 6.5), orientation angles by y and z axes (reor b and reor c,
respectively), material, build height, platform volume utilization, current
nesting density and build layout design have been considered as the features
that have significant correlation with length based on the collected data from
runs 1-2.

The non-significant features do not correlate with the length for the Runs
1-2 since all of them were constant and not varied. Therefore, results from
the correlation tests correspond to the physical aspects of the experiments.

Feature selection for all runs based on Spearman’s rho ranking
method

The first column A on Table 6.6 is taken from Table 6.5, and it shows how
strong are correlations between investigated features and length for the case
when build layout design, material, and machine process parameters are
controlled and kept the same.

Column B on Table 6.6 shows feature selection results for data merged from
runs 1-3. Run 3 was performed with the same build layout design and ma-
chine process parameters but with another batch of material. Therefore,
it can be seen that the correlation between material and length has signi-
ficantly increased. However, the model’s prediction accuracy has decreased
compared with the results from column A. Additionally, the significance
level for all features has changed.
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Table 6.5: Evaluation of feature selection methods based on the correlation ranks
for each feature and length for the collected data from Run 1 and Run 2

Features Mutual info Pearson Spearman’s

max coord z 0.755 0.589 0.544
cent coord z 0.798 0.474 0.503
min coord x 0.582 0.459 0.406
min coord z 0.754 0.341 0.385
cent coord x 0.531 0.390 0.360
max coord x 0.537 0.302 0.274

reor a 0.126 -0.255 -0.253
mesh triang 0.189 0.302 0.202
mesh points 0.191 0.302 0.202

surface 0.330 0.264 0.152
volume 0.339 -0.242 -0.138

max coord y 0.552 0.004 0.107
min coord y 0.541 -0.003 0.104
cent coord y 0.530 0.0004 0.103

reor b 0.456 0.261 0.078
Run 0.0002 -0.009 -0.009
reor c 0 NaN NaN

material 0 NaN NaN
bh 0 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 83.23% 83.27% 91.63%

It is important to mention that material feature in this work is a numeric
representation of the batches of virgin material (the material was assigned
to 1 for Runs 1-2, while Run 3 has material annotation of 2, Run 4 as 2.1,
Run 5 as 2.2, and Run 6 as 2.3). The numeric annotation of 2.1, 2.2, and
2.3 means that material batch is the same, but it was used on different
days. Thus it was assumed that material properties might have a small
variation due to climate conditions in the laboratory. In the future, these
values should be changed to reflect the real material properties.
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Column C in Table 6.6 corresponds to the feature selection results for runs
1-4, where 75 new specimens are added to the existed build layout in Run
4. This change has been reflected in the importance of the Run, build
layout, current nesting density (cnd), and platform volume utilization (pvu)
features. Only two features, namely build height and orientation by z-axis
(reor c in Table 6.6), have no correlation with the length, and therefore they
are not considered as significant during the development of MLP models.
All other features have been considered significant.

Column D corresponds to the feature selection results for runs 1-5, where
the number of specimens were kept the same as for Run 4, but orientation
and position have been changed for some of the specimens. Similar to the
results described for runs 1-4 (column C), material properties have been
uncontrolled, and this also has an impact on the results. Although, the
batch for virgin material was the same, the main difference between material
from Run 4 is related to the day when a mix of used and virgin powder was
used, and thus, it is expected that Polyamide viscosity could have changed.

Even though the significance level for the Run feature has decreased, it is
still among the features with the strongest correlation with length dimen-
sional property. One of the reasons why these results are observed is related
to changes conducted in the build layout design, and it is reflected on other
features that describe different aspects of build layout design, namely pvu,
cnd, and build layout. The list of non-significant features is the same as for
Column C since these features haven’t been varied.

Results for feature selection for runs 1-6 show similar results to previous runs
(Column E on Table 6.6. The main difference of Run 6 from other is the
introduction of new orientation groups and completely different build layout
design with different build height. Therefore, all features have correlation
larger than 0, and there is no need for model comparison with and without
feature selection results.

The prediction accuracy for the Column E has decreased significantly be-
cause in addition to unknown material properties, introduction of more than
18 orientation groups has led to an increase of noise and uncertanties in the
data. In order to improve model performance there is a need for either
repeating the last run one more time or collecting additional information
about material and AM machine parameters.
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Table 6.6: Feature selection for length dimensional property based on the collected
data from all runs using Spearman’s rho ranking method (where A is for runs 1-2,
B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for runs 1-6, and FS
stays for feature selection)

Features A B C D E

material NaN 0.405 0.482 0.309 0.276
Run -0.009 0.193 0.401 0.260 0.243

max coord z 0.544 0.400 0.323 0.279 0.227
build layout NaN NaN 0.383 0.230 0.222
cent coord z 0.503 0.360 0.298 0.248 0.198

cnd 0 0 0.383 0.184 0.196
pvu NaN NaN 0.383 0.184 0.170

min coord z 0.385 0.275 0.248 0.209 0.164
surface 0.152 0.158 0.188 0.185 0.164

min coord x 0.406 0.313 0.218 0.155 0.132
volume -0.138 -0.152 -0.159 -0.140 -0.117
bh NaN NaN NaN NaN -0.105

cent coord x 0.359 0.273 0.192 0.129 0.103
mesh triang 0.202 0.171 0.121 0.107 0.086
mesh points 0.202 0.171 0.121 0.108 0.086
max coord x 0.274 0.207 0.156 0.098 0.072

reor a -0.253 -0.169 -0.058 -0.073 -0.068
cent coord y 0.103 0.048 0.039 0.057 0.046
max coord y 0.107 0.051 0.040 0.058 0.039
min coord y 0.104 0.050 0.042 0.057 0.027

reor c NaN NaN NaN NaN 0.021
reor b 0.078 0.097 0.026 0.004 -0.002

MLP accuracy 91.63% 73.60% 65.71% 71.33% 44.53%

MLP accuracy without FS 64.44% 65.72% 64.01% 68.93% 44.53%

Another interesting observation can be made for correlation ranks of co-
ordinates within the same axis. For example, the correlation between max-
imal coordinate x and length is different from the correlation between cent-
ral coordinate x and length. In this case, central coordinates have a larger
correlation with length, while minimal coordinate x has an even larger cor-
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relation with length. Similar behavior is observed for max, min, and central
coordinates x and y. This result repeats from run to run. By the reason
that actual measurements of length are done on either minimal or maximal
coordinates of x/y/z-axis, this observation can have a meaning related to
the physical process of additive manufacturing.

However, at this moment, it is not possible to compare obtained results
with findings from other researchers because similar research hasn’t been
done or published. Therefore, there is a need for new experiments that can
allow evaluating whether similar results are present for other powder bed
AM systems.

6.2.2 Feature selection for width dimensional property

Feature selection for width dimensional property is conducted in the same
way as for length, but with only one difference. Since width and thickness
are measured differently for runs 1-2 and runs 3-6, feature selection is per-
formed separately for each measurement area (Side A, Side B and Side C
on Fig.4.10) for runs 3-6, and results for each side individually is combined
with the data from runs 1-2.

Feature selection for Run 1 and Run 2

Selected features for the collected data from Run 1 and Run 2 are shown in
Table 6.7, and Spearman’s Rho test shows the best performance, among all
the investigated methods. All methods have a similar set of features that
have some correlation with width. Therefore, in order to be able to compare
the methods’ performance, the features that have absolute correlation rank
higher than 0.03 have been considered as significant.

On the one hand, the Pearson correlation test could also be used for fea-
ture selection due its relatively high prediction accuracy of 78.52%, but it
considers a linear correlation between two features. The Spearsman’s cor-
relation test, on the other hand, is chosen by the reason that it also takes
into account the non-linear correlation between two parameters.
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Table 6.7: Feature selection for width based on the collected data from Run 1
and Run 2

Features Mutual info Pearson Spearman’s rho

max coord z 0.674 0.177 0.187
cent coord z 0.626 0.245 0.190
min coord x 0.836 -0.299 -0.301
min coord z 0.649 0.301 0.200
cent coord x 0.761 -0.255 -0.268
max coord x 0.899 -0.197 -0.285

reor a 0.306 0.766 0.539
mesh triang 0.325 0.174 0.135
mesh points 0.324 0.174 0.135

surface 0.484 0.265 0.180
volume 0.443 -0.299 -0.189

max coord y 0.777 0.165 0.247
min coord y 0.763 0.189 0.252
cent coord y 0.764 0.177 0.251

reor b 0.466 -0.176 -0.064
Run 0 -0.038 -0.029
reor c 0 NaN NaN

material 0 NaN NaN
bh 0 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 74.55% 78.52% 80.76%

Comparison of feature selection for width side A and side B con-
sidering all runs based on Spearman’s rho ranking method

Tables 6.8 - 6.9 show the results of feature selection based on the Spears-
man’s correlation test. The correlation ranks and prediction accuracies are
similar for both sides and they are also similar for each column. Therefore,
their analysis can be done together.
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Table 6.8: Feature selection for width (Side A) dimensional property based on the
collected data from all runs based on Spearsman’s method, (where A is for Runs
1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for runs 1-6)

Features A B C D E

max coord z 0.187 0.120 0.074 0.071 0.044
cent coord z 0.190 0.142 0.098 0.084 0.057
min coord x -0.301 -0.229 -0.169 -0.127 -0.104
min coord z 0.200 0.169 0.119 0.093 0.070
cent coord x -0.268 -0.190 -0.135 -0.107 -0.093
max coord x -0.285 -0.182 -0.116 -0.098 -0.087

reor a 0.539 0.445 0.350 0.251 0.169
mesh triang 0.135 0.109 0.005 -0.015 -0.030
mesh points 0.135 0.109 0.005 -0.014 -0.030

surface 0.180 0.154 0.151 0.174 0.172
volume -0.189 -0.162 -0.117 -0.102 -0.101

max coord y 0.247 0.111 0.064 0.079 0.114
min coord y 0.252 0.116 0.069 0.080 0.061
cent coord y 0.251 0.115 0.068 0.078 0.088

reor b -0.064 -0.081 -0.109 -0.090 -0.120
Run -0.029 0.232 0.482 0.434 0.474
reor c NaN NaN NaN NaN 0.054

material NaN 0.505 0.584 0.490 0.506
bh NaN NaN NaN NaN -0.291
pvu NaN NaN 0.459 0.070 0.069
cnd NaN NaN 0.459 0.070 0.257

build layout NaN NaN 0.459 0.410 0.459

MLP accuracy 80.76% 72.53% 59.43% 59.28% 56.06%

MLP accuracy without FS 80.07% 68.88% 63.81% 54.56% 56.06%
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Table 6.9: Feature selection for width (Side B) dimensional property based on the
collected data from all runs based on Spearsman’s method, (where A is for Runs
1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for runs 1-6)

Features A B C D E

max coord z 0.187 0.115 0.082 0.088 0.077
cent coord z 0.190 0.139 0.106 0.100 0.090
min coord x -0.301 -0.229 -0.162 -0.124 -0.099
min coord z 0.200 0.166 0.125 0.107 0.105
cent coord x -0.268 -0.190 -0.129 -0.101 -0.083
max coord x -0.285 -0.176 -0.107 -0.086 -0.068

reor a 0.539 0.442 0.345 0.274 0.199
mesh triang 0.135 0.111 0.010 -0.003 -0.022
mesh points 0.135 0.111 0.010 -0.002 -0.022

surface 0.180 0.147 0.155 0.194 0.184
volume -0.189 -0.154 -0.119 -0.110 0.104

max coord y 0.247 0.107 0.064 0.066 0.116
min coord y 0.252 0.112 0.068 0.067 0.065
cent coord y 0.251 0.111 0.067 0.065 0.091

reor b -0.064 -0.087 -0.115 -0.103 -0.132
Run -0.029 0.233 0.482 0.457 0.478
reor c NaN NaN NaN NaN 0.058

material NaN 0.507 0.585 0.512 0.511
bh NaN NaN NaN NaN -0.276
pvu NaN NaN 0.458 0.047 0.046
cnd NaN NaN 0.458 0.047 0.230

build layout NaN NaN 0.458 0.433 0.462

MLP accuracy 80.76% 73.68% 59.85% 60.06% 59.50%

MLP accuracy without FS 80.07% 67.60% 65.02% 56.12% 59.50%

As can be seen from Tables 6.8 - 6.9, material feature has the highest correl-
ation rank starting from the Run 3, when the new material was introduced,
and stays approximately at the same level throughout runs 3-6 for both
sides. Similar behavior is observed for build layout feature. Column C
describes the data from runs 1-4, and the build layout is changed for the
first time for Run 4 by integrating 75 new specimens in the previous build
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layout. This change has resulted in different values of build layout, cur-
rent nesting density, and platform volume utilization features. Therefore,
the significance of the listed features has increased. However, depending on
the variations introduced at each new run, the correlation between platform
volume utilization, build height, and current nesting density also varies.

Another important observation can be made regarding the correlation between
part location, part orientation and width. When material and build layout
design were kept the same, orientation around the x-axis was the most sig-
nificant feature, followed by part’s location in the build chamber and STL
model properties. However, the significance of these features decreases when
new variations are introduced. This phenomenon could mean that each
variation in the material and build layout design leads to different values of
width at the same location and with the same orientation.

Additionally, the prediction accuracy of 56% informs that the proposed fea-
tures describe variations that take place as a result of the AM process only
partly. This statement is supported by the finding from other research-
ers [12, 50], where they report that scanning strategy, powder morphology,
layer thickness, and applied energy are other types of the parameters that
influence the dimensional quality of fabricated parts.

Feature selection for width (Side C) considering all runs based on
the Spearman’s rho ranking method

The results for the correlation test between features listed in Table 6.10
and width measured in the central area of the specimen (side C) is com-
pletely different from the presented earlier results for width. The correlation
between part’s location and orientation decreases for each run, starting from
the Run 3. Additionally, a high correlation coefficient can be observed for
material feature, especially in Column B, where new material is used. The
prediction accuracy reaches 99.92%, and stays very high for both five-fold
cross-validated testing data (MLP accuracy in Table 6.10) and for models
without feature selection. Thus, width on side C is correlated with the ma-
terial, and build layout-related features that describe build layout in general
rather than a detailed position of each sample individually. For instance,
Fig. 6.18 illustrates an example where the measured width value is similar
for different orientations and locations. Therefore, the results presented in
the analysis of measured width and correlation test are similar. However,
it is not clear why the correlation test results for side A and side B differ



6.2. Feature selection 115

from the ones for side C.

Table 6.10: Feature selection for width (Side C) dimensional property based on
the collected data from all runs based on Spearsman’s method, (where A is for
Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for runs
1-6)

Features A B C D E

max coord z 0.187 0.085 0.008 -0.010 -0.002
cent coord z 0.190 0.086 0.004 -0.023 -0.002
min coord x -0.301 -0.140 -0.054 -0.020 -0.011
min coord z 0.200 0.095 0.004 -0.032 0.005
cent coord x -0.268 -0.124 -0.051 -0.025 -0.009
max coord x -0.285 -0.131 -0.067 -0.051 -0.022

reor a 0.539 0.243 0.069 -0.016 0.003
mesh triang 0.135 0.067 0.044 0.048 0.029
mesh points 0.135 0.067 0.044 0.047 0.028

surface 0.180 0.090 0.024 0.013 0.017
volume -0.189 -0.094 -0.047 -0.051 -0.021

max coord y 0.247 0.100 0.026 0.014 0.040
min coord y 0.252 0.103 0.025 0.018 0.040
cent coord y 0.251 0.102 0.026 0.016 0.040

reor b -0.064 -0.027 0.031 0.031 0.040
Run -0.029 -0.422 -0.592 -0.550 -0.463
reor c NaN NaN NaN NaN -0.020

material NaN -0.816 -0.772 -0.657 -0.536
bh NaN NaN NaN NaN 0.138
pvu NaN NaN -0.467 -0.023 -0.022
cnd NaN NaN -0.467 -0.023 -0.114

build layout NaN NaN -0.467 -0.464 -0.399

MLP accuracy 80.76% 99.92% 99.91% 99.88% 99.85%

MLP accuracy without FS 80.07% 99.93% 99.90% 99.82% 99.85%
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Table 6.11: Feature selection for thickness based on the collected data from Run
1 and Run2

Parameters Mutual info Pearson Spearman’s rho

max coord z 0.830 -0.035 -0.048
cent coord z 0.836 0.132 0.123
min coord x 1.023 -0.336 -0.252
min coord z 0.827 0.288 0.242
cent coord x 0.877 -0.208 -0.125
max coord x 0.973 -0.062 0.046

reor a 0.126 -0.211 -0.230
mesh triang 0.184 -0.309 -0.312
mesh points 0.185 -0.309 -0.312

surface 0.276 -0.505 -0.503
volume 0.286 0.499 0.487

max coord y 0.919 0.167 0.300
min coord y 0.909 0.159 0.300
cent coord y 0.924 0.164 0.300

reor b 0.795 -0.590 -0.566
Run 0.029 -0.052 -0.098
reor c 0 NaN NaN

material 0 NaN NaN
bh 0.009 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 95.44% 95.78% 96.33%

6.2.3 Feature selection for thickness dimensional property

The feature selection for thickness dimensional property is performed in the
same ways as for length and width. Similarly, the thickness was measured
at three different locations on the specimen (side A, side B, and side C),
and therefore, the results for each side are presented separately.
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Feature selection for Run 1 and Run 2

All three methods rank the significance of the investigated features a bit
differently. For instance, in Table 6.11, one can see that the Mutual Inform-
ation test highlights a strong correlation between thickness and minimal,
maximal, and central coordinates in x, y, and z axes. In contrast, Pearson
and Spearsman’s correlation tests show a weak correlation between max-
imal coordinates in x and z axes and thickness. Therefore, the prediction
accuracy of MLP models that are used for methods evaluation defines which
method should be further used.

An additional adjustment needs to be made for Pearson and Spearsman’s
correlation tests. Since both methods have defined the same feature sets, an
additional condition is created to separate those methods. Thus, features
that have an absolute correlation coefficient higher than 0.09 are considered
significant, and MLP models are evaluated for the sets of significant features.
Spearsman’s correlation test outperformed other methods and is used for
feature selection for all runs.

Comparison of feature selection for thickness on Side A, side B
and side C considering all runs based on Spearman’s rho ranking
method

Tables 6.12 - 6.14 show the results of correlation test for thickness meas-
ured on side A, side B and side C, and the results are similar for all sides.
Therefore their analysis can be done simultaneously.

The results for the correlation test for thickness are different from the repor-
ted results for width and length. The main difference is in the significance
of such features as material, build layout, and Run number. While the ma-
terial is one of the most significant features for width, thickness measured
at all locations has the strongest correlation with coordinates in the y-axis
and orientation angle around the y-axis, but still, the correlation coefficient
is weak compared with the value of correlation rank for the material feature
for width.

Another important observation is related to the decrease in prediction ac-
curacy when a new dataset is added to the analysis. Thus, when build layout
and material properties are kept the same, the prediction accuracy accounts
to 96%. However, as can be seen from Tables 6.12 - 6.14, changing to a new
material has led to decrease in prediction accuracy from 96% to 55-65% for
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side A and B, which are affected more than measurements on Side C. With
the introduction of more variations in the experiment, correlation between
the investigated features and thickness decreases. Similarly, the prediction
accuracy of models also decreases.

Therefore, there should be some external factors that influence dimensional
quality. The assumptions made for length and width dimensional properties
are also applicable to the thickness, and they are described above (e.g., real
material properties, maintenance of the powder bed system, and others).
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Table 6.12: Feature selection for thickness dimensional property based on the
collected data from all runs based on Spearman’s rho ranking method, (where A
is for Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for
runs 1-6)

Features A B C D E

max coord z -0.048 0.001 0.016 0.028 0.005
cent coord z 0.123 0.119 0.093 0.075 0.054
min coord x -0.252 -0.196 -0.160 -0.133 -0.142
min coord z 0.242 0.201 0.145 0.106 0.100
cent coord x -0.125 -0.113 -0.103 -0.093 -0.104
max coord x 0.046 0 -0.021 -0.038 -0.054

reor a -0.230 -0.125 -0.114 -0.096 -0.068
mesh triang -0.312 -0.161 -0.153 -0.120 -0.125
mesh points -0.312 -0.161 -0.153 -0.121 -0.126

surface -0.503 -0.277 -0.150 -0.070 -0.039
volume 0.487 0.266 0.159 0.072 0.080

max coord y 0.300 0.192 0.176 0.180 0.197
min coord y 0.300 0.194 0.175 0.181 0.155
cent coord y 0.300 0.193 0.176 0.179 0.178

reor b -0.566 -0.377 -0.328 -0.295 -0.275
Run -0.098 -0.005 0.084 0.021 0.132
reor c NaN NaN NaN NaN 0.062

material NaN 0.111 0.129 0.045 0.147
bh NaN NaN NaN NaN -0.174
pvu NaN NaN 0.096 0.072 0.064
cnd NaN NaN 0.096 0.072 0.169

build layout NaN NaN 0.096 0.022 0.136

MLP accuracy 96.33% 66.28% 45.88% 41.86% 25.44%

MLP accuracy without FS 96.22% 65.97% 46.23% 42.34% 25.44%
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Table 6.13: Feature selection for thickness dimensional property based on the
collected data from all runs based on Spearman’s rho ranking method, (where A
is for Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for
runs 1-6)

Features A B C D E

max coord z -0.048 0.009 0.016 0.021 0.009
cent coord z 0.123 0.135 0.098 0.075 0.064
min coord x -0.252 -0.186 -0.172 -0.135 -0.149
min coord z 0.242 0.220 0.152 0.107 0.115
cent coord x -0.125 -0.098 -0.110 -0.093 -0.108
max coord x 0.046 0.022 -0.019 -0.029 -0.050

reor a -0.230 -0.118 -0.116 -0.111 -0.057
mesh triang -0.312 -0.160 -0.167 -0.125 -0.133
mesh points -0.312 -0.160 -0.167 -0.125 -0.133

surface -0.503 -0.284 -0.175 -0.095 -0.067
volume 0.487 0.272 0.183 0.087 0.097

max coord y 0.300 0.192 0.178 0.172 0.208
min coord y 0.300 0.194 0.177 0.173 0.164
cent coord y 0.300 0.195 0.178 0.171 0.188

reor b -0.566 -0.390 -0.356 -0.317 -0.293
Run -0.098 -0.009 0.104 -0.001 0,099
reor c NaN NaN NaN NaN 0.035

material NaN 0.101 0.146 0.020 0.112
bh NaN NaN NaN NaN -0.142
pvu NaN NaN 0.122 0.123 0.106
cnd NaN NaN 0.122 0.123 0.177

build layout NaN NaN 0.122 0 0.102

MLP accuracy 96.33% 64.17% 46.18% 46.28% 31.29%

MLP accuracy without FS 96.22% 56.11% 45.76% 38.40% 31.29%
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Table 6.14: Feature selection for thickness dimensional property based on the
collected data from all runs based on Spearman’s rho ranking method, (where A
is for Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for
runs 1-6)

Features A B C D E

max coord z -0.048 -0.039 -0.012 0.006 -0.004
cent coord z 0.123 0.099 0.090 0.075 0.061
min coord x -0.252 -0.223 -0.201 -0.150 -0.150
min coord z 0.242 0.199 0.167 0.125 0.126
cent coord x -0.125 -0.130 -0.125 -0.097 -0.098
max coord x 0.046 0.004 -0.016 -0.022 -0.030

reor a -0.230 -0.147 -0.086 -0.089 -0.042
mesh triang -0.312 -0.212 0.189 -0.133 -0.137
mesh points -0.312 -0.212 0.189 -0.134 -0.139

surface -0.503 -0.356 -0.235 -0.166 -0.123
volume 0.487 0.343 0.249 0.153 0.157

max coord y 0.300 0.176 0.150 0.142 0.184
min coord y 0.300 0.177 0.151 0.146 0.154
cent coord y 0.300 0.177 0.151 0.145 0.172

reor b -0.566 -0.423 -0.383 -0.331 -0.308
Run -0.098 0.022 0.104 -0.082 0.020
reor c NaN NaN NaN NaN 0.046

material NaN 0.111 0.159 -0.050 0.040
bh NaN NaN NaN NaN -0.109
pvu NaN NaN 0.107 0.216 0.196
cnd NaN NaN 0.107 0.216 0.215

build layout NaN NaN 0.107 -0.096 0.015

MLP accuracy 96.33% 85.09% 72.20% 61.34% 50.10%

MLP accuracy without FS 96.22% 84.40% 68.65% 60.20% 50.10%

6.3 Intelligent predictive models

While distribution-based analysis of measured dimensional properties is im-
portant to understand both run-to-run and orientation-to-orientation vari-
ations, the selection of significant features is valuable as a source of more
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information about the correlation between dimensions and different build
layout parameters. There is a need for predictive models that can be used
for the estimation of possible geometric deviations in order to be able to
compensate them before the AM fabrication.

As presented in Chapter 2.2, currently, researchers propose different models
for compensating deviations through scaling ratios in x, y, and z axes for
the whole build. However, the analysis of the collected data in this study
shows that variation for length and width, especially along the z-axis, is
different at different locations in the build chamber. Therefore, in this
chapter predictive models for estimating geometric deviations for length,
width and thickness individually for each specimen are proposed below,
while Chapter 7 proposes predictive models for compensation ratios in x, y,
and z axes separately for each part based on its location, orientation, and
STL model properties.

In order to develop models with the best performance, grid search is used to
investigate all possible combinations from the listed hyperparameters. Each
method has its hyperparameters that need to be tuned. The learning rate
for MLP is not optimized, but it is mentioned as one of the hyperparameters
since MLP internally defines which learning rate should be used, and it is
an important hyperparameter for the model.

The set of hyperparameters used in the grid search is the same for all mech-
anical properties. Thus, for MLP models, the following set of hyperpara-
meters have been evaluated:

• hidden layer sizes: [19, 22, 25, 27, 35, 52],

• activation function:(’relu’, ’logistic’),

• solver function: (’lbfgs’, ’sgd’).

For Random Forest models, the following set of hyperparameters have been
used for grid search:

• number of estimators: [50, 80, 100, 150, 200, 300, 500],

• maximum features :(’auto’, ’sqrt’, ’log2’).
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The set of hyperparameters used for grid search for AdaBoost Regressor is
the following:

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’exponential’, ’ square’).

While a number of estimators for AdaBoost is tuned internally by the al-
gorithm, the set of hyperparameters investigated for Gradient Boost Re-
gressor is similar to the AdaBoost, but types of loss function are different
due to the used algorithms, and are the following:

• number of estimators: [80, 100, 150, 200],

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’ls’, ’lad’, ’huber’).

Depending on the number of hyperparameters in the lists, the model training
time is different. For example, with the lists of hyperparameters proposed
for MLP models, the training of a model including grid search and five-fold
cross-validation has taken approximately 30 minutes, while Random Forest
needed about 15 minutes to train a model and find the best hyperparameters
of the model. Even though Gradient Boost Regressor has a large number
of combinations of hyperparameters, similarly to MLP, the time need for
grid search, and training a model with cross-validation was similar to the
Random Forest, and hasn’t exceeded 20 minutes.

6.3.1 Length dimensional property

The final combination of hyperparameters for each model, which are the
result of the grid search, are presented in Table 6.15. In order to avoid
overfitting and evaluate generalization capability, in addition to using the
85/15% ratio for training and testing datasets, an additional five-fold cross-
validation on training dataset is used. It is also important to mention that
the Multilayer Perceptron model is trained using all features based on the
results of feature selection. While MLP during feature selection had pre-
diction accuracy 44.53%, after optimizing hyperparameters, its prediction
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accuracy has increased to 50.23% for cross-validation and 49.52% for test
accuracy.

Even though MLP has outperformed ensemble methods such as AdaBoost
and Gradient Boost Regressor, the Random Forest model has the best per-
formance with test accuracy 53.57%. However, this prediction accuracy is
still low, and such a model cannot be used yet, and requires improvements
and developments in the future. Material description in this work should
be changed to powder viscosity or another material-related property.

Table 6.15: Results of optimization of predictive models for length dimensional
property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 35 - - -

solver lbfgs - - -
learning rate 0.0001 - 0.1 0.05

loss - - exponential huber
n estimators - 500 50 100
max features - auto - -

Accuracy 54.61% 55.14% 51.90% 55.41%

Cross-validation 50.23% 55.09% 51.52% 55.49%

Test accuracy 49.52% 53.57% 49.24% 46.81%

6.3.2 Width dimensional property

The predictive models for width are developed separately for each side, sim-
ilarly to how feature selection was conducted. Table 6.16 shows results of the
grid search with the best combination of hyperparameters for each model
for width measured on side A. Table 6.17 shows comparison of predictive
models for width measured on side B, and Table 6.18 presents the developed
predictive models for width measured in central area of a specimen. Simil-
arly to the feature selection for width, models’ prediction accuracies for sides
A and B are similar, while the prediction accuracies for side C is higher than
99.88%.
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Table 6.16: Results of optimization of predictive models for width (side A) di-
mensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 35 - - -

solver lbfgs - - -
learning rate 0.001 - 0.001 0.1

loss - - exponential ls
n estimators - 150 50 150
max features - sqrt - -

Accuracy 56.08% 60.81% 51.84% 59.06%

Cross-validation 55.89% 60.25% 52.38% 59.02%

Test accuracy 50.52% 59.33% 49.16% 52.33%

Table 6.17: Results of optimization of predictive models for width (side B) di-
mensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 27 - - -

solver lbfgs - - -
learning rate 0.001 - 0.01 0.1

loss - - square ls
n estimators - 80 50 200
max features - sqrt - -

Accuracy 58.44% 64.14% 53.60% 62.35%

Cross-validation 57.35% 64.14% 52.93% 61.80%

Test accuracy 51.70% 59.16% 49.17% 55.81%

It is important to mention that the developed models for width measured on



126 Module P1: Prediction of dimensional deviations

side A and side B have different architectures and hyperparameters. This
means that different datasets can be described with different combinations
of hyperparameters. Therefore, it is important to evaluate different com-
binations during the models’ development, and grid search allows doing this
process in an organised automated manner. Another benefit of using the
grid search is improved prediction accuracy of the model due to the optim-
ized architecture of the model.

Similarly to the models for length, Random Forest models have outper-
formed their counterparts, but accuracy of ca. 59% is still too low to be
used in the production. Therefore, similar actions that were described for
predictive models for length need to be done in the future.

All the optimized predictive models for width on side C have high pre-
diction accuracy. By the reason that different types of model evaluation
techniques are used (training, cross-validation, and testing), the model over-
fitting should not be considered as an issue. Although, if another type of
geometry is introduced, there is a high risk that model performance will de-
crease to a large extent. Additionally, it is also interesting to compare the
relative importance of features for two models with the same performances.
Fig. 6.20 shows that even though two models have the same performance,
the relative importance of features varies between the methods.



6.3. Intelligent predictive models 127

((a)) Random Forest

((b)) Gradient Boost Regressor

Figure 6.20: Relative importance of features for predictive models for width (side
C)
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Table 6.18: Results of optimization of predictive models for width (side C) di-
mensional property

Model’s MLP Random AdaBoost GBR
parameter FS=No FS Forest

activation relu - - -
hidden layer 52 - - -

solver lbfgs - - -
learning rate 0.001 - 0.1 0.1

loss - - exponential ls
n estimators - 300 50 200
max features - sqrt - -

Accuracy 99.89% 99.90% 99.87% 99.90%

Cross-validation 99.87% 99.90% 99.87% 99.90%

Test accuracy 99.85% 99.88% 99.84% 99.88%

Any machine learning model proposed for width (side C) can be used in the
future, but due to the reason that Random Forest is among the most robust
models and requires less time for training, it is recommended to choose this
model among the other proposed.

6.3.3 Thickness dimensional property

The developed predictive models for thickness have similar results as it was
described in the section about feature selection. Table 6.19 shows the results
of grid search for thickness measured on side A. Table 6.20 demonstrates
the developed models for thickness measured on side B, while Table 6.21
presents the predictive models for thickness measured on side C. The models
from four proposed machine learning methods are optimized and evaluated
based on three types of prediction accuracies.
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Table 6.19: Results of optimization of predictive models for thickness (side A)
dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation logistic - - -
hidden layer 25 - - -

solver lbfgs - - -
learning rate 0.001 - 0.05 0.1

loss - - exponential ls
n estimators - 250 50 200
max features - sqrt - -

Accuracy 42.96% 42.76% 23.24% 40.42%

Cross-validation 38.62% 42.59% 23.65% 39.59%

Test accuracy 14.52% 36.02% 19.72% 24.26%

Similarly to low prediction accuracy observed at the stage of feature selec-
tion, the models have prediction accuracy 34-36% for side A and B, and 49%
for side C even after defining the best (among proposed) combinations of
the hyperparameters. Even though Random Forest outperformed the other
machine learning methods for thickness measurements, the model’s archi-
tecture for each side is different. Therefore, it could be assumed that there
is a difference in datasets that affect the choice of hyperparameters of the
model.
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Table 6.20: Results of optimization of predictive models for thickness (side B)
dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation logistic - - -
hidden layer 19 - - -

solver lbfgs - - -
learning rate 0.001 - 0.05 0.1

loss - - exponential huber
n estimators - 200 50 200
max features - auto - -

Accuracy 38.39% 43.19% 22.06% 38.95%

Cross-validation 34.84% 42.87% 21.70% 38.65%

Test accuracy 15.09% 34.24% 18.23% 28.21%

Table 6.21: Results of optimization of predictive models for thickness (side C)
dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 27 - - -

solver lbfgs - - -
learning rate 0.001 - 0.1 0.1

loss - - exponential huber
n estimators - 300 50 200
max features - auto - -

Accuracy 51.75% 51.20% 36.63% 48.76%

Cross-validation 41.50% 51.09% 36.46% 49.10%

Test accuracy 41.36% 49.88% 34.95% 32.10%

Since most of the proposed models for all dimensional properties have low
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prediction accuracy, and only material and build layout features have been
varied from run to run, it is assumed that considering each dimension isol-
ated from each other could result in the loss of some information. Besides,
length, thickness, and width measurements physically describe one sample
and could be correlated with each other. Therefore, in the next section,
multi-output learning is applied for prediction of length, width, and thick-
ness simultaneously.

6.3.4 Geometric deviations as a vector of length, width, and
thickness

Resulting prediction of each dimensional property is presented above, and
as it can be seen, the accuracy is not high enough. Since one of the possible
reasons for that is not enough numerical information about factors that
have an impact on the output, the multi-output learning is of interest. The
multi-output learning is used when the prediction of two or more outputs
needs to be done simultaneously, i.e. as a vector.

Among the investigated machine learning techniques, MLP and Random
Forest allow predicting more than one output simultaneously. Therefore,
these ML methods have been used to predict length, width, and thickness
simultaneously, and their results are compared in Table 6.22.

Table 6.22: Optimized hyperparameters of predictive models for length, width
and thickness simultaneously

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer 52 -

solver lbfgs -
learning rate 0.001 -
n estimators - 500
max features - auto

Accuracy 99.28% 99.329%

Cross-validation 99.26% 99.328%

Test accuracy 98.64% 99.16%
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The grid search optimization is used to determine the hyperparameters of
the predictive models. Grid search automatically tries all possible combina-
tions from the sets of hyperparameters provided by the user, and the model
with the combination yielding the best performance is provided for the user
(see Table 6.22).

The sets of hyperparameters used in the grid search optimization for the
MLP neural network are the following:

• size of hidden layer: [19, 22, 25, 27, 35, 52],

• activation function: (’relu’, ’logistic’),

• solver function: (’lbfgs’, ’sgd’).

The set of hyperparameters used in the grid search optimization for the
Random Forest method is the following:

• number of estimators: [80, 100, 150, 200, 250, 300, 500],

• maximum features: (’auto’, ’sqrt’, ’log2’).

Additionally, the model’s performance is verified through five-fold cross-
validation. The scores from cross-validation for MLP neural network and
random forest models are shown in Table 6.23.

Table 6.23: Comparison of five-fold cross-validation scores for MLP and Random
Forest machine learning methods

ML method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Multilayer Perceptron 99.34% 99.30% 99.43% 99.17% 99.08%
Random Forest 99.34% 99.31% 99.47% 99.24% 99.28%

As can be seen from Tables 6.22 - 6.23, both methods have similar predic-
tion accuracy, but Random Forest is more stable to datasets variations. The
difference between prediction accuracies at each fold for Random Forest is
smaller than for the Multilayer Perceptron model. Additionally, the Ran-
dom Forest model has a better performance than the MLP model on new
unseen data (see test accuracy in Table 6.22).
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Moreover, comparison of predicted values by MLP and Random Forest with
observed (measured) values is shown on Fig. 6.21 - 6.23. Even though 229
specimens have been used for testing models performance, only 17 randomly
chosen are shown on the Fig. 6.21 - 6.23.

Figure 6.21: Comparison of observed with predicted length values

As can be seen from Fig 6.21, both models have very similar results, but
for the specimen with index 81a, the MLP model has a large deviation
comparing to other samples. However, for Random Forest, such behavior is
not observed.

Figure 6.22: Comparison of observed with predicted thickness values
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Figure 6.23: Comparison of observed with predicted width values

Similarly, Random Forest also results in a better prediction accuracy for
thickness and width values. When comparing the difference between the
predicted and observed values for length, both models, as can be seen from
Fig. 6.22 have a small difference between the observed and predicted thick-
ness values. The predicted values for width has the smallest deviation from
the observed width values.

Thus, it can be seen that both methods can be used for prediction of geo-
metric deviations, but the Random Forest model is both more robust and
more accurate than the MLP model.

Additionally, it is important to highlight that considering dimensional prop-
erties as a vector has resulted in better model performance. This is caused
by the reason that datapoints representation of dimensions has moved from
R to R

3. There is a possibility that data points in R
3 have a stronger cor-

relation with other features that are represented as some patterns that are
captured by machine learning models.



Chapter 7

Module P2: Prediction of
compensation ratio

Even though in Chapter 6 geometric deviations are predicted for each spe-
cimen separately, the obtained results need further transformation for com-
pensating the deviations. Therefore, this chapter aims at describing the
developed models for estimation of compensation ratios in x, y, and z axes
for each part separately.

7.1 Preliminaries

A compensation ratio for each dimension is calculated as follows:

cri,j =
CCAD
i,j

Cmea
i,j

(7.1)

where cr represents compensation ratio, i ∈ {1, 2, 3} corresponds for length,
width and thickness, j ∈ {1, 2, .., k} describes index of a part, and k stays for
the number of parts, CCAD

i,j represents designed (CAD) dimensional value,
and Cmea

i,j describes a measured dimensional value.

In order to use the defined compensation ratio in practice, the operator needs
to multiply dimensions from the CADmodel by corresponding compensation
ratio. In software used to design a build layout, this option is available for
each specimen and thus can be performed as the last step of the build

135
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layout design process. However, in the future, one of the tasks is to expand
the proposed modules by an additional service for automated compensation
of the predicted deviations performed without human interaction. At this
moment, due to time limitations, this task is out of the scope of the current
work.

The feature list is the same as in Chapter 6, and compensation ratios for
length, width, and thickness are considered to be the outputs. By following
the proposed data pipeline in Fig. 5.7 from Chapter 5, the data was already
preprocessed, and only feature selection needs to be conducted as the target
is different.

7.2 Feature selection

Mutual information, Pearson and Spearman’s correlation test are applied
only to the final dataset containing a joined data from all six experiments,
and comparison of the obtained results is shown on Tables 7.1, 7.2, and 7.3
for compensation ratios for length, width and thickness respectively.

The correlation ranks for Spearsman’s method described on Table 7.1 are
similar to the correlation ranks obtained for length in Chapter 6. However,
such features as material, Run, build layout, build height, platform volume
utilization, current nesting density, and maximal, minimal, and central co-
ordinates z have higher correlation rank with the compensation ratio for
length than with measured length values. All other correlation ranks are
similar in both cases.

Besides, such features as number of mesh triangles, mesh points, and ori-
entation angles by x and z axes have similar correlation ranks for different
correlation tests. The correlation ranks are still weak, but it can be seen that
the prediction models still can find patterns in the data despite the weak
correlation (prediction accuracy of Random Forest model for dimensions as
a vector is ca. 99.20%).

Therefore, the main interest in the feature selection process is to determine
whether there are features with zero correlation. As can be seen from Table
7.1, all features have the correlation coefficient greater than 0, and therefore
all of them will be used for model training.
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Table 7.1: Comparison of feature selection methods based on the correlation ranks
for each feature and compensation ratio for length for the collected data from all
runs

Features Mutual info Pearson Spearman’s

material 0.330 -0.277 -0.396
cent coord x 0.172 -0.088 -0.108
min coord x 0.169 -0.109 -0.130
max coord x 0.119 -0.066 -0.082
cent coord y 0.120 -0.038 -0.034
min coord y 0.115 -0.033 -0.027
max coord y 0.102 -0.046 -0.042
cent coord z 0.151 -0.308 -0.281
min coord z 0.159 -0.273 -0.234
max coord z 0.155 -0.332 -0.317
mesh triang 0.030 -0.069 -0.076
mesh points 0.032 -0.069 -0.076

surface 0.033 -0.168 -0.154
volume 0.045 0.104 -0.043
reor a 0.076 0.053 0.073
reor b 0.124 0.020 -0.019
reor c 0.029 -0.027 -0.018
Run 0.180 -0.246 -0.271

build layout 0.209 -0.226 -0.210
bh 0.045 0.114 0.114
pvu 0.122 -0.170 -0.004
cnd 0.211 -0.201 -0.032

The correlation between features and width (side C, in this case, represents
combination of 10 and 5 mm) has similar results as shown in Chapter 6
and Table 7.2. The material feature has the strongest correlation based on
all filtering methods. However, Pearson and Spearsman’s correlation tests
provide more similar correlation ranks between each other than with the
Mutual information method. All features have correlation ranks greater
than 0, and therefore, all should be considered during modeling of the com-
pensation ratio for width.
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Table 7.2: Comparison of feature selection methods based on the correlation ranks
for each feature and width compensation ratio for the collected data from all runs

Features Mutual info Pearson Spearman’s

material 0.339 -0.572 -0.554
cent coord x 0.175 0.080 0.077
min coord x 0.163 0.091 0.085
max coord x 0.200 0.073 0.066
cent coord y 0.208 -0.107 -0.117
min coord y 0.213 -0.077 -0.093
max coord y 0.206 -0.136 -0.146
cent coord z 0.172 -0.063 -0.079
min coord z 0.208 -0.074 -0.092
max coord z 0.186 -0.060 -0.063
mesh triang 0.069 0.053 0.063
mesh points 0.067 0.053 0.063

surface 0.085 -0.202 -0.183
volume 0.073 0.095 -0.051
reor a 0.103 -0.160 -0.137
reor b 0.132 0.126 0.136
reor c 0.052 -0.059 -0.029
Run 0.219 -0.543 -0.501

build layout 0.207 -0.533 -0.483
bh 0.062 0.311 0.281
pvu 0.077 0.026 0.196
cnd 0.204 -0.204 0.124

The correlation ranks shown in Table 7.3 for thickness are also similar to
the ones presented in Chapter 6, and all correlation coefficients are greater
than 0. Therefore, all features need to be considered during the develop-
ment of the models for compensation ratio for thickness. Since correlation
tests’ results are similar for the compensation ratio and actual dimensional
properties (from Chapter 6), it means that the compensation ratio is de-
rived correctly, and correlation can be described in the same way as for
dimensional properties in Chapter 6.
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Table 7.3: Comparison of feature selection methods based on the correlation ranks
for each feature and thickness compensation ratio for the collected data from all
runs

Features Mutual info Pearson Spearman’s

material 0.315 -0.040 -0.049
cent coord x 0.164 0.098 0.096
min coord x 0.183 0.150 0.150
max coord x 0.159 0.030 0.037
cent coord y 0.199 -0.172 -0.147
min coord y 0.201 0.154 -0.130
max coord y 0.184 -0.184 -0.161
cent coord z 0.231 -0.061 -0.070
min coord z 0.174 -0.125 -0.132
max coord z 0.237 0.004 -0.005
mesh triang 0.026 0.137 0.133
mesh points 0.026 0.139 0.135

surface 0.026 0.123 0.132
volume 0.089 -0.157 -0.013
reor a 0.100 0.042 0.088
reor b 0.207 0.308 0.307
reor c 0.036 -0.046 -0.052
Run 0.214 -0.020 0.004

build layout 0.171 -0.015 0.012
bh 0.047 0.109 0.098
pvu 0.120 -0.196 -0.224
cnd 0.170 -0.215 -0.231

Based on the obtained results from feature selection, all of the listed features
are used for the development of predictive models for compensation ratio.

7.3 Predictive models for compensation ratio

The process of model development describe earlier is also applied for this
task. First models are developed separately for compensation ratio that
corresponds only to one-dimensional properties, and then as a R

3 vector.
The obtained results for individual models are compared with the model
proposed for compensation ratios for the dimensions in R

3.
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In order to develop models with the best performance, grid search is also
used to define the best combinations of the model hyperparameters from
the listed ones. The sets of hyperparameters for each method differ from
the hyperparameters presented in Chapter 6, and therefore, updated sets of
hyperparameters for each ML method is described below. As such, the sets
of hyperparameters used in the grid search for MLP models is the following:

• hidden layer sizes: [22, 25, 27, 35, 52, 55],

• activation function:(’relu’, ’logistic’),

• solver function: (’lbfgs’, ’sgd’).

For Random Forest models, the following set of hyperparameters have been
used for grid search:

• number of estimators: [150, 200, 250, 300, 500, 600],

• maximum features :(’auto’, ’sqrt’, ’log2’).

The set of hyperparameters used for grid search for AdaBoost Regressor is
the following:

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’exponential’, ’ square’).

The hyperparameters of the Gradient Boost Regressor model are defined
from the following set:

• number of estimators: [80, 100, 150, 200],

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’ls’, ’lad’, ’huber’).



7.3. Predictive models for compensation ratio 141

The evaluation of the model’s performance is done at three different levels.
First of all, all data is divided into two datasets, namely training and test-
ing, with a ratio of 85/15 %, respectively. During the training process, the
training accuracy is calculated for each model (accuracy is a coefficient of
determination - R2). Second of all, five-fold cross-validation on the train-
ing dataset is performed as the second stage of the model’s performance
evaluation. Finally, the model with the highest five-fold cross-validation
result is evaluated on the testing dataset, and testing accuracy represents
the obtained results. The main goal is to define a model, which has either
the most similar training/cross-validation/testing accuracies or the one with
the highest testing accuracy.

7.3.1 Predictive models for compensation ratio for length

As a result of grid search and cross-validation, Table 7.4 shows the final mod-
els’ description in terms of the combination of hyperparameters chosen by
grid search for compensation ratio (length). Among all investigated machine
learning methods, the Gradient Boost Regressor has the highest testing ac-
curacy (65.87%), while the Random Forest model has higher training and
cross-validation accuracies. However, as it was already mentioned earlier,
the preference should be given to the method with the higher testing accur-
acy.

7.3.2 Predictive models for compensation ratio for width

Among all models presented in Table 7.5, the Random Forest model has
the best performance, and the accuracy level, on average, is about 58.5%.
However, this value is lower than for the compensation ratio of length.
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Table 7.4: Results of optimization of predictive models for length compensation
ratio dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 22 - - -

solver lbfgs - - -
learning rate 0.001 - 0.01 0.1

loss - - exponential huber
n estimators - 600 50 80
max features - auto - -

Accuracy 22.66% 66.21% 56.86% 63.65%

Cross-validation 24.03% 66.18% 55.84% 63.28%

Test accuracy 30.14% 61.84% 54.77% 65.87%

Table 7.5: Results of optimization of predictive models for compensation ratio for
width dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 52 - - -

solver lbfgs - - -
learning rate 0.001 - 0.01 0.1

loss - - exponential huber
n estimators - 500 50 150
max features - sqrt - -

Accuracy 45.47% 58.91% 45.38% 55.36%

Cross-validation 44.17% 58.33% 45.11% 54.88%

Test accuracy 40.21% 58.60% 43.26% 56.73%
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7.3.3 Predictive models for compensation ratio for thickness

According to the results illustrated in Table 7.6, the Random Forest model
for compensation ratio of thickness has the highest training, cross-validation,
and testing accuracies. The prediction accuracy is similar to the one ob-
served for the compensation ratio of the width, though 3% lower.

However, comparing with the predictive models for thickness described in
Chapter 6, the predictive model for compensation ratio of thickness has
higher prediction accuracy, while for other dimensional features, the oppos-
ite is true. This observation means that redefining tasks differently can also
help to develop models with better performance by using the same data.

Table 7.6: Results of optimization of predictive models for compensation ratio for
thickness dimensional property

Model’s MLP Random AdaBoost GBR
hyperparameter FS=No FS Forest

activation relu - - -
hidden layer 22 - - -

solver lbfgs - - -
learning rate 0.001 - 0.1 0.1

loss - - exponential ls
n estimators - 600 50 150
max features - auto - -

Accuracy 50.49% 55.74% 39.06% 52.96%

Cross-validation 48.98% 55.64% 39.35% 53.66%

Test accuracy 53.28% 55.82% 38.44% 52.06%

7.3.4 Predictive models for compensation ratios in R
3

By the reason that in Chapter 6 the model developed for dimensions in
R
3 has improved prediction accuracy from 40-60% for length and thickness

to 99.16%, it is assumed that similar behavior could be observed the for
compensation ratio.

Therefore, multilayer perceptron and random forest are chosen for this task
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since they can provide a model with multi-output prediction. Table 7.7
shows the selected combinations of parameters for each model as a result of
grid search and five-fold cross-validation. Even though in terms of training
and cross-validation accuracies, the random forest has outperformed MLP,
their testing accuracy is similar. In order to understand which model is
better, the predicted values are compared with the nominal values.

Fig. 7.1, 7.2 and 7.3 illustrates the nominal and predicted values of com-
pensation ratio of length, width and thickness respectively. The comparison
is made by using 17 randomly selected specimens from the testing dataset.
Through visual comparison of predicted values by MLP and Random Forest,
the one can observe that the latter one performs better than MLP.

However, an additional metric needs to be introduced because the differ-
ence between the predicted and nominal values is small (even though the
prediction accuracy is not as high as for dimensional deviations). Therefore,
the mean squared error (MSE) is used as an additional metric of models’
performance. One can be observe that the value of MSE is also similar for
both models (see Table 7.7).

Table 7.7: Optimized hyperparameters of predictive models for compensation
ratio of length, width and thickness simultaneously

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer 25 -

solver lbfgs -
learning rate 0.001 -
n estimators - 200
max features - auto

Accuracy 51.86% 57.66%

Cross-validation 50.35% 57.72%

Test accuracy 47.17% 47.14%

MSE 0.0006938 0.0006941
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Figure 7.1: Comparison of observed with predicted length compensation ratio
values

Figure 7.2: Comparison of observed with predicted width compensation ratio
values
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Figure 7.3: Comparison of observed with predicted thickness compensation ratio
values

Since the predicted values and nominal values, especially for the random
Forest model, are very close and MSE is equal to 0.00069, it is assumed
that models predicting a scalar compensation ratio have higher prediction
accuracies than the model for compensation ratio in R

3.

The results show that models predicting a scalar compensation ratio have
smaller mean squared errors, and therefore should be used in the future.
Additionally, it is important to mention that relatively small prediction
accuracy does not fully describe the correct model performance in the case
when low numerical values need to be predicted.



Chapter 8

Module P12: Prediction of
mechanical properties

This chapter describes how the predictive models for estimation of mechan-
ical properties were developed. The chapter consists of three main sections.
The first section describes the collected data. The second section provides
information about the selection of significant features. The chosen features
are used for the development of predictive models. The obtained models are
described and compared in the last section.

8.1 Data exploration

It is generally adviced to use the central part of the build chamber in order to
produce products with good mechanical properties. Such underutilization of
build space leads to the increased price per product, longer time-to-market
for larger batches, and increased amount of degradation and waste of ma-
terial. Therefore, the analysis of the mechanical properties in different areas
of the build chamber is investigated in this section.

According to Caulfield et al. [22], mechanical properties depend on the part
orientation. Therefore, the description of the mechanical properties should
be done separately for each orientation. The four orientations, which are
XYZ, XZY, ZYX, and Angle (45◦ between x and z axes), have been ana-
lyzed for runs 1-5, and analysis of Run 6 has been done separately due to
the difference in the built layout design (refer to Chapter 4 for a detailed

147
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Figure 8.1: Distribution of tensile modulus for different runs based on kernel
distribution estimation (The straight line (1650 MPa) corresponds to the value
from EOS Balanced datasheet)

description).

8.1.1 Analysis of tensile modulus

The result of kernel density estimation of tensile modulus for all runs is
illustrated in Fig.8.1. All data is distributed normally except for the res-
ults obtained from Run 4, which has multimodal distribution. This result
could be caused by the different build orientation, or due to the specimens’
placement variations in the build chamber. However, Fig.8.2 shows that
tensile modulus distributions for different orientations have the same trend
as shown in Fig.8.1. The only difference is observed for the Run 4, where
data is distributed normally in XZY and ZYX orientations. In contrast,
distributions for XYZ and Angle orientations resemble multimodal distri-
butions, and the one for Angle orientation looks similar to the distribution
for Run 4 shown in Fig.8.1. This phenomenon is described with more details
later in this section.

Another concern related to the material properties that are usually reported
for polyamide is anisotropy. Anisotropic behavior of PA12 has been reported
earlier by [51, 59]. The results illustrated in Fig.8.2 do not support this
statement for tensile modulus, which is similar to the datasheets provided
by EOS for balanced machine settings for PA12 material (EOS is both a
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((a)) XYZ orientation for Runs 1-5 ((b)) XZY orientation for Runs 1-5

((c)) ZYX orientation for Runs 1-5 ((d)) Angle orientation for Runs 1-5

Figure 8.2: Distribution of tensile modulus for different orientations based on
kernel distribution estimation (The straight line (1650 MPa) corresponds to the
value from EOS Balanced datasheet)

supplier of the material and producer of AM machine, which have been used
in the experiments). However, none of the runs have a maximum or modal
tensile modulus that corresponds to 1650 MPa, which is the nominal value
from the EOS datasheet. For example, maximum values for Run 4 and Run
6 are 1372 MPA and 1320 MPa, correspondingly.

Orientation-based description of the data collected from Run 6 is not com-
pared with other five runs because it consits of more than four orientations
shown in Fig.8.2. Due to a large number of orientation groups, distribu-
tion of tensile modulus for Run 6 is illustrated in Fig.8.3 as a color map.
Fig.8.3(a) and Fig.8.3(b) show how measured tensile modulus for all speci-
mens in Run 6 and Run 4 (Angle orientation) are distibuted in x and y axes,
while distribution of measured tensie modulus along z axis is illustrated in
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((a)) X/Y axes Run 6 ((b)) X/Y axes Angle orient, Run 4

((c)) X/Z axes Run 6 ((d)) X/Z axes Angle orient. in Run 4

Figure 8.3: Distribution of the tensile modulus in the build chamber with regards
to the coordinates for Run 6 and Angle orientation in Run 4

Fig.8.3(c) (for Run6) and Fig.8.3(d) (for Angle orientation Run 4).

One can observe in Fig.8.3 that the tensile modulus values for Run 6 range
between ca. 900 MPa and 1320 MPa, while the majority of values are
in the range of 1000-1200 MPa. The weakest specimens are positioned in
the corners, but it is challenging to see some patterns related to the 18
orientation groups. Additionally, strong specimens can also be observed
close to the borderlines (e.g., coordinates for strong specimens in x and y
axes are (50, 200) or (280, 50)) of the chamber for both Run 6 and Run 4.

As it was mentioned earlier, tensile modulus distribution for Run 4 has two
peaks, and Angle orientation has similar data distribution. In order to try
to understand what could be a reason for this behavior, a color map that



8.1. Data exploration 151

corresponds to the part positioning in the build chamber is shown in Fig.8.3.
There is no linear dependence between the position and tensile modulus. In
some locations, both relatively strong and weak specimens are observed.
Although, data in Angle orientation for Run 4 could be clustered in two
groups along the x-axis. However, it is only one of the assumptions, and a
more thorough statistical analysis is needed to get a better understanding
of how the part placement correlates to the tensile modulus.

8.1.2 Analysis of tensile strength

Similarly to the tensile modulus, distributions of tensile strength for all
runs are illustrated in Fig.8.4. In addition to the distributions based on
the kernel density estimation, values in XYZ (solid line) and ZYX (dashed
line) orientations from EOS datasheets for balanced parameters are also
shown in Fig.8.4. All of the values are lower than the nominal values, and
distributions could be described as skewed (Runs 4, 5, and 6) or multimodal
(Runs 1, 2, and 3).

Figure 8.4: Distribution of tensile strength for different orientations based on
kernel distribution estimation. The straight solid (48 MPa for XYZ orientation)
and dashed lines (42 MPa for ZYX orientation) correspond to the value from EOS
Balanced datasheet

Therefore, there is a need to describe data distributions by looking at orient-
ations separately. Similarly to the description of the tensile modulus results,
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tensile strength for Run 6 is visualized in a separate Fig.8.6 by the reason
that this run has more than 18 different orientations. Orientation-based
KDE distributions for other runs are illustrated on Fig.8.5.

For XYZ orientation, all data distributions look similarly, the main differ-
ence is in the modal tensile strength values for each run. As it can be seen
in Fig.8.5(a), Run 1 and Run 2 nearly repeat each other, while Run 4 has
the lowest tensile strength values. Run 3 has the narrowest distribution,
and Run 4 is a bit wider than Run 3 and has the highest modal value. How-
ever, all results are less than the nominal one from EOS datasheets. Such
observed variation could be caused by changes in the materials since good
repeatability is observed for the first two runs where the same material was
used.

In terms of the values, data in XZY orientation is distributed in a similar
range (ca. 34-41 MPa for XYZ orientation and ca. 33-40 MPa for XZY
orientation). However, distributions for different runs are placed tighter
and could be described as two groups. The first group consists of Runs
1, 2, and 5, which almost repeat each other. Since there is a difference in
used material and built layout design, such repeatability is an interesting
phenomenon. However, more analysis is needed to explain the observed
behavior. Run 3 and Run 4 could be seen as the second group, where Run
4 has the highest modal tensile strength among all runs.

The difference between measured tensile strength values for XYZ and ZYX
orientations is present for both in the EOS datasheet for balance paramet-
ers and Fig.8.5. This phenomenon is called anisotropic behavior and was
already mentioned as an important issue for PA12, and it is observed for
the tensile strength results. While tensile strength in ZYX orientation is in
the range of ca. 10-35 MPa, the nominal value is 42 MPa (see Fig.8.5(b)).
The results for Angle orientation are analyzed similarly to ZYX orientation,
but the value range is similar to XZY orientation. The distribution is wider
and resembles ZYX orientation (see Fig.8.5(d)).

When it comes to the evaluation of Run 6 with a large number of orientation
groups, measured values are shown in Fig.8.6 as a distribution of values with
respect to the position in the build chamber.

As can be seen from Fig8.6, orientations have an impact on the tensile
strength, since some of the values in the center of the build are weaker than
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((a)) XYZ orientation for Runs 1-5 ((b)) XZY orientation for Runs 1-5

((c)) ZYX orientation for Runs 1-5 ((d)) Angle orientation for Runs 1-5

Figure 8.5: Kernel density estimation distributions of tensile strength for all runs.
The straight solid (48 MPa for XYZ orientation) and dashed lines (42 MPa for ZYX
orientation) correspond to the value from EOS Balanced datasheet
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((a)) X/Y axes Run 6 ((b)) X/Z axes Run 6

Figure 8.6: Distribution of the tensile strength in the build chamber with regards
to the coordinates for Run 6

their neighbors. Although a number of weaker specimens in the center of
the build chamber is less than a number of weaker (and the weakest) spe-
cimens located in the corners of the build chamber. Thus both orientation
and positioning constitute important factors that influence tensile strength
values.

8.1.3 Analysis of strain at break

Strain at break, comparing with the two other mechanical properties, has
more similar results to the ones provided by EOS and is illustrated in Figure
8.7. According to the EOS datasheet, strain at break is expected to be 18%
for XYZ orientation and 4 % for ZYX orientation. The modal value of strain
at break for different orientations differs from run to run. However, strain
at break for Run 4 has the nearest modal value to the nominal value from
the EOS datasheet (see Fig.8.8(a)), while results for other runs are alike
and all higher than the respective nominal values.
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Figure 8.7: Distribution of strain at break for different orientations based on
kernel distribution estimation. The straight solid (18 % for XYZ orientation) and
dashed lines (4% for ZYX orientation) correspond to the value from EOS Balanced
datasheet

Results for ZYX orientation are opposite to the ones described above for
XYZ orientation. As it can be seen from Fig.8.8(c), the modal values of
measured strain at break almost for all runs is around nominal value (4 %)
from the EOS datasheet. However, Run 1 and Run 2 have modal values ca.
3.5 % and 2.8 % for Run 4, while Run 3 and Run 5 have the modal values
of ca. 4 % and 5%.

Since there is no information from the EOS for other orientations, the ob-
served values for XZY and Angle orientations cannot be compared with the
nominal ones. However, it is expected the XZY orientation should have
similar results to XYZ orientation due to the dominating x-axis, and thus
slicing of the specimens is performed perpendicularly to the direction of
force load in a tensile test. Similarly, ZYX and Angle orientations are sliced
a way to facilitates crack generation under a tensile test.

As it can be seen from Fig.8.8(b), two runs in XZY orientation, have modal
values around the nominal value (18 %) for XYZ orientation, where Run 4
has smaller modal value and Run 1 has a larger value than the nominal one.
Similarly, the results observed in Angle orientation are more similar to the
nominal value for ZYX orientation (4 %), but all of them have modal values
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((a)) XYZ orientation for Runs 1-5 ((b)) XZY orientation for Runs 1-5

((c)) ZYX orientation for Runs 1-5 ((d)) Angle orientation for Runs 1-5

Figure 8.8: Kernel Density Estimation distributions of strain at break for all
runs. The straight solid (18 % for XYZ orientation) and dashed lines (4% for ZYX
orientation) correspond to the value from EOS Balanced datasheet

greater than expected. Additionally, data distributions also are similar from
run to run.

Strain at break values from Run 6 can also be described as a multimodal
distribution, but the second peak is not as well defined as for other runs. The
main reason for this observation is the number of orientation groups. Fig.8.9
supports this assumption, and it can be seen that orientations have a small
impact on the measured values compared with how specimens’ positioning
influence the outcome.
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((a)) X/Y axes Run 6 ((b)) X/Z axes Run 6

Figure 8.9: Distribution of strain at break in the build chamber with regards to
the coordinates for Run 6

8.2 Feature selection

Similarly to the chapter about geometric deviations, feature selection for
mechanical properties should also be made before developing intelligent
models. Since tensile modulus, tensile strength and strain at break are
of interest in this work, they will be analyzed separately.

Since there are more than one feature selection methods, data collected from
Run 1 and Run 2 is used for defining a selection method that will be used
for the analysis of data from all other runs. Pearson correlation test, Mutual
information correlation test, and Spearsman’s correlation rank methods are
compared between each other, and the method that has led to the highest
prediction accuracy of MLP model is used for feature selection for other
runs as well. The process is similar to the one described in Chapter 6.

8.2.1 Feature selection for tensile modulus

The list of investigated features is the same as used for dimensional proper-
ties, and the interest is to develop a model based on Run, specimen’s posi-
tion, orientation, information about the STL model, and build layout design.
The MLP prediction accuracy for tensile modulus of runs 1-2 without fea-
ture selection is 53.41%, while as it can be seen from Table 8.1, it is possible
to improve prediction accuracy up to 80.18% by dropping the irrelevant
features.
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The Run, reor c, reor a , mesh triang, mesh points, build height (bh), plat-
form volume utilization (pvu), material, and current nesting density features
have been considered as irrelevant (when coefficient rank is lower than 0.1)
based on the correlation rank values from the Mutual information test. Ac-
cording to the correlation coefficient provided by the Pearson correlation
test, Run, build height (bh), platform volume utilization (pvu), material,
build layout, reor c, current nesting density, and min coord y features have
been considered as irrelevant. The Spearsman’s rho methods have identified
reor c, build height (bh), platform volume utilization (pvu), material, cur-
rent nesting density, min coord z, min , max , and cent coord y features as
irrelevant for prediction of tensile modulus for runs 1-2.

Since the Mutual Information method has the highest prediction accuracy,
the feature selection for other runs is performed using this method. Addi-
tionally, the development of models based on the data collected from runs
1-2 will be done considering the selected features for techniques that do not
include feature selection (e.g., Multilayer Perceptron Neural Network).
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Table 8.1: Feature selection for tensile modulus based on the collected data from
Run 1 and Run2

Features Mutual Info Pearson Spearman’s

min coord x 0.675 -0.623 -0.542
cent coord x 0.544 -0.548 -0.465
max coord x 0.465 -0.445 -0.339
max coord y 0.444 0.132 0.044
cent coord y 0.435 0.134 0.046
min coord y 0.432 0.138 0.046

reor b 0.300 -0.420 -0.303
max coord z 0.297 -0.192 -0.215
cent coord z 0.235 -0.068 -0.066
min coord z 0.208 0.055 0.081

volume 0.176 0.197 0.204
surface 0.123 -0.215 -0.221

mesh triang 0.026 -0.192 -0.192
mesh points 0.025 -0.192 -0.192

reor a 0.023 0.173 0.180
Run 0.0 -0.071 -0.093
reor c 0 NaN NaN

material 0 NaN NaN
bh 0 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 80.18% 53.27% 78.76%

However, an interesting observation can be made by looking at the changes
of the correlation ranks when data from every run is merged with the data
from the preceding runs. Table 8.2 shows that more data brings more un-
certainty, and thus, the relevance of the investigated features decreases after
each run. Column B corresponds to the dataset that includes data collected
from run 1-3. While all parameters, including built layout, have been kept
the same, there are some external factors that influence the outcome (tensile
modulus). A list of the irrelevant features varies between the runs.
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Another interesting observation can be made for the Run feature. This
feature in the first three runs is considered as irrelevant, but after adding
data from Run 4, its relevance significantly increases. This can be explained
by looking at the activities connected to the build layout design. In Run
4, 75 new specimens have been added to the build layout design, while
the number of specimens and their placement were kept the same for runs
1-3. This change could have had an impact on the mechanical properties
as the specimens were packed more tightly, thus leading to the different
temperature distribution within the build chamber.

A similar observation is made for current nesting density (cnd), which nu-
merically describes how dense the parts are packed in the build chamber.
The material, build height (bh) and build layout design features also vary
when data from runs 4-6 are used for the analysis. The material feature is
included not as a real material property, but as a numeric annotation on the
batches (considering virgin/used ratio) of material being used. Therefore,
this feature doesn’t fully represent the real material factor, but it shows that
material is an important factor that should be defined and used as a feature
for predictive models in the future. It should be determined by material
properties corresponding to the used material (e.g., viscosity fo polymers).
Futhermore, it is assumed that changing from a numeric annotation to a
physical measurement of viscosity could lead to a positive impact on the
predictive models.

The resulting list of selected features for each column is different. All fea-
tures that have correlation coefficient greater than 0 have been considered
as significant. For the resulting dataset, which corresponds to Column E,
all features are significant because the correlation level is much lower com-
paring to the Column A. Every change in the experiment contributes to the
variation in the outcome. Therefore, predictive models for tensile modulus
are developed using all the listed features. However, some of the machine
learning techniques have a feature selection as a part of the algorithm. Thus,
it would be interesting to compare the significance of the features obtained
by such methods.
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Table 8.2: Feature selection for tensile modulus mechanical property based on
the collected data from all runs based on the Mutual information method, (where
A is for Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is
for runs 1-6)

Features A B C D E

min coord x 0.675 0.303 0.246 0.131 0.109
cent coord x 0.544 0.240 0.197 0.103 0.097
max coord x 0.465 0.198 0.171 0.109 0.114
max coord y 0.444 0.257 0.199 0.101 0.094
cent coord y 0.435 0.244 0.197 0.100 0.094
min coord y 0.432 0.251 0.199 0.118 0.109

reor b 0.300 0.144 0.098 0.059 0.094
max coord z 0.297 0.161 0.123 0.046 0.035
cent coord z 0.235 0.143 0.117 0.047 0.052
min coord z 0.208 0.080 0.085 0.053 0.061

volume 0.176 0.061 0.047 0.045 0.042
surface 0.123 0 0.023 0.028 0.031

mesh triang 0.026 0 0.026 0.030 0.031
mesh points 0.025 0 0.025 0.029 0.030

reor a 0.023 0.009 0.015 0.006 0.064
Run 0.0 0.006 0.344 0.406 0.435
bh 0 0 0.098 0.058 0.093

reor c 0 0 0 0 0.072
pvu 0 0 0 0 0.071

material 0 0 0.015 0.006 0.063
build layout 0 0 0.048 0.044 0.042

cnd 0 0 0.026 0.027 0.031

MLP accuracy 80.18% 47.28% 61.27% 57.77% 62.81%

MLP accuracy without FS 53.41% 41.51% 60.16% 62.01% 62.81%

8.2.2 Feature selection for tensile strength mechanical prop-
erty

Feature selection for tensile strength mechanical property is performed in
the same way as for the tensile modulus. As it can be seen from Table 8.3,
MLP prediction accuracy for tensile strength without feature selection is
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84.89%, and it has increased up to 99.02% with the help of Mutual informa-
tion method. The lower threshold of the correlation coefficient for selecting
features has been set to 0.05. Thus all features with the correlation coeffi-
cient that exceeds the chosen threshold are considered as relevant for tensile
strength mechanical property.

Table 8.3: Feature selection for tensile strength based on the collected data from
Run 1 and Run2

Features Mutual info Pearson Spearman’s

min coord x 1.155 -0.551 -0.472
max coord x 1.048 -0.245 -0.139
cent coord x 0.992 -0.411 -0.341
max coord y 0.941 0.153 0.091
min coord y 0.925 0.160 0.094
cent coord y 0.915 0.157 0.093

reor b 0.881 -0.687 -0.575
min coord z 0.845 0.244 0.223
max coord z 0.811 -0.120 -0.161
cent coord z 0.811 0.066 0.050

volume 0.538 0.245 0.345
surface 0.465 -0.269 -0.368

mesh triang 0.336 -0.165 -0.230
mesh points 0.336 -0.165 -0.230

reor a 0.282 0.261 0.140
Run 0.015 0.006 0.02
reor c 0 0 0

material 0 NaN NaN
bh 0 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 99.02% 98.13% 91.69%

Mutual Information test is chosen as a filtering method for other runs based
on the prediction accuracy obtained with features selected by this method.
Similarly to the tensile modulus, the position of the specimens in the build
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chamber has a large correlation with the tensile strength. By the reason
that Mutual Information doesn’t have an upper threshold for correlation
rank, the minimal and maximal x coordinates have the largest correlation
with the tensile strength in runs 1-2, and it is greater than 1. However, all
correlation tests report that reor c, material, build height, platform volume
utilization, current nesting density, and build layout design features do not
have any correlation with the tensile strength in the first two runs. This
phenomenon is observed because all of the listed parameters are the same
for runs 1-2.

When comparing how variations at each run contribute to the correlation
between investigated features and tensile strength, one can see that the
correlation coefficient also decreases from run to run, similarly to the res-
ults for tensile modulus. As it can be seen from Table 8.4, by changing
the number of specimens (Column C), and specimens’ location and orient-
ation (Columns D and E), correlation between cent coord y, max coord x
and tensile strength varies to a large degree, namely from strong correlation
to no correlation).

Thus, in the first three runs, when the build layout design was the same,
and even though the material has been changed to a new batch of polyam-
ide, a correlation between all coordinates and tensile strength was strong.
However, after variation of specimens’ placement and orientation was in-
troduced, the correlation level has changed, and it has decreased to a large
degree.

One of the main assumptions why this behavior is observed is connected to
the number of runs with the same build layout. In other words, Runs 4-6
haven’t been repeated more than once, and each of them was characterized
by a unique build layout design. The correlation between the build layout
feature supports this assumption. When the build layout was the same for
the first three runs, the correlation between this feature and tensile strength
was equal to 0, but after the build layout was changed, the correlation
coefficient has increased. Similar behavior is also observed for build height
(bh), Run, reor c, material and current nesting density (cnd) features (see
Table 8.4).

Along with that, it is also important to take a look at the feature that defines
the material. As stated before, this feature is a numeric representation of
the changes in the material. Therefore, it could be a reason why in Column
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B (when we introduce new material batch), this feature is not correlated
with tensile strength.

Table 8.4: Feature selection for tensile strength mechanical property based on the
collected data from all runs based on the Mutual information method, (where A
is for Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for
runs 1-6)

Features A B C D E

min coord x 1.155 1.159 0.268 0.159 0.119
max coord x 1.048 1.048 0.064 0.168 0.161
cent coord x 0.992 0.993 0.103 0.200 0.192
max coord y 0.941 0.939 0.198 0.275 0.252
min coord y 0.925 0.923 0.256 0.152 0.134
cent coord y 0.915 0.913 0 0 0.027

reor b 0.881 0.880 0.265 0.172 0.152
min coord z 0.845 0.831 0.227 0.128 0.100
max coord z 0.811 0.809 0.264 0.155 0.089
cent coord z 0.811 0.807 0.064 0.167 0.161

volume 0.538 0.536 0.147 0.100 0.067
surface 0.465 0.463 0.134 0.101 0.066

mesh triang 0.336 0.337 0.277 0.172 0.150
mesh points 0.336 0.335 0.178 0.119 0.081

reor a 0.282 0.282 0.269 0.172 0.098
Run 0.015 0.014 0.064 0.167 0.161
reor c 0 0 0 0.201 0.129
bh 0 0 0.221 0.127 0.136
pvu 0 0 0 0 0.0

material 0 0 0.047 0.029 0.032
build layout 0 0 0.1478 0.072 0.062

cnd 0 0 0.134 0.086 0.053

MLP accuracy 99.02% 52.07% 43.27% 36.41% 33.30%

MLP accuracy without FS 84.89% 60.09% 37.08% 33.88% 26.06%

Only one feature is considered as irrelevant for all datasets, which is pvu
(platform volume utilization), and it is recommended to neglect this feature
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when developing machine learning models for tensile strength if the method
doesn’t have feature selection included in the algorithm.

8.2.3 Feature selection for strain at break mechanical prop-
erty

Comparing the results of different correlation tests, as can be seen from
Table 8.5, the Spearsman’s Rho method is among the best feature selection
techniques for strain at break mechanical property. This choice is based
on the improvements of prediction accuracy of MLP model from 93.93%
(without feature selection) to 96.38% by neglecting all features with correl-
ation rank lower than 0.1, which are max coord x, Run, reor c, max coord z,
material, build height(bh), platform volume utilization (pvu), current nesting
density (cnd), and build layout.

However, the Mutual information method provides different correlation ranks
for max coord x and max coord z features, which are much higher than the
other features. Additionally, prediction accuracies for all feature selection
methods are relatively high and close to each other. Therefore, since two of
three applied methods have provided low correlation rank for max coord x
and max coord z features, it is decided to neglect them and use Spearsman’s
test to analyze data from all runs.

Strain at break mechanical property, comparing with tensile modulus and
tensile strength, has a weaker correlation with specimens’ position and ori-
entation. This observation is based on the feature selection results shown
in Table 8.6. While orientation along the y-axis (reor b in Table 8.6) has a
much stronger correlation with the other two mechanical properties, it has
still the highest correlation with strain at break. However, orientation along
the z-axis is either not correlated (runs 1-5) or has a close to 0 correlation
rank (Run 6). Even though the correlation is close to 0 when it was neg-
lected, the accuracy of the MLP model has decreased. Similar results are
observed for build height (bh in Table 8.6) feature.

Features related to the general description of build layout design, such as
platform volume utilization (pvu), build layout, and current nesting density
(cnd), have similar correlation with strain at break, and are greater than 0
starting from Run 4 (when more parts are added to the build layout used
for runs 1-3). Similarly, an increase in the correlation between the material
feature and strain at break is observed for Run 3 (Column B in Table 8.6),
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and this is related to the fact that new batch of material was used in this
run.

Table 8.5: Feature selection for strain at break based on the collected data from
Run 1 and Run2

Features Mutual info Pearson Spearman’s Rho

reor b 0.897 -0.522 -0.598
min coord x 0.941 -0.325 -0.370
min coord z 0.773 0.352 0.341

surface 0.337 -0.345 -0.337
volume 0.363 0.315 0.311
reor a 0.141 0.293 0.277

cent coord x 0.790 -0.182 -0.228
cent coord z 0.774 0.171 0.190
mesh triang 0.221 -0.193 -0.186
mesh points 0.223 -0.193 -0.186
min coord y 0.844 0.044 0.118
cent coord y 0.842 0.040 0.117
max coord y 0.856 0.035 0.112
max coord x 0.942 -0.020 -0.023

Run 0.0 -0.028 -0.027
max coord z 0.816 -0.023 -0.018

reor c 0 NaN NaN
material 0 NaN NaN

bh 0 NaN NaN
pvu 0 NaN NaN
cnd 0 0 NaN

build layout 0 NaN NaN

MLP accuracy 96.30% 96.15% 96.38%

One can see that strain at break is more correlated with the material feature
than the tensile modulus and tensile strength. This correlation could have
been even stronger if real material properties have been used as a material
feature. An additional observation can be made for the relationship between
specimens’ location and strain at break. In Column E, where data from all
runs is joined, minimal coordinates along x and z axes have a stronger correl-
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ation with strain at break than other coordinates. This could be related to
the temperature distribution inside the build chamber. As it was described
in Chapter 2, scanning strategy is a part of the process of how energy is
applied to each layer and each specimen, especially when it comes to the
hatch lines and layer distributions. However, more research work should
be done to investigate how hatch lines distributions in connection with the
part location contribute to variations in mechanical properties.
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Table 8.6: Feature selection for strain at break mechanical property based on the
collected data from all runs based on the Spearman’s Rho method, (where A is for
Runs 1-2, B is for runs 1-3, C is for runs 1-4, D is for runs 1-5, and E is for runs
1-6)

Features A B C D E

reor b -0.598 -0.522 -0.255 -0.181 -0.159
min coord x -0.370 -0.325 -0.171 -0.124 -0.116
min coord z 0.341 0.352 0.145 0.142 0.125

surface -0.337 -0.345 -0.156 -0.076 -0.071
volume 0.311 0.315 0.136 0.091 0.068
reor a 0.277 0.293 0.117 0.118 0.087

cent coord x -0.228 -0.182 -0.099 -0.066 -0.068
cent coord z 0.190 0.171 0.070 0.086 0.074
mesh triang -0.186 -0.193 -0.120 -0.092 -0.080
mesh points -0.186 -0.193 -0.120 -0.092 -0.081
min coord y 0.118 0.044 0.032 0.010 0.005
cent coord y 0.117 0.040 0.032 0.012 0.005
max coord y 0.112 0.036 0.030 0.012 0.007
max coord x -0.023 -0.020 -0.003 0.007 -0.004

Run -0.027 -0.028 -0.051 0.121 0.073
max coord z -0.018 -0.023 -0.025 0.012 0.012

reor c NaN NaN NaN NaN -0.007
bh NaN NaN NaN NaN 0.010
pvu NaN NaN -0.075 -0.192 -0.169

material NaN 0.101 -0.021 0.138 0.084
build layout NaN NaN -0.075 0.120 0.070

cnd 0 0 -0.075 -0.192 -0.127

MLP accuracy 96.38% 55.87% 45.24% 25.30% 22.31%

MLP accuracy without FS 93.93% 55.18% 46.28% 22.57% 22.31%

Feature selection is only one of the techniques used in machine learning for
overcoming overfitting problems and shortening the training time. While
one can argue why there is a need for feature selection because the prediction
accuracy is so low that none of the models can be used for the prediction
of mechanical properties, there exist other ways of improving the predictive
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models. For example, using other machine learning methods that are more
complex is one of the options. Additionally, there are machine learning
methods that have feature selection included in the algorithms. Therefore,
in the next section, different ML methods for developing intelligent predict-
ive models will be compared and described in detail.

8.3 Intelligent predictive models

Similarly to the described models for geometric deviations in Chapter 6,
predictive models for mechanical properties are also developed by applying
the same four machine learning methods, namely Multilayer Perceptron,
Random Forest, AdaBoost Regressor, and Gradient Boosting Regressor.

Results of feature selection for each mechanical property are incorporated
in the development of MLP models. Since all features have a correlation
coefficient greater than 0 for tensile modulus and strain at break, there is
no need for comparing models’ performance with and without feature selec-
tion. However, the platform volume utilization feature does not correlate
with tensile strength, and therefore MLP models with and without feature
selection are compared for tensile strength.

The process of developing predictive models for mechanical properties is
the same as the one used for geometric deviations. However, a set of the
hyperparameters that were tuned (as a part of the grid search) is described
below as a reminder.

The set of hyperparameters used in the grid search is the same for all mech-
anical properties. Thus, for MLP models, the following set of hyperpara-
meters have been evaluated:

• hidden layer sizes: [19, 22, 25, 27, 35],

• activation function:(’relu’, ’logistic’),

• solver function: (’lbfgs’, ’sgd’).

For Random Forest models, the following set of hyperparameters have been
used for grid search:

• number of estimators: [50, 80, 100, 150, 200, 300],
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• maximum features :(’auto’, ’sqrt’, ’log2’).

The set of hyperparameters used for grid search for AdaBoost Regressor is
the following:

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’exponential’,’ square’).

The number of estimators for AdaBoost is tuned internally by the algorithm.
The set of hyperparameters investigated for Gradient Boost Regressor is
similar to the AdaBoost, but types of loss function are different due to the
used algorithms and are the following:

• number of estimators: [80, 100, 150],

• learning rate: [0.01, 0.001, 0.05, 0.1],

• loss function: (’ls’, ’lad’, ’huber’).

8.3.1 Tensile modulus mechanical property

The chosen combinations of hyperparameters for each ML models are shown
on Table 8.7. Prediction accuracy for all models is within the range from
64 to 70 %. However, the model’s ability to generalization is an important
factor when the choice should be made. Therefore, a test of the accuracy on
an unseen testing dataset has been done to evaluate generalization ability.
Additionally, five-fold cross-validation was used to evaluate the stability of
the models. In other words, the evaluation of how sensitive the model is for
different sets of data is done similarly, as presented in Chapter 6.

By comparing training, testing, and cross-validation accuracy, one can see
that Random forest and Gradient Boost Regressor outperformed the other
two models, and their results are alike. However, the prediction of newly
introduced data is very important for the long term use. Therefore, it is
recommended to choose the Random Forest model among all ML models.
However, the accuracy of ca. 67% is still too low to be able to use the
developed models for similar shapes. Therefore, there is a need for further
improvements of the models.
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Table 8.7: Results of optimization of predictive models for tensile modulus mech-
anical property

Model’s MLP Random AdaBoost GBR
hyperparameter FS = No FS Forest

activation relu - - -
hidden layer 35 - - -

solver lbfgs - - -
learning rate 0.001 - 0.01 0.1

loss - - exponential huber
n estimators - 200 50 150
max features - auto - -

Accuracy 66.03% 69.93% 64.44% 69.93%

Cross-validation 65.72% 64.04% 61.58% 69.62%

Test accuracy 56.74% 66.84% 58.01% 64.30%

There are two ways how the improvement can be achieved. First of all, more
features need to be defined, and real material property should be included
as a feature. Second of all, experiments should be repeated by using the
same build layouts as in runs 4-6, and machine-related process parameters
should also be introduced and varied.

8.3.2 Tensile strength mechanical property

Even though the prediction accuracy of models developed to predict tensile
modulus is too low to use the models, the prediction accuracy of ML models
for tensile strength is even lower. The highest prediction accuracy (Accuracy
in Table 8.8) is observed to be 37.4 % for Gradient Boost Regressor, while
AdaBoost has the highest testing accuracy of 28.88 %.

The low accuracy can be explained in the way that using only information
about build layout design with real material and process parameters is not
enough for accurate predictive models for tensile strength. There is a need
for more experimental work that will include new features about the material
and machine parameters.
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Table 8.8: Results of optimization of predictive models for tensile strength mech-
anical property

Model’s MLP Random AdaBoost GBR
hyperparameter No FS FS Forest

activation relu relu - - -
hidden layer 19 25 - - -

solver lbfgs lbfgs - - -
learning rate 0.001 0.001 - 0.001 0.05

loss - - - square ls
n estimators - - 100 50 80
max features - - auto - -

Accuracy 35.87% 34.15% 32.69% 35.38% 37.40%

Cross validation 23.40% 31.71% 32.12% 35.18% 37.13%

Test accuracy 11.69% 22.74% 23.93% 28.88% 27.05%

An additional observation can be made that another type of machine learn-
ing showed a better performance for tensile modulus. Such observation
is important because it shows that there is more than only one machine
learning method that can be effective for any predictive task. Whenever
new features or data are used to retrain the models, different ML methods
should be used as conducted in this work.

8.3.3 Strain at break mechanical property

Comparing with the other two mechanical properties, the strain at break
has more similar results to tensile strength. As it can be seen from Table 8.9,
the prediction accuracies are low for all models. Even though the AdaBoost
model has outperformed other models, it cannot be used in its current form.

Similar actions need to be made in order to improve the models’ perform-
ance, and this result shows that using information about build layout is
meaningful but cannot be used only by itself. From the perspective of how
polymer powder bed fusion AM process works, all research performed by
other researchers supports the statement about a need for more information
about material and machine.
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Table 8.9: Results of optimization of predictive models for strain at break mech-
anical property

Model’s MLP Random AdaBoost GBR
hyperparameter FS = No FS Forest

activation relu - - -
hidden layer 19 - - -

solver lbfgs - - -
learning rate 0.001 - 0.001 0.05

loss - - exponential huber
n estimators - 150 50 150
max features - auto - -

Accuracy 18.70% 22.28% 23.32% 23.25%

Cross-validation 23.07% 22.20% 22.89% 22.21%

Test accuracy 13.31% 16.08% 20.57% 17.51%

8.3.4 Mechanical properties as a vector of tensile modulus,
tensile strength, and strain at break

By the reason that predictive models for mechanical properties have low
prediction accuracy, which is very similar to the results observed for di-
mensional variations described in Chapter 6, it is important to evaluate the
prediction of mechanical properties simultaneously.

Similarly, the grid search technique was used to find a combination of the
model’s hyperparameter that results in the best accuracy. However, the
results, which are shown in Table 8.10, are not as promising as it was ob-
served for dimensional variations. Random Forest model has outperformed
the MLP model by almost 10% for testing accuracy and 13% for cross-
validation. The model is similar to the Random Forest of tensile modulus,
but it is less sensitive to different datasets due to similar results for training
accuracy and cross-validation accuracy.
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Table 8.10: Optimized hyperparameters of predictive models for tensile modulus,
tensile strength, and strain at break simultaneously

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer 27 -

solver lbfgs -
learning rate 0.001 -
n estimators - 200
max features - auto

Accuracy 65.69% 69.43%

Cross-validation 56.77% 69.40%

Test accuracy 56.62% 66.24%

For better understanding of how predicted values differ from measured val-
ues, Fig. 8.10 - 8.12 illustrate prediction results for 17 randomly chosen
specimens. In total 226 specimens have been used for testing model’s per-
formance.

Figure 8.10: Comparison of observed and predicted tensile modulus values
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As can be seen from Fig. 8.10, the prediction error for tensile modulus is the
smallest comparing with two other mechanical properties. For some speci-
mens, the predicted values are very close to the measured (e.g., specimens
93, 71i, or 7a).

The prediction of tensile strength has a higher prediction error comparing
with tensile modulus. However, there is a number of specimens (93, 87i, or
221 on Fig. 8.11) for which at least one of the ML methods results in the
predicted values very close to the measured ones. Therefore, by predicting
mechanical properties simultaneously, the prediction accuracy for the tensile
strength is improved, and these predictions could help to understand in
which range the value of tensile strength can be in a specific location in the
build chamber.

Similarly to the observed results for individual prediction of mechanical
properties, Fig. 8.12 shows that stain at break has the largest deviations
between predicted and measured values. Even though the Random Forest
model outperformed the MLP model, there is still a large prediction error
(e.g., specimens 75 or p) that doesn’t allow using the proposed model for
strain at break.

Therefore, the obtained results can be used to get a better understanding of
the possible outcome based on a location and orientation of the specimens,
but only for tensile modulus and tensile strength mechanical properties.

In general, all models need to be further improved by introducing inform-
ation about the material and AM machine. More experimental work is
necessary to collect the required data. Still, the presented results show that
information about build layout design is important and should be used in
the predictive models for mechanical properties.
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Figure 8.11: Comparison of observed and predicted tensile strength values

Figure 8.12: Comparison of observed and predicted strain at break values



Chapter 9

Module P3: Optimization of
part placement in a build
chamber

This chapter aims at describing how predictive models for estimation of
the part placement in the build chamber are developed. The data prepara-
tion, including feature selection, is presented in Section 9.2. The predictive
models and their comparison are presented in Section 9.3.

9.1 Preliminaries

Typically, optimization of part location within a build chamber in powder
bed fusion processes is set to minimize build height, fabrication time, and
cost [80]. In the literature, this task is typically reffered to as parts’ packing.
Most of the published works describe orientation as one of the significant
issues with respect to the surface quality, dimensional accuracy, and build
space utilization.

However, to be able to utilize build chamber space even more efficiently,
there is a need for a decision-making tool that will help to optimize part
location within the build chamber with respect to the size and mechanical
properties of the product. Such a tool, for instance, could allow producing
parts with different requirements for the mechanical properties within one
build chamber.

177
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Therefore, an algorithm for optimization of part location based on the re-
quirements for mechanical properties is described in this work. Since differ-
ent solutions for optimization of part orientation have already been proposed
in various studies, it is assumed that part orientation was chosen by using
one of the existing solutions.

The same data, which was used in Chapters 6, 8 and 7, is also used for
developing models and evaluating the data analysis pipeline proposed in
Chapter 3. As a reminder, the algorithm consists of three main steps; (1)
data collection, (2) data preprocessing, and (3) data processing -models
developing. The first step has already been conducted and described in the
previous chapter, while the other two steps need to be performed for the
defined task.

9.2 Data preprocessing

Data preprocessing is also important for this task because the list of fea-
tures (inputs) and targets (outputs) is changed. Therefore, data integration
followed by data normalization and feature selection needs to be performed
again. Besides, it is important to remind that, usually before data integra-
tion is done, there is a need for data cleaning. In this work, data has already
been cleaned, and the results are described in Chapter 4.

In order to evaluate whether it is possible to estimate part placement based
on the information available before fabrication, mechanical properties, de-
signed dimensions, material property, run number, build layout design num-
ber, predefined orientation, and STL model characteristics are used as in-
puts. Central coordinates in x, y, and z axes in R

3 vector are considered as
the output. Besides, it is proposed to develop individual models for tensile
modulus, tensile strength, and strain at break. Therefore, data was reinteg-
rated into three files that consist of information about input features, and
one file for central coordinates (target). Data normalization is done in the
same way as described in Chapter 4. The next step is feature selection for
machine learning models.

9.2.1 Feature selection

Even though the output is handled as a vector of central coordinates x,
y, and z, the feature selection needs to be conducted separately for each
parameter since filtering methods work only for 1/1 (one feature and one
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output parameter) arrays. The results of application of Mutual information,
Pearson and Spearsman’s correlation tests are compared in Tables 9.1, 9.2
and 9.2 for central coordinates x, y and z, respectively.

The feature selection process is not used to determine a cause-effect rela-
tionship, but it is used to filter insignificant features. As it can be seen
from Tables 9.1, 9.2 and 9.2, in general there is a weak correlation between
all investigated features and central coordinates. In contrast to Pearson
and Spearsman’s correlation tests, Mutual information defines relatively
stronger correlations, especially for central coordinate x.

Table 9.1: Comparison of the feature selection methods based on the correlation
ranks for listed features and central coordinate x

Features Mutual info Pearson Spearman’s

tensile modulus 0.113 -0.137 -0.118
Run 0.279 -0.028 -0.038

build layout 0.317 -0.031 -0.039
strain at break 0.108 -0.078 -0.079

length 0.163 0.121 0.104
material 0.278 -0.021 -0.038

mesh points 0.146 0.003 -0.012
mesh triang 0.150 0.002 -0.013

reor a 0.126 0.014 0.007
reor b 0.273 -0.042 -0.056
reor c 0.094 0.020 0.0169

tensile strength 0.125 -0.134 -0.110
surface 0.228 -0.026 -0.032
thickness 0.146 -0.113 -0.108
volume 0.270 -0.024 0.023
width 0.412 0.018 -0.028

According to the Mutual Information test results, width, build layout design,
material, Run, volume, surface, and orientation by y-axis have the strongest
correlation with all central coordinates. However, it is important to remem-
ber that none of the investigated features influence part position within the
build chamber. Therefore, the correlations are not strong, and there is a
high possibility that the provided information does not allow predicting the
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part placement within the build chamber. Since the prediction of only one
of the coordinates is not of interest in this work because the build chamber
is a 3-dimensional space, the part location must be described as a vector
of x, y, and z coordinates. Thus, based on the results in Chapter 6 and
Chapter 7, one can assume that even though the correlation between listed
features and coordinates is weak, optimization of part location within the
build chamber could be done by using predictive models.

Table 9.2: Comparison of the feature selection methods based on the correlation
ranks for listed features and central coordinate y

Features Mutual info Pearson Spearman’s

tensile modulus 0.089 0.075 0.051
Run 0.286 0.051 0.050

build layout 0.294 0.055 0.052
strain at break 0.159 0.077 0.083

length 0.091 0.029 0.032
material 0.263 0.045 0.050

mesh points 0.148 -0.035 -0.027
mesh triang 0.153 -0.035 -0.028

reor a 0.101 -0.081 -0.081
reor b 0.231 -0.130 -0.125
reor c 0.051 0.001 0.007

tensile strength 0.194 0.115 0.075
surface 0.233 -0.027 -0.027
thickness 0.164 0.120 0.142
volume 0.239 0.001 0.018
width 0.399 -0.050 0.008
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Table 9.3: Comparison of the feature selection methods based on the correlation
ranks for listed features and central coordinate z

Features Mutual info Pearson Spearman’s

tensile modulus 0.104 -0.030 -0.033
Run 0.273 0.011 0.002

build layout 0.264 0.003 0.002
strain at break 0.143 0.065 0.072

length 0.113 0.197 0.198
material 0.247 0.026 0.002

mesh points 0.249 0.041 0.041
mesh triang 0.250 0.040 0.040

reor a 0.153 -0.013 -0.021
reor b 0.239 0.007 0.005
reor c 0.063 -0.015 -0.025

tensile strength 0.217 0.029 0.024
surface 0.378 0.026 0.061
thickness 0.164 0.075 0.063
volume 0.342 -0.033 -0.076
width 0.329 -0.037 -0.010

Similar behavior was observed in Chapter 6 when correlations between fea-
tures and dimensional properties were weak, but the predictive models for
dimensions as a vector have the accuracy of 99.20%. Therefore, features
with the correlation ratio greater than 0 are considered as significant for
model development.

9.3 Predictive models for part placement as a vec-
tor of x, y and z coordinates

In previous chapters, ML models have been developed individually for each
target. For this task, in contrast, the development of multi-output models is
of interest because part location within a build chamber is always described
by the set of coordinates in R

3. This requirement sets constraints on the
type of ML techniques that can be used for multi-output models. As a
result, MLP and Random Forest ML techniques are used for this task.

The development of predictive models is performed individually for tensile
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modulus, tensile strength, and strain at break. As the first step, the data
is split into training and testing datasets with a ratio of 85/15 %, respect-
ively. The training dataset consists of 1280 data points, while the testing
dataset has 226 data points. The model development is conducted by using
the training dataset, and five-fold cross-validation is also performed on the
training dataset. The evaluation of the proposed models is also done on the
testing dataset.

The model architecture has been chosen based on the results of a grid search,
similarly as it was done in other chapters. The set of the hyperparameters
that were used to tune machine learning models’ hyperparameters (as a
part of grid search) is the same for all models. Thus, for MLP models, the
following set of hyperparameters have been evaluated:

• hidden layer sizes: [11, 13, 15, 17, 19, 21, 25, (8,27), 27, (12, 15),
32, 52], where tuple corresponds to the case of more than one hidden
layer,

• activation function: (’relu’, ’logistic’),

• solver function: (’lbfgs’, ’sgd’).

For Random Forest models, the following set of hyperparameters have been
used for grid search:

• number of estimators: [30, 50, 80, 100, 150, 200, 300, 500, 600],

• maximum features: (’auto’, ’sqrt’, ’log2’).

Resulting architectures of the developed MLP and Random Forest models,
and comparison of the models are described in Tables 9.4, 9.5, and 9.6.

In the first case, when part location should be optimized for the specific
tensile modulus, the prediction accuracies of MLP and Random Forest mod-
els are lower than 20% (see Table 9.4). Considering that data used for this
task is collected from the parts of the same shape, size, and relatively sim-
ilar mechanical properties, defining clear patterns between one point in 3D
space and hyperparameters listed above, is a complicated task. The more
historical data and a broader range of objects with different properties are
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needed for evaluation of whether the proposed machine learning techniques
are suitable for this task.

Table 9.4: Part placement: Optimized hyperparameters of predictive models with
respect to tensile modulus

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer 25 -

solver lbfgs -
learning rate 0.001 -
n estimators - 500
max features - auto

Accuracy 22.44% 20.25%

Cross-validation 9.30% 19.90%

Test accuracy -0.028% 14.23%

Table 9.5: Part placement: Optimized hyperparameters of predictive models with
respect to tensile strength

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer (8,27) -

solver lbfgs -
learning rate 0.001 -
n estimators - 500
max features - auto

Accuracy 13.28% 21.70%

Cross-validation 11.08% 21.42%

Test accuracy 0.002% 18.12%
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Table 9.6: Part placement: Optimized hyperparameters of predictive models with
respect to strain at break

Model’s hyperparameters MLP (FS=No FS) Random Forest

activation relu -
hidden layer (12, 15) -

solver lbfgs -
learning rate 0.001 -
n estimators - 600
max features - sqrt

Accuracy 19.45% 20.55%

Cross-validation 11.76% 20.32%

Test accuracy -0.134% 16.88%

The performance of predictive models with respect to tensile strength and
strain at break is similar to the one described for tensile modulus. Even
though the Random Forest method has outperformed the MLP, the models’
performance is unsatisfactory as the prediction accuracies are in the range
of 14-20%. This means that the current dataset and investigated features
do not provide meaningful information that can be used for the develop-
ment of predictive models for optimization of part placement based on the
mechanical properties. Therefore, this task needs to be investigated in more
detail, and other techniques should be used for optimizing part placement
for the required mechanical properties.



Chapter 10

Discussion

The discussion chapter aims at discussing the research questions that have
been previously formulated based on the obtained results and the current
state of the art.

10.1 Discussing RQ1.

How does the build layout design affect product quality in polymer
powder bed fusion systems?

The results of this research have shown that build layout design, in terms
of part location, orientation, STL model properties, and packing density, is
an important factor that could be used for quality management in addit-
ive manufacturing. However, usually, researchers mainly focus on the im-
portance of material and process parameters when discussion about quality
management of fabricated parts arises.

Considering the results from correlation tests for orientation and dimen-
sional properties, orientation has the largest correlation with thickness and
width, while correlation with length is close to 0. In contrast, Ituarte et al.
[64], Pavan et al. [86] reported that orientation is an important factor related
to the geometric deviations. The relative importance of the parameters for
development of machine learning models also shows that orientation is an
important factor (see Fig. 6.20(a) in Chapter 6).

In addition to the importance of orientation, location within a build cham-
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ber is found as an important factor for both mechanical and dimensional
properties. These findings are in line with the results reported by Senthilku-
maran et al. [97]. In addition to the importance of part location, number
of mesh triangles has also been previously reported by Calignano [20]. The
authors presented how different combinations of part position and number
of mesh triangles have resulted in variations of geometric inaccuracy, and
similar results have been obtained in this study as well.

For mechanical properties, the researchers [39, 40] highlighted that orienta-
tion of a part in combination with the powder morphology, layer thickness
[50] and scanning strategy [12, 81] have a large impact on the quality of
parts. The results for the mechanical properties obtained in this study are
not fully in line with this statement. For example, Tables 8.2, 8.4, and
8.6 show that tensile modulus and strain at break have weak correlation
with orientation, while tensile strength have significantly stronger correla-
tion with orientation parameters. These results are partly in line with the
results reported by Faes et al. [39], where authors report that part orienta-
tion is not significant for mechanical properties. However, at the same time,
the opposite results are presented by [40, 50].

However, an interesting observation can be made for tensile modulus and
tensile strength. Even though both mechanical properties have low cor-
relation with all of the investigated features, predictive models for tensile
modulus describe 70% of the variation, while only 39 % of variation can be
described for tensile strength. Strain at break has more similar results to
the tensile strength, and when new material is introduced, the correlation
between other parameters decreases significantly. This means that material
is an important factor, but not the only one influencing the quality of the
parts. When the density of the build packing is changed, and the parts’
position and orientation are varied, the correlation also becomes weaker.

An interesting observation can be made by looking at the performance of
predictive models for estimating geometric variations and mechanical prop-
erties as a vector (i.e. together). The performance for tensile strength and
strain break becomes more similar to the tensile modulus, which could be a
result of the presence of the correlation between the mechanical properties.
Similar results are observed for dimensional properties as well. This correla-
tion also helps to define more clear patterns in the investigated parameters.

It is important to remember that one-to-one correlation analysis only shows
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the relationship between two parameters, while machine learning methods
are able to define a more complex linear and non-linear correlation between
two or more parameters. In general, the results show that part positioning,
part orientation, packing density, and material have an impact on the quality
of the AM produced parts. This means that not only typically defined
process parameters and material should be of interest to the operators, but
more attention should be paid to the build layout design.

10.2 Discussing RQ2.

How can machine learning techniques improve dimensional accur-
acy of AM?

In this work, the application of machine learning techniques to develop
predictive models for estimation of geometric deviations is described in
Chapters 6 and 7. The proposed models are able to provide information
about the possible deviations individually for each object, depending on its
orientation and location within the build chamber. It is worth noting that
this is not a first attempt to find a solution for compensating geometric de-
viations, other researchers [22, 23, 46, 101, 114] have also made attempts to
develop the mathematical models for prediction of shrinkage effect. While
the estimation of deviations along x and y axes in the build chamber is
more successful, the estimation of shrinkage effect along the z-axis is a more
complex task, which is not fully addressed yet.

The shrinkage effect in the powder bed fusion machines is present due to
the thermal processes in these machines. Depending on the laser energy in-
put and material properties, parts either shrink or are produced larger than
they are designed. While the results of this study show that temperature
within the build chamber is also dependent on the packing density, parts
location, and orientation (see Chapter 6), this information should be con-
sidered as a whole rather than isolated entities. As a result, every change of
the location or orientation of one part influences the dimensional accuracy
of the adjacent parts. The task of mathematically describing a dynamic
system becomes even more complicated when, in addition to the build lay-
out design, process and material parameters should also be a part of the
system. Therefore, the application of machine learning techniques has a
benefit over traditional mathematical modeling in terms of being able to
define a relationship between a large number of parameters affecting the
final results.
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On the one hand, machine learning serves as a powerful tool that could help
to adjust predictive models to rapid changes. On the other hand, there is
a need for a large amount of data to make machine learning models more
effective. The data could be acquired on an everyday basis while using AM
machines, but there is a need for a systematic way of data collection. In
other words, there is a need for standardized reporting systems so that these
reports could be transformed into inputs to ML routines.

Traditionally, the design of experiments is a systematic technique used for
data collection and analysis. Even though the structured DoE is bene-
ficial for the optimization of individual manufacturing parameters of AM
systems and allows developing a systematic experimental approach to sim-
ultaneously analyzing multiple production requirements [64], the structured
DoE comes with drawbacks. For example, Flores Ituarte et al. [41] have
reported that the ”presented DoE was incapable of replicating this phe-
nomenon, as the range energy density was limited to a narrower window
due to excessive geometrical distortion”, which means that the investigation
of different combinations of AM-related parameters depends on the under-
standing of the process. In the case where some of the process conditions
are not satisfied, the data from the experiment can be unrialable or unfit
for statistical methods. Therefore, from this perspective, the application of
the machine learning methods can help to avoid the existing issues by using
the available data for data analysis and modeling.

Another benefit of using machine learning techniques over classical mathem-
atical models lies in the ability to define the relationship between paramet-
ers automatically. For example, Chapter 7 describes how 22 parameters are
used as an input for machine learning models. While correlation tests for
one-to-one parameters’ analysis show weak correlations, the machine learn-
ing models have prediction accuracy of 99.20%. There are several reasons
for that. First of all, evaluation of all possible combinations of interaction
effect for 13 parameters is a time-consuming task, and the machine learning
models are able to do it in reasonable time.

However, the prediction of the compensation ratios for each object individu-
ally leads to another issue. If 200 objects need to be produced by the PBF
machine, and each of the objects needs to be scaled in x, y, and z axes prior
to the fabrication, the 600 compensations (3 compensations per object) need
to be manually applied by an operator. This challenge is not yet addressed
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in this study, but with the help of numpy-STL module, which is a new
module available for the python programming language, the application of
compensation ratios can be implemented as an algorithm in the future. This
module allows to read the STL file, make changes to it, and then save it as
an updated STL file. Since the developed models are also programmed by
using python programming language, the numpy-STL module will allow for
incorporating predicted compensation ratios automatically without human
interaction.

10.3 Discussing RQ3.

How can application of ML techniques contribute to control and
management of mechanical properties of AM built products?

Typically, mathematical models for mechanical properties of polyamide ma-
terial in powder bed fusion systems are used for failure analysis using the
finite element method. While this approach provides information about the
possible places for crack generation, it doesn’t provide any knowledge on
where in the build chamber should the part be placed and whether two or
more parts placed in the build chamber may have an effect on the quality
of the adjacent parts. Therefore, in addition to the traditional approaches
towards failure modeling, in this work, machine learning techniques are used
for estimation of tensile modulus, tensile strength, and strain at break.

Discussion regarding the usage of machine learning for compensation of geo-
metric variations shows that data collected from six experiments can be used
for different types of modeling. The same data was also used for developing
predictive models for mechanical properties with no changes made. Usually,
one can see that DoE is an important technique used for systematic analysis
and development of linear models. Still, there is a high risk of losing some
of the data points due to errors in the AM process, and thus resulting in
difficulties for further analysis [41]. Machine learning techniques work bet-
ter with unstructured data and allows defining relationship that is hard to
determine with classic methods, as shown in Chapter 8.

A large number of machine learning methods provide flexibility in improving
the model’s performance when more data is available. However, for mechan-
ical properties presented in this work, the destructive tensile test is required
to collect the data. This method becomes expensive and time-consuming
when a large number of samples need to be tested. Additionally, the mod-
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els are yet immature and cannot be trusted with validation, meaning that
every time a part is produced, it has to be tested to evaluate the real values.
Therefore, there is a concern about how to use the proposed models in the
future. However, the benefit of using machine learning techniques lies in the
possibility of faster adapting to changes, especially related to the introduc-
tion of new materials. The presented procedure for the experiments could
be repeated a number of times. As a result, machine learning methods will
be capable of redefining relationships when a new variation in the data is
introduced.

While one can argue that the proposed predictive models developed based on
a single machine, the same material and the same type of the shape have too
many limitations, it is important to remember that transfer learning could
be considered as one of the solutions to address these limitations. Transfer
learning allows reusing previously collected data contained in the related
tasks to solve new but similar problems more effectively [124]. However,
not always reuse the same data for a different task is possible. For example,
data acquired in this work provides good results for the tasks of predicting
geometric deviation, compensation ratios, and mechanical properties, while
optimization of part placement based on the mechanical properties is not
possible yet (Chapter 9). Even though the idea is important, more research
needs to be conducted in the future to address this issue.

10.4 Discussing RQ4.

How to utilize a build chamber of powder bed fusion machines in
a more sustainable way?

Among 17 Sustainable Development Goals (SDGs) presented by the United
Nations, there are two SDGs, namely ”Goal 9: Industry, Innovation and In-
frastructure”[7] and ”Goal 12: Responsible Consumption and Production”[6],
which could be addressed by the results of this work. Each sustainable de-
velopment goal is comprised of a number of targets, and the results of this
work could be considered as a small contribution to several targets.

In the SDG about industry, innovation, and infrastructure, several targets
state that there is a need to enhance scientific research, upgrade the tech-
nological capabilities of industrial sectors, and ”upgrade infrastructure and
retrofit industries to make them sustainable, with increased resource-use
efficiency and greater adoption of clean and environmentally sound techno-
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logies and industrial processes” [7]. In addition, a substantial reduction of
the waste generated through prevention, reduction, recycling, and reuse is
also stated in SDG as an important target [6].

Even though researchers report that AM technology could be considered
as a more sustainable than traditional manufacturing due to reuse of the
material, localized recycling, and decrease of the material waste [42], a lack
of the in-depth knowledge about AM processes still results in a high ma-
terial waste caused by ”trial-and-error” approach, which is used to optimize
machine, material and process parameters for the high-quality product. In
other words, the efficient use of the AM processes is highly dependent on
the operators’ knowledge and experience. Therefore, to use AM technology
even more efficiently, there is a need for decision support tools that will
allow fabricating products with the ”first-time-right” quality.

Different roads may lead to the ”first-time-right” quality for the AM pro-
duced parts, which might result in a more sustainable AM production. How-
ever, this work has focused on the investigation of the build chamber util-
ization and how different build layouts influence the quality of the parts.
Typically, it is recommended to use a center of the build chamber to obtain
the best quality, while sides of the build chamber should be avoided due
to temperature behaviors in the build chamber. However, if all space in a
build chamber can be utilized, this will allow decreasing price per product,
increase material usage, and increase time-to-market. Along with that, by
being able to estimate dimensional and mechanical properties prior to the
fabrication, geometric deviations could be compensated with the help of
solutions described in Chapters 6 and 7, while estimation of mechanical
properties, described in Chapter 8, could help to produce only parts that
have satisfactory estimated properties.

On the one hand, the proposed solutions can contribute to a more efficient
way of using powder bed technologies. On the other hand, several limita-
tions need to be highlighted. All the proposed solutions are developed only
for a single powder bed fusion machine, and cannot yet be used for other
machines. Similarly, only one type of material and shape have been used to
develop predictive models, which brings limitations to the type of objects
that can be analyzed by the already existing models. While the idea and
algorithms are important and should be used in the future, still more exper-
imental work on different machines, materials, and objects is required for
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the idea presented in this work to be successful.



Chapter 11

Conclusions and future work

This chapter consists of two sections. The 1stsection concludes the work un-
derlying this thesis. The 2nd section describes the ideas that are important
to address in future work.

11.1 Conclusions

In this Ph.D. work, the new approach towards quality assurance in additive
manufacturing is presented. The main effort has been set to investigate
how different components of build layout design influence dimensional and
mechanical properties of the fabricated parts. The main question that has
been addressed in this work is how to get the first time right quaily of AM
produced parts.

The thesis consisted of two parts. The first part described the contribution
made in the design of experiments, with the novel data acquisition process
being proposed. Producing a large number of labeled standard specimens
have provided important insights towards the better understanding of how
geometric deviations and mechanical properties differ based on the location
within the build chamber. One of the findings highlight that mechanical
properties are strong on the sides of the build chamber and not only in the
central part of the build chamber (as postulated by the AM producer). The
volume and number of mesh triangles were found to be important para-
meters, providing additional information about the object being fabricated.
Along with that, orientation and coordinates that describe a part location
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within the build chamber are also important parameters for the estimation
of geometric variations and mechanical properties. The design of experi-
mental work contributes to a better understanding of which data should be
collected at each run of the AM machine, and could be used as an additive
manufacturing machine calibration tool.

The second part of this work has focused on the development of intelligent
predictive models for quality assurance in AM based on the empirically
collected data. The model-based system engineering has been applied to
design an intelligent system for quality assurance for the powder bed fusion
AM process. The designed system should consist of 12 modules, where
each corresponds to a specific prediction task. The connection between the
modules has been developed and used as guidelines in the data analysis
process. Based on the results from model-based system engineering, the
predictive models have been developed as four separate modules. The data
analysis pipeline has been proposed as a process of data preparation and
has been developed based on the data science foundations. The collected
data always need to go through several steps before being used in machine
learning. Data cleaning, data integration, data normalization, and feature
selection are the main data preprocessing steps.

The STL model characteristics, nine coordinates, three orientation angles,
building platform utilization, platform density, material, run number, and
build height are the parameters used to describe the build layout design.
The listed parameters are used as input to train machine learning models.
In total, 22 parameters were used to develop models, 1521 samples have
been prepared, and used to train machine learning models, and 17 different
predictive models have been proposed. As a result:

1. The predictive model with the accuracy of 99.16% for geometric de-
viations has been developed by using the Random Forest machine
learning method. This model is a part of module P1 in the designed
intelligent system for quality assurance.

2. The intelligent predictive model with accuracy 47.14% (RMSE = 0.026)
was developed for predicting compensation ratios in x, y, and z axes for
each object individually. The MLP and Random Forest have shown
similar performance, and both models can be used in the future. This
model is a part of module P2 in the designed intelligent system for
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quality assurance.

3. The intelligent predictive model with accuracy 66.24% for estimating
tensile modulus, tensile strength, and strain at break has been pro-
posed by using the Random Forest machine learning method. This
model is a part of module P12 in the designed intelligent system for
quality assurance.

4. An attempt was made to develop the predictive model for optimization
of part placement in the build chamber with respect to mechanical
properties. This model is designed as a part of module P3 in the
intelligent system for quality assurance. However, this model requires
more work.

All developed models have limitations that have been presented earlier and
should be addressed in the future. The next section presented the perspect-
ives on future work.

11.2 Future work

With respect to the findings and defined limitations of this work, future
work should be focused on the following aspects:

• The more experimental work should be done with a focus on the ma-
terial and process parameters. Different scanning strategies and AM
process settings need to be investigated and included in the proposed
predictive models.

• The aspects of transfer learning should be investigated in more detail
in order to generate a systematic approach for being able to use the
proposed models on different powder bed fusion machines.

• The proposed models in this work are limited to a single shape being
produced, and therefore, there is a need to develop a novel process
for feature extraction from different shapes. The main interest should
be set at answering thequestion of how the estimation of geometric
deviations can be conducted for new, previously unseen objects.

• The modules presented as a part of the intelligent system for quality
assurance, which are not addressed in this work, should be developed
in the future.
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• The universal database for data storage needs to be designed and
implemented in the future. This element is important since it will
help to make data analysis more automated and easier to perform.

• The material should be presented in the models with the respective
properties.

Since this work was limited by a single type of shape, the investigation of
shape distributions through the utilization of shape functions with respect to
the different geometric attributes has already started in collaboration with
the University of Southern California (USC, Los Angeles). The initial idea
was to use shape distributions as a means for feature extraction to represent
different shapes in the machine learning models presented in this work. The
original concept was presented by Osada et al. [84] in the field of study of
pattern recognition. The authors have used shape distribution based on the
Euclidean distances between randomly sampled points on the surface of a
3D mesh model in order to evaluate the similarity between different objects
and classify to which category they correspond. While this idea could be
used as a technique for feature extraction, there are other ways how shape
distributions could be used in AM. Quick quality inspection of additively
manufactured products with a focus on deviation profiles is currently under
investigation in collaboration with the researchers at USC.
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure A.1: Build layout design in Magics 22.03: top view
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure A.2: Build layout design in Magics 22.03: front view
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure A.3: Build layout design in Magics 22.03: back view
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure A.4: Build layout design in Magics 22.03: right view
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((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5 ((d)) Run 6

Figure A.5: Build layout design in Magics 22.03: left view



BUILD LAYOUT DESIGN DETAILS FROM MAGICS 22.03 219

((a)) Runs 1-3 ((b)) Run 4

((c)) Run 5

Figure A.6: Slice distribution for each build layout design in Magics 22.03
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B.1 Identification of Stakeholders and their needs

According to SPADE, stakeholders and their needs should be identify first.
Stakeholders needs will define expectation and requirements to the system.
If this step is not performed at the beginning of system development, it may
lead to negative consequences later.

Since this PhD is a part of MKRAM project, all participants are stakehold-
ers of the system designed by using System Engineering principles. Addi-
tionally, MKRAM project funding is provided by the Norwegian Research
Council (NRC), and therefore, NRC is also a stakeholder of the system that
is under development (Fig.B.1).

As it was described earlier, Additive Manufacturing is relatively new tech-
nology and lack of standards is one of the reasons why industry does not
adopt this technology as a part of a production line. Another important
issues are lack of understanding of the process, how to control it, how to
design new shapes, how evaluate quality of nonstandard shapes and pres-
ence of inconsistency every time in the results. Therefore, results of this
research can be used as a contribution to development of new standards,
and therefore systematic approach is very important.

Hospitals are also in stakeholders list because they can benefit from the res-
ults of developed system. Nowadays, human bones are already fabricated
with additive manufacturing, and one of the main requirements is dimen-
sional accuracy with specific mechanical properties.

Visualization of relationships between system that is under development -
Intelligent System for Quality Assurance in Additive Manufacturing - and
stakeholders is presented on Fig. B.2. It is expected that requirements
and data as an input are collected from the participants of MKRAM pro-
ject, namely, NTNU, SINTEF and manufacturing companies. In return,
knowledge about process behavior and how to control variations in quality,
systematically organized data that is collected from the practical experi-
ments, and results from data analysis will be provided to NTNU, SINTEF
and manufacturing companies.

Since material properties have an impact on the quality of 3D printed parts,
supplier of the material for additive manufacturing has also impact on the
product and should be mentioned in the context of intelligent system. When
tool for quality assurance is developed and adopted, customers will be a part
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Figure B.1: Stakeholders and their needs
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Figure B.2: Visualization of context model for Intelligent System for quality
Assurance in Additive Manufacturing

of the system because they will be the users of the product fabricated with
AM process. Hospitals are included in the list of customers, however they
may also contribute to the requirements.

All results of this research will be available to the community and academia
around the world via open source publications. Additional external reports
will be a valuable contribution for development of new standards and policies
(government).

B.2 Functional behavior analysis

System behavior is described in this work by using a concept of functional
flow diagram that should be read from the left to the right [? ]. General
overview of how systems functions is shown on Fig.B.3.

The first step in the functional flow diagram shown on Fig.B.3 is when user
makes first interaction with the system. Depending on the choice of the
user, system can either do some changes to the data or do some sort of
calculation. After this, either of the results should be accepted by the user,
and user should be forward to the next stage.
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Figure B.3: Functional flow block diagram for Intelligent system for quality as-
surance in additive manufacturing: general overview

The next stage is dependent on the first choice of the user, if it was to
change a data, then at this stage database should be updated. Otherwise,
system should make a prediction or classification. Results should be shown
to the user and if user is interested, (s)he will be redirected to the first page
where (s)he started interaction with the system. All steps will be repeated
again as many times as it is needed.

B.3 Architectural synthesis

Architectural synthesis is about development and application of an effective
partitioning strategy for physical components with reference to behavioral
model. Since, there is a limit in time, this part of model-based system
engineering is not covered in this work. However, proposed visualization of
the components illustrated on Fig.5.2 - Fig.5.6 should be used as guidelines.

B.4 Validation and verification

Validation and verification is very important step while designing system. It
should be performed at each stage and each layer when model-based system
engineering is applied. In this work, visualization of the components helped
to verify that all functional requirements are described for every compon-
ent of the system. Validation of functional requirements were also done
by analysis of MKRAM project description and published articles that are
relevant to the current research. However, this step should be continuously
performed throughout the future system modification at each stage and each
layer of intelligent system design.
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