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Preface

This thesis has been prepared at the Department of Industrial Economics
and Technology Management, Norwegian University of Science and Tech-
nology (NTNU) in partial ful�llment of the requirements for the doktor
ingeni�r degree. The work has been carried out during the period from
January 1996 to January 2000 with Professor Stein W. Wallace as the
thesis advisor.

Three years of work were dedicated to the completion of the doctoral degree
and one year's work to duties set up by the industry sponsors.

The latter-mentioned year was �nanced through the Norwegian Electricity
Association (Enfo), while the Norwegian Research Council (NFR) �nanced
the work on the doctoral degree. Four Enfo members were represented in
the project's steering committee that was responsible for setting up \duty"
work and projects: Norsk Hydro, Aust-Agder Kraftverk, Vestfold Kraft
Energi and Hafslund. These were also the most active sponsors.

This thesis spans a range of subjects, but the common theme is stochastic
programming and portfolio management, with an emphasis on problems in
the electricity industry. The thesis has two parts. The �rst is an introduc-
tion. It also outlines the contents of the papers in part two and provides
discussions framing the papers. Part two consists of �ve papers of which
one is an exercise in writing theoretical work in a popular form.
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Abstract

Using a stochastic programming approach, we consider portfolio manage-
ment problems in the electricity and insurance businesses.

Traditional portfolio management models assume that the markets in which
the manager operates are perfectly competitive. There is reason to question
this in the case of deregulated electricity markets, which are often domi-
nated by large vertically integrated �rms. Employing a two-stage stochastic
Cournot-type game model of the Scandinavian electricity market, we inves-
tigate the potential for use of market power by large producers. The model
takes into account the commitment e�ect of hydroelectric generation and
forward contract decisions. We �nd that Statkraft, the largest pure hydro
producer, has no market power on the seasonal level due to the aggregate
hydro capacity of the large number of smaller producers. However, Vat-
tenfall, the largest producer, has incentives to withhold thermal capacity
in order to raise prices.

Leaving the potential problems related to market power aside, we consider
a price-taking hydropower producer facing uncertainty both in prices and
reservoir inow. Taking the view of a risk averse producer, we propose a
portfolio management model for the purpose of hedging the �nancial risks
using electricity contracts and the exibility of the production assets. This
is a multistage stochastic programming model, and studying a case with
real data from Norway, we �nd that such a model has the potential to
improve the portfolio management processes currently used.

Model veri�cation is a challenging task in stochastic programming. For
a portfolio management problem in a Norwegian insurance company, we
compare two alternative model approaches. The �rst is a stochastic pro-
gramming model, and the second is one where the asset mix is assumed
constant, called the �xed mix approach. We explain how such a compari-
son can be done, considering the fact that in actual use, the models will be
rerun before each decision is made. We �nd that the stochastic program-
ming approach performs only slightly better than the �xed mix approach.

With a stochastic programming approach it is possible to model portfolio
management problems where the investment universe can contain derivative
assets. We have applied this in an analysis of a casualty insurer's problem
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where we investigate the use of �nancial reinsurance, through selected op-
tions, in cases where the insurance company considers bearing catastrophe
risks. Particular attention has been paid to the prices of the derivatives
used in this model, using both arbitrage and equilibrium concepts.
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1 Introduction

This thesis focuses on portfolio management issues using a dynamic stochas-
tic approach. It consists of this introductory part and �ve papers on the
subject. It is not on stochastic programming applications to portfolio man-
agement in general; an emphasis is put on problems arising in deregulated
electricity markets, but we are also concerned with applications to insur-
ance portfolios. Most analyses have paid little attention to complexity and
numeric implementation issues; instead, we have focused on modeling as-
pects.

The thesis represents a continuation of my sivilingeni�r thesis (Fleten 1995).
In that work, the Norwegian electricity market is described, market fail-
ure issues are discussed, the portfolio management problem is thoroughly
introduced and described, and a number of common models and systems
used for market analysis and risk management are reviewed. Some topics,
such as a description of the market and current risk management models,
will not be repeated in this introduction, and only to the extent necessary
in the papers.

The thesis is organized as follows. Section 2 introduces the papers. In
Section 3, we discuss portfolio theory both in general, but also with an
emphasis on electricity problems. Beginning with the original work of
Markowitz, we move on to asset pricing theory and electricity contract
pricing. We explain how the electricity derivative prices can guide hydro
scheduling in the light of this theory, which implies that managers should
not be concerned about the variance of pro�t. However, the assumptions
of the classical theories do not hold in practice, and we argue that decision-
makers should try to hedge the variability of pro�ts. For special cases one
can call on a separation theorem implying that production decisions can be
made independently from hedging in the contract market. In the electricity
market this is not the case. Since there are transaction costs on contracts
and the production scheduling problem is inherently dynamic, a stochastic
programming approach is called for.

Section 4 discusses an implementation of the model presented in Paper 2,
Section 5 explains the scienti�c contribution of the thesis, and Section 6
states the conclusions and indicates areas for future research. Finally, the
�ve papers are included in their entirety.



2 The papers

The most important part of this introductory part is Section 2, 5 and 6.

2 The papers

This section explains the development of each paper and identi�es my con-
tribution to the extent necessary1. The thesis supervisor, professor Stein
W. Wallace, has been involved in most papers playing the role of mentor
and discussion partner, and has been a vital source of ideas and direction.

Paper 1: A two-stage game model of the Nordic electricity market, is joint
work with Tjing T. Lie, School of Electrical & Electronic Engineering,
Nanyang Technological University, Singapore. He visited NTNU on his
sabbatical from January to June 1999. During that time the basic ideas of
the paper were developed. The model was implemented (at NTNU) and
the paper written during the winter of 1999/2000. We plan to submit it to
an electricity-oriented journal.

Paper 2: Hedging electricity portfolios via stochastic programming, is my
main work, and the co-authors, Stein W. Wallace and William T. Ziemba
(University of British Columbia), have both played the role of supervi-
sors. It has been under development since 1996, with conference presenta-
tions underway (e.g. Fleten, Wallace & Ziemba (1997), Fleten & Wallace
(1998), Fleten, Wallace & Ziemba (1999)). We have bene�ted from collab-
orative work with A. Grundt and colleagues at Norsk Hydro and B. Mo
at SINTEF Energy Research. After publication of the report by Grundt,
Dahl, Fleten, Jenssen, Mo & S�tness (1998), the development of the model
was bifurcated. It has been implemented as a prototype and is currently
in use for testing and decision support at Norsk Hydro; Mo, Gjelsvik &
Grundt (2000) reports on this other line of development. Paper 2 is cur-
rently in the stochastic programming e-print series (SPEPS) available at
http://dochost.rz.hu-berlin.de/speps, and it is submitted to the IMA
Volumes in Mathematics and its Applications, Springer Verlag. A referee
report has not been received.

Paper 3: The performance of stochastic dynamic and �xed mix portfolio
models, is joint work with Kjetil H�yland, Gjensidige Asset Management,

1I will use the form \I" and \my" when it is necessary to distinguish my work from

the other authors or from the general research community.
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and Stein W. Wallace. The paper was presented at the 21st meeting of
the EURO Working Group on Financial Modelling, Venice, Italy, October
1997, after the ideas were developed but before the �rst draft was �nished.
The paper then appeared in H�yland (1998), and was submitted to the
European Journal of Operational Research. After receiving comments from
two anonymous referees, I have made a major revision according to the
recommendations of the referees. The most important changes regards the
stated focus of the paper, the explanation of the numerical results and
inclusion of a statistical test on the hypothesis that the dynamic stochastic
portfolio management approach dominates the �xed mix approach.

Paper 4: Modeling �nancial reinsurance in the casualty insurance business,
is based on joint work with Petter E. de Lange, Gjensidige NOR Sparefor-
sikring, and Alexei A. Gaivoronski (NTNU), who was de Lange's dr. ing.
supervisor. Large parts is de Lange's work, I helped with model debug-
ging. The development of the derivative pricing model within the stochas-
tic programming framework was my contribution. The paper appeared in
de Lange (1999), and was submitted to a journal, but a referee report has
not been received. I have done minor revisions to the abstract and the
presentation of the results.

Paper 5: Real options and managerial exibility, is joint work with Trond
J�rgensen, NTNU2, and Stein W. Wallace. It was published in Telektron-
ikk, Fleten, J�rgensen &Wallace (1998), and appeared in J�rgensen (1999).
It is an exercise in writing popular science.

2.1 Why are these papers in one thesis?

Paper 1 is on \portfolio management" in a market where some producers
have market power. We analyze the electricity market and learn how large
producers make decisions on both production and forward contracts when
they take into account the e�ect the decisions have on price. Such analyses
should be performed as a part of the portfolio management process, for
example when generating scenarios.

A model for joint hedging and hydroelectric generation scheduling for a
price-taking �rm is set up in Paper 2, which is the core paper of this thesis.

2J�rgensen is now a�liated with UUNET, USA.



4 The papers

Paper 3 is on validating stochastic programming applications to portfolio
management, and the particular case studied is from the insurance business.
Although it may have been advantageous to use a case from the electricity
industry, some validation was performed in Paper 2, and the analysis of
Paper 2 should be su�ciently general to warrant its inclusion in the thesis.

The �xed mix approach described in Paper 3 has a parallel in the elec-
tricity industry. Many companies organize their hedging around a \�xed
position". The position at any future time is de�ned as the expected total
generation at that time minus what is sold on contracts for that week. The
companies are regularly revising their estimates of expected generation as
new information on future spot prices and inow becomes available, and
some companies buy or sell in the forward market to get a zero position
immediately after such a revision. In a separate note I investigate the
pro�tability and risk properties of such �xed mix approaches to hedging
(Fleten 1998). I �nd that such decision rules will both increase risk and
lower expected pro�t compared to the model in Paper 2. For hydro produc-
ers there is usually a negative correlation between the inow to reservoirs
and spot price, which means that these �rms have a natural hedge in their
production portfolio. Thus it is not surprising that I �nd that a decision
rule where the �rm rebalances to a position that corresponds to selling 50%
of expected generation forward, performs much better than the rule where
100% is sold (the zero-position rule).

Paper 4 is seemingly an odd one, very speci�c to the casualty insurance
business. However, it is an application of stochastic programming to port-
folio management, and my contribution, the derivative pricing model, is
more generally applicable than just to the insurance business. It demon-
strates a knowledge of �nancial theory necessary to make good dynamic
stochastic portfolio models3.

NTNU requires that doctoral candidates write a popular science paper to
demonstrate such communication skills. Paper 5 accommodates this within
the general subject area of the thesis.

In the next section we discuss how some issues in �nancial theory relate to
portfolio management, with an emphasis on electricity applications.

3See, e.g. Christiansen &Wallace (1998) on stochastic programming and option theory

and Klaassen (1998) on portfolio management and asset pricing.
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var(R)

E(R)

Figure 1: E�cient frontier.

3 Portfolio theory

3.1 The origin: Markowitz' mean-variance model

Modern portfolio theory began with Harry Markowitz and his 1952 publi-
cation on the mean-variance portfolio problem:

min var(R)

s.t. E(R) = � (1)

R is a portfolio return

where � is a speci�ed scalar. When this quadratic programming problem
is solved for a range of �'s, we are able to trace out the e�cient frontier as
seen in Figure 1.

This model has the following disadvantages, due to its single period nature:

� There is no tradeo� between short and long term

� transaction costs are ignored

Even when there are no transaction costs, single period portfolio optimiza-
tion is optimal only for special cases, speci�cally when the investor has a
logarithmic utility function, see Mossin (1968) and Hakansson (1971).



6 Portfolio theory

From the mean-variance model one can derive the capital asset pricing

model (CAPM), see e.g. Sharpe (1964). The portfolio selection problem
can be formulated more generally, for example using other utility functions
and more general asset distributions. Asset pricing relationships are then
found by aggregating the �rst-order condition of the portfolio optimization
problem on the part of individual investors and relating that to aggregate
consumption or wealth.

3.2 Electricity contracts and asset pricing theory

Here we discuss some issues relating to the pricing of electricity term con-
tracts. For now, we assume that markets are frictionless and that there are
no market failures. In this subsection we disregard dynamic aspects of the
electricity market.

Asset pricing models such as the CAPM can be modi�ed to be applied to
electricity forwards and futures. The CAPM relates the expected future
spot prices to the current forward price of a contract for future delivery of
electricity through a risk premium, to be de�ned shortly.

A forward contract is an agreement between a buyer and a seller on future
delivery of electricity at an agreed price. In the Nordic market, this usually
does not mean that electricity is physically delivered and received; it is
a �nancial contract where the payment from the buyer to the seller is
the di�erence between the agreed contract price and the spot price in the
delivery period of the contract. The spot price is usually de�ned as the
Nord Pool system price, and settlement occurs at regular intervals during
delivery, e. g. monthly. In other power systems such contracts are termed
\contracts for di�erences".

A futures contract is also an agreement on future �nancial delivery or pur-
chase of electricity. It is a more standardized product, traded on the Nordic
Power Exchange Nord Pool. Nord Pool is always the contractual partner,
and takes on all credit risk. Futures contracts are settled daily through
the use of margin accounts. This is the main di�erence between futures
and forwards, and since many players seem to prefer the forward type of
settlement, Nord Pool also provides forward products having delivery over
seasons and years. These particular forwards are most frequently traded
over the counter via independent brokers. For these OTC contracts the
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parties have the option to buy a clearing service, such that the credit risk
is borne by a third party.

Both futures and forward contracts have a speci�ed delivery period over
which the energy is delivered at a constant power level. We will assume
that interest rates are constant, and in such cases the forward and futures
contract prices are equal (Cox, Ingersoll & Ross 1981).

A decreasingly popular contract is the load factor contract, having exibil-
ity in when to draw energy from the contracted energy volume. There is
an upper limit on the power level at which the buyer can withdraw energy,
and a speci�ed delivery period. In addition, there are often clauses stating
that a fraction of the energy is to be delivered during certain parts of the
delivery period. The most common terms in such a contract is a deliv-
ery period of one year and an energy level corresponding to 5000 hours of
maximum power.

Increasingly popular are option contracts, both European and Asian types.
An European call option gives the buyer the right, but not the obligation, to
receive the di�erence between the price of the underlying contract and the
option strike price. These options are usually written on futures or forward
contracts, thus they are futures options. An Asian call option gives the
buyer a payo� equal to the di�erence, if positive, between the average spot
price during a speci�ed \delivery" period and the strike price. Puts are
also traded, paying o� when the underlying contract or commodity has a
price at maturity lower than the strike price.

If pft is the current forward price for delivery in period t and E(�t) is the
expected time-average price in the delivery period, then the risk premium
r
p
t is de�ned as:

r
p
t = E(�t)� p

f
t (2)

At delivery, the forward/futures price equals the spot price, so rpt is also the
expected change in the futures price up to delivery. Black (1976) showed
that the CAPM for term contracts is

r
p
t = � [E(rm)� r] ; (3)

where rm is the return on the market portfolio, r is the risk free interest
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rate, and � is the \kroner" beta of the electricity price, de�ned as

� =
cov (E(�t); rm)

var (rm)
:

We can now write
p
f
t = E(�t)� � [E(rm)� r] ; (4)

for the CAPM price of a futures contract.

This pricing relation should not be taken as a guide for daily trading, it
is at best a long-term theoretical equilibrium, since it ignores risk aversion
as a driving force for forward trading. On the contrary, we believe that
most of the current participants in the electricity term markets are mo-
tivated by hedging production or consumption, or are speculating on the
various derivative markets and the spot market, without much regard to
the correlation with the rest of the capital market.

To illustrate what the CAPM does capture, consider the following two
examples, adapted from Salahor (1998). Future spot prices are uncertain,
and they are linked to world energy prices.

1. Suppose that there is a 50% probability that the price of electricity
is above 140 NOK/MWh one year from now. Since world energy
prices are positively correlated with the economy as a whole, so is the
electricity price 4. Now consider two option contracts. One will pay
1000 NOK if and only if the electricity price is above 140 NOK/MWh;
this is a call option. The other will pay 1000 NOK if and only of the
price is below 140 NOK; this is a put option. The expected payo� on
each option is 500 NOK, but what will be the market price of these
options?

The call option will pay o� in a situation where it is more likely that
the world economy is going well, and the put option will pay o� when
it is likely that the economy is poor. Since most people are risk averse,
the price of the call would be lower than the price of the put. The
options have a nondiversi�able risk, so the call option price will be
discounted for risk, and the put option price will have a markup for
risk.

4Empirical tests on Norwegian electricity prices counter this fact. The linkage to the

world economy is weak, so far, but we expect it to increase as Norway is increasingly

connected to the thermal systems in the European Union.
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2. Inow to hydro reservoirs is uncertain. Suppose there is a 50% chance
that the accumulated energy inow to the hydro plants in a river
system over the next year is above 1 TWh. Suppose further that the
owner of the plants is a diversi�ed investor, so that no matter what
the inow outcome is, it will have virtually zero e�ect on the wealth of
the investor. Again consider two options. The �rst, call it a weather
call, will pay 1000 NOK if and only if the accumulated energy inow
is above 1 TWh. The other, a weather put, will pay o� 1000 NOK
if and only if it is below 1 TWh. The market prices of these two
options are likely to be very near 500 NOK, the expected payo�. The
risk in these options is diversi�able, because inow is not correlated
with the world economy, and its e�ect on diversi�ed investors will be
negligible.

In summary, although CAPM is not well suited to pricing options5, it is
able to capture the pricing of risk. In the second example there was a
zero risk premium, but in the �rst example, the uncertainty was assumed
to be correlated with the state of the general economy. So there was a
nonzero risk premium, because the risk could not be removed completely
by portfolio diversi�cation.

Assume that we want to �nd the value of an asset that delivers electrical
energy into the spot market at a constant rate. There is no exibility here,
so the value would be

NPV = Energy Quantity*Energy Value - Discounted Costs (5)

We assume that the costs are either deterministic, or they have only diver-
si�able risk. The costs would then be discounted at the risk free rate. The
energy value is equal to the electricity forward price discounted at the risk
free rate.

Some may wonder why the energy value not is connected to the expected
spot price in the delivery period. Suppose the forward price is 100, while
the expected future spot price is 110. If someone uses 110 for the value
of future delivery, they would be willing to buy at a price that is 110 or
lower. In such a case, an arbitrageur would buy a forward at 100 and

5For options it is better to use arbitrage principles to �nd its value, however, the

equilibrium (CAPM) analysis is still valid because the pricing of risk is embedded in the

option price through the underlying commodity.
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agree to deliver to that someone for between 100 and 110. At the time
of delivery, the arbitrageur pays 100 for the forward, delivers the power
and receives more than 100 for it. The message is that the forward price,
not the expected future spot price, reects the economic value of future
delivery.

We next turn to the issue of modeling electricity prices in continuous
time. Our motivation is that the better the portfolio manager captures
the stochastic dynamic behavior of the electricity prices, the higher qual-
ity he is able to put into the decision process. The proposed model can be
used for pricing electricity derivatives, and is an alternative to the approach
presented in Paper 2, more in line with modern asset pricing theory. The
presentation is somewhat compact and requires some knowledge of continu-
ous time asset pricing theory. The reader may skip this subsection without
loss of continuity.

3.3 A two-factor model of electricity prices

The electricity commodity market in the Nordic region is reasonably well
functioning, see e.g. Paper 1, Amundsen & Bergman (1998), Amundsen,
Bergman & Andersson (1998) and Johnsen, Verma &Wolfram (1999). This
section deals with the stochastic behavior of electricity prices, which play
a central role in models for evaluating investments in new and existing
plants, portfolio management models, and for valuing �nancial contracts
on electricity. We assume that there are no producers exercising market
power or exploiting possible information asymmetries.

Electricity prices exhibit seasonality due to the fact that river inow, which
is an important input factor to electricity supply in this region, is large in
the summer, and low in winter. Also, load is high in winter and low in
summer.

This note will concentrate on a model that captures such seasonality, so it
can be used, for example, in connection with models for trading, risk man-
agement, and to some extent plant valuation. The model is not intended
to capture within-week seasonality of prices, which could be useful in some
contexts, for example in valuation of upgrading capacity in existing plants6.

6This represents a possible extension of this work. However, using a �ner resolution
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We expect that when prices are high, high-cost producers will enter the
market, and some consumers will substitute other energy sources for elec-
tricity, putting a downward pressure on prices. Conversely, some supply
will exit the market, and exible consumers will increase demand when
prices are relatively low. See Figure 1 in Paper 1.

Ordinary Black-Scholes models imply that the volatility of futures prices
equal the volatility of spot prices, and the variance of future spot prices is
not �nite when the horizon increases, which does not seem realistic.

The model proposed is a continuous time two-factor stochastic process. It
adds seasonality to the two-factor model in Schwartz (1997), as suggested
by Hvarnes (1998). The �rst factor is the spot price, which has a drift
dependent on the second factor, the convenience yield. The second factor
is mean reverting and has annual seasonality.

Convenience yield can be interpreted as \the ow of services accruing to the
holder of the spot commodity but not to the owner of a futures contract"7.
Since it is impossible to \hold" electricity, we must interpret it as a mea-
sure of the balance between the available supply opportunities and demand.
There is a positive correlation between spot price and convenience yield due
to the impact of reservoir levels on spot and future prices. When reservoir
levels decrease, the spot price increases since energy is scarce and the con-
venience yield should also increase since futures prices will not increase as
much as the spot price, and vice versa when inventories increase. Informa-
tion about electricity consumption preferences and generation technology
in the market is embedded in the equilibrium convenience yield.

3.3.1 Modeling considerations

Let St be the spot price. Think of this as the average price during a week.
To derive a fair market value of an electricity contract it is necessary to
deduce the market risk premium of the process of St. This is analogous to
�nding the time-varying beta of the spot price. We assume here that the

than a week the modeling should take into account the possibility of large spikes in the

spot price.
7We assume that there is no storage costs.
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spot price risk can be hedged away using futures markets8.

A plot of the nearest term futures contract is shown in Figure 2. The weekly

1996 1997 1998 1999 2000

50
10

0
15

0
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0
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0
35

0

Spot
Nearest term futures contract

Figure 2: Nearest term contract on electricity vs. realized spot prices.
Source: Nord Pool.

auto-correlations of this time series (see Figure 3) reveal oscillations which
signal seasonality. Moreover, the �rst order auto-correlation coe�cient for
weekly data is around 0.9, signaling mean reversion. We could possibly
include more than one seasonal component with di�erent periods. How-
ever, the risk of over-�tting is high, and common sense dictates that the
seasonality should be annual.

The joint stochastic process we propose for the spot price and the conve-
nience yield � is

dS = (�� �)Sdt + �1Sdz1 (6)

8The alternative would be to split the price in two components: Market (hedgeable)

component and basis component, i.e. which cannot be hedged away using the term mar-

ket.
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Figure 3: Weekly auto-correlations for the nearest term contract.

d� = �(�(t) � �)dt + �2dz2; (7)

where the dz are random shocks (Wiener processes), and where these shocks
are correlated with:

dz1dz2 = �dt: (8)

In a stochastic process equation, the term multiplying the dt is the in�nites-
imal trend in the processes. For spot price, the trend is composed of �,
the expected rate of price changes, and �, the current rate of convenience
yield. For the convenience yield, the trend is composed of a mean reverting
component, �, the long-run mean yield �(t), and the yield itself. The pa-
rameter �, or rather its reciprocal 1=�, can be interpreted roughly as time it
takes before the convenience yield is back to its mean. The variance of the
change in the convenience yield is �22 , and �21 is the variance of proportional
price changes. We let

�(t) = a+ b cos(2�t� �); (9)

where a is a constant term and b is the seasonal peak, which peaks annually



14 Portfolio theory

according to a phase given by �. Note that prices can not become nega-
tive in this model, but the convenience yield can, as is reasonable. Mean
reversion and seasonality enters the spot price through the drift term and
through correlation between price and convenience yield.

As in Schwartz (1997), this model is an arbitrage model in which the
stochastic behavior of prices and convenience yields is exogenously given.
The value of any contingent claim on electricity can then be derived as a
function of these primitives, imposing the condition that no arbitrage prof-
its exist in perfect markets. There is debate over the question of whether
it is possible to construct a no-arbitrage portfolio that hedges the electric-
ity price. What is certain is that electricity can not be \held", so it can
not enter the hedge portfolio directly. However, the requirement that the
commodity must be a part of a replicating portfolio turns out not to be
necessary. A recent thesis by Deng (1999) on �nancial methods in elec-
tricity markets solves this by considering the electricity price as a state
variable on which derivatives are written, and assumes the existence of
a risk-neutral probability measure on the state variable. Such a measure
exists only if there are no arbitrage in all available �nancial instruments,
and it ensures that pricing is easy (derivatives are priced using expectation
under the new measure) and consistent (nobody will disagree on prices).
Another possibility is to assume that the consumption capital asset pricing

model (CCAPM) holds, and employ arguments used by Sick (1995). The
result is the same.

3.3.2 Futures prices

We assume that interest rates are constant, so that futures prices equal
forward prices. Let r be the riskless interest rate, and F (S; �; t; T ) be the
futures price when the current spot price is S, convenience yield is �, current
time is t and the maturity date T . The contingent claims approach of e.g.
Gibson & Schwartz (1990), invoking standard perfect market assumptions
and absence of arbitrage, leads to the following di�erential equation for a
futures price

1

2
�21S

2FSS + �1�2�SFS� +
1

2
�22F�� (10)

+(r � �)SFS + (�(�(t) � �)� �)F� + Ft = 0 (11)
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with boundary condition

F (St; �t; t; t) = St: (12)

Since convenience yield is non-traded, the di�erential equation (11) de-
pends on investor risk preferences embedded in the market price of risk
for convenience yield, �. For tractability, this is assumed constant. The
risk-neutralized processes can be expressed as:

dS = (r � �)Sdt + �1Sdz
�

1 (13)

d� = [�(�(t) � �) � �] dt+ �2dz
�

2 : (14)

Adjusting the price distribution for risk and then discounting cash ows of
a contract at the riskless rate of interest is what is instructed by modern
�nancial theory. As is common, the adjustment is only made in the drift
term (however not in the mean reversion parameter �).

Bjerksund (1991) and others have shown that the solution to the di�erential
equation is (� = T � t):

F (S; �; t; T ) = S exp [�H(�)� +A(�) + r� ] : (15)

Or, in log form:

lnF (S; �; t; T ) = lnS �H(�)� +A(�) + r�; (16)

where, when � is constant

A(�) =
[H(�)� � ]

�
���1�2 � ��� �2

2
=2 + �2�

�
�2

�
�2
2
H(�)2

4�

H(�) =
1� e���

�
(17)

When �(t) is time dependent as in Equation (9), the A(�) is replaced by

A(t; T ) =
[H(�)� � ]

�
���1�2 � ��� �22=2

�
�2

�
�22H(�)2

4�

+B(T )�B(t)e��� �
b

!
(sin(!T � �)� sin(!t� �)) (18)

where

B(s) =
b

�2 + !2
(� cos(!s� �) + ! sin(!s� �)) ; (19)

and ! = 2�. We have set a = 0 here, and instead let that parameter be
absorbed in the estimation of �.
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3.3.3 Nord Pool contracts

The futures contract de�ned here is not the same as the forward contracts
traded in the Nordic market, which could be speci�ed such that the buyer
of one MWh receives the di�erence between the spot price St and the pre-
determined contract price y for each instant during delivery of the contract.
Assuming that payments are deferred until the end of the delivery period
and no interest is earned on funds accumulated, the ex-post payment to
the buyer is

Y t2 =

Z t2

t1

(St � y)dt: (20)

The futures/forward price is equal to the contract price giving a zero value
of the above formula:

G(S; �; t; t1; t2) =
1

t2 � t1

Z t2

t1

F (S; �; t; T )dT (21)

This integral must be computed numerically9. However, the di�erence be-
tween this more realistic future price and the one derived in Equation (15)
is small when t2� t1 is small, and in the remainder of the note we will work
with F (S; �; t; T ).

3.3.4 Volatility structure

The volatility of futures prices is important because it is used as input to
other analyses, for example futures option pricing. This volatility depends
on the volatility of spot price and convenience yield, correlation between
the two factors, the speed of adjustment of convenience yield, and time to
maturity. For derivation, see Hilliard & Reis (1998):

�(�1; �2; �; �; �) =
q
�2
1
+ �2

2
H(�)2 � 2�1�2�H(�) (22)

This represents the term structure of the volatility of futures price. It does
not depend on the level of convenience yield or the level of spot prices, a
fact that simpli�es futures option pricing.

9Note that this is the average value of F , thus it should be easy to develop approximate

formulas.



3.3 A two-factor model of electricity prices 17

3.3.5 Parameter estimation

Since the purpose of this subsection is to demonstrate a way to capture
the economic information in the derivatives markets, only preliminary es-
timation has been performed. The estimation of parameters in the model
is complicated by the fact that convenience yield is unobservable. The
extended Kalman �lter (Harvey 1989) can be used for estimating the pa-
rameters and convenience yield simultaneously, as explained by Schwartz
(1997). In our preliminary estimation, we choose a simpler approach. Gib-
son & Schwartz (1990) show a way to �nd a proxy for convenience yield,
and we use a variant of that. For each trading date t, a cosine function
was �tted to the term structure via nonlinear least squares, giving an es-
timate of the futures price F (T ) for a contract maturing at time T . The
convenience yield was then found using the following formula:

�t = rt �
@

@T
[lnF (T )]

���
T=t

(23)

where rt is short term interest rate10. The intuition behind this is as follows.
The term structure of futures prices represents the expected value of spot
prices in a risk neutral world. The risk-neutral growth rate of electricity
prices is thus ln _F . On the other hand, when � is net convenience yield,
electricity prices behave like a traded security paying a dividend return of
�, thus its risk neutral growth is r � �.

The data used is daily prices on Nord Pool futures and forwards, from
October 1995 to October 1999. Every Friday was selected for estimation.
Each trading date has 17{27 di�erent contracts, i.e. delivery periods. To
estimate the value of a single week in a block, season or year, we picked the
middle value or the week numbers expected to have a value in the average
of the weeks stacked.

The parameters were found by minimizing the squared error of observed vs.
model futures prices. Figure 4 displays the estimated convenience yield on
the secondary axis, and the aggregate Norwegian reservoir level in percent
on the primary axis. The strong negative correlation con�rms classical
theories of storage, as developed by Kaldor (1939) and Working (1949).

Table 1 displays the estimated parameters.

10Thanks to Gjensidige Asset Management for supplying interest rate data, three

month NIBOR (Norwegian InterBank O�ering Rate).
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Figure 4: Estimated convenience yield of electricity prices, thick line, on
right hand side axis. Also shown is the aggregate Norwegian reservoir level,
thin line, on the lefth hand axis.

Table 1: Parameters estimated by minimizing the sum of square errors over
selected trading dates and all contracts.

Parameter � � �1 �2 � b �

Estimated value 57.2 5.12 0.442 0.100 0.167 1.38 2.11

Figure 5 displays observed vs. modeled futures prices.

3.3.6 Options

European options can be valued by solving

1

2
�21S

2VSS + �1�2�SVS� +
1

2
�22V��

+(r � �)SVS + (�(�(t) � �)� �)V� + Vt = rV (24)

subject to the boundary condition V (S; �; t; t) = max(St �K; 0), where V
is the (call) option price and K is the exercise price. This will probably
have to be done numerically, however, this type of contract is not traded
in the market today. Still, some contracts or real assets may be viewed as
a series of such options.
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Figure 5: Observed term structure of futures prices vs. model prediction
given spot price and convenience yield at two representative dates. The
�rst date is out of sample, while the second is in sample. Source: Nord
Pool.

For valuation of European futures options, see Hilliard & Reis (1998), where
an explicit formula is given.

3.3.7 General contracts and real options

For contracts or real assets where the owner must make decisions contin-
uously, we recommend discretizing (in time and space) the stochastic pro-
cesses and model and solve the joint valuation and decision problem using
stochastic programming techniques. The traditional approach in �nance is
to use either a binomial or trinomial tree, and subsequently take a dynamic
programming approach. However, other choices are also possible.

For Asian options, we recommend simulation from the risk-neutralized ver-
sion of the joint stochastic process.
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3.3.8 Two-factor model summary

A model for the stochastic behavior of electricity prices has been developed.
This has been done through adding seasonality to the long run mean of the
convenience yield of a model presented by Schwartz (1997).

The strength of such a model is that it captures the economic information
in the market prices. The challenge lies in combining such a model with
stochastic programming models such as the ones in Paper 2, 3 and 4, see
e.g. Christiansen & Wallace (1998), Klaassen (1998) and Paper 4.

3.4 Hydro scheduling in perfect asset markets

Now we turn to the issue of using the futures prices as signals for investment
and operating decisions. Deregulated electricity industries often develop
markets for contracts for future delivery of electricity. This facilitates price
transparency and risk sharing. Regardless of the reason for the presence of
such markets, if competitive, the equilibrium forward prices will reect the
economic value of future delivery.

Traditional medium-term hydro scheduling assumes a regulated determin-
istic price of energy, and often a stochastic inow of water to the reservoirs.
In a deregulated market, a single hydro producer is likely to face uncertain
spot market prices also. When there is a well-functioning �nancial futures
market for electricity available, the modern asset pricing theory will guide
how to discount cash ows in such a model.

Assume that the �rm we are studying operate in a deregulated electric-
ity market with access to competitive forward-futures prices, and whose
owners have diversi�ed portfolios or want their managers to maximize the
expected long-term value of the �rm without regard to diversi�able risk. In
such a case the decision-maker should use the futures and forward market
prices as signals guiding the hydro scheduling. Assume there is available a
distribution of spot prices and inows available in the form of a scenario
tree. One way of incorporating the economic information in the futures
prices is to discount the spot prices in the tree in such a way as to equate
the discounted term structure of expected spot price with the term struc-
ture of futures prices. That is, choose the discount rate t for price-related
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cash ows so that
E(�t)

1 + t
=

pf

1 + rt
8t: (25)

The disadvantage of this approach is that it does not recognize that the
riskiness of future operating income is di�erent in each node, calling for a
stochastic discount rate.

An alternative approach is to combine a continuous-time model such as the
one presented in Section 3.3 with existing hydro scheduling models. This
issue is left for future work.

3.5 Frictionless markets?

3.5.1 Market imperfections lead to risk aversion

The Modigliani & Miller (1958) analysis of capital structure implies that
it is not necessary to hedge at the corporate level, since investors can do
that on their own account. Thus if risk management is costly, �rms should
not do it, but leave it to the owners. This is in contrast with conventional
views such as \hedging is necessary to reduce risk", or \it is necessary to
take risks to earn money", which do not take into account the pricing of
risk in the market.

The Modigliani-Miller theorem applies to situations where there are no
transaction costs, no taxes and no information asymmetries. In practice,
such \imperfections" are present, and corporations should hedge if the ben-
e�t to the owners is greater than the cost, and if hedging is cheaper for the
company than for the owners.

Since there are �xed fees, information costs etc. associated with participat-
ing in the electricity term markets, it is usually cheaper for the company
to hedge. I.e. there are economies of scale to hedging (Mian 1996).

A majority of the owners in the Scandinavian electricity industry are gov-
ernmental, either in the form of the state, counties or municipalities. These
can be seen as independent economic decision-makers, who are generally
not diversi�ed in the general capital market. It is also natural to con-
sider them risk averse, either due to the tightness of public budgets, or risk
aversion on the part of managers.
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Regardless of ownership structure, the usual reasons for corporations to
be risk averse apply. These are \market imperfections" a�ecting �rm's
pro�ts in ways that can not be o�set by individual investors, such as convex
taxation (Smith & Stulz 1985), bankruptcy costs and �nancial distress
(Brealey & Myers 2000), agency problems (Stulz 1990) and e�ectiveness of
incentive schemes. Financial hedging also improves the informativeness of
corporate earnings as a signal of management ability and project quality by
eliminating irrelevant noise (DeMarzo & Du�e 1995). Further, if external
�nancing sources are more costly to corporations than internally generated
funds, there will typically be a bene�t to hedging: hedging adds value to the
extent that it helps ensure that a corporation has su�cient internal funds
available to take advantage of attractive investment opportunities (Froot,
Scharfstein & Stein 1993). Last, but perhaps most importantly, hedging
permits greater leverage and thus tax advantages of debt (Ross 1996).

The combination of risk aversion on the part of both owners and man-
agers, and the fact that it is cheaper for a �rm to operate in the electricity
derivative markets than for the owners, make the case for hedging at the
corporate level in the electricity industry.

3.5.2 Electricity market failure

In the case of the electricity markets, there may also be other market fail-
ures making it di�cult to apply portfolio theory. These are market power,
asymmetric information, externalities and public goods. In Paper 1 we ex-
amine the �rst of these, the others are left for future work11. Particularly
interesting is the issue of asymmetric information in the Nordic electricity
market because possible information advantages are obviously very prof-
itable when dealing in the term market.

3.6 Hedging and joint production

Sandmo (1971) pioneered the analysis of �rms' behavior under output price
risk. He showed that the presence of such risk reduces output. Another
well known result, potentially important for our purposes, is that under
certain assumptions (no production uncertainty or basis risk) production

11Some of these issues were discussed in Fleten (1995).
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planning can be done independently from hedging. Production decisions
depend only on the futures price, whereas hedging/speculative decisions
also depend on the producer's subjective beliefs. This separation theorem

was stated by Holthausen (1979) and others.

In the electricity industry, the assumptions needed to make this separa-
tion work are not met, due to the presence of basis risk and production
uncertainty.

When there is basis risk, production must be determined jointly with hedg-
ing (Anderson & Danthine 1980). The basis is the di�erence between the
commodity underlying the derivative contract used for hedging, and the
spot commodity that the company has to sell or buy. For example, the
commodity underlying Nord Pool futures is the Nord Pool system price,
while a particular distributor may have customers only in Northern Nor-
way, which often is treated as a separate price area. There is basis risk when
there is uncertainty about the basis in the delivery period. Currently, Nord
Pool does not o�er products that hedge against spatial price risk.

In our work we have abstracted from the basis risk problem. Still, there are
other factors causing breakdown of separation, such as input cost uncer-
tainty being correlated with the output price uncertainty. See e.g. Viaene
& Zilcha (1998). The following example illustrates the breakdown of sepa-
ration.

3.6.1 A two stage example

In this subsection we regard the hydro scheduling problem in a model with
two stages. There is a single reservoir. The marginal value � of the water
in the reservoir xt at the end of the model horizon is lower than the lowest
possible value of the spot price pt at that stage. One decides on discharge
ut after learning what the spot price and inow �t are. Thus at stage two,
the problem is

Q(x1; p2; �2) = max
u2;x2

fp2u2 + �x2g (26)

s.t. x2 + u2 + s2 = x1 + �2

0 � x2 � x2 (27)

0 � u2 � u2
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Table 2: Stage two payo�s.

Cash ow name Value now Low price High price

Future operating income Q(x1) =? Q(x1; p
a
2; �

a
2 ) Q(x1; p

b
2; �

b
2)

Risk free bond (1 + r)�1 1 1
Forward contract 0 pa2 �K pb2 �K

Spill is denoted st.

The solution to this problem is

Q(x1; p2; �2) = p2min(x1 + �2; u2) + �min(x2; (x1 + �2 � u2)
+) (28)

where the notation \a+" means the positive part of a.

The overall problem then becomes

max
u1;x1

n
p1u1 + (1 + �)�1E

h
~p2min(x1 + ~�2; u2)

+�min(x2; (x1 + ~�2 � u2)
+)
io

s.t. x1 + u1 + s1 = x0 + �1

0 � x1 � x1 (29)

0 � u1 � u1;

which transforms into

max
x1

n
p1x1 + p1(x0 + �1) + (1 + �)�1E

h
~p2min(x1 + ~�2; u2)

+�min(x2; (x1 + ~�2 � u2)
+)
io

(30)

s.t. (x0 � u1 + �1)
+ � x1 � min(x1; x0 + �1) (31)

Note that the future pro�t function was found in the traditional way using
discounted expectation.

Assume now that there are only two outcomes, and that there exists a
forward contract that pays o� ~p2 �K at the second stage. See Table 2.
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According to the principles of modern asset pricing, we �nd the risk neutral
probabilities so that under the risk neutral measure, the expected value of
the forward contract is zero. Thus the risk neutral probability p of a low
price is

0 = p(pa2 �K) + (1� p)(pb2 �K) (32)

risk neutral probability = p =
pb2 �K

pb
2
� pa

2

(33)

Thus according to asset pricing theory the value of the future operating
income is

Q(x1) = pQ(x1; p
a
2; �

a) + (1� p)Q(x1; p
b
2; �

b) (34)

and the overall problem becomes

max
x1

n
p1x1 + p1(x0 + �1) + (1 + r)�1Ê

h
~p2min(x1 + ~�2; u2)

+�min(x2; (x1 + ~�2 � u2)
+)

io
(35)

s.t. (x0 � u1 + �1)
+ � x1 � min(x1; x0 + �1) (36)

where the expectation Ê is taken with respect to the risk neutral probability
measure, and r is the risk free rate of return. Notice that in this case, the
empirical probabilities are not needed.

So far, all we have done is to show how modern asset pricing theory guides
valuation for this two-stage example. In the words of Dixit & Pindyck
(1994), the future contract acts as a \spanning asset". For the remainder
of this subsection, we assume that the forward exists and is fairly priced,
so that we can safely take the value of the future operating income as given
by the modern asset pricing approach.

Is it possible to go one step further, and use the deterministic forward price
instead of the uncertain future spot price in the model? This is what is
implied by the separation theorem. We show that the answer is no when the
natural assumption is made that inow is correlated with spot prices. The
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di�erence between the future operating income function with stochastic
inow and spot price,

Q(x1) =
pb2 �K

pb
2
� pa

2

Q(x1; p
a
2; �

a) +
K � pa2
pa
2
� pb

2

Q(x1; p
b
2; �

b); (37)

and the future operating income function with the forward price K substi-
tuted for uncertain spot price,

Q(x1) =
pb2 �K

pb
2
� pa

2

Q(x1;K; �a) +
K � pa2
pa
2
� pb

2

Q(x1;K; �b); (38)

is

(pb2 �K)(K � pa2)

pb
2
� pa

2

�
min(x1 + �a2 ; u2)�min(x1 + �b2; u2)

�
: (39)

This is not zero because in any reasonable setting, K 2 hpa
2
; pb

2
i and �a

2
6= �b

2

when inow is imperfectly correlated with price. It is thus not correct to
substitute in forward prices for uncertain spot prices, because the future
operating income function changes if you do so, thus the decisions may also
be wrong.

Thus we have shown by an example that production uncertainty causes a
breakdown of the separation theorem in the case of hydropower scheduling.

3.7 The case for stochastic programming

Although forward markets reveal a deterministic number for the value of fu-
ture delivery of electricity, the uncertain prices should be taken into account
when planning production. This is because in general, in a decision-making
process under uncertainty, inserting deterministic values for the random pa-
rameters does not lead to optimal decisions (Kall & Wallace 1994). In that
case, the futures market should be used for hedging the uncertain hydro
revenues, and this hedging should be determined jointly with the produc-
tion schedule in a dynamic stochastic model. Such an approach is described
in Paper 2.

As mentioned in Section 3.1, for general portfolio selection problems, single
period optimization will not lead to optimal dynamic portfolio policies when
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there are transaction costs or when the objective can not be expressed as
a logarithmic utility function. In such cases a dynamic approach is called
for, for example via stochastic programming. See Ziemba & Mulvey (1998)
for a survey and collection of �nancial portfolio management models.

4 Implementation

As mentioned in Section 2, a prototype of the model presented in Paper 2
has been speci�ed. We chose to use the so-called stochastic dual dynamic
programming (SDDP) algorithm, see Grundt et al. (1998) for a discussion.
This was implemented in a contractual research project by SINTEF Energy
Research for Norsk Hydro (Mo et al. 2000) and is currently in use on a
trial basis for decision support at Norsk Hydro concurrently with further
development.

4.1 Stochastic programming algorithms

Multistage stochastic programming problems are solved using a number of
di�erent algorithms. A simple alternative is to formulate the deterministic
equivalent mathematical program, and solve this using standard determin-
istic techniques. The traditional alternative is to formulate the model so as
to �t the framework of dynamic programming (SDP), and solve the prob-
lem using stochastic dynamic programming. Also well known is the nested
Benders decomposition algorithm. This section will at some level of detail
describe a more recent algorithm called stochastic dual dynamic program-
ming, which can be seen as a combination of SDP and nested Benders.

Dynamic programming was pioneered by Bellman (1957). It is a powerful
algorithm provided the state space is small. The size of the state space
can roughly be seen as the minimum number of variables needed to fully
describe the model information that is necessary to carry over from one
stage to the next. These state variables can be decision variables in the
mathematical program, representing such information as the level of inven-
tory. The state variables can also represent trend level of stochastic model
input parameters. The fact that dynamic programming becomes ine�cient
as the number of state variables is larger than, say three, is called the curse
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of dimensionality.

The curse of dimensionality is not present in nested Benders decomposition.
However, the computational e�ort is proportional to the total number of
stochastic events in the problem. This is equal to the number of nodes
in the event tree that describes the evolution of information in our model.
This number grows exponentially when the number of stages increases, so
nested Benders decomposition can only be used when the number of stages
is small. In summary, SDP can handle a large number of stages, but not
a large state space, and nested Benders can handle a large state space but
not a large number of stages.

Nested Benders decomposition was �rst used on multistage stochastic pro-
grams by Birge (1985). Pereira (1989) developed stochastic dual dynamic
programming (SDDP). The basic idea of the algorithm is to store the future
cost function of dynamic programming in the form of nested Benders cuts
instead of in a table, which is usual in SDP. This overcomes the curse of
dimensionality. To overcome the stage-dimensionality problem of Benders
decomposition, it is required of the structure of the problem that all state
variables relating to the trend level of stochastic model parameters are in-
cluded in the state space, like in SDP. Since a function has to be convex in
order to be approximated via Benders cuts, this means that the problem
must be convex in all state variables.

The reason for explaining some aspects of this algorithm is that it is little
known in the research community and is not described in textbooks. Fur-
ther, the algorithm was chosen in a commercial prototype implementation.

4.2 The stochastic dual dynamic programming algorithm

We study multistage stochastic programming problems that arise in hy-
droelectric scheduling. In that problem, the state variables are the hydro
reservoir levels and the trend in stochastic inow and spot market price. At
any stage, all state variables except price are related to each other through
linear functions. Thus the future cost function of the previous stage is con-
vex in these state variables. However, the price state variable is related
to reservoir levels and inow through a product term making the overall
future cost function for this stage nonconvex.
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When trend levels of stochastic parameters are to be included in the state
space, then we must include equations governing the stochastic processes
of these variables in the description of the problem. This will transform the
problem from one in which more information (on the trend levels) is needed
in order to �nd the value of the future cost function, into one where the
value can be found using only information about the current state. In order
to give these ideas a �rmer footing, an example from hydro scheduling is
discussed.

Let xt be the decision variables that also are state variables. Let ut be
other decision variables. Let �t be stochastic parameters that also are state
variables, and let �t be other stochastic parameters. At stage t, the problem
is:

�t(xt�1; �t�1) = min
ut;xt

E�t;�t(rt(ut; xt; �t) + ft(xt; �t))

s.t. xt = g(xt�1; ut; �t; �t)

xt � xt � xt (40)

ut � ut � ut

and �t = �t�t�1 + �t

Here ft is represented in terms of cuts. These cuts are generated in the
course of the algorithm, thus when one of the �t(xt�1; �t�1) problems (for
a given �t and �t) is solved ft is only an approximation.

Note that those subproblems are independent.

Let xt be the reservoir content, ut the reservoir discharge, �t the inow,
�t the price and rt spill. In a given state at stage t, a subproblem for a
simpli�ed hydro scheduling model may look like:

�t(xt�1; �t�1; �t�1) =

max
ut;xt

f�tut + ft(xt; �t; �t)g

s.t. ut + xt + rt = xt�1 + �t (41)

xt � xt � xt

ut � ut � ut
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The solution of this subproblem for all outcomes of the uncertain variables
will give information for the previous stage in the form of a cut. It will give
information to the next stage in the form of values for the state variables.
A cut is a linear function in the state variables that gives the following
information: At the "reference point" (the current value of the state vari-
ables), what is the future cost? And with changes in the state variables
from this reference point, how will the future cost change? We assume that
such a cut is a lower bound approximation of the true future cost function.
With �t�1 as a variable representing the future cost at stage t� 1, we can
thus write the cut:

�t�1 � f̂t�1(xt�1; �t�1; �t�1);

where f̂t�1 is the linear approximation function (cut). All parameters for
this function can be found from primal and dual information of (41). The
level parameter is the objective function value for the current value of
states, E�t(x̂t�1; �̂t�1; �̂t�1). Information about the gradient parameters
for reservoir level and inow is represented by the dual variables. The
gradient parameter for price is the optimal release.

As is known from linear programming theory, the future cost function will
be convex in the right hand side, but concave in the objective coe�cients.
To further see that including price as a state variable may lead to trou-
ble, note that if we substitute out optimal release ut, we get an objective
function that looks like the following:

max
xt

�t (�xt � rt + xt�1 + �t) + ft()

Formally, we can check whether �t is concave (��t is convex) by examining
the Hessian. Remember that we must require convexity at all stages and at
any iteration of the algorithm. This is obviously not the case, since there
are product terms of price and inow, and price and reservoir level.

Stochastic dual dynamic programming is organized around two major iter-
ations, called forward simulation and backward recursion. In the forward
simulation phase, we start by solving the �rst stage problem and then solve
one stage at a time. Primal information about the state variables is always
stored and passed to the next stage. In the other major iteration, called
backward recursion, we start at the last stage and move back solving one
stage at a time. Dual information in terms of cuts is stored and passed
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to the previous stage. The values for the state variables as found in the
forward simulation are used as estimates for the current state values.

The algorithm described thus far is essentially the same as nested Benders
decomposition imposed with a particular ordering rule, namely depth �rst.

In contrast to nested Benders decomposition not all combinations of the
random variables are considered in the forward simulation. Instead, a num-
ber of scenarios are sampled. In the backward recursion, within each stage,
all possible combinations of the random variables are considered. However,
as starting point for the state variables the scenario values are used.

Without the sampling scheme, the algorithm will converge as does nested
Benders decomposition and SDP. That the algorithm converges when sam-
pling is used, is an unproved conjecture. However, a similar algorithm by
Chen & Powell (1999) has been proved to converge.

Why does this work? A natural prerequisite is that the scenarios are a good
representation of possible future outcomes. Among other things, this means
that it should cover the support of the random variables well. Thus the
scenarios should lead to a realistic range of state variables. One may think
of this range of di�erent state variables as an analogue to the discrete grid
of state variables used in ordinary SDP. This will in turn lead to a good
description of the future cost functions, and eventually also to optimal
decisions.

To avoid the problems connected to having price as a state variable, price is
de�ned as a \super" state, i.e. it is discretized and separate SDDP cuts are
build up for each discrete price state at each stage. Price is assumed to be
stochastically independent from inow. Transition between price states is
governed by a sequence of Markov models (see Gjelsvik & Wallace (1996)).

4.3 Test case

The sizes of the stochastic programs that have been solved using the Norsk
Hydro prototype are considerable by today's standards. This subsection
describes a case where the entire Norsk Hydro portfolio is studied. Hy-
dro has 38 reservoirs and 27 power stations along �ve Norwegian rivers.
There are 21 di�erent futures contracts that can be traded initially, and
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the portfolio also includes 20 load factor contracts (without the opportunity
to resell or buy more). There are 2 periods in which pro�t is measured and
penalized, the periods being years. This gives a total of roughly 90 state
variables. Five discrete price states are used for each stage.

The planning period is two years with a weekly time resolution, giving
a total of 104 stages. 60 price/inow scenarios are used as the sample
scenarios in the forward simulation phase.

Using a DEC Alpha 4100 computer, 20 backward-forward iterations take
about 8 hours.

The tests show promising results in terms of reduced downside variance.
See Figure 6. However, some problems have been identi�ed. The long
term price dependencies inherent in the 60 price/inow scenarios are not
captured in the Markov price models, causing a spurious expected gain
from forward trading12. The forward price is biased downward in high spot
price states, and is biased upward in low spot price states. The model
will generally recommend to sell forward when spot prices are low and buy
when prices are high, causing the spurious hedging gain.

Moreover, the forward prices for maturities greater than six months from
now, derived from the Markov price models, are insensitive to the current
price state. This means that there is no uncertainty in those forward con-
tract prices, and consequently the model sees no gain in trading in those
contracts at the current stage; it might as well wait.

The fact that price is assumed to be independent of inow is also likely to
cause biases, since the model does not fully capture the \natural hedge"
aspect of the risk of a hydropower portfolio13.

In summary, by moving to a specialized algorithm, we have both gained
and lost. The sizes of the problems that are solvable within reasonable
time are formidable. On the other hand, the assumption that price is
stochastically independent of inow will probably lead to systematic errors
in the recommended decisions, especially regarding contract positions.

12Since contracts are priced at the expected future spot price, the transaction costs

should make expected pro�t from hedging negative.
13Price and inow are of course correlated in the 60 scenarios used in the forward

simulation, but this dependency will not be reected in the construction of the cuts.
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Figure 6: Cumulative probability functions for pro�t resulting from a test
case at Norsk Hydro.

5 Scienti�c contribution

In general, this thesis puts known ideas into new contexts and applications.
The new aspect in Paper 1 on electricity market gaming, as seen in relation
to, e.g., Bushnell (1998), Halseth (1998), is the inclusion of the commitment
aspect of hydro and forward contracts through a closed loop analysis.

In Paper 2, the contribution lies in the combination of hydro scheduling
and contract management using stochastic programming, and in the dis-
cussions. Many of the ideas have been presented before, for example in the
�nance literature. Anderson & Danthine (1980) presented a mean-variance
framework for integrated risk management and production planning. As-
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suming that the production cost function is deterministic and separable
(which does not apply to the electricity industry), they outline a theory for
this general problem. In his master's thesis, Ranatunga (1995) introduces a
stochastic dynamic model for the joint problem of operating a single ther-
mal generation plant and dynamic hedging via forward contracts. That
work, and Paper 2 can be seen as stochastic programming extensions to
the mean-variance models for hedging and joint production. However, on
the basis of the research reported in Paper 2 we dare take credit for chang-
ing how Norwegian energy researchers in particular, and other stochastic
programmers in general, think about risk aversion in the context of hydro
scheduling and contract management. Inducing such changes is part of
what research is all about.

For Paper 3 on comparing stochastic models it can be argued that there
is little new since the test methodology is generally known, however we
communicate qualitative aspects of the di�erence between the dynamic
stochastic and the �xed mix approaches, and report a quantitative result
on the performance di�erence for a given case.

Regarding Paper 4, I contributed to the derivative pricing model, which is
new, but which nevertheless uses known theoretical results.

Paper 5 does not contain research contributions.

6 Conclusions and future work

This thesis has focused on portfolio management using stochastic program-
ming, with an emphasis on joint hedging and electricity scheduling in dereg-
ulated markets.

Paper 1 investigates the potential for use of market power in the Scandina-
vian electricity market. We �nd that the market is functioning reasonably
well. Paper 2 explains a new model for the portfolio management prob-
lem of hydropower producers using both futures/forwards, options and the
exibility of the physical generation resources. Paper 3 explains how to
compare stochastic decision models via simulation, and applies this to two
approaches to an insurance portfolio problem; a dynamic stochastic ap-
proach and a �xed mix approach. Since the models will be rerun at regular
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intervals, the performance of the �xed mix approach is found to be closer to
the dynamic approach when compared via simulation than when compar-
ing the outcome of the optimization at the �rst stage. Paper 4 introduces
a portfolio model for a casualty insurer that considers bearing catastrophe
risks. It is advantageous for such insurers to use �nancial reinsurance, i.e.
derivatives that pay o� following catastrophes, and we develop a new model
to price such derivatives.

The portfolio management model developed in Paper 2 can be generalized
to other businesses. Consider for example a risk averse metal smelter,
facing uncertainty both in the price of its main input factor, electricity,
and in the price of its output products. If there is some exibility in the
production process, there can be gains from coordinating the production
planning and the risk management function, which usually mitigate risk
through the �nancial metal markets.

The scenario generation process and the pricing of derivatives could be
made even more consistent with economic theory. An alternative is to use
the price model such as the one suggested in Section 3.3 together with a
model for the hydro inow processes and the other stochastic parameters,
�nd the risk neutral version of these processes (e.g. using futures price data),
and then proceed with your favorite stochastic programming/sceduling
method using these new processes, appropriately discretized.
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Abstract

The purpose of this paper is to demonstrate how to evaluate

stochastic programming models, and more speci�cally to compare two

di�erent approaches to asset liability management. The �rst uses mul-

tistage stochastic programming, while the other is a static approach

based on so-called constant rebalancing or �xed mix. Particular at-

tention is paid to the methodology used for the comparison. The

two alternatives are tested over a large number of realistic scenarios

created by means of simulation. We �nd that due to the ability of

the stochastic programming model to adapt to the information in the

scenario tree, it dominates the �xed mix approach.

Keywords: Mathematical programming, asset liability management, sto-

chastic programming, simulation.

1 Introduction

The purpose of this work is to demonstrate how to quantitatively compare

two models of the same underlying decision problem, and more speci�cally

to compare two di�erent approaches to portfolio management. The �rst

is a multistage stochastic program, while the other is based on the simple
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decision rule of constant rebalancing, also called �xed mix. The comparison

is done in a fair and realistic way. Realistic here means a situation that

is close to the practical use of the models, where the models are rerun at

regular intervals. An out-of-sample test procedure like the one applied in

this paper is suitable for this kind of comparison. The test methodology

is standard, but this paper is one of the few attempts to use it on a real

problem.

In the literature, there are infrequent reports on empirical testing of the

performance of stochastic programming models. Building stochastic sim-

ulation models to see how a stochastic programming model performs in

practice is a complex task, because it involves solving a large number of

stochastic programs, which in itself is di�cult.

The test methodology is explained in the context of a speci�c portfolio prob-

lem, but the conclusions are general enough to be used in other areas. We

�nd that a dynamic stochastic approach dominates a �xed mix approach,

but that the degree of domination is much smaller when the models are

compared out-of-sample than when they are compared in-sample. The rea-

son for this is that in an out-of-sample context, where the random input

data is (at least) structurally di�erent from the in-sample scenarios, the

stochastic programming model loses its advantage in optimally adapting

to the information available in the scenario tree. Furthermore, the per-

formance of the �xed mix approach will improve, because the asset mix is

updated at every stage.

Kusy & Ziemba (1986) test a two-stage simple recourse model and compare

this to a stochastic decision tree model. However, a new scenario tree is not

generated each time the horizon is rolled forward. Cari~no & Turner (1998)

compare the �xed mix-rule with a true dynamic stochastic optimization-

based model. The model horizon is not rolled forward, and no out-of-sample

data are used in the test procedure. Cari~no, Myers & Ziemba (1998) show

the historical performance of an asset liability model used by Yasuda Kasai,

a Japanese insurance company. Vassiadou-Zeniou & Zenios (1996) and

Zenios, Holmer, McKendall & Vassiadou-Zeniou (1998) also do validation

backtesting based on historical data. Birge (1982) compares a class of

stochastic linear programs with the corresponding expected value problem.

Independently, Kouwenberg (1998) has developed and tested a pension fund

asset liability management model utilizing rolling horizon simulations.
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In Section 2 we describe the stochastic dynamic approach and the �xed mix

approach. Section 3 shows the simulation methodology that is applied to

compare the two approaches. In Section 4 we present the numerical results

before the conclusions are given in Section 5.

2 The stochastic dynamic and the �xed mix ap-

proaches

We use a multi period, stochastic asset liability management model devel-

oped for the Norwegian mutual life insurance company Gjensidige Spare-

forsikring. A mathematical description is provided in H�yland & Wallace

(1999a). The portfolio selection problem is modeled at the strategic level,

where capital is allocated among a few aggregated asset classes such as

stocks and bonds. The objective is to maximize the expected portfolio

value at the end of the horizon net of costs, subject to rebalancing and

legal constraints on balance �gures. The costs are composed of transac-

tion costs1 and imputed costs associated with the violation of the legal

constraints. These imputed costs are used as the measure of risk in the

model.

Section 2.1 describes the two approaches to the model, while Section 2.2

briey describes the scenario generation process.

2.1 How the two approaches di�er

Both the �xed mix and the dynamic versions of the model require decisions

to be made at discrete points in time and discrete probability distributions

for the uncertain variables. The dynamic model can be explained by con-

sidering a scenario tree, of which a two period (three stage) example is

shown in Figure 1.

1The presence of transaction costs, and the tradeo� between short term risk and

return and long term risk and return, makes a dynamic stochastic approach necessary.
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t = 3

t = 2

t = 1 (today)

Figure 1: The scenario tree. The nodes represent decisions, while the arcs

represent realizations of the uncertain variables.

The top node represents the decisions today and the nodes further down

represent conditional decisions at later stages. The arcs linking the nodes

represent realizations of the uncertain variables. This approach will cap-

ture the dynamics of decision making, since decisions are adjusted to the

realizations of the uncertainties.

In the �xed mix model we assume the following decision rule: The portfolio

is rebalanced to �xed proportions (for instance 70% bonds and 30% stocks)

at all future decision nodes. This means that at all decision nodes, assets

are bought and sold so that the �xed mix is maintained. The optimization

problem is to �nd the proportions that maximize the objective function.

Note the di�erence between a �xed mix model and a �xed mix investment

strategy. In the �xed mix investment strategy, the proportions are kept

constant over a long investment horizon, while applying a �xed mix model

means that the proportions are changed every time the model is rerun. In

this paper we compare the results of a �xed mix model with the results of

a stochastic, dynamic model. See Perold & Sharpe (1988) for a description

of the �xed mix and other decision rules.

The �xed mix approach does not require the tree structure, but allows the

uncertainties to be described in terms of streams of outcomes (or scenarios),

as illustrated in Figure 2. However, we have applied the same scenario tree

for both approaches. Doing this ensures that we get comparable results

and means that the only di�erence between the two model formulations

are the constraints in the �xed mix model assuring that the portfolio is

rebalanced to the �xed mix at every decision node. If the approaches were

to be compared with respect to both solution time and solution quality, this
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procedure might disfavour the �xed mix approach2. However, this problem

does not arise since this paper is concerned with comparing the quality of

the solutions given the quality on the input data, and not solution times.

Figure 2: Possible description of the uncertainties with the �xed mix ap-

proach.

2.2 Scenario generation

Generation of scenarios can be based on simulation or construction. The

applied scenario generation method is a combination of the two. We let the

decision maker specify the market expectations by any statistical properties

that are considered relevant for the problem to be solved, and construct

the tree so that these statistical properties are preserved. This is done by

letting (random) outcomes and probabilities in the scenario tree be decision

variables in a nonlinear optimization problem where the objective is to

minimize the square distance between the statistical properties speci�ed

by the decision maker and the statistical properties of the constructed tree

(H�yland & Wallace 1999b).

Generally, expectations for �nancial markets will depend on the state of

the economy. Some statistical properties are clearly state dependent, while

2For the �xed mix approach we have chosen to include the transaction costs incurred

in every state at every stage due to rebalancing to the �xed mix. Thus we have as many

recourse variables as for the dynamic approach and the solution time for the �xed mix

approach is at least as large as for the dynamic approach in our case.
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others might be speci�ed independently of the state. As an example of state

dependency, consider the volatility of stocks. Empirical studies have shown

the e�ect called volatility clumping, meaning that the volatility increases

after a period of extreme returns. We model this e�ect by letting the

volatility (standard deviation) in period t+1 be a function of the outcomes'

deviation from the mean in period t. For more details of the scenario

generation system, see Section 4.1.

3 Comparing the performance of the stochastic

dynamic and the �xed mix models

This section illustrates how we test the quality of the solutions obtained

from each approach. In practice, only the �rst stage solution will be used

for actual decision making, whatever approach is used. The conditional

decisions at stages two and onward are only made in order to �nd the

right incentives for the �rst stage decisions. If the model system is run for

example each quarter, a new instance of the model will be generated and

solved at the end of a quarter.

We want to test how good each method is on average, for a large number

of realistic economic scenarios, denoted simulation scenarios. A single sim-

ulation scenario consists of realizations of the uncertain variables in each

simulation period. To test the solutions of the two approaches we proceed

as follows: At the beginning of the �rst period, our decision model tells us

what to do, and at the end of the �rst period we see the consequences of

our decisions. Given that information and the new state of the economy,

we make a new model instance and obtain the decision for the beginning of

the second period. Based on the outcomes in the second period, we calcu-

late the consequences of this decision. The process continues for the third

period, and in principle, inde�nitely. Keep in mind that we do not use the

information on what will happen when we make the decisions. Each time

we make a decision, the future is stochastic, and the information we do use

is in the form of scenario trees. These trees are created solely based on

past and current information, and not on future outcomes in the simula-

tion scenarios, i.e. presently unavailable information. Denote the scenarios

contained in these trees optimization scenarios.
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3.1 The test procedure

Our testing methodology follows a sequence of four major steps, assuming

that the di�cult task of specifying market expectations is already done:

1. Based on the market expectations, generate optimization scenarios

and use the two approaches to obtain the present decision.

2. Based on the same market expectations, generate a high number of

simulation scenarios.

3. For each outcome in each simulation scenario, generate an optimiza-

tion scenario tree and solve the problem using both the dynamic and

the �xed mix approaches.

4. Based on the consecutive decisions and outcomes, calculate the eco-

nomic performance of both approaches.

Because our scenario generation system is such that optimization scenario

trees can be generated conditional on sampled outcomes, we can generate

su�cient input to the two optimization approaches for each outcome in each

simulation scenario (since we assume that our decisions do not inuence

the stochasticity, we could in principle have generated all scenario trees

in advance). Of course, for the very �rst stage we have no prior stage-

information, so the scenario tree will be generated based only on the current

market expectations.

The procedure is illustrated in the Figures 3{5 below.

3.2 Potential error sources

If the simulation scenarios di�er from the optimization scenarios then a

potential bias toward one of the approaches is introduced in the test proce-

dure. What could happen is that the di�erence between the information in

the optimization scenarios and the simulation scenarios makes the dynamic

approach a priori worse o�. The dynamic approach uses the information in
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Market expectations:

	 R

Step 1: Generate scenario

tree for �rst

stage and

solve the

problem using both approaches

Step 2: Create

simulation

scenarios

?

xDynamic

?

xFixed mix

Figure 3: Steps 1 and 2 of the test procedure. In step 1 we construct

optimization scenarios that are consistent with the market expectations,

and optimize using both approaches to obtain �rst stage decisions, denoted

xDynamic and xFixed mix. In step 2 we generate a high number of simulation

scenarios based on the same market expectations. Consult Section 4 and

Appendices A and B to see how the simulation scenarios are generated.

the optimization scenarios better than the �xed mix approach, but it could

be using misleading information so that it consistently makes relatively bad

decisions.

Modeling the problem with a �nite horizon is another potential error source.
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Step 3: Generate scenario

tree and obtain

the solutions

for both

approaches
/ w

?

Second stage

xDynamic xFixed mix

Third stage

xDynamic xFixed mix

?

Figure 4: Step 3: Generating conditional trees and new solutions. After

the outcome represented by the dotted line, new information is received,

and the model horizon is rolled forward. A new scenario tree is generated

conditional on the information in that outcome. The model is solved to

obtain a new present solution, in the �gure called the second stage solution.

The next outcome in the simulation scenario is represented by the thick line,

which in a similar way gives rise to the third stage solution. Thus for each

scenario, we obtain the solutions for consecutive stages after generating

scenario trees conditional on previous outcomes.
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First stage

Second stage

Third stage

xDynamic xFixed mix

xDynamic xFixed mix

xDynamic xFixed mix

Figure 5: Outcomes and decisions for one scenario. Since decisions and

outcomes are known for this scenario, in step 4 we can calculate the ob-

jective function value at the end of the third period. So each simulated

scenario gives rise to one performance number for the dynamic stochastic

approach, and another for the �xed mix approach.

With few periods, the potential gain for a dynamic approach over a static

one is small.

4 Numerical example

This section presents the numerical results. We study a mutual life insur-

ance company with a portfolio similar to that of Gjensidige Spareforsikring

anno 1997, using a somewhat distorted data set. Assume that the company

invests in the money markets (i.e. bonds with less than a year to maturity)

and stocks. We let the money markets be represented by the three month

NIBOR (Norwegian InterBank O�ering Rate) and stocks be represented

by the Oslo Stock Exchange Total index. The starting values of assets and

liabilities are given in Table 1. The liabilities are the basis for the calcu-

lation of the legal requirements, and the risk is modeled by penalizing the

violations of the legal requirements. For details, see the model formulation

in H�yland & Wallace (1999a).

We employ a three period (four stage) model with a total of 1250 scenarios

to obtain the present solutions from the dynamic approach and the �xed

mix approach, corresponding to step 1 in Section 3.1. Each period is one
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Table 1: Starting balance.

Assets Liabilities

Money markets (3 month NIBOR) 70 Insurance fund 87

Stocks 30 Supplemental reserv 4

Equity 6

Primary capital 2

Other liabilities 1

Sum assets 100 Sum liabilities 100

year, so that the total planning horizon is three years. To obtain the

future solutions, corresponding to step 3 in Section 3.1, two-period (three

stage) models of 72 scenarios are used. Although this way the third stage

decisions are made based on a model whose horizon is beyond the horizon of

the simulation scenarios, the �xed mix and dynamic approaches are treated

alike, thus this is not a signi�cant source of bias.

Section 4.1 illustrates the process of generating scenarios, both for sim-

ulation and optimization. The two versions of the model are solved for

di�erent levels of risk aversion, and the results from comparing the quality

of the solutions are given in Section 4.2.

4.1 Scenario generation

This section explains how the market expectations are speci�ed, including

state dependencies, and how optimization scenarios and simulation scenar-

ios are generated.

4.1.1 Speci�cation of market expectations

The basis for both the simulation scenarios and optimization scenario trees

are user supplied percentiles for the �rst period marginal distributions of

stock returns and interest rates, the correlation between the asset classes

and the de�nition of the state dependent statistical properties.

The percentiles supplied by the user are given in Table 2. Marginal distri-

bution functions are �tted to the percentiles, as explained in Appendix A.
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Table 2: Percentiles of the marginal distributions. For the money market,

the market views are expressed in terms of expectations for the interest

rates, while for stocks the expectations are given in terms of total returns.

Percentile 0 0.05 0.25 0.5 0.75 0.95 1

Short term interest rates 1.5 2.4 3.6 3.9 4 5.8 7

Stocks -29 -23 3 15 17 19 59

The correlation between stocks and interest rates is assumed to be 0.2 in

all periods.

As explained in Section 2, some statistical properties are modeled as state

dependent, while others are assumed independent of the state of the econ-

omy. The state dependencies generally depend upon the characteristics of

the asset class. In this example we have modeled state dependent expected

returns and volatilities for both asset classes. The other statistical proper-

ties are assumed state independent, meaning that they are the same in all

states of the economy at a certain point in time.

In order to capture the volatility clumping e�ect, the state dependent stan-

dard deviation (or volatility) in period t > 1 is given by

�it = (1� �i)�it + �i jxi;t�1 � �i;t�1j ; (1)

where i 2 fs; bg is the asset class index, either stocks (s) or interest rates

(b), �i 2 [0; 1] is the volatility clumping parameter for asset class i (a large

�i leads to a large degree of volatility clumping), �it is the average standard

deviation of the outcome of asset class i in period t, xit is the outcome of

asset class i in period t, and �it is the expected outcome of asset class i in

period t. This way the volatility will increase after extreme returns, and

decrease after more normal returns, in line with empirical observations3.

For interest rates we model a mean reversion e�ect4, and let the expected

3There is some evidence (Billio & Pelizzon 1997) that volatility increases more when

prices go down, however, for simplicity we have chosen to model this symmetrically.
4Mean reversion means that interest rates tend to revert to an average level. When

interest rates are high, the economy slows down and interest rates tend to fall, and

when interest rates are low, the economy booms and interest rates tend to rise. The
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value of the interest rate at the end of period t > 1 be given by

�bt = ��+ (1� �)xi;t�1; (2)

where � is the mean reversion factor (a high � leads to a large degree of

mean reversion), � is the mean reversion level and xbt is the interest rate

at the end of period t.

For stocks we assume that the expected total return in each period is given

by

�st = xb;t�1 + �t�st; (3)

where xbt is the state dependent short term interest rate in period t, �st is

the state dependent standard deviation of return on stocks in period t and

�t is a risk premium constant in period t.

4.1.2 Generating optimization scenarios

For generating optimization scenario trees we have assumed that the rele-

vant statistical properties are the �rst four moments of the marginal dis-

tributions, the correlation and the description of the state dependent prop-

erties. From the marginal distribution functions, which are derived as ex-

plained in Appendix A, we can calculate all marginal moments. Table 3

contains speci�cations of the marginal distribution properties for period 1

and the state independent marginal distribution properties for periods 2

and 3. The volatility clumping parameter, �i, in Equation (1) is set to 0.3

for both assets, the mean reversion level and factor (� and �) in Equation

(2) are set to 4% and 0.2 respectively, while the risk premium constant, �t,

in Equation (3) is set to 0.3 in all periods.

For the present optimization problem (corresponding to step 1 in Section

3.1), a three period (four stage) scenario tree is generated. This has 50 out-

comes in the �rst period, and 5 in the second and the third, yielding a total

mean reversion e�ect usually needs more than two or three years to manifest itself to a

signi�cant degree, and a low value for the mean reversion factor is chosen in the numerical

example.
6The normal distribution has a kurtosis of 3.0. A kurtosis larger than 3.0 means that

the distribution is more peaked around the mean and have fatter tails than the normal

distribution.
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Table 3: Market expectations used for generation of optimization scenarios.

The expectations for the �rst period are derived from the marginal distri-

butions, see Appendix A for details. While the skewness and kurtosis6are

assumed state independent, the expected value and the standard deviation

are assumed state dependent.

Asset class Distribution (End of) (End of) (End of)

Property Period 1 Period 2 Period 3

Money Exp. spot rate 0.04 State dep State dep

market|3 Standard dev. 0.01 State dep State dep

months Skewness 0.5 0.5 0.5

NIBOR Kurtosis 3.0 3.0 3.0

Domestic Exp. return 0.085 State dep State dep

stocks Standard dev. 0.15 State dep State dep

Skewness -0.5 -0.5 -0.5

Kurtosis 4.0 4.0 4.0

of 1250 scenarios. The scenario tree is consistent with the market expecta-

tions given in Table 3 and the correlation and state dependent statistical

properties de�ned in Section 4.1.1. For the future optimization problems,

we generate two-period (three stage) scenario trees with 12 outcomes in

period 1 and 6 outcomes in period 2, leading to a total of 72 scenarios.

The �rst period speci�cations in these future optimization problems will

be dependent on the sampled outcome. The state dependencies are spec-

i�ed in the same way as before. The generated trees are consistent with

these speci�cations, in addition to the state independent speci�cations in

Table 3 and the correlation de�ned in Section 4.1.1.

4.1.3 Generating simulation scenarios

For generating the simulation scenarios we do not use the calculated mo-

ments in 3, but sample from the �tted cumulative distribution functions

directly. To capture the correlation, interest rates are sampled conditional

on each stock return. For each stock return, the conditional interest rate

distribution from which to sample is found, and an interest rate sample is

drawn from this distribution. For details, see Appendix B.

For the subsequent periods, the means and the standard deviations are up-
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dated for mean reversion and volatility clumping according to Equations

(1), (2) and (3). In the end we have a number of simulation scenarios

containing subsequent stock return and interest rate pairs for three peri-

ods, satisfying the same statistical properties as the �rst-stage optimization

scenarios, including the state dependencies.

4.2 Numerical results

Note that since the �xed mix formulation leads to a non-convex optimiza-

tion model, we would usually need global optimization routines to be sure

that the optimal solution is found. However, testing shows that for our

data sets, the problem is convex7.

The goal is to minimize risk subject to a minimum target expected portfolio

return. Risk is measured in terms of shortfalls relative to legal requirements,

and is given by the expected accumulated quadratic shortfalls:

F = min
X
s2S

Ps

2
4X
j2J

cjt
X
t2T

�stx
2
sjt

3
5 ; (4)

where S is the set of all scenarios, J is the set of shortfall types, Ps is

the probability that scenario s occurs, cjt is a weight parameter allowing

the decision maker to weigh the relative importance of di�erent shortfall

types, �st is a path dependent discount factor8, depending on the scenario

s 2 S and the time period t 2 T , xsjt is the shortfall of type j 2 J , in time

period t 2 T under scenario s 2 S. The objective is minimized for di�erent
required levels of minimum expected portfolio returns.

Figure 6 shows the results of solving the �rst stage models (referring to

step 1 in Section 3.1) for both approaches for di�erent levels of minimum

expected portfolio return. We see that in this in-sample comparison the

dynamic approach clearly dominates the �xed mix approach since the target

expected returns are achieved for lower levels of risk. For instance, for an

expected return of 13.0%, the (square root of the) risk,
p
F , is 0:18 for

7Many model instances were generated, varying the starting balance, the market ex-

pectations and the degree of risk aversion. Using many di�erent starting values for each

instance, the optimization always converged to the same solution.
8It is path dependent because it depends on short term interest rates, which are

stochastic.
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Figure 6: Optimization results of step 1 in Section 3.1. The e�cient fron-

tiers show the tradeo� between the expected return and the risk, and is

obtained by solving the models for di�erent required rates of expected re-

turns. The numbers in parantheses show the initial investment in stocks

for the dynamic and the �xed mix approaches, respectively.

the dynamic approach and 1:84 for the �xed mix approach. Observe that

the �xed mix approach must choose a more aggressive portfolio (i.e. more

stocks) than the dynamic approach to achieve the target expected in-sample

return.

Figure 6 does not provide a fair comparison since it does not take into

account that the models will be rerun in the future. The �xed mix approach

su�ers under such assumptions due to the lack of dynamic decision making.

To make a fair comparison the testing procedure in Section 3 is applied

and 200 simulation scenarios of three periods are generated as described

in Section 4.1.3. The reason for not increasing the sample size is that a

single run (of which there are 8 in Figure 7) involves solving 600 stochastic

programs and requires more than 10 hours solution time on a Sun Ultra 2

(with 200 simulation scenarios of three periods).

Figure 7 shows the results of this out-of-sample comparison and we see

that the dynamic approach still dominates the �xed mix approach, but to

a smaller degree.
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�xed mix approach, the following statistic is used:

z = !(VDynamic � VFixed mix)� (1� !) (FDynamic � FFixed mix) (6)

where V is sample return, and F is sample risk. The probability that the

mean of z is positive corresponds to the probability of dominance and is

found via bootstrapping (Efron & Tibshirani 1993), since the distribution

of z is not normal. A bootstrap of z is a vector of the same length as z

with elements picked at random (with replacement) from the elements of z.

The probability of the mean of z being positive is estimated as counting the

number of bootstrap z having positive mean and dividing by the number

of bootstrap runs.

The test compares the performance of the two approaches for the pairs

(DS2, FM2) and (DS3,FM3) displayed in Figure 7. There will be a weight

! for each pair. Weights are chosen such that utility maximization yields

the points FM2 and FM3 respectively, given that one must choose a point

on the �xed mix e�cient frontier9.

The result of the test is shown in Table 4. The probability that the dynamic

Table 4: Test of whether the dynamic approach dominates the �xed mix

approach. A hundred thousand bootstrap runs were used. The p-value

reported is the (bootstrap) probability of dominance. The number of ob-

servations is 200.

(DS2,FM2) ! = 0:17645 �z = 0:04143 �̂z = 0:8418 p=0.7456

(DS3,FM3) ! = 0:47974 �z = 0:01450 �̂z = 1:976 p=0.5251

approach dominates the �xed mix approach is higher than 50%, however

the di�erence between the performances is not statistically signi�cant. If

9Utility maximization means that the marginal rate of substitution of risk for return

equals the negative of the slope of the �xed mix frontier:

�

dEV

dF
=

@U=@F

@U=@EV
= �

1� !

!

where EV is the expected portfolio value and F is the risk along the frontier in Figure

7. Thus ! = 1=(1 + ddEV
dF

), where ddEV
dF

is an estimate of the derivative of the �xed mix

e�cient frontier, e.g. at FM2. This means that we can �nd a weight that corresponds

to a utility function whose maximum is attained at FM2. Since we choose the �xed mix

frontier, the test results will not be biased in favor of the dynamic approach.
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we choose a weight corresponding to the average of the slopes of the e�cient

frontiers at FM2 and DS2, we get a probability of dominance of 0.8650. For

(FM3, DS3), we get p = 0:8531.

The reason that the dynamic approach dominates to a smaller degree, is

that it exploits information in the optimization scenarios that is not present

in the simulation scenarios. When comparing the approaches in-sample, the

dynamic approach has the advantage of the ability to perfectly adapt to

the information given. In the out-of-sample case, the information given

is no longer perfect, so an advantage of stochastic programming over the

alternative has been removed. The performance of the �xed mix approach

will be closer to the performance of the dynamic approach because in the

simulations the asset mix is allowed to be adjusted after each stage. In

other words, since we are using rolling horizon simulations and allow the

\�xed" mix to change at each stage and in every state, the �xed mix model

actually becomes relatively dynamic.

The simulation scenarios and the optimization scenarios are necessarily dif-

ferent, for example regarding the structure of the evolution of information.

In the optimization scenarios the number of outcomes per stage increases

exponentially, but in the simulation scenarios the number is constant at 200

for stages 2 and 3. In particular, the simulation scenarios do not contain

so-called worst case scenarios where asset class returns are negative in all

subsequent periods. Both the simulation scenarios and the optimization

scenarios satisfy the speci�ed statistical properties, but for the optimiza-

tion scenarios, after the worst case outcome in the �rst and second period,

one of the subsequent outcomes also has a low return. In the simulation

scenarios there is no reason why a low return outcome should follow a low

return outcome in the previous period. These worst case scenarios have a

signi�cant e�ect on the perceived risk of the portfolio approaches as seen

in Figure 6, due to the quadratic nature of risk. Although the probability

of these worst case scenarios is very small, the shortfall costs accumulated

are so large that they a�ect the overall expected shortfall cost. This can

be seen from the di�erence in the scale of risk in Figures 6 and 7, where

the risk in the out-of-sample case is much smaller10.

10It is hard to judge whether it is the optimization scenarios or the simulation scenarios

that are more realistic; both sets match the speci�ed statistical properties including state

dependencies. If the number of simulation scenarios were increased, a worst case scenario

might occur, causing the risk in Figure 7 to increase.
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Further comparing Figures 6 and 7 we see that the out-of-sample expected

return of the dynamic approach is roughly the same as in-sample, while

for the �xed mix approach the expected return is higher. This is because

the �xed mix approach generally has a higher share of stocks than the

dynamic approach. At the second and third stages in the simulation, the

�xed mix approach will choose more aggressive portfolios in order to ful�ll

the return requirement. This explains why the e�cient frontier for the �xed

mix approach is shifted not only to the left, but also upwards from Figure

6 to Figure 7.

5 Conclusion and future work

In this paper we have compared the performance of two alternative versions

of a portfolio model. The comparison is severely complicated by the fact

that the portfolio selection process involves dynamic decision making under

uncertainty, so particular attention has been paid to the design of the out-

of-sample simulation test. The results show that the stochastic dynamic

approach weakly dominates the �xed mix approach. We expect that the

degree of dominance would increase if the number of stages in the decision

model is increased, since three stages probably is too low to fully take

advantage of dynamic decision making.

The applied simulation procedure takes into account that a new instance of

the decision model will be rerun when new information is available. With

the new information, a new description of the uncertainties is generated and

the decision models are resolved. The procedure involves solving thousands

of stochastic programs.

This work has not focused on numerical e�ciency. However, the structure

of the simulation program is ideal for parallel implementation. Increased

numerical e�ciency also enables testing more realistic models with more

asset classes and decision stages, and allows the sample size to be increased.

We leave this for future work.

Another future research area is to improve the �xed mix strategy by creat-

ing more dynamic decision rules, so that the model behaves more like the

true dynamic model.
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Comparing the robustness of the approaches with respect to errors in the

speci�cation of market expectations as well as errors in the discrete approx-

imation of the distributions, would be another interesting extension of this

work.
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A Specifying market expectations

Expressing market expectations can be done in many ways. We have cho-

sen to let the decision maker supply percentiles for the marginal cumulative

probability distribution functions for all uncertain variables (this is how the

asset allocation managers in the life insurance company prefer to express

the market expectations), see Figure 8. An approximating cumulative dis-

tribution function is �tted to these percentiles. The properties that are

listed in Table 3 are calculated from the function that is �tted to the per-

centiles.

In addition, we let the user specify the correlation between all stochastic

variables, and de�ne the state dependent properties.

The approximating cumulative distribution functions are found using a

NAG (Numerical Algorithms Group) C Library routine for interpolating

data. This method does not guarantee that the second derivative changes

sign only once, in the case of Figure 8 causing a somewhat peculiar form

near the top of the distribution. However, the resulting function is mono-

tonic, so we are guaranteed that the curve will have the properties of a

cumulative distribution function, and that the user speci�ed percentiles

are �t exactly (including the 0% and 100% points).
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Figure 8: (i) User-supplied percentiles for interest rates at the end of the

�rst period. (ii) A cumulative distribution function is �tted to the per-

centiles. (iii) The probability distribution function for interest rates.
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B Generating the scenarios that are input to the

simulation

This section explains how simulation scenarios for interest rates and return

on stocks are generated. The method works fast, so the time spent on this

procedure is negligible compared to the actual simulation.

The simulation scenarios are the ones we use to test the performance of

the two approaches, and they are the basis for generating optimization

scenarios for later stages (but not for the �rst stage, as explained in the

paper). They are sampled from the probability distributions that are �tted

to the user supplied percentiles.

The stock returns are sampled �rst, using so-called inversion sampling.

Uniform random numbers are sampled and input to the inverse of the cu-

mulative distribution function to yield the random returns. Since we have

speci�ed a certain correlation between interest rates and stock returns, the

interest rates are sampled conditional on the stock returns. The distribu-

tion function for interest rates conditional on a stock return represents a

distribution with di�erent mean and standard deviation, and it is found by

means of a linear transformation of the percentiles. This transformation is

found using the formulas for the conditional expectation and variance of a

bivariate normal distribution. The skewness or kurtosis of the distribution

is not changed signi�cantly when the percentiles are adjusted, so this rep-

resents a feasible sampling process (An alternative way of sampling from

marginal distributions with correlated random variables is given by Lurie

& Goldberg (1998).)

The following notation is used:

�sb correlation between stock returns and interest rates

xs0 a given return on stocks

�s expected return on stocks

�b expected interest rate

�sjb expected interest rate given a return on stocks

�s standard deviation of stocks returns

�b standard deviation of interest rates

�bjs standard deviation given a return on stocks

xqb;i percentile of interest rates
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xqbjs;i percentile of interest rates given a return on stocks

The new mean, given the return on stocks, is

�sjb = �b + �sb
�b

�s

(xs0 � �s) : (7)

The new standard deviation is

�bjs = �b

�
1� �2

sb

�
: (8)

So the linear transformation of the percentiles is given by

xqbjs;i = �sjb +
�b

�bjs

(xqb;i � �b) (9)

for percentile i for interest rates, xqb;i.

Applying this linear transformation to each percentile, and then creating a

new distribution function yields a distribution that has the new mean and

standard deviation, and unchanged skewness and kurtosis. The interest

rate is then sampled from this distribution.

For the second period, the means and the standard deviations are updated

for mean reversion and volatility clumping according to Equations (1), (2)

and (3). The correlation between stock returns and interest rates is assumed

constant for all periods. The above scheme is reapplied for period three.
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Abstract

In this paper we examine the rationale for �nancial reinsurance

in the casualty insurance business. This concept refers to an invest-

ment strategy that uses the �nancial markets to hedge insurance risk.

The casualty insurer takes positions in derivatives on underlying as-

sets, whose prices are highly positively or negatively correlated with

speci�c insurance risks. We formulate the asset liability management

problem for a casualty insurer, in the context of a dynamic, stochas-

tic portfolio selection model. The optimal solution is a portfolio of

�nancial assets earning a return that, including premium income from

written policies, will guarantee compliance with the legal statutes in

all but a few extreme states of nature. In this context we compare

properties of optimal portfolios with and without the possibility of

�nancial reinsurance. We let an alleged representative policyholder,

endowed with a linear plus negative exponential utility function, eval-

uate the various optimal portfolios. We �nd that, in a regulated envi-

ronment and when policyholders' utility functions exhibit reasonable

levels of risk aversion, portfolios reecting �nancial reinsurance dom-

inate portfolios that are not �nancially reinsured.

Keywords Financial reinsurance, risk neutral valuation, arbitrage pricing,

stochastic optimization.
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1 Introduction

Using derivatives to hedge portfolios of �nancial securities against the

downside volatility of security price processes, is by now common in prac-

tical portfolio management. Also textbooks on derivative assets often de-

vote a whole chapter to trading strategies and market risk management

(Hull 1997, Cox & Rubinstein 1985). When constructing portfolios by

means of option hedging, investors seek to reduce downside portfolio risk,

while retaining a share of the upside potential. The random sequence of

return from the hedged portfolio is assumed to �t the structure of risk

preferences embedded in the investors' utility functions. One might term

this approach to portfolio selection asset management, because no explicit

attention is paid to the nature of the investors liabilities.

An asset liability management (ALM) approach to portfolio selection, ex-

plicitly models the link between risk preferences and investors perception

of actual business risk. When the investor is a casualty insurance com-

pany, risk perception is connected to the structure of his liabilities, i.e. the

loss payments agreed to pay the policyholders with the occurrence of a

qualifying accident. Both life insurers and casualty insurers are subject to

regulations when they take positions in the �nancial markets. Allegedly

authorities enforce regulations to protect policyholders interests from too

risky investment strategies, which they assume will result from leaving the

insurance business free to invest at its own discretion.

In this paper we examine the asset liability management problem as it ap-

plies to casualty insurers when these are viewed as portfolio managers. We

assume that what the casualty insurance industry perceive as business risk,

is failing to comply with the legally enforced regulations. Put di�erently

we might say that the authorities have forced a speci�c utility function

upon the casualty insurers. This function is concave, reecting risk averse

investment strategies. In the next section we de�ne the ALM problem that

must be solved by a casualty insurer. This portfolio selection problem is

conceptually di�erent and more complex than the analogous portfolio selec-

tion problem of a life insurer. A distinguishing characteristic of the former

optimization problem is the sequence of random claims, which a casualty

insurer is obliged to pay its customers. The claims distributions have large

variances. Therefore it would be unsatisfactory to represent claims in terms

of expected values, i.e. deterministically; our model must be able to evalu-
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ate the economic performance of the insurance company in carefully chosen

possible realizations in the tail of the claims distributions. It is the random

nature of claims, which provides a rationale for introducing the concept

of �nancial reinsurance into the ALM problem of a casualty insurer. In

contrast, a life insurer does not make a serious mistake in regarding his

liabilities as being deterministic, when formulating his ALM problem.

The concept of �nancial reinsurance designates an investment strategy that

uses derivatives to hedge insurance risks. This presupposes the existence

of underlying assets whose price processes are highly correlated with the

distribution of speci�c insurance risks. The underlying assets need not be

traded, as long as one can trade derivatives written on them. The key fea-

ture of �nancial reinsurance is the property that the derivatives will pay

o� in states where the insurance policies demand huge loss payments to

policyholders. We note that this hedging scheme is not con�ned to non-life

insurers. It applies equally well to any portfolio manager with stochastic li-

abilities, whose payo� structure is highly correlated with �nancial securities

(or other phenomena) on which derivative assets can be bought.

We use a multistage stochastic programming model to solve the portfolio

selection problem of a casualty insurer. The model is set up in discrete time

on a discrete event space. The main contribution of our paper is to demon-

strate that �nancial reinsurance o�ers an opportunity, at a certain cost, for

casualty insurers to select portfolios whose random payo� structure more

accurately �ts the sequence of future random liabilities. Thus �nancial rein-

surance reduces the volatility of net cash ows. We then let the individual

policyholders evaluate �nancial reinsurance. We assume the existence of a

representative policyholder endowed with a linear plus negative exponen-

tial utility function, and let him evaluate the utility of wealth generated by

the optimal portfolios selected by the insurance company. Underlying the

analysis is the assumption that the policyholders own either the insurance

company, or the funds being managed by the casualty insurer. Our �nd-

ings support intuition in that when policyholders' utility functions exhibit

reasonable levels of risk aversion, �nancially reinsured portfolios dominate

non-reinsured regulated portfolios. This paper also o�ers an illustration of

an approach to model derivative assets in stochastic optimization models.

Other asset liability models are described by Dert (1995), Consigli & Demp-

ster (1998), Gaivoronski & de Lange (1998), Gaivoronski, H�yland & de

Lange (1998), Gaivoronski & Stella (1998), Kusy & Ziemba (1986), Dupa�cov�a,
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Bertocchi & Moriggia (1998), Cari~no & Ziemba (1998), King (1993), Mul-

vey & Vladimirou (1992), H�yland & Wallace (1999a), Cari~no & Turner

(1998) and Zenios, Holmer, McKendall & Vassiadou-Zeniou (1998). These

models are designed to facilitate an investment strategy, yielding an uncer-

tain inow of money, capable of supporting a sequence of future (possibly

uncertain) liability payments. Cari~no and Turner include derivative assets

in their ALM-model. In order to avoid computational instabilities due to

the large range of returns to the funds invested in the derivative assets,

they use options in combination with some other asset class like cash. In

Section 4.1 we describe our approach to derivative asset pricing, which is

consistent with �nancial theory. We formulate an optimization model that

not only produces arbitrage free asset prices, it also selects the appropri-

ate equilibrium returns. It turns out that these distributions do not cause

problems with computational stability.

The rest of this paper is organized as follows: Section 2 further discusses

the issue of �nancial reinsurance. In Section 3 we present the ALM-model.

The derivative pricing method is explained in Section 4. In Section 5 we

construct a numerical example, by which we examine the impact of �nan-

cial reinsurance on the portfolio decisions of a casualty insurer. Section 6

concludes.

2 Problem outline

We de�ne the ALM problem confronting a casualty insurer as that of con-

structing a dynamic portfolio of �nancial assets earning a return that, in-

cluding premium income from written policies, will guarantee compliance

with the legal statutes in all but a few rarely occurring states of nature.

The insurance company is averse to the risk of such occurences, but the

goal of minimizing such risk must be traded o� against the desire to achieve

maximum expected return. By a dynamic portfolio we mean an investment

strategy over time that, in our context, has been designed to meet a se-

quence of future uncertain liability payments. In practice, it is the current

time t = 0 portfolio decision we are after, but future portfolio revision

possibilities a�ect the current decision.

Because of the high volatility of potential claims associated with speci�c

risks that a casualty insurer might underwrite, the possibility to hedge his
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earnings is crucial to his business strategy. A standard hedging scheme

consists in ceding a portion of the premium income to other insurers, who

in return commit themselves to paying a fraction of future realized claims.

This kind of regular reinsurance is used by most casualty insurers. How-

ever, when dealing with more extreme insurance risks, additional means of

risk sharing may be desirable. Through the legal regulations the casualty

insurer is obliged to match his earnings and liabilities so closely, that claims

will be redeemed almost surely, and without the need to borrow. This could

mean that some potential lucrative risks are not insured, or rather not in-

sured enough, because there is a small (empirically estimated) probability

that huge claims could get the company into �nancial distress. However,

the �nancial markets with their growing share of derivatives provide an

additional hedging opportunity. As mentioned above �nancial reinsurance

designates an investment strategy which uses �nancial derivatives to hedge

insurance risks. The derivative assets are derived from underlying securi-

ties, whose price and dividend processes are highly correlated with speci�c

insurance risks. The derivatives pay o� in states where the insurance con-

tracts demand huge loss payments. With this hedging opportunity casualty

insurers may take on relatively more insurance risk and still comply with

the legal regulations.

In this paper we consider a mutual casualty insurer, which by construc-

tion is owned by the policyholders. How do the policyholders feel about

�nancial reinsurance? If they had exactly the same objective, i.e. utility

function as the casualty insurer, obviously they would approve of whatever

is optimal to the company. But presumably they do not think in terms of

legal regulations. Their concern is (except paying as little premium as pos-

sible!) that the insurer pays out the agreed amount if an accident occurs.

We imagine the existence of a representative policyholder who has a linear

plus negative exponential utility function. This objective is often used in

�nancial portfolio selection because of its plausible risk aversion properties

(Bell 1995, Huang & Litzenberger 1988). Assuming that the linear plus

negative exponential utility function is a fair representation of policyhold-

ers preferences we ask: Does this function contradict the objective function

employed by the insurance company? Put di�erently, to what extent do the

(enforced) incentives of the portfolio managers comply with the interests

of the policyholders? These questions are addressed in Section 5.2.
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3 Model description

Decisions in the model are made on a state space which is a �nite or count-

able set, whose time index set is denoted T = (0; 1; 2; : : : ; t; : : : ; � � 1).

The decision process can be visualized by the scenario tree presented in

Figure 1. Nodes in the tree are associated with decisions, whereas arcs,

connecting the nodes, account for realizations of random variables. The

top node reects the current investment decision, which is the one we are

looking for. Subsequent nodes represent conditional decisions, which will be

made according to newly revealed information. The scenario tree displays

the dynamic feature of the decision making process. The fact that we are

able to rebalance the portfolio, incurring transaction costs, at future dates

when more information is available is reected in the current investment

decision, which should be less conservative than a static portfolio decision.

Transaction costs counteract, but do not o�set, this e�ect. In the partic-

ular scenario tree depicted in Figure 1, there are two time periods (three

stages) and 4 times 4 = 16 scenarios.
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Figure 1: Scenario tree.

The company is initially endowed with a portfolio of assets, enabling it to

generate cash ows for an in�nite span of time. But the planning period

within which decisions are made is limited, and the in�nite aspect of the

cash ows is represented by the continuing value of the company. In our

formulation this is the value, at the horizon, of an in�nite sequence of

constant payments. Each conditional decision will be made on the basis of

the following information:

1. Premium contributions from written insurance policies over the in-

terval (t� 1; t).
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2. Realized dividends and coupon payments from the portfolio of asset

classes over the interval (t� 1; t).

3. Price gain/loss on the asset classes over the interval (t� 1; t).

4. Income from �nancial reinsurance, i.e. return on the derivatives over

the interval (t� 1; t).

5. Interest rates over the interval (t; t+ 1).

6. Insurance claims directed against the company by the policyholders

over the interval (t� 1; t).

Then the company will decide how to revise its portfolio of securities, and

whether or not to help �nance the procurement of new assets through

borrowing. The optimal investment policy maximizes the market value of

the company adjusted for a penalty term reecting the costs of violating

the legal restrictions. This concave objective function (1) is formulated and

explained in the subsequent section.

3.1 Mathematical formulation

In this subsection we formulate the basic equations of the portfolio selection

model, which describe the chain of events constituting the ALM process.

The collection of equations (2){(26) applies to each scenario s. The sce-

narios are associated with probabilities, which appear in the objective (1).

The model entities are de�ned on the following sets:

I = [1; : : : ; �]: the set of all asset classes.

S = [1; : : : ; !]: the set of all scenarios.

� = [1; : : : ; n]: the set of all nodes in the scenario tree.

T = [1; : : : ; � � 1]: the set of discrete decision points.

� = [1; : : : ; � ]: the set of discrete time points, including the horizon.

H: the set of shortfall types.

Beyond time t = 0, most variables and parameters are indexed by s, indicat-

ing that they are scenario dependent. Recall that a scenario s constitutes a
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path , i.e. a sequence of nodes, through the scenario tree depicted in Figure

1. To formulate the model, we need the following additional notation:

Scenarios and nodes

sv � (�vr )
�
r=0: scenario s de�ned as a sequence v of nodes.

�vr : a node de�ned as an element of the particular sequence v at

time t.

The subscript v in will be omitted unless it is necessary to refer to a speci�c

scenario as a sequence v of nodes. Also, for simplicity, we shall sometimes

denote a node just �.

Endogenous variables

V �

its: the value of asset class i before portfolio revision at time t.

V +
its: the value of asset class i after portfolio revision at time t.

V �

ts : the value of all asset classes before portfolio revision at time t.

V +
ts : the value of all asset classes after portfolio revision at time t.

V R
ts : the risk adjusted value of the asset classes at time t.

V L
ts : the liquidity weighted value of the asset classes at time t.

Xts: transaction costs from trading the asset classes at time t.

Ets: transaction costs on the derivative asset at time t.

Kts: amount of money invested in derivative assets at time t, maturing at

time t+ 1.

Dts: income from �nancial reinsurance (derivatives) at time t.

Wts: interest costs on outstanding debt at time t.

Jts: taxes paid at time t.

Ats: accumulated loans at time t.

Cts: net cash ows earned between time t� 1 and t.

Fts: earnings in period t, i.e. between time t� 1 and t.

Yts: pro�t to equity earned in period t, i.e. between time t� 1 and t.

Bts: the value of the company's equity at time t.

Hts: technical reserves at time t.

Zts: shortfalls of type h at time t.

Gts: income from regular reinsurance at time t.
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Rts: total monetary price gain on the portfolio between time t� 1 and t.

CP
s : perpetual post horizon expected annual cash ows.

RP
s : perpetual post horizon expected annual price gain.

Q: the casualty insurer's objective function.

Decision variables

xits: the amount of money traded in asset class i at time t.

nts: the number of derivatives bought at time t.

lts: loans obtained at time t.

bts: the fraction of incurred claims at time t that the company decided

at time t� 1 to cover by reinsurance.

ets: allocations to technical reserves at time t.

Scenario independent parameters

�it: the fraction of the amount of money traded in each asset class i that

the company has to pay as transactions costs at time t.

�t: the fraction of the amount of money invested in the derivative asset

that the company has to pay as transactions costs at time t.

�: premium income from written policies at time t.

�: a proportional factor used to calculate the cost of reinsurance as

a fraction of premium income.

it: upper bound on the asset mix at time t.

�it: lower bound on the asset mix at time t.

�Uit : upper bound on the permissible trading volumes at time t.

�Lit : lower bound on the permissible trading volumes at time t.

#Li : a liquidity weight assigned to asset class i.

#Ri : a risk weight assigned to asset class i.

Tt: the appropriate tax rate at time t.

 : a constant associated with the solvency margin.

�: a constant associated with the solvency adequacy requirement.

	R: a constant associated with the capital adequacy requirement.

	L: a constant associated with the liquidity constraint.

�: the functional symbol for the shortfall function.

�h: a cost coe�cient associated with shortfalls of type h.
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Scenario dependent parameters

�ts: a risk adjusted, path dependent discount factor.

�ts: a risk free, path dependent discount factor.

P i
tk(s): the price at time t in scenario s of a European put option on

security i with strike price Si maturing at time t+ 1 (further

modeled in Section 4.1).

�its: scenario generated ex-dividend price gain on asset class i between

time t� 1 and t.

�its: dividend payment at time t on each asset class i, including

coupon payment on bonds and rental income on real estate.

'itj(s): payo� from derivatives on security i at time t in outcome j

associated with scenario s (further modeled in Section 4.1).

$s: the companys weighted average cost of capital at the horizon.

�s: the subjective (empirical) probability that scenario s occurs.

�1ts: claims of type 1 due to policyholders at time t.

�2ts: claims of type 2 (originating from underwriting hazardous risks)

due to policyholders at time t.

rtj(s): the risk free interest rate between time t and t+ 1, associated

with scenario s.

�ts: a ratio associated with the solvency margin.

The ALM model can now be formulated as follows:

Maximize

Q =
X
s2S

�s

�X
t2�

�ts (Cts +Rts) + ��s

�
CP
s +RP

s

�
=$s � ��sA�s

�
X
t2�

� (�tsZts)

�
(1)

Subject to

V +
its = V �

its + xits; 8i 2 I; t 2 T; s 2 S (2)

V �

its = V +
it�1s (1 + �its) ; 8i 2 I; t 2 �; s 2 S (3)

Xts =
X
i2I

j�itxitsj ; 8t 2 T; s 2 S (4)

Ets = �tKts; 8t 2 T; s 2 S (5)
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Kts = ntsP
i
tk(s); 8t 2 T; s 2 S (6)

Dts = nt�1s'
i
tj(s); 8t 2 T; s 2 S (7)

Ats =
tX

k=0

lks; 8t 2 �; s 2 S (8)

Ct = lt �Kt; t = 0

Cts = (1� �bt�1s) �t + lts +
X
i2I

V +
it�1s�its +Dts +Gts (9)

�Kts � �1ts � �2ts �Wts �Xts � Jts;

8t 2 (1; : : : ; �); s 2 S

Cts =
X
i2I

xits; 8t 2 T; s 2 S (10)

Gts = bt�1s�1ts; 8t 2 (1; : : : ; �); s 2 S (11)

Wts = rtj(s)lts; 8t 2 (1; : : : ; �); s 2 S (12)

Fts = (1� �bt�1s) �t +
X
i2I

V +
it�1s (�its + �its) +Dts +Gts

�Kts � �1ts � �2ts �Wts �Xts � ets; (13)

8t 2 (1; : : : ; �); s 2 S

Jts = max [0; TtFts] ; 8t 2 (1; : : : ; �); s 2 S (14)

Yts = Fts � Jts; 8t 2 (1; : : : ; �); s 2 S (15)

Bts = Bt�1s + Yts; 8t 2 (1; : : : ; �); s 2 S (16)

Hts = Ht�1s + ets; 8t 2 (1; : : : ; �); s 2 S (17)

�itV
+
ts � V +

its � itV
+
ts ; 8i 2 I; t 2 T; s 2 S (18)

�Lit � xits � �Uit ; 8i 2 I; t 2 (1; : : : ; �); s 2 S (19)

xitsk = xitsv if �kr = �vr 8r : 0 � r � t; i 2 I; t 2 T; sk; sv 2 S(20)

Z1ts = max [0;  �t�ts � (Bts +Dts + �bt�1s�t + �Hts)] ;

8t 2 (1; : : : ; �); s 2 S (21)

V R
ts =

X
i2I

#Ri V
�

its; 8t 2 (1; : : : ; �); s 2 S (22)

Z2ts = max
h
0;	RV R

ts � (Bts +Dts + �bt�1s�t)
i
;

8t 2 (1; : : : ; �); s 2 S (23)

Z3ts = max [0;� (Cts +Rts � lts)] ; 8t 2 (1; : : : ; �); s 2 S (24)

Z4ts = max
h
0; �1ts + �2ts �	LV L

ts �Dts

i
;

8t 2 (1; : : : ; �); s 2 S (25)



140 Model description

V L
ts =

X
i2I

#Li V
�

its; 8t 2 (1; : : : ; �); s 2 S (26)

The three �rst bracketed terms of the objective function (1) gives the net

present value of the company in each scenario s, including its scenario de-

pendent continuing value. � is a convex cost function through which short-

falls are penalized. Observe that the (regulated) companys risk preferences

are reected in this cost function, so that shortfalls are discounted to the

present using risk free, time dependent interest rates. The risk adjusted

discount factor �ts embodies the business risk that the market assigns to

the operations of the company. In a capital asset pricing model frame-

work1, this factor would account for the fact that unsystematic risk has

been diversi�ed away from the investors portfolios. We de�ne �ts as the

companys cost of capital, and interpret this to be the average return on

equity that a mutually owned company would have to o�er its pool of risk

averse insurance takers.

Constraints (2) de�ne portfolio revision. The xits variable is positive or

negative according to whether or not asset class i is bought or sold.

Constraints (3) de�ne how asset values evolve between time t� 1 and t.

The nonlinear constraints (4) de�ne transaction costs that accrue each time

an asset class is traded. When implemented, these constraints have been

linearized according to a standard procedure.

Constraints (5) de�ne transaction costs that accrue when the derivative

asset is bought. It is assumed that the derivatives are held to maturity, i.e.

never sold.

Constraints (6) and (7) are related to �nancial reinsurance. Constraints (6)

calculate the value of derivative holdings at time t. Equivalently, this is the

cost at time t of �nancial reinsurance against insurance risks at time t+1.

Constraints (7) calculate the payo� at time t from derivatives obtained

at time t � 1. The derivatives are alive for one period only, and, as we

emphasized above, are always held to maturity. Observe that option prices

P i
tk(s) and option payo�s 'itj(s) are treated as data in the ALM model.

These parameters are obtained from the derivative pricing model presented

1A textbook presentation of the Capital Asset Pricing Model is o�ered by Huang &

Litzenberger (1988).
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in Section 4.

Loans accumulate according to constraints (8). It is assumed for com-

putational simplicity that loans are to be accumulated and repaid at the

horizon.

At each time t, the company calculates the scenario dependent net cash

ow, which is to be allocated among the asset classes, according to con-

straints (9) (At time t = 0, there is of course only one set of variables that

is shared by all scenarios.)

The assumption that all net cash ows are reinvested is reected in the

budget constraints (10).

The amount of money received from (regular) reinsurance at time t in

scenario s is calculated as a fraction of the associated claims payment,

as de�ned in constraints (11). We assume that there is a proportionate

relationship between (state dependent) received reinsurance at time t and

premium income ceded at time t� 1.

Interest costs on loans are made consecutively and these are calculated

according to constraints (12).

Constraints (13) show how earnings are calculated at each time t. We need

this item in order to calculate taxes.

Having calculated earnings, we may calculate taxes according to constraints

(14). In conformity with the tax equations, these constraints were linearized

by a standard procedure. Observe that the two sets of equations (13) and

(14) imply that, in this model, no distinction is made between realized and

non-realized return on the asset classes.

Now we may calculate pro�ts available for equity at each time t according

to constraints (15).

The value of the company's equity between time t � 1 and t is updated

according to constraints (16).

Constraints (17) de�nes allocations to technical reserves at time t.

Constraints (18) impose lower and upper bounds on the asset mix accord-

ing to legislative regulations. V +
ts denotes the portfolio value (excluding
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derivative holdings) after revision at time t, i.e. V +
ts =

P
i2I V

+
its.

Typically insurance companies are large traders in �nancial markets, and

must consider the impact of their trading policies on asset prices. Conse-

quently constraints (19) impose trading limits on the portfolio revision.

Constraints (20) impose non-anticipativity constraints on the scenario de-

pendent decisions at each node in the scenario tree. We note that sk and

sv are arbitrary scenarios. A similar set of constraints apply to each type

of decision variables in the model. These constraints are necessary in order

for the decisions, associated with a particular scenario sk, not to anticipate

future realizations of uncertain parameters. Since each node is shared by

many scenarios, each of which is associated with a set of decision variables,

typically there are many decision variables representing the same decision

at each node. Constraints (20) imply that all but one of these decision

variables are redundant. See Rockafellar & Wets (1991) for a discussion

of the modeling and solution of general stochastic programs with non-

anticipativity constraints. When we implemented the model we avoided

the redundancy problem associated with scenario dependent decisions, by

means of de�ning the model entities in terms of nodes rather than scenarios.

Constraints (21)-(26) are related to the de�nition of shortfall variables,

which are indexed over the set H. We have linearized all nonlinear con-

straints in the actual implementation of the model. If correctly de�ned

the shortfall variables reect the legal restrictions with witch a casualty in-

surer attempts to comply. The legislation a�ects the company's economic

activity both through the balance sheet and the pro�t and loss account.

A casualty insurer must adapt to capital adequacy requirements, solvency

requirements and restrictions on borrowing, the latter implying, among

other things, a concern for the liquidity of the asset classes. Also techni-

cal reserves of di�erent categories must not fall below speci�c minimum

requirements. Finally, the portfolio composition at any decision point can-

not be determined at the company's discretion, there are upper limits on

the amount of money which can be held in the di�erent asset classes as a

fraction of technical reserves.

If the company at any time t should fail to comply with any of the above

regulations, it is penalized in the objective function through the shortfall

variables Zhts, which then attain positive values.
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Constraints (21) de�nes the shortfall variables associated with the solvency

requirements. The basis for calculating the solvency margin is either cur-

rent period premium income or average loss payments incurred over the last

three periods, depending on which calculation yields the highest amount

of money. We have based our de�nition of the solvency margin on current

period premium income. In (21) the solvency margin is calculated as a

percentage  of current period premium income �t multiplied by a ratio

denoted �ts. The parameter �ts is the ratio between current period loss

payments, net of received reinsurance, and last period gross loss payments

in scenario s. Thus a more risky portfolio of policy owners \on average"

increases the solvency requirement through higher loss payments, whereas

investments in reinsurance decreases the margin. Next, the solvency capi-

tal is compared to the margin. The solvency capital is de�ned by the last

term on the right hand side (21). It consists of equity, income from �nan-

cial reinsurance (derivatives) at time t, investment in regular reinsurance

at time t� 1 and a fraction � of a model aggregate representing technical

reserves. Whenever the solvency capital falls short of the required margin,

the shortfall variable Z1ts attains positive value. If the solvency margin

requirement is satis�ed Z1ts is set to zero because of the costs associated

with a positive shortfalls.

Constraints (22) de�ne a risk adjusted value of the asset classes at time t.

This value is needed in order to de�ne the capital adequacy requirement.

Each asset class is assigned a weight according to its alleged �nancial risk.

In constraints (23) the capital adequacy requirement is calculated as a

percentage 	R of the risk adjusted value of the portfolio. The second term

on the right hand side of (23) is the capital adequacy requirement. The

items to be measured against this requirement is found both on and o� the

balance sheet. In this model, in order to avoid shortfall costs at any time

t, the sum of equity, income from �nancial reinsurance and investment in

regular reinsurance, the latter measured at time t�1, must be greater than

or equal to the capital adequacy requirement.

Constraints (24) are funding requirements. A casualty insurer is concerned

that its earnings at any time t is su�cient to cover the incurred loss pay-

ments to policyholders, in all but a few extreme states of nature. This

preference implicitly reects the fact that the insurance company is limited

to restrictive borrowing. Only exceptionally will it be permitted to obtain

loans. Thus whenever it does choose to obtain loans to cover part of its
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liabilities, it incurs shortfall costs. If the numerical value of the bracketed

expression in (24) is negative, the sum of premium income less administra-

tive expenses and return on the portfolio of asset classes was insu�cient

to cover claims directed against the company, at that particular point in

time. Consequently the associated shortfall variable attains positive value.

The fact that a casualty insurer is not generally permitted to obtain loans

to facilitate its operations, has an impact on the extent to which it cares

about the liquidity of its assets. This connection is reected in constraints

(25). Generally a casualty insurer is required to cover its liabilities imme-

diately as they occur and might have to sell o� assets, in which case the

liquidity of the assets is of vital importance. Consequently there is a link

between its earnings and the portfolio composition. The connection is as

follows: In states of nature where earnings are su�cient to cover loss pay-

ments, the company will rebalance in accordance with its (possibly revised)

market expectations. In such states it may keep a relatively large portion

of its funds in non liquid assets, such as stocks, because it will only trade at

its own discretion. However, this is not necessarily true in states of nature

where its earnings are insu�cient to cover its liabilities due to huge loss

payments. Then it might have to sell o� assets fast to cover the loss pay-

ments. In such states the company would be better o� with a more liquid

portfolio, i.e. a relatively large portion of its funds should be allocated to

cash. In order to force the company to maintain a relatively liquid portfo-

lio, it incurs positive shortfalls Z4ts whenever the loss payments exceed a

percentage of the liquidity weighted value of the portfolio.

Observe that the above implementation of the legal restrictions reects the

fact that derivative hedging actually reduces the company's risk exposure,

and therefore contributes to compliance with the legal statutes.

Constraints (26) de�ne the liquidity weighted value of the portfolio at time

t. Income from the derivatives has a liquidity weight equal to one because

it is cash.

We mentioned above that, when developing the portfolio selection model,

we implicitly regarded option prices as input data to the model, and the

value of the option portfolio, Kts, is equal to the number of option contracts

times their price. We need to have a model for option prices because it is

necessary to know the prices on options in future states, not only for the

�rst stage|for which it is possible to use market prices on options. In the
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next section, we set up a model which selects a discrete probability measure

with which the value of risky cash ows, including option prices, easily can

be computed. This probability measure satis�es the important economic

no arbitrage condition.

4 Pricing derivatives in stochastic programming

models

In their famous 1973 paper, Fisher Black and Myron Scholes reported the

discovery of a closed form formula for the price of a European call option

on a non-dividend paying stock. Black and Scholes set their analysis in

continuous space and time, under a relatively strict set of assumptions.

Their most important discovery was the fact that their di�erential equation,

which represents the change in the price of the derivative asset with respect

to change in the price of the underlying asset and time, does not contain

risk preferences. This led to the principle of risk neutral valuation, which

is one of the most important concepts of �nancial theory. In essence this

principle states that since the di�erential equation governing the evolution

of the option price is not a�ected by risk preferences, neither is its solution,

i.e. the option price, and consequently when pricing derivatives we may

assume that investors are risk neutral. The prices we obtain, however, are

valid in all worlds.

Over the last three decades a substantial body of literature, dedicated to

derivative pricing, has shown how the Black-Scholes analysis can be ex-

tended and how their assumptions can be relaxed. Numerous di�erent

pricing methods and contexts have been suggested, but the principle of

risk neutral valuation continues to apply. In the next section we shall make

explicit use of this principle when pricing a put index option. We shall

maintain the most important of the assumptions underlying the Black-

Scholes analysis: that there are no arbitrage opportunities. An arbitrage

opportunity is a sequence of portfolio decisions with an initial cost of zero,

maintaining non-negative value in all future states, and which has a strictly

positive possibility of ending up in a state with a positive value. Loosely

speaking the principle of no arbitrage means that in order to make a pro�t

in excess of the risk free rate of return, you need to incur risk. This con-

dition reects the basic economic assumption about �nancial markets that
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well informed arbitrageurs would exploit arbitrage opportunities immedi-

ately if such existed. Therefore in practice arbitrage opportunities can only

persist for a very short period of time, and in theoretical models arbitrage

should not be present at all.

It is well known that the no-arbitrage condition is equivalent to saying that

ex-dividend price processes and dividend processes satisfy the martingale

property. A security price process and its accumulated dividends are a

martingale if, at any time t, the conditional expectation of their discounted

sum at any future date s equals the sum of their value at time t < s. The

expectation should be taken under a speci�c probability measure and if

there exists a risk free investment opportunity, the discount rate should be

equal to the risk free rate of return. The main task of the next section

is to construct this probability measure in terms of a discrete probability

distribution.

4.1 Constructing arbitrage free derivative prices

It is a necessary condition for the martingale probability measure to be

unique in a discrete time and space economy that, at each time t, the

number of linearly independent long lived security (prices) be equal to the

maximum number of conditional realizations of those prices at time t+ 1,

i.e. the maximum number of branches leaving a node in the scenario three

at time t. This condition is not satis�ed in our model economy, where

the number of possible outcomes in each period, 
t, exceeds the number of

securities. However, when there are no arbitrage opportunities, there exists

a set of probability measures under which all securities are martingales. In

this section we formulate a set of constraints that must be satis�ed by

security prices in order to avoid arbitrage. The martingale probability

measure we thus obtain is not unique.

A crucial implication of the above result is the fact that derivative prices

satisfying the no-arbitrage condition are not unique. As we use option

contracts to hedge a portfolio of �nancial assets against insurance risks,

this raises two questions: (i) Is the optimal portfolio much a�ected by

the choice of a speci�c martingale probability measure, implying a speci�c

vector of option prices? (ii) If the answer to (i) is yes, how should we

select an appropriate martingale measure? Below we present a method
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which produces discrete martingale probability measures. The method is

similar to that of Jackwerth & Rubinstein (1996), although they are able

to constrain the problem more than we are, because they use observed bid

and ask prices for derivatives in the market.

As noted above, according to the principle of risk neutral valuation, when

valuing derivatives we may assume that investors are risk neutral. In such

a world the expected return on all securities must be the risk free rate

of return. The set of security prices (implicitly) generated as data to our

portfolio selection model, obviously reects risk preferences, and so does the

associated (subjective or empirical) probability measure. If we can �nd a

way to move probability mass around, so that the generated set of security

prices yields a net expected rate of return equal to the risk free interest

rate, then we have a candidate for our martingale measure in terms of a

risk neutral probability distribution.

Provided the following set of equations are satis�ed by security prices when

investors are risk neutral, there are no arbitrage opportunities:


tX
j=1

�t�1j(s)M
i
tj(s) = (1 + rt�1j(s))M

i
t�1k(s); 8i 2 I; t 2 �; k 2 
t�1


tX
j=1

�t�1j(s) = 1; 8t 2 T (27)

We note that each outcome, with the obvious exception of last period out-

comes, is associated with several scenarios s. M i
tj(s) is the price of security

i at time t in outcome j. (Outcome j occurred between t� 1 and t.) There

are 
t possible outcomes at time t, one of which will occur. The �tj 's are

the risk neutral probabilities at time t of outcome j occurring at time t+1,

which constitutes the martingale distribution we are looking for. The risk

free rate of return is rtj(s) between time t and t+ 1. As mentioned above

the security prices are data to our portfolio selection model, and these are

regarded as parameters in (27). We note that all states must occur with

a strictly positive probability. This technical condition is needed in order

for the martingale measure to guarantee absence of arbitrage opportuni-

ties. Once a martingale measure has been selected, the put prices can be
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computed according to the following formula:

P i
tk(s) =


tX
j=1

�tj(s)max
h
0; Si �M i

t+1j(s)
i

1 + rtj(s)
; 8i 2 I; t 2 T; k 2 
t�1 (28)

where P i
tk(s) is the price at time t of a European put option on security

i with strike price Si maturing at time t + 1. Observe that the price is

contingent upon outcome k occurring at time t. When the number of states

j, at any time t, exceeds the number of securities, there exists a continuum

of solutions to (27) in terms of the probabilities �tj(s).

In order to �nd a solution we shall optimize an objective with respect to the

�tj(s)'s, subject to the set of equations (27). Since in our case the arbitrage

principle fails to provide unique derivative prices, we utilize equilibrium

principles. We maintain our requirement that prices must be arbitrage-free,

but in addition we require that prices are as close as possible to reasonable

equilibrium prices. Our objective is thus to minimize a distance measure,

i.e. the distance between equilibrium and absence of arbitrage.

In equilibrium valuation models it is often assumed that the market par-

ticipants can be aggregated into a representative agent2. The prices that

can be inferred from the �rst-order condition of the portfolio-consumption

choice problem of this agent are the desired equilibrium security prices. An

example of such a condition is that the marginal rate of substitution (MRS)

between present and future state contingent consumption, is equal to the

price of an elementary claim that pays o� $1 if a particular state occurs

and nothing otherwise, i.e. the price of a state-contingent claim, Otj :

�tj(s)MRStj(s) = Otj(s); 8t 2 �; j 2 
t (29)

The �tj(s)'s are the empirical time t probabilities that outcome j will occur

at time t+ 1. The state-contingent claims have the property:

M i
t�1k(s) =


tX
j=1

Ot�1j(s)M
i
tj(s); 8i 2 I; t 2 �; k 2 
t�1 (30)

2An outline of this theory is found in Huang & Litzenberger (1988).
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Since by (27)

M i
t�1k(s) =

1

1 + rt�1j(s)


tX
j=1

�t�1j(s)M
i
tj(s); 8i 2 I; t 2 �; k 2 
t�1

(31)

we see that prices of state-contingent claims correspond to discounted mar-

tingale probabilities of (27):

�
eqm
tj (s) = Otj(s) (1 + rtj(s)) = �tj(s)MRStj(s) (1 + rtj(s)) ;

8t 2 �; k 2 
t�1 (32)

This means that we can �nd an equilibriummartingale probability measure

�
eqm
tj (s) using the marginal rate of substitution of a representative agent,

the risk free interest rate and the empirical probability. These probabilities

should reect a reasonable equilibrium, i.e. one in which the prices of the

state-contingent claims, or state prices, are such that the value of receiving

$1 in an abundant state of nature is less than that of receiving $1 in a poor

state of nature.

As a proxy for future stage contingent consumption of the representative

agent, i.e. the extent to which the state of the world is \rich" or \poor",

we use the index level M1
tj(s). The utility function of that agent, which

determines the MRS
�
M1

tj(s)
�
, is a matter of choice. A good choice is

one that represents the aggregate market well, Jackwerth (2000) suggests

\a power utility function of moderate risk aversion". Thus we obtain our

risk neutral probability measure as the solution to the following set of

conditional optimization problems: At each node �vt in the scenario tree

solve;

min
�tj(s)


tX
j=1

h
�tj(s)� �

eqm
tj (s)

i2
; 8t 2 T; �vt 2 � (33)

s.t. (27) and (32)

i.e. the summation is taken over all arcs leaving node �vt . When the put

options associated with the martingale obtained from (33) are priced ac-

cording to (28), they do possess the desired return properties; since a put

option pays o� in poor states of nature, their expected return should be

low or even negative. We demonstrate the puts signi�cance to portfolio

hedging through a numerical example in Section 5.



150 Numerical example

Jackwerth (2000) suggests that out of the money puts empirically tend to

be slightly overpriced. Computing the maximum put price vector satisfy-

ing the no-arbitrage condition, yields conservative results in terms of the

portfolio share of puts, i.e. the level of reinsurance, in the optimal portfolios

selected by the ALM-model of Section 3. The objective (34) applied to (27)

at each node implements this approach.

max
�tj(s)


tX
j=1

�tj(s)'
i
tj(s); 8t 2 T; �kt 2 � (34)

where 'itj(s) = max
h
0; Si �M i

tj(s)
i

We have further tried the objective (35) on the set of constraints (27).

min
�tj(s)


tX
j=1

[�tj(s)� �tj(s)]
2 ; 8t 2 T; �kt 2 � (35)

Applying (35) to (27) yields a put price vector in the interior of the set

of allowable put price vectors. However, neither (34) nor (35) produced

reasonable put returns, as did the objective in (33).

In the next section we construct a numerical example, illustrating the im-

portance of �nancial reinsurance to the ALM problem of a casual insurer.

The derivatives we use are put index options, which have been priced ac-

cording to (28) after solving the system (33).

5 Numerical example

We have implemented and solved a deterministic equivalent of the stochas-

tic program associated with the model presented in Section 3. The ALM

model is developed in a highly aggregated setting, and can be used to de-

cide about distribution of funds between classes of securities. It has three

asset classes, 4 stages, which is equivalent to three time periods, and ten

outcomes in each time period. This amounts to a total of 1000 scenarios,

i.e. paths through the scenario tree depicted in Figure 1. By means of a

numerical example we shall illustrate the concept of �nancial reinsurance.

As pointed out in Section 2 and 3 the risk preferences embedded in the

objective function (1) reects the companys e�ort to comply with the legal
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regulations. These in turn are enforced to protect policyholders interests

against too risky investment strategies, which the authorities think might

result from unregulated market behavior. Therefore we calculate the utility

of wealth that an alleged representative risk averse policy holder, endowed

with a linear plus negative exponential utility function, gains from the in-

surance companys optimal portfolio decisions.

We study a casualty insurer which may allocate his funds to cash, stocks

and put options on a stock index whose price process is highly negatively

correlated with the claims payments associated with a speci�c insurance

risk in his portfolio of insurance contracts. The initial balance sheet for

this company is shown below in Table 1.

Table 1: Initial balance sheet.

Assets Liabilities

Cash 160 Loans 14

Stocks 40 Technical reserves 126

Put options 0 Equity 60

Total assets 200 Total liabilities 200

When deciding which asset classes should be available for our insurance

company, we only distinguish between highly liquid, non-risky assets and

non-liquid, risky assets. The initial distribution of funds across assets is

supposed to reect that casualty insurers empirically are highly liquid. The

next section briey explains how we generate data for our portfolio selection

model.

5.1 Scenario generation

Input data to the portfolio selection model outlined in Section 3.1 are ran-

dom returns on the asset classes and stochastic loss payments due to pol-

icyholders. These are the stochastic parameters of the model. In order

to provide these data, we generate a limited number of discrete outcomes

with statistical properties that match those of a subjective multivariate con-

tinuous probability distribution, speci�ed in terms of the �rst M central

moments and correlations. For this purpose, we use a scenario genera-

tion model, employing a method based on nonlinear optimization. This
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model was developed by H�yland & Wallace (1999b) to provide input for

an ALM-model of a life insurance company.

The implemented scenario generation routine works as follows: The user

speci�es his or her subjective market expectations, in terms of percentiles

of marginal distributions for asset returns and claims, and also a correlation

matrix to capture the interdependencies of the random parameters. Ideally,

we would like to construct a scenario tree retaining as many as possible of

the statistical properties of the continuous marginal distributions, in ad-

dition to the correlation matrix. From a computational point of view this

would however result in a prohibitively large number of discrete outcomes.

The crucial question is: Which are the economically signi�cant statistical

properties of the original marginal distributions, in view of the problem

at hand? Put di�erently this question could be phrased: Which statisti-

cal properties does (or should) the decision-maker care about? When this

question has been decided, we generate a scenario tree, i.e. a set of discrete

probability distributions, which is consistent with the relevant statistical

properties. In our case, we believe that the relevant properties are expec-

tation, variance, skewness, kurtosis and correlations.

The scenario generation model can take account of inter-temporal depen-

dencies between the variables, and we have modeled mean reversion for

interest rates, and volatility clumping for all asset classes. The method

is explained by H�yland & Wallace (1999b). The market speci�cations,

underlying our numerical example, are reported in Table 2. \Claims 1"

accounts for the main bulk of insurance risks that the company has under-

written. \Claims 2" is associated with hazardous risks, which constitute a

small fraction of total liabilities.

We have also speci�ed a state independent correlation matrix, which is

reported in Table 3.

5.2 Experiment and results

We now describe the method we use to examine the rationale for �nancial

reinsurance. A basic assumption is that, under the prevailing statutory

regulations, the casualty insurer is risk averse. We assume that he has

to comply with the following statutory regulations: (i) capital adequacy

requirements, (ii) solvency requirements, (iii) credit rationing, i.e. borrow-
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Table 2: Subjective market speci�cations. A * means that the speci�cation

is state dependent.

Asset classes Distribution (End of) (End of) (End of)

incl claims Property Period 1 Period 2 Period 3

Cash Exp. value spot rate 0.04 * *

Standard deviation 0.01 * *

Skewness 0.0 0.0 0.0

Kurtosis 3.0 3.0 3.0

Stocks Expected value return 0.08 * *

Standard deviation 0.15 * *

Skewness -1.0 -1.0 -1.0

Kurtosis 4.0 4.0 4.0

Index E. value gross return 0.08 * *

Standard deviation 0.18 * *

Skewness -1.0 -1.0 -1.0

Kurtosis 4.0 4.0 4.0

Claims 1 Expected value -23.0 * *

Standard deviation 5.0 * *

Skewness -2.0 -2.0 -2.0

Kurtosis 8.0 8.0 8.0

Claims 2 Expected value -10.0 * *

(hazardous Standard deviation 10.0 * *

risks) Skewness -2.0 -2.0 -2.0

Kurtosis 8.0 8.0 8.0

Table 3: Speci�ed correlations in all periods.

Cash Stocks Index Claims 1 Claims 2

Cash 1.0 -0.6 -0.4 0.0 0.0

Stocks -0.6 1.0 0.3 0.0 0.0

Index -0.4 0.3 1.0 0.0 0.7

Claims 1 0.0 0.0 0.0 1.0 0.0

Claims 2 0.0 0.0 0.7 0.0 1.0



154 Numerical example

ing is in practice prohibited. As explained when presenting the model in

Section 3, the legal requirements are not implemented as hard constraints.

Instead each legal constraint is associated with a costly recourse activity,

which may be chosen such as to compensate its violation, if any. This is

equivalent to assuming that risk, as perceived by the insurance company, is

failing to comply with the legal requirements. The cost function assigning

penalty costs to positive shortfalls, is quadratic:

� (�tsZts) =
X
h2H

�h�tsZ
2
hts: (36)

Here �ts is a risk free discount factor, for period t in scenario s, Zhts denotes

actual shortfalls of type h and �h is a constant. This function penalizes

large shortfalls relatively more than small shortfalls, reecting the assump-

tion of convex recourse costs. In these experiments the constant �h is

assigned the numerical value 0.5 for all h.

Associated with insurance risks are claims payment and premium income.

For most risk categories in the casualty insurance business, expectations of

claims payments plus operating costs are equal to or even slightly higher

than expectations of premium income. This implies that the company must

earn its pro�ts from investing policyholders funds in the �nancial markets.

We shall however assume that expected premium income associated with

hazardous risks are higher than the expectation of the corresponding highly

volatile claims (\Claims 2") plus associated operating costs. This seems like

a plausible condition to be satis�ed by hazardous risks, if these are to be

attractive to risk averse casualty insurers.

In this numerical example, there exits a stock index having random payo�s

that are positively correlated with the claims payments denoted \Claims

2" in Table 3. The correlation between the two variables is assumed to

be 0.7. Recall from Table 3 that the distributions of claims have negative

expectation. Consider a realization of claims with a negative deviation from

its expectation. If the expected value is -10 the observation could be -15,

i.e. a higher loss payment. The assumption that the index price process

is positively correlated with the claims, implies that at the same time we

expect to observe a realization of the index below its expected value. In

practice this means that when claims payments peak, we expect to realize

payo�s on the puts to help �nance the loss payments.

The situation described above could �t many real world phenomena. For
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instance imagine a casualty insurer who contracts to insure individuals and

�rms against earthquakes in Japan. If a serious earthquake occurs, he will

have to pay huge loss payments. In the same event, many Japanese com-

panies will be seriously hurt. Consequently a long position in put options

on a suitable Japanese stock index, will (imperfectly) insure the company

against claims generated by this speci�c insurance risk.

When we construct our numerical example, we have normalized all initial

security prices to 1. At each time t, put index options of varying exercise

prices expiring at time t+1 are available. Intuitively we would expect out of

the money puts, contrary to in the money- or at the money puts, to be best

suited to provide insurance against worst case scenarios for the following

two reasons: (i) They are the cheaper ones, being the most distant from

the payo� region. (ii) Their strike price has been selected such as to yield

positive payo�s when the index reaches some threshold, below which the

company needs insurance. Therefore our �rst trial is an out of the money

put option with strike price 0.9. Of course what is considered a worst case

scenario must be decided by each casualty insurer. We have also analyzed

an at the money put option with strike price 1.0. Note that the puts are

alive for one period only. This simpli�es the implementation of the no

arbitrage condition. We note that whether or not puts that are bought

beyond time t = 0 are in the money, at the money, or out of the money is

state dependent in this model.

In Table 4 below we display the optimal time zero portfolios selected by

the casualty insurer. The portfolios are characterized as follows:

Portfolio A: Unregulated portfolio including hazardous risks.

Portfolio B: Unregulated portfolio excluding hazardous risks.

Portfolio C: Regulated �nancially noninsured portfolio including

hazardous risks.

Portfolio D(D�): Regulated �nancially reinsured portfolio including

hazardous risks.

Portfolio E: Regulated portfolio excluding hazardous risks.

Portfolio A and B are selected in an unregulated market, in which bor-

rowing is possible. In the absence of regulations, some policymakers seem

to believe that a mutual casualty insurer would not consider its owners
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Table 4: Optimal time zero portfolios and associated objective value for

the casualty insurer.

Port- Cash Stocks Strice Put Loans St.dev Objective

folio price value of �V �

�s value

A 0 210 10 63 330

B 0 210 10 60 281

C 171.8 28.2 0 19.9 86

E 152.3 47.7 0 11 103

D 164.6 33.4 0.9 2.0 0 27 107

D� 172.2 26.8 1.0 1.0 0 17 98

risk preferences, i.e. the policyholders risk preferences, in the sense that

in a CAPM framework he does not care about unsystematic risk. When

two-fund separation applies, he invests to maximize expected payo�s and

allocates all his funds to the security yielding the highest expected (rate of)

return. In our example this is stocks. Accordingly, portfolio A and B con-

sists of stocks only. This also holds for all future conditional decisions that

are not shown in Table 4. The remaining portfolios are optimal when the

insurer is required to comply with the legal statutes, for a given degree of

risk aversion (�h = 0:5). Portfolio A yields higher objective function value

to the casualty insurer than does portfolio B, implying that the hazardous

risk does provide positive expected cash ows.

The regulated portfolios C, D and D� both includes hazardous risks, and in

terms of shortfall risk portfolio D� is the least risky. The di�erence between

porfolio D and D� is the strike price of the put, as shown in Table 4. In

this particular example, the put options have lower expected payo� than

the risk free rate of return. This is because of the way we have selected our

martingale probability measure. Under the risk neutral probability measure

the expected return on all securities must be the risk-free rate of return.

To accomplish this, in our scenario tree probability mass is shifted from

abundant to poor outcomes. Poor outcomes include outcomes in which the

puts pay o�. The put prices we obtain from risk neutral valuation are valid

in all worlds. However, in the scenario tree the puts pay o� less frequently

than under the risk neutral distribution. It follows that for given put prices

under the empirical distribution, i.e. on our scenario tree, the puts must

yield expected return less than the risk-free rate of return.
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Portfolios D and D� yield higher objective function value to the risk averse

casualty insurer than portfolio C. This is because the former portfolios

are less constrained, i.e. derivative hedging is possible and bene�cial. We

observe that it is optimal to take positions in put options at time t = 0.

Conditional time t = 1 derivative positions in portfolio D are displayed in

Table 5. There are 10 conditional decision points at t = 1.

Table 5: Conditional time t = 1 put holdings. Strike price 0.9.

Outcome Put holdings

1 0

2 3.59537

3 0

4 1.68444

5 0

6 0

7 31.5668

8 6.74603

9 3.21446

10 0

The more interesting comparison is between portfolios D (D�) and E. Ob-

serve from Table 4 that a risk averse casualty insurer can actually increase

his utility (objective function value) from insuring hazardous risks, pro-

vided his earnings can be successfully �nancially reinsured. In our example

puts with exercise price 0.9 provides satisfactory insurance. Conditional on

this exercise price, portfolio D clearly outperforms portfolio E, in terms of

objective value. The �nancial markets provide a possibility to hedge the

casualty insurers income against claims that are due to speci�c hazardous

risks in his insurance portfolio. He may thus be able to insure lucrative

but hazardous risks, while incurring acceptable shortfall costs in order to

maintain compliance with the legal statutes.

As mentioned in the introduction to this paper, we assume that the policy-

holders own either the insurance company or the funds being managed by

the insurance company. We further assume that there exists a well informed

representative policyholder, who is capable of identifying the companys �-

nancial position. This policyholder realizes that a highly volatile portfolio

of stocks might be a threat to its ability to pay the incurred claims, if a
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worst case scenario occurs.

In order to examine the policyholders' evaluation of �nancially reinsured

hazardous risks, we would like to focus on a distinguishing property of

derivatives, namely their ability to hedge downside risk. It is of course the

downside potential of insurance fund return that worries risk averse policy-

holders. This means that we should endow the representative policyholder

with a utility function that explicitly penalizes downside variance. There-

fore we have represented policyholders non-satiated desire for wealth by the

linear plus negative exponential utility function, which has this property:

E
�
U
�
�V �

�s

��
=
X
s2S

�s

�
�V �

�s � b1e
�b2�V

�

�s

�
(37)

�V �

�s is the change in the value of the portfolio between time t = 0 and t = �

in each scenario s. The parameter b2 controls aversion against downside

variance, and b1 controls the aversiveness of this risk. We let b1 = 1.

Increasing b2 implies that the policyholders more strongly resent extreme

downside outcomes. The linear plus negative exponential utility function

is further examined by Bell (1995). Table 6 shows the utility function (37)

evaluated at portfolios A through E.

Slightly risk averse policyholders (b2 =0.01) prefer portfolio A to all the

other portfolios (as they should). However, when risk aversion increases

beyond 0.01 the unregulated portfolios A and B are the least desired. Con-

sider now the regulated portfolios C, D and D�, which all include hazardous

risks. When the risk aversion parameter b2 in the representative policy-

holders utility function is greater than 0.01, the �nancially non-reinsured

portfolio C is never preferred to the reinsured portfolios D and D� which

includes put options. Observe that puts with strike price 1 provides better

insurance against down side variance than otherwise identical puts with

strike price 0.9. But the former are more expensive and are only preferred

when b2 � 0:3.

Figure 2 shows the e�ect on the cumulative distribution function (CDF) for

the change in wealth, �V �

�s, of introducing put options into the portfolio.

Since the put options have negative expected returns, the expected (posi-

tive) change in wealth is smaller after including puts. However, a careful

examination of the lower left tails of the distributions reveals why �nancial

reinsurance is preferred. The downside risk has become smaller, i.e. in this
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Table 6: Evaluating the policyholder's expected linear plus exponential

utility of wealth, for varying levels of risk aversion.

Risk aversion Portfolio A Portfolio B Portfolio C

parameter b2
0.01 43.69 34.03 19.53

0.1 -1.505�1013 -4.889�1011 -47715

0.2 -1.614�1019 -1.574�1017 -1.236�108

0.3 -2.453�1031 -1.784�1028 -1.600�1015

0.5 -1.046�1056 -2.584�1050 -5.382�1029

0.8 -1.897�1093 -5.223�1083 -4.429�1051

0.9 -5.25�10105 -6.728�1094 -9.027�1058

Risk aversion Portfolio E Portfolio D Portfolio D�

parameter b2 Strike 0.9 Strike 1.0

0.01 11.82 19.04 16.28

0.1 11.37 -39635 -41225

0.2 5.91 -9.301�107 -9.552�107

0.3 -1030 -8.746�1014 -8.724�1014

0.5 -1.414�108 -1.507�1029 -1.385�1029

0.8 -2.340�1016 -5.300�1050 -4.470�1050

0.9 -1.688�1019 -8.221�1057 -6.722�1057

area the CDF associated with the distribution which include options is the

lower curve. The lower left tails of the distributions are displayed in Figure

3.

Consider now the regulated portfolio E. Recall that this portfolio is selected

by a risk averse casualty insurer, when he is not permitted to underwrite

hazardous risks. From Table 6 we see that as far as the policyholders

are concerned, this portfolio clearly dominates all other portfolios when

risk aversion is greater than 0.01. Recall from Table 4 that the regulated

insurance company prefers portfolio D including puts with strike price 0.9.

How can we interpret this result?

It seems as if we are looking at a conict of interests between the casu-

alty insurer and his policyholders. But at this point we must distinguish

between two di�erent situations. First, in regard to the earth quake exam-

ple given above, consider a Norwegian casualty insurer whose policyholders

are not exposed to earthquake risk. Then ask if he should insure Japanese
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Figure 3: Lower left tail of cumulative distribution functions for the change

in wealth �V �

�s, between time t = 0 and t = � .

citizens against earthquakes. From the perspective of Norwegian policy-

holders according to our analysis the answer is no. Norwegian citizens have

no desire to buy insurance against earthquakes. Therefore they resent the
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idea that the insurance companies, from which they buy casualty insurance,

underwrite hazardous earthquake risk.

Now consider a casualty insurer located in an area frequently exposed to

earthquakes. People in this area need earthquake insurance. The insurance

companies in this area already have earthquake risks in their insurance

portfolios. In fact, in as much as the policyholders are the true owners of

the insurance company, these �rms are owned by policyholders who have

bought earthquake insurance. Looking again at Table 6, in this case the

correct portfolios to compare are portfolio C and D. The policyholders and

the insurance company certainly agree on these portfolios. The �nancially

reinsured portfolio D is clearly preferred. We conclude that the �nancial

markets do provide a bene�cial opportunity to hedge hazardous insurance

risks. With this opportunity the insurance company may assume greater

insurance risk. The derivatives will help �nance potential huge claims pay-

ments. Not even in worst case scenarios will the company seriously violate

the legal requirements. Therefore by incurring relatively modest recourse

costs, it will be able to maintain compliance with the statutes.

Our results depend on the type of catastrophe risk that is insured and the

existence of �nancial options that are sensitive to such risk. However, we

consider our choice of correlation between claims due to catastrophes and

the chosen stock index, 0:7, to be low enough to cover many cases. Further

the results depend on the relationship between premiums and claims, but

in practice that ratio does not vary too much. Finally, the price of �nancial

reinsurance is also important, i.e. the price of the put options. We believe

our asset pricing model does not select too low prices. Still, there are �xed

costs and information costs connected to engaging in �nancial reinsurance,

implying that there are economies of scale in such endeavours. Thus our

results applies best to companies having a certain size in related activi-

ties. In summary we believe our results apply to a wide range of casualty

insurance cases.

6 Conclusion

We have demonstrated that �nancial derivatives provide an e�ective means

to hedge hazardous insurance risks. A distinction must be made between

casualty insurers that are basically owned by policyholders who need insur-
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ance against hazardous risks, and those who are not. The former already

have hazardous risks in their insurance portfolio and are well advised to

consider buying �nancial reinsurance. For these companies the question is

not whether or not to take on hazardous risks, but how to manage these

risks.

In regard to casualty insurers whose policyholders are not exposed to spe-

ci�c hazardous risks, our analysis suggests not to underwrite such risks.

Even if these risks are attractive to the company in terms of expected net

cash ows, when policyholders do not need insurance against hazardous

risks neither do they want such risks to be part of underwriters insurance

portfolios.
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