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Abstract— This paper demonstrate the feasibility and illus-
trates some challenges of applying extremum seeking control to
online optimization of the drilling process. Specifically, we con-
sider the problem of finding the hook-load (and consequently
the weight on bit) which optimizes the rate of penetration
while drilling. To this end, a phenomenological drilling model
is presented which includes the bit foundering that occurs at
too high weight on bit. We then propose an Extremum Seeking
(ES) controller architecture which can be used in conjunction
with existing auto-driller systems. The effectiveness of this
ES architecture is illustrated by simulation examples with the
presented model.

I. INTRODUCTION

The cost of drilling a well is in large part determined by
the time it takes to drill it. Hence, cost-reduction is achieved
through reducing Non-Productive Time (NPT) and increasing
Rate of Penetration (ROP). We will focus on increasing ROP.

The basic mechanism of the cutting process is quite well
understood in the ideal case [1], [2], [3]. However, the
relevance of findings from such idealized models towards the
goal of optimizing ROP is limited in the field situation, due to
the large uncertainty and significant complexity of downhole
dynamics in drilling. This have led to Black Box approaches:
attempts to analyzs field data to find correlations between
operating parameters and ROP, or in drilling parlance, to
identify operational sweet spots. However, this form of big-
data approach have had limited success due to the multitude
of changing operating conditions reducing the applicability
from one case to the next [4]. A more promising approach
is to optimize drilling conditions online based on feedback
from real-time measurements. Such an approach is allowed
by Extremum Seeking Control [5].

The drilling optimization problem can be thought of as
maximizing the Rate Of Penetration (ROP) by tweaking
certain operating parameters subject to constraints imposed
by rig equipment and various other qualitative considerations
decided by the driller. While increasing the drill string
Revolutions Per Minute (RPM) typically yields a monotonic
increase in ROP and is constrained by the possible occur-
rence of whirl, increasing Weight On Bit (WOB) only leads
to an increase in ROP up until the foundering point [6], [7],
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after which the mechanical energy is wasted and damage
to the Poly Crystaline Cutters (PDC) can occur. In [2] the
cutting process of a PDC bit is split into three successive
regimes: Phase I is dominated by frictional contact process
due to bit dullness. Phase II, where the contact forces are
fully mobilized and additional forces contribute to cutting.
Phase III, where the frictional contact forces increase due to
insufficient hole cleaning see Fig. 3. The foundering point is
then located at the Phase II/III transition, and drilling should
ideally be performed close to the foundering point [6], [7].
However, as is noted by [2]:

There is reason to believe that this mode of opera-
tion is rarely achieved in practice. Indeed, analysis
of field data indicates that the drilling efficiency
is typically low, thus suggesting that the bit is
not often drilling in phase II [and] (in the field
environment) phase II can be missed all together;
furthermore the characteristic contact length l (one
of the parameters controlling wf , the weight-on-bit
at the transition phase I/phase II) is also changing
constantly due to wear and self-sharpening of the
bit.

Hence, to achieve optimal drilling performance, weight on
bit should be continuously updated in real-time to adapt to
the changing operating conditions, based on feedback from
the drilling data.

Extremum seeking is a non-model based approach to real-
time optimization in situations where there is a nonlinearity
with a local extremum in the control problem [5]. It has been
in existence since the 1950s The proof of convergence to a
local extremum for a general class of non-linear systems
is shown in [8]. It has been widely applied to industrial
problems [5], [9], including for petroleum production [10],
[11]. Its application in drilling have very recently also been
proposed [12], and its feasability is evaluated in this paper.

II. INTRODUCTION TO EXTREMUM SEEKING

We now give a brief introduction to extremum seeking
control. We consider a general single input–single output
(SISO) nonlinear model, following [9]:

ẋ = f(x, θ) (1)
y = h(x, θ) (2)

where x ∈ Rn is the state, θ ∈ R is the input, y ∈ R
is the output, and f : Rn × R → Rn. Assume that there
exists a smooth function l : R → Rn such that l(θ) is an
exponentially stable equilibrium point of the system (1)–(2),
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Fig. 1. Basic extremum seeking scheme.

that is

f(l(θ), θ) = 0. (3)

Further assume that there exists θ∗ ∈ R such that

(h ◦ l)′(θ∗) = 0 (4)
(h ◦ l)′′(θ∗) < 0. (5)

Hence we assume that the output equilibrium map y =
h(l(θ)) has a maximum at θ = θ∗. Our goal is to develop a
feedback mechanism which approaches this optimal value
without requiring knowledge of either θ∗ or the system
f, h, l. The feedback scheme is shown in Fig. 1. The basic
idea of this approach employs a slow periodic perturbation
a sinωt which is added to the signal θ̂, our current best
estimate of θ∗. For a slow perturbation, relative to the plant
response, then the plant appears as a static map y = h ◦ l(θ)
and its dynamics do not interfere with the extremum seeking
scheme. The perturbation in θ will create a periodic response
in y which is either in phase or out of phase with a sinωt.
The high-pass filter s/(s + ωh), known as the “washout
filter”, eliminates the “dc component” of y. Thus, the pertur-
bation signal a sinωt and (s/(s + ωh))y approximates two
sinusoids which are

• in phase for θ̂ < θ∗

• out of phase for θ̂ > θ∗.

The product of these two signals have a “dc component”, ξ
which is extracted by the low-pass filter and then integrated
to obtain the estimate θ̂. The overall feedback system has
three time scales:

• Fastest – the plant response.
• Medium – the periodic perturbation.
• Slow – the filters in the extremum seeking scheme.

III. DRILLING MODEL

We will apply the peak seeking scheme to a phenomeno-
logical model describing the axial dynamics of the drilling
system. We use a semi-lumped description, conceptually
similar to [13], based on the distributed drill-string model
as derived in [14], [15].

A. Distributed dynamics

Denote the axial velocity and force by v(t, x), w(t, x),
respectively, where (t, x) ∈ [0,∞)×[0, L], with L the length
of the drill-string. The axial force can be found from the
strain, given as the local relative compression w(t, x) =
AE
(
ξ(t, x) − ξ(t, x+dx)

)
/dx, where ξ(t, x) is the axial

displacement such that ∂ξ(t,x)
∂t = v(t, x), and dx → 0 is

an infinitesimal axial position increment, A is the cross-
sectional area of the element and E is the Young’s modulus.
Further, ρ is the pipe mass density and ka is a damping
coefficient representing the viscous shear stresses acting on
the pipe, and ρ̄

ρg sinφ(x) accounts for the acceleration of
gravity acting on the submerged weight ρ̄. Then, the axial
motion is governed by the 1-D wave equation with viscous
damping:

∂w(t, x)

∂t
+AE

∂v(t, x)

∂x
= 0 (6)

∂v(t, x)

∂t
+

1

Aρ

∂w(t, x)

∂x
= −kav(t, x) +

ρ̄

ρ
g sinφ(x). (7)

The topside velocity v(x = 0, t) is the system actuation,
and the downhole boundary condition at x = L is obtained
from a force balance on the lumped Bottom-Hole Assembly
(BHA) with mass Mb. Both of these will be discussed in the
following.

B. Topside boundary

In a drilling system, the drill string is connected at the
top to the top-drive suspended over the drill floor by the
traveling block. The traveling block is connected by several
steel drill lines with one attached to the deadline anchor
and the other being spooled on a drum controlled by AC
induction motors [16]. Thus, the spool-rate (or “feed-rate”)
of this AC motor controls the axial velocity of the traveling
block v0(t). Hence, at the left boundary (topside) we have
the boundary condition

v(t, x = 0) = v0(t). (8)

The measured output of the system is the strain at the
deadline anchor, which is used to compute the weight as
felt by the hoisting system which corresponds to the axial
force acting from the top-drive on the drill string [17], in
drilling parlance referred to as the hook load. We will denote
the Hook load as w0 := −w(t, x=0). Roughly speaking,
the hook load represents the suspended weight of the drill
string minus the weight on bit. Due to lack of down-hole
measurements, the hook load is in practice used as a direct
proxy for weight on bit during drilling operations.

To maintain the right weight on bit, the feed-rate is often
set by PI-feedback controller from the hook load called an
Auto-driller [18], where a set point wsp0 for the desired hook
load is provided by the driller:

v0(t) = Kp(w0(t)− wsp0 ) +Ki

∫ t

0

(w0(τ)− wsp0 )dτ. (9)
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Fig. 2. Picture showing the topside of a drilling rig.

C. Bottom-hole boundary

The bottom-hole boundary condition at x = L is obtained
from a force balance on the lumped Bottom-Hole Assembly
(BHA) with mass Mb. We will denote the velocity at the
bottom-hole boundary as v(t, x = L) =: vb(t), and the force
acting from the drill string on the BHA as w(t, x=L) =:
wL(t). The bottom-hole boundary condition then writes as:

Mbv̇b = wb(vb, wL)− wL +
ρ̄

ρ
Mbg, (10)

where wb(vb, w(t, x=L)) is the force acting from the forma-
tion on the BHA through the drilling bit, known as the weight
on bit. Following [16] we can relate the weight on bit to the
bit velocity by considering the combined depth of cut [19]
per revolution d(t) = vb(t)

ωbit
, where ωbit denote revolutions

per second of the drill bit, and then relating combined depth
of cut to weight on bit, see Fig. 3. Note that we have in the
current investigation assumed constant bit angular velocity
ωbit. Following [2], the cutting process is decomposed into
three phases. We implement this in the following way, where
the five cases correspond to: bit off bottom, Phase I, Phase
II, and Phase III.

wb =



0, d < 0

wL, d = 0 and wL ≤ wf∗
wf∗ +Kad, db > d ≥ 0 and wL > wf∗

wf∗ +Kadb, d ≥ db and wL < wf∗ +Kadb

wL, d ≥ db and wL > wf∗ +Kadb
(11)

where wf∗ denotes the weight on bit at the Phase I/II
transition, and db denotes the combined depth of cut at
the Phase II/III transition. Finally, Ka = ζεa, where ζ
characterizes the cutting angle, ε the intrinsic specific energy
and a the bit radius [19], [1].
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Fig. 3. Top: depth of cut, d, (corresponding to a ROP) for different
WOB, w. From experiements with A: Kinematic control, and B: weigh-on-
bit control (due to [2]). Bottom: Conceptual schematic of the same relation
as used in the present note with the three Phases indicated.

TABLE I
DRILLING SYSTEM PARAMETERS

A 3.5 ∗ 10−3 m2 db 8 ∗ 10−3 m
E 2 ∗ 1011 Pa ka 0.1 1/s
Ka 3.88 ∗ 106 N/m L 2000 m
Mb 12000 kg MHW 4034.7 kg
wf∗ 71280 N ρ 8000 kg/m3

ρ̄ 7000 kg/m3 ωbit 1.05 1/s

D. Example simulation

The drilling model described in this section is simulated
with the parameters given in Table I. The drilling system
uses an auto-driller with the Kp = 4.6 ∗ 10−7 m/(sN),
Ki = 7 ∗ 10−8 m/(s2N). We consider a drilling system in
Phase I, and then lower the set point of the hook load in
steps such that the system enters Phase II and then Phase
III, see Fig. 4. The drilling system, with the auto-driller,
has a closed loop response time which is primarily given
by the aggressiveness of the auto-driller tuning and rock
properties. However, the aggressiveness of the auto-driller
tuning is dependent on length and geometry of the drill
string (the delay and BHA time constant). These points
are worthwhile noting as this time constant determines the
convergence speed of the extremum seeking algorithm we
propose in the following.

IV. EXTREMUM SEEKING CONTROL OF DRILLING

The simplest way to implement Extremum seeking control
with current drilling control systems is to use it in cascade
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Fig. 4. Simulated drilling response to step changes in the hook load set
point.

with existing auto-drillers. This approach is schematically
depicted in Fig. 5.

A. ESC algorithm

We implement a basic extremum seeking control pro-
cedure to enable online configuration of the optimal hook
load set-point, wsp0 , for the auto-driller. The implementation
is described in the following. Our goal is for the ESC
to control the drilling system to the Phase II/III transition
(the foundering point), which is often considered to be the
optimal point of operation [6]. The input is the set-point
wsp0 (t) = wnom

0 + θ(t), where wnom
0 is a initial nominal hook

load set by the driller and θ(t) is governed by Extremum
Seeking Control (ESC) algorithm. To satisfy the assumptions
(4)-(5) at this point, the system output is defined to be

y = v0 − kθθ, (12)

where 0 < kθ < Kaωbit. We use the following Extremum
Seeking Control (ESC) algorithm [5]:

θ(t) = θ̂(t) +M(t) (13)
˙̂
θ(t) = KĜ(t) (14)
M(t) = a sin(ωt), (15)

hook load
set-point

Auto-
Driller

Drilling-
system

ESC
algorithm

measured hook load

Block velocity

nominal
hook load

θ

_
+

Fig. 5. Proposed ESC scheme with auto-driller.

where M(t) is the perturbation signal, K is the gain and the
filtered signals

Ĝ(s) =
ωl

s+ ωl
Mz (16)

z =
s

s+ ωh
y. (17)

B. Static map

Denote the states at the equilibrium by an overbar, i.e.
w̄, v̄, etc. We find the steady state by setting the time
derivatives in (6),(7),(10) to zero, and noting that the integral
term in (9) ensures that w̄0 = w̄sp0 . We have

w̄b = MHW g − w̄sp0 − v̄0kv, (18)

where the drill string hanging weight is given as

MHW =

∫ L

0

Aρ̄ sinφ(x)dx+
ρ̄

ρ
Mb, (19)

and the viscous damping coefficient kv = LAρka. Combin-
ing with (11) we obtain, when the system is at equilibrium,
the static map

y(θ) =


−kθθ, Phase I
ωbit−Kakθ
Ka+ωbitkv

θ +Ky, Phase II
−kθθ + dbωbit, Phase III

(20)

where Ky = ωbit
Ka+ωbitkv

(MHW g − wnom0 − wf∗). Assuming
that ωbit − Kakθ, then this static map is convex upward,
and has the Phase II/III transition as a peak, in the interval
comprised of Phase II and Phase III. Hence, we obtain the
following requirements for the success of the ESC algorithm:

1) 0 < kθ <
ωbit
Ka

2) wnom0 < MHW g − wf∗
Note that this static map does not satisfy the assumptions

given in Section II, specifically, it is not smooth. There are
two points to be made regarding this: Firstly, the assumption
of smoothness of the static map is in some cases overly
stringent. As we shall see in the simulations presented in the
following, it is for the present system sufficient that the static
map is convex upward and that 0 is contained in the subdif-
ferential at the peak. Secondly, we could have approximated
the static map with a smooth map satisfying the assumptions
in Section II and still have a good representation of the
weight on bit seen in experiments, see Fig. 3.
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C. Filter design

In setting the filter parameters, we use the suggestions
from [9]: ωh = ω, ωl = ω/3. The period of the periodic
perturbation ω should be slower than the plant response, and
based on the simulations shown in Fig. 4, we choose ω = 0.1
rad/s, which corresponds to a period of 62 seconds. However,
for longer wells or less aggressive auto-drillers, a slower
perturbation signal might be required. Finally, we use the
perturbation amplitude a = 3000 N, and the gain K = 200
m−1.

D. Simulation results

In the simulations we consider a drilling system with the
parameters given in Table I. The drilling system uses an auto-
driller with the Kp = 4.6 ∗ 10−7 m/(sN), Ki = 7 ∗ 10−8

m/(s2N). The simulation results are shown in Fig. 6 for two
different runs.

1) Run 1: For run 1 the the drilling system is close to
the Phase I/II transition, when the ESC is started at t = 120
sec. The ESC algorithm effectively controls the system to the
optimal operating point at the Phase II/III transition over the
next 10 minutes. In Fig. 6, bottom, the WOB can be seen to
be increased gradually until the ROP reaches its maximum
(Fig. 6, top).

2) Run 2: For run 2, a perhaps more realistic scenario
is considered. Here the the drilling system is operating
at a significantly elevated weight on bit which does not
contribute to ROP but increases the risk of vibrations and
bit damage. The ESC is started at t = 120 sec, and the
algorithm gradually increases the hook load, corresponding
to an decrease in weight on bit (Fig. 6, bottom), until a
decrease in ROP occurs (Fig. 6 top). Thereby, the system is
effectively controlled to the optimal operating point at the
Phase II/III transition.

V. DISCUSSION AND PERSPECTIVES

In this paper we have demonstrated the feasibility of
applying extremum seeking control of the hook load to
optimize ROP while drilling. The key point that enables such
an approach is the concept of bit foundering. That is, the
fact that ROP tapers off (and sometimes starts decreasing)
with increasing weight on bit past the foundering point. This
makes the static mapping between ROP and weight on bit
upwards convex in an interval around the foundering point,
i.e. the transition between the phase II and phase III drilling
regime [2]. As was shown in this paper, using an auto-driller
with integral action, this transfers to an upwards convex static
mapping between the equilibrium hook load set point and
feed rate. Consequently, these can be used as, respectively,
the plant input and output for the design of an extremum
seeking control scheme.

The requirements for this scheme to work can be summa-
rized as:
• Perturbation radial velocity ω small enough relative to

system time constant.
• Penalty coefficient satisfying: 0 < kθ < Kaωbit
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Fig. 6. Drilling response for two runs with extremum seeking control
of wsp

0 (t) = wnom
0 + θ(t) which effectively finds the hook load w0(t)

corresponding to the optimal WOB at the phase II/III transition. The
extremum seeking is started at 120 seconds.

• The ESC is started with the system in Phase II or Phase
III of drilling: wnom0 < MHW g − wf∗.

A further challenge is the possible occurrence of complex
drill-string phenomena, not represented in the current model.
Potential disturbing dynamics could be drill string vibrations,
or coupling of the axial dynamics with torsional and/or
lateral movement, that cause transient phenomena with larger
time constants. If such transient dynamics are evident, the
perturbation period might have to be increased further.

This paper’s goal has only been to illustrate the feasibility
and potential of applying ESC to drilling control, and as such
has limited the design to a low complexity, easily applicable,
formulation. There are several aspects that could be improved
or extended:
• Improving/changing the auto-driller to reduce closed

loop time constant.
• Improve performance by explicitly taking the drill string

delay dynamics into account [20].
• Simultaneously optimize over multiple drilling param-

eters [21].
• Optimize over other parameters than ROP, such as

minimizing MSE [7].
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[8] M. Krstić and H.-H. Wang, “Stability of Extremum Seeking Feed-
back for General Nonlinear Dynamic Systems,” Automatica, vol. 36,
pp. 595–601, 2000.

[9] Hsin-Hsiung Wang, S. Yeung, and M. Krstic, “Experimental appli-
cation of extremum seeking on an axial-flow compressor,” IEEE
Transactions on Control Systems Technology, vol. 8, pp. 300–309,
mar 2000.

[10] A. Pavlov, M. Haring, and K. Fjalestad, “Practical extremum-seeking
control for gas-lifted oil production,” 2017 56th IEEE Conference on
Decision and Control (CDC), no. Cdc, pp. 2102–2107, 2017.

[11] J. A. Peixoto, D. Pereira-dias, A. F. S. Xaud, and A. R. Secchi,
“Modelling and Extremum Seeking Control of Gas Lifted Oil Wells,”
in IFAC-PapersOnLine, vol. 48, pp. 21–26, Elsevier Ltd., 2015.

[12] C.-S. J. Ng and S. Khromov, “Method and system for performing
automated drilling of a wellbore,” 2019.

[13] U. J. F. Aarsnes, F. Di Meglio, and R. J. Shor, “Avoiding stick slip
vibrations in drilling through startup trajectory design,” Journal of
Process Control, vol. 70, pp. 24–35, oct 2018.
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